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ABSTRACT

This work studies the feasibility of imaging a coupled fluid-solid system by using the elas-
todynamic and acoustic waves initiated from the top surface of a computational domain. A
one-dimensional system, where a fluid layer is surrounded by two solid layers, is considered. The
bottom solid layer is truncated by using a wave-absorbing boundary condition (WABC). The wave
responses are measured on a sensor located on the top surface, and the measured signal contains
information about the underlying physical system. By using the measured wave responses, the
elastic moduli of the solid layers and the depths of the interfaces between the solid and fluid layers
are identified. To this end, a multi-level Genetic Algorithm (GA) combined with a frequency-
continuation scheme to invert for the values of sought-for parameters is employed. The numerical
results show the following findings. First, the depths of solid-fluid interfaces and elastic moduli can

be reconstructed by the presented method. Second, the frequency-continuation scheme improves
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the convergence of the estimated values of parameters toward their targeted values. Lastly, a pre-
liminary inversion, using an all-solid model, can be employed to identify if a fluid layer is presented
in the model by showing one layer with a very large value of Young’s modulus (with a similar value
to that of the bulk modulus of water) and the value of mass density being similar to that of water.
Then, the primary GA inversion method, based on a fluid-solid model, can be utilized to adjust
the soil characteristics and fine-tune the locations of the fluid layer. If this work is extended to a
3D setting, it can be instrumental to finding unknown locations of fluid-filled voids in geological
formations that can lead to ground instability and/or collapse (e.g., natural/anthropogenic sinkhole,

urban cave-in subsidence, etc.).

INTRODUCTION

Detecting underground cavities (e.g., karstic cavities, caves, tunnels, etc.) is a challenging
task for geotechnical engineering projects due to the geological/hydrogeological complexity of the
subsurface environment. Geological hazards, such as collapsing soil or urban ground collapse due to
subsurface voids, could induce significant damage to infrastructures. Such hazard is one of the major
issues for land planning, infrastructure operation and maintenance, and disaster management. In
addition, cavity evolution that occurs due to hydrogeological process may cause sinkhole collapse.
For example, Florida’s karst environment involves active groundwater recharge to the Floridan
Aquifer that makes overburden soils to be eroded; thus, as shown in Fig. 1, a cavity could gradually
grow, leading to a sudden collapse (cover-collapse type) or gradual subsidence (cover-subsidence
type) (Beck 1986; Tihansky 1999; Xiao et al. 2016; Kim et al. 2020; Nam et al. 2020). These large
underground water-filled cavities hidden below building and transportation infrastructures should
be pre-detected so that prevention and mitigation measures are applied before catastrophic collapse
or excessive ground settlement takes place.

Cone penetration test (CPT) and standard penetration test (SPT) have been employed for detect-
ing and characterizing subsurface cavities in a cover soil layer, referred to as a raveled zone in the
karst areas (Nam et al. 2018; Nam and Shamet 2020). Although SPT and CPT provide a continu-

ous subsurface profile—revealing soil type, resistance, and stratigraphy—, these invasive methods
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Fig. 1. Schematic diagram of a water-filled subsurface cavity (common in Florida’s karst environ-
ment): (a) cavity in either cover soils layer and (b) cavity within near surface of limestone bedrock.

only collect point-wise profiles of the subsurface environment. As such, it is time-consuming and
labor-intensive to apply CPT and SPT to wide areas multiple times.

Numerous geophysical studies over the past decades have introduced nondestructive evaluation
(NDE) methods for detecting and estimating the geometry of subsurface cavities. For example,
ground-penetrating radar (GPR), micro-gravimetry, and resistivity imaging and their combinations
can characterize an underground cavity based on its size and depth position (Fehdi et al. 2014;
Kiflu et al. 2016). Namely, GPR is inefficient in highly heterogeneous media—such as backfills,
moist clays with high soil conductivity, and saturated soils below the groundwater table. Micro-
gravimetric method is effective in detecting shallow cavities (Butler 1984; Bishop et al. 1997), but
its density contrast cannot be obtained clearly if the size of a void is relatively small compared to its
depth. An electrical resistivity method has been applied to detect air-filled or water-filled cavities
(Van Schoor 2002; Coskun 2012), but it requires a large areal space for surveying and cannot detect
small-scale irregularities in the geologic interfaces since it measures averaged resistivity values and
is easily ruined by noise sources, such as piping, power lines, and house structures.

On the other hand, elastodynamic imaging has been widely used in site characterization (Brown
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et al. 2002; Kallivokas et al. 2013). It hinges on elastodynamic waves that are initiated by
wave sources on the ground surface and/or borehole sources, and, then, are reflected/refracted
due to material heterogeneity within a medium. The resulting wave motions can be measured
on the ground surface or at borehole seismic arrays. The inverse modeling, associated with
elastic wave propagation analyses, provides promising results of identifying the material properties
of the media. Inverse modeling—employing a partial differential equation (PDE)-constrained
optimization method and the finite or spectral element method (FEM or SEM)—has been utilized
to infer the spatial distribution of material properties of host media in fine resolution (Kang and
Kallivokas 2011; Fathi et al. 2015a). Specifically, for instance, the geotechnical site characterization
methodologies have been investigated in a soil domain that is truncated by Perfectly-Matched-Layers
(PML), where waves decay and are not reflected off surrounding boundaries (Fathi et al. 2015b),
by using state-adjoint-control equation-based full-waveform inversion (FWI) approaches (Kang
and Kallivokas 2010; Kang and Kallivokas 2011; Kallivokas et al. 2013; Fathi et al. 2015a; Fathi
et al. 2016; Kucukcoban et al. 2019). In particular, the authors bring attention to the progressive
development of the material inversion method for the site characterization from a simplified one-
dimensional (1D) setting to a full 3D one followed by field experimental validation as shown in the
following. Kang and Kallivokas (2010) investigated a new material inversion method for identifying
the vertical distribution of the shear wave speed within a PML-truncated 1D soil column with a
hypothesis of horizontal layering without considering geometrical damping. Kang and Kallivokas
(2011) further developed their material inversion method for estimating the spatial distribution
of the shear wave speed in a 2D scalar wave setting in a fine resolution without considering the
realistic behaviors of elastic waves (i.e., vector waves). Kallivokas et al. (2013) have continued the
investigation of the new material-inversion method to estimate the spatial distributions of both P and
S-wave speeds within a 2D linear, elastic, undamped PML-truncated solid setting in consideration
of vector wave behaviors. They used an assumption that the material properties of the soils are
uniform in the anti-plane direction of the considered 2D plane. Their paper also presented the

