
Level-set and Learn: Convolutional neural network for1

classification of elements to identify an arbitrary number of voids2

in a 2D solid using elastic waves3

Fazle Mahdi Pranto1, Shashwat Maharjan2, and Chanseok Jeong3,4
4

1Research assistant, School of Engineering and Technology, Central Michigan University,5

Mount Pleasant, MI 48859, USA. Email: prant1f@cmich.edu6

2Research assistant, School of Engineering and Technology, Central Michigan University,7

Mount Pleasant, MI 48859, USA. Email: mahar1s@cmich.edu8

3Assistant Professor, School of Engineering and Technology, Central Michigan University,9

Mount Pleasant, MI 48859, USA.10

4Member, Institute for Great Lakes Research, Central Michigan University, Mount11

Pleasant, MI 48859, USA (corresponding author) Email: jeong1c@cmich.edu12

Keywords— Void detection, Level-set method, Element-wise classification, Ultrasonic non-13

destructive test (NDT), Machine learning, Convolutional neural network, Inverse-scattering prob-14

lem.15

ABSTRACT16

We present a new convolutional neural network (CNN)-based element-wise classification method17

to detect a random number of voids with arbitrary shapes in a 2D plain strain solid subjected to18

elastodynamics. We consider that an elastic wave source excites the solid including a random19

number of voids, and wave responses are measured by sensors placed around the solid. We present20

a CNN for resolving the inverse problem, which is formulated as an element-wise classification21

problem. The CNN is trained to classify each element into a regular or void element from measured22

wave signals. Element-wise binary classification enables the identification of targeted voids of any23
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shapes and any number without prior knowledge or hint about their locations, shape types, and24

numbers while existing methods rely on such prior information.25

To this end, we generate training data consisting of input-layer features (i.e., measured wave26

signals at sensors) and output-layer features (i.e., element types of all elements). When the training27

data are generated, we utilize the level-set method to avoid an expensive re-meshing process,28

which is otherwise needed for each different configuration of voids. We also analyze how effectively29

the CNN performs on blind test data from a non-level-set wave solver that explicitly models the30

boundary of voids using an unstructured, fine mesh. Numerical results show that the suggested31

approach can detect the locations, shapes, and sizes of multiple elliptical and circular voids in the32

2D solid domain in the test data set as well as a blind test data set.33

INTRODUCTION34

Defects of various sizes and shapes—such as voids, inclusions, and cracks—can compromise35

the structural integrity of civil and mechanical structures. The literature has shown several types36

of nondestructive testing (NDT) approaches, such as ultrasonic testing, for identifying structural37

defects (Hellier 2013). Characterizing such defects using wave-based empirical NDT procedures38

without any systematic numerical method is time-consuming, requires a trained technician, and is39

only applicable to simple problems (e.g., a problem where only the location of a single line crack40

of an assumed orientation is detected). Thus, systematic inverse modeling is required to detect41

complex defects subjected to dynamic excitation, and, in general, a series of computational dynamic42

forward problems with varying locations and sizes of the scatterers are iteratively solved during the43

inversion process. In such inverse modeling procedures, the boundary element approach (BEM) has44

been a prominent forward modeling tool because the discretization of only the boundaries of voids45

and cracks (Wrobel 2002; Jeong et al. 2009) allows the BEM’s computing cost to be multiple order46

of magnitude lower than the finite element method (FEM), and re-discretization of the boundary47

is straightforward. Because the BEM approach employs the Green’s function in an elastodynamic48

medium, as its major disadvantage, BEM can hardly be applicable in arbitrarily-heterogeneous49

media of which Green’s function is not straightforward to compute (Guzina and Pak 1996). On50

the other hand, the extended finite element method (XFEM) and the level-set method have been51

adopted for the inverse-scattering problem to overcome this limitation of BEM because (i) they52
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model heterogeneous medium with scatterers straightforwardly (Sukumar et al. 2004; Ashari and53

Mohammadi 2011; Elguedj et al. 2009; Menouillard et al. 2010), and (ii) unlike the standard FEM,54

neither the XFEM nor the level-set method necessitates extensive re-meshing for modeling varying55

shapes of scatterers in the iterative process of solving forward problems.56

Optimization methods, hinged on a number of forward modeling iterations, have been used57

with the XFEM and the level-set method for resolving inverse-scattering problems as briefly shown58

in the following. Rabinovich et al. (2007) and Rabinovich et al. (2009) identified cracks using the59

XFEM and the genetic algorithm (GA) in 2D structures under both static and dynamic excitations.60

Waisman et al. (2010) studied the performance of the GA inversion modeling under elastostatic61

conditions for detecting various types of structural damage, such as cracks and holes with regular62

and irregular shapes. Chatzi et al. (2011) presented a novel GA, coupled with a generic XFEM63

and the level-set modeling of an elliptical void to model cracks or voids of any shape, that avoids64

entrapment in local optima. They also showed the experimental validation of the numerical method65

for detecting an arbitrary crack in a 2D plate. Jung et al. (2013), Jung and Taciroglu (2014), and66

Jung and Taciroglu (2016) examined a new method to identify cracks and voids in a heterogeneous67

medium using elastodynamic waves by combining the dynamic XFEM and the level-set method68

with a gradient-based search algorithm. In addition, they proposed the cubic spline method for69

discretizing the boundary of arbitrarily-shaped scatterers and a divide-and-conquer strategy to70

tackle the solution multiplicity. Sun et al. (2013) and Sun et al. (2014) detected multiple flaws71

using the XFEM as well as the level-set method and employed new topological variables in the72

optimization process to activate and deactivate defects during the analysis along with an enhanced73

artificial bee colony technique to tackle the non-uniqueness of the considered inverse problem.74

Nanthakumar et al. (2013) suggested a new multilevel coordinate search strategy to detect elliptical75

voids in piezoelectric structures. Yan et al. (2015) suggested a guided Bayesian inference method,76

combined with the XFEM, to identify and determine multiple cracks in elastic structures without77

prior knowledge of the number of cracks. Zhang et al. (2016) suggested a method that uses the78

dynamic XFEM for modeling a fracture in elastodynamic medium and uses Nelder-Mead and Quasi-79

