

Multi-Level Genetic Algorithm (GA)-based Acoustic-Elastodynamic Imaging of Coupled Fluid-Solid Media to Detect an Underground Cavity

Bruno Guidio¹, Boo Hyun Nam², and Chanseok Jeong^{3,4}

¹Postdoctoral Researcher, School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA.

²Associate Professor, Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.

³Assistant Professor, School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA.

⁴Member, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA (corresponding author) Email: jeong1c@cmich.edu.

ABSTRACT

This work studies the feasibility of imaging a coupled fluid-solid system by using the elastodynamic and acoustic waves initiated from the top surface of a computational domain. A one-dimensional system, where a fluid layer is surrounded by two solid layers, is considered. The bottom solid layer is truncated by using a wave-absorbing boundary condition (WABC). The wave responses are measured on a sensor located on the top surface, and the measured signal contains information about the underlying physical system. By using the measured wave responses, the elastic moduli of the solid layers and the depths of the interfaces between the solid and fluid layers are identified. To this end, a multi-level Genetic Algorithm (GA) combined with a frequency-continuation scheme to invert for the values of sought-for parameters is employed. The numerical results show the following findings. First, the depths of solid-fluid interfaces and elastic moduli can be reconstructed by the presented method. Second, the frequency-continuation scheme improves

24 the convergence of the estimated values of parameters toward their targeted values. Lastly, a pre-
25 liminary inversion, using an all-solid model, can be employed to identify if a fluid layer is presented
26 in the model by showing one layer with a very large value of Young's modulus (with a similar value
27 to that of the bulk modulus of water) and the value of mass density being similar to that of water.
28 Then, the primary GA inversion method, based on a fluid-solid model, can be utilized to adjust
29 the soil characteristics and fine-tune the locations of the fluid layer. If this work is extended to a
30 3D setting, it can be instrumental to finding unknown locations of fluid-filled voids in geological
31 formations that can lead to ground instability and/or collapse (e.g., natural/anthropogenic sinkhole,
32 urban cave-in subsidence, etc.).

33 INTRODUCTION

34 Detecting underground cavities (e.g., karstic cavities, caves, tunnels, etc.) is a challenging
35 task for geotechnical engineering projects due to the geological/hydrogeological complexity of the
36 subsurface environment. Geological hazards, such as collapsing soil or urban ground collapse due to
37 subsurface voids, could induce significant damage to infrastructures. Such hazard is one of the major
38 issues for land planning, infrastructure operation and maintenance, and disaster management. In
39 addition, cavity evolution that occurs due to hydrogeological process may cause sinkhole collapse.
40 For example, Florida's karst environment involves active groundwater recharge to the Floridan
41 Aquifer that makes overburden soils to be eroded; thus, as shown in Fig. 1, a cavity could gradually
42 grow, leading to a sudden collapse (cover-collapse type) or gradual subsidence (cover-subsidence
43 type) (Beck 1986; Tihansky 1999; Xiao et al. 2016; Kim et al. 2020; Nam et al. 2020). These large
44 underground water-filled cavities hidden below building and transportation infrastructures should
45 be pre-detected so that prevention and mitigation measures are applied before catastrophic collapse
46 or excessive ground settlement takes place.

47 Cone penetration test (CPT) and standard penetration test (SPT) have been employed for detect-
48 ing and characterizing subsurface cavities in a cover soil layer, referred to as a raveled zone in the
49 karst areas (Nam et al. 2018; Nam and Shamet 2020). Although SPT and CPT provide a continu-
50 ous subsurface profile—revealing soil type, resistance, and stratigraphy—, these invasive methods

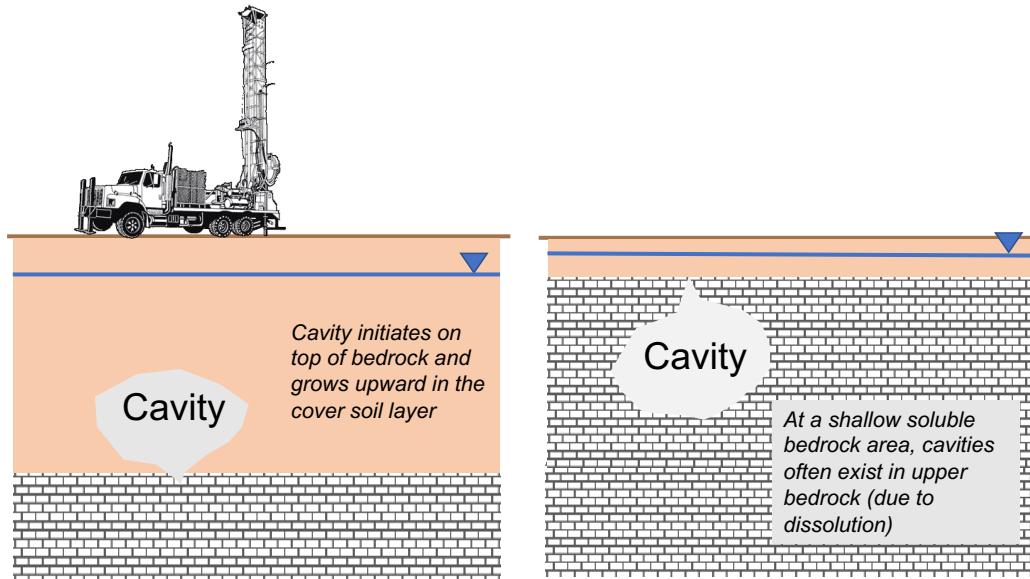


Fig. 1. Schematic diagram of a water-filled subsurface cavity (common in Florida's karst environment): (a) cavity in either cover soils layer and (b) cavity within near surface of limestone bedrock.

51 only collect point-wise profiles of the subsurface environment. As such, it is time-consuming and
 52 labor-intensive to apply CPT and SPT to wide areas multiple times.

53 Numerous geophysical studies over the past decades have introduced nondestructive evaluation
 54 (NDE) methods for detecting and estimating the geometry of subsurface cavities. For example,
 55 ground-penetrating radar (GPR), micro-gravimetry, and resistivity imaging and their combinations
 56 can characterize an underground cavity based on its size and depth position (Fehdi et al. 2014;
 57 Kiflu et al. 2016). Namely, GPR is inefficient in highly heterogeneous media—such as backfills,
 58 moist clays with high soil conductivity, and saturated soils below the groundwater table. Micro-
 59 gravimetric method is effective in detecting shallow cavities (Butler 1984; Bishop et al. 1997), but
 60 its density contrast cannot be obtained clearly if the size of a void is relatively small compared to its
 61 depth. An electrical resistivity method has been applied to detect air-filled or water-filled cavities
 62 (Van Schoor 2002; Coşkun 2012), but it requires a large areal space for surveying and cannot detect
 63 small-scale irregularities in the geologic interfaces since it measures averaged resistivity values and
 64 is easily ruined by noise sources, such as piping, power lines, and house structures.

65 On the other hand, elastodynamic imaging has been widely used in site characterization (Brown

66 et al. 2002; Kallivokas et al. 2013). It hinges on elastodynamic waves that are initiated by
67 wave sources on the ground surface and/or borehole sources, and, then, are reflected/refracted
68 due to material heterogeneity within a medium. The resulting wave motions can be measured
69 on the ground surface or at borehole seismic arrays. The inverse modeling, associated with
70 elastic wave propagation analyses, provides promising results of identifying the material properties
71 of the media. Inverse modeling—employing a partial differential equation (PDE)-constrained
72 optimization method and the finite or spectral element method (FEM or SEM)—has been utilized
73 to infer the spatial distribution of material properties of host media in fine resolution (Kang and
74 Kallivokas 2011; Fathi et al. 2015a). Specifically, for instance, the geotechnical site characterization
75 methodologies have been investigated in a soil domain that is truncated by Perfectly-Matched-Layers
76 (PML), where waves decay and are not reflected off surrounding boundaries (Fathi et al. 2015b),
77 by using state-adjoint-control equation-based full-waveform inversion (FWI) approaches (Kang
78 and Kallivokas 2010; Kang and Kallivokas 2011; Kallivokas et al. 2013; Fathi et al. 2015a; Fathi
79 et al. 2016; Kucukcaban et al. 2019). In particular, the authors bring attention to the progressive
80 development of the material inversion method for the site characterization from a simplified one-
81 dimensional (1D) setting to a full 3D one followed by field experimental validation as shown in the
82 following. Kang and Kallivokas (2010) investigated a new material inversion method for identifying
83 the vertical distribution of the shear wave speed within a PML-truncated 1D soil column with a
84 hypothesis of horizontal layering without considering geometrical damping. Kang and Kallivokas
85 (2011) further developed their material inversion method for estimating the spatial distribution
86 of the shear wave speed in a 2D scalar wave setting in a fine resolution without considering the
87 realistic behaviors of elastic waves (i.e., vector waves). Kallivokas et al. (2013) have continued the
88 investigation of the new material-inversion method to estimate the spatial distributions of both P and
89 S-wave speeds within a 2D linear, elastic, undamped PML-truncated solid setting in consideration
90 of vector wave behaviors. They used an assumption that the material properties of the soils are
91 uniform in the anti-plane direction of the considered 2D plane. Their paper also presented the
92 validation of their numerical method by using field experimental data that used a line loading-like

application of wave sources, which replicates the 2D plane-strain setting of the computational study. Next, Fathi et al. (2015a) developed the material inversion method for inverting the spatial distribution of both P and S-wave speeds in a 3D linear, elastic, undamped PML-truncated solid. Lastly, Fathi et al. (2016) validated the result of their inverse modeling in the previous work (Fathi et al. 2015a) by using field experimental data in the 3D setting. In the experiment, a point wave source was employed on the ground surface, and its corresponding wave responses were measured on the surface and used as measurement data in the inverse simulations. They compared the inverted spatial distribution of the wave speeds with its reference solution from a conventional method, such as spectral analysis of surface waves (SASW). In addition to the aforementioned development, the Gauss-Newton-based FWI method, which is based on a gradient vector and a Hessian matrix, had been studied for characterizing the material profiles in a truncated two-dimensional solid domain (Tran and McVay 2012; Pakravan et al. 2016) for the application of the site characterization. The PDE-constrained optimization has also been used in consideration of the boundary element method (BEM), of which computational efficiency is much greater than the FEM due to the reduction of the dimensionality, to detect the geometries of wave-scattering objects in host media. Namely, there have been studies on inverse scattering algorithms using BEM wave solvers, hinging on the moving boundary concept and the total derivative (Petryk and Mroz 1986) that allows for computing the derivative of an objective functional with respect to the geometry variables of scattering objects (Guzina et al. 2003; Jeong et al. 2009). The extended finite element method (XFEM) has been used as a wave solver of the studies to identify cracks or air-filled voids in solid media because it allows for avoiding expensive remeshing process in inverse iterations while using the flexibility of the FEM for heterogeneous materials (Jung et al. 2013). In addition, a frequency-continuation scheme was devised to help the inversion solver tackle the multiplicity of solutions of subsurface imaging problems (Bunks et al. 1995; Kang and Kallivokas 2010; Fathi et al. 2015a). That is, when the convergence rate of the inversion solver is decreased due to a local minimum of an objective functional that is comprised of measurement data corresponding to a given dominant frequency of excitation, another set of measurement data that is induced by excitation of a different dominant

frequency is employed. Such a frequency shift can change the curvature of the objective functional so that a minimizer can escape a local minimum. In general, one may consider increasing frequency from one inversion set to another because it has been reported that using a lower frequency leads to the inversion result of a lower resolution (due to a larger wavelength), then, one can fine-tune it using a higher frequency (due to a smaller wavelength) (Bunks et al. 1995; Kang and Kallivokas 2010; Fathi et al. 2015a).