validation of their numerical method by using field experimental data that used a line loading-like
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application of wave sources, which replicates the 2D plane-strain setting of the computational
study. Next, Fathi et al. (2015a) developed the material inversion method for inverting the spatial
distribution of both P and S-wave speeds in a 3D linear, elastic, undamped PML-truncated solid.
Lastly, Fathi et al. (2016) validated the result of their inverse modeling in the previous work (Fathi
et al. 2015a) by using field experimental data in the 3D setting. In the experiment, a point wave
source was employed on the ground surface, and its corresponding wave responses were measured
on the surface and used as measurement data in the inverse simulations. They compared the inverted
spatial distribution of the wave speeds with its reference solution from a conventional method, such
as spectral analysis of surface waves (SASW). In addition to the aforementioned development, the
Gauss-Newton-based FWI method, which is based on a gradient vector and a Hessian matrix, had
been studied for characterizing the material profiles in a truncated two-dimensional solid domain
(Tran and McVay 2012; Pakravan et al. 2016) for the application of the site characterization. The
PDE-constrained optimization has also been used in consideration of the boundary element method
(BEM), of which computational efficiency is much greater than the FEM due to the reduction of the
dimensionality, to detect the geometries of wave-scattering objects in host media. Namely, there
have been studies on inverse scattering algorithms using BEM wave solvers, hinging on the moving
boundary concept and the total derivative (Petryk and Mroz 1986) that allows for computing the
derivative of an objective functional with respect to the geometry variables of scattering objects
(Guzina et al. 2003; Jeong et al. 2009). The extended finite element method (XFEM) has been
used as a wave solver of the studies to identify cracks or air-filled voids in solid media because
it allows for avoiding expensive remeshing process in inverse iterations while using the flexibility
of the FEM for heterogeneous materials (Jung et al. 2013). In addition, a frequency-continuation
scheme was devised to help the inversion solver tackle the multiplicity of solutions of subsurface
imaging problems (Bunks et al. 1995; Kang and Kallivokas 2010; Fathi et al. 2015a). That is, when
the convergence rate of the inversion solver is decreased due to a local minimum of an objective
functional that is comprised of measurement data corresponding to a given dominant frequency of

excitation, another set of measurement data that is induced by excitation of a different dominant
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frequency is employed. Such a frequency shift can change the curvature of the objective functional
so that a minimizer can escape a local minimum. In general, one may consider increasing frequency
from one inversion set to another because it has been reported that using a lower frequency leads
to the inversion result of a lower resolution (due to a larger wavelength), then, one can fine-tune it
using a higher frequency (due to a smaller wavelength) (Bunks et al. 1995; Kang and Kallivokas
2010; Fathi et al. 2015a).

Despite such recent developments in elastodynamic wave imaging techniques, few papers have
demonstrated the feasibility of identifying the properties of a solid system that includes fluid-filled
voids. There have been a finite difference method (FDM)-based FWI approaches, which employed
all solid elements in an entire computational domain and detect the areas with smaller values of
shear wave speeds V; (e.g., around 100 m/s) than those of typical soils and rocks to indicate air-filled
voids (Tran and McVay 2012; Tran et al. 2013; Mirzanejad et al. 2020). However, those works have
not explicitly modeled the interfaces between air voids and the solid domain. Thus, the authors
(henceforth, we) are concerned that, first, modeling a fluid domain as solid elements with a small
value of V; could introduce numerical error in forward wave solutions. Second, using a small value
of Vi requires a small size of a solid element for wave simulations. However, the aforementioned
FDM works did not use such a small-sized element to model a void so that it could suffer from the
additional error of wave solutions. To address this issue, the authors suggest to explicitly use fluid
elements to model voids filled with water (or air) so that accurate fluid-solid coupling (Everstine
1997; Lloyd et al. 2016) should be incorporated into the wave solver. Then, by using such a wave
solver, inverse modeling could accurately identify the interfaces between fluid and solids as well as
the material profiles of solids. As a prototype work of the suggested method, this paper investigates
the feasibility to estimate the interfaces between fluid and solid layers and the material properties
of solid layers in a multi-layered system by using acoustic and elastodynamic waves generated from
the ground surface. Such investigation will prove the feasibility of detecting a water-filled void and
identifying its location and geometry in soils, to which overlaying ground surface could potentially

sink.
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This work uses the FEM to study the wave responses of the coupled fluid-solid media in a
prototype one-dimensional setting. The solid formation of a semi-infinite extent is truncated by
using an absorbing boundary, and a proper fluid-solid interface condition is considered. The inverse
problem is cast into a minimization problem, where the value of an error between the synthetic
measured wave response due to target profiles and the computed counterpart due to guessed
profiles is minimized. The solution multiplicity of the minimization process is addressed by using
the multi-level Genetic Algorithm (GA) in this work. Under this new scheme, the authors suggest
the following steps: (i) The optimizer identifies an inversion solution around a local minimum after
a number of GA iterations in the first-level GA; (if) Then, a misfit function can be re-calculated
for a different measurement signal induced by a pulse signal of a different central frequency in
the next-level GA; (ii7) By doing so, the GA optimizer is able to escape the local minimum of
the previous-level GA; (iv) The same technique is employed to address the solution multiplicity of
the next-level GA. The numerical results show that the numerical simulations, using the multiple-
frequency-level GA, accurately detect the interfaces between fluid and solid layers and the material
properties of solid layers. The authors also demonstrate that a preliminary GA inversion can tell
whether the subsurface media include a fluid layer or not. Namely, the preliminary inversion can
indicate the existence of a fluid layer by detecting a very large value of Young’s modulus (with a
similar value to that of the bulk modulus of water) and a mass density with a similar value to that of
water. Once the existence of a fluid layer is detected, a primary GA inversion, using the fluid-solid
model, can further estimate the locations of a fluid layer and the material properties of surrounding

solids.

PROBLEM DEFINITION

This study aims to identify the depths of the interfaces between a fluid layer and its surrounding solid
layers and the stiffness of the solid layers by using a dynamic test, which generates elastodynamic
waves into the subsurface media from the top surface. A 1D fluid-solid model, which consists

of three different layers, i.e., two solid layers and one fluid layer (see Fig. 2), is considered. The
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governing differential equations for the compressional waves in the three layers are given by:

0 ou 0%u

a_x (Esla_;l) Ps1 (91‘2“ 5 0<x< Ly,
’P 1 9P Lol
or _ , <x<L
o 2 2 912 s1 !

