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ABSTRACT

We present a new convolutional neural network (CNN)-based element-wise classification method
to detect a random number of voids with arbitrary shapes in a 2D plain strain solid subjected to
elastodynamics. We consider that an elastic wave source excites the solid including a random
number of voids, and wave responses are measured by sensors placed around the solid. We present
a CNN for resolving the inverse problem, which is formulated as an element-wise classification
problem. The CNN is trained to classify each element into a regular or void element from measured

wave signals. Element-wise binary classification enables the identification of targeted voids of any
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shapes and any number without prior knowledge or hint about their locations, shape types, and
numbers while existing methods rely on such prior information.

To this end, we generate training data consisting of input-layer features (i.e., measured wave
signals at sensors) and output-layer features (i.e., element types of all elements). When the training
data are generated, we utilize the level-set method to avoid an expensive re-meshing process,
which is otherwise needed for each different configuration of voids. We also analyze how effectively
the CNN performs on blind test data from a non-level-set wave solver that explicitly models the
boundary of voids using an unstructured, fine mesh. Numerical results show that the suggested
approach can detect the locations, shapes, and sizes of multiple elliptical and circular voids in the

2D solid domain in the test data set as well as a blind test data set.

INTRODUCTION

Defects of various sizes and shapes—such as voids, inclusions, and cracks—can compromise
the structural integrity of civil and mechanical structures. The literature has shown several types
of nondestructive testing (NDT) approaches, such as ultrasonic testing, for identifying structural
defects (Hellier 2013). Characterizing such defects using wave-based empirical NDT procedures
without any systematic numerical method is time-consuming, requires a trained technician, and is
only applicable to simple problems (e.g., a problem where only the location of a single line crack
of an assumed orientation is detected). Thus, systematic inverse modeling is required to detect
complex defects subjected to dynamic excitation, and, in general, a series of computational dynamic
forward problems with varying locations and sizes of the scatterers are iteratively solved during the
inversion process. In such inverse modeling procedures, the boundary element approach (BEM) has
been a prominent forward modeling tool because the discretization of only the boundaries of voids
and cracks (Wrobel 2002; Jeong et al. 2009) allows the BEM’s computing cost to be multiple order
of magnitude lower than the finite element method (FEM), and re-discretization of the boundary
is straightforward. Because the BEM approach employs the Green’s function in an elastodynamic
medium, as its major disadvantage, BEM can hardly be applicable in arbitrarily-heterogeneous
media of which Green’s function is not straightforward to compute (Guzina and Pak 1996). On
the other hand, the extended finite element method (XFEM) and the level-set method have been

adopted for the inverse-scattering problem to overcome this limitation of BEM because (i) they
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model heterogeneous medium with scatterers straightforwardly (Sukumar et al. 2004; Ashari and
Mohammadi 2011; Elguedj et al. 2009; Menouillard et al. 2010), and (4¢) unlike the standard FEM,
neither the XFEM nor the level-set method necessitates extensive re-meshing for modeling varying
shapes of scatterers in the iterative process of solving forward problems.

Optimization methods, hinged on a number of forward modeling iterations, have been used
with the XFEM and the level-set method for resolving inverse-scattering problems as briefly shown
in the following. Rabinovich et al. (2007) and Rabinovich et al. (2009) identified cracks using the
XFEM and the genetic algorithm (GA) in 2D structures under both static and dynamic excitations.
Waisman et al. (2010) studied the performance of the GA inversion modeling under elastostatic
conditions for detecting various types of structural damage, such as cracks and holes with regular
and irregular shapes. Chatzi et al. (2011) presented a novel GA, coupled with a generic XFEM
and the level-set modeling of an elliptical void to model cracks or voids of any shape, that avoids
entrapment in local optima. They also showed the experimental validation of the numerical method
for detecting an arbitrary crack in a 2D plate. Jung et al. (2013), Jung and Taciroglu (2014), and
Jung and Taciroglu (2016) examined a new method to identify cracks and voids in a heterogeneous
medium using elastodynamic waves by combining the dynamic XFEM and the level-set method
with a gradient-based search algorithm. In addition, they proposed the cubic spline method for
discretizing the boundary of arbitrarily-shaped scatterers and a divide-and-conquer strategy to
tackle the solution multiplicity. Sun et al. (2013) and Sun et al. (2014) detected multiple flaws
using the XFEM as well as the level-set method and employed new topological variables in the
optimization process to activate and deactivate defects during the analysis along with an enhanced
artificial bee colony technique to tackle the non-uniqueness of the considered inverse problem.
Nanthakumar et al. (2013) suggested a new multilevel coordinate search strategy to detect elliptical
voids in piezoelectric structures. Yan et al. (2015) suggested a guided Bayesian inference method,
combined with the XFEM, to identify and determine multiple cracks in elastic structures without
prior knowledge of the number of cracks. Zhang et al. (2016) suggested a method that uses the
dynamic XFEM for modeling a fracture in elastodynamic medium and uses Nelder-Mead and Quasi-
Newton optimization methods to identify cracks in plates. Wang and Waisman (2017) suggested a

new crack-tip enrichment function for the XFEM to detect cracks in bimaterials. Livani et al. (2018)
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used a new approach using both the Extended Spectral Finite Element method and the particle
swarm optimization (PSO) algorithm to detect multiple cracks. Khatir and Wahab (2019) combined
PSO and Jaya optimizers with the XFEM and extended isogeometric analysis for detecting cracks
in plane structures. Zhang et al. (2019) proposed a method for identifying voids in a continuous
medium utilizing time-domain dynamic response from the level set method and the analytically-
calculated shape derivative of an objective function. Ma et al. (2020) proposed a new method
using the XFEM and an improved artificial bee colony algorithm that can identify multiple cracks
without any prior knowledge of the flaws. Fathi et al. (2021) proposed the dynamic XFEM with
an enhanced vibrating particles system (EVPS) to solve an inverse-scattering problem. In all of
the aforementioned methods, the time-consuming iteration-based optimization methods have been
used for the inverse modeling of scatterers. Since optimization involves a series of forward modeling
after measurement data are fed into the process, it is not possible to detect scatterers quickly (e.g.,
in a second) from measurement data by using such optimization-based methods.