Newton optimization methods to identify cracks in plates. Wang and Waisman (2017) suggested a80

new crack-tip enrichment function for the XFEM to detect cracks in bimaterials. Livani et al. (2018)81
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used a new approach using both the Extended Spectral Finite Element method and the particle82

swarm optimization (PSO) algorithm to detect multiple cracks. Khatir and Wahab (2019) combined83

PSO and Jaya optimizers with the XFEM and extended isogeometric analysis for detecting cracks84

in plane structures. Zhang et al. (2019) proposed a method for identifying voids in a continuous85

medium utilizing time-domain dynamic response from the level set method and the analytically-86

calculated shape derivative of an objective function. Ma et al. (2020) proposed a new method87

using the XFEM and an improved artificial bee colony algorithm that can identify multiple cracks88

without any prior knowledge of the flaws. Fathi et al. (2021) proposed the dynamic XFEM with89

an enhanced vibrating particles system (EVPS) to solve an inverse-scattering problem. In all of90

the aforementioned methods, the time-consuming iteration-based optimization methods have been91

used for the inverse modeling of scatterers. Since optimization involves a series of forward modeling92

after measurement data are fed into the process, it is not possible to detect scatterers quickly (e.g.,93

in a second) from measurement data by using such optimization-based methods.94

On the other hand, a few papers have recently shown that machine learning (ML) would95

overcome such limitation (i.e., long computing time) of the optimization-based methods for the96

inverse-scattering problem. ML has been studied for the inverse-scattering problems because of97

its potentially-short computing time (e.g., less than a second), once training is done, and its98

potentially-high accuracy even when the number of control parameters is large (e.g., thousands99

or more). However, to date, the related literature is still relatively thin, and the latest, published100

studies in the ML-based inverse-scattering are still in early stage as shown in the following. Jiang101

et al. (2021) combined the level-set method and the extreme learning machine (ELM) to detect102

voids of a known number in 2D solid structures. They modeled circular or elliptical voids during103

the process to generate the training data for an elastonynamic wave-based NDT. However, for their104

method, the number of voids and their shape types (circular or elliptical) should be a-priori known105

to the simulator. Thus, the method was limited only for identifying the coordinates of the centroids106

and radii (or major/minor axes with orientations) of circular (or elliptical) voids provided that their107

numbers and shape types are known in advance. Jiang et al. (2022) also extended the approach108

for identifying structural flaws in thin structures by integrating the scaled boundary finite element109

method (SBFEM) into the data generation process for a CNN. They considered Lamb waves in110
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thin plates, and damage types (e.g., surface cracks of simple wedge shapes on a boundary of the111

thin plate) are a-priori known in the simulation. Then, from measured wave data, their trained112

CNN determined only the number of cracks, only from 1 to 3, and, in turn, determined three113

shape parameters of each crack (e.g., the depth, the wedge angle, and the width of a crack). Gao114

et al. (2022) trained a fully connected neural network, from synthetic electromagnetic wave training115

data, to identify a scattering object in an application like a radar problem. They considered the116

2D/3D Helmholtz equation and electromagnetic wave system, and their trained neural networks117

identify the shape parameters of a single targeted scattering object of a complex shape (e.g., a star118

shape). However, their work is limited by the assumption that there should be only one scattering119

object, of which approximate location should be a-priori known, in a domain. To overcome the120

limitations (i.e., requiring such a-priori known information) of the aforementioned ML methods121

for the inverse-scattering problems, one should study a new ML-based approach for identifying the122

locations and shapes of an arbitrary number of voids in a solid without a-priori known information.123

To the best of our knowledge, there has been no study, using an artificial neural network124

(ANN), for identifying the locations and shapes of voids of an arbitrary number in a solid by using125

elastodynamic waves. To fill this research gap, this paper presents a new data-informed CNN126

method, hinged on element-wise classification, to identify an arbitrary number of voids in a 2D127

plain strain solid, of which elastodynamic wave responses are measured by sensors placed around128

the solid. We use the level set method to avoid time-consuming re-meshing for various configurations129

of voids, which are iteratively updated while training data are generated. We generate training130

data that consist of input-layer features (i.e., measured signals) and output-layer features (i.e., the131

element types of all elements). The CNN is trained to classify the type of an element (i.e., void132

or non-void) from measured wave signals at sensors. Thus, the trained CNN results in a contour133

map of the element-wise classification, which shows the map of the probability for each element134

to be a void element. Thus, from the contour map, an engineer could infer the locations, sizes,135

and shapes of an arbitrary number of voids in the 2D plain-strain domain. This research serves as136

the prototype in a 2D setting, and it can be extended for detecting voids of arbitrary shapes and137

numbers in a 3D solid.138

FORWARD MODELING139
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Governing Equation140

This paper considers a domain Ω ⊂ R2 (see Fig. 1), which is occupied by a homogeneous linear141

elastic undamped solid medium with voids. The governing equation of the displacement field of142

elastic waves in the solid can be expressed as:143

∇ · σ = ρü in Ω, (1)144

where the displacement field of a vector wave is u := u(x, y, t) = [ux, uy]T ; σ := σ(x, y, t) denotes145

Cauchy stress tensor; ∇· ( ) denotes the divergence operator; ρ := ρ(x, y) denotes the mass density.146

The wave responses are subject to the at-rest initial conditions. The displacement field u vanishes147

on Γu, and the boundary of a void Γh is characterized by the traction-free condition while the148

prescribed traction is applied on Γn. We note that, while elastodynamic waves for imaging the149

solid are generated and propagated, the material property of the solid or the boundary of voids are150

not altered. Namely, the presented elastodynamic wave-based imaging is performed after targeted151

voids are created. The elastodynamic wave-based imaging while a void or crack is formed is beyond152

the scope of this paper. For such a problem, we refer to (but not limited to) Stanchits et al. (2015)153

who demonstrated a passive wave-based method (e.g., acoustic emission) used for characterizing154

the initiation and propagation of fractures in geological rocks induced by hydraulic fracturing.155