0 oug 0ug

o R R

)

2)

3)

where L1, Ly, and Ly, denote, respectively, the depth of the interface between the top solid layer

and the fluid layer, that between the fluid and the bottom solid layer, and the depth of the truncation

wave absorbing boundary. Also, uy;(x,t) and uy;(x,t) denote the displacement fields of the wave

motions of solid particles in the top and bottom solid layers. P denotes the fluid pressure field of the

wave motions in the fluid. The wave speeds of the three layers are given by ¢y =

Kf
Pr’

and cs = /%, respectively, where E, p, and « are the modulus of elasticity, the densny, and the
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bulk modulus. The problem of interest also includes the following boundary conditions:

ou
Eqi a“ =—f(n), x=0, )
X
ausZ -1 8”x2
=— =Ly,
Ox co Ot o 2 )

A pulse signal f(t) is applied at the top of the solid layer at x = O (per (4)). The depth of the bottom
solid layer is truncated by using the absorbing boundary condition (per (5)).

The solid and fluid layers are coupled via the following interface conditions:

o ‘9;‘;1 = -P, x =Ly, ©6)

‘;—f=—pf‘9;;‘;1, x =Ly, )

Eo 85‘;2 - _p, x=Ly, (8)
2

g—f :—pf%, x=Ly. 9

The above interface conditions are originated from the dynamic interface condition between a
solid and fluid in a multi-dimensional setting, presented by Everstine (1997), which is composed
of the followings. First, “the effect of fluid pressure on the structure is imposed as a load". This

corresponds to (6) and (8). Second, “the effect of structural motion on the fluid" should be modeled

2
asVP-n=-py 66[';“ -n, where n is the normal vector at the interface. This corresponds to (7) and

).

The system is initially at rest:

Ug1 =ugp=P=0, t=0, (10)
31/!31 ausz oP

= = — = = 0. 11

ot ot ot 0 r=0 (i

FINITE ELEMENT MODELING TO COMPUTE THE WAVE RESPONSES.

To derive the weak form, the governing wave equations in the strong form (1)-(3) are multiplied by
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the test functions v (x), w(x), and v, (x). By integrating them by parts and using the boundary and

interface conditions of the strong form, the following weak forms are obtained:

le 2 )
[ BB 2t s g 2 k= v ) - (L P (1)
0 |
L1 owor 9%P] 8%u
/L [ S R Tl R [W(L“) o (L) - (13
sl |
L2 0vo dug d%uy | P52
Ep 2252 4 povy 2 dx = va(L/)P(Ly) — Esp | 225 (L, L, 14
/Lf [ 2% ax P25 _ x =va(Ly)P(Ly) N E, va( 2) ( 2). (14)

Then, the functions are approximated as:

vi(x) =V g(x),  us(x,1) = ¢(x) ug (1), (15)
wx) =w ¥(x), P(x,1)=Yx) P, (16)
v2(x) = VaQ(x), upn(x,t) = Q) un(h), (17)

where ¢(x), W(x), and (x) denote vectors of global basis functions constructed by local shape
functions, and uy, P, and uy, are the vectors of nodal solutions. Introducing the finite element

approximations (15)-(17) into the weak forms (12)-(14) provides the following discrete form:

azusl
Kslusl +Ms1 (9t2 :f_LIP(le)’ (18)
62P 02uy, 0*ug
KfP+Mfﬁ =L2prf o7 —L3prf o2 , (19)
Ks2us2 + Ms2 psZESZ (20)
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s1

Lo 90Q(x) 0Q(x)T
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1
0
Ls = Q(Lp)Q" (Ly) =
0
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L
M,, = /0 P d()Px)T,

Ly
M= [ v
sl

Ly
. My = / p2Q(0)Qx) dx.

Ly
0 0
. Lo=Y(Ly)¢  (Ly) =

, La=Q(Lp)¥'(Ly) =

21

(22)

(23)

(24)

(25)

(26)

and the force vectoris f = ¢(0) f(¢). The discrete equations (18)-(20) lead to the following coupled

discrete form:

Kg L 0 Uy
0 K, 0 || P

0 —L4 Ksz |1 %)

K

+

00 0 a1
00 0 o
0 0 Eo 82Ls || &2
C
My 0 0 T
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0 0 M, || 2w
M

’
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which, at a discrete time #,,, can be written as:
Mgq, + Cq, + Kq, = F,, (28)

where q, = [ufl, P7, ufZ]T is the vector containing the nodal solutions of solid displacements and
acoustic pressures at the n-th time step, and q, and q,, denote the first and second-order derivatives
of q,, with respect to time. The second-order ordinary differential equation (28) is solved by using

the Newmark’s unconditionally-stable time integration scheme (Newmark 1959).

INVERSE MODELING

This study aims to identify the four control parameters (E;1, E, Ly1, and L¢) by using measured
wave responses initiated by a known excitation signal f(¢). Here, the values of the other variables
(Ls2, ps1> ps2, Ky, and pyr) are set to be known during the inversion process, and the excitation
signal f(t) is also known. This problem is formulated into a minimization problem to identify

estimated control parameters that could lead to the minimum of an objective functional:

T
= u —Uu 2 .
£= [ (0.0 = u0.0)% 29)

In (29), un (0, ¢) denotes a wave signal recorded by the sensor at x = 0 due to a target profile of the
control parameters, and u (0, t) denote computed counterpart at the same measurement location due
to a guessed profile. In this computational study, up, (0, ¢) is synthetically obtained by running the
presented FEM solver using a target profile as an input. To prevent an inverse crime from taking
place, smaller values of element sizes are used when u, (0, 7) is computed than when u (0, 7) is
computed.

This work uses GA, which is a heuristic algorithm to reconstruct the control parameters that are
the fittest to the objective of the problem. In each generation of GA, there are individuals, each of
which has a set of different values of control parameters. In this work, GA runs the FEM wave solver,
for the estimated values of control parameters of each individual, to compute u(0, ) and evaluate

the misfit (29). Then, GA evaluates the fitness of each individual by using the value of its misfit.
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Then, GA weeds out less-fitting individuals when it creates the next generation of individuals,
each of which is characterized by its own set of estimated parameters. In this process, by virtue
of the mutation process, where GA learns the better-fitting characteristics of control parameters,
GA gives rise to new individuals in the next generation. The GA calculates the sensitivity of the
fitness function with respect to the changes of the values of the control parameters and determines
how the next generation of individuals is created. Namely, GA repeats the tasks of weeding out,
selecting the best individual, and mutating at each generation. Therefore, the suggested inverse
modeling solver could identify targeted values of the parameters by using the iterative process of
GA, where the values of the estimated parameters of the best-fit individual evolve over the progress
of generations.

