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ABSTRACT12

This work studies the feasibility of imaging a coupled fluid-solid system by using the elas-13

todynamic and acoustic waves initiated from the top surface of a computational domain. A14

one-dimensional system, where a fluid layer is surrounded by two solid layers, is considered. The15

bottom solid layer is truncated by using a wave-absorbing boundary condition (WABC). The wave16

responses are measured on a sensor located on the top surface, and the measured signal contains17

information about the underlying physical system. By using the measured wave responses, the18

elastic moduli of the solid layers and the depths of the interfaces between the solid and fluid layers19

are identified. To this end, a multi-level Genetic Algorithm (GA) combined with a frequency-20

continuation scheme to invert for the values of sought-for parameters is employed. The numerical21

results show the following findings. First, the depths of solid-fluid interfaces and elastic moduli can22

be reconstructed by the presented method. Second, the frequency-continuation scheme improves23
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the convergence of the estimated values of parameters toward their targeted values. Lastly, a pre-24

liminary inversion, using an all-solid model, can be employed to identify if a fluid layer is presented25

in the model by showing one layer with a very large value of Young’s modulus (with a similar value26

to that of the bulk modulus of water) and the value of mass density being similar to that of water.27

Then, the primary GA inversion method, based on a fluid-solid model, can be utilized to adjust28

the soil characteristics and fine-tune the locations of the fluid layer. If this work is extended to a29

3D setting, it can be instrumental to finding unknown locations of fluid-filled voids in geological30

formations that can lead to ground instability and/or collapse (e.g., natural/anthropogenic sinkhole,31

urban cave-in subsidence, etc.).32

INTRODUCTION33

Detecting underground cavities (e.g., karstic cavities, caves, tunnels, etc.) is a challenging34

task for geotechnical engineering projects due to the geological/hydrogeological complexity of the35

subsurface environment. Geological hazards, such as collapsing soil or urban ground collapse due to36

subsurface voids, could induce significant damage to infrastructures. Such hazard is one of the major37

issues for land planning, infrastructure operation and maintenance, and disaster management. In38

addition, cavity evolution that occurs due to hydrogeological process may cause sinkhole collapse.39

For example, Florida’s karst environment involves active groundwater recharge to the Floridan40

Aquifer that makes overburden soils to be eroded; thus, as shown in Fig. 1, a cavity could gradually41

grow, leading to a sudden collapse (cover-collapse type) or gradual subsidence (cover-subsidence42

type) (Beck 1986; Tihansky 1999; Xiao et al. 2016; Kim et al. 2020; Nam et al. 2020). These large43

underground water-filled cavities hidden below building and transportation infrastructures should44

be pre-detected so that prevention and mitigation measures are applied before catastrophic collapse45

or excessive ground settlement takes place.46

Cone penetration test (CPT) and standard penetration test (SPT) have been employed for detect-47

ing and characterizing subsurface cavities in a cover soil layer, referred to as a raveled zone in the48

karst areas (Nam et al. 2018; Nam and Shamet 2020). Although SPT and CPT provide a continu-49

ous subsurface profile—revealing soil type, resistance, and stratigraphy—, these invasive methods50
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Cavity

Cavity initiates on 
top of bedrock and 
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cover soil layer
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dissolution)

Fig. 1. Schematic diagram of a water-filled subsurface cavity (common in Florida’s karst environ-
ment): (a) cavity in either cover soils layer and (b) cavity within near surface of limestone bedrock.

only collect point-wise profiles of the subsurface environment. As such, it is time-consuming and51

labor-intensive to apply CPT and SPT to wide areas multiple times.52

Numerous geophysical studies over the past decades have introduced nondestructive evaluation53

(NDE) methods for detecting and estimating the geometry of subsurface cavities. For example,54

ground-penetrating radar (GPR), micro-gravimetry, and resistivity imaging and their combinations55

can characterize an underground cavity based on its size and depth position (Fehdi et al. 2014;56

Kiflu et al. 2016). Namely, GPR is inefficient in highly heterogeneous media—such as backfills,57

moist clays with high soil conductivity, and saturated soils below the groundwater table. Micro-58

gravimetric method is effective in detecting shallow cavities (Butler 1984; Bishop et al. 1997), but59

its density contrast cannot be obtained clearly if the size of a void is relatively small compared to its60

depth. An electrical resistivity method has been applied to detect air-filled or water-filled cavities61

(Van Schoor 2002; Coşkun 2012), but it requires a large areal space for surveying and cannot detect62

small-scale irregularities in the geologic interfaces since it measures averaged resistivity values and63

is easily ruined by noise sources, such as piping, power lines, and house structures.64

On the other hand, elastodynamic imaging has been widely used in site characterization (Brown65

3 Guidio, Nam, and Jeong



et al. 2002; Kallivokas et al. 2013). It hinges on elastodynamic waves that are initiated by66

wave sources on the ground surface and/or borehole sources, and, then, are reflected/refracted67

due to material heterogeneity within a medium. The resulting wave motions can be measured68

on the ground surface or at borehole seismic arrays. The inverse modeling, associated with69

elastic wave propagation analyses, provides promising results of identifying the material properties70

of the media. Inverse modeling—employing a partial differential equation (PDE)-constrained71

optimization method and the finite or spectral element method (FEM or SEM)—has been utilized72

to infer the spatial distribution of material properties of host media in fine resolution (Kang and73

Kallivokas 2011; Fathi et al. 2015a). Specifically, for instance, the geotechnical site characterization74

methodologies have been investigated in a soil domain that is truncated by Perfectly-Matched-Layers75

(PML), where waves decay and are not reflected off surrounding boundaries (Fathi et al. 2015b),76

by using state-adjoint-control equation-based full-waveform inversion (FWI) approaches (Kang77

and Kallivokas 2010; Kang and Kallivokas 2011; Kallivokas et al. 2013; Fathi et al. 2015a; Fathi78

et al. 2016; Kucukcoban et al. 2019). In particular, the authors bring attention to the progressive79

development of the material inversion method for the site characterization from a simplified one-80

dimensional (1D) setting to a full 3D one followed by field experimental validation as shown in the81

following. Kang and Kallivokas (2010) investigated a new material inversion method for identifying82

the vertical distribution of the shear wave speed within a PML-truncated 1D soil column with a83

hypothesis of horizontal layering without considering geometrical damping. Kang and Kallivokas84

(2011) further developed their material inversion method for estimating the spatial distribution85

of the shear wave speed in a 2D scalar wave setting in a fine resolution without considering the86

realistic behaviors of elastic waves (i.e., vector waves). Kallivokas et al. (2013) have continued the87

investigation of the new material-inversion method to estimate the spatial distributions of both P and88

S-wave speeds within a 2D linear, elastic, undamped PML-truncated solid setting in consideration89

of vector wave behaviors. They used an assumption that the material properties of the soils are90

uniform in the anti-plane direction of the considered 2D plane. Their paper also presented the91

validation of their numerical method by using field experimental data that used a line loading-like92
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application of wave sources, which replicates the 2D plane-strain setting of the computational93

study. Next, Fathi et al. (2015a) developed the material inversion method for inverting the spatial94

distribution of both P and S-wave speeds in a 3D linear, elastic, undamped PML-truncated solid.95

Lastly, Fathi et al. (2016) validated the result of their inverse modeling in the previous work (Fathi96

et al. 2015a) by using field experimental data in the 3D setting. In the experiment, a point wave97

source was employed on the ground surface, and its corresponding wave responses were measured98

on the surface and used as measurement data in the inverse simulations. They compared the inverted99

spatial distribution of the wave speeds with its reference solution from a conventional method, such100

as spectral analysis of surface waves (SASW). In addition to the aforementioned development, the101

Gauss-Newton-based FWI method, which is based on a gradient vector and a Hessian matrix, had102

been studied for characterizing the material profiles in a truncated two-dimensional solid domain103

(Tran and McVay 2012; Pakravan et al. 2016) for the application of the site characterization. The104

PDE-constrained optimization has also been used in consideration of the boundary element method105