On the other hand, a few papers have recently shown that machine learning (ML) would
overcome such limitation (i.e., long computing time) of the optimization-based methods for the
inverse-scattering problem. ML has been studied for the inverse-scattering problems because of
its potentially-short computing time (e.g., less than a second), once training is done, and its
potentially-high accuracy even when the number of control parameters is large (e.g., thousands
or more). However, to date, the related literature is still relatively thin, and the latest, published
studies in the ML-based inverse-scattering are still in early stage as shown in the following. Jiang
et al. (2021) combined the level-set method and the extreme learning machine (ELM) to detect
voids of a known number in 2D solid structures. They modeled circular or elliptical voids during
the process to generate the training data for an elastonynamic wave-based NDT. However, for their
method, the number of voids and their shape types (circular or elliptical) should be a-priori known
to the simulator. Thus, the method was limited only for identifying the coordinates of the centroids
and radii (or major/minor axes with orientations) of circular (or elliptical) voids provided that their
numbers and shape types are known in advance. Jiang et al. (2022) also extended the approach
for identifying structural flaws in thin structures by integrating the scaled boundary finite element

method (SBFEM) into the data generation process for a CNN. They considered Lamb waves in
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thin plates, and damage types (e.g., surface cracks of simple wedge shapes on a boundary of the
thin plate) are a-priori known in the simulation. Then, from measured wave data, their trained
CNN determined only the number of cracks, only from 1 to 3, and, in turn, determined three
shape parameters of each crack (e.g., the depth, the wedge angle, and the width of a crack). Gao
et al. (2022) trained a fully connected neural network, from synthetic electromagnetic wave training
data, to identify a scattering object in an application like a radar problem. They considered the
2D /3D Helmholtz equation and electromagnetic wave system, and their trained neural networks
identify the shape parameters of a single targeted scattering object of a complex shape (e.g., a star
shape). However, their work is limited by the assumption that there should be only one scattering
object, of which approximate location should be a-priori known, in a domain. To overcome the
limitations (i.e., requiring such a-priori known information) of the aforementioned ML methods
for the inverse-scattering problems, one should study a new ML-based approach for identifying the
locations and shapes of an arbitrary number of voids in a solid without a-priori known information.

To the best of our knowledge, there has been no study, using an artificial neural network
(ANN), for identifying the locations and shapes of voids of an arbitrary number in a solid by using
elastodynamic waves. To fill this research gap, this paper presents a new data-informed CNN
method, hinged on element-wise classification, to identify an arbitrary number of voids in a 2D
plain strain solid, of which elastodynamic wave responses are measured by sensors placed around
the solid. We use the level set method to avoid time-consuming re-meshing for various configurations
of voids, which are iteratively updated while training data are generated. We generate training
data that consist of input-layer features (i.e., measured signals) and output-layer features (i.e., the
element types of all elements). The CNN is trained to classify the type of an element (i.e., void
or non-void) from measured wave signals at sensors. Thus, the trained CNN results in a contour
map of the element-wise classification, which shows the map of the probability for each element
to be a void element. Thus, from the contour map, an engineer could infer the locations, sizes,
and shapes of an arbitrary number of voids in the 2D plain-strain domain. This research serves as
the prototype in a 2D setting, and it can be extended for detecting voids of arbitrary shapes and

numbers in a 3D solid.

FORWARD MODELING
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Governing Equation

This paper considers a domain 2 C R? (see Fig. 1), which is occupied by a homogeneous linear
elastic undamped solid medium with voids. The governing equation of the displacement field of

elastic waves in the solid can be expressed as:

V-o=pa inQ, (1)

where the displacement field of a vector wave is u := u(z,y,t) = [us,uy])’; o := o(z,y,t) denotes
Cauchy stress tensor; V- () denotes the divergence operator; p := p(x,y) denotes the mass density.
The wave responses are subject to the at-rest initial conditions. The displacement field u vanishes
on I'y, and the boundary of a void I'y is characterized by the traction-free condition while the
prescribed traction is applied on I',,. We note that, while elastodynamic waves for imaging the
solid are generated and propagated, the material property of the solid or the boundary of voids are
not altered. Namely, the presented elastodynamic wave-based imaging is performed after targeted
voids are created. The elastodynamic wave-based imaging while a void or crack is formed is beyond
the scope of this paper. For such a problem, we refer to (but not limited to) Stanchits et al. (2015)
who demonstrated a passive wave-based method (e.g., acoustic emission) used for characterizing

the initiation and propagation of fractures in geological rocks induced by hydraulic fracturing.

Level-set approximation and the FEM

This section revisits the conventional level-set method (Chatzi et al. 2011; Jung et al. 2013; Sun
et al. 2014) to model a void on a background mesh and compute wave responses in a solid domain
with voids. This work uses the FEM wave solver, which is based on the level-set approximation,
because the level-set solver does not necessitate the onerous re-meshing whenever the geometry of
voids is updated in each training data set.