Despite such recent developments in elastodynamic wave imaging techniques, few papers have demonstrated the feasibility of identifying the properties of a solid system that includes fluid-filled voids. There have been a finite difference method (FDM)-based FWI approaches, which employed all solid elements in an entire computational domain and detect the areas with smaller values of shear wave speeds V_s (e.g., around 100 m/s) than those of typical soils and rocks to indicate air-filled voids (Tran and McVay 2012; Tran et al. 2013; Mirzanejad et al. 2020). However, those works have not explicitly modeled the interfaces between air voids and the solid domain. Thus, the authors (henceforth, we) are concerned that, first, modeling a fluid domain as solid elements with a small value of V_s could introduce numerical error in forward wave solutions. Second, using a small value of V_s requires a small size of a solid element for wave simulations. However, the aforementioned FDM works did not use such a small-sized element to model a void so that it could suffer from the additional error of wave solutions. To address this issue, the authors suggest to explicitly use fluid elements to model voids filled with water (or air) so that accurate fluid-solid coupling (Everstine 1997; Lloyd et al. 2016) should be incorporated into the wave solver. Then, by using such a wave solver, inverse modeling could accurately identify the interfaces between fluid and solids as well as the material profiles of solids. As a prototype work of the suggested method, this paper investigates the feasibility to estimate the interfaces between fluid and solid layers and the material properties of solid layers in a multi-layered system by using acoustic and elastodynamic waves generated from the ground surface. Such investigation will prove the feasibility of detecting a water-filled void and identifying its location and geometry in soils, to which overlaying ground surface could potentially sink.

147 This work uses the FEM to study the wave responses of the coupled fluid-solid media in a
148 prototype one-dimensional setting. The solid formation of a semi-infinite extent is truncated by
149 using an absorbing boundary, and a proper fluid-solid interface condition is considered. The inverse
150 problem is cast into a minimization problem, where the value of an error between the synthetic
151 measured wave response due to target profiles and the computed counterpart due to guessed
152 profiles is minimized. The solution multiplicity of the minimization process is addressed by using
153 the multi-level Genetic Algorithm (GA) in this work. Under this new scheme, [the authors](#) suggest
154 the following steps: (i) The optimizer identifies an inversion solution around a local minimum after
155 a number of GA iterations in the first-level GA; (ii) Then, a misfit function [can be re-calculated](#)
156 for a different measurement signal induced by a pulse signal of a different central frequency in
157 the next-level GA; (iii) By doing so, the GA optimizer is able to escape the local minimum of
158 the previous-level GA; (iv) The same technique is employed to address the solution multiplicity of
159 the next-level GA. The numerical results show that [the](#) numerical simulations, using the multiple-
160 frequency-level GA, accurately detect the interfaces between fluid and solid layers and the material
161 properties of solid layers. [The authors](#) also demonstrate that a preliminary GA inversion can tell
162 whether the subsurface media include a fluid layer or not. Namely, the preliminary inversion can
163 indicate the existence of a fluid layer by detecting a very large value of Young's modulus (with a
164 similar value to that of the bulk modulus of water) and a mass density with a similar value to that of
165 water. Once the existence of a fluid layer is detected, a primary GA inversion, using the fluid-solid
166 model, can further estimate the locations of a fluid layer and the material properties of surrounding
167 solids.

168 PROBLEM DEFINITION

169 [This study](#) aims to identify the depths of the interfaces between a fluid layer and its surrounding solid
170 layers and the stiffness of the solid layers by using a dynamic test, which generates elastodynamic
171 waves into the subsurface media from the top surface. A 1D fluid-solid model, which consists
172 of three different layers, i.e., two solid layers and one fluid layer (see Fig. 2), [is considered](#). The

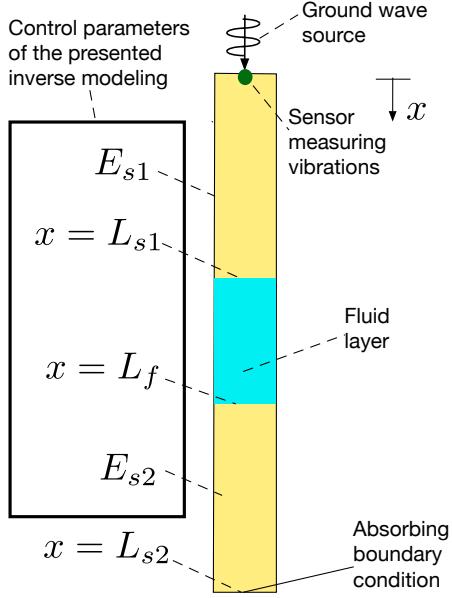


Fig. 2. Problem schematic.

173 governing differential equations for the compressional waves in the three layers are given by:

174

$$\frac{\partial}{\partial x} \left(E_{s1} \frac{\partial u_{s1}}{\partial x} \right) = \rho_{s1} \frac{\partial^2 u_{s1}}{\partial t^2}, \quad 0 \leq x \leq L_{s1}, \quad (1)$$

175

$$\frac{\partial^2 P}{\partial x^2} = \frac{1}{c_f^2} \frac{\partial^2 P}{\partial t^2}, \quad L_{s1} \leq x \leq L_f, \quad (2)$$

176

$$\frac{\partial}{\partial x} \left(E_{s2} \frac{\partial u_{s2}}{\partial x} \right) = \rho_{s2} \frac{\partial^2 u_{s2}}{\partial t^2}, \quad L_f \leq x \leq L_{s2}, \quad (3)$$

177

178 where L_{s1} , L_f , and L_{s2} denote, respectively, the depth of the interface between the top solid layer
 179 and the fluid layer, that between the fluid and the bottom solid layer, and the depth of the truncation
 180 wave absorbing boundary. Also, $u_{s1}(x, t)$ and $u_{s2}(x, t)$ denote the displacement fields of the wave
 181 motions of solid particles in the top and bottom solid layers. P denotes the fluid pressure field of the
 182 wave motions in the fluid. The wave speeds of the three layers are given by $c_{s1} = \sqrt{\frac{E_{s1}}{\rho_{s1}}}$, $c_f = \sqrt{\frac{\kappa_f}{\rho_f}}$,
 183 and $c_{s2} = \sqrt{\frac{E_{s2}}{\rho_{s2}}}$, respectively, where E , ρ , and κ are the modulus of elasticity, the density, and the

184 bulk modulus. The problem of interest also includes the following boundary conditions:

185
$$E_{s1} \frac{\partial u_{s1}}{\partial x} = -f(t), \quad x = 0, \quad (4)$$

186
$$\frac{\partial u_{s2}}{\partial x} = \frac{-1}{c_{s2}} \frac{\partial u_{s2}}{\partial t}, \quad x = L_{s2}, \quad (5)$$

187

188 A pulse signal $f(t)$ is applied at the top of the solid layer at $x = 0$ (per (4)). The depth of the bottom
189 solid layer is truncated by using the absorbing boundary condition (per (5)).

190 The solid and fluid layers are coupled via the following interface conditions:

191
$$E_{s1} \frac{\partial u_{s1}}{\partial x} = -P, \quad x = L_{s1}, \quad (6)$$

192
$$\frac{\partial P}{\partial x} = -\rho_f \frac{\partial^2 u_{s1}}{\partial t^2}, \quad x = L_{s1}, \quad (7)$$

193
$$E_{s2} \frac{\partial u_{s2}}{\partial x} = -P, \quad x = L_f, \quad (8)$$

194
$$\frac{\partial P}{\partial x} = -\rho_f \frac{\partial^2 u_{s2}}{\partial t^2}, \quad x = L_f. \quad (9)$$

195

196 The above interface conditions are originated from the dynamic interface condition between a
197 solid and fluid in a multi-dimensional setting, presented by Everstine (1997), which is composed
198 of the followings. First, "the effect of fluid pressure on the structure is imposed as a load". This
199 corresponds to (6) and (8). Second, "the effect of structural motion on the fluid" should be modeled
200 as $\nabla P \cdot \mathbf{n} = -\rho_f \frac{\partial^2 \mathbf{u}_s}{\partial t^2} \cdot \mathbf{n}$, where \mathbf{n} is the normal vector at the interface. This corresponds to (7) and
201 (9).

202 The system is initially at rest:

203
$$u_{s1} = u_{s2} = P = 0, \quad t = 0, \quad (10)$$

204
$$\frac{\partial u_{s1}}{\partial t} = \frac{\partial u_{s2}}{\partial t} = \frac{\partial P}{\partial t} = 0, \quad t = 0. \quad (11)$$

205

206 **FINITE ELEMENT MODELING TO COMPUTE THE WAVE RESPONSES.**

207 To derive the weak form, the governing wave equations in the strong form (1)-(3) are multiplied by

208 the test functions $v_1(x)$, $w(x)$, and $v_2(x)$. By integrating them by parts and using the boundary and
 209 interface conditions of the strong form, the following weak forms are obtained:

210
$$\int_0^{L_{s1}} \left[E_{s1} \frac{\partial v_1}{\partial x} \frac{\partial u_{s1}}{\partial x} + \rho_{s1} v \frac{\partial^2 u_{s1}}{\partial t^2} \right] dx = v(0)f(t) - v(L_{s1})P(L_{s1}), \quad (12)$$

211
$$\int_{L_{s1}}^{L_f} \left[\kappa_f \frac{\partial w}{\partial x} \frac{\partial P}{\partial x} + \rho_f w \frac{\partial^2 P}{\partial t^2} \right] dx = \rho_f \kappa_f \left[w(L_{s1}) \frac{\partial^2 u_{s1}}{\partial t^2}(L_{s1}) - w(L_f) \frac{\partial^2 u_{s2}}{\partial t^2}(L_f) \right], \quad (13)$$

212
$$\int_{L_f}^{L_{s2}} \left[E_{s2} \frac{\partial v_2}{\partial x} \frac{\partial u_{s2}}{\partial x} + \rho_{s2} v_2 \frac{\partial^2 u_{s2}}{\partial t^2} \right] dx = v_2(L_f)P(L_f) - E_{s2} \sqrt{\frac{\rho_{s2}}{E_{s2}}} v_2(L_{s2}) \frac{\partial u_{s2}}{\partial t}(L_{s2}). \quad (14)$$

214 Then, the functions are approximated as:

215
$$v_1(x) = \mathbf{v}_1^T \boldsymbol{\phi}(x), \quad u_{s1}(x, t) = \boldsymbol{\phi}(x)^T \mathbf{u}_{s1}(t), \quad (15)$$

216
$$w(x) = \mathbf{w}^T \boldsymbol{\Psi}(x), \quad P(x, t) = \boldsymbol{\Psi}(x)^T \mathbf{P}(t), \quad (16)$$

217
$$v_2(x) = \mathbf{v}_2^T \boldsymbol{\Omega}(x), \quad u_{s2}(x, t) = \boldsymbol{\Omega}(x)^T \mathbf{u}_{s2}(t), \quad (17)$$

219 where $\boldsymbol{\phi}(x)$, $\boldsymbol{\Psi}(x)$, and $\boldsymbol{\Omega}(x)$ denote vectors of global basis functions constructed by local shape
 220 functions, and \mathbf{u}_{s1} , \mathbf{P} , and \mathbf{u}_{s2} are the vectors of nodal solutions. Introducing the finite element
 221 approximations (15)-(17) into the weak forms (12)-(14) provides the following discrete form:

222
$$\mathbf{K}_{s1} \mathbf{u}_{s1} + \mathbf{M}_{s1} \frac{\partial^2 \mathbf{u}_{s1}}{\partial t^2} = \mathbf{f} - \mathbf{L}_1 \mathbf{P}(L_{s1}), \quad (18)$$