(BEM), of which computational efficiency is much greater than the FEM due to the reduction of the106

dimensionality, to detect the geometries of wave-scattering objects in host media. Namely, there107

have been studies on inverse scattering algorithms using BEM wave solvers, hinging on the moving108

boundary concept and the total derivative (Petryk and Mroz 1986) that allows for computing the109

derivative of an objective functional with respect to the geometry variables of scattering objects110

(Guzina et al. 2003; Jeong et al. 2009). The extended finite element method (XFEM) has been111

used as a wave solver of the studies to identify cracks or air-filled voids in solid media because112

it allows for avoiding expensive remeshing process in inverse iterations while using the flexibility113

of the FEM for heterogeneous materials (Jung et al. 2013). In addition, a frequency-continuation114

scheme was devised to help the inversion solver tackle the multiplicity of solutions of subsurface115

imaging problems (Bunks et al. 1995; Kang and Kallivokas 2010; Fathi et al. 2015a). That is, when116

the convergence rate of the inversion solver is decreased due to a local minimum of an objective117

functional that is comprised of measurement data corresponding to a given dominant frequency of118

excitation, another set of measurement data that is induced by excitation of a different dominant119
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frequency is employed. Such a frequency shift can change the curvature of the objective functional120

so that a minimizer can escape a local minimum. In general, one may consider increasing frequency121

from one inversion set to another because it has been reported that using a lower frequency leads122

to the inversion result of a lower resolution (due to a larger wavelength), then, one can fine-tune it123

using a higher frequency (due to a smaller wavelength) (Bunks et al. 1995; Kang and Kallivokas124

2010; Fathi et al. 2015a).125

Despite such recent developments in elastodynamic wave imaging techniques, few papers have126

demonstrated the feasibility of identifying the properties of a solid system that includes fluid-filled127

voids. There have been a finite difference method (FDM)-based FWI approaches, which employed128

all solid elements in an entire computational domain and detect the areas with smaller values of129

shear wave speeds𝑉𝑠 (e.g., around 100 m/s) than those of typical soils and rocks to indicate air-filled130

voids (Tran and McVay 2012; Tran et al. 2013; Mirzanejad et al. 2020). However, those works have131

not explicitly modeled the interfaces between air voids and the solid domain. Thus, the authors132

(henceforth, we) are concerned that, first, modeling a fluid domain as solid elements with a small133

value of𝑉𝑠 could introduce numerical error in forward wave solutions. Second, using a small value134

of 𝑉𝑠 requires a small size of a solid element for wave simulations. However, the aforementioned135

FDM works did not use such a small-sized element to model a void so that it could suffer from the136

additional error of wave solutions. To address this issue, the authors suggest to explicitly use fluid137

elements to model voids filled with water (or air) so that accurate fluid-solid coupling (Everstine138

1997; Lloyd et al. 2016) should be incorporated into the wave solver. Then, by using such a wave139

solver, inverse modeling could accurately identify the interfaces between fluid and solids as well as140

the material profiles of solids. As a prototype work of the suggested method, this paper investigates141

the feasibility to estimate the interfaces between fluid and solid layers and the material properties142

of solid layers in a multi-layered system by using acoustic and elastodynamic waves generated from143

the ground surface. Such investigation will prove the feasibility of detecting a water-filled void and144

identifying its location and geometry in soils, to which overlaying ground surface could potentially145

sink.146
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This work uses the FEM to study the wave responses of the coupled fluid-solid media in a147

prototype one-dimensional setting. The solid formation of a semi-infinite extent is truncated by148

using an absorbing boundary, and a proper fluid-solid interface condition is considered. The inverse149

problem is cast into a minimization problem, where the value of an error between the synthetic150

measured wave response due to target profiles and the computed counterpart due to guessed151

profiles is minimized. The solution multiplicity of the minimization process is addressed by using152

the multi-level Genetic Algorithm (GA) in this work. Under this new scheme, the authors suggest153

the following steps: (𝑖) The optimizer identifies an inversion solution around a local minimum after154

a number of GA iterations in the first-level GA; (𝑖𝑖) Then, a misfit function can be re-calculated155

for a different measurement signal induced by a pulse signal of a different central frequency in156

the next-level GA; (𝑖𝑖𝑖) By doing so, the GA optimizer is able to escape the local minimum of157

the previous-level GA; (𝑖𝑣) The same technique is employed to address the solution multiplicity of158

the next-level GA. The numerical results show that the numerical simulations, using the multiple-159

frequency-level GA, accurately detect the interfaces between fluid and solid layers and the material160

properties of solid layers. The authors also demonstrate that a preliminary GA inversion can tell161

whether the subsurface media include a fluid layer or not. Namely, the preliminary inversion can162

indicate the existence of a fluid layer by detecting a very large value of Young’s modulus (with a163

similar value to that of the bulk modulus of water) and a mass density with a similar value to that of164

water. Once the existence of a fluid layer is detected, a primary GA inversion, using the fluid-solid165

model, can further estimate the locations of a fluid layer and the material properties of surrounding166

solids.167

PROBLEM DEFINITION168

This study aims to identify the depths of the interfaces between a fluid layer and its surrounding solid169

layers and the stiffness of the solid layers by using a dynamic test, which generates elastodynamic170

waves into the subsurface media from the top surface. A 1D fluid-solid model, which consists171

of three different layers, i.e., two solid layers and one fluid layer (see Fig. 2), is considered. The172
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Fig. 2. Problem schematic.

governing differential equations for the compressional waves in the three layers are given by:173

𝜕

𝜕𝑥

(
𝐸𝑠1

𝜕𝑢𝑠1
𝜕𝑥

)
= 𝜌𝑠1

𝜕2𝑢𝑠1

𝜕𝑡2
, 0 ≤ 𝑥 ≤ 𝐿𝑠1, (1)174

𝜕2𝑃

𝜕𝑥2 =
1
𝑐2
𝑓

𝜕2𝑃

𝜕𝑡2
, 𝐿𝑠1 ≤ 𝑥 ≤ 𝐿 𝑓 , (2)175

𝜕

𝜕𝑥

(
𝐸𝑠2

𝜕𝑢𝑠2
𝜕𝑥

)
= 𝜌𝑠2

𝜕2𝑢𝑠2

𝜕𝑡2
, 𝐿 𝑓 ≤ 𝑥 ≤ 𝐿𝑠2, (3)176

177

where 𝐿𝑠1, 𝐿 𝑓 , and 𝐿𝑠2 denote, respectively, the depth of the interface between the top solid layer178

and the fluid layer, that between the fluid and the bottom solid layer, and the depth of the truncation179

wave absorbing boundary. Also, 𝑢𝑠1(𝑥, 𝑡) and 𝑢𝑠2(𝑥, 𝑡) denote the displacement fields of the wave180

motions of solid particles in the top and bottom solid layers. 𝑃 denotes the fluid pressure field of the181

wave motions in the fluid. The wave speeds of the three layers are given by 𝑐𝑠1 =

√︃
𝐸𝑠1
𝜌𝑠1

, 𝑐 𝑓 =
√︃

𝜅 𝑓

𝜌 𝑓
,182

and 𝑐𝑠2 =

√︃
𝐸𝑠2
𝜌𝑠2

, respectively, where 𝐸 , 𝜌, and 𝜅 are the modulus of elasticity, the density, and the183
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bulk modulus. The problem of interest also includes the following boundary conditions:184

𝐸𝑠1
𝜕𝑢𝑠1
𝜕𝑥

= − 𝑓 (𝑡), 𝑥 = 0, (4)185

𝜕𝑢𝑠2
𝜕𝑥

=
−1
𝑐𝑠2

𝜕𝑢𝑠2
𝜕𝑡

, 𝑥 = 𝐿𝑠2, (5)186

187

A pulse signal 𝑓 (𝑡) is applied at the top of the solid layer at 𝑥 = 0 (per (4)). The depth of the bottom188

solid layer is truncated by using the absorbing boundary condition (per (5)).189

The solid and fluid layers are coupled via the following interface conditions:190

