

Fe-Single-Atom Catalyst Nanocages Linked by Bacterial Cellulose-Derived Carbon Nanofiber Aerogel for Li-S Batteries

Xueyan Lin¹, Wenyue Li², Vy Nguyen³, Shu Wang⁴, Shize Yang⁵, Lu Ma⁶, Yonghua Du⁶, Bin Wang³, and Zhaoyang Fan^{2*}

¹School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, 85281, USA

²School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA

³School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA

⁴College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA

⁵Eyring Materials Center, Arizona State University, Tempe, AZ 85281, USA

⁶National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA

*Email: zyfan@asu.edu

Abstract

Li-S battery (LSB) is promising for achieving high capacity. Still, its development is hindered by the complex redox process with sluggish kinetics and particularly the resulting lithium polysulfides (LiPS) shuttle effects. Single-atom catalysts (SACs), with their maximized atom utilization, could effectively chemisorb soluble LiPSs and expedite the sulfide conversion reaction kinetics. Here we report incorporating Fe single metal atom catalyst (Fe-SAC) in the sulfur cathode design and its electrocatalytic effects. Fe-doped ZIF-8 nanocages were introduced into a cheap biomass bacteria cellulose. A pyrolysis process converted them into an aerogel structure with Fe-SAC-functionalized N-doped carbon nanocages linked by a carbon nanofiber network (FeSA-NC@CBC), which was applied as a scaffold to fabricate freestanding and binder-free sulfur cathodes. We conducted electrochemical measurements to reveal Fe-SAC functions including lowering energy barriers for S_8 reduction to liquid-phase LiPSs and further to solid-phase Li_2S_2/Li_2S and accelerating Li_2S_2/Li_2S nucleation and deposition, as corroborated by our theoretical calculation results. Benefiting from the synergistic effects of highly active Fe-SAC and three-dimensional conductive network, the sulfide reaction kinetics is improved, which can diminish LiPS shuttle effects and therefore improve LBS rate performance and cycling stability. Accordingly, the fabricated FeSA-NC@CBC composite cathode delivers an excellent rate capability at 2C with a reversible capacity of 840 mAh/g and a long-term cyclic stability of 800 mAh/g at 1C after 500 cycles.

Keywords: Single atom catalyst; metal organic framework (MOF); sulfide reaction kinetics; bacterial cellulose; Li-S battery

35 **Introduction**

36

37 With sulfur's superior theoretical specific capacity (1675 mA h g⁻¹) and its low cost, the lithium-sulfur
38 battery (LSB) is considered as a promising candidate for next-generation secondary batteries[1]. Despite
39 decades of effort, the development of LSBs still faces significant challenges[2]. In particular, due to the
40 highly electronic and ionic insulating nature of S₈ and Li₂S, the electron/charge transfer inside cathode is
41 greatly retarded during charge/discharge, which seriously restricted the sulfur utilization and rate capability
42 of LSBs. On the other hand, the huge variation upon cycling owing to the mass density difference between
43 sulfur and Li₂S results in expansion stress, which can easily induce cracks or pulverizations in conventional
44 solid sulfur-carbon composite cathodes. Therefore, catholyte chemistry with highly conductive self-
45 standing and binder-free host matrix is favorable for LSB design, in which lithium polysulfides (LiPS) are
46 dissolved so that the electrolyte can access the freshly exposed S₈ during discharge or Li₂S₂/Li₂S during
47 charging and allows homogeneous dispersion of sulfur. This enables a solid-liquid-solid conversion and
48 therefore overcomes the otherwise extremely slow kinetics in a pure solid-solid reaction[3]. However, due
49 to the sluggish redox kinetics of the intermediate LiPSs, if the LiPSs cannot not be effectively confined and
50 rapidly to converted solid Li₂S₂/Li₂S products inside the cathode, they can diffuse out of the cathode and
51 penetrate the separator to react with the Li metal anode[4, 5], leading to irreversible electrode degradation
52 and interior cycling lifespan, which is a major challenge for LSB technology known as 'shuttle effect'[6].

53 To address the challenges, the use of conductive, porous, and heteroatom-doped carbon matrices as
54 sulfur hosts has been widely reported[7-9]. While this strategy has brought about significant progress, a
55 practical solution is still elusive. With the understanding of the solid-liquid-solid conversion process in the
56 sulfur cathode and recognition of the sluggish reaction kinetics limited by large energy barriers[10], various
57 transition metal-based electrocatalysts have been investigated to promote the redox reaction of sulfides[11,
58 12]. Apart from the established research that has disclosed traditional oxide and nitrite catalysts to enhance
59 the performance and stability of Li-S batteries[13, 14], recent studies have ventured into exploring selenide
60 and boride catalysts [15-17] and complicated phase transitions within various transition-metal compounds

61 to address the inherent limitations in conductivity and thus boost catalytic activity[18-20]. These catalytic
62 materials are typically loaded in a carbon matrix as nanoparticles, which can chemically bind LiPS and
63 accelerates their conversion kinetics[21, 22], resulting in improved battery performance. However, these
64 transition metal-based catalysts are heavy and have feature sizes at tens or even hundreds of nanometers
65 with a low density of surface-active sites. The large amount incorporation required to achieve sufficient
66 efficiency further reduces the already low sulfur fraction in the cathode, sacrificing the overall energy
67 density and competitiveness of LSBs compared to lithium-ion batteries (LIBs)[23, 24]. Besides, downsizing
68 the particles is conducive to providing full access to electrochemical interfaces and smooth electron/ion
69 pathways. Therefore, the employment of single metal atoms in sophisticated electrode design is highly
70 desirable.

71 Atomic-scale single-atom catalysts (SACs) are gaining significant attention due to their unique
72 properties. Commonly, SACs based on transition metals are fabricated by coordinating metal atoms on N-
73 doped graphitic surfaces to form M-NC structures. These SACs offer a theoretical 100 % atom utilization,
74 abundant active sites, and therefore possess a much higher catalytic efficiency than conventional bulk metal
75 and nanoparticle catalysts[25, 26], making them ideal for various electrochemical reactions with
76 exceptional activity and selectivity[27, 28]. Recently, there has been growing interest in incorporating
77 SACs in the sulfur cathode design[29-32], as they are believed to chemisorb LiPS and catalyze their
78 conversion into Li₂S and vice versa, thereby improving the reaction kinetics and reducing energy barriers
79 even with a low SAC mass loading. Recently, d-p orbital hybridization between SACs and sulfur species
80 was proposed as a descriptor to explain the SAC mechanisms in LSBs. The strong hybridization can (i)
81 effectively bind Li₂S and soluble LiPSSs, (ii) make dissociation of S–S bonds easier in the sulfur chain and
82 promote LiPSSs reduction, and (iii) weaken Li–S bonds in the Li₂S cluster and thus reduce the energy barrier
83 to Li₂S oxidation[33]. Hence, researching the roles of SACs in promoting sulfur redox reactions in Li-S
84 chemistry and their incorporation in the cathode structure is significant and holds great potentials.

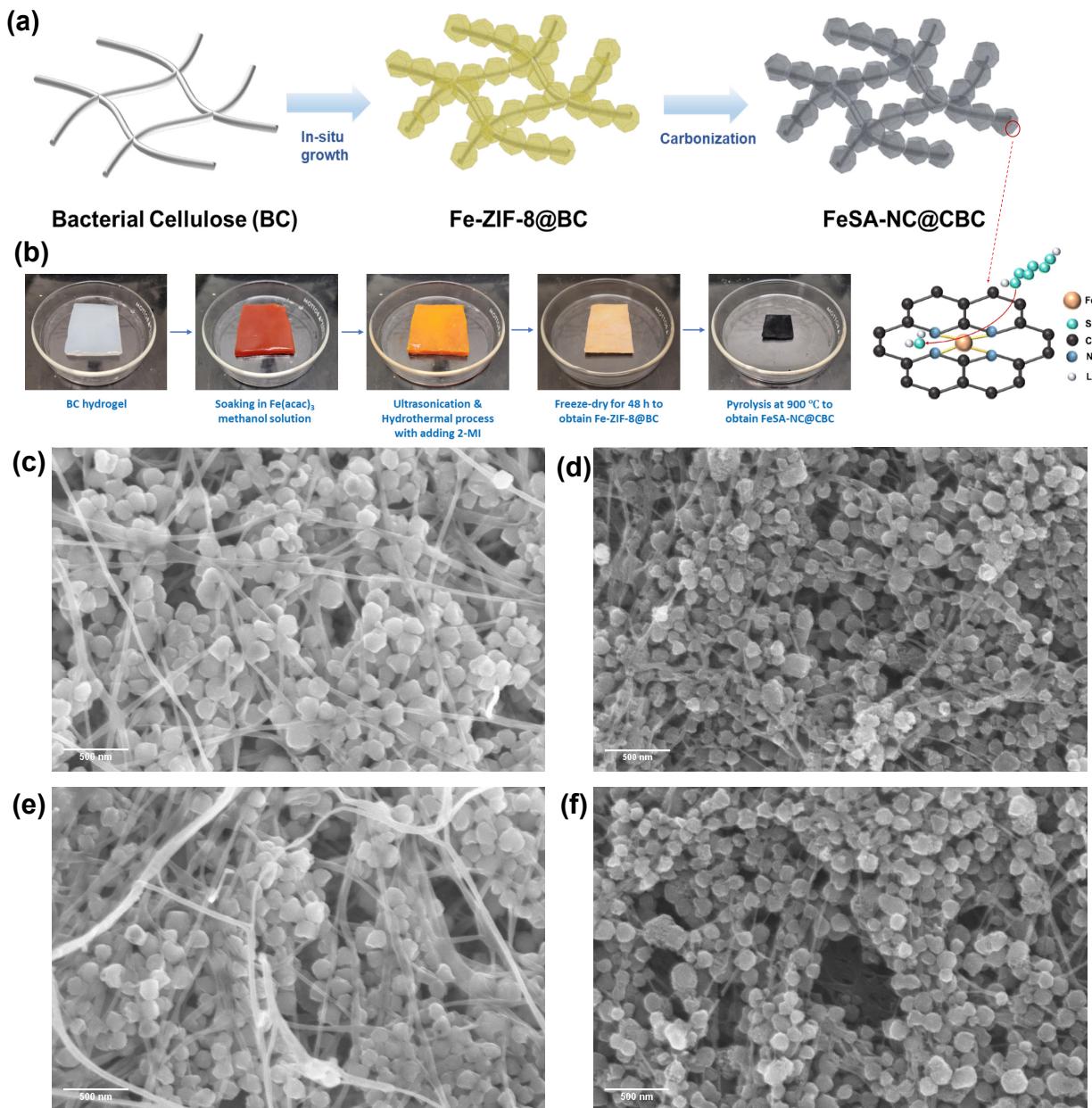
85 Pyrolysis is a commonly used method to synthesize SACs on carbon substrates[33], and metal organic
86 frameworks (MOFs) are ideal precursors for pyrolysis by leveraging the atom spatial confinement function

87 within MOF cages[34]. This is particularly true for metal-doped zeolitic imidazolate framework-8 (M-ZIF-
88 8) that contains abundant nitrogen element. During the pyrolysis process, the ligands of the ZIF-8 organic
89 framework are removed and the metal (M) element with low vapor pressure substitutes Zn to attain M-NC
90 moieties with atomic distribution by being coordinated with substitutional nitrogen (N) atoms in the
91 graphene (C) lattice. The nanocage architecture of MOF could further encapsulates and isolates the metal
92 ions from clustering[35]. The formed porous carbon nanocage structure exposes and makes the SACs
93 accessible, while also trapping dissolved LiPSs[36]. N-rich MOF-derived carbon anchored with a single
94 iron atom (FeSA-NC) has been recently demonstrated to effectively improve the kinetics of LiPSs
95 conversion reaction and enhance the performance of LSBs[37].