In the weak form of the governing equation, the displacement field u is approximated using
the finite element approximation and an enrichment function V(x,y). Namely, u in an element is

approximated as: N

uh(l‘7y7t) = V(xvy)qui(xvy)ui(t)? (2)

=1
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where
1, if z,y € an element classified as a non-void element,
V(z,y) = (3)
0, if x,y € an element classified as a void element.
The approximation in Eq. (2) consists of nodal displacement u; and local shape function ¢;(z,y)
at the i-th node, and we use 9-node quadrilateral elements in this paper.

If the centroid and 4 other nodes (among total 9 nodes) of an element are inside the actual
boundary of a void, that element is considered as a void element. Otherwise, an element is defined
as a non-void element. The exemplary illustration of such categorization of elements can be seen
in Fig. 2.

The weak form and Eq. (2) lead to the time-dependent discrete form in each element. It
should be noted that, if an element is classified as a void element, its element stiffness and mass
matrices become zero. After the global assembly of matrices and a force vector, we obtain the time
dependent equation in terms of a global displacement solution vector. We adopted the Newmark
time integration method (Newmark 1959) to solve for the global solution vector for each discrete

time step.

Verification of the level-set wave solver

Prior to our investigation on the performance of the presented CNN-based inverse-scattering
modeling, we verify our in-house level-set forward solver, written in MATLAB, by comparing our
wave responses with the reference solution obtained by using the Finite Element Analysis Program
(FEAP) (Taylor 2017), which uses an explicit mesh for the same domain (see Fig. 3). The mesh
is generated using MESH2D, a Delauny mesh generator (Engwirda 2005; Engwirda 2014). In our
level-set-based forward wave solver, the domain is discretized by using a standard background mesh
of 9-node square elements with an element size of 0.01 m, while an unstructured mesh of 3-node
triangular elements with targeted edge lengths of 0.004 m is used in FEAP.

This verification considers a homogeneous square-shaped solid domain, of which extent is 0.8 x
0.8 m and includes a single circular void of 0.1 m radius, located at the center of the domain. For
both models used by the level-set solver and FEAP, we use material properties of aluminum with

Young’s modulus (E) of 71.5 x10° Pa, mass density (p) of 2800 kg/m?, and Poisson’s ratio (v) of
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0.33. The compressional wave velocity (v,) and the shear wave velocity (vs) are calculated as:

Up = \/ H Vs = 4E (4)

p(1+v)(1—2v)’ 2p(1+v)’

so that the values of v, and vs are 6151 ms~! and 3098 ms—!, respectively. The domain is subject
to a traction-free condition on the left, top, and right surfaces, and it is constrained by a fixed
boundary condition on the bottom surface.

A point wave source is located at * = 0.3 m and y = 0.8 m, at which the following Ricker wave
signal (Fig. 5), with a peak amplitude of 5,000 N/m and a dominant frequency of 20,000 Hz, is
applied:

—5000((0.25.e~0-2327St=3V0)? (97 f1_3./6)2)—0.5)—13.c~ 133 it ¢ < 6/6
0.5+13.e—135 ! -

0, if ¢+ > 66

where f denotes the central frequency of the Ricker signal.

Fig. 4 shows the snapshots of the amplitudes of displacement at Tus, 10 us, 12 us, 14 us, 16
ps and 20 ps obtained by our forward wave solver. Fig. 6 illustrates a comparison of w,, at the
receivers’ locations, computed by our level-set wave solver and FEAP. Here, sensors are placed at
the left, top, and right surfaces with a sensor spacing of 0.1 m, except the corners and the source
location (0.3, 0.8) m, and they are numbered clockwise from the bottom left at (0, 0.1) m to the
bottom right at (0.8, 0.1) m. Both signal data, shown in Fig. 6, respectively from our level-set
solver and FEAP, agree with each other very well, implying that the level-set solver described is

verified and can be utilized for the data generation.

Data Generation and Randomizer

Data generation for machine learning simulation necessitates solving a forward problem consid-
ering voids whose number and geometries change per each data set. This work uses a homogeneous
2D square-shaped domain of 0.8 m x 0.8 m in a plane-strain setting discretized by an element size
of 0.02 m. Namely, the entire domain is discretized into a structured background mesh with a total

of 1600 square elements.
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A schematic representation of the boundary conditions for the data generation is shown in
Fig. 7. The domain is subjected to traction-free conditions on the left, top, and right surfaces and
the fixed boundary condition on the bottom. The wave sources are loated at (0.3,0.8) m, (0,0.3)
m, and (0.8,0.4) m. The Ricker signal P(¢) in Eq. (5) is applied as a nodal force signal in a manner
such that its positive value points toward the inside of the domain at all source locations. The
central frequency of the Ricker time signal at all the sources is f = 20,000 Hz, and its maximum
amplitude is 5,000 N/m.

The solid is made of the same aluminum as the one used for the aforementioned verification
with elastic modulus E = 71.5 GPa, mass density p = 2,800 kg/m?3, and Poisson’s ratio v = 0.33.
The total simulation time for each forward iteration is 1,000 us, and the time-step is 1 us. Here, a
total of 18 sensors are evenly placed on all the sides, except the bottom, at a spacing of 10 mm.

