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Abstract
This paper proposes a generalized self-cueing real-time attention scheduling framework 
for DNN-based visual machine perception pipelines on resource-limited embedded plat-
forms. Self-cueing means we identify subframe-level regions of interest in a scene inter-
nally by exploiting temporal correlations among successive video frames as opposed to 
externally via a cueing sensor. One limitation of our original self-cueing-and-inspection 
strategy (Liu et al. in Proceedings of the 28th IEEE real-time and embedded technology 
and applications symposium (RTAS), 2022b) lies in its lack of computational efficiency 
under high workloads, like busy traffic scenarios where a large number of objects are 
identified and separately inspected. We extend the conference publication by integrat-
ing image resizing with intermittent inspection and task batching in attention schedul-
ing. The extension enhances the original algorithm by accelerating the processing of 
large objects by reducing their resolution at the cost of only a negligible degradation in 
accuracy, thereby achieving a higher overall object inspection throughput. After extract-
ing partial regions around objects of interest, using an optical flow-based tracking algo-
rithm, we allocate computation resources (i.e. DNN inspection) to them in a criticality-
aware manner using a generalized batched proportional balancing algorithm (GBPB), to 
minimize a concept of generalized system uncertainty. It saves computational resources 
by inspecting low-priority regions intermittently at low frequencies and inspecting large 
objects at low resolutions. We implement the system on an NVIDIA Jetson Xavier plat-
form and extensively evaluate its performance using a real-world driving dataset from 
Waymo. The proposed GBPB algorithm consistently outperforms the previous BPB 
algorithm that only uses intermittent inspection and a set of baselines. The performance 
gain of GBPB is larger in facing more significant resource constraints (i.e., lower sam-
pling intervals or busy traffic scenarios) because its multi-dimensional scheduling strat-
egy achieves better resource allocation of machine perception.

Keywords  Real-time scheduling · Object detection · Temporal correlations · Cyber-
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1  Introduction

Attention prioritization and scheduling of intelligent perception pipelines is a 
novel problem in real-time systems literature (Liu et al. 2020a) that refers to algo-
rithms for prioritizing and scheduling of data processing at a subframe level in 
data-intensive workflows, such as neural-network-based camera or LiDAR data 
processing. The problem is cyber-physical in nature in that our physical under-
standing of the importance of observed objects in various parts of the scene 
drives the needed fidelity of their real-time tracking and thus the frequency/prior-
ity at which they need to be inspected and localized by the AI in the loop. This 
is as opposed to applying the AI to entire (video or LiDAR) frames in a FIFO 
manner.

This paper extends a previous conference publication  (Liu et  al. 2022b) by 
proposing a generalized self-cueing attention scheduling framework for visual 
machine perception on embedded platforms. It generalizes the original self-cue-
ing framework by simultaneously optimizing image resizing decisions along with 
the original intermittent inspection and task batching strategies. Compared to 
external-cueing frameworks (Liu et al. 2020b; Hu et al. 2021; Kang et al. 2022b) 
that rely on light-weight processing of an external cueing sensor (e.g. LiDAR 
depth clustering) to extract object regions of interest on image frames, self-cue-
ing frameworks fundamentally remove the dependency on external cueing by 
exploiting temporal correlations between object locations in successive frames, 
thus cueing attention to expected future object locations given their recent past. 
The main workload to optimize is object detection [e.g. YOLO  (Redmon et  al. 
2016)] and tracking that exploits deep neural networks (DNNs). Specifically, 
low-frequency full-frame inspections are performed periodically, at a period we 
call the scheduling horizon (i.e. once per second), to identify the locations of 
all objects. In between full-frame inspections, a set of partial-frame inspections 
are scheduled that are focused only on predicted locations of individual objects, 
thereby reducing computational demand (compared to full-frame inspections) 
and latency. We next explain how the two contributing dimensions in this paper, 
intermittent inspection and image resizing, open up a novel optimization space 
for self-cueing scheduling.

First, intermittent inspection selectively decides which objects to inspect in a 
frame instead of inspecting every object in every frame. As explained in Liu et al. 
(2022b), the period at which an object is inspected is determined by the uncer-
tainty growth in its location in between inspections. To bound the location uncer-
tainty of the object, faster or more erratically-moving objects are scheduled for 
inspection at higher frequencies, while relatively static or slow-moving objects 
are scheduled at lower frequencies.

Second, compared to the original framework, we further integrate image resiz-
ing to save the execution latency on each scheduled inspection task. One exist-
ing limitation of the original self-cueing-and-inspection strategy lies in its lack of 
computational efficiency in dealing with busy traffic scenarios when a large num-
ber of (potentially overlapped) regions are extracted and separately inspected. In 
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such scenarios, the processing demand can be even higher than inspecting full 
frames. With image resizing, we can reduce the spatial resolution of the extracted 
regions before feeding them into the DNN model. Smaller images are known to 
have a lower execution latency by DNN models, at the cost of possibly degraded 
detection accuracy. Image resizing is computationally lightweight, easy to imple-
ment, and does not require modifications or switching on the deployed DNN 
model. Appropriately downsizing the partial frames facilitates higher object 
inspection frequencies, but does not sacrifice much in detection accuracy. Com-
paratively, large objects are more tolerant of image resizing than small objects 
with more latency savings and less accuracy degradation. Accordingly, we differ-
entiate the degrees of resizing for objects of different sizes.

To jointly model the impact of both optimization dimensions, we formulate 
the scheduling problem as one of minimizing the maximum weighted generalized 
uncertainty. The new optimization objective multiplies the object location uncer-
tainty caused by intermittent inspection with the accuracy degradation factor caused 
by image resizing, along with an application-specific object weight indicating the 
object criticality. The underlying assumption behind this metric is that the errors 
resulting from the two sources of uncertainty are multiplicative. Consequently, there 
is a tradeoff between inspecting the objects at higher frequencies or at higher resolu-
tions. The optimal choice depends on the specific perception scenario. For example, 
slow-moving small objects might benefit more from higher resolutions, as opposed 
to higher frequencies, whereas fast-moving large objects might benefit more from 
higher frequencies over higher resolutions. Autonomous driving is used as an exam-
ple application, although the design generalizes to other cyber-physical applications 
as well, such as delivery drones and surveillance applications.

We correspondingly propose a generalized batched proportional balancing 
(GBPB) algorithm to approximately solve the formulated scheduling problem. At 
each scheduling horizon after the full-frame inspection, the GBPB algorithm jointly 
produces three parts of output: the target size for each object after resizing, the 
inspection frequency of each object, and the task batching decisions among objects. 
Task batching means inspecting multiple images of the same size in parallel on 
the GPU, which achieves higher execution efficiency than serialized execution of 
inspection tasks. To reduce the complexity of the decision space, which originally 
grows exponentially with the number of objects, we uniformly set an upper bound 
on target sizes (such that any object regions beyond a threshold will be downsized to 
this size) and set the object inspection frequencies proportional to their uncertainty 
growth rates. In addition, object inspection tasks are scheduled in a batch-aware 
load-balanced manner such that the objects are inspected as many times as possible. 
At runtime, the algorithm adaptively trades off between object inspection frequen-
cies and inspection qualities (i.e. target sizes) such that the resulting generalized 
maximum uncertainty can be minimized while the system resources are maximally 
utilized. Compared to the BPB policy in Liu et al. (2022b), GBPB achieves higher 
accuracy for high workloads under significant resource constraints (i.e. short frame 
intervals or busy traffic scenarios) but sustains a similar performance in light work-
load, because we avoid extremely low inspection frequencies on critical objects by 
compressing computation and saving time with effective image resizing. The DNN 
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processing resources are better allocated and maximally utilized when using the new 
multi-dimensional scheduling strategy.