96 The reported SACs in literature are commonly synthesized as powder, which are mixed with sulfur,
97 conductive agents, binders, and solvents to form a paste for slurry-coating on aluminum foil, following the
98 conventional powder-based cathode design. A freestanding cathode structure offers advantages over this
99 design. Bacterial cellulose (BC) is a natural biomass material with a three-dimensional (3D) network
100 structure interweaved by numerous nanofibers[38]. Carbonized bacterial cellulose (CBC) has been
101 investigated for multiple electrochemical applications[39], particularly as a freestanding and flexible sulfur
102 host[40], as it enables current collector and binder-free fabrication[40], which can further increase the
103 energy density and reduce the interfacial resistance. It is further noted that the presence of numerous
104 hydroxyl groups on BC macromolecules facilitates the nucleation and growth of nanocrystals on the BC
105 nanofibers and avoids aggregation[41].

106 Herein, we report our investigation of atomically distributed Fe on N-doped graphitic surfaces and their
107 catalytic effects in Li-S chemistry. In addition to FeSA-NC nanocages derived from Fe-doped ZIF-8
108 powder, we synthesized Fe-doped ZIF-8 directly inside BC *in situ* with controlled ZIF-8 crystal particle
109 size. A pyrolysis process carbonized BC into 3D conductive aerogel, with ZIF-8 derived FeSA-NC
110 nanocages anchored on the conductive carbon nanofibers. We utilized this FeSA-NC@CBC aerogel as the
111 host to fabricate freestanding sulfur cathodes and investigate the catalytic functions of FeSA-NC in
112 promoting the S₈-LiPs-Li₂S conversion to address the LiPS shuttling problem. In consistency with DFT-

113 based calculation, significantly improved LSB performance was confirmed through our experiments. The
114 3D interconnected fibrous networks with hierarchical porosity ensure efficient electrical charge transfer
115 and buffer the volume variation during cycling. Coupled with the synergistic effects of highly active Fe-
116 SAC to effectively chemisorb LiPSs and expedite the redox conversion kinetics, the Li–S batteries
117 assembled with such self-standing and binder-free electrocatalytic cathodes deliver a superior rate
118 capability of 840 mAh g⁻¹ at a high current density of 2C and a low-capacity decay rate of 0.042% per cycle
119 after 500 cycles at 1C.

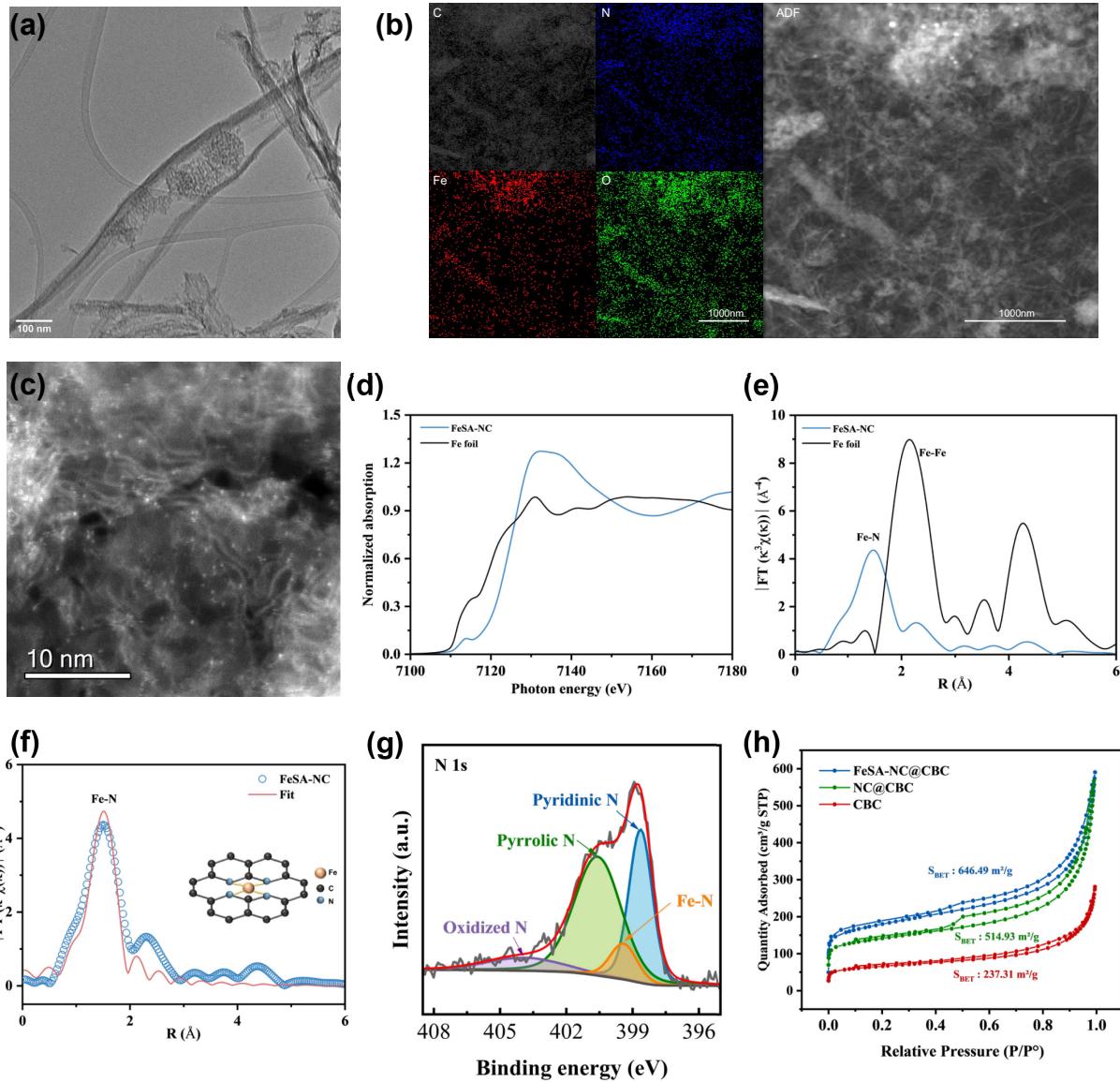

120

121 **Results and Discussion**

122 **Material synthesis and characterization**

123 The overall material preparation process is schematically shown in **Fig. 1(a)** and the material changes
124 after each step are depicted in **Fig. 1(b)** through digital photos. Initially, BC was impregnated into a
125 methanolic solution containing Fe salts and ZIF-8 precursor for adsorption. The functional groups on the
126 BC nanofibers facilitated the growth and dispersion of ZIF-8 nanocrystals along the fiber surface in a
127 solvothermal process. During the formation of ZIF-8 nanocages, the individual Fe ions were spatially
128 isolated and encapsulated. Subsequently, the mixture underwent freeze-drying and pyrolysis, resulting in
129 ZIF-8-derived graphite-like carbon serving as the substrate, with isolated single Fe atoms anchored and
130 stabilized on the carbon substrates through coordination with N atoms. This process yielded a porous
131 structure that enabled efficient mass transfer and physical confinement of sulfur species. As illustrated in
132 **Fig. 1(a)**, the Fe SAC (single atom catalyst) was atomically dispersed on the nanocage surface, chemically
133 trapping the LiPS through strong interaction. Subsequently, the Fe-SAC accelerated the conversion of LiPS
134 to Li₂S by lowering the energy barrier, thereby suppressing the diffusion of LiPS (i.e., shuttle effect)[42].
135 Reference samples were made for comparison. N-doped carbon nanocages linked by carbonized bacterial
136 cellulose (NC@CBC) was prepared by replacing Fe-ZIF-8 with bare ZIF-8 via a similar protocol, and a

137 pure carbonized bacterial cellulose aerogel (CBC) was prepared by direct pyrolysis of BC aerogel without
138 introducing ZIF-8 nanoparticles.



139
140 *Figure 1 (a) Schematic illustration of the synthesis process of FeSA-NC@CBC. (b) Digital photos of*
141 *preparation procedures of Fe-ZIF-8@BC and FeSA-NC@CBC composites. SEM images of (c) ZIF-8@BC,*
142 *(d) NC@CBC, (e) Fe-ZIF-8@BC, and (f) FeSA-NC@CBC, respectively.*

143

144 A scanning electron microscope (SEM) was utilized to observe the surface morphology and architecture
145 of the nanocage-based composite. As displayed in **Fig. S1(a) and (b)**, the carbonized BC (CBC) aerogels
146 retained the 3D network structure of the BC aerogel after pyrolysis at high temperature, in which the
147 nanofibers, with a diameter of a few tens of nm, were interconnected to each other. The branched 3D carbon
148 nanofiber network served as the ideal conductive matrix and current collector for a free-standing sulfur
149 cathode. The free void space in the network helps to accommodate large volume expansion during lithiation
150 process[43]. As shown in **Fig. 1(c) and (e)**, ZIF-8 and Fe-ZIF-8 nanocrystals were decorated along the BC
151 nanofibers during in-situ growth, although they tended to accumulate closer to the surface. The prepared
152 ZIF-8@BC and Fe-ZIF-8@BC composites feature the 3D network structure of BC and a typical
153 dodecahedral shape of ZIF-8 nanocrystals. Abundant hydroxyl groups and highly exposed surface area of
154 BC nanofibers facilitate the ZIF-8 nucleation and thus favors the growth of nanocrystals in small size, as
155 well as prevent their agglomeration and clustering. After pyrolysis, as shown in **Fig. 1(d) and (f)**, the ZIF-
156 8 and Fe-ZIF-8 derived nanocages (NC and FeSA-NC), with a size of ~ 80 nm, are decorated on the carbon
157 scaffold.

158 It is crucial to control the size of synthesized FeSA-NC nanocages for obtaining high-quality FeSA-
159 NC@CBC aerogels. Before integrating the FeSA-NC nanocages into the CBC matrix, homogeneous ZIF-
160 8 derived NC cages with different sizes were synthesized by adjusting the reactant/solvent concentration
161 ratio. As displayed in **Fig. S2(a)-(c)**, the size was controlled to be around 40 nm, 80 nm and >500 nm.
162 Those large nanocages (> 500 nm), derived from large ZIF-8 particles as typically reported in the literature,
163 do not fit in the void space of BC during synthesis. On the other hand, when ZIF-8 nanocrystals of ~ 40 nm
164 diameter were synthesized into the BC matrix, ZIF-8 nanoparticles tend to be highly agglomerated rather
165 than uniformly dispersed along the BC nanofibers (**Fig. S3**). Therefore, the size of FeSA-NC nanocages in
166 this work was elaborately selected to be ~ 80 nm, giving a relatively uniform distribution combining with
167 high specific surface area and maximized active sites utilization. A BET analysis is performed to verify the
168 conclusion as shown in **Fig. S4**, the increased surface area and pore volume of 80 nm FeSA-NC@CBC can
169 be attributed to the uniform distribution of FeSA-NC nanocages inside the CBC matrix.