In the overall GA process under this problem, constraints are imposed on the allowable ranges
of each control parameter. For instance, L;; (the depth of the upper face of a fluid layer) is set to
be always smaller than L ¢ (the depth of the lower face) such that the thickness of the fluid layer is
always positive. In addition, the values of elastic moduli E; and Ey, are set to be always positive.

It is known that, in the minimization problem of a small number (e.g., less than 20) of control
parameters, GA is likely to find a set of control parameters that are close to the global minimum
(Jeong et al. 2017; Guidio and Jeong 2021). Since there are only four control parameters, the
authors originally hypothesized that the GA is a suitable solution approach to finding the global
minimum solution of this inverse problem. However, the numerical experiments show that the GA
suffers from the solution multiplicity, and, thus, the authors test a new multiple frequency-level
GA approach. Namely, after the first level of GA is finished, the presented inversion solver uses
the reconstructed values from the first level to define the upper and lower limits of the control
parameters in the next GA level, which uses a pulse signal of a different central frequency from its
predecessor, creating a new synthetic u,,. In the final-level GA, the final best-fit estimated control

parameters are obtained as the inversion solution.

NUMERICAL EXPERIMENTS

This section shows a set of numerical experiments, studying the performance of the presented
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multi-level GA-based parameter-estimation method. In the first two examples, three targeted fluid-
solid models, which differ from each other in terms of Ly, Ly, and Ly, are considered as follows.
Model 1 has a total length Ly, of 60 m and its fluid is located between x of Ls; = 20 m and x of L
=25 m. The corresponding geometry information of Model 2 are L of 60 m, Ly of 40 m, and
Ly of 45 m, and those of Model 3 are Ly of 120 m, Lg; of 50 m, and Ly of 80 m. Ly and Ly are
unknown parameters in the inversion. In all the models, the mass density (p) of the solid layers is
2000 kg/m3; their Young’s moduli are E = 2x108 Pa and E» = 5x108 Pa; and the bulk modulus
(k r) and mass density (py) of the fluid layer are 2.34 X 10° N/m? and 1021 kg/m3 , respectively.
While E; and Ej; are set to be unknown, p, k¢, and p s are set to be known in the inversion.

In the presented numerical experiments, a three-level GA-based inversion method is used with a
frequency-continuation scheme. Namely, in each GA set, a dynamic force with a different frequency

content is used as follows.

* The upper and lower bounds of each control parameter are set for the first-level GA, and its

last-generation leads to the best-fit individual.

* Then, in the second and third-level GA, the upper and lower limits of the four control
parameters are updated with respect to the final-reconstructed values of the parameters
obtained in the previous-level GA. Namely, in the second-level GA, the values of the estimated
Lgy and Ly are bounded using the same upper and lower limits as the first GA level, while
the values of the estimated E; and Ej, are bounded by using + 50% derivations of their

final-reconstructed values obtained during the first GA level.

* In the third GA level, the values of estimated L;; and L, are bounded by using + 5%
derivations of their reconstructed values from the second GA level, while + 10% derivations
of the values of estimated E| and E, that are reconstructed from second-level GA level are

used as their bounds in the last GA level.

* The number of generations (GN) and population size (PS) are both 50 in all three GA levels.
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The computational procedure of the presented multi-level GA-based inversion method is sum-

marized in Algorithm 1.

Algorithm 1 Multi-level GA-based parameter-estimation algorithm

1: Set GN and PS = 50.

2: Set values for known parameters (Ly2, ps1, 52, K7, and py).

3: for the first-level GA do

4: Set the central frequency of an excitation signal f(¢).

5: Set the upper and lower limits for each control parameter.

6: Run the first GA level.

7: return the reconstructed value of each control parameter.

8: end for

9: for the second-level GA do
10: Set the central frequency of an excitation signal f(z).
11: Set the upper and lower limits of Ls; and L as the same as the first GA level.
12: Set upper and lower limits of E; and E, by using + 50% derivations of their reconstructed values obtained

from the first GA level.
13: Run the second GA level.

14: return the reconstructed value of each control parameter.

15: end for

16: for the third-level GA do

17: Set the central frequency of an excitation signal f(z).

18: Set the upper and lower limits of Ly and L by using + 5% derivations of their reconstructed values obtained
from the second GA level.

19: Set the upper and lower limits of E; and E; by using + 10% derivations of their reconstructed values obtained

from the second GA level.
20: Run the third GA level.
21: return the reconstructed value of each control parameter.
22: end for

In order to avoid an inverse crime, to compute u,, induced by targeted control parameters, the
fluid-solid domain is discretized by using an element size of 0.1 m, while an element size of 0.2 m
is used for computing u due to estimated control parameters. In the forward and inverse modeling,
the time step is 0.001 s, and the total observation duration 7 is set as 1 s.

In the following, three examples of numerical experiments are presented. The first one tests the
inversion performance of the three-level GA approach by using a dynamic force of a Ricker pulse
signal with its central frequency of 5, 10, and 15 Hz, respectively, in each level. In the second
example, the inversion performance is examined by using a decreasing frequency-continuation
counterpart of 15, 10, and 5 Hz. The last example investigates the utilization of preliminary
inversion using all-solid layers for detecting the presence of a fluid-filled cavity by identifying E

and p of all the solid layers, among which one layer shows a very large value of E (with a value
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being similar to that of the bulk modulus of water) and p of the value of the mass density of
water. Once the preliminary inversion is completed, the optimizer uses the presented three-level
GA approach based on the fluid-solid wave model as a primary inversion.

To analyze the inversion results, the error between each target control parameter (Lyy, Ly, Eg1,

and E,) and its estimated counterpart of the fittest individual at each generation is calculated as:

5= |A targeted value — An estimated value]| % 100 [%] 0
B |A targeted value| o].

An averaged error of all the control parameters of the best-fit individual at each generation is also

calculated as:
Zi:l S

&= n

[%]. (3D

where &y is the error (30) of the reconstruction of the k-th control parameter.