𝐸𝑠1
𝜕𝑢𝑠1
𝜕𝑥

= −𝑃, 𝑥 = 𝐿𝑠1, (6)191

𝜕𝑃

𝜕𝑥
= −𝜌 𝑓

𝜕2𝑢𝑠1

𝜕𝑡2
, 𝑥 = 𝐿𝑠1, (7)192

𝐸𝑠2
𝜕𝑢𝑠2
𝜕𝑥

= −𝑃, 𝑥 = 𝐿 𝑓 , (8)193

𝜕𝑃

𝜕𝑥
= −𝜌 𝑓

𝜕2𝑢𝑠2

𝜕𝑡2
, 𝑥 = 𝐿 𝑓 . (9)194

195

The above interface conditions are originated from the dynamic interface condition between a196

solid and fluid in a multi-dimensional setting, presented by Everstine (1997), which is composed197

of the followings. First, “the effect of fluid pressure on the structure is imposed as a load". This198

corresponds to (6) and (8). Second, “the effect of structural motion on the fluid" should be modeled199

as ∇𝑃 · n = −𝜌 𝑓
𝜕2u𝑠

𝜕𝑡2
· n, where n is the normal vector at the interface. This corresponds to (7) and200

(9).201

The system is initially at rest:202

𝑢𝑠1 = 𝑢𝑠2 = 𝑃 = 0, 𝑡 = 0, (10)203

𝜕𝑢𝑠1
𝜕𝑡

=
𝜕𝑢𝑠2
𝜕𝑡

=
𝜕𝑃

𝜕𝑡
= 0, 𝑡 = 0. (11)204

205

FINITE ELEMENT MODELING TO COMPUTE THE WAVE RESPONSES.206

To derive the weak form, the governing wave equations in the strong form (1)-(3) are multiplied by207
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the test functions 𝑣1(𝑥), 𝑤(𝑥), and 𝑣2(𝑥). By integrating them by parts and using the boundary and208

interface conditions of the strong form, the following weak forms are obtained:209

∫ 𝐿𝑠1

0

[
𝐸𝑠1

𝜕𝑣1
𝜕𝑥

𝜕𝑢𝑠1
𝜕𝑥

+ 𝜌𝑠1𝑣
𝜕2𝑢𝑠1

𝜕𝑡2

]
𝑑𝑥 = 𝑣(0) 𝑓 (𝑡) − 𝑣(𝐿𝑠1)𝑃(𝐿𝑠1), (12)210 ∫ 𝐿 𝑓

𝐿𝑠1

[
𝜅 𝑓

𝜕𝑤

𝜕𝑥

𝜕𝑃

𝜕𝑥
+ 𝜌 𝑓𝑤

𝜕2𝑃

𝜕𝑡2

]
𝑑𝑥 = 𝜌 𝑓 𝜅 𝑓

[
𝑤(𝐿𝑠1)

𝜕2𝑢𝑠1

𝜕𝑡2
(𝐿𝑠1) − 𝑤(𝐿 𝑓 )

𝜕2𝑢𝑠2

𝜕𝑡2
(𝐿 𝑓 )

]
, (13)211 ∫ 𝐿𝑠2

𝐿 𝑓

[
𝐸𝑠2

𝜕𝑣2
𝜕𝑥

𝜕𝑢𝑠2
𝜕𝑥

+ 𝜌𝑠2𝑣2
𝜕2𝑢𝑠2

𝜕𝑡2

]
𝑑𝑥 = 𝑣2(𝐿 𝑓 )𝑃(𝐿 𝑓 ) − 𝐸𝑠2

√︂
𝜌𝑠2
𝐸𝑠2

𝑣2(𝐿𝑠2)
𝜕𝑢𝑠2
𝜕𝑡

(𝐿𝑠2). (14)212

213

Then, the functions are approximated as:214

𝑣1(𝑥) = v𝑇1𝝓(𝑥), 𝑢𝑠1(𝑥, 𝑡) = 𝝓(𝑥)𝑇u𝑠1(𝑡), (15)215

𝑤(𝑥) = w𝑇𝚿(𝑥), 𝑃(𝑥, 𝑡) = 𝚿(𝑥)𝑇P(𝑡), (16)216

𝑣2(𝑥) = v𝑇2𝛀(𝑥), 𝑢𝑠2(𝑥, 𝑡) = 𝛀(𝑥)𝑇u𝑠2(𝑡), (17)217
218

where 𝝓(𝑥), 𝚿(𝑥), and 𝛀(𝑥) denote vectors of global basis functions constructed by local shape219

functions, and u𝑠1, P, and u𝑠2 are the vectors of nodal solutions. Introducing the finite element220

approximations (15)-(17) into the weak forms (12)-(14) provides the following discrete form:221

K𝑠1u𝑠1 + M𝑠1
𝜕2u𝑠1

𝜕𝑡2
= f − L1P(𝐿𝑠1), (18)222

K 𝑓 P + M 𝑓

𝜕2P
𝜕𝑡2

= L2𝜌 𝑓 𝜅 𝑓

𝜕2u𝑠1

𝜕𝑡2
− L3𝜌 𝑓 𝜅 𝑓

𝜕2u𝑠2

𝜕𝑡2
, (19)223

K𝑠2u𝑠2 + M𝑠2
𝜕2u𝑠2

𝜕𝑡2
= −

√︁
𝜌𝑠2𝐸𝑠2 L5

𝜕u𝑠2
𝜕𝑡

+ L4P, (20)224
225
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where the matrices are defined as:226

K𝑠1 =

∫ 𝐿𝑠1

0
𝐸𝑠1

𝜕𝝓(𝑥)
𝜕𝑥

𝜕𝝓(𝑥)𝑇
𝜕𝑥

𝑑𝑥, M𝑠1 =

∫ 𝐿𝑠1

0
𝜌𝑠1𝝓(𝒙)𝝓(𝒙)

𝑻 , (21)227

K 𝑓 =

∫ 𝐿 𝑓

𝐿𝑠1

𝜅 𝑓

𝜕𝚿(𝑥)
𝜕𝑥

𝜕𝚿(𝑥)𝑇
𝜕𝑥

𝑑𝑥, M 𝑓 =

∫ 𝐿 𝑓

𝐿𝑠1

𝜌 𝑓𝚿(𝒙)𝚿(𝒙)𝑻 , (22)228

K𝑠2 =

∫ 𝐿𝑠2

𝐿 𝑓

𝐸𝑠2
𝜕𝛀(𝑥)
𝜕𝑥

𝜕𝛀(𝑥)𝑇
𝜕𝑥

𝑑𝑥, M𝑠2 =

∫ 𝐿𝑠2

𝐿 𝑓

𝜌𝑠2𝛀(𝒙)𝛀(𝒙)𝑻𝑑𝑥, (23)229

L1 = 𝝓(𝐿𝑠1)𝚿𝑇 (𝐿𝑠1) =


0 · · · 0
...

. . .
...

1 · · · 0


, L2 = 𝚿(𝐿𝑠1)𝝓𝑇 (𝐿𝑠1) =


0 · · · 1
...

. . .
...

0 · · · 0


, (24)230

L3 = 𝚿(𝐿 𝑓 )𝛀𝑇 (𝐿 𝑓 ) =


0 · · · 0
...

. . .
...

1 · · · 0


, L4 = 𝛀(𝐿 𝑓 )𝚿𝑇 (𝐿 𝑓 ) =


0 · · · 1
...

. . .
...

0 · · · 0


, (25)

L5 = 𝛀(𝐿𝑠2)𝛀𝑇 (𝐿𝑠2) =


0 · · · 0
...

. . .
...