We implement the proposed framework on an NVIDIA Jetson Xavier platform 
and extensively evaluate its performance using real-world driving datasets from 
Waymo  (Sun et  al. 2020). The results show that the proposed policy achieves a 
higher detection, localization, and classification quality (compared to baselines) 
under different workloads. It also provides better response times to physically close 
objects. In addition, the GBPB policy with image resizing integrated outperforms 
the original batched proportional balancing (BPB) policy under the same time con-
straints in busy traffic scenarios.

The rest of this paper is organized as follows: In Sect. 2, we briefly review the 
related literature. We give an overview of the architecture in Sect. 3, then explain the 
data slicing module in Sect. 4. We introduce the original BPB algorithm in Sect. 5, 
and further integrate the image resizing in Sect. 6. We discuss some adopted empiri-
cal optimizations in Sect.  7, before presenting the evaluation results in Sect.  8. 
Finally, we conclude the paper in Sect. 9.

2 � Related work

2.1 � Real‑time machine perception

Most previous research to support real-time machine perception focused on com-
pressing neural networks to reduce the inference latency (Yao et al. 2018; Zhou et al. 
2018; Lee and Nirjon 2020a; Yao et al. 2020b; Minnehan and Savakis 2019). How-
ever, existing compression approaches do not offer the flexibility to tailor the degree 
of compression at a subframe level. Recently, real-time scheduling has emerged as a 
key challenge in AI-based perception systems (Yang et al. 2021). Related work can 
be divided into three categories: (i) system-level scheduling; (ii) model-level sched-
uling; and (iii) data-level scheduling. System-level scheduling algorithms try to 
optimize CPU-GPU interactions by appropriately allocating and pipelining the com-
putational stages (Amert et al. 2017; Capodieci et al. 2018; Xiang and Kim 2019; 
Jang et al. 2020; Kang et al. 2021; Amert et al. 2021) or utilize specialized DNN 
accelerators Restuccia and Biondi (2021). Besides, there have been works on opti-
mizing the predictability  (Liu et al. 2022a) and resource efficiency (Ji et al. 2022; 
Razavi et  al. 2022) of DNN executions. In contrast, model-level scheduling algo-
rithms dynamically adjust the utilized neural network structures to meet inference 
deadlines (Bateni and Liu 2018; Lee and Nirjon 2020b; Heo et al. 2020; Yao et al. 
2020a; Kannan and Hoffmann 2021). Finally, the data-level scheduling algorithms 
change the amount of data to be processed by data scaling (Heo et al. 2022) or slic-
ing the data into partial regions and processing them in a fine-grained and critical-
ity-aware manner (Soyyigit et al. 2022). One drawback of existing approaches (Liu 
et  al. 2020a, 2021; Hu et  al. 2021, 2022; Kang et  al. 2022b) lies in their reliance 
on an external attention cueing sensor (e.g. a ranging LiDAR), which might not be 
an option in some autonomous systems. For example, some autonomous car man-
ufacturers, such as Tesla, famously objected to having LiDAR. In this paper, we 
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therefore build a self-cueing system that relies only on the original data flow without 
needing external secondary sensors. Different from Kang et al. (2022a) that targets 
scheduling multiple tracking tasks, we focus on fine-grained object tracking sched-
uling within a single task.

2.2 � Temporal correlations in video object detection

Our self-cueing scheme fundamentally relies on object permanence to hypothesize 
that objects observed in earlier frames will still be located some bounded distance 
away in the current frame. In other words, frames are highly correlated. Video tem-
poral correlations have been extensively studied in continuous object detection. 
Some papers, including (Zhu et al. 2017b; Wang et al. 2019; Zhu et al. 2017a; Xu 
et al. 2018), rely on motion vectors between consecutive frames to reduce the net-
work depth to extract features on new frames. They utilized motion vectors to map 
(part of) past features into the new frame. Buckler et al. (2018) proposed an optical 
flow-based hardware solution to propagate latent features from previous frames to 
the new frame. The uncertainty in the estimated motion is not counted. Some work 
also leverages pairwise image differences to guide an object detector to focus on 
changing areas in the new frame (Cavigelli et al. 2017; Zhang et al. 2017). However, 
they are only applicable to statically mounted cameras, which no longer work in 
autonomous driving systems. Song et al. (2020) applied different quantization lev-
els to process regions with different sensitivity on the same frame, which was lim-
ited to image classification models only. Both Kumar et al. (2019) and Mao et al. 
(2018) proposed to use object tracker projections to extract regions of interest in 
the new frame. We build on such prior solutions, using them to determine possible 
object locations in the current frame, ahead of actual frame inspection by the (AI-
based) perception subsystem, thus providing input into our attention prioritization 
and scheduling problem. The idea is generally applicable and can also be extended 
into mobile offloading scenarios (Liu et al. 2022d) and multi-camera collaborative 
sensing when spatial correlations are also considered (Liu et al. 2022c).

2.3 � Dynamic DNN acceleration with image resizing

Image resizing has been used as one of the major controllable dimensions for 
dynamic latency saving in DNN execution on resource-limited platforms. Down-
sizing images accelerates inspection at the cost of different degrees of accuracy 
degradation. Downsizing is easy to implement, and DNN object detection mod-
els typically present sublinear accuracy degradation with respect to the down-
sizing ratio. Multiple efforts have proposed to adaptively downsize input images 
to catch up with runtime execution deadlines  (Hu et al. 2021; Chin et al. 2019; 
Wu et  al. 2022; Bastani and Madden 2021; Heo et  al. 2022), or detect objects 
of different sizes at appropriate scales that optimize the model accuracy/latency 
trade-off  (Najibi et  al. 2019; Li et  al. 2021). AdaScale  (Chin et  al. 2019) also 
shows that appropriately downsizing the images may even slightly improve the 
general model accuracy in detecting large objects in the scene. Both Hu et  al. 



307

1 3

Real-Time Systems (2023) 59:302–343	

(2021) and Heo et al. (2022) adopt image resizing as the control knob to achieve 
different tradeoffs between model accuracy and inference latency in the context 
of real-time edge AI. To the best of our knowledge, we are the first that formally 
study the cooperation of intermittent inspection and image resizing in achieving 
real-time machine perception on embedded platforms, which jointly achieve bet-
ter accuracy-latency tradeoff than either knob alone.

3 � System overview

Assume the system uses a camera to continuously observe its surroundings at a 
fixed frame rate. An object detector (e.g., YOLO) is used to localize and cate-
gorize all objects in the captured image frames. The detector can accept vari-
able image sizes as input and has an inference latency that depends on input 
size. The deployed detector is computationally intensive such that inspection of 
a full image (e.g., 1920 × 1280 resolution) can not finish before the next frame 
arrives. Instead, we inspect full frames at a longer interval T (say, 1-2s). We refer 
to processing of full frames as full-frame inspections. Between them, we iden-
tify regions of interest using optical flow  (Kroeger et  al. 2016), a much faster 
algorithm (than neural networks) that compares successive frames and estimates 
approximate motion vectors for pixels. It is used to guess (within some error mar-
gin) where objects of interest, detected in previous frames, might have moved to 
in the current one. The attention scheduler then decides which of these regions 
are to be inspected by the object detector and how large these regions should be 
set for exact localization of the corresponding objects. We call the approach that 
integrates intermittent inspection and image resizing as generalized partial-frame 
inspections. We define the time between two full-frame inspections as a schedul-
ing horizon, and propose a novel scheduling algorithm to decide the schedule of 
partial-frame inspections within each horizon to minimize the maximum weighted 
location uncertainty.