Level-set approximation and the FEM156

This section revisits the conventional level-set method (Chatzi et al. 2011; Jung et al. 2013; Sun157

et al. 2014) to model a void on a background mesh and compute wave responses in a solid domain158

with voids. This work uses the FEM wave solver, which is based on the level-set approximation,159

because the level-set solver does not necessitate the onerous re-meshing whenever the geometry of160

voids is updated in each training data set.161

In the weak form of the governing equation, the displacement field u is approximated using162

the finite element approximation and an enrichment function V (x, y). Namely, u in an element is163

approximated as:164

uh(x, y, t) = V (x, y)
N∑
i=1

φi(x, y)ui(t), (2)165
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where166

V (x, y) =


1, if x, y ∈ an element classified as a non-void element,

0, if x, y ∈ an element classified as a void element.
(3)167

The approximation in Eq. (2) consists of nodal displacement ui and local shape function φi(x, y)168

at the i-th node, and we use 9-node quadrilateral elements in this paper.169

If the centroid and 4 other nodes (among total 9 nodes) of an element are inside the actual170

boundary of a void, that element is considered as a void element. Otherwise, an element is defined171

as a non-void element. The exemplary illustration of such categorization of elements can be seen172

in Fig. 2.173

The weak form and Eq. (2) lead to the time-dependent discrete form in each element. It174

should be noted that, if an element is classified as a void element, its element stiffness and mass175

matrices become zero. After the global assembly of matrices and a force vector, we obtain the time176

dependent equation in terms of a global displacement solution vector. We adopted the Newmark177

time integration method (Newmark 1959) to solve for the global solution vector for each discrete178

time step.179

Verification of the level-set wave solver180

Prior to our investigation on the performance of the presented CNN-based inverse-scattering181

modeling, we verify our in-house level-set forward solver, written in MATLAB, by comparing our182

wave responses with the reference solution obtained by using the Finite Element Analysis Program183

(FEAP) (Taylor 2017), which uses an explicit mesh for the same domain (see Fig. 3). The mesh184

is generated using MESH2D, a Delauny mesh generator (Engwirda 2005; Engwirda 2014). In our185

level-set-based forward wave solver, the domain is discretized by using a standard background mesh186

of 9-node square elements with an element size of 0.01 m, while an unstructured mesh of 3-node187

triangular elements with targeted edge lengths of 0.004 m is used in FEAP.188

This verification considers a homogeneous square-shaped solid domain, of which extent is 0.8 ×189

0.8 m and includes a single circular void of 0.1 m radius, located at the center of the domain. For190

both models used by the level-set solver and FEAP, we use material properties of aluminum with191

Young’s modulus (E) of 71.5 ×109 Pa, mass density (ρ) of 2800 kg/m3, and Poisson’s ratio (ν) of192
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0.33. The compressional wave velocity (vp) and the shear wave velocity (vs) are calculated as:193

vp =
√

E(1− ν)
ρ(1 + ν)(1− 2ν) , vs =

√
E

2ρ(1 + ν) , (4)194

195

so that the values of vp and vs are 6151 ms−1 and 3098 ms−1, respectively. The domain is subject196

to a traction-free condition on the left, top, and right surfaces, and it is constrained by a fixed197

boundary condition on the bottom surface.198

A point wave source is located at x = 0.3 m and y = 0.8 m, at which the following Ricker wave199

signal (Fig. 5), with a peak amplitude of 5,000 N/m and a dominant frequency of 20,000 Hz, is200

applied:201

P (t) =


−5000((0.25.e−0.25(2πft−3

√
6)2

.(2πft−3
√

6)2)−0.5)−13.e−13.5

0.5+13.e−13.5 , if t ≤ 6
√

6
2πf ,

0, if t > 6
√

6
2πf ,

(5)202

where f denotes the central frequency of the Ricker signal.203

Fig. 4 shows the snapshots of the amplitudes of displacement at 7µs, 10 µs, 12 µs, 14 µs, 16204

µs and 20 µs obtained by our forward wave solver. Fig. 6 illustrates a comparison of uy, at the205

receivers’ locations, computed by our level-set wave solver and FEAP. Here, sensors are placed at206

the left, top, and right surfaces with a sensor spacing of 0.1 m, except the corners and the source207

location (0.3, 0.8) m, and they are numbered clockwise from the bottom left at (0, 0.1) m to the208

bottom right at (0.8, 0.1) m. Both signal data, shown in Fig. 6, respectively from our level-set209

solver and FEAP, agree with each other very well, implying that the level-set solver described is210

verified and can be utilized for the data generation.211

Data Generation and Randomizer212

Data generation for machine learning simulation necessitates solving a forward problem consid-213

ering voids whose number and geometries change per each data set. This work uses a homogeneous214

2D square-shaped domain of 0.8 m × 0.8 m in a plane-strain setting discretized by an element size215

of 0.02 m. Namely, the entire domain is discretized into a structured background mesh with a total216

of 1600 square elements.217
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A schematic representation of the boundary conditions for the data generation is shown in218

Fig. 7. The domain is subjected to traction-free conditions on the left, top, and right surfaces and219

the fixed boundary condition on the bottom. The wave sources are loated at (0.3, 0.8) m, (0, 0.3)220

m, and (0.8, 0.4) m. The Ricker signal P (t) in Eq. (5) is applied as a nodal force signal in a manner221

such that its positive value points toward the inside of the domain at all source locations. The222

central frequency of the Ricker time signal at all the sources is f = 20,000 Hz, and its maximum223

amplitude is 5,000 N/m.224

The solid is made of the same aluminum as the one used for the aforementioned verification225

with elastic modulus E = 71.5 GPa, mass density ρ = 2,800 kg/m3, and Poisson’s ratio ν = 0.33.226

The total simulation time for each forward iteration is 1,000 µs, and the time-step is 1 µs. Here, a227

total of 18 sensors are evenly placed on all the sides, except the bottom, at a spacing of 10 mm.228

We use our randomizer to generate a random number of elliptical-shaped voids of random sizes229

and locations within the domain. Among all possible common types of void shapes (e.g., triangles,230

trapezoids, potatoes, boomerangs, etc.), we choose to use a thin elliptical shape because of the231

following reasons. First, it is more straightforward to parameterize an elliptical shape than others.232