223
$$\mathbf{K}_f \mathbf{P} + \mathbf{M}_f \frac{\partial^2 \mathbf{P}}{\partial t^2} = \mathbf{L}_2 \rho_f \kappa_f \frac{\partial^2 \mathbf{u}_{s1}}{\partial t^2} - \mathbf{L}_3 \rho_f \kappa_f \frac{\partial^2 \mathbf{u}_{s2}}{\partial t^2}, \quad (19)$$

224
$$\mathbf{K}_{s2} \mathbf{u}_{s2} + \mathbf{M}_{s2} \frac{\partial^2 \mathbf{u}_{s2}}{\partial t^2} = -\sqrt{\rho_{s2} E_{s2}} \mathbf{L}_5 \frac{\partial \mathbf{u}_{s2}}{\partial t} + \mathbf{L}_4 \mathbf{P}, \quad (20)$$

226 where the matrices are defined as:

227
$$\mathbf{K}_{s1} = \int_0^{L_{s1}} E_{s1} \frac{\partial \boldsymbol{\phi}(x)}{\partial x} \frac{\partial \boldsymbol{\phi}(x)^T}{\partial x} dx, \quad \mathbf{M}_{s1} = \int_0^{L_{s1}} \rho_{s1} \boldsymbol{\phi}(x) \boldsymbol{\phi}(x)^T, \quad (21)$$

228
$$\mathbf{K}_f = \int_{L_{s1}}^{L_f} \kappa_f \frac{\partial \boldsymbol{\Psi}(x)}{\partial x} \frac{\partial \boldsymbol{\Psi}(x)^T}{\partial x} dx, \quad \mathbf{M}_f = \int_{L_{s1}}^{L_f} \rho_f \boldsymbol{\Psi}(x) \boldsymbol{\Psi}(x)^T, \quad (22)$$

229
$$\mathbf{K}_{s2} = \int_{L_f}^{L_{s2}} E_{s2} \frac{\partial \boldsymbol{\Omega}(x)}{\partial x} \frac{\partial \boldsymbol{\Omega}(x)^T}{\partial x} dx, \quad \mathbf{M}_{s2} = \int_{L_f}^{L_{s2}} \rho_{s2} \boldsymbol{\Omega}(x) \boldsymbol{\Omega}(x)^T dx, \quad (23)$$

230
$$\mathbf{L}_1 = \boldsymbol{\phi}(L_{s1}) \boldsymbol{\Psi}^T(L_{s1}) = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}, \quad \mathbf{L}_2 = \boldsymbol{\Psi}(L_{s1}) \boldsymbol{\phi}^T(L_{s1}) = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}, \quad (24)$$

231
$$\mathbf{L}_3 = \boldsymbol{\Psi}(L_f) \boldsymbol{\Omega}^T(L_f) = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}, \quad \mathbf{L}_4 = \boldsymbol{\Omega}(L_f) \boldsymbol{\Psi}^T(L_f) = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}, \quad (25)$$

232
$$\mathbf{L}_5 = \boldsymbol{\Omega}(L_{s2}) \boldsymbol{\Omega}^T(L_{s2}) = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}, \quad (26)$$

233 and the force vector is $\mathbf{f} = \boldsymbol{\phi}(0) f(t)$. The discrete equations (18)-(20) lead to the following coupled
234 discrete form:

235
$$\underbrace{\begin{bmatrix} \mathbf{K}_{s1} & \mathbf{L}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_f & \mathbf{0} \\ \mathbf{0} & -\mathbf{L}_4 & \mathbf{K}_{s2} \end{bmatrix}}_{\mathbf{K}} \underbrace{\begin{bmatrix} \mathbf{u}_{s1} \\ \mathbf{P} \\ \mathbf{u}_{s2} \end{bmatrix}}_{\mathbf{C}} + \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & E_{s2} \sqrt{\frac{\rho_{s2}}{E_{s2}}} \mathbf{L}_5 \end{bmatrix}}_{\mathbf{C}} \underbrace{\begin{bmatrix} \frac{\partial \mathbf{u}_{s1}}{\partial t} \\ \frac{\partial \mathbf{P}}{\partial t} \\ \frac{\partial \mathbf{u}_{s2}}{\partial t} \end{bmatrix}}_{\mathbf{M}} + \underbrace{\begin{bmatrix} \mathbf{M}_{s1} & \mathbf{0} & \mathbf{0} \\ -\rho_f \kappa_f \mathbf{L}_2 & \mathbf{M}_f & \rho_f \kappa_f \mathbf{L}_3 \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_{s2} \end{bmatrix}}_{\mathbf{M}} \underbrace{\begin{bmatrix} \frac{\partial^2 \mathbf{u}_{s1}}{\partial t^2} \\ \frac{\partial^2 \mathbf{P}}{\partial t^2} \\ \frac{\partial^2 \mathbf{u}_{s2}}{\partial t^2} \end{bmatrix}}_{\mathbf{f}} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \quad (27)$$

237

238 which, at a discrete time t_n , can be written as:

239
$$\mathbf{M}\mathbf{q}_n + \mathbf{C}\mathbf{q}_n + \mathbf{K}\mathbf{q}_n = \mathbf{F}_n, \quad (28)$$

240

241 where $\mathbf{q}_n = [\mathbf{u}_{s1}^T, \mathbf{P}^T, \mathbf{u}_{s2}^T]^T$ is the vector containing the nodal solutions of solid displacements and
242 acoustic pressures at the n -th time step, and \mathbf{q}_n and \mathbf{q}_n denote the first and second-order derivatives
243 of \mathbf{q}_n with respect to time. The second-order ordinary differential equation (28) is solved by using
244 the Newmark's unconditionally-stable time integration scheme (Newmark 1959).

245 **INVERSE MODELING**

246 This study aims to identify the four control parameters (E_{s1} , E_{s2} , L_{s1} , and L_f) by using measured
247 wave responses initiated by a known excitation signal $f(t)$. Here, the values of the other variables
248 (L_{s2} , ρ_{s1} , ρ_{s2} , κ_f , and ρ_f) are set to be known during the inversion process, and the excitation
249 signal $f(t)$ is also known. This problem is formulated into a minimization problem to identify
250 estimated control parameters that could lead to the minimum of an objective functional:

251
$$\mathcal{L} = \int_0^T (u_m(0, t) - u(0, t))^2 dt. \quad (29)$$

252

253 In (29), $u_m(0, t)$ denotes a wave signal recorded by the sensor at $x = 0$ due to a target profile of the
254 control parameters, and $u(0, t)$ denote computed counterpart at the same measurement location due
255 to a guessed profile. In this computational study, $u_m(0, t)$ is synthetically obtained by running the
256 presented FEM solver using a target profile as an input. To prevent an inverse crime from taking
257 place, smaller values of element sizes are used when $u_m(0, t)$ is computed than when $u(0, t)$ is
258 computed.

259 This work uses GA, which is a heuristic algorithm to reconstruct the control parameters that are
260 the fittest to the objective of the problem. In each generation of GA, there are individuals, each of
261 which has a set of different values of control parameters. In this work, GA runs the FEM wave solver,
262 for the estimated values of control parameters of each individual, to compute $u(0, t)$ and evaluate
263 the misfit (29). Then, GA evaluates the fitness of each individual by using the value of its misfit.

264 Then, GA weeds out less-fitting individuals when it creates the next generation of individuals,
265 each of which is characterized by its own set of estimated parameters. In this process, by virtue
266 of the mutation process, where GA learns the better-fitting characteristics of control parameters,
267 GA gives rise to new individuals in the next generation. The GA calculates the sensitivity of the
268 fitness function with respect to the changes of the values of the control parameters and determines
269 how the next generation of individuals is created. Namely, GA repeats the tasks of weeding out,
270 selecting the best individual, and mutating at each generation. Therefore, **the suggested** inverse
271 modeling solver could identify targeted values of the parameters by using the iterative process of
272 GA, where the values of the estimated parameters of the best-fit individual evolve over the progress
273 of generations.

274 In the overall GA process under this problem, constraints **are imposed** on the allowable ranges
275 of each control parameter. For instance, L_{s1} (the depth of the upper face of a fluid layer) is **set to**
276 **be** always smaller than L_f (the depth of the lower face) such that the thickness of the fluid layer is
277 always positive. **In addition**, the values of elastic moduli E_{s1} and E_{s2} are **set to be** always positive.

278 It is known that, in the minimization problem of a small number (e.g., less than 20) of control
279 parameters, GA is likely to find a set of control parameters that are close to the global minimum
280 ([Jeong et al. 2017](#); [Guidio and Jeong 2021](#)). Since there are only four control parameters, **the**
281 **authors** originally hypothesized that the GA is a suitable solution approach to finding the global
282 minimum solution of this inverse problem. However, the numerical experiments show that the GA
283 suffers from the solution multiplicity, and, thus, **the authors** test a new multiple frequency-level
284 GA approach. Namely, after the first level of GA is finished, **the presented** inversion solver uses
285 the reconstructed values from the first level to define the upper and lower limits of the control
286 parameters in the next GA level, which uses a pulse signal of a different central frequency from its
287 predecessor, creating a new synthetic u_m . In the final-level GA, the final best-fit estimated control
288 parameters are obtained as the inversion solution.

289 **NUMERICAL EXPERIMENTS**

290 This section shows a set of numerical experiments, studying the performance of the presented

291 multi-level GA-based parameter-estimation method. In the first two examples, three targeted fluid-
292 solid models, which differ from each other in terms of L_{s1} , L_f , and L_{s2} , are considered as follows.
293 Model 1 has a total length L_{s2} of 60 m and its fluid is located between x of $L_{s1} = 20$ m and x of L_f
294 = 25 m. The corresponding geometry information of Model 2 are L_{s2} of 60 m, L_{s1} of 40 m, and
295 L_f of 45 m, and those of Model 3 are L_{s2} of 120 m, L_{s1} of 50 m, and L_f of 80 m. L_{s1} and L_f are
296 unknown parameters in the inversion. In all the models, the mass density (ρ) of the solid layers is
297 2000 kg/m³; their Young's moduli are $E_{s1} = 2 \times 10^8$ Pa and $E_{s2} = 5 \times 10^8$ Pa; and the bulk modulus
298 (k_f) and mass density (ρ_f) of the fluid layer are 2.34×10^9 N/m² and 1021 kg/m³, respectively.
299 While E_{s1} and E_{s2} are set to be unknown, ρ , k_f , and ρ_f are set to be known in the inversion.

300 In the presented numerical experiments, a three-level GA-based inversion method is used with a
301 frequency-continuation scheme. Namely, in each GA set, a dynamic force with a different frequency
302 content is used as follows.

- 303 • The upper and lower bounds of each control parameter are set for the first-level GA, and its
304 last-generation leads to the best-fit individual.
- 305 • Then, in the second and third-level GA, the upper and lower limits of the four control
306 parameters are updated with respect to the final-reconstructed values of the parameters
307 obtained in the previous-level GA. Namely, in the second-level GA, the values of the estimated
308 L_{s1} and L_f are bounded using the same upper and lower limits as the first GA level, while
309 the values of the estimated E_{s1} and E_{s2} are bounded by using $\pm 50\%$ derivations of their
310 final-reconstructed values obtained during the first GA level.
- 311 • In the third GA level, the values of estimated L_{s1} and L_f are bounded by using $\pm 5\%$
312 derivations of their reconstructed values from the second GA level, while $\pm 10\%$ derivations
313 of the values of estimated E_{s1} and E_{s2} that are reconstructed from second-level GA level are
314 used as their bounds in the last GA level.
- 315 • The number of generations (GN) and population size (PS) are both 50 in all three GA levels.

316 The computational procedure of the presented multi-level GA-based inversion method is sum-
317 marized in Algorithm 1.