Exemplary forward wave responses

Prior to the study of the inversion performance, an exemplary forward wave response in the
computational domain induced by a pulse loading at the top surface is shown by considering the
fluid-solid model 3 with Lg; = 50 m, Ly = 80 m, Ly = 120 m, Ey; = 2x108 N/m?, and E;, =
5x108 N/m?. The time-dependent value of the dynamic force applied at the top surface is a Ricker
wavelet with its central frequency of 20 Hz and its peak amplitude of 1000 N/m?.

The wave responses over space and time are shown in Fig. 3. In this seismogram, the stress field
in the solid layers and the acoustic pressure in the fluid layer are shown. The seismogram shows
the following behaviors. (i) The elastic wave propagates throughout the first solid layer from the
top surface and is transmitted via the first solid-fluid interface at x = 50 m to the fluid layer (please
see the wave response around x = 50 m and = 0.2 s). While the wave enters into the fluid layer, it
reflects off the interface back to the solid layer at the same time. (i7) The acoustic pressure wave in
the fluid layer is transmitted into the second solid layer through the second solid-fluid interface at
x = 80 m and reflects off the interface back to the fluid layer (please see the wave response around

x =80 m and r = 0.2 s). (iii) The stress wave in the second solid layer is transmitted through the
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Fig. 3. The seismogram of the stress field [N/mz] in the solid layers (0 < x < 50 and 80 < x)
and the acoustic pressure [N/m?] in the fluid layer (50 < x < 80) induced by a dynamic loading at
the top surface (x = 0). The solid lines at x = 50 and 80 m indicate the fluid-solid interfaces. The
arrows indicate the waves that are reflected from the interfaces and propagating backward. The
acoustic waves that are reflected from the second interface are more visible in the time of 0.55 s
than in 0.25 s in this plot.

absorbing boundary at x = 120 m without any reflection (please see the wave response around x =
120 m and t = 0.3 s). The system repeats (7) to (ii7) until the amplitude of the wave fades away.

In the presented inverse modeling, the sensor on the top surface records the response signal in
the time domain. The amplitudes and timings of the recorded signal may provide the inversion
solver with information about the material properties of solid layers and the locations of fluid-solid
interfaces. In other words, the timings of particular parts of the signal could indicate, primarily,
the locations (Ly; and L) of the fluid-solid interfaces, while the amplitudes of particular parts of

the signal could indicate, primarily, the material properties (E5; and E») in the solid layers.

Example 1 - Investigating the inversion performance by increasing the dominant frequency
of excitation for each GA level

In this example, the performance of the presented multi-level GA is studied for identifying
targeted control parameters by increasing the frequency of an excitational Ricker signal for each

GA level. That is, a dynamic pulse of its dominant frequency 5 Hz is used in the first-level GA, and,
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then, 10 and 20 Hz are used in the next levels. The control parameters to be identified are Ly, Ly,

E;1, and E,. Cases 1-3, which use the fluid-solid models 1, 2, and 3, respectively, are considered.

* In Case 1, the targeted values of L,y and Ly are 20 and 25 m, respectively, while the values
of their estimated counterparts, during the first-level GA level, are bounded as 10 < Ly <
22 mand 23 < Ly < 35 m. Please note that their upper and lower limits are changed for the

second and third GA levels as previously discussed.

* In Case 2, the targeted values of Ly and Ly are set to be 40 and 45 m, respectively, while the
values of their estimated counterparts, during the first GA level, are bounded as 30 < Ly <

42mand43 < Ly <55m.

¢ In Case 3, the estimated values of Ly and Ly bounded as 40 < Ly; <65 mand 66 < Ly <

90 m in the first-level GA, and their targeted counterparts are 50 and 80 m, respectively.

For all cases, the targeted values of Young’s moduli are set to be E;; = 2x108 Paand E» = 5x108
Pa, while their estimated values for both moduli during the first GA level are bounded as 1x 108 Pa
< E < 7.5x108 Pa. Their upper and lower limits are changed for the second and third GA levels as
previously discussed.

Table 1 presents the reconstructed control parameters of the fittest individual that is obtained
at the last generation of each GA level per each case. The table also includes the average error &,
(31), of all the parameters reconstructed at the end of each GA level and the error &, (30), of each
control parameter of the fittest individual at the end of the last-level GA. In all Cases 1 to 3, the
value of & at the end of the last-level GA is smaller than that at the end of the first-level GA, and
the final values of & in all the cases 1 to 3 are smaller than 1%.

Fig. 4 shows that the average error for the best-fit individual at each generation tends to be
decreased during the presented inversion process. The authors note that, after about 20 GA
iterations in the first-level GA, the value of & is converged but still shows room for improvement
(i.e., the optimizer finds an inversion solution around a local minimum). To address such solution

multiplicity in the first-level GA, a misfit function is used for u,, induced by a pulse signal of a
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TABLE 1. Example 1: Reconstructed values of the control parameters for each GA level obtained
by increasing the frequency of the dynamic force for each GA level. The last row of each case
represents the error at the third-level GA.

Cases GA L Ly Eg Ey Averag_e Error
level (m) (m) (Pa) (Pa) E
Target 20 25 2x108 5%108
Ist 204 249 2.13x10® 5.66x108 5.53%
Case 1 2nd 19.8 243 1.97x10® 4.94x108 1.63%
3rd 20.0 24.8 2.00x10® 5.08x108 0.60%
Individual error 0.00% 0.80% 0.00% 1.60%
Target 40 45 2x108 5%108
Case 2 Ist 417 462 220x10® 5.86x10% 8.53%
2nd 40.6 460 2.06x10% 5.16x108 2.48%
3rd 39.9 447 1.98x10%® 4.97x108 0.63%
Individual error 0.25% 0.67% 1.00% 0.60%
Target 50 80 2x108 5%108
. Ist 53.1  90.0 2.28x10%® 5.49x10% 10.63%
2nd 489 792 1.91x10® 5.33x108 3.58%
3rd 499 799 1.98x10%® 5.06x108 0.63%

Individual error 0.20% 0.12% 1.00% 1.20%

new central frequency in the next-level GA. By doing so, the optimizer in the second-level GA can
escape the local minimum of the first-level GA. By applying the same technique in the third-level
GA, the solution multiplicity of the second-level GA can be resolved. Therefore, the authors
suggest that it is feasible to reconstruct control parameters effectively by using a multi-level GA
process combined with a frequency-continuation scheme, by which the frequency is progressively
increased for each GA level.

Fig. 5 presents the detail of the inversion performance of Case 3. Namely, Fig. 5 shows the
histograms of the estimated control parameters of the entire population of the individuals during all
the GA levels in Case 3. During the initial few generations of each GA level, the inversion solver
explores a broader range of estimated values of control parameters. After these initial generations,
the values of estimated parameters of individuals are converged.