0 · · · 1


, (26)231

232

and the force vector is f = 𝝓(0) 𝑓 (𝑡). The discrete equations (18)-(20) lead to the following coupled233

discrete form:234


K𝑠1 L1 0

0 K 𝑓 0

0 −L4 K𝑠2

︸                    ︷︷                    ︸
K


u𝑠1

P

u𝑠2


+


0 0 0

0 0 0

0 0 𝐸𝑠2

√︃
𝜌𝑠2
𝐸𝑠2

L5

︸                       ︷︷                       ︸
C


𝜕u𝑠1
𝜕𝑡

𝜕P
𝜕𝑡

𝜕u𝑠2
𝜕𝑡


235

+


M𝑠1 0 0

−𝜌 𝑓 𝜅 𝑓 L2 M 𝑓 𝜌 𝑓 𝜅 𝑓 L3

0 0 M𝑠2

︸                                 ︷︷                                 ︸
M


𝜕2u𝑠1
𝜕𝑡2

𝜕2P
𝜕𝑡2

𝜕2u𝑠2
𝜕𝑡2


=


f

0

0


, (27)236

237
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which, at a discrete time 𝑡𝑛, can be written as:238

Mq𝑛 + Cq𝑛 + Kq𝑛 = F𝑛, (28)239
240

where q𝑛 = [u𝑇
𝑠1,P

𝑇 , u𝑇
𝑠2]

𝑇 is the vector containing the nodal solutions of solid displacements and241

acoustic pressures at the 𝑛-th time step, and q𝑛 and q𝑛 denote the first and second-order derivatives242

of q𝑛 with respect to time. The second-order ordinary differential equation (28) is solved by using243

the Newmark’s unconditionally-stable time integration scheme (Newmark 1959).244

INVERSE MODELING245

This study aims to identify the four control parameters (𝐸𝑠1, 𝐸𝑠2, 𝐿𝑠1, and 𝐿 𝑓 ) by using measured246

wave responses initiated by a known excitation signal 𝑓 (𝑡). Here, the values of the other variables247

(𝐿𝑠2, 𝜌𝑠1, 𝜌𝑠2, 𝜅 𝑓 , and 𝜌 𝑓 ) are set to be known during the inversion process, and the excitation248

signal 𝑓 (𝑡) is also known. This problem is formulated into a minimization problem to identify249

estimated control parameters that could lead to the minimum of an objective functional:250

L =

∫ 𝑇

0
(𝑢m(0, 𝑡) − 𝑢(0, 𝑡))2𝑑𝑡. (29)251

252

In (29), 𝑢m(0, 𝑡) denotes a wave signal recorded by the sensor at 𝑥 = 0 due to a target profile of the253

control parameters, and 𝑢(0, 𝑡) denote computed counterpart at the same measurement location due254

to a guessed profile. In this computational study, 𝑢m(0, 𝑡) is synthetically obtained by running the255

presented FEM solver using a target profile as an input. To prevent an inverse crime from taking256

place, smaller values of element sizes are used when 𝑢m(0, 𝑡) is computed than when 𝑢(0, 𝑡) is257

computed.258

This work uses GA, which is a heuristic algorithm to reconstruct the control parameters that are259

the fittest to the objective of the problem. In each generation of GA, there are individuals, each of260

which has a set of different values of control parameters. In this work, GA runs the FEM wave solver,261

for the estimated values of control parameters of each individual, to compute 𝑢(0, 𝑡) and evaluate262

the misfit (29). Then, GA evaluates the fitness of each individual by using the value of its misfit.263

12 Guidio, Nam, and Jeong



Then, GA weeds out less-fitting individuals when it creates the next generation of individuals,264

each of which is characterized by its own set of estimated parameters. In this process, by virtue265

of the mutation process, where GA learns the better-fitting characteristics of control parameters,266

GA gives rise to new individuals in the next generation. The GA calculates the sensitivity of the267

fitness function with respect to the changes of the values of the control parameters and determines268

how the next generation of individuals is created. Namely, GA repeats the tasks of weeding out,269

selecting the best individual, and mutating at each generation. Therefore, the suggested inverse270

modeling solver could identify targeted values of the parameters by using the iterative process of271

GA, where the values of the estimated parameters of the best-fit individual evolve over the progress272

of generations.273

In the overall GA process under this problem, constraints are imposed on the allowable ranges274

of each control parameter. For instance, 𝐿𝑠1 (the depth of the upper face of a fluid layer) is set to275

be always smaller than 𝐿 𝑓 (the depth of the lower face) such that the thickness of the fluid layer is276

always positive. In addition, the values of elastic moduli 𝐸𝑠1 and 𝐸𝑠2 are set to be always positive.277

It is known that, in the minimization problem of a small number (e.g., less than 20) of control278

parameters, GA is likely to find a set of control parameters that are close to the global minimum279

(Jeong et al. 2017; Guidio and Jeong 2021). Since there are only four control parameters, the280

authors originally hypothesized that the GA is a suitable solution approach to finding the global281

minimum solution of this inverse problem. However, the numerical experiments show that the GA282

suffers from the solution multiplicity, and, thus, the authors test a new multiple frequency-level283

GA approach. Namely, after the first level of GA is finished, the presented inversion solver uses284

the reconstructed values from the first level to define the upper and lower limits of the control285

parameters in the next GA level, which uses a pulse signal of a different central frequency from its286

predecessor, creating a new synthetic 𝑢𝑚. In the final-level GA, the final best-fit estimated control287

parameters are obtained as the inversion solution.288

NUMERICAL EXPERIMENTS289

This section shows a set of numerical experiments, studying the performance of the presented290
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multi-level GA-based parameter-estimation method. In the first two examples, three targeted fluid-291

solid models, which differ from each other in terms of 𝐿𝑠1, 𝐿 𝑓 , and 𝐿𝑠2, are considered as follows.292

Model 1 has a total length 𝐿𝑠2 of 60 m and its fluid is located between 𝑥 of 𝐿𝑠1 = 20 m and 𝑥 of 𝐿 𝑓293

= 25 m. The corresponding geometry information of Model 2 are 𝐿𝑠2 of 60 m, 𝐿𝑠1 of 40 m, and294

𝐿 𝑓 of 45 m, and those of Model 3 are 𝐿𝑠2 of 120 m, 𝐿𝑠1 of 50 m, and 𝐿 𝑓 of 80 m. 𝐿𝑠1 and 𝐿 𝑓 are295

unknown parameters in the inversion. In all the models, the mass density (𝜌) of the solid layers is296

2000 kg/m3; their Young’s moduli are 𝐸𝑠1 = 2×108 Pa and 𝐸𝑠2 = 5×108 Pa; and the bulk modulus297

(𝑘 𝑓 ) and mass density (𝜌 𝑓 ) of the fluid layer are 2.34 × 109 N/m2 and 1021 kg/m3, respectively.298

While 𝐸𝑠1 and 𝐸𝑠2 are set to be unknown, 𝜌, 𝑘 𝑓 , and 𝜌 𝑓 are set to be known in the inversion.299

In the presented numerical experiments, a three-level GA-based inversion method is used with a300

frequency-continuation scheme. Namely, in each GA set, a dynamic force with a different frequency301

content is used as follows.302

• The upper and lower bounds of each control parameter are set for the first-level GA, and its303

last-generation leads to the best-fit individual.304

• Then, in the second and third-level GA, the upper and lower limits of the four control305

parameters are updated with respect to the final-reconstructed values of the parameters306

obtained in the previous-level GA. Namely, in the second-level GA, the values of the estimated307

𝐿𝑠1 and 𝐿 𝑓 are bounded using the same upper and lower limits as the first GA level, while308

the values of the estimated 𝐸𝑠1 and 𝐸𝑠2 are bounded by using ± 50% derivations of their309

final-reconstructed values obtained during the first GA level.310

• In the third GA level, the values of estimated 𝐿𝑠1 and 𝐿 𝑓 are bounded by using ± 5%311

derivations of their reconstructed values from the second GA level, while ± 10% derivations312

of the values of estimated 𝐸𝑠1 and 𝐸𝑠2 that are reconstructed from second-level GA level are313

used as their bounds in the last GA level.314

• The number of generations (GN) and population size (PS) are both 50 in all three GA levels.315
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The computational procedure of the presented multi-level GA-based inversion method is sum-316

marized in Algorithm 1.317

Algorithm 1 Multi-level GA-based parameter-estimation algorithm

1: Set GN and PS = 50.
2: Set values for known parameters (𝐿𝑠2, 𝜌𝑠1, 𝜌𝑠2, 𝜅 𝑓 , and 𝜌 𝑓 ).
3: for the first-level GA do
4: Set the central frequency of an excitation signal 𝑓 (𝑡).
5: Set the upper and lower limits for each control parameter.
6: Run the first GA level.
7: return the reconstructed value of each control parameter.
8: end for
9: for the second-level GA do