Two core components are included in the proposed architecture: (i) the frame 
slicing and region tracking module, and (ii) the generalized partial-frame inspec-
tion scheduling module. An overview of the architecture is shown in Fig. 1.

3.1 � Frame slicing and region tracking

This module slices image frames (between full-frame inspections) into regions 
where objects may be present. After a full-frame inspection localizes all objects 
in a frame, an optical-flow based tracking algorithm tracks the object locations in 
subsequent frames (until the next full-frame inspection). Within each frame, the 
module determines the approximate regions that contain these tracked objects, 
taking into account the uncertainty in their predicted locations. These regions are 
the candidates to be inspected by the detector. Background regions are filtered 
out.
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3.2 � Generalized partial‑frame inspection scheduling

This model jointly decides how often each object should be inspected and how 
large its partial frame should be set after resizing, in order to achieve optimized 
tracking accuracy on each object. Every object is associated with a criticality 
indicating its application-level importance, and an uncertainty growth rate indi-
cating the increase speed of its location uncertainty if no new inspection is per-
formed. Partial-frame inspections of objects with low criticality or slow uncer-
tainty growth are scheduled less frequently. In addition, we can safely reduce the 
image sizes for large objects without losing too much on their detection accu-
racy. Finally, we consider task batching on modern GPUs, which means multiple 
regions can be batched together and submitted as a single GPU request, as long 
as they have the same size (because low-end GPUs can only batch identical com-
putational kernels). Batched processing achieves much lower latency than serial-
ized processing.

4 � Frame slicing and region tracking

In this section, we introduce the optical flow-based tracking algorithm, and explain 
how it induces location uncertainties.

4.1 � Optical flow background

Optical flow algorithms take two consecutive frames as input and estimate the pixel-
level motion vectors between them, as caused by the relative movement between 

Fig. 1   The overview of the proposed scheduling framework. It is generally applicable to any object 
detector
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objects and the observer. They return a map of single pixel motions, which is called 
optical flow map. The RGB image is first converted to gray scale, where each pixel 
value represents the light intensity at that location. We use I(x, y,  t) to denote the 
image intensity at pixel (x, y) of frame t. The optical flow map is a matrix of coordi-
nate displacements (dx, dy) , such that,

Optical flow assumes that the pixel intensities of an object are constant across two 
consecutive frames. In this paper, we use the DIS method  (Kroeger et  al. 2016), 
which is a widely used and efficient optical flow estimation algorithm.

In autonomous driving, although the relative movement between the camera, 
object and light sources may cause drastic change on the lighting and reflection 
on objects (especially during night driving), optical flow tends to err on the safe 
side. Specifically, it may introduce false positives (e.g. spurious areas may be 
highlighted for visual inspection), but is less likely to produce false negatives 
(i.e. missing actual changes in locations of visible objects). Merging the trajec-
tory-based tracking (or a physical mobility model) with optical flow observations 
can reduce false positives (similar to the way Kalman filters leverage both imper-
fect models and imperfect empirical observations to produce improved trajectory 
estimates). We leave the integration of physical models as a future direction.

4.2 � Optical flow‑based object tracking

The motivation of using optical flow for tracking primarily comes from its high 
reliability in identifying an appropriately expanded region around the inferred 
object location for further DNN inspection without needing multiple prior obser-
vations (e.g., to form a trajectory). We use optical flow as a non-parametric 
motion model to estimate possible object locations in intermediate frames based 
on observed pixel movement. We chose it over conventional parametric tracking 
models, such as Kalman Filters [e.g. in SORT (Bewley et al. 2016)], because the 
latter models often require a sequence of past observations to correctly estimate 
trajectories, and may fail to correctly predict location in the presence of sudden 
unexpected movements (such as swerves to avoid an obstacle). Instead, as dis-
cussed above, optical flow makes is less likely to miss actual object movement, so 
it achieves a higher recall on retaining tracking. It is noteworthy that optical flow 
estimates object movement in a proactive way, which means the object bound-
ing boxes are shifted according to the pixel motions estimated between the new 
frame and the previous frame, instead of relying on the motion predictions from 
the past. It does not pose an assumption on object moving patterns. If the object 
has appeared in the previous frame, then its movement would be identified. Oth-
erwise, if the object never appears in previous frames, we have a separate module 
for detecting blobs of new pixels which may correspond to new objects (as will be 
introduced in Sect. 7.1). Finally, we believe distant new objects that are not easily 
detected by the blob detection are considered not critical and will be detected in 
the next full-frame inspection.

(1)I(x, y, t) = I(x + dx, y + dy, t + 1).



310	 Real-Time Systems (2023) 59:302–343

1 3

Algorithm  1 details our tracking algorithm. We start from the set of objects 
detected by the last full-frame inspection. Each time a new frame arrives, we first 
compute its optical flow map compared to its preceding frame, then calculate the 
following three regions for each tracked object:

1.	 Inferred object location It tightly bounds the most likely object location as 
inferred from the optical flow map. We use this updated location as a best guess 
of current object location in the absence of an actual object inspection by a vision 
(AI-based) component.

2.	 Expanded candidate region It expands the inferred object location on account of 
potential inaccuracy. This is the area that should be inspected by the detector if 
we want to localize the object again. It is a box whose area keeps expanding from 
frame to frame because each future application of optical flow contrasts the new 
frame with pixels in the expanded candidate region to produce a new box that 
encapsulates all new locations of these pixels in the new frame, likely resulting in 
box enlargement. The effect continues until an inspection of the expanded region 
is scheduled thus pinpointing the actual object again.

3.	 Quantized candidate region We pad the expanded candidate region to the nearest 
quantized size from a predefined set. This is done to improve subsequent batching 
opportunities, since same-size images can be processed in parallel (batched) as 
will be discussed in more detail in Sect. 5.

Figure 2 illustrates the difference between the three regions. Next, we explain how 
they are calculated.

4.2.1 � Computing inferred object locations

To compute the predicted location for an object, we compute the median motion 
vector of all pixels within the previous object bounding box, and move the bounding 
box by that vector. The median motion is chosen over the mean motion to eliminate 
the impact of outliers and static background pixels (e.g. road or sky).