170
171 *Figure 2 (a) TEM images of FeSA-NC@CBC. (b) ADF-STEM images of FeSA-NC@CBC and its*
172 *corresponding element maps showing the distribution of C (grey), N (blue), Fe (red) and O (green). (c) AC-*
173 *HAADF-STEM image of FeSA-NC@CBC. (d) XANES and (e) FT-EXAFS spectra of the FeSA-NC and Fe*
174 *foil. (f) The corresponding FT-EXAFS fitting curve of FeSA-NC. (g) High-resolution N 1s XPS spectra of*
175 *FeSA-NC@CBC. (h) N₂ adsorption-desorption isotherm of FeSA-NC@CBC, NC@CBC and CBC.*

176
177 Transmission electron microscopy (TEM) images revealed more details on the microstructure of FeSA-NC as
178 shown in **Fig. 2(a)** and **Fig. S5 (a, b)**. The FeSA-NC exhibits a porous hollow structure with plenty of micro and

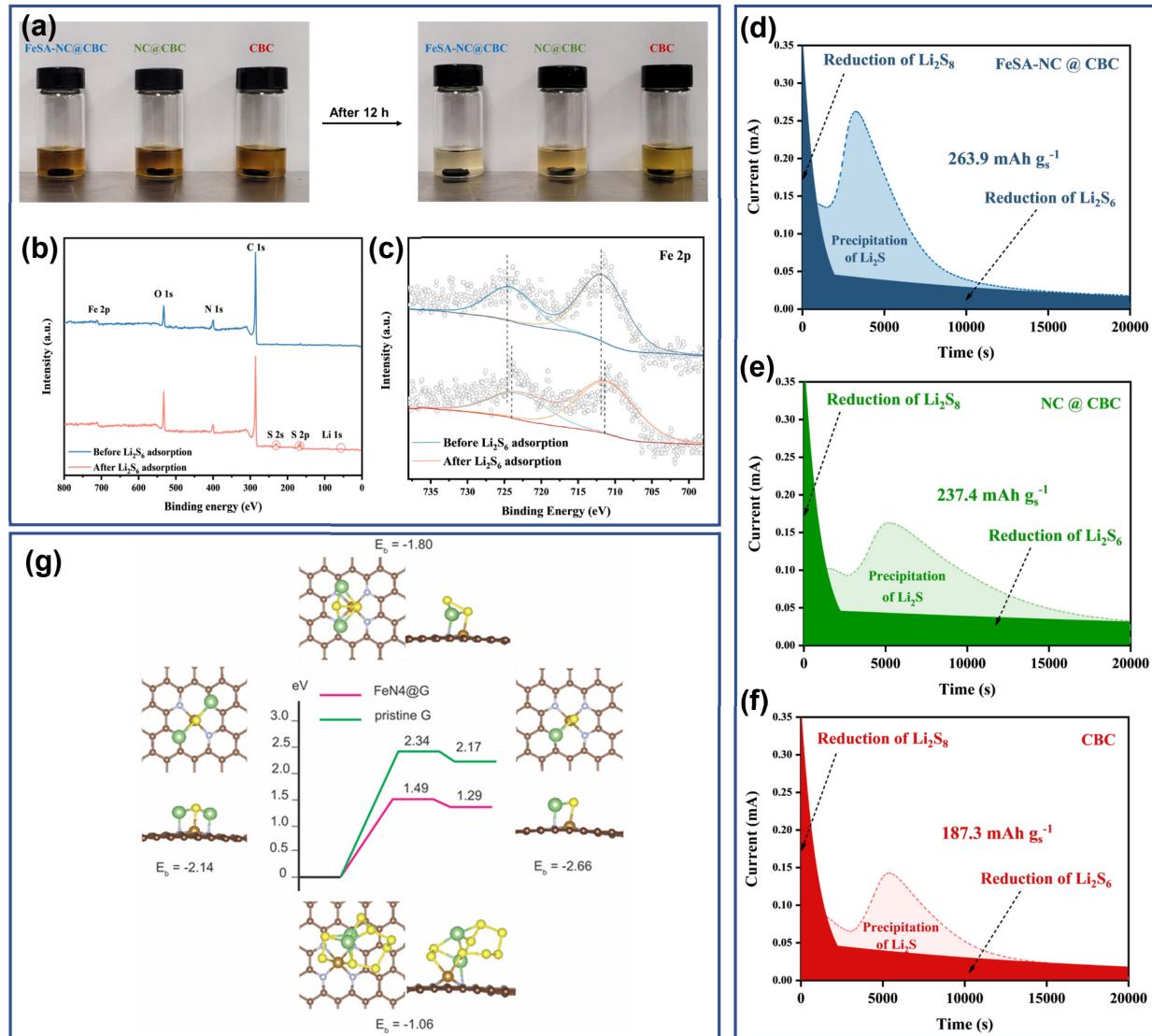
179 mesopores on its surface. The highly porous structure enables exposed active sites for promoting catalysis efficiency
180 and abundant voids to encapsulate or confine LiPSs species. Moreover, porous texture is expected to shorten the
181 diffusion length of the electrolyte ions. Notably, no aggregated nanoparticles or clusters were observed on the carbon
182 substrate, which is consistent with the X-ray diffraction (XRD) pattern without detecting Fe metallic nanoparticles
183 or nanoclusters diffraction signals shown in **Fig. S9**. The annular dark-field scanning TEM (ADF-STEM) image
184 and its corresponding elemental mapping displayed in **Fig. 2(b)** for FeSA-NC@CBC and **Fig. S6** for FeSA-NC
185 confirmed the existence and distribution of C, Fe, N and O. It is worth noting that the distribution of Fe element
186 almost overlapped with N element, suggesting that the N atoms help to anchor the Fe single atoms in the form of
187 Fe-N coordination. The atomic resolution aberration-corrected high-angle annular dark-field STEM (AC-HAADF-
188 STEM) image shown in **Fig. 2(c)** and **Fig. S5(c)** clearly demonstrates the presence of Fe single atoms, which were
189 observed as isolated bright dots dispersing on the carbon support owing to higher Z contrast of Fe than N and C
190 atoms[44-46]. To further understand the electronic structure and coordination environment of the Fe SACs, the X-
191 ray absorption near-edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) of FeSA-
192 NC were measured. The XANES spectra in **Fig. 2(d)** manifests a weak peak at \sim 7113 eV in the pre-edge region.
193 The shift in the absorption edge for FeSA-NC to a higher energy level as compared to that of Fe-foil implying an
194 increase in the oxidation state of Fe. It is assigned to the $1s \rightarrow 3d$ transition along with simultaneous charge transfer
195 of ligand-to-metal, which is regarded as the fingerprint of square-planar Fe-N₄ configuration with a porphyrin-like
196 structure[47]. In the FT-EXAFS spectra presented in **Fig. 2(e)**, an obvious peak at 2.34 Å in Fe foil sample was
197 attributed to the Fe-Fe shell. In contrast, the spectra of FeSA-NC exhibits a primary peak located at \sim 1.5 Å,
198 corresponding to the Fe-N scattering path[35]. The detailed single atom structural status of Fe SACs obtained via
199 EXAFS fitting was presented in **Fig. 2(f)** and **Table S1**, which elucidates the coordination number is 3.6 ± 0.6 with
200 the Fe-N average distance of 2.01 ± 0.04 Å. Accompanied by the absence of Fe-Fe scattering, it can be concluded
201 that the Fe atom is coordinated by N atoms in the form of Fe-N₄ moieties of the Fe center in FeSA-NC[48].

202 X-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical information and atomic
203 bonding configuration in the FeSA-NC@CBC sample. The survey plot in **Fig. S7(a)** indicates the presence of carbon

204 (C), nitrogen (N), oxygen (O) and iron (Fe) and the nitrogen content was found to be 4.6 atom%. The binding states
205 of N, C and Fe in FeSA-NC@CBC were further revealed by high-resolution spectra. The N 1 s spectra in **Fig. 2(g)**
206 can be deconvoluted into four nitrogen species: pyridinic N (398.6 eV), pyrrolic N (400.6 eV), oxidized N (403.9
207 eV) and N coordinated with Fe single atoms (399.4 eV). Different N dopants embedded in carbon are expected to
208 serve as anchor points for Fe atoms and chemically adsorb LiPSs by modifying the carbon substrates with polar
209 surfaces, which can effectively suppress the shuttle effect and improve sulfur utilization [49]. The Fe 2p XPS spectra
210 presented in **Fig. S7(b)** manifested typical peaks assigned to Fe 2p_{1/2} and Fe 2p_{3/2} signals, indicating high-valence Fe
211 atoms in a coordination structure rather than aggregated metallic Fe (706.2 eV). The analysis of the overlapping
212 peaks reveals that the two distinct sub-peaks were observed around 709.8 eV and 713.8 eV, which can be attributed
213 to Fe²⁺ 2p_{3/2} and Fe³⁺ 2p_{3/2}, respectively[50]. Moreover, the peak at 711.6 eV was consistent with the binding energy
214 between Fe and N, further confirming the existence of Fe-N active sites[51]. Regarding the high-resolution spectra
215 of C 1s in **Fig. S7(c)**, the graphitized C–C/C=C bonds (284.8 eV), C–N/C–O bonds (285.6 eV) as well as C=O bonds
216 (287.5 eV) were observed [7].

217 The porous features of the samples were investigated by Brunauer-Emmett-Teller (BET) measurements to
218 determine their specific surface area and pore size distribution. Compared with CBC (237.3 m²/g), the specific
219 surface area of FeSA-NC@CBC and NC@CBC was significantly increased after adding ZIF-8 derived carbon
220 nanocages (646.5 m²/g and 514.9 m²/g, respectively). As depicted in **Fig.2(h)**, the FeSA-NC@CBC shows a typical
221 type IV isotherm which is similar to that of NC@CBC, while the CBC without ZIF-8 derived carbon nanocages
222 manifests a type I isotherm. The higher initial steep adsorption at low P/P⁰ (close to 0) indicates the presence of more
223 abundant micropores in FeSA-NC@CBC and NC@CBC compared to CBC. And the hysteresis loop observed at
224 medium P/P⁰ proves the existence of mesopores. All three samples were found to have micropores (<5 nm) as in the
225 pore size distribution curves (**Fig. S8**), and FeSA-NC@CBC has the highest pore volume of 0.789 cm³/g. Clearly,
226 by introducing carbonized ZIF-8 nanocages, a hierarchical micro/mesoporous structure with enlarged surface area
227 was obtained in FeSA-NC@CBC. The mesopores are mainly derived from the evaporation of Zn species[52]. The
228 high pore volume is conducive to accommodate high sulfur loading and large volume variation upon cycling.
229 Specifically, micropores can give a strong physical confinement for LiPSs to alleviate the shuttle effect whilst

230 mesoporous effectively increase the electrochemical wettability and electrode/electrolyte interfaces[53]. More
231 exposed and accessible Fe SACs active sites facilitate sulfur redox reactions as well as ensuring rapid mass transfer,
232 consequently promoting batteries rate capabilities.


233 The XRD patterns of Fe-ZIF-8@BC before and after carbonization were displayed in **Fig. S9**. The presence of
234 strong peaks of prepared Fe-ZIF-8@BC composite indicates its high crystallinity. However, after pyrolysis, the
235 XRD patterns of FeSA-NC@CBC mainly showed two broad peaks at around 25° and 45° (2 theta), which are
236 assigned to the (002) and (101) reflection of graphitic carbon with a low degree of graphitization, indicating that
237 these carbonized products have amorphous properties[54, 55]. Based on the XRD spectrum of FeSA-NC@CBC,
238 which did not exhibit the Fe-related crystalline peaks, we further confirmed that the atomically dispersed iron spatial
239 isolation was realized during the preparation process.