10: Set the central frequency of an excitation signal 𝑓 (𝑡).
11: Set the upper and lower limits of 𝐿𝑠1 and 𝐿 𝑓 as the same as the first GA level.
12: Set upper and lower limits of 𝐸𝑠1 and 𝐸𝑠2 by using ± 50% derivations of their reconstructed values obtained

from the first GA level.
13: Run the second GA level.
14: return the reconstructed value of each control parameter.
15: end for
16: for the third-level GA do
17: Set the central frequency of an excitation signal 𝑓 (𝑡).
18: Set the upper and lower limits of 𝐿𝑠1 and 𝐿 𝑓 by using ± 5% derivations of their reconstructed values obtained

from the second GA level.
19: Set the upper and lower limits of 𝐸𝑠1 and 𝐸𝑠2 by using ± 10% derivations of their reconstructed values obtained

from the second GA level.
20: Run the third GA level.
21: return the reconstructed value of each control parameter.
22: end for

In order to avoid an inverse crime, to compute 𝑢𝑚 induced by targeted control parameters, the318

fluid-solid domain is discretized by using an element size of 0.1 m, while an element size of 0.2 m319

is used for computing 𝑢 due to estimated control parameters. In the forward and inverse modeling,320

the time step is 0.001 s, and the total observation duration 𝑇 is set as 1 s.321

In the following, three examples of numerical experiments are presented. The first one tests the322

inversion performance of the three-level GA approach by using a dynamic force of a Ricker pulse323

signal with its central frequency of 5, 10, and 15 Hz, respectively, in each level. In the second324

example, the inversion performance is examined by using a decreasing frequency-continuation325

counterpart of 15, 10, and 5 Hz. The last example investigates the utilization of preliminary326

inversion using all-solid layers for detecting the presence of a fluid-filled cavity by identifying 𝐸327

and 𝜌 of all the solid layers, among which one layer shows a very large value of 𝐸 (with a value328
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being similar to that of the bulk modulus of water) and 𝜌 of the value of the mass density of329

water. Once the preliminary inversion is completed, the optimizer uses the presented three-level330

GA approach based on the fluid-solid wave model as a primary inversion.331

To analyze the inversion results, the error between each target control parameter (𝐿𝑠1, 𝐿 𝑓 , 𝐸𝑠1,332

and 𝐸𝑠2) and its estimated counterpart of the fittest individual at each generation is calculated as:333

E =
|A targeted value − An estimated value|

|A targeted value| × 100 [%] . (30)334

An averaged error of all the control parameters of the best-fit individual at each generation is also335

calculated as:336

E =

∑4
𝑘=1 E𝑘

4
[%] . (31)337

where E𝑘 is the error (30) of the reconstruction of the 𝑘-th control parameter.338

Exemplary forward wave responses339

Prior to the study of the inversion performance, an exemplary forward wave response in the340

computational domain induced by a pulse loading at the top surface is shown by considering the341

fluid-solid model 3 with 𝐿𝑠1 = 50 m, 𝐿 𝑓 = 80 m, 𝐿𝑠2 = 120 m, 𝐸𝑠1 = 2×108 N/m2, and 𝐸𝑠2 =342

5×108 N/m2. The time-dependent value of the dynamic force applied at the top surface is a Ricker343

wavelet with its central frequency of 20 Hz and its peak amplitude of 1000 N/m2.344

The wave responses over space and time are shown in Fig. 3. In this seismogram, the stress field345

in the solid layers and the acoustic pressure in the fluid layer are shown. The seismogram shows346

the following behaviors. (𝑖) The elastic wave propagates throughout the first solid layer from the347

top surface and is transmitted via the first solid-fluid interface at 𝑥 = 50 m to the fluid layer (please348

see the wave response around 𝑥 = 50 m and 𝑡 = 0.2 s). While the wave enters into the fluid layer, it349

reflects off the interface back to the solid layer at the same time. (𝑖𝑖) The acoustic pressure wave in350

the fluid layer is transmitted into the second solid layer through the second solid-fluid interface at351

𝑥 = 80 m and reflects off the interface back to the fluid layer (please see the wave response around352

𝑥 = 80 m and 𝑡 = 0.2 s). (𝑖𝑖𝑖) The stress wave in the second solid layer is transmitted through the353
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Wave reflected back 
to a solid layer

Wave reflected back 
to a fluid layer

Fig. 3. The seismogram of the stress field [N/m2] in the solid layers (0 ≤ 𝑥 ≤ 50 and 80 ≤ 𝑥)
and the acoustic pressure [N/m2] in the fluid layer (50 < 𝑥 < 80) induced by a dynamic loading at
the top surface (𝑥 = 0). The solid lines at 𝑥 = 50 and 80 m indicate the fluid-solid interfaces. The
arrows indicate the waves that are reflected from the interfaces and propagating backward. The
acoustic waves that are reflected from the second interface are more visible in the time of 0.55 s
than in 0.25 s in this plot.

absorbing boundary at 𝑥 = 120 m without any reflection (please see the wave response around 𝑥 =354

120 m and 𝑡 = 0.3 s). The system repeats (𝑖) to (𝑖𝑖𝑖) until the amplitude of the wave fades away.355

In the presented inverse modeling, the sensor on the top surface records the response signal in356

the time domain. The amplitudes and timings of the recorded signal may provide the inversion357

solver with information about the material properties of solid layers and the locations of fluid-solid358

interfaces. In other words, the timings of particular parts of the signal could indicate, primarily,359

the locations (𝐿𝑠1 and 𝐿 𝑓 ) of the fluid-solid interfaces, while the amplitudes of particular parts of360

the signal could indicate, primarily, the material properties (𝐸𝑠1 and 𝐸𝑠2) in the solid layers.361

Example 1 - Investigating the inversion performance by increasing the dominant frequency362

of excitation for each GA level363

In this example, the performance of the presented multi-level GA is studied for identifying364

targeted control parameters by increasing the frequency of an excitational Ricker signal for each365

GA level. That is, a dynamic pulse of its dominant frequency 5 Hz is used in the first-level GA, and,366
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then, 10 and 20 Hz are used in the next levels. The control parameters to be identified are 𝐿𝑠1, 𝐿 𝑓 ,367

𝐸𝑠1, and 𝐸𝑠2. Cases 1-3, which use the fluid-solid models 1, 2, and 3, respectively, are considered.368

• In Case 1, the targeted values of 𝐿𝑠1 and 𝐿 𝑓 are 20 and 25 m, respectively, while the values369

of their estimated counterparts, during the first-level GA level, are bounded as 10 ≤ 𝐿𝑠1 ≤370

22 m and 23 ≤ 𝐿 𝑓 ≤ 35 m. Please note that their upper and lower limits are changed for the371

second and third GA levels as previously discussed.372

• In Case 2, the targeted values of 𝐿𝑠1 and 𝐿 𝑓 are set to be 40 and 45 m, respectively, while the373

values of their estimated counterparts, during the first GA level, are bounded as 30 ≤ 𝐿𝑠1 ≤374

42 m and 43 ≤ 𝐿 𝑓 ≤ 55 m.375

• In Case 3, the estimated values of 𝐿𝑠1 and 𝐿 𝑓 bounded as 40 ≤ 𝐿𝑠1 ≤ 65 m and 66 ≤ 𝐿 𝑓 ≤376

90 m in the first-level GA, and their targeted counterparts are 50 and 80 m, respectively.377

For all cases, the targeted values of Young’s moduli are set to be 𝐸𝑠1 = 2×108 Pa and 𝐸𝑠2 = 5×108
378

Pa, while their estimated values for both moduli during the first GA level are bounded as 1×108 Pa379

≤ 𝐸 ≤ 7.5×108 Pa. Their upper and lower limits are changed for the second and third GA levels as380

previously discussed.381

Table 1 presents the reconstructed control parameters of the fittest individual that is obtained382

at the last generation of each GA level per each case. The table also includes the average error E,383

(31), of all the parameters reconstructed at the end of each GA level and the error E, (30), of each384

control parameter of the fittest individual at the end of the last-level GA. In all Cases 1 to 3, the385

value of E at the end of the last-level GA is smaller than that at the end of the first-level GA, and386

the final values of E in all the cases 1 to 3 are smaller than 1%.387

Fig. 4 shows that the average error for the best-fit individual at each generation tends to be388

decreased during the presented inversion process. The authors note that, after about 20 GA389

iterations in the first-level GA, the value of E is converged but still shows room for improvement390

(i.e., the optimizer finds an inversion solution around a local minimum). To address such solution391

multiplicity in the first-level GA, a misfit function is used for 𝑢𝑚 induced by a pulse signal of a392
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TABLE 1. Example 1: Reconstructed values of the control parameters for each GA level obtained
by increasing the frequency of the dynamic force for each GA level. The last row of each case
represents the error at the third-level GA.