Fig. 6 also shows that u,, induced by the target parameters matches u due to the finally-

reconstructed control parameters, obtained at the end of each GA set, at the sensor on the top
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Fig. 6. Wave responses, u,, and u, at the sensor on the top surface induced by a pulse signal of (a)
5 Hz, (b) 10 Hz, and (c) 20 Hz in Case 3.
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Example 2 - Investigating the inversion performance by decreasing the dominant frequency
of excitation for each GA level

This example studies the performance of reconstructing the control parameters by using the
presented multi-level GA combined with a frequency-continuation scheme that decreases the dom-
inant frequency of the dynamic pulse over the multiple GA levels. The first, second, and third-level
GA use input force signals of central frequencies of 20 Hz, 10 Hz, and 5 Hz, respectively. Cases
4-6, which use the models 1, 2, and 3, respectively, are examined. The upper and lower limits of es-
timated control parameters for each GA level are set the same as those in Example 1. Table 2 shows
the values of finally-reconstructed control parameters, and Fig. 7 shows that the average errors for
the best-fit individual of all the Cases 4-6 become smaller over the generations and the GA levels.
The final values of & in all the Cases 4 to 6 are smaller than 2% in Example 2. Thus, the authors
suggest that the presented multi-level GA-based optimizer combined with a frequency-continuation
scheme, which decreases the frequency for each GA level, is able to identify the values of the
targeted control parameters as effectively as the increasing-frequency counterpart. However, this
would be the case only in the presented example because the presented example contains a small
number of control parameters. In a more complex case (e.g., 2D or 3D settings), where there are a
large number of control parameters, the decreasing frequency-continuation scheme may not be as

effective as its counterpart of increasing frequency.
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TABLE 2. Example 2: Reconstructed values of the control parameters for each GA level obtained
by decreasing the frequency of the dynamic force for each GA level.

Cases GA L Ly E E Averagg: Error
level (m) (m) (Pa) (Pa) &
Target 20 25 2x108 5%108
Case 4 Ist 214 273  229x10® 5.55x108 10.43%
2nd 20.1 249 2.04x10® 5.18x108 1.63%
3rd 202 257 2.02x10% 5.04x108 1.40%
Individual error 1.00% 2.80% 1.00% 0.80%
Target 40 45 2x108 5%108
Case 5 Ist 41.0 457 2.11x10® 6.01x108 7.44%
2nd 40.6 463 2.05x10%® 5.09x108 2.17%
3rd 40.0 447 2.00x10%® 5.01x108 0.22%
Individual error 0.00% 0.67% 0.00% 0.20%
Target 50 80 2x108 5%108
Case 6 Ist 575 823 2.63x10® 4.51x108 14.79%
2nd 497 779 1.98x10%® 4.88x108 1.66%
3rd 497 799 1.99x10%® 5.18x10% 1.21%

Individual error 0.60% 0.12% 0.50% 3.60%
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Fig. 7. & for the best-fit individual versus the GA iteration in Example 2. The solid lines at the
S51st and 102nd GA iteration indicate the starting of a new GA level and the change in frequency.
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Example 3 - Utilization of a preliminary inversion using only solid layers for detecting the
presence of a fluid layer, followed by a primary inversion using fluid-solid layers

In this example, a preliminary inversion using only solid layers for identifying if a target model
contains a fluid-filled cavity is presented. Here, three target models are used: one, which does not
contain a fluid layer, and the other two, in which a fluid-filled cavity is included. For all models,
the preliminary GA parameter-estimation method assumes that the target contains only solid layers.
Once the preliminary inversion is completed, the authors continue a primary inversion using a
fluid-solid model in a manner that is similar to what is described in Example 1. Such a two-step

(preliminary to primary inversion) approach is applied to the following Cases 7-10.

» Cases 7 and 8 consider a target Model 4, which does not include a fluid layer, and contains
only three solid layers of 5 m length each. The targeted Young’s modulus of each layer is:
E, =2x10® Pa, E» = 3x108 Pa, and E3 = 5108 Pa, respectively. For Case 7, the targeted
mass densities of all the layers are all same: pg1 = ps2 = ps3 = 2000 kg/m3, whereas, for Case
8, they are all different from each other: pg; = 1500 kg/m3, ps2 = 2000 kg/m3, and pg3 =
2200 kg/m?.

* Case 9 considers Model 5, which consists of three layers, i.e., two solids and one fluid. Model
5 has a total length Ly, of 15 m, and its fluid is located between x of Ly; =5 mand x of Ly =
10 m. The Young’s moduli of the solid layers are Ey; = 2x10% Pa and E,» = 5x103, and their
mass densities are ps; = pgo = 2000 kg/m?, respectively. The bulk modulus (k r) and mass

density (o) of the fluid layer are 2.34 X 10° N/m? and 1021 kg/m?, respectively.

* Case 10 considers Model 6, which consists of a fluid layer surrounded by solid layers. The
fluid layer is located between x of Ly; =4 mand x of Ly =9.3 m, and its Ly is 15 m. The
properties of the fluid layer (k r and p ¢) and the Young’s moduli of the solid layers (E,; and
E,) are the same as those in Case 9 except that the mass densities of solid layers are pg; =

1900 kg/m? and pyo = 2100 kg/m?.

Case 7 and 8 study the capability of the preliminary inversion to detect the absence of a fluid
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layer by estimating £ and p of all solid layers. Case 9 and 10, by using only solid layers during
the preliminary inversion, investigate what values of final-converged E and p from the preliminary

inversion indicate the presence of a fluid-filled cavity in the model.

Preliminary inversion using all solid-layer model

For all Cases 7-10, the preliminary inversion method utilizes only one frequency level of GA,
where a Ricker pulse signal with a central frequency of 50 Hz is used as the dynamic force, and the
number of generations and population size are 50 and 100, respectively. Moreover, the estimated
values for Young’s moduli in all solid layers are bounded as 1x10% < E < 50 x 10® Pa, and the
estimated values of their p bounded as 1000 < p < 3000 kg/m>. Furthermore, the preliminary
inversion assumes that the target contains three solid layers of 5 m length each.