Algorithm 1 Multi-level GA-based parameter-estimation algorithm

```
1: Set GN and PS = 50.
2: Set values for known parameters ( $L_{s2}$ ,  $\rho_{s1}$ ,  $\rho_{s2}$ ,  $\kappa_f$ , and  $\rho_f$ ).
3: for the first-level GA do
4:   Set the central frequency of an excitation signal  $f(t)$ .
5:   Set the upper and lower limits for each control parameter.
6:   Run the first GA level.
7:   return the reconstructed value of each control parameter.
8: end for
9: for the second-level GA do
10:  Set the central frequency of an excitation signal  $f(t)$ .
11:  Set the upper and lower limits of  $L_{s1}$  and  $L_f$  as the same as the first GA level.
12:  Set upper and lower limits of  $E_{s1}$  and  $E_{s2}$  by using  $\pm 50\%$  derivations of their reconstructed values obtained
     from the first GA level.
13:  Run the second GA level.
14:  return the reconstructed value of each control parameter.
15: end for
16: for the third-level GA do
17:   Set the central frequency of an excitation signal  $f(t)$ .
18:   Set the upper and lower limits of  $L_{s1}$  and  $L_f$  by using  $\pm 5\%$  derivations of their reconstructed values obtained
     from the second GA level.
19:   Set the upper and lower limits of  $E_{s1}$  and  $E_{s2}$  by using  $\pm 10\%$  derivations of their reconstructed values obtained
     from the second GA level.
20:   Run the third GA level.
21:   return the reconstructed value of each control parameter.
22: end for
```

318 In order to avoid an inverse crime, to compute u_m induced by targeted control parameters, the
319 fluid-solid domain is discretized by using an element size of 0.1 m, while an element size of 0.2 m
320 is used for computing u due to estimated control parameters. In the forward and inverse modeling,
321 the time step is 0.001 s, and the total observation duration T is set as 1 s.

322 In the following, three examples of numerical experiments are presented. The first one tests the
323 inversion performance of the three-level GA approach by using a dynamic force of a Ricker pulse
324 signal with its central frequency of 5, 10, and 15 Hz, respectively, in each level. In the second
325 example, the inversion performance is examined by using a decreasing frequency-continuation
326 counterpart of 15, 10, and 5 Hz. The last example investigates the utilization of preliminary
327 inversion using all-solid layers for detecting the presence of a fluid-filled cavity by identifying E
328 and ρ of all the solid layers, among which one layer shows a very large value of E (with a value

329 being similar to that of the bulk modulus of water) and ρ of the value of the mass density of
 330 water. Once the preliminary inversion is completed, the optimizer uses the presented three-level
 331 GA approach based on the fluid-solid wave model as a primary inversion.

332 To analyze the inversion results, the error between each target control parameter (L_{s1} , L_f , E_{s1} ,
 333 and E_{s2}) and its estimated counterpart of the fittest individual at each generation is calculated as:

$$334 \quad \mathcal{E} = \frac{|\text{A targeted value} - \text{An estimated value}|}{|\text{A targeted value}|} \times 100 [\%]. \quad (30)$$

335 An averaged error of all the control parameters of the best-fit individual at each generation is also
 336 calculated as:

$$337 \quad \bar{\mathcal{E}} = \frac{\sum_{k=1}^4 \mathcal{E}_k}{4} [\%]. \quad (31)$$

338 where \mathcal{E}_k is the error (30) of the reconstruction of the k -th control parameter.

339 Exemplary forward wave responses

340 Prior to the study of the inversion performance, an exemplary forward wave response in the
 341 computational domain induced by a pulse loading at the top surface is shown by considering the
 342 fluid-solid model 3 with $L_{s1} = 50$ m, $L_f = 80$ m, $L_{s2} = 120$ m, $E_{s1} = 2 \times 10^8$ N/m², and $E_{s2} =$
 343 5×10^8 N/m². The time-dependent value of the dynamic force applied at the top surface is a Ricker
 344 wavelet with its central frequency of 20 Hz and its peak amplitude of 1000 N/m².

345 The wave responses over space and time are shown in Fig. 3. In this seismogram, the stress field
 346 in the solid layers and the acoustic pressure in the fluid layer are shown. The seismogram shows
 347 the following behaviors. (i) The elastic wave propagates throughout the first solid layer from the
 348 top surface and is transmitted via the first solid-fluid interface at $x = 50$ m to the fluid layer (please
 349 see the wave response around $x = 50$ m and $t = 0.2$ s). While the wave enters into the fluid layer, it
 350 reflects off the interface back to the solid layer at the same time. (ii) The acoustic pressure wave in
 351 the fluid layer is transmitted into the second solid layer through the second solid-fluid interface at
 352 $x = 80$ m and reflects off the interface back to the fluid layer (please see the wave response around
 353 $x = 80$ m and $t = 0.2$ s). (iii) The stress wave in the second solid layer is transmitted through the

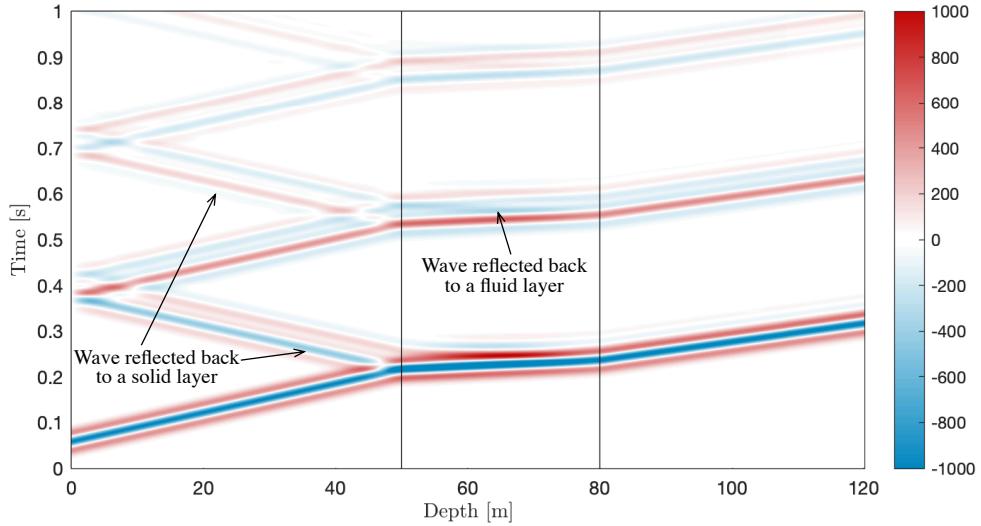


Fig. 3. The seismogram of the stress field [N/m^2] in the solid layers ($0 \leq x \leq 50$ and $80 \leq x$) and the acoustic pressure [N/m^2] in the fluid layer ($50 < x < 80$) induced by a dynamic loading at the top surface ($x = 0$). The solid lines at $x = 50$ and 80 m indicate the fluid-solid interfaces. The arrows indicate the waves that are reflected from the interfaces and propagating backward. The acoustic waves that are reflected from the second interface are more visible in the time of 0.55 s than in 0.25 s in this plot.

absorbing boundary at $x = 120$ m without any reflection (please see the wave response around $x = 120$ m and $t = 0.3$ s). The system repeats (i) to (iii) until the amplitude of the wave fades away.

In the presented inverse modeling, the sensor on the top surface records the response signal in the time domain. The amplitudes and timings of the recorded signal may provide the inversion solver with information about the material properties of solid layers and the locations of fluid-solid interfaces. In other words, the timings of particular parts of the signal could indicate, primarily, the locations (L_{s1} and L_f) of the fluid-solid interfaces, while the amplitudes of particular parts of the signal could indicate, primarily, the material properties (E_{s1} and E_{s2}) in the solid layers.

Example 1 - Investigating the inversion performance by increasing the dominant frequency of excitation for each GA level

In this example, the performance of the presented multi-level GA is studied for identifying targeted control parameters by increasing the frequency of an excitational Ricker signal for each GA level. That is, a dynamic pulse of its dominant frequency 5 Hz is used in the first-level GA, and,

367 then, 10 and 20 Hz are used in the next levels. The control parameters to be identified are L_{s1} , L_f ,
368 E_{s1} , and E_{s2} . Cases 1-3, which use the fluid-solid models 1, 2, and 3, respectively, are considered.

369 • In Case 1, the targeted values of L_{s1} and L_f are 20 and 25 m, respectively, while the values
370 of their estimated counterparts, during the first-level GA level, are bounded as $10 \leq L_{s1} \leq$
371 22 m and $23 \leq L_f \leq 35$ m. Please note that their upper and lower limits are changed for the
372 second and third GA levels as previously discussed.

373 • In Case 2, the targeted values of L_{s1} and L_f are set to be 40 and 45 m, respectively, while the
374 values of their estimated counterparts, during the first GA level, are bounded as $30 \leq L_{s1} \leq$
375 42 m and $43 \leq L_f \leq 55$ m.

376 • In Case 3, the estimated values of L_{s1} and L_f bounded as $40 \leq L_{s1} \leq 65$ m and $66 \leq L_f \leq$
377 90 m in the first-level GA, and their targeted counterparts are 50 and 80 m, respectively.

378 For all cases, the targeted values of Young's moduli are set to be $E_{s1} = 2 \times 10^8$ Pa and $E_{s2} = 5 \times 10^8$
379 Pa, while their estimated values for both moduli during the first GA level are bounded as 1×10^8 Pa
380 $\leq E \leq 7.5 \times 10^8$ Pa. Their upper and lower limits are changed for the second and third GA levels as
381 previously discussed.

382 Table 1 presents the reconstructed control parameters of the fittest individual that is obtained
383 at the last generation of each GA level per each case. The table also includes the average error $\bar{\mathcal{E}}$,
384 (31), of all the parameters reconstructed at the end of each GA level and the error \mathcal{E} , (30), of each
385 control parameter of the fittest individual at the end of the last-level GA. In all Cases 1 to 3, the
386 value of $\bar{\mathcal{E}}$ at the end of the last-level GA is smaller than that at the end of the first-level GA, and
387 the final values of $\bar{\mathcal{E}}$ in all the cases 1 to 3 are smaller than 1%.

388 Fig. 4 shows that the average error for the best-fit individual at each generation tends to be
389 decreased during the presented inversion process. The authors note that, after about 20 GA
390 iterations in the first-level GA, the value of $\bar{\mathcal{E}}$ is converged but still shows room for improvement
391 (i.e., the optimizer finds an inversion solution around a local minimum). To address such solution
392 multiplicity in the first-level GA, a misfit function is used for u_m induced by a pulse signal of a

TABLE 1. Example 1: Reconstructed values of the control parameters for each GA level obtained by increasing the frequency of the dynamic force for each GA level. The last row of each case represents the error at the third-level GA.

Cases	GA level	L_{s1} (m)	L_f (m)	E_{s1} (Pa)	E_{s2} (Pa)	Average Error $\bar{\mathcal{E}}$
Case 1	Target	20	25	2×10^8	5×10^8	
	1st	20.4	24.9	2.13×10^8	5.66×10^8	5.53%
	2nd	19.8	24.3	1.97×10^8	4.94×10^8	1.63%
	3rd	20.0	24.8	2.00×10^8	5.08×10^8	0.60%
	Individual error	0.00%	0.80%	0.00%	1.60%	
Case 2	Target	40	45	2×10^8	5×10^8	
	1st	41.7	46.2	2.20×10^8	5.86×10^8	8.53%
	2nd	40.6	46.0	2.06×10^8	5.16×10^8	2.48%
	3rd	39.9	44.7	1.98×10^8	4.97×10^8	0.63%
	Individual error	0.25%	0.67%	1.00%	0.60%	
Case 3	Target	50	80	2×10^8	5×10^8	
	1st	53.1	90.0	2.28×10^8	5.49×10^8	10.63%
	2nd	48.9	79.2	1.91×10^8	5.33×10^8	3.58%
	3rd	49.9	79.9	1.98×10^8	5.06×10^8	0.63%
	Individual error	0.20%	0.12%	1.00%	1.20%	

393 new central frequency in the next-level GA. By doing so, the optimizer in the second-level GA can
 394 escape the local minimum of the first-level GA. By applying the same technique in the third-level
 395 GA, the solution multiplicity of the second-level GA **can be resolved**. Therefore, **the authors**
 396 suggest that it is feasible to reconstruct control parameters effectively by using a multi-level GA
 397 process combined with a frequency-continuation scheme, by which the frequency is progressively
 398 increased for each GA level.