Second, by utilizing only thin ellipses, we can populate void elements in a manner such that void233

elements, within one or multiple thin ellipses, mimic wide cracks or interconnected wide cracks.234

Similarly, previous works (Chatzi et al. 2011; Sun et al. 2014) have also utilized voids of only235

elliptical shapes for testing their proposed structural damage-detection algorithms. The equation236

for defining the actual boundary of each elliptical void is:237

[(x− x0) cos(α) + (y − y0) sin(α)]2
m2 + [(x− x0) sin(α)− (y − y0) cos(α)]2

n2 = 1, (6)238

where (x0, y0) denotes the center of an ellipse; m and n are the lengths of its major and minor239

axes, respectively; and α is the angle of the major axis with respect to the x-axis (see Fig. 8a).240

In our data set, we generate ellipses with a major axis ranging from 8 mm to 15 mm, a minor241

axis ranging from 4 mm to 8 mm, and an orientation ranging from 5◦ to 175◦. In order to generate242

unbiased training data, we randomly locate our voids all over the domain. A sample of our randomly243

generated elliptical voids in the domain is shown in Fig. 8b. When each data set is generated, the244
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following steps are carried out:245

• The positions, sizes, and number of the voids are randomly updated.246

• Per the updated void geometry, we save the data indicating which element is categorized as247

void or not per our level-set approximation. If an element is classified as a void element,248

we assign a value of one at the element, and if it is categorized as a non-void element, we249

assign a value of zero. The assigned-value data for all the 1,600 elements will be used for250

element-by-element classification in our trained CNN.251

• We run our level-set wave solver and save the displacement field of wave responses measured252

at the sensor locations.253

• Out of 36,000 training data, our randomizer generates 6 sets of 6,000 training data sets, each254

of which accounts for 0, 1, 2, 3, 4, and 5 voids, respectively.255

Our pseudo code of the data generation is as follows:256

Randomizer, using the 2D level-set-based wave solver, to generate data sets.257

FOR an iteration index: 1 → (the total number of data sets= 36,000)258

⇒ Randomly set the values of the parameters of up to 5 elliptical voids in the domain within259

the following ranges:260

0.05 ≤ m ≤ 0.15 m;261

0.010 ≤ n ≤ 0.015 m;262

m ≤ x0 ≤ (0.8−m) m;263

n ≤ y0 ≤ (0.8− n) m;264

5 ≤ θ ≤ 175 deg.265

⇒ Update mass and stiffness matrices per the level-set approximation by using the above266

elliptical void parameters.267

⇒ Solve the 2D wave propagation problem.268

⇒ Save the displacement data at every three-time step from 18 sensor locations as the input-269

layer feature.270

⇒ Save element-wise classification data (1 for void and 0 for no-void) of all the 1,600 elements271

as the output-layer feature. ENDFOR272
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Fig. 9 shows a heat map, where the number in its color bar indicates the number of data sets273

in which a given element is recognized as a void element by our level-set approximation during the274

generation of 36,000 data sets. Fig. 9 presents that our randomizer, in general, covers nearly the275

entire domain, to promote unbiased learning of our CNN, except the areas around the surrounding276

boundaries (Γu and Γn) because our randomizer prevents ellipses from being located on Γu and Γn.277

Our randomizer follows a uniform distribution, and all the possible values of the parameters of our278

elliptical voids are likely to fall under the uniform distribution during the data generation process.279

Per the law of large numbers, the heat map may look more uniformly than the presented one in280

Fig. 9, except the areas near the boundaries, as the number of data sets increases further from the281

presented 36,000 sets.282

Our randomizer creates a random set of ellipses in each data set in a manner such that the283

values used for all the elliptical parameters are likely to be independent from each other. Although284

the areas of multiple voids may overlap with each other, we do not double count void elements.285

Because our neural network is aimed at identifying targeted void elements regardless of possible286

overlapping of ellipses in training data sets, such potential overlapping does not affect our prediction287

performance.288

Data Preparation289

A total of 36,000 data sets of input- and output-layer feature data are provided to train the290

CNN. The input-layer feature data contain displacement values from 18 sensors in two directions,291

ux and uy, each of which includes 334 data (simulation data from 0 to 1,000 ms are saved at every292

3 ms). The output-layer feature data consist of a serialized combination of binary values of either293

0 or 1, for all the elements, where 0 represents a non-void element, and 1 represents the presence294

of a void element.295

The training samples are then split into three parts: (i) training, (ii) validation, and (iii) test296

data sets. Out of 36,000 samples, we separate 30,000 data sets for training, 1,000 data sets are for297

validation, and the remaining 5,000 data sets are for testing. The training data sets are used to298

expose the CNN to learn important input- and output-layer data feature relations. The validation299

subset is set up to keep track of the performance of the CNN during training. The test subset is300

used to evaluate the CNN’s performance.301
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Sample input-layer feature data in Fig. 10a shows that the range of input-layer feature data is302

in the order of 10−8, which makes it difficult for the CNN to learn critical input- and output-layer303

data feature. By using mean, maximum, and minimum values as statistical parameters, the input304

data range is normalized to the values between -1 and 1. The mean, maximum, and the minimum305

values for the normalization are calculated from the training data set for a fairer analysis on the306

validation, test, and the blind test data sets than otherwise. The following equation is used to307

normalize the input displacement data:308

Anijk = Aijk −Amean
train

Amax
train −Amin

train
, (7)309

310

where Anijk is the normalized value of the displacement data set including the training, validation or311

test set; the subscripts i, j, and k correspond to the k-th time-step of j-th channel of the i-th sample;312

Aijk is the un-normalized value of the input data matrix; Amean
train is input data matrix training data313

set’s mean value; and Amax
train and Amin

train are input data matrix training data set’s maximum and314

minimum values, respectively. The ordinate-axis in Fig. 10b clearly shows the normalization, and315

this normalized data set is then passed as input to the neural network architecture.316

THE ARCHITECTURE OF THE CNN317

The problem of interest is developed as a binary classification problem where the input data318

are processed through the CNN to yield predictions of each element as either void or non-void.319