Fig. 8 shows the reduction of average errors for the best-fit individual for Cases 7 to 10 as the
number of GA generations increases in the preliminary inversion. Table 3 shows the targeted and
reconstructed control parameters from the preliminary inversion for Cases 7 to 10. For Cases 7
and 8, the results show that the preliminary GA-based inversion algorithm can determine that all
the layers in the target model are solid layers because the order of magnitude of estimated Young’s
moduli are all 2 to 5x108 Pa in all the solid layers, and the order of magnitude of their estimated
mass densities are all 1500 to 2200 kg/m>. The average error in Cases 7 and 8 is 3.82% and 4.82%,
respectively. On the contrary, in Cases 9 and 10, the preliminary inversion led to the estimated
values of E, and p;» of the second solid layer such that it can be interpreted as a fluid layer. Namely,
the estimated values of E, as 22.95x108 Pa (Case 9) and 24.32x108 Pa (Case 10) are similar to the
bulk modulus 23.4x108 Pa of water, and the estimated values of py, as 1022 kg/m3 (Case 9) and
1070 kg/m? (Case 10) are similar to the mass density 1021 kg/m> of water. The average errors in
Cases 9 and 10 are 2.16% and 17.13%, respectively. Thus, after detecting the fluid layers in Case

9 and 10, the authors continue the primary inversion in Cases 9 and 10 as follows.

Primary inversion using a fluid-solid model
After the preliminary inversion using the solid-only wave solver, the three frequency-level GA-

based optimizer that uses a fluid-solid wave model estimates the fluid layer’s depth information and
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TABLE 3. Example 3: Reconstructed values of the control parameters obtained by a preliminary
inversion. In Cases 9 and 10, the targeted E»* (23.4x108 Pa) adopts the bulk modulus of the fluid

layer.
Cases Esl Es2 Es3 Psl Ps2 Ps3 Averag_e
(Pa) (Pa) (Pa) (kg/m?)  (kg/m®) (kg/m®) Error &
Case Target 2x108 3x108 5%108 2000 2000 2000
. Preliminary values 2.01x10%  2.88x10®  526x10%8 1943 2017 1810  3.82%
Individual error 0.50% 4.00% 520%  2.85% 0.85%  9.50%
Case Target 2x10% 3x10% 5x10% 1500 2000 2200
g Preliminary values 2.10x10%  3.08x10%®  4.93x10%8 1560 2092 2448  4.82%
Individual error 5.00% 2.67% 1.40%  4.00%  4.60% 11.27%
Case Target 2x108  23.40x10%*  5x10® 2000 1021 2000
9 Preliminary values 2.01x10% 22.95x10% 5.07 x10% 2024 1022 1843  2.16%
Individual error 0.50% 1.92% 1.40%  1.20%  0.10%  7.85%
Case Target 2x108  23.40x10%*  5x10% 1900 1021 2100
IOS Preliminary values 2.52x10%  24.32x10%  6.53 x10® 1549 1070 1701 17.13%
Individual error ~ 26.00% 3.93% 30.60%  18.47% 4.80%  19.00%
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Fig. 8. & for the best-fit individual versus the GA iteration in Example 3 for the preliminary
inversion.
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the material properties (E and p) of the soil layers. Namely, the preliminary inversion results from
Cases 9 and 10 are used for determining the bounds of guessed parameters in the first-frequency set
of the primary GA inversion using the fluid-solid model. The increasing-frequency continuation
approach is utilized with a dynamic pulse of its dominant frequency 5 Hz in the first frequency-level
GA and, then, 10 and 20 Hz in the next frequency levels while the values of the estimated parameters

are bounded in each frequency set in the following manner.

* During the first frequency-level GA using the fluid-solid wave solver, the estimated Lg; and
Ly values are bounded as 2 < Lg; < 7mand 8 < Ly < 13 m, the estimated values of Ej;
and E,, are bounded as 1x10® < E < 7.5x108 Pa, and the estimated values of ps1 and pg

(i.e., the mass densities of surrounding soil layers) are set as 1500 < p < 2500 kg/m>.

¢ In the second frequency-level GA, the values of estimated Ly and Ly are bounded using the
same upper and lower limits as the first frequency-level GA. The values of estimated E; and
E, are bounded using + 50% derivations of their final-reconstructed values obtained during
the first frequency-level GA, while the values of estimated pg; and ps, are bounded using +

20% derivations.

* Finally, in the last frequency-level GA, the estimated Ly and L ; values are bounded by using
+ 5% derivations of their final-reconstructed values obtained during the second frequency-
level GA, while + 10% derivations of the values of estimated E; and Es, are employed to
bound the limits of Young’s moduli, and + 10% derivations of the final-reconstructed values

of ps1 and py; are used as theirs bounds in the last frequency-level GA.

Table 4 shows the values of finally-reconstructed control parameters in Cases 9 and 10. For
Case 9, the value of € at the end of the last-level GA, 1.74%, is smaller than the error obtained in the
preliminary result, 2.16%, shown in Table 3. The same can be noted in Case 10, where & at the end
of the last-level GA, 2.79%, is much smaller than & from the preliminary inversion, 17.13%. Fig. 9
shows the average error for the best-fit individual over GA iterations of the three-level primary GA

inversion using fluid-solid models for both Cases 9 and 10. During the initial several iterations of
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TABLE 4. Example 3 - the results of the primary inversion in Cases 9 and 10: Estimated values of
the control parameters in each GA level obtained by increasing the frequency of the dynamic force
for each GA level.

Cases GA L Lf Es Es Ps1 Ps> AVerag_e
level (m) (m) (Pa) (Pa)  (kg/m®) (kg/m?) Error &
Target 5 10 2x108 5%108 2000 2000
Case Ist 5.1 10.0  2.01x10% 5.41x10% 1965 1843 3.38%
9 2nd 5.1 9.8  2.01x10® 5.45x10% 1969 1843 3.82%
3rd 5.1 10.1  1.99x10% 5.12x108 2011 1920  1.74%
Individual error  2.00% 1.00%  0.50% 2.40%  0.55%  4.00%
Target 4 9.3 2x108 5%108 1900 2100
Case Ist 31 842 1.59x10® 4.68x10% 2403 2239 15.36%
10 2nd 4.1 9.3  2.02x10% 5.42x10%8 1922 1981  3.12%
3rd 4.0 93  2.01x10® 537x10% 1922 1939 2.79%

Individual error  0.00% 0.00%  0.50% 7.40% 1.16%  7.67%

each frequency level, the algorithm focuses on exploring widely-varying values of the estimated
control parameters within the given limits, and this behavior increases error. Later, the error of
the algorithm is converged by finding better-fit individuals. Fig. 10 shows the histograms of the
estimated control parameters of the entire population of the individuals during all the GA levels
in Case 10 during the primary inversion. It demonstrates that, at the beginning of each frequency
level, GA explores wide ranges of control parameters and eventually converges to the targeted

parameters at the end of the last frequency set.
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Fig. 9. & for the best-fit individual versus the GA iteration in Cases 9 and 10 during the primary
inversion. The vertical solid lines at the 51st and 102nd GA iterations indicate each onset of a new

frequency-level GA and the change in the frequency of the excitational Ricker signal.