240

241 **Electrocatalytic studies**

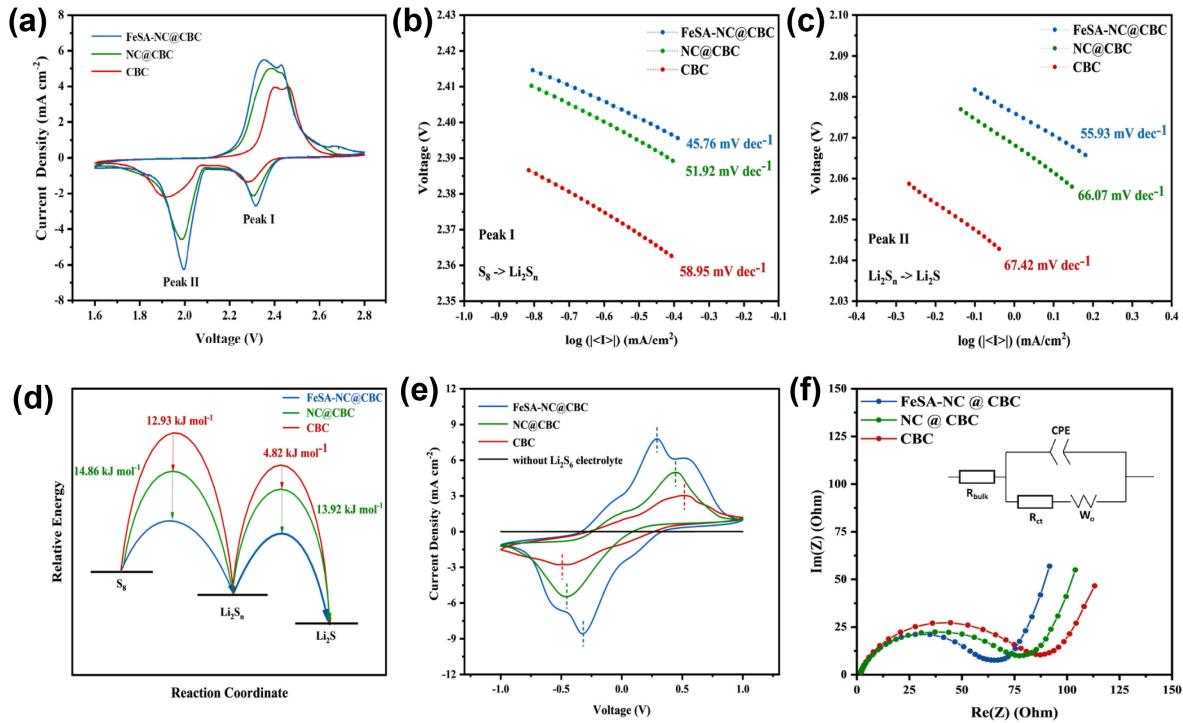
242 To catalytically convert the soluble LiPS to Li₂S₂/Li₂S solids, they must first be absorbed on the catalyst
243 surface. We tested the polysulfide adsorption capability of the three samples. FeSA-NC@CBC, NC@CBC,
244 and CBC freestanding scaffolds were placed into a diluted Li₂S₆ solution (0.005 M) for 12 h to observe the
245 color change. As shown in **Fig. 3(a)**, the dark yellow Li₂S₆ solution became transparent after 12 h with
246 FeSA-NC@CBC. For the bare CBC sample, its nanofiber surfaces and micropores contribute to the
247 physical adsorption of polysulfides[56]. By incorporating ZIF-8 derived nitrogen-doped nanocage in
248 NC@CBC composites, more polysulfides are absorbed due to its increased porous structure as well as the
249 chemical binding effect after N-doing[57]. However, only the solution with FeSA-NC@CBC became
250 almost colorless, indicating the presence of Fe SACs provided a more intense interaction with soluble LiPSSs.
251 The polysulfide adsorption ability is quantitatively compared by the UV-Vis absorbance spectroscopy of the
252 Li₂S₆ electrolyte after soaking. As depicted in **Fig. S10**, the most notable decline in UV absorbance peak
253 intensity was observed with FeSA-NC@CBC, reaffirming its superior polysulfide adsorption capabilities.
254 NC@CBC and CBC also exhibited polysulfide adsorption, albeit to a lesser degree, consistent with the
255 outcomes of visual observation tests. The chemical status and interaction between the FeSA-NC@CBC and

256 polysulfides were further studied by XPS analysis before and after Li_2S_6 adsorption tests. As shown in the
257 wide XPS surveys (**Fig. 3b**), new peaks appeared at 56.5 eV and 168.1 eV corresponded to the Li 1s and S
258 2p regions after polysulfide adsorption. As shown in the high-resolution spectra of Fe 2p (**Fig. 3c**), a
259 noticeable shift towards lower binding energy for the Fe 2p 3/2 and Fe 2p 1/2 peaks is observed when
260 comparing FeSA-NC@CBC in its pristine state to its state after interaction with Li_2S_6 . This shift suggests
261 a charge transfer from Li_2S_6 to the Fe single atoms[11]. In the high resolution spectrum of the S 2p core
262 level (**Fig. S11**), the peaks at 163.3 and 164.6 eV are attributed to the bridge sulfur (S_B^0), and the detected
263 signals at 166.9, 168.4, and 170.5 eV can be assigned to the thiosulfate, polythionate, and sulfate,
264 respectively [26]. The presence of thiosulfate and polythionate, commonly recognized as the catalytic
265 intermediates in sulfur conversion, is probably the result of surface redox reactions occurring between Fe
266 SACs and polysulfides[58].

267

268 *Figure 3 (a) Photos of FeSA-NC@CBC, NC@CBC and CBC initially added in 5 mM Li_2S_6 solution and*
 269 *after aging for 12 h. (b) XPS wide survey and (c) high-resolution Fe 2p XPS spectra of FeSA-NC@CBC*
 270 *before and after Li_2S_6 adsorption tests. Potentiostatic Li_2S precipitation recorded for (d)FeSA-NC@CBC,*
 271 *(e) NC@CBC and (f) CBC electrode. (g) The DFT-calculated adsorption energy of Li_2S and $^*\text{Li}_2\text{S}_m$ ($m =$*
 272 *1, 2, 8) on $\text{FeN}_4@\text{G}$ and the energy barriers of activating the Li-S bond in Li_2S on $\text{FeN}_4@\text{G}$ and pristine*
 273 *graphene (the units are eV).*

274


275 We measured the potentiostatic Li_2S precipitation dynamics using Li-S cells with Li_2S_6 electrolyte to
 276 investigate the catalytic effect of Fe SAC in promoting Li_2S nucleation and precipitation. Three Li-S cells

277 with FeSA-NC@CBC, NC@CBC, and CBC-based sulfur cathodes were comparatively tested. First, we
278 applied the potentiostatic intermittent titration technique (PITT) to probe the quasi-equilibrium potential of
279 polysulfide to Li_2S in the typical DOL/DME electrolyte, which was found to be 2.12 V (Fig. S12). The
280 three Li-S cells with Li_2S_6 electrolyte were then galvanostatically discharged to 2.12 V, followed by
281 potentiostatically discharged at 2.11 V until the current reached 10^{-5} mA. As observed in Fig. 3(d)-(f), the
282 cell current initially dropped monotonically. This current came from charging non-faradic double layers
283 and reducing higher order polysulfides (Li_2S_6). It monotonically decreased with diminished higher order
284 polysulfides and completion of charging the electrical double layers. Subsequently, the cell current rose,
285 reached a maximum, and then reduced to a background value, corresponding to the nucleation activity of
286 solid Li_2S , followed by the growth of nucleates to form a compact insulating film, where the reaction
287 stopped[57, 59]. FeSA-NC@CBC gave a sharp and fastest current response with the highest current
288 (0.261 mA) and capacity (243.2 mAh g⁻¹) for Li_2S precipitation, compared to NC@CBC (0.165 mA,
289 208.7 mAh g⁻¹) and bare CBC electrode (0.153 mA, 187.3 mAh g⁻¹). These results indicate that the FeSA-
290 NC@CBC exhibits the best capability to accelerate the polysulfides conversion (i.e., the Li_2S precipitation)
291 and promote the efficient utilization of lithium polysulfides. The experimentally observed redox chemistry
292 promotion over the well-dispersed Fe metal centers can be explained by the DFT calculation.

293 To evaluate the LiPS encapsulated ability of FeSA-NC and its electrocatalytic activity in the redox
294 chemistry, DFT calculations were performed here to investigate the structure of FeN_4 embedded into
295 graphene ($\text{FeN}_4@G$). Fig. 3(g) shows that $\text{FeN}_4@G$ exhibits strong binding for LiS and Li_2S_m ($m=1, 2, 8$);
296 the adsorption energies of LiS , Li_2S and Li_2S_2 are more negative than their binding energy with electrolyte
297 molecules (Fig. S13), which reduces the shuttle effect of the lithium polysulfide. The results indicate the
298 $\text{FeN}_4@G$ can effectively trap the LiPS. To reach a high reversible capacity and a long-term cycling of Li-
299 S batteries, the catalyst should also promote the redox reaction of LiPS to form Li_2S during discharging and
300 reduce Li_2S during charging, by activating the Li-S bonds to accommodate or release Li at the electrode
301 surface. From experimental results, FeSA-NC shows significantly higher catalytic activity compared to
302 bare CBC. Herein, we calculate the energy barriers for activating the Li-S bond in Li_2S (transformation

303 between $^*\text{Li}_2\text{S}$ and $^*\text{LiS} + ^*\text{Li}$) and compare the electrocatalytic performance on $\text{FeN}_4@\text{G}$ and pristine
304 graphene. **Fig. 3(e)** shows that $\text{FeN}_4@\text{G}$ significantly decreases the activation barrier of this reversible
305 reaction; the energy of the transition state over the $\text{FeN}_4@\text{G}$ is lower than that on pristine graphene by 0.84
306 eV. The DFT-calculated atomic structures of initial, transition, and final states of the reaction are shown in
307 **Fig.S14**. Initially, Li_2S adsorbs on the center active site. Following that, the Li-S bond is activated and
308 dissociated, and the Li adatom diffuses on the substrate surface. The single-Fe center stabilizes the reaction
309 intermediates, thereby reducing the reaction energy and consequently lowering the activation barrier for
310 activating the Li-S bonds. During the charging the battery, such a facile dissociation of the Li-S bond
311 facilitates lithium release from the electrode and dissolution into the electrolyte; during discharging, the
312 activated Li-S bonds help accumulate more lithium into the polysulfides.[26, 33, 45] This result thus
313 provides an explanation for the experimental observation of promoted redox chemistry over the well-
314 dispersed metal centers.