We use our randomizer to generate a random number of elliptical-shaped voids of random sizes
and locations within the domain. Among all possible common types of void shapes (e.g., triangles,
trapezoids, potatoes, boomerangs, etc.), we choose to use a thin elliptical shape because of the
following reasons. First, it is more straightforward to parameterize an elliptical shape than others.
Second, by utilizing only thin ellipses, we can populate void elements in a manner such that void
elements, within one or multiple thin ellipses, mimic wide cracks or interconnected wide cracks.
Similarly, previous works (Chatzi et al. 2011; Sun et al. 2014) have also utilized voids of only
elliptical shapes for testing their proposed structural damage-detection algorithms. The equation

for defining the actual boundary of each elliptical void is:

[(x — o) cos(@) + (y — yo) sin()]* | [(= — o) sin(a) — (y — o) cos()]?
m? * n?
where (zg, yo) denotes the center of an ellipse; m and n are the lengths of its major and minor
axes, respectively; and « is the angle of the major axis with respect to the z-axis (see Fig. 8a).
In our data set, we generate ellipses with a major axis ranging from 8 mm to 15 mm, a minor
axis ranging from 4 mm to 8 mm, and an orientation ranging from 5° to 175°. In order to generate
unbiased training data, we randomly locate our voids all over the domain. A sample of our randomly

generated elliptical voids in the domain is shown in Fig. 8b. When each data set is generated, the
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following steps are carried out:

The positions, sizes, and number of the voids are randomly updated.

Per the updated void geometry, we save the data indicating which element is categorized as
void or not per our level-set approximation. If an element is classified as a void element,
we assign a value of one at the element, and if it is categorized as a non-void element, we
assign a value of zero. The assigned-value data for all the 1,600 elements will be used for
element-by-element classification in our trained CNN.

We run our level-set wave solver and save the displacement field of wave responses measured
at the sensor locations.

Out of 36,000 training data, our randomizer generates 6 sets of 6,000 training data sets, each

of which accounts for 0, 1, 2, 3, 4, and 5 voids, respectively.

Our pseudo code of the data generation is as follows:

Randomizer, using the 2D level-set-based wave solver, to generate data sets.

FOR an iteration index: 1 — (the total number of data sets= 36,000)

= Randomly set the values of the parameters of up to 5 elliptical voids in the domain within

the following ranges:
0.05 <m < 0.15 m;
0.010 <7 < 0.015 m;
m <z < (0.8 —m) m;
n <y < (0.8 —n) m;
5 <6< 175 deg.
Update mass and stiffness matrices per the level-set approximation by using the above
elliptical void parameters.
Solve the 2D wave propagation problem.
Save the displacement data at every three-time step from 18 sensor locations as the input-
layer feature.
Save element-wise classification data (1 for void and 0 for no-void) of all the 1,600 elements

as the output-layer feature. ENDFOR
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Fig. 9 shows a heat map, where the number in its color bar indicates the number of data sets
in which a given element is recognized as a void element by our level-set approximation during the
generation of 36,000 data sets. Fig. 9 presents that our randomizer, in general, covers nearly the
entire domain, to promote unbiased learning of our CNN, except the areas around the surrounding
boundaries (I',, and I'y,) because our randomizer prevents ellipses from being located on I', and I'),.
Our randomizer follows a uniform distribution, and all the possible values of the parameters of our
elliptical voids are likely to fall under the uniform distribution during the data generation process.
Per the law of large numbers, the heat map may look more uniformly than the presented one in
Fig. 9, except the areas near the boundaries, as the number of data sets increases further from the
presented 36,000 sets.

Our randomizer creates a random set of ellipses in each data set in a manner such that the
values used for all the elliptical parameters are likely to be independent from each other. Although
the areas of multiple voids may overlap with each other, we do not double count void elements.
Because our neural network is aimed at identifying targeted void elements regardless of possible
overlapping of ellipses in training data sets, such potential overlapping does not affect our prediction

performance.

Data Preparation

A total of 36,000 data sets of input- and output-layer feature data are provided to train the
CNN. The input-layer feature data contain displacement values from 18 sensors in two directions,
u, and u,, each of which includes 334 data (simulation data from 0 to 1,000 ms are saved at every
3 ms). The output-layer feature data consist of a serialized combination of binary values of either
0 or 1, for all the elements, where 0 represents a non-void element, and 1 represents the presence
of a void element.

The training samples are then split into three parts: (i) training, (i7) validation, and (i) test
data sets. Out of 36,000 samples, we separate 30,000 data sets for training, 1,000 data sets are for
validation, and the remaining 5,000 data sets are for testing. The training data sets are used to
expose the CNN to learn important input- and output-layer data feature relations. The validation
subset is set up to keep track of the performance of the CNN during training. The test subset is

used to evaluate the CNN’s performance.
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Sample input-layer feature data in Fig. 10a shows that the range of input-layer feature data is
in the order of 10~®, which makes it difficult for the CNN to learn critical input- and output-layer
data feature. By using mean, maximum, and minimum values as statistical parameters, the input
data range is normalized to the values between -1 and 1. The mean, maximum, and the minimum
values for the normalization are calculated from the training data set for a fairer analysis on the
validation, test, and the blind test data sets than otherwise. The following equation is used to

normalize the input displacement data:

.. __ Amean
noo_ Al]k Atrain (7)
ijk — pmax __ Amin

train train

where A% is the normalized value of the displacement data set including the training, validation or

test set; the subscripts ¢, 7, and k correspond to the k-th time-step of j-th channel of the i-th sample;

mean

A;ji is the un-normalized value of the input data matrix; AFLH

is input data matrix training data
set’s mean value; and ARYY and AQL are input data matrix training data set’s maximum and

minimum values, respectively. The ordinate-axis in Fig. 10b clearly shows the normalization, and

this normalized data set is then passed as input to the neural network architecture.