Fig. 2   Comparison between different regions used in the tracking
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Algorithm 1: Optical Flow-based Object Tracking
Input: Set of object {1, . . . , N}, K − 1 frames between two full-frame

inspections, object detector.
1 Maintain a set of object tracks for target objects;
2 for frame k = 2, . . . ,K do
3 Calculate the flow map between frame k and k − 1;
4 for object i = 1, . . . , N do
5 Calculate object representative flow (dx(k)

i , dy
k)
i ) by taking the

median flow of previous object location;
6 Update tracked object center location c̃x := cx

(k−1)
i + dx

(k)
i ,

c̃y := cy
(k−1)
i + dy

(k)
i ;

7 end
8 Generate set of partial detections by the object detector;
9 Data association using Hungarian algorithm between object tracks

and new detections using IoU metric;
10 for object i = 1, . . . , N do
11 if mapped with a new detection then
12 new object location := mapped detection location
13 end
14 else
15 new object location := inferred object location
16 end
17 end
18 end

4.2.2 � Computing expanded candidate regions

This region starts from a previously detected object location, and then keeps 
expanding, until a new detection is made. Specifically, at a new frame k, we use 
[x

(k)

min
, y

(k)

min
, x(k)

max
, y(k)

max
] to denote the new object location, and use D = [Dx̂,Dŷ] to 

denote the partial flow matrix corresponding to its previous expanded candidate 
region, say [x̂(k−1)

min
, ŷ

(k−1)

min
, x̂(k−1)

max
, ŷ(k−1)

max
] . If the previous expanded candidate region 

completely covers the previous object location, then the new object location satisfies:

Thus, we define the new expanded candidate region as:

x̂
(k−1)

min
+ min

dx̂∈Dx̂

dx̂ ≤ x
(k)

min
≤ x(k)

max
≤ x̂(k−1)

max
+ max

dx̂∈Dx̂

dx̂,

ŷ
(k−1)

min
+ min

dŷ∈Dŷ

dŷ ≤ y
(k)

min
≤ y(k)

max
≤ ŷ(k−1)

max
+ max

dŷ∈Dŷ

dŷ.
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The expansion considers the possibly different pixel motions for different parts of an 
object. Since the expanded candidate region starts from the exact object location, it 
holds by induction that the expanded candidate region will cover the (groundtruth) 
object location at every future frame, if the estimated optical flows are accurate.

4.2.3 � Computing quantized candidate regions

To facilitate batching of image processing, we pad the expanded candidate region to the 
nearest quantized (squared) target size si chosen from a finite set, si ∈ {s1,… , sM} . The 
padded region is then called the quantized candidate region. We assign a fixed padded 
target size si to each object within a scheduling horizon. We provide three justifications 
for this choice: First, the quantized size is larger than the initial object size, so it leaves 
space for object size increase in upcoming frames. Second, if the expanded candidate 
region increases beyond si , we reduce its resolution to make it fit into si , because down-
sizing large objects does not degrade their perception quality (Torralba 2009).

4.2.4 � Data association

After we receive the detected object locations from the detector, we perform data asso-
ciations between the existing object tracks (represented by their inferred object locations) 
and the newly detected bounding boxes. We do so by using the Hungarian algorithm 
based on their location overlaps with an Intersection-over-Union (IoU) metric. We then 
update the mapped object locations to the newly detected locations. Those objects not 
inspected by the detector in a given frame will retain their inferred object locations.

4.3 � Object location uncertainty

The object location uncertainty reflects our confidence on the inferred object location. 
Intuitively, if the size of the expanded candidate region is close to the inferred object 
location, we have a low uncertainty (i.e., high confidence) on the inferred object loca-
tion; otherwise, if the object can appear at much larger area than the inferred object loca-
tion, we have a high uncertainty (i.e., low confidence) on the inferred object location.

We assign an object weight wi = vi ⋅ ui to each tracked object Oi , where: (1) vi is 
the object criticality representing the application-specific importance, which is static 
within a scheduling horizon. This is a policy decision that is outside the scope of this 
paper. Even though the visual images do not directly contain distance information, it 
is still possible to distinguish the nearby and distant objects by combining object 
locations with the background (i.e., the road), which we assume is separately solved 
by other AI techniques. (2) ui is the uncertainty growth rate, defined as the average 
rate of its candidate region expansion. After we obtain the full-frame inspection 

[
x̂
(k−1)

min
+ min

dx̂∈Dx̂

dx̂, ŷ
(k−1)

min
+ min

dŷ∈Dŷ

dŷ,

x̂(k−1)
max

+ max
dx̂∈Dx̂

dx̂, ŷ
(k−1)
max

+ max
dŷ∈Dŷ

dŷ

]
.
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result, we calculate the uncertainty growth rate as ui =
√

SECR
i

∕SD
i
∕tf  , where SECR is 

the area of the expanded candidate region, SD
i
 is the area of the detected location, and 

tf  is the latency of full-frame inspection. The uncertainty grows linearly with time if 
no new inspection is performed, which relies on the assumption that we have a suffi-
ciently small gap between consecutive inspections, such that the concatenation of lin-
ear segments can closely approximate the actual uncertainty growth. We set object 
weight as the product of the above two terms to balance the uncertainty-based prior-
itization and the configurable application-specific criticality assignment. For exam-
ple, users can set much higher object criticality to humans than traffic signs such that 
the inspection frequency of humans is always higher than the traffic signs, no matter 
their relative moving speed to the ego-vehicle. Instead, setting the same criticality on 
all objects leads to entirely uncertainty-based prioritization, where object inspection 
frequencies will be set proportional to their location uncertainty growth rate.

As shown in Fig. 3, the overall object uncertainty comes from two sources: wait inter-
vals and inspection latencies. Wait interval is defined as the elapsed time since we obtained 
the last inspection result. Inspection latency refers to the time running the last inspection 
task. The second part exists because the obtained object location does not correspond 
to the finish time of the inspection task, but its start time. After each inspection task, the 
uncertainty is reset to the value solely caused by the inspection latency. By separating the 
uncertainty into the weight factor and the elapsed time, we can simply denote the weighted 
uncertainty of object Oi as Ui(t) = wi(t − ti) + ui , where t − ti is the elapsed time since the 
end of its last inspection, and ui is the uncertainty resulted from its inspection latency.

5 � Partial‑frame inspection scheduling

In this section, we formulate the partial-frame inspection scheduling (PFIS) problem 
without considering image resizing, and introduce the batched proportional balanc-
ing (BPB) algorithm that only applies intermittent inspection and tasking batching, 
which will be further extended by integrating image resizing in the next section.

Fig. 3   The object uncertainty comes from both wait intervals and inspection latencies. The reset value 
only depends on inspection latency
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5.1 � Task execution model

We divide the time into fixed-length segments, where each segment is called a schedul-
ing horizon T. K frames are captured within each scheduling horizon. The platform is 
equipped with a single GPU that runs the detector. We run a full-frame inspection at the 
first frame of each scheduling horizon, which identifies N objects {O1,O2,… ,ON} . 
We subtract the latency of the preprocessing steps and the full-frame inspection to get 
the time budget for partial-frame inspections. Each object Oi is associated with a target 
size si ∈ {s1,… , sM} , within horizon T, which restricts the size of its quantized can-
didate regions and facilitates batching. For each target size s, there exists a maximum 
number of regions that can be batched and processed in parallel on the GPU. We call it 
the batching limit �s for size s. Although the detector execution time can increase with 
the number of batched regions, by appropriately setting the batching limit, we operate 
in a region where execution time changes only slightly with batching (before an inflec-
tion point is reached where the slope increases, as shown in Fig.  4). We denote the 
worst-case batch execution time by �s . In other words, the GPU can simultaneously run 
partial-frame inspections for � ( 1 ≤ � ≤ �s ) objects of target size s within time �s.

5.2 � Scheduling problem formulation

A good perception system should selectively run partial-frame inspections to main-
tain low location uncertainty on each object throughout the scheduling horizon. Recall 
that the (weighted) location uncertainty of object Oi at time t is Ui(t) = wi(t − ti) + ui . 
Without loss of generality, we assume w1 ≤ … ≤ wN . The maximum uncertainty for 
object Oi over the scheduling horizon is denoted by Ui = maxt∈[0,T] Ui(t) . Our goal is 
to minimize the maximum weighted uncertainty over all objects, which we refer to as 
the system uncertainty U. It is defined as U = maxi∈{1,…,N} Ui . The problem we study, 
is to design a schedule of partial-frame inspections such that the system uncertainty is 
minimized. A schedule specifies the ordering and batching of partial-frame inspections.