During the training process, we use a binary cross-entropy (BCE) as our loss function, comparing320

the CNN-predicted probability of each element to be a void to its targeted counterpart:321

L = − 1
M

M∑
i=1

(
1
N

N∑
i=1

Ei log(P (Ei)) + (1− Ei) log(1− P (Ei))
)
, (8)322

323

where Ei is the targeted label (“1” for voids and “0” for non-void elements) of the i-th element;324

N is the total number of elements; M is the total number of the training data; and P (Ei) is the325

predicted probability (ranged from zero to one) of the i-th element being void.326

Among other types of ANNs (e.g., deep and graphical neural networks), we choose a CNN due327

to its remarkable feature extraction and learning capabilities. We present a novel CNN that can328
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be applied to time-signal series at multiple sensors, where each signal is 1D data in time. CNN has329

unique layers called convolutional layers, where the input data are transformed using filters before330

being passed onto the next layer. The overall algorithm of our CNN architecture is presented in331

Fig. 11, which consists of a single convolutional layer, a Max Pooling layer, a Flatten layer, a fully-332

connected hidden layer, and the output layer. The convolutional layer consists of multiple filters of333

fixed filter sizes which convolve over the provided multi-channel input data to extract the feature334

patterns. Here, 47 filters convolute through the sensor channels of a single data set resulting in335

47 Intermediate Feature Maps (see the bottom part of Fig. 12), which results in an accumulation336

of 47 convoluted data vectors of 334 time steps for each channel. The convoluted data are then337

passed through a non-linear activation function to produce an intermediate output on which a Max338

Pooling layer is applied to extract significant feature maps from the previous convolutional layer.339

The feature map from the Max Pooling layer is a multi-dimensional matrix and is transformed into340

a one-dimensional vector using the Flatten layer. The output from the Flatten layer undergoes a341

series of weights and bias computation in a fully-connected hidden and an output layer. The detail342

of each step in the CNN is shown in the following so that the readers can replicate and verify the343

presented CNN.344

The design of a convolutional layer345

The convolutional operation—the beginning part of the CNN (see the dashed box in Fig. 11)—346

is presented in Fig. 12. We use a convolutional layer with 47 filters. Each filter is a vector of 19347

components, each of which is a single-valued number whose values are initialized using the “Xavier”348

initialization (Glorot and Bengio 2010). Every CNN filter is unique as each filter value is initialized349

randomly (Maharjan et al. 2022). Padding is added to the input data to preserve the input length350

dimension, and the convoluted values are passed through Leaky Rectified Linear Unit (LReLU)351

activation function. The LReLU activation function is defined as:352

ri = fLReLU(ai) =


h · ai if ai < 0,

ai if ai ≥ 0,
(9)353

354
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where ri is the activation function-applied outcome; ai is the input of the activation function, such355

as i−th component of an array of the convoluted values shown in Fig. 12; and h is a fixed value356

(0.3 in this work). The initialized filter 1 (out of total 47 filters in this work) slides across the357

length of the input data set in a sliding-window dot product operation as illustrated in Fig. 12.358

The remaining 35 channels from the training data set undergo a similar operation for the filter 1.359

The 35 signals, after the convolution, are added into one signal of the same number of time-steps360

(334 in this work) to provide a convoluted output vector of length 334, preserving the input length.361

This operation is repeated for the remaining 46 filters to produce a feature map of size (334, 47)362

which is then fed into the Max Pooling Layer.363

The design of the final fully-connected layers364

In the latter part of the CNN, we use a Max Pooling Layer (see the bottom of Fig. 11) of pool365

size 4 to extract prominent feature values from the previous layer by taking the maximum value366

from the four adjacent vector values reducing the dimension of the output vector to a length of (84,367

47). The values are then passed onto the Flatten later converting the two-dimensional data matrix368

in the Max Pooling layer to a one-dimensional data array resulting in a vector of length 3,948.369

The Flatten layer enables the feeding of the feature-extracted input data from the convolutional370

operation to a fully-connected layer. The weights and bias are learnable parameters and are applied371

at the fully connected layer and its following layer as:372

Oi =
d∑
j=1

wijbj + si, (10)373

374

where wij is the weight coefficient between the two consecutive neurons at adjacent layers; bj is the375

j-th feature (or neuron) from a previous layer; d is the size of the data from a previous layer; si is376

the bias associated with each neuron; and Oi is the i-th neuron’s calculation outcome. The fully-377

connected layer consists of 3,950 neurons and uses the LReLU function in Eq. (9) as the activation378

function. Here, the LReLU function takes Oi from Eq. (10) as input and passes the array to the379

output layer with 1,600 neurons to represent the binary information at all the 1,600 elements in380
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the domain employing the use of the “Sigmoid” activation function:381

ri = fsigmoid(ai) = 1
1 + e−ai

, (11)382
383

where ri is the activation function-applied outcome; and ai is the input value to the i−th neuron384

in the output layer. Namely, the sigmoid activation function in our final output layer produces385

a probabilistic measure, which is continuously ranged from 0 (when ai is a negative number of a386

sufficiently sizable magnitude, e.g., fsigmoid(−2) = 0.1192 and fsigmoid(−5) = 0.0067) to 1 (when387

ai is vice versa, e.g., fsigmoid(5) = 0.9933). It is visualized in a contour map, to predict if a388

particular element out of the 1600 elements could be a void or not. We also attempted to employ389

regularization methods such as batch normalization and dropout to tackle possible over fitting in390

the training process. However, the use of such regularization worsened the validation recall. Our391

CNN takes 130 seconds to train for 50 epochs.392

Optimization—the learning393

Under the Tensorflow framework, we use the “Adam” optimizer with a learning rate of 0.0005394

to learn the values of the filters in the convolutional operator as well as weights and bias in Eq. (10).395