Cases GA 𝐿𝑠1 𝐿 𝑓 𝐸𝑠1 𝐸𝑠2 Average Error
level (m) (m) (Pa) (Pa) E

Case 1

Target 20 25 2×108 5×108

1st 20.4 24.9 2.13×108 5.66×108 5.53%
2nd 19.8 24.3 1.97×108 4.94×108 1.63%
3rd 20.0 24.8 2.00×108 5.08×108 0.60%

Individual error 0.00% 0.80% 0.00% 1.60%

Case 2

Target 40 45 2×108 5×108

1st 41.7 46.2 2.20×108 5.86×108 8.53%
2nd 40.6 46.0 2.06×108 5.16×108 2.48%
3rd 39.9 44.7 1.98×108 4.97×108 0.63%

Individual error 0.25% 0.67% 1.00% 0.60%

Case 3

Target 50 80 2×108 5×108

1st 53.1 90.0 2.28×108 5.49×108 10.63%
2nd 48.9 79.2 1.91×108 5.33×108 3.58%
3rd 49.9 79.9 1.98×108 5.06×108 0.63%

Individual error 0.20% 0.12% 1.00% 1.20%

new central frequency in the next-level GA. By doing so, the optimizer in the second-level GA can393

escape the local minimum of the first-level GA. By applying the same technique in the third-level394

GA, the solution multiplicity of the second-level GA can be resolved. Therefore, the authors395

suggest that it is feasible to reconstruct control parameters effectively by using a multi-level GA396

process combined with a frequency-continuation scheme, by which the frequency is progressively397

increased for each GA level.398

Fig. 5 presents the detail of the inversion performance of Case 3. Namely, Fig. 5 shows the399

histograms of the estimated control parameters of the entire population of the individuals during all400

the GA levels in Case 3. During the initial few generations of each GA level, the inversion solver401

explores a broader range of estimated values of control parameters. After these initial generations,402

the values of estimated parameters of individuals are converged.403

Fig. 6 also shows that 𝑢𝑚 induced by the target parameters matches 𝑢 due to the finally-404

reconstructed control parameters, obtained at the end of each GA set, at the sensor on the top405
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Fig. 4. E for the best-fit individual versus the GA iteration in Example 1. The vertical solid lines
at the 51st and 102nd GA iteration indicate the starting of a new GA level and the change in the
frequency of the excitational Ricker signal.

surface when a Ricker signal with its central frequency of 5 Hz, 10 Hz, or 20 Hz is employed in406

Case 3.407
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(a) (b)

(c) (d)

Fig. 5. The histograms of (a) 𝐿𝑠1, (b) 𝐿 𝑓 , (c) 𝐸𝑠1, and (d) 𝐸𝑠2 of the entire population of the
individuals at all the generations in Case 3.
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Fig. 6. Wave responses, 𝑢𝑚 and 𝑢, at the sensor on the top surface induced by a pulse signal of (a)
5 Hz, (b) 10 Hz, and (c) 20 Hz in Case 3.
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Example 2 - Investigating the inversion performance by decreasing the dominant frequency408

of excitation for each GA level409

This example studies the performance of reconstructing the control parameters by using the410

presented multi-level GA combined with a frequency-continuation scheme that decreases the dom-411

inant frequency of the dynamic pulse over the multiple GA levels. The first, second, and third-level412

GA use input force signals of central frequencies of 20 Hz, 10 Hz, and 5 Hz, respectively. Cases413

4-6, which use the models 1, 2, and 3, respectively, are examined. The upper and lower limits of es-414

timated control parameters for each GA level are set the same as those in Example 1. Table 2 shows415

the values of finally-reconstructed control parameters, and Fig. 7 shows that the average errors for416

the best-fit individual of all the Cases 4-6 become smaller over the generations and the GA levels.417

The final values of E in all the Cases 4 to 6 are smaller than 2% in Example 2. Thus, the authors418

suggest that the presented multi-level GA-based optimizer combined with a frequency-continuation419

scheme, which decreases the frequency for each GA level, is able to identify the values of the420

targeted control parameters as effectively as the increasing-frequency counterpart. However, this421

would be the case only in the presented example because the presented example contains a small422

number of control parameters. In a more complex case (e.g., 2D or 3D settings), where there are a423

large number of control parameters, the decreasing frequency-continuation scheme may not be as424

effective as its counterpart of increasing frequency.425
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TABLE 2. Example 2: Reconstructed values of the control parameters for each GA level obtained
by decreasing the frequency of the dynamic force for each GA level.

Cases GA 𝐿𝑠1 𝐿 𝑓 𝐸𝑠1 𝐸𝑠2 Average Error
level (m) (m) (Pa) (Pa) E

Case 4

Target 20 25 2×108 5×108

1st 21.4 27.3 2.29×108 5.55×108 10.43%
2nd 20.1 24.9 2.04×108 5.18×108 1.63%
3rd 20.2 25.7 2.02×108 5.04×108 1.40%

Individual error 1.00% 2.80% 1.00% 0.80%

Case 5

Target 40 45 2×108 5×108

1st 41.0 45.7 2.11×108 6.01×108 7.44%
2nd 40.6 46.3 2.05×108 5.09×108 2.17%
3rd 40.0 44.7 2.00×108 5.01×108 0.22%

Individual error 0.00% 0.67% 0.00% 0.20%

Case 6

Target 50 80 2×108 5×108

1st 57.5 82.3 2.63×108 4.51×108 14.79%
2nd 49.7 77.9 1.98×108 4.88×108 1.66%
3rd 49.7 79.9 1.99×108 5.18×108 1.21%

Individual error 0.60% 0.12% 0.50% 3.60%
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Fig. 7. E for the best-fit individual versus the GA iteration in Example 2. The solid lines at the
51st and 102nd GA iteration indicate the starting of a new GA level and the change in frequency.
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Example 3 - Utilization of a preliminary inversion using only solid layers for detecting the426

presence of a fluid layer, followed by a primary inversion using fluid-solid layers427

In this example, a preliminary inversion using only solid layers for identifying if a target model428

contains a fluid-filled cavity is presented. Here, three target models are used: one, which does not429

contain a fluid layer, and the other two, in which a fluid-filled cavity is included. For all models,430

the preliminary GA parameter-estimation method assumes that the target contains only solid layers.431

Once the preliminary inversion is completed, the authors continue a primary inversion using a432

fluid-solid model in a manner that is similar to what is described in Example 1. Such a two-step433

(preliminary to primary inversion) approach is applied to the following Cases 7-10.434

• Cases 7 and 8 consider a target Model 4, which does not include a fluid layer, and contains435

only three solid layers of 5 m length each. The targeted Young’s modulus of each layer is:436

𝐸𝑠1 = 2×108 Pa, 𝐸𝑠2 = 3×108 Pa, and 𝐸𝑠3 = 5×108 Pa, respectively. For Case 7, the targeted437

mass densities of all the layers are all same: 𝜌𝑠1 = 𝜌𝑠2 = 𝜌𝑠3 = 2000 kg/m3, whereas, for Case438

8, they are all different from each other: 𝜌𝑠1 = 1500 kg/m3, 𝜌𝑠2 = 2000 kg/m3, and 𝜌𝑠3 =439

2200 kg/m3.440

• Case 9 considers Model 5, which consists of three layers, i.e., two solids and one fluid. Model441

5 has a total length 𝐿𝑠2 of 15 m, and its fluid is located between 𝑥 of 𝐿𝑠1 = 5 m and 𝑥 of 𝐿 𝑓 =442