Definition 1  (Schedule) A schedule is a sequence of tuples ( 1, s1, t1, k1),
( 2, s2, t2, k2),… , ( I , sI , tI , kI) . Both t1,… , tI and k1,… , kI are in non-decreasing 
order. For a generic j-th tuple, it represents the j-th batch, where:

Fig. 4   YOLO execution latencies of 128 × 128 images with different batch sizes on Jetson Xavier. The 
inflection point is highlighted in red, where the batch size is 14. We set the batch limit and batch latency 
correspondingly (Color figure online)
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•	 N
j is the subset of objects that get inspected in the batch. No object can appear 

more than once in the subset.
•	 sj denotes the target size of the batch.
•	 tj ∈ [tf , T] is the start execution time of the batch.
•	 kj ∈ {2,… ,K} represents the frame on which the partial-frame inspection is run.

A schedule is feasible if it satisfies for each batch j: (1) The number of batched 
regions is within the batching limit, i.e., ‖Nj‖ ≤ �sj . (2) We define the valid period 
of a frame as the interval between its arrival and the arrival of the next frame. Any 
batch can only run on the currently valid frame. (3) The start time of the batch is no 
earlier than the finish time of its previous batch, i.e., tj ≥ tj−1 + �sj−1 . (4) The finish 
time of the last batch is no later than T, i.e., tI + �sI ≤ T .

Note that each feasible schedule can be executed on the physical machine, and 
each execution on the physical machine can be translated to a feasible schedule. 
With the above preliminaries, we formulate our problem as follows.

Definition 2  (Partial-frame inspection scheduling problem) The Partial-Frame 
Inspection Scheduling (PFIS) problem asks for a feasible schedule that minimizes 
the system uncertainty within a scheduling horizon.

The PFIS problem requires us to carefully select subsets of objects to run and batch 
on each frame. Although it can be optimally solved by the dynamic-programming par-
adigm, the resulted computational complexity would be high. Instead, we will propose 
a low-complexity policy, called the Batched Proportional Balancing (BPB) policy, that 
computes approximately optimal schedules with provable uncertainty guarantee.

Algorithm 2: The BPB Policy
Input: Object set {O1, . . . ,ON}, weights {w1, . . . , wN}, number of

frames K − 1 for partial-frame inspections.
Output: A feasible schedule with minimized uncertainty.

1 Sort and reindex the objects such that w1 ≤ . . . ≤ wN ;
2 for i = 1, . . . , N do
3 xi := 2�log2(wi/w1)�;
4 end
5 C = { 1

xN
, 1
xN−1

, . . . , 1, 2, 3, . . . , �K−1
xN

�, K−1
xN

} ;
6 Binary search for the maximum c ∈ C such that the schedule

computed by Algorithm 3 for task set {�cx1�, . . . , �cxN�} is feasible
(i.e., the finishing time is no larger than T );

7 Return the schedule for the task set of the maximum c.

5.3 � Scheduling policy

The general idea of the proposed Batched Proportional Balancing (BPB) policy 
is to set the number of partial-frame inspection tasks for each object proportional 
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to its object weight, such that the objects with high criticality or high uncertainty 
growth would receive more attention. For object Oi , we use the inspection fre-
quency xi to denote its number of scheduled partial-frame inspection tasks within 
the scheduling horizon. The inspection frequency set, is thus defined as:

Definition 3  (Inspection frequency set) The inspection frequency set {x1,… , xN} is 
a set of inspection frequencies corresponding to the number of partial-frame inspec-
tion tasks of all objects in the scheduling horizon where, for each object Oi , xi par-
tial-frame inspection tasks are scheduled.

Algorithm 3: Batching-Aware Scheduling (BAS)
Input: Inspection frequency set {x1, . . . , xN}
Output: A schedule for the inspection frequency set
// (1) Calculate the task-bin mapping.

1 L := xN ;
2 for i ∈ {N,N − 1, . . . , 1} (decreasing order of xi) do
3 Let Li be the first L/xi bins {B1, . . . , BL/xi

};
4 si := the target size of Oi;
5 if ∃Bl ∈ Li with incomplete batch of size si then
6 Add the first task of Oi to Bl;
7 end
8 else
9 Add the first task of Oi to the bin in Li with the minimum load;

10 end
11 Replicate the mapping of the remaining tasks of n to the

remaining subset of bins;
12 end

// (2) Convert the task-bin mapping to a schedule.
13 j = 1, tj = 0, schedule S = ∅;
14 for l ∈ {1, . . . , L} do
15 tj := max{tj , start of valid period of the l-th frame}.

for s ∈ {s1, . . . , sM} do
16 κ := the number of objects of size s in Bl;
17 while κ > 0 do
18 N j := min{κ, κs} objects of size s in Bl;
19 k := the most recent camera frame at tj

Add (N j , s, tj , k) to S;
20 tj+1 := tj + τs, j := j + 1;
21 Remove the selected objects from Bl;
22 end
23 end
24 end
25 Return the schedule S
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We aim at computing an inspection frequency test where the inspection fre-
quency xi for object Oi is approximately proportional to its weight wi (i.e., Pro-
portional), and make sure the intervals between consecutive partial-frame 
inspections of each object are evenly distributed in the schedule (i.e. Balanc-
ing). The design so far seems similar to the well-studied pinwheel scheduling prob-
lem (Holte et al. 1989). However, we go a step further by considering task batching 
(i.e. Batched), where we need to simultaneously decide when to detect each object 
and how to batch the inspections of objects such that the system uncertainty is mini-
mized. Improper batching may result in low utilization on the GPU and much higher 
system uncertainty. The pseudocode of the BPB policy is presented in Algorithm 2. 
It searches for an inspection frequency set with the minimum system uncertainty, 
and invokes the Batch-Aware Scheduling (BAS) algorithm (Algorithm 3) as a sub-
procedure to derive an optimal schedule for a given inspection frequency set.

To reduce the search effort, the BPB policy first proportionally derives the nor-
malized inspection frequencies of objects such that the object with the smallest 
weight is detected only once. They are computed by dividing the object weights by 
the minimum weight, and rounding down to the nearest power of 2 if they are not.1 
Let the normalized inspection frequency set be {x1,… , xN} . BPB then searches a 
maximum scaling factor c such that the schedule returned by the BAS algorithm 
for the inspection frequency set {⌊cx1⌋,… , ⌊cxN⌋} is feasible. Note that the scaling 
factor c can be smaller than one, and thus in the resulting inspection frequency set, 
⌊cxn⌋ can be zero for some objects. Such objects will not be scheduled. As we will 
show in the sequel, if the schedule calculated by the BAS algorithm for c is feasible, 
so is the schedule calculated by the BAS for any c′ ≤ c . Thus, the maximum c can 
be identified via binary search due to this monotonicity property.