315

316

317 *Figure 4 (a) CV profiles of the full cells assembled with FeSA-NC@CBC, NC@CBC and CBC cathodes*
 318 *and lithium anode at the same scan rate of 0.2 mV s^{-1} ; Tafel plots of the first (b) and second (c) cathodic*
 319 *peaks and (d) the activation energies (Ea) of the discharge process. (e) CV profiles of Li_2S_6 symmetric cells*
 320 *at a 10 mV s^{-1} scan rate and (f) EIS curves for three electrodes.*

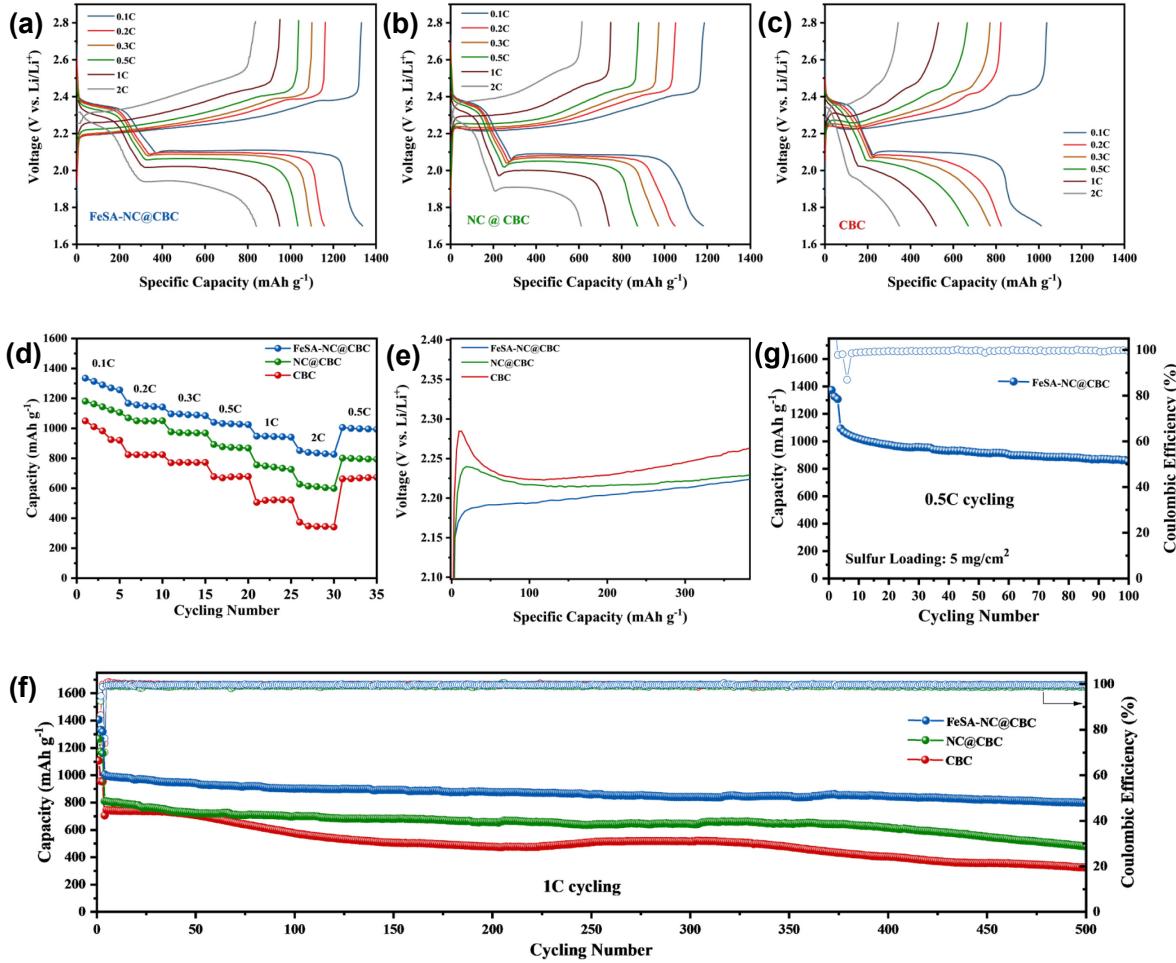
321

322 **Fig. 4(a)** presents the CV profiles of Li-S cells with FeSA-NC@CBC, NC@CBC and CBC-based
 323 sulfur cathodes. The two cathodic peaks (Peak I and Peak II) correspond to the transformation from S_8 to
 324 Li_2S_n ($6 \leq n \leq 8$) and from Li_2S_n ($2 \leq n \leq 4$) to Li_2S , respectively. Compared to NC@CBC and bare CBC,
 325 the cell with Fe SACs exhibits higher current densities and lower potential differences between anodic and
 326 cathodic peaks, indicating that Fe SACs in the cathode decrease polarization and enhance the redox reaction
 327 of lithium polysulfides. The Tafel plots were derived from Peak I and Peak II in the CV curves. For the
 328 transition from S_8 to Li_2S_n shown in **Fig. 4(b)**, the fitted Tafel slopes are 45.76, 51.92, and $58.95 \text{ mV dec}^{-1}$
 329 for the FeSA-NC@CBC, NC@CBC and CBC, respectively. For the conversion reaction from short-chain
 330 Li_2S_n to Li_2S (**Fig. 4(c)**), the slopes are 55.93, 66.07, and $67.42 \text{ mV dec}^{-1}$, respectively. The lowest slopes

331 for the FeSA-NC@CBC cathode indicate the fastest redox conversions[60]. The activation energy of the
332 discharging process was calculated using the equation[61, 62] of $E_a = E_a^0 - \frac{RT}{b} \varphi_{Red, IR}$, where b is the
333 Tafel slopes and $\varphi_{Red, IR}$ is the irreversible potential obtained from CV profiles (see details in
334 Supplementary Note 1). The relative activation energy for each reaction step was calculated based on the
335 Tafel plot and displayed in **Fig. 4(d)**. The E_a values of both steps are dramatically reduced when Fe SACs
336 were incorporated in the cathode, where the E_a differences between the FeSA-NC@CBC and NC@CBC
337 electrodes are 14.96 kJ mol⁻¹ and 13.92 kJ mol⁻¹ for the reactions from S₈ to Li₂S_n (Ea₁) and from Li₂S_n to
338 Li₂S (Ea₂). These results reveal that the Fe SACs facilitate the sulfur reduction conversion by lowering their
339 activation energies.

340 The electrocatalytic effect was investigated by Li₂S₆ symmetric cells CV measurement shown in **Fig.**
341 **4(e)** containing three type of electrodes and Li₂S₆ solutions as electrolytes. The smallest potential difference
342 between the reduction and oxidation peaks and the highest peak current intensities indicated the presence
343 of Fe SACs in the electrodes significantly enhanced redox kinetics of lithium polysulfides conversion
344 reactions[63]. Charge transfer resistance is an important indicator for the charge (i.e., electrons and lithium
345 ions) transportation. The electrochemical impedance spectroscopy (EIS) results of fresh assembled cells
346 were plotted in **Fig. 4(f)**. All the EIS spectra consist of a semicircle and an inclined line[64], which can be
347 fitted by the equivalent circuit model. The R_{bulk} represents the bulk internal resistance of the electrolyte,
348 separator and electron interfaces. R_{ct} is the charge transfer resistance. W_o is the Warburg diffusion and CPE
349 means a constant phase element. As presented in **Fig. 4(f)**, FeSA-NC@CBC has the smallest semicircle
350 diameter in the high-frequency range, which indicates the lowest charge transfer resistance and fastest
351 reduction reaction kinetics within the cathode. The linear part at low frequencies represents the ion diffusion
352 process within the cathode.

353 We further evaluated the charge-transport characteristics by conducting CV measurements of the Li-S battery
354 cells under different scan rates from 0.1 to 0.5 mV s⁻¹, which are displayed in **Fig. S15(a)-(c)**. A distinguishable
355 positive shift in cathode anodic peaks and negative shift in cathodic peaks can be observed with the increasing scan


356 rate, leading to an increasing polarization voltage at higher rates. For each redox peak, a linear relationship between
357 the peak current density I_p and square root of scan rate $v^{1/2}$ was extracted, which can be fitted using the equation $I_p =$
358 $2.69 \times 10^5 n^{3/2} A D^{1/2} v^{1/2} C_{Li}$, where n , A , and C_{Li} represent the charge transfer number, the active electrode
359 geometric area, and the concentration of Li^{+} in the cathode, respectively[65]. The slope comparison of the linear
360 fitting ($I_p/v^{0.5}$) can determine the difference of the lithium-ion diffusion rate $D_{Li^{+}}$ in three different electrodes
361 since n , A , and C_{Li} are unchanged. As presented in **Fig. S15(d)-(f)**, FeSA-NC@CBC exhibits highest slopes at each
362 redox peak which represents the fastest lithium-ion diffusion and facilitates the sulfur transformation chemistry. $D_{Li^{+}}$
363 also corresponds to LiPSs adsorption and Li_2S catalyzing conversion capability, since it can reflect the viscosity of
364 LiPSs in electrolyte, or deposition of a thick Li_2S insulating layer on the electrode[66].

365

366 **LSB performance test**

367 **Fig. 5 (a)-(d)** displayed the charge-discharge curves and compared the rate capability of each composite
368 cathode. Benefiting from the advantageous electrochemical kinetics, FeSA-NC@CBC-based sulfur cathode
369 exhibited excellent rate performance delivering reversible capacities of 1338, 1215, 1104, 1030, 975 and
370 840 $mAh\ g^{-1}$ at a rate of 0.1, 0.2, 0.3, 0.5, 1 and 2C, respectively. When the charge-discharge rate cycles shift
371 back to 0.5 C from high rates, the cell recovered a specific capacity of 1009 mAh/g . The conspicuous two-step
372 discharge plateau is still observed at a high rate of 2C. In contrast, the capacity rapidly declined for both NC@CBC/S
373 ($633\ mAh\ g^{-1}$) and CBC/S cathodes ($367\ mAh\ g^{-1}$) when the current density increased to 2C, and the second
374 discharge plateau nearly vanished at 2C for CBC/S cathode. Based on the charge/discharge profiles of three different
375 electrodes recorded at 0.1C (**Fig. S16(a)**), the FeSA-NC@CBC/S exhibits the slightest polarization ($\Delta E = 152.7\ mV$)
376 as compared to those of NC@CBC/S and CBC/S, indicating better sulfur redox kinetics. As shown in **Fig. 5(e)**,
377 positive overpotential peaks are observed at the beginning of the first charge plateaus, from which the energy barrier
378 for converting solid Li_2S to soluble LiPSs can be evaluated[30]. Similarly, at the second discharge plateaus presented
379 in **Fig. S16(b)**, the negative overpotential peaks can be utilized to assess the activation energy barrier for converting
380 soluble Li_2S_4 to solid Li_2S_2 . It is observed that the FeSA-NC@CBC/S electrode features the lowest overpotentials in

381 both the discharge and charge profiles, which is consistent with the previous electrochemical tests and indicates
 382 improved electrochemical kinetics of LiPSs on FeSA-NC@CBC electrodes.

383
 384 *Figure 5 Galvanostatic charge and discharge curves of (a) FeSA-NC@CBC, (b) NC@CBC and (c) CBC*
 385 *electrodes. (d) Rate performance from 0.1 to 2 C of three types of electrodes. (e) Charge profiles of*
 386 *FeSA-NC@CBC, NC@CBC and CBC electrodes showing the overpotentials of polysulfide conversion*
 387 *reaction. (f) 1C long-term cycling performance comparison among three composite cathodes. (g) Cycling*
 388 *test of FeSA-NC@CBC based cell with 5 mg/cm² high S loading*

389
 390 The 1C cycling performance is presented in Fig. 5(f), further demonstrating the superiority of the FeSA-
 391 NC@CBC/S cathode. After three formation cycles at 0.05 C, the initial specific capacities of the cathodes at 1C were

392 1006.2, 810.3 and 705.8 mAh g⁻¹ for FeSA-NC@CBC, NC@CBC, and CBC-based electrodes, respectively. After
393 500 cycles, the capacity of FeSA-NC@CBC remained at 799.8 mAh/g, with the Coulomb Efficiency above 98.7%.
394 In contrast, for NC@CBC/S and CBC/S cathodes, the capacities were only retained at 481.3 and 327.1 mAh/g after
395 500 cycles at 1C. The measured capacity decay of FeSA-NC@CBC/S cathode is indeed low, with a 0.042%
396 degradation rate per cycle at 1C. These different performances between FeSA-NC@CBC and NC@CBC-based
397 cathodes again validate that Fe SAC can accelerate polysulfide conversion and improve the electrochemical
398 performance of Li-S batteries. The enhanced performance by NC@CBC over bare CBC is attributed to the
399 introduction of carbonized N-doped nanocages into the cathode structure. The carbonized N-doped nanocages (NC)
400 possess abundant micropores and N-heteroatom dopants, which can better suppress the shuttle effect through
401 physical adsorption and chemical binding. To achieve the practical goal of Li-S batteries, a composite cathode with
402 higher sulfur loading was obtained by adding appropriate amounts of Li₂S₆ catholyte. As shown in **Fig. 5(g)**, when
403 the S loading is increased to 5 mg/cm², after being activated at 0.05C for 3 cycles, the FeSA-NC@CBC based
404 composite cathode still possesses an outstanding cyclic stability at 0.5 C with a high capacity of 861 mAh g⁻¹ after
405 100 cycles.