We trained the CNN for 50 epochs (or iterations) and used a batch size of 550. In the first iteration,396

the Xavier-initialized unknown parameter values are used to predict an output which is compared397

against the actual output. Through back propagation and automated differentiation, the unknown398

parameter values are updated until the specified epoch where the network has effectively learned399

feature relations between the input- and output-layer features.400

NUMERICAL RESULTS401

In this section, we show how the CNN loss function and an evaluation metric are updated during402

the training process. We also present the CNN’s performance on (i) a test data set generated by403

the same level-set solver and (ii) a blind test data set generated independently using FEAP. We404

show the performance of our CNN using the following evaluation metrics:405

accuracy = tp+ tn

tp+ fn+ tn+ fp
× 100 [%], (12)406

407
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precision = tp

tp+ fp
× 100 [%], (13)408

409

recall = tp

tp+ fn
× 100 [%], (14)410

411

f1-score = 2× precision× recall
precision + recall × 100 [%], (15)412

413

where tp, tn, fp, and fn are the number of, respectively, true-positive, true-negative, false-positive,414

and false-negative assessments of all the elements in a given data set. While evaluation metrics use415

only binary information (tp, tn, fp, and fn), our CNN’s predicted value of each element’s type is416

non-binary, ranged from 0 (non-void) to 1 (void). We round such a non-binary value to a binary417

value when we calculate the evaluation metrics.418

Performance on training and validation data419

We generated 36,000 data sets and set aside 30,000, 1,000, and 5,000 data sets for training, val-420

idation, and test, respectively. The convergence of the loss function for the training and validation421

data sets over epochs (i.e, the iteration during the training) is shown in Fig. 13a, and the increase422

in recall (among the aforementioned metrics) over the epochs is shown in Fig. 13b. In Fig. 13,423

we observe that our CNN attains the converged values of loss and maximum recall from about 25424

epochs. Our optimizer effectively identifies the parameters of the CNN such that the prediction425

from the CNN matches the targeted counterpart in training and validation data sets. Our CNN426

predicts the probability for each element to be a void element in a 2D-domain to provide a more427

thorough and robust prediction. Through this approach, an engineer can use our CNN output to428

make their own further judgement to characterize voids formed within a domain.429

We also present our CNN’s best and worst predictions on the test data sets in Figs. 14 and 15,430

where it is observed that our CNN successfully detects void elements at various locations in the431

test data set. The evaluation metrics on the test data set are also shown in Table 1. It is shown432

that, in our test data sets, the CNN is effective in terms of detecting void elements that correspond433

to thin, elliptical shapes.434
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Performance of the presented CNN on blind test data from an independent FEM435

wave solver (FEAP) without the level-set approximation436

The aforementioned test data set is generated by the same level-set wave solver that is used437

for generating the training data set. In this section, we show our CNN’s performance on blind438

test data generated from a wave solver that does not use the level-set approximation but models439

the boundary of voids using a very fine unstructured, explicit mesh. Namely, the wave response440

from such a wave solver is more truthful to the real physics than the level-set solver, particularly in441

terms of modeling the traction-free boundary of a void. However, the FEAP-based measurement442

data still cannot fully replicate real experiment because it is very challenging to experimentally443

implement the ideal, fixed bottom boundary condition. The related background of the challenge is444

shown in a recent experimental-validation work (Lloyd et al. 2023) and summarized at the end of445

this paper.446

Figs. 16 to 18 show that our CNN can detect targeted elliptical voids in the blind tests and show447

their overall shapes because our neural network is trained by data sets considering voids of elliptical448

shapes. Figs. 16 to 18 also show that our CNN detects two elliptical voids more accurately than449

three of them. Accordingly, the evaluation metric is higher in the cases of two elliptical voids than450

that of three elliptical voids as shown in Table 2. Such a result is due to the increase in complexity451

in the reconstruction of three elliptical voids compared to one and two circular/elliptical voids.452

We also examine, via blind test data, whether our CNN can effectively recognize voids of shapes453

that deviate from elliptical ones. Namely, our neural network identifies the locations of circular454

voids as shown in Figs. 19 and 20, but their shapes are reconstructed as the combination of multiple455

ellipses in a manner such that the predicted ellipses delineate the targeted circular voids. Therefore,456

the values of recalls for predicting the two circular targeted voids are lower than those for the two457

elliptical targets as shown in Table 2.458

459

Numerical results using another data set made by elliptical and circular voids460

Intrigued by the blind tests for targeted circular voids shown in Figs. 19b and 20b, we hy-461

pothesized that adding circular voids and thicker ellipses in training data sets may improve the462
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performance of identifying targeted circular voids.463

To test this hypothesis, we generated additional 36,000 data sets with a chance of major axis464

(m) being equal or close to minor axis (n). To this end, we changed the previously-used range of n465

from (0.01 ≤ n ≤ 0.015 m) to (0.02 ≤ n ≤ 0.08 m) in Algorithm 1. In the new data set, we observe466

that 5% of our data include circular voids.467

Using our re-trained CNN model, we were successful in significantly improving circular-void468

reconstruction as shown in Fig. 19c and Fig. 20c and in Table 2. We also noticed better per-469

formances in the reconstruction of two ellipses as shown in Fig. 17c and Fig. 16c. In addition,470

the metrics (except the recall) in Table 2 and Fig. 18c show better reconstructed results of three471

ellipses for the re-trained CNN.472

In short, our result shows that our neural network generally identify the targets more accurately473

if we increase the variation of void shapes in data sets by incorporating circular as well as thin and474

thick elliptical voids in them.475

476

DISCUSSION: THE SELECTION OF AN EVALUATION METRIC477

In this FEAP-generated blind test data sets, we would like remark the following aspects of the478

aforementioned metrics from Eq. (12) to (15).479

• One metric (i.e., “accuracy”) significantly overestimates the performance. “Accuracy” pro-480

vides an extremely high value because a large portion of the elements (greater than 90%) in481

the entire domain consists of non-void elements. Thus, tn (true negative) is always high in482

the presented numerical examples, which overestimates the performance evaluation despite483

below-average performance on certain test examples.484

• Furthermore, the evaluation using “precision” relies on computing the fp (false positive). In485

our 2D domain, we are challenged with predicting tp (true positive) amidst a large number486

of tn because of the aforementioned 90% non-void element occupancy, and the order of487

magnitude of fp is same as that of tp. Thus, “precision”, somewhat, underestimates the488

performance of the CNN model.489

• The use of “recall” as the evaluation metric is factored to address the mentioned limitation490
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of precision that is attributed to fp (false positive).491