The Batch-Aware Scheduling (BAS) algorithm (Algorithm 3) computes an opti-
mal schedule that minimizes the system uncertainty for a given inspection fre-
quency set {x1,… , xN} . BAS works as a two-step procedure. First, BAS maps the 
partial-frame inspection tasks for objects to L = xN temporally distributed virtual 
bins {B1,… ,BL} . The virtual bins do not correspond to camera frames. No object 
can have more than K − 1 partial-frame inspections in a scheduling horizon, so we 
assume L ≤ K − 1 . BAS sequentially assigns the tasks of each object Oi in decreas-
ing order of xi . Since each xi is an integer power of 2 multiple of the minimum 
non-zero element in C , when mapping tasks for object Oi , BAS only designates 
the mapping of its first task to the first L∕xi bins2 and replicates the mapping for 
the remaining tasks to the corresponding bins in remaining subsets. By doing so, 
when assigning tasks of an object, the matched bins in different subsets always have 
perfectly symmetric load. The first task of each object is assigned in a batch-aware 
load-balanced fashion. At object Oi , BAS first checks whether there is a bin that 
has incomplete batch with size si , i.e., the number of tasks with size si in the bin is 
not a multiple of �si . If such a bin exists, it assigns the task to that bin; otherwise, 

1  This operation is used to align the inspection times among objects to trigger more batching opportuni-
ties.
2  L∕x

i
 is an integer since both L and x

i
 are powers of 2 multiples of the minimum non-zero element in C 

and x
i
≤ L.
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it assigns the task to the bin with the minimum load. The bin load �l is the execu-
tion time sum for batches in bin Bl . The assignment process is visually illustrated in 
Fig. 5. Second, it converts the generated task-bin mapping to a schedule by sequen-
tially executing the bins, and greedily batching tasks with the same target size in 
each bin. When compositing a batch, we select the valid frame at that time to run 
partial-frame inspection.

5.4 � Theoretical analysis

In this part, we analyze the approximation ratio on achieved system uncertainty by 
BPB, with the following theorem.

Theorem 1  Let U be the overall system uncertainty under the BPB policy, Ũ∗ be the 
optimal uncertainty caused by wait intervals, and Uf  be the uncertainty caused by 
full-frame inspection latency, where Ũ∗

≪ Uf .3 We use U∗ to denote the optimal 
overall uncertainty. If the object weights w1,… ,wN are integer powers of 2, then 
U ≤ (1 +

2Ũ∗

Uf

)U∗ ; otherwise in general case, U ≤ (1 + 4Ũ∗

Uf
)U∗.

We reindex the objects in the decreasing order of their weight factors, i.e., 
w1 ≥ ⋯ ≥ wN . We first utilize the symmetric structure of the schedule computed by 
BAS (i.e., the mapping of each subsequent task of an object is a duplicate of the first 
task to the corresponding subset of bins), to bound the uncertainty caused by wait 
intervals. Then, we include the uncertainty caused by inspection latency, and derive 
the bound for overall uncertainty. The proof consists of four steps:

•	 Step 1: We prove in Lemma  1 that the load difference 𝜆̄l(i) − 𝜆
l
(i) , between 

the max bin load 𝜆̄l(i) ∶= maxl 𝜆l(i) and the min bin load �
l
(i) ∶= minl �l(i) , 

is always bounded, where �l(i) is the load for bin Bl after assigning the first i 
objects.

•	 Step 2: We prove in Lemma 2 that given an inspection frequency set, BAS is 
optimal in minimizing the overall execution latency.

•	 Step 3: We prove in Lemma 3 the bound on the system uncertainty caused by 
wait intervals, by bounding the maximum bin load with the optimal system 
uncertainty.

•	 Step 4: We include the uncertainty caused by inspection latency, and prove the 
overall uncertainty bound in Theorem 1.

Next, we go through the above steps one by one. Due to the space limitation, we 
skip the proof of some lemmas here.

Step 1: We first claim that the bin load difference is bounded at every step of BAS 
execution.

3  We base on the assumption that it is beneficial to slice the image and run the inspection tasks at the 
sub-frame level.
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Lemma 1  For each object Oi , 𝜆̄(i) − 𝜆(i) ≤ max{𝜆̄(i − 1) − 𝜆(i − 1), 𝜏si} , where si is 
the target size for the object Oi and �si is its corresponding batch execution time.

Proof  For each i, let Li ∶=
L

xi
 , where xi is the detection frequency for object Oi . Li is 

an integer power of 2 by construction. When assigning object Oi , we have 
�l(i) = �l� (i) for l ≡ l�( mod Li) (as exemplified in Fig. 5).

•	 If there exists an incomplete batch for target size si in the first Li bins, then 
𝜆̄(i) = 𝜆̄(i − 1) and �(i) = �(i − 1) , and the claim follows.

•	 If there is no incomplete batch, then based on induction, there are a subset of 
bins, that for all l such that �l(n − 1) = �(i − 1) , and they are equivalent modulo 
Li−1 . Since Li−1 ≤ Li and Li mod Li−1 ≡ 0 , there exists at least one bin l ∈ Li 
with load �(i − 1) . After assigning Oi to l, its load will increase to �(i − 1) + �si

 . 
If 𝜆(i − 1) + 𝜏si

≥ 𝜆̄(i − 1) , we have 𝜆̄(i) − 𝜆(i) ≤ 𝜏si
 ; otherwise, we have 

𝜆̄(i) − 𝜆(i) ≤ 𝜆̄(i − 1) − 𝜆(i − 1).

	�  ◻

Step 2: We give the optimality of BAS schedule in minimizing the system load of 
given inspection frequency set.

Lemma 2  Given an inspection frequency set {x1, x2,… , xN} , we use �BAS to denote 
the total load of the schedule computed by the BAS algorithm (Algorithm  3). It 

Fig. 5   Graphical illustration on how BAS generates the task-bin mapping. We have four objects denoted 
by (object, inspection frequency, target size): (O1, 4, s1) , (O2, 2, s1) , (O3, 2, s2) , (O4, 1, s3) . We have 4 
(virtual) bins, which are not aligned with the frame boundaries. For object O2 , its first task is assigned 
to bin B1 because there is an incomplete batch with size s1 , and the decision is replicated to bin B3 . For 
object O3 , its first task is assigned to bin B2 , and the decision is replicated to bin B4 . The task for object 
O4 is assigned to bin B1 with the min load
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minimizes the total load over all feasible schedules for the given inspection fre-
quency set, i.e., �BAS ≤ � , with � being the total load of any other feasible schedule.

Proof  As tasks of different sizes cannot be batched, the total load of a schedule is 
determined by the batching composition of each size. For a given size, the total load 
of tasks is minimized when the number of batches is minimized. It can be proven by 
induction that, for the same size, BAS minimizes the number of batches for the first 
i objects. The base step is trivial, since no tasks of the same object can be batched. 
For the induction step, assume the claim holds for i. When deciding on the mapping 
of tasks on object Oi+1 , if there exists an incomplete batch, then the schedule by BAS 
has the same number of batches as that for the first i objects, from which the claim fol-
lows. If no incomplete batch exists, consider any partial schedule for the first i objects. 
If for that partial schedule, an incomplete batch exists, then it contains at least one 
more batch than the partial schedule by BAS for the first i objects. It is contradictory 
with the assumption that BAS minimizes the batch count for the first i objects. In both 
cases, for the first i + 1 objects, the partial schedule by BAS contains no more batches 
than any other partial schedule, which completes the induction argument. 	� ◻

Step 3: We prove the bound on system uncertainty caused by wait intervals only.

Lemma 3  Let Ũ∗ be the optimal system uncertainty caused by wait intervals, and Ũ 
be that part in BPB policy, respectively. If the object weights are all integer powers 
of 2, then Ũ ≤ 2Ũ∗ ; otherwise in general case, Ũ ≤ 4Ũ∗.