399 Fig. 5 presents the detail of the inversion performance of Case 3. Namely, Fig. 5 shows the
 400 histograms of the estimated control parameters of the entire population of the individuals during all
 401 the GA levels in Case 3. During the initial few generations of each GA level, the inversion solver
 402 explores a broader range of estimated values of control parameters. After these initial generations,
 403 the values of estimated parameters of individuals are converged.

404 Fig. 6 also shows that u_m induced by the target parameters matches u due to the finally-
 405 reconstructed control parameters, obtained at the end of each GA set, at the sensor on the top

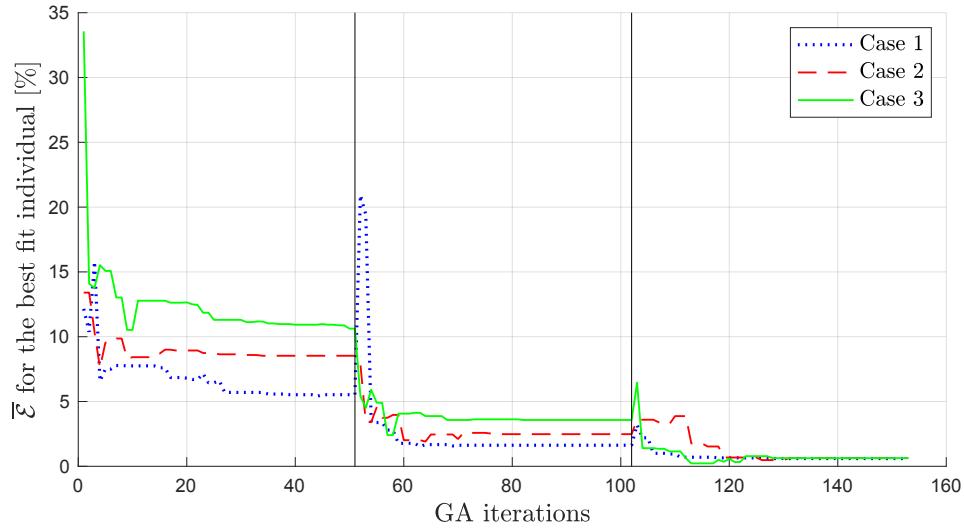


Fig. 4. $\bar{\mathcal{E}}$ for the best-fit individual versus the GA iteration in Example 1. The vertical solid lines at the 51st and 102nd GA iteration indicate the starting of a new GA level and the change in the frequency of the excitational Ricker signal.

406 surface when a Ricker signal with its central frequency of 5 Hz, 10 Hz, or 20 Hz is employed in
 407 Case 3.

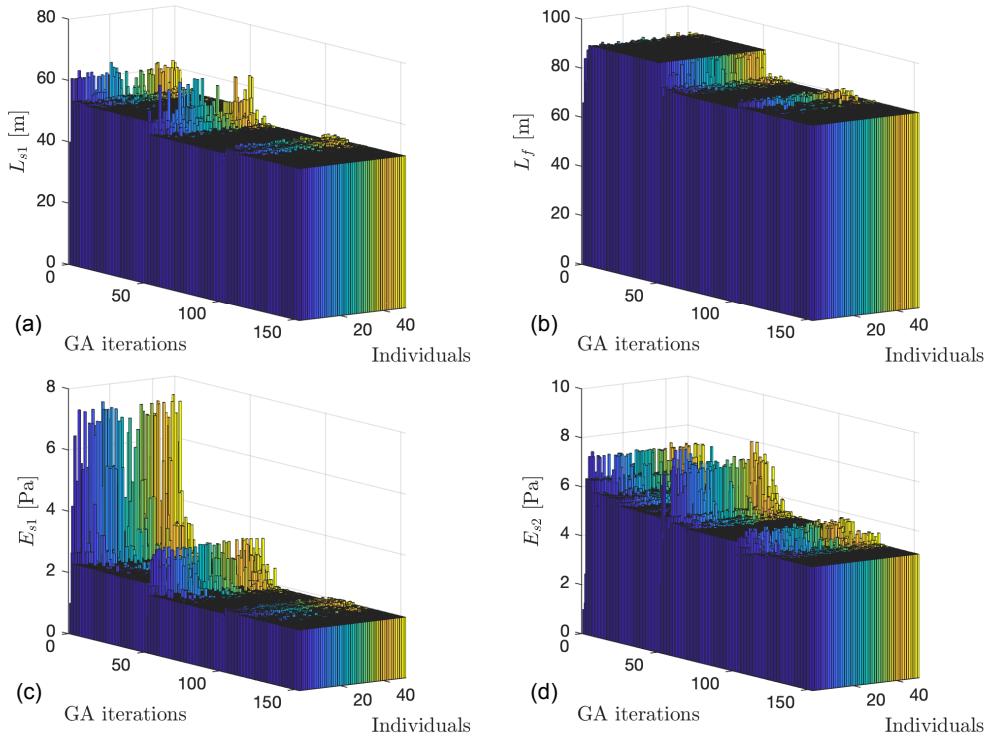


Fig. 5. The histograms of (a) L_{s1} , (b) L_f , (c) E_{s1} , and (d) E_{s2} of the entire population of the individuals at all the generations in Case 3.

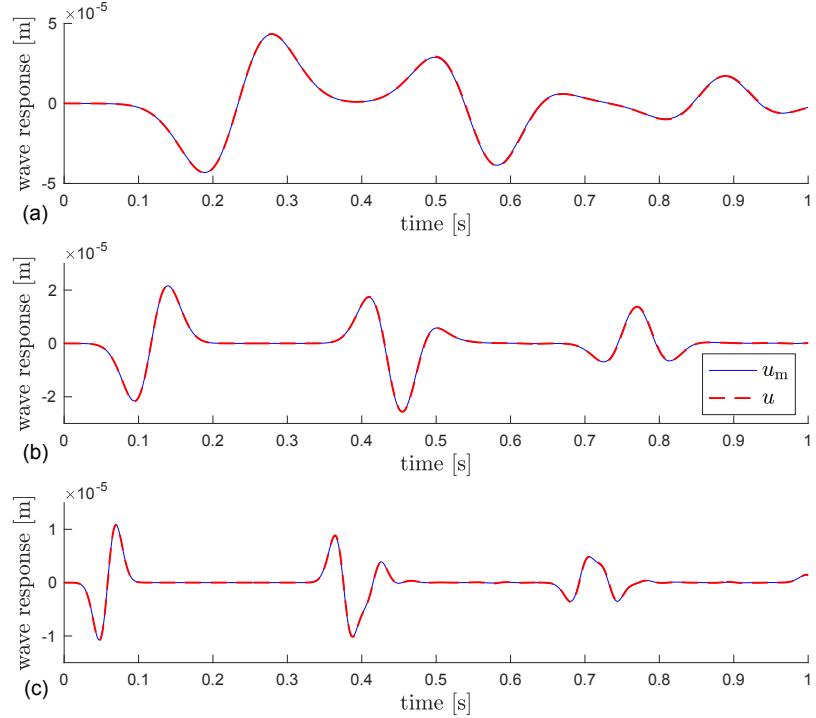


Fig. 6. Wave responses, u_m and u , at the sensor on the top surface induced by a pulse signal of (a) 5 Hz, (b) 10 Hz, and (c) 20 Hz in Case 3.

408 **Example 2 - Investigating the inversion performance by decreasing the dominant frequency**
409 **of excitation for each GA level**

410 This example studies the performance of reconstructing the control parameters by using the
411 presented multi-level GA combined with a frequency-continuation scheme that decreases the dom-
412 inant frequency of the dynamic pulse over the multiple GA levels. The first, second, and third-level
413 GA use input force signals of central frequencies of 20 Hz, 10 Hz, and 5 Hz, respectively. Cases
414 4-6, which use the models 1, 2, and 3, respectively, [are examined](#). The upper and lower limits of es-
415 timated control parameters for each GA level are set the same as those in Example 1. Table 2 shows
416 the values of finally-reconstructed control parameters, and Fig. 7 shows that the average errors for
417 the best-fit individual of all the Cases 4-6 become smaller over the generations and the GA levels.
418 The final values of $\bar{\mathcal{E}}$ in all the Cases 4 to 6 are smaller than 2% in Example 2. Thus, [the authors](#)
419 suggest that the presented multi-level GA-based optimizer combined with a frequency-continuation
420 scheme, which decreases the frequency for each GA level, is able to identify the values of the
421 targeted control parameters as effectively as the increasing-frequency counterpart. However, this
422 would be the case only in the presented example because the presented example contains a small
423 number of control parameters. In a more complex case (e.g., 2D or 3D settings), where there are a
424 large number of control parameters, the decreasing frequency-continuation scheme may not be as
425 effective as its counterpart of increasing frequency.

TABLE 2. Example 2: Reconstructed values of the control parameters for each GA level obtained by decreasing the frequency of the dynamic force for each GA level.

Cases	GA level	L_{s1} (m)	L_f (m)	E_{s1} (Pa)	E_{s2} (Pa)	Average Error $\bar{\mathcal{E}}$
Case 4	Target	20	25	2×10^8	5×10^8	
	1st	21.4	27.3	2.29×10^8	5.55×10^8	10.43%
	2nd	20.1	24.9	2.04×10^8	5.18×10^8	1.63%
	3rd	20.2	25.7	2.02×10^8	5.04×10^8	1.40%
Individual error		1.00%	2.80%	1.00%	0.80%	
Case 5	Target	40	45	2×10^8	5×10^8	
	1st	41.0	45.7	2.11×10^8	6.01×10^8	7.44%
	2nd	40.6	46.3	2.05×10^8	5.09×10^8	2.17%
	3rd	40.0	44.7	2.00×10^8	5.01×10^8	0.22%
Individual error		0.00%	0.67%	0.00%	0.20%	
Case 6	Target	50	80	2×10^8	5×10^8	
	1st	57.5	82.3	2.63×10^8	4.51×10^8	14.79%
	2nd	49.7	77.9	1.98×10^8	4.88×10^8	1.66%
	3rd	49.7	79.9	1.99×10^8	5.18×10^8	1.21%
Individual error		0.60%	0.12%	0.50%	3.60%	

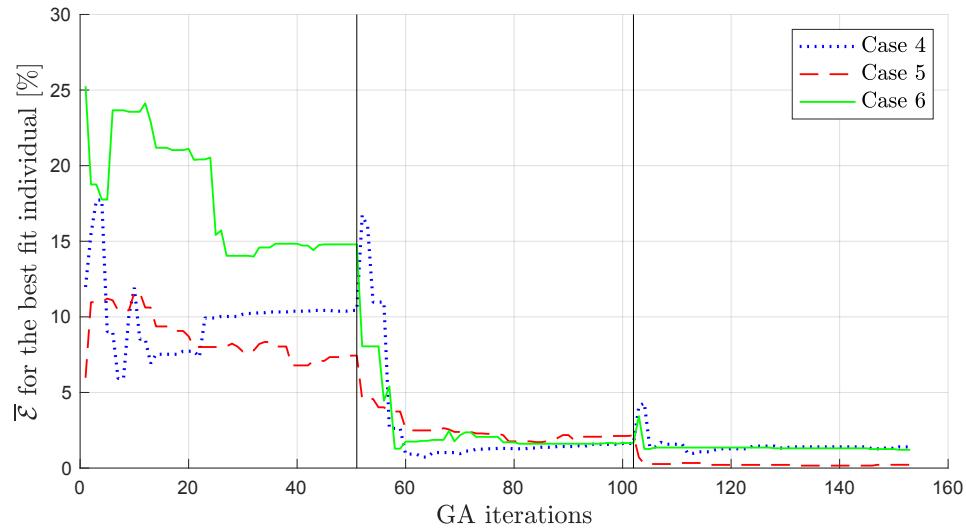


Fig. 7. $\bar{\mathcal{E}}$ for the best-fit individual versus the GA iteration in Example 2. The solid lines at the 51st and 102nd GA iteration indicate the starting of a new GA level and the change in frequency.