10 m. The Young’s moduli of the solid layers are 𝐸𝑠1 = 2×108 Pa and 𝐸𝑠2 = 5×108, and their443

mass densities are 𝜌𝑠1 = 𝜌𝑠2 = 2000 kg/m3, respectively. The bulk modulus (𝑘 𝑓 ) and mass444

density (𝜌 𝑓 ) of the fluid layer are 2.34 × 109 N/m2 and 1021 kg/m3, respectively.445

• Case 10 considers Model 6, which consists of a fluid layer surrounded by solid layers. The446

fluid layer is located between 𝑥 of 𝐿𝑠1 = 4 m and 𝑥 of 𝐿 𝑓 = 9.3 m, and its 𝐿𝑠2 is 15 m. The447

properties of the fluid layer (𝑘 𝑓 and 𝜌 𝑓 ) and the Young’s moduli of the solid layers (𝐸𝑠1 and448

𝐸𝑠2) are the same as those in Case 9 except that the mass densities of solid layers are 𝜌𝑠1 =449

1900 kg/m3 and 𝜌𝑠2 = 2100 kg/m3.450

Case 7 and 8 study the capability of the preliminary inversion to detect the absence of a fluid451
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layer by estimating 𝐸 and 𝜌 of all solid layers. Case 9 and 10, by using only solid layers during452

the preliminary inversion, investigate what values of final-converged 𝐸 and 𝜌 from the preliminary453

inversion indicate the presence of a fluid-filled cavity in the model.454

Preliminary inversion using all solid-layer model455

For all Cases 7-10, the preliminary inversion method utilizes only one frequency level of GA,456

where a Ricker pulse signal with a central frequency of 50 Hz is used as the dynamic force, and the457

number of generations and population size are 50 and 100, respectively. Moreover, the estimated458

values for Young’s moduli in all solid layers are bounded as 1×108 ≤ 𝐸 ≤ 50 × 108 Pa, and the459

estimated values of their 𝜌 bounded as 1000 ≤ 𝜌 ≤ 3000 kg/m3. Furthermore, the preliminary460

inversion assumes that the target contains three solid layers of 5 m length each.461

Fig. 8 shows the reduction of average errors for the best-fit individual for Cases 7 to 10 as the462

number of GA generations increases in the preliminary inversion. Table 3 shows the targeted and463

reconstructed control parameters from the preliminary inversion for Cases 7 to 10. For Cases 7464

and 8, the results show that the preliminary GA-based inversion algorithm can determine that all465

the layers in the target model are solid layers because the order of magnitude of estimated Young’s466

moduli are all 2 to 5×108 Pa in all the solid layers, and the order of magnitude of their estimated467

mass densities are all 1500 to 2200 kg/m3. The average error in Cases 7 and 8 is 3.82% and 4.82%,468

respectively. On the contrary, in Cases 9 and 10, the preliminary inversion led to the estimated469

values of 𝐸𝑠2 and 𝜌𝑠2 of the second solid layer such that it can be interpreted as a fluid layer. Namely,470

the estimated values of 𝐸𝑠2 as 22.95×108 Pa (Case 9) and 24.32×108 Pa (Case 10) are similar to the471

bulk modulus 23.4×108 Pa of water, and the estimated values of 𝜌𝑠2 as 1022 kg/m3 (Case 9) and472

1070 kg/m3 (Case 10) are similar to the mass density 1021 kg/m3 of water. The average errors in473

Cases 9 and 10 are 2.16% and 17.13%, respectively. Thus, after detecting the fluid layers in Case474

9 and 10, the authors continue the primary inversion in Cases 9 and 10 as follows.475

Primary inversion using a fluid-solid model476

After the preliminary inversion using the solid-only wave solver, the three frequency-level GA-477

based optimizer that uses a fluid-solid wave model estimates the fluid layer’s depth information and478

25 Guidio, Nam, and Jeong



TABLE 3. Example 3: Reconstructed values of the control parameters obtained by a preliminary
inversion. In Cases 9 and 10, the targeted 𝐸𝑠2* (23.4×108 Pa) adopts the bulk modulus of the fluid
layer.

Cases 𝐸𝑠1 𝐸𝑠2 𝐸𝑠3 𝜌𝑠1 𝜌𝑠2 𝜌𝑠3 Average
(Pa) (Pa) (Pa) (kg/m3) (kg/m3) (kg/m3) Error E

Case
7

Target 2×108 3×108 5×108 2000 2000 2000
Preliminary values 2.01×108 2.88×108 5.26×108 1943 2017 1810 3.82%

Individual error 0.50% 4.00% 5.20% 2.85% 0.85% 9.50%

Case
8

Target 2×108 3×108 5×108 1500 2000 2200
Preliminary values 2.10×108 3.08×108 4.93×108 1560 2092 2448 4.82%

Individual error 5.00% 2.67% 1.40% 4.00% 4.60% 11.27%

Case
9

Target 2×108 23.40×108* 5×108 2000 1021 2000
Preliminary values 2.01×108 22.95×108 5.07 ×108 2024 1022 1843 2.16%

Individual error 0.50% 1.92% 1.40% 1.20% 0.10% 7.85%

Case
10

Target 2×108 23.40×108* 5×108 1900 1021 2100
Preliminary values 2.52×108 24.32×108 6.53 ×108 1549 1070 1701 17.13%

Individual error 26.00% 3.93% 30.60% 18.47% 4.80% 19.00%

0 10 20 30 40 50 60
100

101

102

Fig. 8. E for the best-fit individual versus the GA iteration in Example 3 for the preliminary
inversion.
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the material properties (𝐸 and 𝜌) of the soil layers. Namely, the preliminary inversion results from479

Cases 9 and 10 are used for determining the bounds of guessed parameters in the first-frequency set480

of the primary GA inversion using the fluid-solid model. The increasing-frequency continuation481

approach is utilized with a dynamic pulse of its dominant frequency 5 Hz in the first frequency-level482

GA and, then, 10 and 20 Hz in the next frequency levels while the values of the estimated parameters483

are bounded in each frequency set in the following manner.484

• During the first frequency-level GA using the fluid-solid wave solver, the estimated 𝐿𝑠1 and485

𝐿 𝑓 values are bounded as 2 ≤ 𝐿𝑠1 ≤ 7 m and 8 ≤ 𝐿 𝑓 ≤ 13 m, the estimated values of 𝐸𝑠1486

and 𝐸𝑠2 are bounded as 1×108 ≤ 𝐸 ≤ 7.5×108 Pa, and the estimated values of 𝜌𝑠1 and 𝜌𝑠2487

(i.e., the mass densities of surrounding soil layers) are set as 1500 ≤ 𝜌 ≤ 2500 kg/m3.488

• In the second frequency-level GA, the values of estimated 𝐿𝑠1 and 𝐿 𝑓 are bounded using the489

same upper and lower limits as the first frequency-level GA. The values of estimated 𝐸𝑠1 and490

𝐸𝑠2 are bounded using ± 50% derivations of their final-reconstructed values obtained during491

the first frequency-level GA, while the values of estimated 𝜌𝑠1 and 𝜌𝑠2 are bounded using ±492

20% derivations.493

• Finally, in the last frequency-level GA, the estimated 𝐿𝑠1 and 𝐿 𝑓 values are bounded by using494

± 5% derivations of their final-reconstructed values obtained during the second frequency-495

level GA, while ± 10% derivations of the values of estimated 𝐸𝑠1 and 𝐸𝑠2 are employed to496

bound the limits of Young’s moduli, and ± 10% derivations of the final-reconstructed values497

of 𝜌𝑠1 and 𝜌𝑠2 are used as theirs bounds in the last frequency-level GA.498

Table 4 shows the values of finally-reconstructed control parameters in Cases 9 and 10. For499

Case 9, the value of Ē at the end of the last-level GA, 1.74%, is smaller than the error obtained in the500

preliminary result, 2.16%, shown in Table 3. The same can be noted in Case 10, where Ē at the end501

of the last-level GA, 2.79%, is much smaller than Ē from the preliminary inversion, 17.13%. Fig. 9502

shows the average error for the best-fit individual over GA iterations of the three-level primary GA503

inversion using fluid-solid models for both Cases 9 and 10. During the initial several iterations of504
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TABLE 4. Example 3 - the results of the primary inversion in Cases 9 and 10: Estimated values of
the control parameters in each GA level obtained by increasing the frequency of the dynamic force
for each GA level.