Proof  Let {x̃∗
1
,… , x̃∗

N
} be the inspection frequency set that achieves Ũ∗ . We construct 

its proportional adaptation using the following procedure.

•	 Let T � = T − tf  . Under the optimal schedule, we have Ũ∗ ≥ maxi
wiT

�

x̃∗
i

 . Let 

î = arg max
i

wiT

x̃∗
i

 . For each i, wi

x̃∗
i

≤
wî

x̃∗
î

 . Since each x̃∗
i
 is an integer, it follows that 

x̃∗
i
≥

wix̃
∗

î

wî

≥

⌊
wix̃

∗

î

wî

⌋
 . We set ĉ =

⌊
wNx̃

∗

î

wî

⌋
≥ 1.4

•	 Let xi = 2⌊log2(wi∕wN )⌋ , that is, {x1,… , xN} is the output of step 3 of Algorithm 2, 
i.e., the ratios of the inspection frequency set of BPB. By definition, xN = 1 . 
According to the construction, for each i, we have xi = 2⌊log2(wi∕wN )⌋ ≤

�
wi

wN

�
.

•	 We define {ĉx1,… , ĉxN} as the proportional adaptation of the optimal inspection 
frequency set. Since both ĉ and xi are both integers, we have ⌊ĉxi⌋ = ĉxi.

We next prove that the constructed proportional adaptation is feasible that can finish 
within T ′ . For each object Oi,

4  Without loss of generality, we assume that 
⌊
w
N
x̃
∗

î

w
î

⌋
≥ 1 and 

x̃
∗

î

w
î

 is an integer; otherwise, we can just take 
the largest i with non-zero value of this equation and leave out the remaining objects.
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Since the optimal schedule is feasible, there also exists a feasible schedule for the 
inspection frequency set {ĉx1,… , ĉxN}.

We have proved (Lemma 2) that BAS minimizes the system load, thus the factor 
c by BAS is at least ĉ , i.e., c ≥ ĉ . In the BPB policy, the object uncertainty is 
bounded by wi(maxl �l)

L

xi
= wi(maxl �l)

x1

xi
 , where �l is the load of bin Bl . We bound 

the maximum bin load of the BPB schedule, under the following two cases.
(Case 1)  If 𝜆̄(N) ≤ 2𝜆(N) , we have

From the construction of {x1,… , xN} , we have for each object Oi , 
xi

xN
≤

wi

wN

≤
2xi

xN
 . Its 

uncertainty satisfies,

(Case 2)  If 𝜆̄(N) > 2𝜆(N) , consider the last i where 𝜆̄(i) increases (i.e., 
𝜆̄(i) > 𝜆̄(i − 1) , we have 𝜆̄(N) − 𝜆(N) ≤ 𝜆̄(i) − 𝜆(i) ≤ 𝜏si

 . We have �si ≥ maxl
�l

2
 . 

Even under the optimal schedule, the maximum uncertainty of object O1 is at least 
w1𝜏si

≤ Ũ∗ , so we have maxl 𝜆l ≤
2Ũ∗

w1

 . Hence,

Specially, if each wn is integer power of 2, we have xi
xN

=
wi

wN

 , then it holds Ũ ≤ Ũ∗ in 
both cases. 	�  ◻

Step 4: We prove the bound on the overall system uncertainty, including uncertainty 
caused by inspection latencies.

Proof  We use tf  to denote the full-frame inspection latency. Recall that Ũ∗ is the 
optimal uncertainty caused by inspection intervals, U∗ is the optimal overall uncer-
tainty, and Ũ∗ ≤ U∗ . They can correspond to two different schedules. We have,

ĉxi ≤ ĉ

⌊
wi

wN

⌋
=

⌊
wNx̃

∗

î

wî

⌋⌊
wi

wN

⌋
≤

⌊
wix̃

∗

î

wî

⌋
≤

wix̃
∗

î

wî

≤ x̃∗
i

max
l

𝜆l = 2min
l

𝜆l ≤
2𝜆BAS

L
≤

2T �

cx1
≤

2T �

ĉx1
,

wix1

xi
⋅max

l
𝜆l ≤

wix1

xi
⋅

2T �

ĉx1
≤

4wNT
�

ĉxN
=

4wNT
�

wNx̃
∗

î
∕wî

≤ 4Ũ∗.

wix1

xi
⋅max

l
𝜆l ≤

wix1

xi
⋅

2Ũ∗

w1

≤
2wN

xN
⋅

xN

wN

⋅ 2Ũ∗ = 4Ũ∗.

U = max{U1,… ,UN} ≤ max{Ũ1 + w1tf ,… , ŨN + wNtf }

≤ max{Ũ1,… , ŨN} + Uf

≤ 4Ũ∗ + Uf = (
4Ũ∗

Uf

+ 1)Uf

≤ (
4Ũ∗

Uf

+ 1)U∗.
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Since every schedule includes the full-frame inspection, which induces uncertainty 
Uf  , we have Uf ≤ U∗ . The proof follows. Similarly, when all wn ’s are integer power 
of 2, we have U ≤ (1 +

2Ũ∗

Uf

)U∗ . This completes the proof of Theorem 1. 	�  ◻

6 � Generalized scheduling with image resizing

In previous formulation, we established the scheduling problem as a max-uncer-
tainty minimization problem by controlling the object inspection frequency along 
with their batching decisions. In this section, we generalize the scheduling problem 
by further considering image resizing. We first introduce the design rationale behind 
integrating image resizing, followed by a formulation of the generalized scheduling 
algorithm, and finally explain how we extend the proposed scheduling algorithm to 
solve it.

6.1 � Design rationale

As addressed before, common CNN-based object detection models, like YOLO, are 
able to process input images of different resolutions with different latencies, as long 
as they are subject to certain constraints (e.g., the image sizes should be multiples 
of 32 in YOLO). To utilize this property, we can not only slice out partial regions 
of different sizes, but also resize the large regions into smaller sizes. Reducing the 
image resolutions (or called image resizing) before feeding them into DNN models 
trades part of the model accuracy for reduced execution latency. We investigate the 
impact of image resizing on achieved detection quality and inference latency. We 
downsize the full images to different resolutions, and evaluate the detection accu-
racy (i.e., mAP5) on objects of different sizes, as well as the associated inference 
latency. As shown in Fig. 6, image resizing leads to different accuracy degradation 
curves on objects of different sizes. Large objects are more tolerable to image resiz-
ing than small objects, and very large objects (object size ≥ 160 ) almost suffer from 
no accuracy degradation even if we reduce the image size by 5 times (i.e., down-
size ratio as 0.2). According to our profiling result, image resizing runs fast on Jet-
son Xavier with a latency of <1ms in most cases. Besides, as we will introduce in 
Sect. 7.2, we merge highly overlapped partial regions, so only a limited number of 
large partial regions are extracted from each frame.

There are two potential benefits if we integrate image resizing into the proposed 
scheduling framework. First, after downsizing some partial frames, the execution 
latency of every single inspection will decrease, thus we can schedule more inspec-
tions for both downsized objects and the remaining objects. Second, image resizing 
could further facilitate task batching of partial frames which originally have differ-
ent sizes. For example, if we downsize partial frames of 512 × 512 to 256 × 256 , 
we can further batch them with the remaining 256 × 256 partial frames. Ultimately, 

5  The specific definition of the metric will be given later.
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lower system uncertainty can be achieved with the appropriate use of image resiz-
ing. However, we can not ignore the detection quality degradation caused by image 
resizing, which is not reflected in system uncertainty, thus it can no longer be used 
as a proper proxy objective of the object detection accuracy. We next solve this issue 
by defining a generalized optimization objective and scheduling algorithm.