THE ARCHITECTURE OF THE CNN

The problem of interest is developed as a binary classification problem where the input data
are processed through the CNN to yield predictions of each element as either void or non-void.
During the training process, we use a binary cross-entropy (BCE) as our loss function, comparing

the CNN-predicted probability of each element to be a void to its targeted counterpart:

1 M 1 N
L=-— ; (N ;E log(P(E;)) + (1 — E;) log(1 — P(Ez-))) 7 (8)

where Ej; is the targeted label (“1” for voids and “0” for non-void elements) of the i-th element;
N is the total number of elements; M is the total number of the training data; and P(E;) is the
predicted probability (ranged from zero to one) of the i-th element being void.

Among other types of ANNs (e.g., deep and graphical neural networks), we choose a CNN due

to its remarkable feature extraction and learning capabilities. We present a novel CNN that can
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be applied to time-signal series at multiple sensors, where each signal is 1D data in time. CNN has
unique layers called convolutional layers, where the input data are transformed using filters before
being passed onto the next layer. The overall algorithm of our CNN architecture is presented in
Fig. 11, which consists of a single convolutional layer, a Max Pooling layer, a Flatten layer, a fully-
connected hidden layer, and the output layer. The convolutional layer consists of multiple filters of
fixed filter sizes which convolve over the provided multi-channel input data to extract the feature
patterns. Here, 47 filters convolute through the sensor channels of a single data set resulting in
47 Intermediate Feature Maps (see the bottom part of Fig. 12), which results in an accumulation
of 47 convoluted data vectors of 334 time steps for each channel. The convoluted data are then
passed through a non-linear activation function to produce an intermediate output on which a Max
Pooling layer is applied to extract significant feature maps from the previous convolutional layer.
The feature map from the Max Pooling layer is a multi-dimensional matrix and is transformed into
a one-dimensional vector using the Flatten layer. The output from the Flatten layer undergoes a
series of weights and bias computation in a fully-connected hidden and an output layer. The detail
of each step in the CNN is shown in the following so that the readers can replicate and verify the

presented CNN.

The design of a convolutional layer
The convolutional operation—the beginning part of the CNN (see the dashed box in Fig. 11)—
is presented in Fig. 12. We use a convolutional layer with 47 filters. Each filter is a vector of 19
components, each of which is a single-valued number whose values are initialized using the “Xavier”
initialization (Glorot and Bengio 2010). Every CNN filter is unique as each filter value is initialized
randomly (Maharjan et al. 2022). Padding is added to the input data to preserve the input length
dimension, and the convoluted values are passed through Leaky Rectified Linear Unit (LReLU)

activation function. The LReLU activation function is defined as:

h-a; ifa; <O,
i = fLreLu(ai) = (9)
a; if a; Z O,
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where r; is the activation function-applied outcome; a; is the input of the activation function, such
as i—th component of an array of the convoluted values shown in Fig. 12; and h is a fixed value
(0.3 in this work). The initialized filter 1 (out of total 47 filters in this work) slides across the
length of the input data set in a sliding-window dot product operation as illustrated in Fig. 12.
The remaining 35 channels from the training data set undergo a similar operation for the filter 1.
The 35 signals, after the convolution, are added into one signal of the same number of time-steps
(334 in this work) to provide a convoluted output vector of length 334, preserving the input length.
This operation is repeated for the remaining 46 filters to produce a feature map of size (334,47)

which is then fed into the Max Pooling Layer.

The design of the final fully-connected layers

In the latter part of the CNN, we use a Max Pooling Layer (see the bottom of Fig. 11) of pool
size 4 to extract prominent feature values from the previous layer by taking the maximum value
from the four adjacent vector values reducing the dimension of the output vector to a length of (84,
47). The values are then passed onto the Flatten later converting the two-dimensional data matrix
in the Max Pooling layer to a one-dimensional data array resulting in a vector of length 3,948.
The Flatten layer enables the feeding of the feature-extracted input data from the convolutional
operation to a fully-connected layer. The weights and bias are learnable parameters and are applied

at the fully connected layer and its following layer as:

d
Oi =Y _wizh; + si, (10)
=1

where w;; is the weight coefficient between the two consecutive neurons at adjacent layers; b; is the
j-th feature (or neuron) from a previous layer; d is the size of the data from a previous layer; s; is
the bias associated with each neuron; and O; is the i-th neuron’s calculation outcome. The fully-
connected layer consists of 3,950 neurons and uses the LReLU function in Eq. (9) as the activation
function. Here, the LReLU function takes O; from Eq. (10) as input and passes the array to the

output layer with 1,600 neurons to represent the binary information at all the 1,600 elements in
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the domain employing the use of the “Sigmoid” activation function:

1

e 11
1+4+eai’ (11)

Ty = fsigmoid(ai) =

where r; is the activation function-applied outcome; and a; is the input value to the i—th neuron
in the output layer. Namely, the sigmoid activation function in our final output layer produces
a probabilistic measure, which is continuously ranged from 0 (when a; is a negative number of a
sufficiently sizable magnitude, e.g., fsigmoid(—2) = 0.1192 and fsigmoid(—5) = 0.0067) to 1 (when
a; is vice versa, e.g., fsigmoid(5) = 0.9933). It is visualized in a contour map, to predict if a
particular element out of the 1600 elements could be a void or not. We also attempted to employ
regularization methods such as batch normalization and dropout to tackle possible over fitting in
the training process. However, the use of such regularization worsened the validation recall. Our

CNN takes 130 seconds to train for 50 epochs.