• “f1-score” is the harmonic mean of precision and recall.492

We deem “precision”, “recall”, and “f1-score” fit to provide an unbiased-analysis of the prediction493

model. Among the three metrics, “recall” is chosen in the convergence test shown in Fig. 13, but494

the other two can be used as well.495
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CONCLUSION496

We discuss a new method for detecting voids in a 2D plane-strain solid subject to elastic waves.497

The proposed method employs two components: (a) the level-set method for solving successive498

forward wave problems to generate training data for varying locations and shapes of elliptical voids499

and (b) the implementation of a CNN using the training data from the forward solutions. Under500

the level-set method, we can avoid re-meshing of the domain per the randomly changing boundaries501

of voids while we generate training data.502

Once the CNN is trained, it can effectively classify each element as a void or non-void in the503

test data set. We also employed blind test data sets from an independent wave solver that does not504

use the level-set method but models the boundary of voids using a very fine unstructured, explicit505

mesh. The wave response from the independent wave solver is more truthful to the real physics506

than the level-set solver, particularly in terms of modeling a void’s boundary. Our CNN recognizes507

the features between the input and output data, leading to effective predictions on the blind test508

data sets.509

Many classification problems in the literature have been centered around classifying only a510

few objects in image data. For instance, we refer to a problem, where an autonomous vehicle511

classifies whether detected objects (or labels) in visual data are pedestrians, vehicles, animals,512

pavement markings, trees, light poles, etc. One prime example is the YOLO-v4 model which has513

proven effective to conduct precise real-time object detection for multiple classes within a video514

frame (Bochkovskiy et al. 2020). In contrast, our presented method aims at the classification of515

1600 labels, where the order of magnitude of the number of the labels is larger than those in the516

aforementioned common classification problems. Such a large-scale, element-wise classification has517

not been reported in the literature. Thus, the methodology and the new findings in this paper518

will lay a foundation for further related problems—e.g., an element-wise classification problem for519

the elastic wave-based imaging of 3D anisotropic materials, where the order of magnitude of the520

number of the labels will be even larger than the presented 1600 labels of this paper.521

FUTURE EXTENSION522

The presented paper presents how the data can be generated and how the CNN is designed in a523

2D setting, and the methodology is straightforward to follow. This research serves as the prototype524
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in a 2D setting, and it can be extended into a 3D setting for detecting voids of arbitrary shapes525

and numbers in a 3D solid. Incorporation of the level-set method into the 3D SEM solver would be526

feasible. The explicit time integration (e.g., the Runge-Kutta scheme) coupled with the diagonal527

mass matrix that naturally arises (i.e., without the mass lumping approximation) in the 3D SEM528

will accelerate the generation of training data. The training of the CNN in the 3D setting should529

be performed in a GPU supercomputer while this 2D work was investigated using a workstation,530

with an NVIDIA Titan V GPU processor of 12 GB GPU memory, because the sizes of input and531

output data and their associated weight coefficient matrices are much larger in the 3D setting than532

the 2D counterpart.533

We remark that real experimental data should be employed to validate the proposed elastody-534

namic element-wise classification method for identifying voids. However, in the presented study,535

we did not employ real experimental observational data because a recent work (Lloyd et al. 2023)536

indicated the difficulty of validating the inverse modeling in the 2D setting using real lab-scale537

experimental data. The previous work (Lloyd et al. 2023) presented an inverse-source modeling538

that was validated using experimental data of a very high-frequency range (e.g., 100 kHz) for a539

small aluminum block of 20 cm (L) × 15 cm (H) × 1.6 cm (D) as an experimental domain. It is540

the first of its kind that is aimed at reconstructing the actual force profile in space and time from a541

high-frequency actuator. The bottom of the block is attached to an experimentation table, but it542

was found that the ideal fixed-bottom boundary condition of the 2D FEM model hardly replicates543

the real bottom boundary in the experiment (i.e., the interface condition between an aluminum544

block and an experimentation table with a clamp and a soft cloth between the table and the block).545

The authors suggested waves that reflect off such a complex boundary and reach sensors may cause546

inaccuracies in the inversion result. Therefore, the source inversion was validated only in a limited547

setting where the source is located on the top surface of the aluminum block, and the observational548

duration is set to be sufficiently short so that the strong shear waves from the real bottom boundary549

do not reach the sensors, which were placed only on the top surface.550

In other words, the experimental validation of the presented method necessitates the accurate551

experimental implementation of the ideal fixed bottom boundary in the 2D setting. Due to the552

aforementioned technical difficulty, it is not straightforward to experimentally validate the pre-553
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sented 2D study even though the presented 2D plane-strain setting is converted to the plane-stress554

one by changing the elasticity tensor. To bridge this gap, we suggest performing accurate modeling555

of the realistic bottom boundary condition in the experiment by using a high-performance 3D wave556

solver (e.g., the spectral element method (SEM) studied by Komatitsch and Tromp (1999) and557

Komatitsch et al. (2002)). The performance of such a potential neural network, for elementwise558

classification to identify voids in a 3D solid, could be validated using experimental data of a rela-559

tively long observation duration without excluding the reflected waves from the bottom boundary560

of a specimen.561

Besides, we performed an iterative manual search for the selection of hyperparameters (such562

as the number of filters, 47, and filter sizes, 19) by iteratively examining the performance of CNN563

on the validation data set. We are aware that such an approach is time-consuming and laborious.564

Thus, we will investigate a new state-of-the-art neural ordinary differential equation (Neural ODE)565

(Chen et al. 2018) to remove this barrier of laborious hyperparameter search for the presented566

inverse-scattering problem.567
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NOMENCLATURE583