406 The sulfur contents of the FeSA-NC@CBC/S composites with sulfur loading of 2.5 and 5 mg cm⁻² were
407 determined to be 72.4 and 81.2 wt%, respectively, through the TGA curves shown in **Fig. S17**. The freestanding
408 structure coupled with polysulfide catholyte enables the fabrication of sulfur-electrode with tunable sulfur loading
409 and content. The FeSA-NC@CBC sample loaded with polysulfide catholyte was first fully charged to ensure the
410 active material was totally converted to solid sulfur. Lithium nitrite is commonly employed in Li-S systems, which
411 is believed to passivate metallic lithium and suppress polysulfide shuttle effect [67]. Therefore, we also tested the
412 electrochemical performances of FeSA-NC@CBC based cathode with a sulfur loading of 5 mg cm⁻² in the
413 electrolyte without LiNO₃. As shown in **Fig. S18**, the Coulombic efficiency of the FeSA-NC@CBC/S slightly
414 declined from 99.03% to 96.32% in the electrolyte without LiNO₃, which confirms the significance of LiNO₃ to
415 reduce active materials degradation. However, the Li-S cells coupled with FeSA-NC@CBC/S still possess a stable
416 cycling performance with a specific capacity of 668 mAh g⁻¹ after 100 cycles at 0.5 C, indicating the capture and
417 conversion effect of FeSACs to reduce the dissolved LiPSs in the electrolyte. A lower E/S ratio is desired for

418 achieving practical Li-S batteries with higher energy density. As shown in **Fig. S19**, FeSA-NC@CBC with a high
419 sulfur loading of 5 mg cm^{-2} and an E/S ratio of 7.5 ul mg^{-1} retained a capacity of 705 mAh g^{-1} after cycling at 0.3 C
420 for 100 cycles. Prior to cycling under low E/S ratio condition, the assembled cell was first activated at 0.05C for 5
421 cycles to allow sufficient electrolyte infiltration.

422 The excellent rate capability and cycling stability of FeSA-NC@CBC-based Li-S battery cells are a
423 direct result of accelerated polysulfide redox kinetics, catalyzed by FeSA-NC under the assistance of CBC:
424 1) the highly conductive interconnected 3D framework of CBC enables fast electron and Li^+ transportation
425 and buffer volume expansion, 2) the nanoporous structure of FeSA-NC physically confines soluble LiPS,
426 while the polar Fe-N_4 moieties provide strong chemical binding to trap LiPS, and 3) the facile sulfides
427 redox reaction kinetics efficiently accelerated by atomically dispersed FeSA catalysts. In **Table 1**, we
428 compare our LSB performances with several representative works that applied SACs in Li-S batteries.

429

430

431

432 Table 1. Comparison of the electrochemical performance of LSBs using different single atom catalytic materials.

SACs materials	Sulfur loading (mg/cm^2)	Rate capability (mAh/g)	Cycling performance (mAh/g)	Ref.
FeSA-NC@CBC	2.5	840 at 2C	799.8 (500th) at 1C	This work
FeSA-NC@CBC	5	-	861 (100th) at 0.5C	This work
FeNSC	1.0	550 at 4C	477 (1000th) at 1C	[68]
Fe- N_5 -C	1.0	723 at 3C	662 (500th) at 1C	[69]
Ni-MOS ₂ @PP	2.5	677 at 3C	868 (100th) at 0.5C	[31]
Ni- N_5 /HNPC	1.3-1.6	684 at 4C	798 (500th) at 0.5C	[70]
SA-Co/NGM@PP	1.5	649 at 5C	731 (1000th) at 2C	[32]
SACo@NG	2.0	~550 at 3C	513(400th) at 0.5C	[45]
SAV@NG	2.0	645 at 3C	551 (400th) at 0.5C	[45]

433

434

435 **Conclusion**

436 A freestanding structure of Fe single atom catalyst functionalized N-doped carbon nanocages linked by
437 a carbon nanofiber network (FeSA-NC@CBC) was fabricated, which was applied as a scaffold to fabricate
438 sulfur cathodes used in Li-S batteries. Material characterizations indicated formation of Fe single atoms
439 coordinated with N-dopants in carbon. Electrochemical studies revealed Fe single atom catalytic functions
440 in the discharge process including lowering energy barriers for S_8 reduction to liquid-phase LiPSs and
441 further to solid-phase Li_2S_2/Li_2S and accelerating Li_2S_2/Li_2S nucleation and deposition, as well as its
442 catalytic functions in the charge process. The experimental observations were further corroborated by our
443 DFT-based theoretical calculation results. The improved sulfide reaction kinetics diminishes LiPS shuttle
444 effects and therefore improves LBS rate performance and cycling stability, confirmed by our battery test
445 results. The fabricated FeSA-NC@CBC/S composite cathode with a sulfur loading of 2.5 mg cm^{-2} and
446 sulfur content of 72.4% delivered a high initial capacity of 1338 mA h g^{-1} at 0.1 C, and a slow capacity
447 decay rate of 0.042 % per cycle up to 500 cycles at 1 C during cycling test.

448
449 **Experimental Section**
450

451 **Material synthesis**

452 Synthesis of Fe-ZIF-8 powder and Fe-ZIF-8@BC aerogel: A purified BC pellicle ($3.5 \times 5 \times 0.5\text{ cm}$),
453 1.07 g $Zn(NO_3)_2 \cdot 6H_2O$, and 0.127 g $Fe(acac)_3$ were dispersed in 50 mL methanol solution and stirred for
454 12 h. Another 50 ml methanol solution dissolved with 2.36 g 2-methylimidazole (MI) was also prepared.
455 Two methanolic solutions were then mixed and ultrasonicated for 1 h. The obtained mixture was loaded
456 into a 100 ml Teflon-lined stainless-steel autoclave for heat treatment at $120\text{ }^\circ\text{C}$ for 4 h. The obtained
457 yellowish gel was then rinsed with methanol and DI water several times and freeze-dried for 48 h to prepare
458 the Fe-ZIF-8@BC composite aerogel. ZIF-8@BC aerogel was prepared by the same procedure without
459 adding $Fe(acac)_3$ salt. Pure Fe-ZIF-8 powder without mixing with BC was synthesized in a similar
460 procedure. By varying the molar ratio between metal salts and MI, Fe-ZIF-8 particle size can be tuned.

461 Fabrication of FeSA-NC@CBC sulfur host: The Fe-ZIF-8@BC aerogel was transferred into a tube
462 furnace and carbonized at 900 °C for 3 h with a heating rate of 5 °C/min under an Ar atmosphere to obtain
463 the FeSA-NC@CBC sulfur host. The same carbonization process was used to prepare NC@CBC and CBC
464 electrode hosts from ZIF-8@BC and blank BC aerogels, respectively. The obtained freestanding electrode
465 hosts were punched into 12 mm disks for coin cell assembling. Pure FeSA-NC powder was also prepared
466 by direct pyrolysis of Fe-ZIF-8 powder for material characterization.

467

468 **Material characterization**

469 The morphologies and architectures of the prepared samples were observed by scanning electron
470 microscopy at 5kV (SEM, Zeiss Auriga). The porous microstructures were characterized by a transmission
471 electron microscopy at 200kV (TEM, JEOL 2010F). Aberration-corrected high-angle annular dark-field
472 scanning transmission electron microscopy (AC-HAADF-STEM) was performed on Nion UltraSTEM 100
473 at 60 kV. Annular dark-field scanning transmission electron microscopy (ADF-STEM) and the energy
474 dispersive X-ray spectra (EDX) elemental mapping were recorded on JEOL ARM200F at 200kV. X-ray
475 absorption near-edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) for Fe
476 K-edge were performed at beamline 7-BM, NSLS-II, Brookhaven National Laboratory. X-ray photon
477 energy was monochromatized by an Si(111) channel-cut crystal monochromator running in continuous scan
478 mode. Higher-order harmonic contaminations were eliminated by detuning the monochromator to reduce
479 the incident X-ray intensity by approximately 30%. All spectra were collected at room temperature in the
480 fluorescence mode. The Brunauer-Emmett-Teller (BET) measurement was performed to obtain the specific
481 surface area and pore size distribution using a porosity analyzer (Tristar II Plus). The crystalline structure
482 was recorded by X-ray diffraction (XRD) with Cu K α radiation ($\lambda = 0.1541$ nm) on an X-ray Diffractometer
483 (Malvern PANalytical Aeris). The X-ray photoelectron spectroscopy (XPS) study was conducted on a
484 spectrometer (Kratos Axis Supra + apparatus) using Al K-alpha (1486.6 eV) as the excitation light source.
485 UV-Vis Spectrometer (Perkin Lambda 950) was used to acquire UV-vis absorbance spectroscopy after

486 polysulfide adsorption tests. Thermogravimetric analysis (TGA, LABSYS EVO) was performed under
487 helium atmosphere with a heating rate of 5 °C min⁻¹.

488

489 **Electrochemical measurements**

490 A 0.25 M Li₂S₆ solution was prepared by mixing stoichiometric amounts of sublimed sulfur and Li₂S
491 in a molar ratio of 1:5 in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) solvent (1:1, v/v) under
492 stirring at 60 °C until the sulfur was fully dissolved, which finally formed a brown solution. To prepare the
493 ether-based electrolyte, 1.0 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was dissolved in
494 DME/DOL in a 1:1 volumetric ratio with 2 wt.% lithium nitrides (LiNO₃) as an additive.

495 Visual lithium polysulfide adsorption test: The 0.25 M Li₂S₆ solution was diluted to 0.05 M for the
496 visual adsorption test. FeSA-NC@CBC, NC@CBC and CBC samples with an area of 1.13 cm⁻² were loaded
497 into 4 mL 0.05 M Li₂S₆ solution separately to observe the color evolution. All samples were vacuum-dried
498 at 80 °C overnight before testing.

499 Assembly of Li₂S₆ symmetric cells and cyclic voltammogram (CV) measurement: The Li₂S₆ symmetric
500 cells were assembled using identical electrodes loaded with 20 µL Li₂S₆ (0.25 M) electrolyte serving as
501 working and counter electrodes. The Li₂S₆ symmetric cells CV measurements were carried out at a scan
502 rate of 30 mV s⁻¹ with a potential window between -1 and 1 V to evaluate the polysulfide conversion
503 kinetics.

504 Li₂S precipitation test: 0.25 M Li₂S₈ was prepared by mixing S and Li₂S in a molar ratio of 7:1 in a
505 blank electrolyte. Then 20 µL Li₂S₈ (0.25 M) catholyte was dropped on each freestanding electrode and
506 another 20 µL blank electrolyte was added on the Li anode, respectively. The assembled cell was first
507 galvanostatically discharged with a constant current (0.112 mA) to 2.12 V and then potentiostatically held
508 at 2.11 V until the current decreased to 1 × 10⁻⁵ mA[57].