Optimization—the learning

Under the Tensorflow framework, we use the “Adam” optimizer with a learning rate of 0.0005
to learn the values of the filters in the convolutional operator as well as weights and bias in Eq. (10).
We trained the CNN for 50 epochs (or iterations) and used a batch size of 550. In the first iteration,
the Xavier-initialized unknown parameter values are used to predict an output which is compared
against the actual output. Through back propagation and automated differentiation, the unknown
parameter values are updated until the specified epoch where the network has effectively learned

feature relations between the input- and output-layer features.

NUMERICAL RESULTS

In this section, we show how the CNN loss function and an evaluation metric are updated during
the training process. We also present the CNN’s performance on (i) a test data set generated by
the same level-set solver and (7i) a blind test data set generated independently using FEAP. We

show the performance of our CNN using the following evaluation metrics:

tp +1tn
tp+ fn+tn+ fp

accuracy = x 100 [%], (12)
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lp
+ fp

tp
s 100 [%], (14)

2 X precision X recall

precision = ; x 100 [%], (13)

recall =

fl-score =

1 1
precision + recall x 100 [%], (15)

where tp, tn, fp, and fn are the number of, respectively, true-positive, true-negative, false-positive,
and false-negative assessments of all the elements in a given data set. While evaluation metrics use
only binary information (tp, tn, fp, and fn), our CNN’s predicted value of each element’s type is
non-binary, ranged from 0 (non-void) to 1 (void). We round such a non-binary value to a binary

value when we calculate the evaluation metrics.

Performance on training and validation data

We generated 36,000 data sets and set aside 30,000, 1,000, and 5,000 data sets for training, val-
idation, and test, respectively. The convergence of the loss function for the training and validation
data sets over epochs (i.e, the iteration during the training) is shown in Fig. 13a, and the increase
in recall (among the aforementioned metrics) over the epochs is shown in Fig. 13b. In Fig. 13,
we observe that our CNN attains the converged values of loss and maximum recall from about 25
epochs. Our optimizer effectively identifies the parameters of the CNN such that the prediction
from the CNN matches the targeted counterpart in training and validation data sets. Our CNN
predicts the probability for each element to be a void element in a 2D-domain to provide a more
thorough and robust prediction. Through this approach, an engineer can use our CNN output to
make their own further judgement to characterize voids formed within a domain.

We also present our CNN’s best and worst predictions on the test data sets in Figs. 14 and 15,
where it is observed that our CNN successfully detects void elements at various locations in the
test data set. The evaluation metrics on the test data set are also shown in Table 1. It is shown
that, in our test data sets, the CNN is effective in terms of detecting void elements that correspond

to thin, elliptical shapes.
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Performance of the presented CNN on blind test data from an independent FEM
wave solver (FEAP) without the level-set approximation

The aforementioned test data set is generated by the same level-set wave solver that is used
for generating the training data set. In this section, we show our CNN’s performance on blind
test data generated from a wave solver that does not use the level-set approximation but models
the boundary of voids using a very fine unstructured, explicit mesh. Namely, the wave response
from such a wave solver is more truthful to the real physics than the level-set solver, particularly in
terms of modeling the traction-free boundary of a void. However, the FEAP-based measurement
data still cannot fully replicate real experiment because it is very challenging to experimentally
implement the ideal, fixed bottom boundary condition. The related background of the challenge is
shown in a recent experimental-validation work (Lloyd et al. 2023) and summarized at the end of
this paper.

Figs. 16 to 18 show that our CNN can detect targeted elliptical voids in the blind tests and show
their overall shapes because our neural network is trained by data sets considering voids of elliptical
shapes. Figs. 16 to 18 also show that our CNN detects two elliptical voids more accurately than
three of them. Accordingly, the evaluation metric is higher in the cases of two elliptical voids than
that of three elliptical voids as shown in Table 2. Such a result is due to the increase in complexity
in the reconstruction of three elliptical voids compared to one and two circular/elliptical voids.

We also examine, via blind test data, whether our CNN can effectively recognize voids of shapes
that deviate from elliptical ones. Namely, our neural network identifies the locations of circular
voids as shown in Figs. 19 and 20, but their shapes are reconstructed as the combination of multiple
ellipses in a manner such that the predicted ellipses delineate the targeted circular voids. Therefore,
the values of recalls for predicting the two circular targeted voids are lower than those for the two

elliptical targets as shown in Table 2.

Numerical results using another data set made by elliptical and circular voids
Intrigued by the blind tests for targeted circular voids shown in Figs. 19b and 20b, we hy-

pothesized that adding circular voids and thicker ellipses in training data sets may improve the
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performance of identifying targeted circular voids.

To test this hypothesis, we generated additional 36,000 data sets with a chance of major axis
(m) being equal or close to minor axis (n). To this end, we changed the previously-used range of n
from (0.01 <n < 0.015m) to (0.02 <n < 0.08 m) in Algorithm 1. In the new data set, we observe
that 5% of our data include circular voids.

Using our re-trained CNN model, we were successful in significantly improving circular-void
reconstruction as shown in Fig. 19c and Fig. 20c and in Table 2. We also noticed better per-
formances in the reconstruction of two ellipses as shown in Fig. 17c and Fig. 16c. In addition,
the metrics (except the recall) in Table 2 and Fig. 18c show better reconstructed results of three
ellipses for the re-trained CNN.