Cases GA 𝐿𝑠1 𝐿 𝑓 𝐸𝑠1 𝐸𝑠2 𝜌𝑠1 𝜌𝑠2 Average
level (m) (m) (Pa) (Pa) (kg/m3) (kg/m3) Error E

Case
9

Target 5 10 2×108 5×108 2000 2000
1st 5.1 10.0 2.01×108 5.41×108 1965 1843 3.38%
2nd 5.1 9.8 2.01×108 5.45×108 1969 1843 3.82%
3rd 5.1 10.1 1.99×108 5.12×108 2011 1920 1.74%

Individual error 2.00% 1.00% 0.50% 2.40% 0.55% 4.00%

Case
10

Target 4 9.3 2×108 5×108 1900 2100
1st 3.1 8.4.2 1.59×108 4.68×108 2403 2239 15.36%
2nd 4.1 9.3 2.02×108 5.42×108 1922 1981 3.12%
3rd 4.0 9.3 2.01×108 5.37×108 1922 1939 2.79%

Individual error 0.00% 0.00% 0.50% 7.40% 1.16% 7.67%

each frequency level, the algorithm focuses on exploring widely-varying values of the estimated505

control parameters within the given limits, and this behavior increases error. Later, the error of506

the algorithm is converged by finding better-fit individuals. Fig. 10 shows the histograms of the507

estimated control parameters of the entire population of the individuals during all the GA levels508

in Case 10 during the primary inversion. It demonstrates that, at the beginning of each frequency509

level, GA explores wide ranges of control parameters and eventually converges to the targeted510

parameters at the end of the last frequency set.511
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Fig. 9. E for the best-fit individual versus the GA iteration in Cases 9 and 10 during the primary
inversion. The vertical solid lines at the 51st and 102nd GA iterations indicate each onset of a new
frequency-level GA and the change in the frequency of the excitational Ricker signal.

Fig. 10. The histograms of (a) 𝐿𝑠1, (b) 𝐿 𝑓 , (c) 𝐸𝑠1, (d) 𝐸𝑠2, (e) 𝜌𝑠1, and (f) 𝜌𝑠2 of the entire
population of all the individuals at all the generations in Case 10 during the primary inversion.
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This Example 3 shows a proof of concept, potentially promising that (𝑖) fluid-filled cavities in a512

2D or 3D domain can be detected by using the all-solid-element-based preliminary inversion of 𝐸 ,513

𝐺, and 𝜌 and finding particular solid elements (of a high value of 𝐸 , a low value of 𝐺, and the value514

of 𝜌, being similar to 1021 kg/m3); then, (𝑖𝑖) a fluid-solid-element-based wave solver can be used515

to identify the geometry of a fluid-solid interface and 𝐸 , 𝐺, and 𝜌 of solid elements, surrounding516

fluid, in the 2D or 3D domain. The details of such 2D/3D extensions are shown below.517

DISCUSSION518

Limitations519

This paper employs a 1D model, which takes into account a horizontally-layered geological520

model and cannot consider a realistic three-dimensional random variation of material properties521

of geological formations. In this study, the authors did not employ field experimental validation522

because it is infeasible for the 1D wave model, which does not consider the geometrical damping523

and the vector wave behaviors in a 3D unbounded solid domain, to be validated through the field524

experiment.525

Recommendations526

This work can be extended into 2D and 3D settings in a manner such that one can identify the527

geometry of fluid-filled cavities and the material properties of surrounding soils by using an FWI528

algorithm (instead of GA). The GA is a useful method for identifying a small number of control529

parameters in a feasibility study. However, when the number of control parameters is large (for530

instance, in an inverse problem where the material properties 𝐸 , 𝐺, and 𝜌 of all the solid elements531

in a 2D or 3D setting are to be estimated), the GA is less viable than FWI, which is powered by the532

PDE-constrained optimization method.533

Under such a robust FWI, the following two-step approach (i.e., preliminary to primary inver-534

sion) can be employed to (𝑖) first, detect the existence of fluid-filled voids and (𝑖𝑖) then, accurately535

identify the geometry of a fluid-solid interface and the material proprieties of soils in 2D/3D536

settings.537
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• Preliminary inversion: One can approximately detect the existence of fluid-filled cavities in538

a 2D or 3D domain by using the all-solid-element-based inversion of 𝐸 , 𝐺, and 𝜌 of solids.539

In each iteration of this preliminary FWI, the guessed profiles in all the elements (i.e., 𝐸 , 𝐺,540

and 𝜌) are updated using a gradient vector. Then, it searches an area of interest that shows a541

high value of elasticity but a low value of shear modulus and a mass density that is similar to542

that of water. In turn, one can consider such an area as a fluid-filled cavity.543

• Primary inversion: After the preliminary FWI, one will turn to a wave solver using fluid ele-544

ments coupled with solid elements. Then, one will update the following control parameters—545

𝐸 , 𝐺, and 𝜌 of the solid elements surrounding the potential fluid-filled cavity (modeled as546

fluid elements) detected from the preliminary inversion, as well as the geometry parameters547

of the interface between fluid and solid elements. The initial guessed profile of the interface548

will be based on the result from the preliminary all-solid-element FWI. Fig. 11 depicts a pos-549

sible scenario of how one may approximate the initially-guessed geometry of the fluid-solid550

interface based on the result from the preliminary all-solid FWI.551

The proposed method described above can be used as both initial screening (i.e., a preliminary552

inversion using all solid elements) and in-depth cavity characterization (i.e., a primary inversion553

using both fluid and solid elements). Furthermore, engineers or geologists can somehow know the554

existence of water-filled underground cavities or internal soil erosion activities because of surface555

signs (e.g., depression or subsidence) or geological/hydrogeological phenomena (e.g., sinkhole556

raveling activities) in most of practical geoengineering application sites. Thus, they may have a557

combination of preliminary data from several different methods, including the proposed preliminary558

inversion, that will greatly benefit the proposed primary inversion using fluid and solid elements in559

most cases.560

CONCLUSIONS561

This work presents a new multi-level GA-based inversion method combined with a frequency-562

continuation scheme. Three levels of GA are used, and, in each level, a pulse signal with a563
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(a) (b)

(c) (d)

Fig. 11. An exemplary sketch of authors’ proposed method in 2D/3D settings: (a) an initial guess
of a preliminary inversion, using a structured mesh, (b) the final result of the preliminary inversion,
(c) an initial guess of a primary inversion, using an unstructured mesh, and (d) the final result of
the primary inversion.

different dominant frequency is utilized to tackle the solution multiplicity of the presented inverse564

problem. Numerical results show the following findings about the proposed inversion method.565

First, it is feasible to estimate the depths of solid-fluid interfaces and Young’s moduli of the566

surrounding solid layers by employing an acoustic-elastodynamic wave model and a measured567

dynamic response at a sensor on the top surface. Second, combining the multi-level GA-based568

optimizer with a frequency-continuation scheme improves the performance of identifying targeted569

control parameters. Third, the frequency-continuation scheme where the frequency is progressively570

decreased for each GA level is as effective as the conventional frequency-continuation scheme (i.e.,571

increasing the frequency for each level) in the presented 1D setting. Lastly, a preliminary inversion572

using a solid-only model can address the uncertain presence of a fluid layer in a domain by573

uncovering that one of the layers has a very large value of Young’s modulus (with a similar value574

to that of the bulk modulus of water) and a mass density being similar to that of water. After the575

preliminary inversion, a primary inversion—based on multiple frequency-level GA using a fluid-576

solid model—can adjust the fluid layer’s depth information and the material properties of the soil577
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layers. The authors also discussed how to extend the presented method in realistic 2D/3D settings.578

Such an extension may effectively detect water-filled underground cavities and also estimate the579

risk of potential urban cave-in and Karst sinkholes. Please also note that, in typical engineering580

projects, engineers do not rely on a single geophysical method no matter how advanced its theories581

or computation capacities are. Thus, the presented method and its extension can be an important582

supplement to existing testing methods rather than a stand-alone solution in practice.583
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