509 Li-S coin cell battery assembly and electrochemical performance test: 60 µL 0.25 M Li₂S₆ catholyte
510 was dropped on the FeSA-NC@CBC, NC@CBC, and CBC freestanding hosts to obtain the composite
511 cathodes with a sulfur loading of 2.5 mg cm⁻². For the FeSA-NC@CBC based composite cathode with a

512 diameter of 12 mm, the mass of FeSA-NC@CBC itself is \sim 1.1 mg, and the S content is determined to be
513 72.4% by TGA. A high sulfur loading FeSA-NC@CBC based cathode was also prepared with a sulfur
514 loading of 5 mg cm⁻² and the corresponding S content is 81.4%. CR 2016-type coin cells were assembled
515 in an argon-filled glove box using the prepared composite cathodes, Celgard 2400 membranes as the
516 separators, and 0.6 mm thick lithium chip as the anode. The CV for the assembled full cells were tested
517 from 1.6 to 2.8 V at a scan rate from 0.1 to 0.5 mV s⁻¹ and the electrochemical impedance spectrum (EIS)
518 was tested in the range of 100 kHz–0.01 Hz with an AC voltage amplitude of 5 mV. The CV and EIS
519 measurements were performed on a Biologic SP-240 electrochemical workstation. The galvanostatic
520 charge–discharge curves of these Li-S cells were recorded on a LANDCT2001A battery tester under
521 different current rates within a voltage range of 1.7 - 2.8 V. The E/S ratio used for typical electrochemical
522 tests was 15 μ l/mg. A low E/S ratio of 7.5 μ l/mg was used in the 0.3 C cyclability test with a sulfur loading
523 of 5 mg cm⁻².

524

525 Computational methods

526 All spin-polarized periodic density functional theory (DFT) calculations in this work were employed
527 using the Vienna *ab initio* simulation package (VASP)[71]. To describe the exchange-correlation
528 interaction, a generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE)
529 functional was applied here[72], with the DFT-D3 method to account for the van der Waals interaction[73].
530 The projector augmented wave (PAW) method was adopted to treat the ion-electron interaction[74, 75].
531 The Brillouin zone was sampled with a single k point for geometric optimization. All energy values were
532 calculated with constant charge and without applying additional electrode potential. A 20 Å vacuum along
533 z-direction was utilized to minimize the interaction between adjacent cells. The supercell was modeled as
534 a pristine graphene slab containing 160 C atoms, which was used in our previous work[40, 76, 77]. The
535 periodic system was constructed by removing two neighboring C atoms to create a divacancy followed by
536 N substitution and Fe incorporation. The activation barriers were calculated by using the climbing-image

537 nudged elastic band (NEB) method[78]. The transition states were further confirmed by single imaginary
538 frequency in vibrational analyses.

539

540 Acknowledgements

541 This work is supported by the National Science Foundation under Grants 2129983, 2129982, and 2103582.
542 The computational simulations were performed at the OU Supercomputing Center for Education &
543 Research. We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University
544 supported in part by NNCI-ECCS-1542160. This research used resources 7-BM of the National Synchrotron Light
545 Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
546 Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

547

548

549 Reference

550 [1] X. Ji, L.F. Nazar, Advances in Li–S batteries, *Journal of Materials Chemistry* 20(44) (2010) 9821-
551 9826.
552 [2] J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.-G. Zhang, J. Liu, J.
553 Xiao, Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium
554 Sulfur Batteries, *Nano Letters* 14(5) (2014) 2345-2352.
555 [3] A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F.F. Chesneau, Review on Li -
556 sulfur battery systems: An integral perspective, *Advanced Energy Materials* 5(16) (2015) 1500212.
557 [4] J. He, A. Bhargav, A. Manthiram, Covalent Organic Framework as an Efficient Protection Layer for a
558 Stable Lithium-Metal Anode, *Angewandte Chemie International Edition* 61(18) (2022) e202116586.
559 [5] B. Yu, D. Chen, Z. Wang, F. Qi, X. Zhang, X. Wang, Y. Hu, B. Wang, W. Zhang, Y. Chen, J. He, W.
560 He, Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal
561 anodes for ultrastable Li-S batteries, *Chemical Engineering Journal* 399 (2020) 125837.
562 [6] M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, Systematical
563 electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and
564 different rates, *Journal of Power Sources* 259 (2014) 289-299.
565 [7] G. Ren, S. Li, Z.-X. Fan, J. Warzywoda, Z. Fan, Soybean-derived hierarchical porous carbon with
566 large sulfur loading and sulfur content for high-performance lithium–sulfur batteries, *Journal of Materials*
567 *Chemistry A* 4(42) (2016) 16507-16515.
568 [8] D. Gueon, M.-Y. Ju, J.H. Moon, Complete encapsulation of sulfur through interfacial energy control
569 of sulfur solutions for high-performance Li–S batteries, *Proceedings of the National Academy of*
570 *Sciences* 117(23) (2020) 12686-12692.
571 [9] L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, Graphene oxide as
572 a sulfur immobilizer in high performance lithium/sulfur cells, *Journal of the American Chemical Society*
573 133(46) (2011) 18522-18525.

574 [10] W. Gao, Z. Wang, C. Peng, S. Kang, L. Cui, Accelerating the redox kinetics by catalytic activation
575 of “dead sulfur” in lithium–sulfur batteries, *Journal of Materials Chemistry A* 9(23) (2021) 13442-13458.
576 [11] W. Sun, S. Liu, Y. Li, D. Wang, Q. Guo, X. Hong, K. Xie, Z. Ma, C. Zheng, S. Xiong,
577 Monodispersed FeS₂ Electrocatalyst Anchored to Nitrogen-Doped Carbon Host for Lithium–Sulfur
578 Batteries, *Advanced Functional Materials* 32(43) (2022) 2205471.
579 [12] W.-G. Lim, S. Kim, C. Jo, J. Lee, A Comprehensive Review of Materials with Catalytic Effects in
580 Li–S Batteries: Enhanced Redox Kinetics, *Angewandte Chemie International Edition* 58(52) (2019)
581 18746-18757.
582 [13] T. Peng, N. Zhang, Y. Wang, M. Zhao, W. Sun, D. Zhang, H. Yan, Y. Lu, Y. Luo, Rooting MnO₂
583 nanosheet on carbon nanoboxes as efficient catalytic host for lithium–sulfur battery, *Journal of Solid State
584 Electrochemistry* 25(2) (2021) 505-512.
585 [14] T. Peng, N. Zhang, Y. Yang, M. Zhang, R. Luo, C. Chen, Y. Lu, Y. Luo, Crystal Facet Engineering
586 of MXene-Derived TiN Nanoflakes as Efficient Bidirectional Electrocatalyst for Advanced Lithium-
587 Sulfur Batteries, *Small* 18(38) (2022) 2202917.
588 [15] W. Sun, Y. Li, S. Liu, C. Liu, X. Tan, K. Xie, Mechanism investigation of iron selenide as
589 polysulfide mediator for long-life lithium-sulfur batteries, *Chemical Engineering Journal* 416 (2021)
590 129166.
591 [16] J. Feng, C. Shi, H. Dong, C. Zhang, W. Liu, Y. Liu, T. Wang, X. Zhao, S. Chen, J. Song, Design of
592 ZnSe-CoSe heterostructure decorated in hollow N-doped carbon nanocage with generous adsorption and
593 catalysis sites for the reversibly fast kinetics of polysulfide conversion, *Journal of Energy Chemistry* 86
594 (2023) 135-145.
595 [17] J. He, A. Bhargav, A. Manthiram, Molybdenum Boride as an Efficient Catalyst for Polysulfide
596 Redox to Enable High-Energy-Density Lithium–Sulfur Batteries, *Advanced Materials* 32(40) (2020)
597 2004741.
598 [18] B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma, X. Wang, D. Chen, B. Wang, W. Zhang, Z. Wang, J.
599 He, Y. Chen, Outstanding Catalytic Effects of 1T' -MoTe₂ Quantum Dots@3D Graphene in Shuttle-
600 Free Li–S Batteries, *ACS Nano* 15(8) (2021) 13279-13288.
601 [19] J. He, A. Bhargav, A. Manthiram, In Situ Grown 1T' -MoTe₂ Nanosheets on Carbon Nanotubes as
602 an Efficient Electrocatalyst and Lithium Regulator for Stable Lithium – Sulfur Full Cells, *Advanced
603 Energy Materials* 12(1) (2022) 2103204.
604 [20] X. Lin, W. Li, X. Pan, S. Wang, Z. Fan, Electrocatalytic and Conductive Vanadium Oxide on
605 Carbonized Bacterial Cellulose Aerogel for the Sulfur Cathode in Li–S Batteries, *Batteries* 9(1) (2023) 14.
606 [21] C. Zhang, J. Feng, X. Guo, J. Zhang, W. Zhang, L. Zhang, J. Song, G. Shao, G. Wang, Blocking
607 polysulfide by physical confinement and catalytic conversion of SiO₂@MXene for Li–S battery, *Applied
608 Physics Letters* 122(19) (2023).
609 [22] Y. Liu, W. Kou, X. Li, C. Huang, R. Shui, G. He, Constructing patch - Ni - shelled Pt@ Ni
610 nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li - S
611 batteries, *Small* 15(34) (2019) 1902431.
612 [23] M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium – sulfur cells: the
613 gap between the state - of - the - art and the requirements for high energy battery cells, *Advanced Energy
614 Materials* 5(16) (2015) 1401986.
615 [24] D. Eroglu, K.R. Zavadil, K.G. Gallagher, Critical link between materials chemistry and cell-level
616 design for high energy density and low cost lithium-sulfur transportation battery, *Journal of The
617 Electrochemical Society* 162(6) (2015) A982-A990.
618 [25] J. Wang, L. Jia, J. Zhong, Q. Xiao, C. Wang, K. Zang, H. Liu, H. Zheng, J. Luo, J. Yang, Single-
619 atom catalyst boosts electrochemical conversion reactions in batteries, *Energy Storage Materials* 18
620 (2019) 246-252.
621 [26] C. Dong, C. Zhou, M. Wu, Y. Yu, K. Yu, K. Yan, C. Shen, J. Gu, M. Yan, C. Sun, L. Mai, X. Xu,
622 Boosting Bi-Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward

623 High-Rate and Long-Cycling Lithium–Sulfur Battery, *Advanced Energy Materials* 13(30) (2023)
624 2301505.

625 [27] H. Liu, X. Peng, X. Liu, Single - Atom Catalysts for the Hydrogen Evolution Reaction,
626 *ChemElectroChem* 5(20) (2018) 2963-2974.

627 [28] J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Ultrahigh - loading zinc
628 single - atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media,
629 *Angewandte Chemie International Edition* 58(21) (2019) 7035-7039.

630 [29] Y. Li, S. Lin, D. Wang, T. Gao, J. Song, P. Zhou, Z. Xu, Z. Yang, N. Xiao, S. Guo, Single Atom
631 Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries,
632 *Advanced Materials* 32(8) (2020) 1906722.

633 [30] Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L.-J. Wan,
634 Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur
635 Batteries, *Journal of the American Chemical Society* 141(9) (2019) 3977-3985.

636 [31] C. Dong, C. Zhou, Y. Li, Y. Yu, T. Zhao, G. Zhang, X. Chen, K. Yan, L. Mai, X. Xu, Ni Single
637 Atoms on MoS₂ Nanosheets Enabling Enhanced Kinetics of Li-S Batteries, *Small* 19(4) (2023) 2205855.