In short, our result shows that our neural network generally identify the targets more accurately
if we increase the variation of void shapes in data sets by incorporating circular as well as thin and

thick elliptical voids in them.

DISCUSSION: THE SELECTION OF AN EVALUATION METRIC
In this FEAP-generated blind test data sets, we would like remark the following aspects of the

aforementioned metrics from Eq. (12) to (15).

e One metric (i.e., “accuracy”) significantly overestimates the performance. “Accuracy” pro-
vides an extremely high value because a large portion of the elements (greater than 90%) in
the entire domain consists of non-void elements. Thus, tn (true negative) is always high in
the presented numerical examples, which overestimates the performance evaluation despite
below-average performance on certain test examples.

o Furthermore, the evaluation using “precision” relies on computing the fp (false positive). In
our 2D domain, we are challenged with predicting ¢p (true positive) amidst a large number
of tn because of the aforementioned 90% non-void element occupancy, and the order of
magnitude of fp is same as that of ¢p. Thus, “precision”, somewhat, underestimates the
performance of the CNN model.

e The use of “recall” as the evaluation metric is factored to address the mentioned limitation
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of precision that is attributed to fp (false positive).

e “fl-score” is the harmonic mean of precision and recall.

” W

We deem “precision”, “recall”, and “fl-score” fit to provide an unbiased-analysis of the prediction

model. Among the three metrics, “recall” is chosen in the convergence test shown in Fig. 13, but

the other two can be used as well.
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CONCLUSION

We discuss a new method for detecting voids in a 2D plane-strain solid subject to elastic waves.
The proposed method employs two components: (a) the level-set method for solving successive
forward wave problems to generate training data for varying locations and shapes of elliptical voids
and (b) the implementation of a CNN using the training data from the forward solutions. Under
the level-set method, we can avoid re-meshing of the domain per the randomly changing boundaries
of voids while we generate training data.

Once the CNN is trained, it can effectively classify each element as a void or non-void in the
test data set. We also employed blind test data sets from an independent wave solver that does not
use the level-set method but models the boundary of voids using a very fine unstructured, explicit
mesh. The wave response from the independent wave solver is more truthful to the real physics
than the level-set solver, particularly in terms of modeling a void’s boundary. Our CNN recognizes
the features between the input and output data, leading to effective predictions on the blind test
data sets.

Many classification problems in the literature have been centered around classifying only a
few objects in image data. For instance, we refer to a problem, where an autonomous vehicle
classifies whether detected objects (or labels) in visual data are pedestrians, vehicles, animals,
pavement markings, trees, light poles, etc. One prime example is the YOLO-v4 model which has
proven effective to conduct precise real-time object detection for multiple classes within a video
frame (Bochkovskiy et al. 2020). In contrast, our presented method aims at the classification of
1600 labels, where the order of magnitude of the number of the labels is larger than those in the
aforementioned common classification problems. Such a large-scale, element-wise classification has
not been reported in the literature. Thus, the methodology and the new findings in this paper
will lay a foundation for further related problems—e.g., an element-wise classification problem for
the elastic wave-based imaging of 3D anisotropic materials, where the order of magnitude of the

number of the labels will be even larger than the presented 1600 labels of this paper.

FUTURE EXTENSION
The presented paper presents how the data can be generated and how the CNN is designed in a

2D setting, and the methodology is straightforward to follow. This research serves as the prototype
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in a 2D setting, and it can be extended into a 3D setting for detecting voids of arbitrary shapes
and numbers in a 3D solid. Incorporation of the level-set method into the 3D SEM solver would be
feasible. The explicit time integration (e.g., the Runge-Kutta scheme) coupled with the diagonal
mass matrix that naturally arises (i.e., without the mass lumping approximation) in the 3D SEM
will accelerate the generation of training data. The training of the CNN in the 3D setting should
be performed in a GPU supercomputer while this 2D work was investigated using a workstation,
with an NVIDIA Titan V GPU processor of 12 GB GPU memory, because the sizes of input and
output data and their associated weight coeflicient matrices are much larger in the 3D setting than
the 2D counterpart.

We remark that real experimental data should be employed to validate the proposed elastody-
namic element-wise classification method for identifying voids. However, in the presented study,
we did not employ real experimental observational data because a recent work (Lloyd et al. 2023)
indicated the difficulty of validating the inverse modeling in the 2D setting using real lab-scale
experimental data. The previous work (Lloyd et al. 2023) presented an inverse-source modeling
that was validated using experimental data of a very high-frequency range (e.g., 100 kHz) for a
small aluminum block of 20 cm (L) x 15 cm (H) x 1.6 cm (D) as an experimental domain. It is
the first of its kind that is aimed at reconstructing the actual force profile in space and time from a
high-frequency actuator. The bottom of the block is attached to an experimentation table, but it
was found that the ideal fixed-bottom boundary condition of the 2D FEM model hardly replicates
the real bottom boundary in the experiment (i.e., the interface condition between an aluminum
block and an experimentation table with a clamp and a soft cloth between the table and the block).
The authors suggested waves that reflect off such a complex boundary and reach sensors may cause
inaccuracies in the inversion result. Therefore, the source inversion was validated only in a limited
setting where the source is located on the top surface of the aluminum block, and the observational
duration is set to be sufficiently short so that the strong shear waves from the real bottom boundary
do not reach the sensors, which were placed only on the top surface.