L, H Horizontal and vertical lengths of the rectangular domain584

x0, y0 The coordinates of the center of an ellipse585

m,n The major and minor axes of an ellipse586

α The angle between major axis and the x-axis of an ellipse587

ν, ρ Poisson’s ratio and Mass density588

E, ε Young’s modulus and Strain tensor589

V (x, y) Enrichment function590

φ(x, y) Local shape function591

u(x, y, t) Displacement field of a vector wave motion of a solid592

σ(x, y, t) Cauchy stress tensor of a vector wave motion of a solid593

vp, vs Compressional wave velocity and shear wave velocity594

P (t) Ricker-pulse wave source signal over time t595

f Central frequency of the Ricker pulse596

w Weight coefficient between two consecutive neurons at adjacent layers597

b Previous layer feature or neuron598

d Size of the data from a previous layer599

s Bias associated with each neuron600

O Outcome after the application of weights and bias on CNN Layer601

i Subscript for the i-th element, i-th sample, and i-th neuron602

j Subscript for the j-th channel603

k Subscript for the k-th time step604

fLReLU Leakly Rectified Linear Unit activation function605

fsigmoid Sigmoid activation function606

r The activation function-applied outcome607

ai The input of the activation function608

N Total number of elements609

M Total number of training data610
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L Loss function611

A Data matrix’s non-normalized component612

An Data matrix’s normalized component613

Amean
train Mean value of the data matrix training set614

Amax
train Maximum value of the data matrix training set615

Amin
train Minimum value of the data matrix training set.616
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TABLE 1. The evaluation metric for CNN for the test data set,

Figures Accuracy (%) Precision (%) Recall (%) F1-score (%)
Fig. 14 - Best CNN Prediction 100.00 100.00 100.00 100.00
Fig. 15 - Worst CNN Prediction 99.97 99.18 99.90 99.54
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TABLE 2. The evaluation metrics – accuracy, precision, recall, and f1-score – for CNN for
the test data set from an independent FEM wave solver that does not use level-set-method,

Figures Type of targeted voids Accuracy Precision Recall F1-score
Fig. 16b Two horizontally-aligned ellipses (Data without circles) 98.62 34.38 91.67 50.00
Fig. 16c Two horizontally-aligned ellipses (Data with circles) 99.31 71.88 92.00 80.70
Fig. 17b Two vertically-aligned ellipses (Data without circles) 98.50 28.12 90.00 42.86
Fig. 17c Two vertically-aligned ellipses (Data with circles) 99.19 62.50 95.24 75.47
Fig. 18b Three elliptical voids 95.94 25.00 37.84 30.11
Fig. 18c Three elliptical voids (Data with circles) 93.56 48.21 26.73 34.39
Fig. 19b One circular void 95.94 18.75 81.82 30.51
Fig. 19c One circular void (Data with circles) 99.44 88.75 100.00 94.04
Fig. 20b Two vertically-aligned circular voids 92.06 27.04 79.63 40.38
Fig. 20c Two vertically-aligned circular voids (Data with circles) 97.38 75.47 97.56 85.11
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Fig. 1. Boundary value problem for an elastic medium with voids.
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Fig. 2. Level-set categorization of an element into a void and a non-void element for a
9-node element: the red/white dots indicate the nodes inside/outside a void. If the centroid
and 4 other nodes (out of 9 nodes) of an element are inside the boundary of an actual void,
that element is considered a void element. Otherwise, it is defined as a non-void element.
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Fig. 3. (a) The structured background mesh for our level-set forward wave solver (the
elements in red represent those that are considered voids) and (b) the unstructured mesh
for the Finite Element Analysis Program (FEAP), which explicitly models the boundary of
a void.
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Fig. 4. Contour plot showing the amplitudes of the displacement field of elastic waves in
an isotropic homogeneous aluminum of a plane-strain setting with a void at (a) 7µs, (b) 10
µs, (c) 12 µs, (d) 14 µs, (e) 16 µs, and (f) 20 µs.
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Fig. 5. A plot showing the Ricker-pulse wave signal.
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Fig. 6. Comparison between uy generated by the presented level-set wave solver versus
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Fig. 7. A schematic of multiple voids inside a domain with sensors and wave sources for
the data generation.
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dom data generation.
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Fig. 8. Generation of elliptical voids in data sets.
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Heat map

Fig. 9. This heat map shows, over the entire 40×40 element grid of the domain, how many
times a given element is recognized as a void by the level set approximation during the
generation of 36000 data sets.
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Fig. 10. Input-layer displacement waveforms in training data.
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Fig. 11. The architecture of our CNN, which relates measured wave signals to element
types.
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Fig. 12. Application of convolutional layer filters on the input data set (the beginning
part of Figure 11). The numbers in the figure do not represent actual feature input or filter
weights.
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Fig. 13. Convergence of loss and increase in evaluation metric (recall) for both training and
validation data set for 50 epochs.
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(b) CNN element-wise classification.

Fig. 14. Best void prediction from a test data set, which is made using 5 elliptical voids.
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(b) CNN element-wise classification.

Fig. 15. Worst void prediction from a test data set, which is made using 5 elliptical voids.
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(a) 2 target elliptical
voids modeled by FEAP.
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(b) CNN element-wise classi-
fication
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(c) CNN element-wise classi-
fication (trained with circles).

Fig. 16. Detection of 2 horizontally-aligned elliptical voids from blind test measurement
data by our CNN.
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(a) 2 target elliptical
voids modeled by FEAP.
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(b) CNN element-wise classi-
fication.
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(c) CNN element-wise classi-
fication (trained with circles).

Fig. 17. Detection of 2 vertically-aligned elliptical voids from blind test measurement data
by our CNN.
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(a) 3 target elliptical
voids modeled by FEAP.
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(b) CNN element-wise classi-
fication.
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(c) CNN element-wise classi-
fication (trained with circles).

Fig. 18. Detection of 3 elliptical voids from blind test measurement data by our CNN.
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(a) 1 target circular void
modeled by FEAP.
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(b) CNN element-wise classi-
fication.
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(c) CNN element-wise classi-
fication (trained with circles).

Fig. 19. Detection of 1 circular void from blind test measurement data by our CNN.
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(a) 2 target circular
voids modeled by FEAP.
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(b) CNN element-wise classi-
fication.
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(c) CNN element-wise classi-
fication (trained with circles).

Fig. 20. Detection of 2 vertically aligned-circular voids from blind test measurement data
by our CNN.
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