426 **Example 3 - Utilization of a preliminary inversion using only solid layers for detecting the**
427 **presence of a fluid layer, followed by a primary inversion using fluid-solid layers**

428 In this example, a preliminary inversion using only solid layers for identifying if a target model
429 contains a fluid-filled cavity [is presented](#). Here, three target models are used: one, which does not
430 contain a fluid layer, and the other two, in which a fluid-filled cavity is included. For all models,
431 [the](#) preliminary GA parameter-estimation method assumes that the target contains only solid layers.
432 Once the preliminary inversion is completed, [the authors](#) continue a primary inversion using a
433 fluid-solid model in a manner that is similar to what is described in Example 1. Such a two-step
434 (preliminary to primary inversion) approach is applied to the following Cases 7-10.

- 435 • Cases 7 and 8 consider a target Model 4, which does not include a fluid layer, and contains
436 only three solid layers of 5 m length each. The targeted Young's modulus of each layer is:
437 $E_{s1} = 2 \times 10^8$ Pa, $E_{s2} = 3 \times 10^8$ Pa, and $E_{s3} = 5 \times 10^8$ Pa, respectively. For Case 7, the targeted
438 mass densities of all the layers are all same: $\rho_{s1} = \rho_{s2} = \rho_{s3} = 2000$ kg/m³, whereas, for Case
439 8, they are all different from each other: $\rho_{s1} = 1500$ kg/m³, $\rho_{s2} = 2000$ kg/m³, and $\rho_{s3} =$
440 2200 kg/m³.
- 441 • Case 9 considers Model 5, which consists of three layers, i.e., two solids and one fluid. Model
442 5 has a total length L_{s2} of 15 m, and its fluid is located between x of $L_{s1} = 5$ m and x of $L_f =$
443 10 m. The Young's moduli of the solid layers are $E_{s1} = 2 \times 10^8$ Pa and $E_{s2} = 5 \times 10^8$, and their
444 mass densities are $\rho_{s1} = \rho_{s2} = 2000$ kg/m³, respectively. The bulk modulus (k_f) and mass
445 density (ρ_f) of the fluid layer are 2.34×10^9 N/m² and 1021 kg/m³, respectively.
- 446 • Case 10 considers Model 6, which consists of a fluid layer surrounded by solid layers. The
447 fluid layer is located between x of $L_{s1} = 4$ m and x of $L_f = 9.3$ m, and its L_{s2} is 15 m. The
448 properties of the fluid layer (k_f and ρ_f) and the Young's moduli of the solid layers (E_{s1} and
449 E_{s2}) are the same as those in Case 9 except that the mass densities of solid layers are $\rho_{s1} =$
450 1900 kg/m³ and $\rho_{s2} = 2100$ kg/m³.

451 Case 7 and 8 study the capability of the preliminary inversion to detect the absence of a fluid

452 layer by estimating E and ρ of all solid layers. Case 9 and 10, by using only solid layers during
453 the preliminary inversion, investigate what values of final-converged E and ρ from the preliminary
454 inversion indicate the presence of a fluid-filled cavity in the model.

455 *Preliminary inversion using all solid-layer model*

456 For all Cases 7-10, the preliminary inversion method utilizes only one frequency level of GA,
457 where a Ricker pulse signal with a central frequency of 50 Hz is used as the dynamic force, and the
458 number of generations and population size are 50 and 100, respectively. Moreover, the estimated
459 values for Young's moduli in all solid layers are bounded as $1 \times 10^8 \leq E \leq 50 \times 10^8$ Pa, and the
460 estimated values of their ρ bounded as $1000 \leq \rho \leq 3000$ kg/m³. Furthermore, the preliminary
461 inversion assumes that the target contains three solid layers of 5 m length each.

462 Fig. 8 shows the reduction of average errors for the best-fit individual for Cases 7 to 10 as the
463 number of GA generations increases in the preliminary inversion. Table 3 shows the targeted and
464 reconstructed control parameters from the preliminary inversion for Cases 7 to 10. For Cases 7
465 and 8, the results show that the preliminary GA-based inversion algorithm can determine that all
466 the layers in the target model are solid layers because the order of magnitude of estimated Young's
467 moduli are all 2 to 5×10^8 Pa in all the solid layers, and the order of magnitude of their estimated
468 mass densities are all 1500 to 2200 kg/m³. The average error in Cases 7 and 8 is 3.82% and 4.82%,
469 respectively. On the contrary, in Cases 9 and 10, the preliminary inversion led to the estimated
470 values of E_{s2} and ρ_{s2} of the second solid layer such that it can be interpreted as a fluid layer. Namely,
471 the estimated values of E_{s2} as 22.95×10^8 Pa (Case 9) and 24.32×10^8 Pa (Case 10) are similar to the
472 bulk modulus 23.4×10^8 Pa of water, and the estimated values of ρ_{s2} as 1022 kg/m³ (Case 9) and
473 1070 kg/m³ (Case 10) are similar to the mass density 1021 kg/m³ of water. The average errors in
474 Cases 9 and 10 are 2.16% and 17.13%, respectively. Thus, after detecting the fluid layers in Case
475 9 and 10, the authors continue the primary inversion in Cases 9 and 10 as follows.

476 *Primary inversion using a fluid-solid model*

477 After the preliminary inversion using the solid-only wave solver, the three frequency-level GA-
478 based optimizer that uses a fluid-solid wave model estimates the fluid layer's depth information and

TABLE 3. Example 3: Reconstructed values of the control parameters obtained by a preliminary inversion. In Cases 9 and 10, the targeted E_{s2}^* (23.4×10^8 Pa) adopts the bulk modulus of the fluid layer.

Cases		E_{s1} (Pa)	E_{s2} (Pa)	E_{s3} (Pa)	ρ_{s1} (kg/m ³)	ρ_{s2} (kg/m ³)	ρ_{s3} (kg/m ³)	Average Error $\bar{\mathcal{E}}$
Case 7	Target	2×10^8	3×10^8	5×10^8	2000	2000	2000	
	Preliminary values	2.01×10^8	2.88×10^8	5.26×10^8	1943	2017	1810	3.82%
	Individual error	0.50%	4.00%	5.20%	2.85%	0.85%	9.50%	
Case 8	Target	2×10^8	3×10^8	5×10^8	1500	2000	2200	
	Preliminary values	2.10×10^8	3.08×10^8	4.93×10^8	1560	2092	2448	4.82%
	Individual error	5.00%	2.67%	1.40%	4.00%	4.60%	11.27%	
Case 9	Target	2×10^8	$23.40 \times 10^8^*$	5×10^8	2000	1021	2000	
	Preliminary values	2.01×10^8	22.95×10^8	5.07×10^8	2024	1022	1843	2.16%
	Individual error	0.50%	1.92%	1.40%	1.20%	0.10%	7.85%	
Case 10	Target	2×10^8	$23.40 \times 10^8^*$	5×10^8	1900	1021	2100	
	Preliminary values	2.52×10^8	24.32×10^8	6.53×10^8	1549	1070	1701	17.13%
	Individual error	26.00%	3.93%	30.60%	18.47%	4.80%	19.00%	

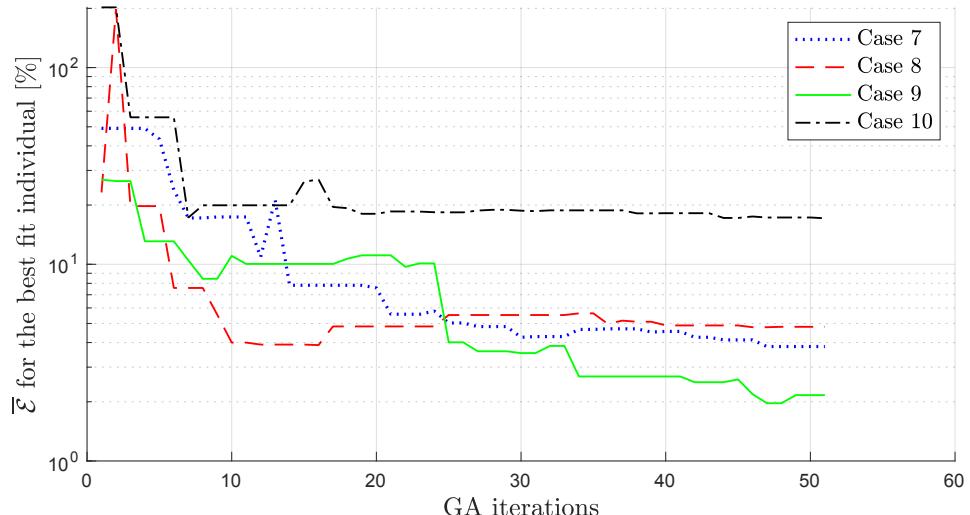


Fig. 8. $\bar{\mathcal{E}}$ for the best-fit individual versus the GA iteration in Example 3 for the preliminary inversion.

479 the material properties (E and ρ) of the soil layers. Namely, the preliminary inversion results from
480 Cases 9 and 10 are used for determining the bounds of guessed parameters in the first-frequency set
481 of the primary GA inversion using the fluid-solid model. The increasing-frequency continuation
482 approach is utilized with a dynamic pulse of its dominant frequency 5 Hz in the first frequency-level
483 GA and, then, 10 and 20 Hz in the next frequency levels while the values of the estimated parameters
484 are bounded in each frequency set in the following manner.

- 485 • During the first frequency-level GA using the fluid-solid wave solver, the estimated L_{s1} and
486 L_f values are bounded as $2 \leq L_{s1} \leq 7$ m and $8 \leq L_f \leq 13$ m, the estimated values of E_{s1}
487 and E_{s2} are bounded as $1 \times 10^8 \leq E \leq 7.5 \times 10^8$ Pa, and the estimated values of ρ_{s1} and ρ_{s2}
488 (i.e., the mass densities of surrounding soil layers) are set as $1500 \leq \rho \leq 2500$ kg/m³.
- 489 • In the second frequency-level GA, the values of estimated L_{s1} and L_f are bounded using the
490 same upper and lower limits as the first frequency-level GA. The values of estimated E_{s1} and
491 E_{s2} are bounded using $\pm 50\%$ derivations of their final-reconstructed values obtained during
492 the first frequency-level GA, while the values of estimated ρ_{s1} and ρ_{s2} are bounded using \pm
493 20% derivations.
- 494 • Finally, in the last frequency-level GA, the estimated L_{s1} and L_f values are bounded by using
495 $\pm 5\%$ derivations of their final-reconstructed values obtained during the second frequency-
496 level GA, while $\pm 10\%$ derivations of the values of estimated E_{s1} and E_{s2} are employed to
497 bound the limits of Young's moduli, and $\pm 10\%$ derivations of the final-reconstructed values
498 of ρ_{s1} and ρ_{s2} are used as theirs bounds in the last frequency-level GA.