In other words, the experimental validation of the presented method necessitates the accurate
experimental implementation of the ideal fixed bottom boundary in the 2D setting. Due to the

aforementioned technical difficulty, it is not straightforward to experimentally validate the pre-

21 Pranto et al., March 10, 2023



554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

sented 2D study even though the presented 2D plane-strain setting is converted to the plane-stress
one by changing the elasticity tensor. To bridge this gap, we suggest performing accurate modeling
of the realistic bottom boundary condition in the experiment by using a high-performance 3D wave
solver (e.g., the spectral element method (SEM) studied by Komatitsch and Tromp (1999) and
Komatitsch et al. (2002)). The performance of such a potential neural network, for elementwise
classification to identify voids in a 3D solid, could be validated using experimental data of a rela-
tively long observation duration without excluding the reflected waves from the bottom boundary
of a specimen.

Besides, we performed an iterative manual search for the selection of hyperparameters (such
as the number of filters, 47, and filter sizes, 19) by iteratively examining the performance of CNN
on the validation data set. We are aware that such an approach is time-consuming and laborious.
Thus, we will investigate a new state-of-the-art neural ordinary differential equation (Neural ODE)
(Chen et al. 2018) to remove this barrier of laborious hyperparameter search for the presented

inverse-scattering problem.

DATA AVAILABILITY

Some or all data, models, or code generated or used during the study are available from the

corresponding author by request.

o« MATLAB code (.m format) of the presented forward modeling.
o MATLAB data sets (.mat format) of the presented numerical results.

o Tensorflow code (.py format) of the presented CNN modeling.
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NOMENCLATURE

L, H

Zo, Yo

v,p
E. e
Vi(z,y)
¢(z,y)
u(z,y,1)
o(z,y,1)
Up, Vg

P(t)

J
k
JLReLU
fsigmoid

r

Horizontal and vertical lengths of the rectangular domain
The coordinates of the center of an ellipse

The major and minor axes of an ellipse

The angle between major axis and the z-axis of an ellipse
Poisson’s ratio and Mass density

Young’s modulus and Strain tensor

Enrichment function

Local shape function

Displacement field of a vector wave motion of a solid
Cauchy stress tensor of a vector wave motion of a solid
Compressional wave velocity and shear wave velocity
Ricker-pulse wave source signal over time ¢

Central frequency of the Ricker pulse

Weight coefficient between two consecutive neurons at adjacent layers
Previous layer feature or neuron

Size of the data from a previous layer

Bias associated with each neuron

Outcome after the application of weights and bias on CNN Layer
Subscript for the i-th element, i-th sample, and i-th neuron
Subscript for the j-th channel

Subscript for the k-th time step

Leakly Rectified Linear Unit activation function

Sigmoid activation function

The activation function-applied outcome

The input of the activation function

Total number of elements

Total number of training data
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A?’L

mean
train

max
train

Amin

train
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Loss function

Data matrix’s non-normalized component
Data matrix’s normalized component

Mean value of the data matrix training set
Maximum value of the data matrix training set

Minimum value of the data matrix training set.
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TABLE 1. The evaluation metric for CNN for the test data set,

Figures Accuracy (%) | Precision (%) | Recall (%) | Fl-score (%)
Fig. 14 - Best CNN Prediction 100.00 100.00 100.00 100.00
Fig. 15 - Worst CNN Prediction 99.97 99.18 99.90 99.54
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TABLE 2. The evaluation metrics — accuracy, precision, recall, and fl-score — for CNN for
the test data set from an independent FEM wave solver that does not use level-set-method,

Figures Type of targeted voids Accuracy | Precision | Recall | Fl-score
Fig. 16b | Two horizontally-aligned ellipses (Data without circles) 98.62 34.38 91.67 50.00
Fig. 16¢ Two horizontally-aligned ellipses (Data with circles) 99.31 71.88 92.00 80.70
Fig. 17b Two vertically-aligned ellipses (Data without circles) 98.50 28.12 90.00 42.86
Fig. 17c Two vertically-aligned ellipses (Data with circles) 99.19 62.50 95.24 75.47
Fig. 18b Three elliptical voids 95.94 25.00 37.84 30.11
Fig. 18c Three elliptical voids (Data with circles) 93.56 48.21 26.73 34.39
Fig. 19b One circular void 95.94 18.75 81.82 30.51
Fig. 19¢c One circular void (Data with circles) 99.44 88.75 100.00 94.04
Fig. 20b Two vertically-aligned circular voids 92.06 27.04 79.63 40.38
Fig. 20c | Two vertically-aligned circular voids (Data with circles) 97.38 75.47 97.56 85.11
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Fig. 2. Level-set categorization of an element into a void and a non-void element for a
9-node element: the red/white dots indicate the nodes inside/outside a void. If the centroid
and 4 other nodes (out of 9 nodes) of an element are inside the boundary of an actual void,
that element is considered a void element. Otherwise, it is defined as a non-void element.
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Fig. 16. Detection of 2 horizontally-aligned elliptical voids from blind test measurement
data by our CNN.
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Fig. 17. Detection of 2 vertically-aligned elliptical voids from blind test measurement data
by our CNN.
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Fig. 18. Detection of 3 elliptical voids from blind test measurement data by our CNN.
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Fig. 19. Detection of 1 circular void from blind test measurement data by our CNN.
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Fig. 20. Detection of 2 vertically aligned-circular voids from blind test measurement data
by our CNN.
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