100
@) 150

GA iterations

Individuals

(c) o
GA iterations

3000

N
o
o
o

Ps1 [kg/mg]

1000

oo

50

e 100
GA iterations

(e) 150

Individuals

ps2 [keg/m’]

100
GA iterations

() 150

100
GA iterations

(d)
Individuals
3000

2000

1000

oo

50

100
GA iterations

(f) 150

Individuals

Fig. 10. The histograms of (a) Ly, (b) Lz, (c) E1, (d) Eg, (€) ps1, and (f) pso of the entire
population of all the individuals at all the generations in Case 10 during the primary inversion.
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This Example 3 shows a proof of concept, potentially promising that (7) fluid-filled cavities in a
2D or 3D domain can be detected by using the all-solid-element-based preliminary inversion of E,
G, and p and finding particular solid elements (of a high value of E, a low value of G, and the value
of p, being similar to 1021 kg/m3); then, (i7) a fluid-solid-element-based wave solver can be used
to identify the geometry of a fluid-solid interface and E, G, and p of solid elements, surrounding

fluid, in the 2D or 3D domain. The details of such 2D/3D extensions are shown below.

DISCUSSION

Limitations

This paper employs a 1D model, which takes into account a horizontally-layered geological
model and cannot consider a realistic three-dimensional random variation of material properties
of geological formations. In this study, the authors did not employ field experimental validation
because it is infeasible for the 1D wave model, which does not consider the geometrical damping
and the vector wave behaviors in a 3D unbounded solid domain, to be validated through the field

experiment.

Recommendations

This work can be extended into 2D and 3D settings in a manner such that one can identify the
geometry of fluid-filled cavities and the material properties of surrounding soils by using an FWI
algorithm (instead of GA). The GA is a useful method for identifying a small number of control
parameters in a feasibility study. However, when the number of control parameters is large (for
instance, in an inverse problem where the material properties £, G, and p of all the solid elements
in a 2D or 3D setting are to be estimated), the GA is less viable than FWI, which is powered by the
PDE-constrained optimization method.

Under such a robust FWI, the following two-step approach (i.e., preliminary to primary inver-
sion) can be employed to (7) first, detect the existence of fluid-filled voids and (i7) then, accurately
identify the geometry of a fluid-solid interface and the material proprieties of soils in 2D/3D

settings.
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* Preliminary inversion: One can approximately detect the existence of fluid-filled cavities in
a 2D or 3D domain by using the all-solid-element-based inversion of E, G, and p of solids.
In each iteration of this preliminary FWI, the guessed profiles in all the elements (i.e., E, G,
and p) are updated using a gradient vector. Then, it searches an area of interest that shows a
high value of elasticity but a low value of shear modulus and a mass density that is similar to

that of water. In turn, one can consider such an area as a fluid-filled cavity.

* Primary inversion: After the preliminary FWI, one will turn to a wave solver using fluid ele-
ments coupled with solid elements. Then, one will update the following control parameters—
E, G, and p of the solid elements surrounding the potential fluid-filled cavity (modeled as
fluid elements) detected from the preliminary inversion, as well as the geometry parameters
of the interface between fluid and solid elements. The initial guessed profile of the interface
will be based on the result from the preliminary all-solid-element FWI. Fig. 11 depicts a pos-
sible scenario of how one may approximate the initially-guessed geometry of the fluid-solid

interface based on the result from the preliminary all-solid FWI.

The proposed method described above can be used as both initial screening (i.e., a preliminary
inversion using all solid elements) and in-depth cavity characterization (i.e., a primary inversion
using both fluid and solid elements). Furthermore, engineers or geologists can somehow know the
existence of water-filled underground cavities or internal soil erosion activities because of surface
signs (e.g., depression or subsidence) or geological/hydrogeological phenomena (e.g., sinkhole
raveling activities) in most of practical geoengineering application sites. Thus, they may have a
combination of preliminary data from several different methods, including the proposed preliminary
inversion, that will greatly benefit the proposed primary inversion using fluid and solid elements in

most cases.

CONCLUSIONS
This work presents a new multi-level GA-based inversion method combined with a frequency-

continuation scheme. Three levels of GA are used, and, in each level, a pulse signal with a
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Fig. 11. An exemplary sketch of authors’ proposed method in 2D/3D settings: (a) an initial guess
of a preliminary inversion, using a structured mesh, (b) the final result of the preliminary inversion,
(c) an initial guess of a primary inversion, using an unstructured mesh, and (d) the final result of
the primary inversion.

different dominant frequency is utilized to tackle the solution multiplicity of the presented inverse
problem. Numerical results show the following findings about the proposed inversion method.
First, it is feasible to estimate the depths of solid-fluid interfaces and Young’s moduli of the
surrounding solid layers by employing an acoustic-elastodynamic wave model and a measured
dynamic response at a sensor on the top surface. Second, combining the multi-level GA-based
optimizer with a frequency-continuation scheme improves the performance of identifying targeted
control parameters. Third, the frequency-continuation scheme where the frequency is progressively
decreased for each GA level is as effective as the conventional frequency-continuation scheme (i.e.,
increasing the frequency for each level) in the presented 1D setting. Lastly, a preliminary inversion
using a solid-only model can address the uncertain presence of a fluid layer in a domain by
uncovering that one of the layers has a very large value of Young’s modulus (with a similar value
to that of the bulk modulus of water) and a mass density being similar to that of water. After the
preliminary inversion, a primary inversion—based on multiple frequency-level GA using a fluid-

solid model—can adjust the fluid layer’s depth information and the material properties of the soil
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layers. The authors also discussed how to extend the presented method in realistic 2D/3D settings.
Such an extension may effectively detect water-filled underground cavities and also estimate the
risk of potential urban cave-in and Karst sinkholes. Please also note that, in typical engineering
projects, engineers do not rely on a single geophysical method no matter how advanced its theories
or computation capacities are. Thus, the presented method and its extension can be an important

supplement to existing testing methods rather than a stand-alone solution in practice.
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