499 Table 4 shows the values of finally-reconstructed control parameters in Cases 9 and 10. For
500 Case 9, the value of $\bar{\mathcal{E}}$ at the end of the last-level GA, 1.74%, is smaller than the error obtained in the
501 preliminary result, 2.16%, shown in Table 3. The same can be noted in Case 10, where $\bar{\mathcal{E}}$ at the end
502 of the last-level GA, 2.79%, is much smaller than $\bar{\mathcal{E}}$ from the preliminary inversion, 17.13%. Fig. 9
503 shows the average error for the best-fit individual over GA iterations of the three-level primary GA
504 inversion using fluid-solid models for both Cases 9 and 10. During the initial several iterations of

TABLE 4. Example 3 - the results of the primary inversion in Cases 9 and 10: Estimated values of the control parameters in each GA level obtained by increasing the frequency of the dynamic force for each GA level.

Cases	GA level	L_{s1} (m)	L_f (m)	E_{s1} (Pa)	E_{s2} (Pa)	ρ_{s1} (kg/m ³)	ρ_{s2} (kg/m ³)	Average Error $\bar{\mathcal{E}}$
Case 9	Target	5	10	2×10^8	5×10^8	2000	2000	
	1st	5.1	10.0	2.01×10^8	5.41×10^8	1965	1843	3.38%
	2nd	5.1	9.8	2.01×10^8	5.45×10^8	1969	1843	3.82%
	3rd	5.1	10.1	1.99×10^8	5.12×10^8	2011	1920	1.74%
Individual error		2.00%	1.00%	0.50%	2.40%	0.55%	4.00%	
Case 10	Target	4	9.3	2×10^8	5×10^8	1900	2100	
	1st	3.1	8.4	2.15×10^8	4.68×10^8	2403	2239	15.36%
	2nd	4.1	9.3	2.02×10^8	5.42×10^8	1922	1981	3.12%
	3rd	4.0	9.3	2.01×10^8	5.37×10^8	1922	1939	2.79%
Individual error		0.00%	0.00%	0.50%	7.40%	1.16%	7.67%	

each frequency level, the algorithm focuses on exploring widely-varying values of the estimated control parameters within the given limits, and this behavior increases error. Later, the error of the algorithm is converged by finding better-fit individuals. Fig. 10 shows the histograms of the estimated control parameters of the entire population of the individuals during all the GA levels in Case 10 during the primary inversion. It demonstrates that, at the beginning of each frequency level, GA explores wide ranges of control parameters and eventually converges to the targeted parameters at the end of the last frequency set.

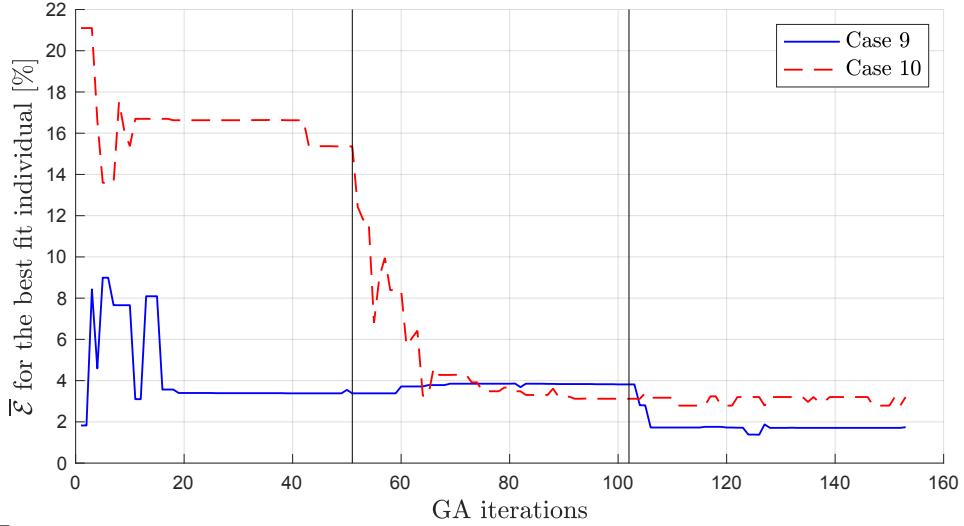


Fig. 9. $\bar{\mathcal{E}}$ for the best-fit individual versus the GA iteration in Cases 9 and 10 during the primary inversion. The vertical solid lines at the 51st and 102nd GA iterations indicate each onset of a new frequency-level GA and the change in the frequency of the excitational Ricker signal.

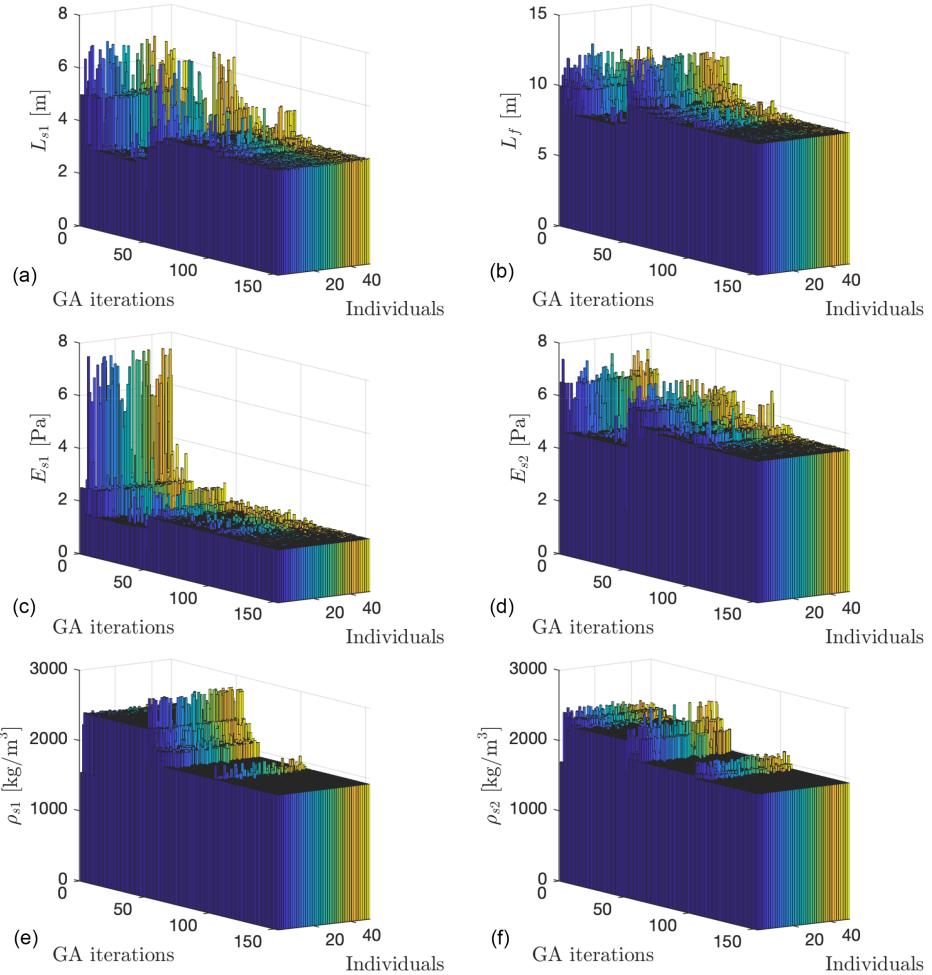


Fig. 10. The histograms of (a) L_{s1} , (b) L_f , (c) E_{s1} , (d) E_{s2} , (e) ρ_{s1} , and (f) ρ_{s2} of the entire population of all the individuals at all the generations in Case 10 during the primary inversion.

512 This Example 3 shows a proof of concept, potentially promising that (i) fluid-filled cavities in a
513 2D or 3D domain **can be detected** by using the all-solid-element-based preliminary inversion of E ,
514 G , and ρ and finding particular solid elements (of a high value of E , a low value of G , and the value
515 of ρ , being similar to 1021 kg/m^3); then, (ii) a fluid-solid-element-based wave solver **can be used**
516 to identify the geometry of a fluid-solid interface and E , G , and ρ of solid elements, surrounding
517 fluid, in the 2D or 3D domain. The details of such 2D/3D extensions are shown below.

518 DISCUSSION

519 Limitations

520 This paper employs a 1D model, which takes into account a horizontally-layered geological
521 model and cannot consider a realistic three-dimensional random variation of material properties
522 of geological formations. In this study, **the authors** did not employ field experimental validation
523 because it is infeasible for the 1D wave model, which does not consider the geometrical damping
524 and the vector wave behaviors in a 3D unbounded solid domain, to be validated through the field
525 experiment.

526 Recommendations

527 This work can be extended into 2D and 3D settings in a manner such that one can identify the
528 geometry of fluid-filled cavities and the material properties of surrounding soils by using an FWI
529 algorithm (instead of GA). The GA is a useful method for identifying a small number of control
530 parameters in a feasibility study. However, when the number of control parameters is large (for
531 instance, in an inverse problem where the material properties E , G , and ρ of all the solid elements
532 in a 2D or 3D setting are to be estimated), the GA is less viable than FWI, which is powered by the
533 PDE-constrained optimization method.

534 Under such a robust FWI, the following two-step approach (i.e., preliminary to primary inver-
535 sion) can be employed to (i) first, detect the existence of fluid-filled voids and (ii) then, accurately
536 identify the geometry of a fluid-solid interface and the material proprieties of soils in 2D/3D
537 settings.

538 • **Preliminary inversion:** One can approximately detect the existence of fluid-filled cavities in
 539 a 2D or 3D domain by using the all-solid-element-based inversion of E , G , and ρ of solids.
 540 In each iteration of this preliminary FWI, the guessed profiles in all the elements (i.e., E , G ,
 541 and ρ) are updated using a gradient vector. Then, it searches an area of interest that shows a
 542 high value of elasticity but a low value of shear modulus and a mass density that is similar to
 543 that of water. In turn, one can consider such an area as a fluid-filled cavity.

544 • **Primary inversion:** After the preliminary FWI, one will turn to a wave solver using fluid ele-
 545 ments coupled with solid elements. Then, one will update the following control parameters—
 546 E , G , and ρ of the solid elements surrounding the potential fluid-filled cavity (modeled as
 547 fluid elements) detected from the preliminary inversion, as well as the geometry parameters
 548 of the interface between fluid and solid elements. The initial guessed profile of the interface
 549 will be based on the result from the preliminary all-solid-element FWI. Fig. 11 depicts a pos-
 550 sible scenario of how one may approximate the initially-guessed geometry of the fluid-solid
 551 interface based on the result from the preliminary all-solid FWI.

552 The proposed method described above can be used as both initial screening (i.e., a preliminary
 553 inversion using all solid elements) and in-depth cavity characterization (i.e., a primary inversion
 554 using both fluid and solid elements). Furthermore, engineers or geologists can somehow know the
 555 existence of water-filled underground cavities or internal soil erosion activities because of surface
 556 signs (e.g., depression or subsidence) or geological/hydrogeological phenomena (e.g., sinkhole
 557 raveling activities) in most of practical geoengineering application sites. Thus, they may have a
 558 combination of preliminary data from several different methods, including the proposed preliminary
 559 inversion, that will greatly benefit the proposed primary inversion using fluid and solid elements in
 560 most cases.