638 [32] D. Wang, K. Ma, J. Hao, W. Zhang, H. Shi, C. Wang, Z. Xiong, Z. Bai, F.-R. Chen, J. Guo, B. Xu,
639 X. Yan, Y. Gu, Engineering single-atom catalysts as multifunctional polysulfide and lithium regulators
640 toward kinetically accelerated and durable lithium-sulfur batteries, *Chemical Engineering Journal* 466
641 (2023) 143182.

642 [33] Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H.-M. Cheng, Engineering
643 d-p Orbital Hybridization in Single-Atom Metal-Embedded Three-Dimensional Electrodes for Li-S
644 Batteries, *Advanced Materials* 33(44) (2021) 2105947.

645 [34] A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin, X. Wang, C. Yang, B. Dong, Y. Jia, J. Liu, Recent
646 advances for MOF - derived carbon - supported single - atom catalysts, *Small Methods* 3(9) (2019)
647 1800471.

648 [35] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Isolated
649 single iron atoms anchored on N - doped porous carbon as an efficient electrocatalyst for the oxygen
650 reduction reaction, *Angewandte Chemie* 129(24) (2017) 7041-7045.

651 [36] C. Zhou, Z. Li, X. Xu, L. Mai, Metal-organic frameworks enable broad strategies for lithium-sulfur
652 batteries, *National Science Review* 8(12) (2021).

653 [37] J. Li, J. Zhou, T. Wang, X. Chen, Y. Zhang, Q. Wan, J. Zhu, Covalent sulfur embedding in inherent
654 N,P co-doped biological carbon for ultrastable and high rate lithium–sulfur batteries, *Nanoscale* 12(16)
655 (2020) 8991-8996.

656 [38] H. Bian, J. Luo, R. Wang, X. Zhou, S. Ni, R. Shi, G. Fang, H. Dai, Recyclable and reusable maleic
657 acid for efficient production of cellulose nanofibrils with stable performance, *ACS Sustainable Chemistry
658 Engineering* 7(24) (2019) 20022-20031.

659 [39] W. Lei, D. Jin, H. Liu, Z. Tong, H. Zhang, An overview of bacterial cellulose in flexible
660 electrochemical energy storage, *ChemSusChem* 13(15) (2020) 3731-3753.

661 [40] S. Li, J. Warzywoda, S. Wang, G. Ren, Z. Fan, Bacterial cellulose derived carbon nanofiber aerogel
662 with lithium polysulfide catholyte for lithium–sulfur batteries, *Carbon* 124 (2017) 212-218.

663 [41] Y. Huang, K. Tang, F. Yuan, W. Zhang, B. Li, F. Seidi, H. Xiao, D. Sun, N-doped porous carbon
664 nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient
665 oxygen reduction reaction and sodium-ion storage, *Carbon* 168 (2020) 12-21.

666 [42] R. Xiao, K. Chen, X. Zhang, Z. Yang, G. Hu, Z. Sun, H.-M. Cheng, F. Li, Single-atom catalysts for
667 metal-sulfur batteries: Current progress and future perspectives, *Journal of Energy Chemistry* 54 (2021)
668 452-466.

669 [43] Y. Huang, M. Zheng, Z. Lin, B. Zhao, S. Zhang, J. Yang, C. Zhu, H. Zhang, D. Sun, Y. Shi, Flexible
670 cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance
671 lithium–sulfur batteries, *Journal of Materials Chemistry A* 3(20) (2015) 10910-10918.

672 [44] Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu, M.F.
673 Chisholm, R. De Marco, Atomically dispersed transition metals on carbon nanotubes with ultrahigh
674 loading for selective electrochemical carbon dioxide reduction, *Advanced Materials* 30(13) (2018)
675 1706287.

676 [45] G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen, H. Chen, C. Liu, Y. Ye, Y. Wu, Y. Peng, C.
677 Liu, S.P. Jiang, Q. Zhang, Y. Cui, Theoretical Calculation Guided Design of Single-Atom Catalysts
678 toward Fast Kinetic and Long-Life Li–S Batteries, *Nano Letters* 20(2) (2020) 1252-1261.

679 [46] Y. Cheng, S. He, S. Lu, J.P. Veder, B. Johannessen, L. Thomsen, M. Saunders, T. Becker, R. De
680 Marco, Q. Li, Iron single atoms on graphene as nonprecious metal catalysts for high - temperature
681 polymer electrolyte membrane fuel cells, *Advanced science* 6(10) (2019) 1802066.

682 [47] X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Fe–N–C electrocatalyst
683 with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel
684 cells, *Nature Catalysis* 2(3) (2019) 259-268.

685 [48] Y. Pan, Y. Chen, K. Wu, Z. Chen, S. Liu, X. Cao, W.-C. Cheong, T. Meng, J. Luo, L. Zheng, C. Liu,
686 D. Wang, Q. Peng, J. Li, C. Chen, Regulating the coordination structure of single-atom Fe-NxCy catalytic
687 sites for benzene oxidation, *Nature Communications* 10(1) (2019) 4290.

688 [49] J. Wang, C.-X. Zhao, J.-N. Liu, D. Ren, X. Ma, B.-Q. Li, J.-Q. Huang, Q. Zhang, Composing atomic
689 transition metal sites for high-performance bifunctional oxygen electrocatalysis in rechargeable zinc–air
690 batteries, *Particuology* (2022).

691 [50] Y. Ma, D. Chen, D. Zhang, H. Yu, Y. Zheng, W. Li, L. Wang, Q. Liu, W. Yang, Fe,N-modulated
692 carbon fibers aerogel as freestanding cathode catalyst for rechargeable Zn–Air battery, *Carbon* 187 (2022)
693 196-206.

694 [51] H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su,
695 Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal
696 activation, *Journal of the American Chemical Society* 139(40) (2017) 14143-14149.

697 [52] L. Ye, G. Chai, Z.J.A.F.M. Wen, Zn - MOF - 74 derived N - doped mesoporous carbon as pH -
698 universal electrocatalyst for oxygen reduction reaction, 27(14) (2017) 1606190.

699 [53] S. Li, T. Mou, G. Ren, J. Warzywoda, Z. Wei, B. Wang, Z. Fan, Gel based sulfur cathodes with a
700 high sulfur content and large mass loading for high-performance lithium–sulfur batteries, *Journal of
701 Materials Chemistry A* 5(4) (2017) 1650-1657.

702 [54] M.P. Illa, C.S. Sharma, M. Khandelwal, Catalytic graphitization of bacterial cellulose–derived
703 carbon nanofibers for stable and enhanced anodic performance of lithium-ion batteries, *Materials Today
704 Chemistry* 20 (2021) 100439.

705 [55] Y. Yuan, X. Xu, J. Xia, F. Zhang, Z. Wang, Q. Liu, A hybrid material composed of reduced
706 graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type
707 ZIF-8) for voltammetric determination of chloramphenicol, *Microchimica Acta* 186(3) (2019) 191.

708 [56] V.K. Bharti, A.D. Pathak, C.S. Sharma, M. Khandelwal, Ultra-high-rate lithium-sulfur batteries with
709 high sulfur loading enabled by Mn₂O₃-carbonized bacterial cellulose composite as a cathode host,
710 *Electrochimica Acta* 422 (2022) 140531.

711 [57] M.D. Walle, M. Zhang, K. Zeng, Y. Li, Y.-N. Liu, MOFs-derived nitrogen-doped carbon interwoven
712 with carbon nanotubes for high sulfur content lithium–sulfur batteries, *Applied Surface Science* 497
713 (2019) 143773.

714 [58] D. Cai, B. Liu, D. Zhu, D. Chen, M. Lu, J. Cao, Y. Wang, W. Huang, Y. Shao, H. Tu, W. Han,
715 Ultrafine Co₃Se₄ Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-
716 Life Lithium Sulfur Batteries, *Advanced Energy Materials* 10(19) (2020) 1904273.

717 [59] F.Y. Fan, W.C. Carter, Y.M.J.A.m. Chiang, Mechanism and kinetics of Li₂S precipitation in
718 lithium–sulfur batteries, 27(35) (2015) 5203-5209.

719 [60] Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu, Y. Zhao, S.W. Koh, P. Gao, Z.W. Seh,
720 K.J.A.E.M. Chan, Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur
721 batteries, 10(22) (2020) 1904010.

722 [61] W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B.J.A.M. Zhang, Selective
723 catalysis remedies polysulfide shuttling in lithium - sulfur batteries, 33(38) (2021) 2101006.

724 [62] J. Cho, S. Ryu, Y.J. Gong, S. Pyo, H. Yun, H. Kim, J. Lee, J. Yoo, Y.S. Kim, Nitrogen-doped MoS2
725 as a catalytic sulfur host for lithium-sulfur batteries, Chemical Engineering Journal 439 (2022) 135568.

726 [63] P. Wang, B. Xi, M. Huang, W. Chen, J. Feng, S. Xiong, Emerging Catalysts to Promote Kinetics of
727 Lithium–Sulfur Batteries, 11(7) (2021) 2002893.

728 [64] S. Waluś, C. Barchasz, R. Bouchet, F. Alloin, Electrochemical impedance spectroscopy study of
729 lithium–sulfur batteries: Useful technique to reveal the Li/S electrochemical mechanism, Electrochimica
730 Acta 359 (2020) 136944.

731 [65] X. Huang, Z. Wang, R. Knibbe, B. Luo, S.A. Ahad, D. Sun, L. Wang, Cyclic Voltammetry in
732 Lithium–Sulfur Batteries—Challenges and Opportunities, Energy Technology 7(8) (2019) 1801001.

733 [66] G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, Catalytic
734 oxidation of Li₂S on the surface of metal sulfides for Li– S batteries, Proceedings of the National
735 Academy of Sciences 114(5) (2017) 840-845.

736 [67] L. Zhang, M. Ling, J. Feng, L. Mai, G. Liu, J. Guo, The synergistic interaction between LiNO₃ and
737 lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Materials 11
738 (2018) 24-29.

739 [68] H. Zhao, B. Tian, C. Su, Y. Li, Single-Atom Iron and Doped Sulfur Improve the Catalysis of
740 Polysulfide Conversion for Obtaining High-Performance Lithium–Sulfur Batteries, ACS Applied
741 Materials & Interfaces 13(6) (2021) 7171-7177.

742 [69] Y. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo, A. Yu, X. Wang, Z. Chen, Engineering Oversaturated
743 Fe-N₅ Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries, Angewandte Chemie
744 International Edition 60(51) (2021) 26622-26629.

745 [70] S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai, D. Zhai, W. Deng, C. Su, D. Wang, Y. Li, Isolated
746 Single-Atom Ni–N₅ Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur
747 Batteries, Nano Letters 21(22) (2021) 9691-9698.

748 [71] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a
749 plane-wave basis set, Physical Review B 54(16) (1996) 11169-11186.

750 [72] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical
751 Review Letters 77(18) (1996) 3865-3868.

752 [73] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of
753 density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of chemical
754 physics 132(15) (2010) 154104.

755 [74] P.E. Blöchl, Projector augmented-wave method, Physical review B 50(24) (1994) 17953.

756 [75] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method,
757 Physical Review B 59(3) (1999) 1758.

758 [76] B. Wang, L. Tsetseris, S.T. Pantelides, Introduction of nitrogen with controllable configuration into
759 graphene via vacancies and edges, Journal of Materials Chemistry A 1(47) (2013) 14927-14934.

760 [77] Z. Luo, R. Nie, V.T. Nguyen, A. Biswas, R.K. Behera, X. Wu, T. Kobayashi, A. Sadow, B. Wang,
761 W. Huang, L. Qi, Transition metal-like carbocatalyst, Nature Communications 11(1) (2020) 4091.

762 [78] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for
763 finding saddle points and minimum energy paths, The Journal of chemical physics 113(22) (2000) 9901-
764 9904.

765