561 **CONCLUSIONS**

562 This work presents a new multi-level GA-based inversion method combined with a frequency-
 563 continuation scheme. Three levels of GA are used, and, in each level, a pulse signal with a

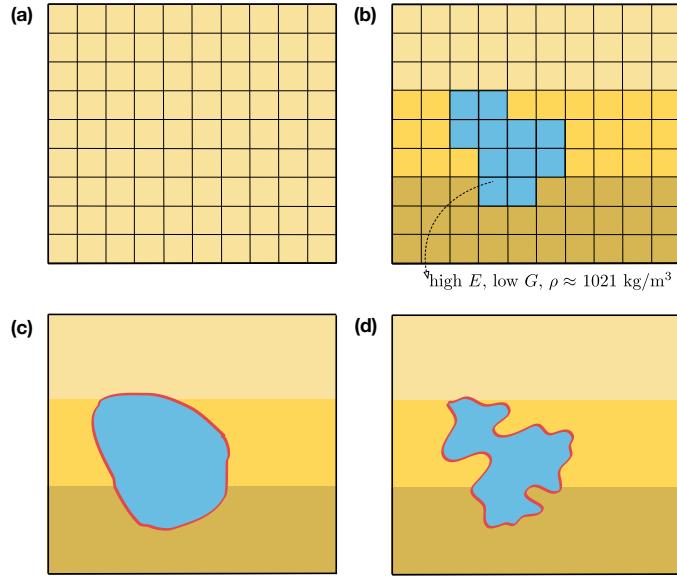


Fig. 11. An exemplary sketch of authors' proposed method in 2D/3D settings: (a) an initial guess of a preliminary inversion, using a structured mesh, (b) the final result of the preliminary inversion, (c) an initial guess of a primary inversion, using an unstructured mesh, and (d) the final result of the primary inversion.

564 different dominant frequency is utilized to tackle the solution multiplicity of the presented inverse
 565 problem. Numerical results show the following findings about the proposed inversion method.
 566 First, it is feasible to estimate the depths of solid-fluid interfaces and Young's moduli of the
 567 surrounding solid layers by employing an acoustic-elastodynamic wave model and a measured
 568 dynamic response at a sensor on the top surface. Second, combining the multi-level GA-based
 569 optimizer with a frequency-continuation scheme improves the performance of identifying targeted
 570 control parameters. Third, the frequency-continuation scheme where the frequency is progressively
 571 decreased for each GA level is as effective as the conventional frequency-continuation scheme (i.e.,
 572 increasing the frequency for each level) in the presented 1D setting. Lastly, a preliminary inversion
 573 using a solid-only model can address the uncertain presence of a fluid layer in a domain by
 574 uncovering that one of the layers has a very large value of Young's modulus (with a similar value
 575 to that of the bulk modulus of water) and a mass density being similar to that of water. After the
 576 preliminary inversion, a primary inversion—based on multiple frequency-level GA using a fluid-
 577 solid model—can adjust the fluid layer's depth information and the material properties of the soil

578 layers. **The authors** also discussed how to extend the presented method in realistic 2D/3D settings.
579 Such an extension may effectively detect water-filled underground cavities and also estimate the
580 risk of potential urban cave-in and Karst sinkholes. Please also note that, in typical engineering
581 projects, **engineers** do not rely on a single geophysical method no matter how advanced its theories
582 or computation capacities are. Thus, the presented method and its extension can be an important
583 supplement to existing testing methods rather than a stand-alone solution in practice.

584 **DATA AVAILABILITY**

585 Some or all data, models, or code generated or used during the study are available from the
586 corresponding author by request.

- 587 • MATLAB code (.m format) of the presented inverse modeling.
- 588 • MATLAB datasets (.mat format) of the presented numerical results.

589 **ACKNOWLEDGMENT**

590 This material is based upon work supported by the National Science Foundation under Award
591 CMMI-2044887 and CMMI-2053694. Any opinions, findings, and conclusions or recommendations
592 expressed in this material are those of the authors and do not necessarily reflect the views
593 of the National Science Foundation. The authors are also grateful for the support by the Faculty
594 Research and Creative Endeavors (FRCE) Research Grant at Central Michigan University. This
595 paper is contribution # **TBD** of the Central Michigan University Institute for Great Lakes Research.
596 **The authors** also greatly appreciate the reviewers' very constructive comments, which substantially
597 helped improving the paper.

598 **REFERENCES**

599 Beck, B. F. (1986). "A generalized genetic framework for the development of sinkholes and karst
600 in Florida, U.S.A.." *Environmental Geology and Water Sciences*, 8(1), 5.

601 Bishop, I., Styles, P., Emsley, S., and Ferguson, N. (1997). "The detection of cavities using
602 the microgravity technique: case histories from mining and karstic environments." *Geological
603 Society, London, Engineering Geology Special Publications*, 12(1), 153–166.

604 Brown, L. T., Boore, D. M., and Stokoe, K. H. (2002). “Comparison of shear-wave slowness profiles
605 at 10 strong-motion sites from noninvasive SASW measurements and measurements made in
606 boreholes.” *Bulletin of the Seismological Society of America*, 92(8), 3116–3133.

607 Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G. (1995). “Multiscale seismic waveform
608 inversion.” *Geophysics*, 60(5), 1457–1473.

609 Butler, D. K. (1984). “Microgravimetric and gravity gradient techniques for detection of subsurface
610 cavities.” *Geophysics*, 49(7), 1084–1096.

611 Coşkun, N. (2012). “The effectiveness of electrical resistivity imaging in sinkhole investigations.”
612 *International Journal of Physical Sciences*, 7(15).

613 Everstine, G. (1997). “Finite element formulatons of structural acoustics problems.” *Computers &*
614 *Structures*, 65(3), 307–321.

615 Fathi, A., Kallivokas, L. F., and Poursartip, B. (2015a). “Full-waveform inversion in three-
616 dimensional PML-truncated elastic media.” *Computer Methods in Applied Mechanics and En-*
617 *gineering*, 296, 39–72.

618 Fathi, A., Poursartip, B., and Kallivokas, L. F. (2015b). “Time-domain hybrid formulations for wave
619 simulations in three-dimensional PML-truncated heterogeneous media.” *International Journal*
620 *for Numerical Methods in Engineering*, 101(3), 165–198.

621 Fathi, A., Poursartip, B., Stokoe II, K. H., and Kallivokas, L. F. (2016). “Three-dimensional P-and
622 S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field
623 data.” *Soil Dynamics and Earthquake Engineering*, 87, 63–81.

624 Fehdi, C., Nouioua, I., Belfar, D., Djabri, L., and Salameh, E. (2014). “Detection of underground
625 cavities by combining electrical resistivity imaging and ground penetrating radar surveys: A
626 case study from Draa Douamis area (North East of Algeria).” *H2Karst Research in Limestone*
627 *Hydrogeology*, Springer, 69–82.

628 Guidio, B. and Jeong, C. (2021). “On the feasibility of simultaneous identification of a material
629 property of a timoshenko beam and a moving vibration source.” *Engineering Structures*, 227,
630 111346.

631 Guzina, B. B., Fata, S. N., and Bonnet, M. (2003). “On the stress-wave imaging of cavities in a
632 semi-infinite solid.” *International Journal of Solids and Structures*, 40(6), 1505–1523.

633 Jeong, C., Na, S.-W., and Kallivokas, L. F. (2009). “Near-surface localization and shape identi-
634 fication of a scatterer embedded in a halfplane using scalar waves.” *Journal of Computational
635 Acoustics*, 17(03), 277–308.

636 Jeong, C., Peixoto, A. C. S., Aquino, A., Lloyd, S., and Arhin, S. (2017). “Genetic algorithm-
637 based acoustic-source inversion approach to detect multiple moving wave sources of an arbitrary
638 number.” *Journal of Computing in Civil Engineering*, 31(5), 04017020.

639 Jung, J., Jeong, C., and Taciroglu, E. (2013). “Identification of a scatterer embedded in elastic
640 heterogeneous media using dynamic XFEM.” *Computer Methods in Applied Mechanics and
641 Engineering*, 259, 50–63.

642 Kallivokas, L., Fathi, A., Kucukcoban, S., Stokoe, K., Bielak, J., and Ghattas, O. (2013). “Site
643 characterization using full waveform inversion.” *Soil Dynamics and Earthquake Engineering*,
644 47, 62–82.

645 Kang, J. W. and Kallivokas, L. F. (2010). “The inverse medium problem in 1D PML-truncated
646 heterogeneous semi-infinite domains.” *Inverse Problems in Science and Engineering*, 18(6),
647 759–786.

648 Kang, J. W. and Kallivokas, L. F. (2011). “The inverse medium problem in heterogeneous PML-
649 truncated domains using scalar probing waves.” *Computer Methods in Applied Mechanics and
650 Engineering*, 200(1), 265–283.

651 Kiflu, H., Kruse, S., Loke, M., Wilkinson, P., and Harro, D. (2016). “Improving resistivity survey
652 resolution at sites with limited spatial extent using buried electrode arrays.” *Journal of Applied
653 Geophysics*, 135, 338–355.

654 Kim, Y. J., Nam, B. H., Shamet, R., Soliman, M., and Youn, H. (2020). “Development of sinkhole
655 susceptibility map of east central florida.” *Natural Hazards Review*, 21(4), 04020035.

656 Kucukcoban, S., Goh, H., and Kallivokas, L. F. (2019). “On the full-waveform inversion of Lame
657 parameters in semi-infinite solids in plane strain.” *International Journal of Solids and Structures*,

658 164, 104 – 119.

659 Lloyd, S. F., Jeong, C., and Okutsu, M. (2016). “Numerical investigation on the feasibility of
660 estimating the thickness of Europa’s ice shell by a planned impact.” *Journal of Aerospace
661 Engineering*, 29(5), 04016035.

662 Mirzanejad, M., Tran, K. T., McVay, M., Horhota, D., and Wasman, S. J. (2020). “Sinkhole
663 detection with 3D full seismic waveform tomography.” *GEOPHYSICS*, 85(5), B169–B179.

664 Nam, B. H., Kim, Y. J., and Youn, H. (2020). “Identification and quantitative analysis of sinkhole
665 contributing factors in Florida’s Karst.” *Engineering Geology*, 271, 105610.

666 Nam, B. H. and Shamet, R. (2020). “A preliminary sinkhole raveling chart.” *Engineering Geology*,
667 268, 105513.

668 Nam, B. H., Shamet, R., Soliman, M., Wang, D., and Yun, H.-B. (2018). *Development of a
669 Sinkhole Risk Evaluation Program (Final Rep. No. BDV24-977-17)*. Tallahassee, FL: Florida
670 Dept. of Transportation.

671 Newmark, N. M. (1959). “A method of computation for structural dynamics.” *Proc. ASCE*, Vol. 85,
672 67–94.

673 Pakravan, A., Kang, J. W., and Newtson, C. M. (2016). “A Gauss-Newton full-waveform inversion
674 for material profile reconstruction in viscoelastic semi-infinite solid media.” *Inverse Problems
675 in Science and Engineering*, 24(3), 393–421.

676 Petryk, H. and Mroz, Z. (1986). “Time derivatives of integrals and functionals defined on varying
677 volume and surface domains.” *Archives of Mechanics*.

678 Tihansky, A. B. (1999). “Sinkholes, west-central florida.” *Land subsidence in the United States:
679 US geological survey circular*, 1182, 121–140.

680 Tran, K. T. and McVay, M. (2012). “Site characterization using Gauss-Newton inversion of 2-D full
681 seismic waveform in the time domain.” *Soil Dynamics and Earthquake Engineering*, 43, 16–24.

682 Tran, K. T., McVay, M., Faraone, M., and Horhota, D. (2013). “Sinkhole detection using 2D full
683 seismic waveform tomography.” *GEOPHYSICS*, 78(5), R175–R183.

684 Van Schoor, M. (2002). “Detection of sinkholes using 2D electrical resistivity imaging.” *Journal*

685 *of Applied Geophysics*, 50(4), 393–399.

686 Xiao, H., Kim, Y. J., Nam, B. H., and Wang, D. (2016). “Investigation of the impacts of local-scale

687 hydrogeologic conditions on sinkhole occurrence in East-Central Florida, USA.” *Environmental*

688 *Earth Sciences*, 75(18), 1274.