6.2 � Generalized scheduling problem formulation

To address the aforementioned issue, we first define the execution model related 
to image resizing operation, and then define a new optimization objective, named 
generalized uncertainty, integrating the effect of image downsizing, inspection fre-
quency, and task batching.

6.2.1 � Image resizing and accuracy degradation

As defined before, each object Oi is associated with a fixed target size 
si ∈ {s1,… , sM} within a scheduling horizon, which was calculated by expanding 
and quantizing the inferred object location at the first frame after the full frame 
inspection. It represents the size of the partial frame to be processed in each of its 
inspection task. We further define a confined target size for each object below.

Definition 4  (Confined target size) The confined target size s�
i
∈ {s1,… , sM} for object 

Oi could be any size in the limited size set that is no larger than si , i.e., s′
i
≤ si . To 

maintain the task batching opportunities, the same confined target size for an object 
persists across a scheduling horizon. At one frame, if the expanded candidate region is 
larger than the confined target size, we would first pad the expanded candidate region 
into a square region (to keep the same aspect ratio), and then downsize it to s′

i
.

In order to depict the accuracy degradation associated with image resizing, we 
define an accuracy degradation profile, which is essentially a lookup table using 
the object size6 and downsizing ratio as two input dimensions (as shown in the left 

Fig. 6   Impact of image resizing on detection quality and inference latency. In the left figure, different 
curves represent detection accuracy degradation on objects of different sizes

6  We want to remind that the object size is not identical to the object target size because the target size 
not only depends on the object size, but also the object motion.
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part of Fig. 7). The element in each cell represents the ratio between the accuracy on 
downsized images and original images, which is also called the accuracy degrada-
tion factor. This table is obtained through offline profiling by downsizing the images 
with different downsize ratios and separately counting the obtained accuracy on dif-
ferent object sizes.

To accurately calculate the accuracy degradation factor di(t) of object Oi at time t, 
the following steps should be performed: We first compute the size of its expanded 
candidate region according to its uncertainty growth rate ui and the time since its last 
inspection t − ti . Next, we get the downsize ratio by calculating the ratio between its 
confined target size and expanded candidate region size. Finally, we use the detected 
object size and the downsize ratio to query the accuracy degradation profile to get its 
accuracy degradation factor.

Since the object region projections are iteratively expanded in each frame, with a 
given confined target size, the downsize ratio of an object is different at each frame. 
As a consequence, the exact accuracy degradation of an object over a scheduling 
horizon also depends on its inspection schedule (i.e., at which frame the inspection 
is performed). This could significantly complicate the scheduling problem since we 
use the accuracy degradation profile as input to the scheduling algorithm. To sim-
plify the problem, we propose an approximated approach to calculate the accuracy 
degradation factor of an object over a scheduling horizon in a schedule-independent 
way, which is defined below.

Definition 5  (Approximated object accuracy degradation factor in a schedul-
ing horizon) Given an object Oi , and its calculated accuracy degradation factor 
di(1),… , di(T − 1) at each frame (when no partial frame inspection is performed), 
its approximated accuracy degradation factor for the whole scheduling horizon is 
calculated as the weighted average of its accuracy degradation factors at each frame, 
discounting the weights of frames by their distance to the key frame,

(2)di =
di(1) +

1

2
di(2) +⋯ +

1

2T−2
di(T − 1)

1 +
1

2
+⋯ +

1

2T−2

.

Fig. 7   Illustration of the accuracy degradation profile and degradation factor
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There are two reasons behind this design choice: First, most objects are more 
likely to get high inspection frequencies than low inspection frequencies. Second, 
even if we assume the same probability for different inspection frequencies, high 
inspection frequencies will lead to higher absolute inspection times, which happen 
at frames close to last inspected frames. In such a way, we formulate the impact of 
image resizing independent of the specific object inspection schedules, and leave the 
image resizing a higher level decision above the inspection frequency.

6.2.2 � Generalized problem formulation

In the generalized problem formulation, we intend to integrate the effect of object 
location uncertainty caused by skipped object inspection and the detection accuracy 
degradation caused by image resizing defined above. We first define the generalized 
weighted object uncertainty GUi(t) at time t as,

Definition 6  (Generalized object uncertainty) Given an object Oi and the last 
inspection time ti , its generalized uncertainty GUi(t) at time t is defined as the ratio 
between its location uncertainty and its approximated accuracy degradation factor in 
the scheduling horizon:

Intuitively, we should compensate the downsized objects with more inspections 
to bound its generalized uncertainty, otherwise we will be more likely to lose the 
tracking of this object. Next, the generalized partial-frame inspection scheduling 
problem is correspondingly defined as,

Definition 7  (Generalized partial-frame inspection scheduling problem) The Gen-
eralized Partial-Frame Inspection Scheduling (GPFIS) problem asks for a feasible 
schedule that minimizes the system uncertainty within a scheduling horizon.

The definition of schedule remains the same as Definition 1 except that we also 
need to decide a confined target size for each object. We next introduce how can we 
extend the proposed BPB policy to solve the new GPFIS problem.

6.3 � Generalized BPB scheduling policy

There is a tradeoff between the decision space complexity and scheduling flexibility 
when we jointly determine the downsizing factors for all objects. If we determine a 
confined target size for all objects, the decision space is constant to the number of 
objects, but the achieved model accuracy could be suboptimal. On the contrary, if 
we separately determine a confined target size for each object, the achieved model 
accuracy is optimized, but the decision space grows exponentially to the number of 
objects, which makes the problem NP-hard even if we do not consider the inspection 

(3)GUi(t) =
Ui(t)

di
=

wi(t − ti) + ui

di
.
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schedule. Therefore, we propose to decide the resizing factors at the granularity of 
object groups segmented by the object sizes, because it has been shown in Fig. 6 that 
the difficulty of detecting objects with different sizes are different with heterogene-
ous accuracy degradation curves. Large objects are more tolerable to image resizing, 
while small objects can not be aggressively downsized.

Even under this restricted setting, the decision choices is still exponential to the 
number of (discretized) object sizes. As we can observe from Fig. 6, it is always more 
beneficial to downsize larger objects than smaller objects, because doing so saves 
more in DNN model latency (with more inspection area reduction), while suffering 
from less accuracy degradation, under the same downsizing factor. Thus, we further 
reduce the decision space by only deciding a maximum target size smax ∈ {s1,… , sM} 
such that any larger candidate regions should be downsized to smax.

Specifically, we propose the Generalized Batched Proportional Balancing (GBPB) 
policy in Algorithm 4, which uses Algorithm 2 as a subroutine, and feed different 
max target size values to compute the optimized schedule that achieves the minimum 
generalized system uncertainty. We use a loop to iterate over all used target sizes (too 
large target sizes are skipped if no object uses them). At each iteration, we first use 
the selected max target size to calculate the confined target sizes {s�

1
,… , s�

N
} and the 

approximated object accuracy degradation factors {d1,… , dN} for the objects, and 
correspondingly update the object weights to {w1

d1
,… ,

wN

dN
} . Next, they are fed into 

Algorithm 2 to compute the object inspection schedule and the achieved generalized 
system uncertainty. The maximum target size value that achieves the minimum gen-
eralized system uncertainty and its schedule are used as the algorithm output. Since 
we greatly reduce the decision space of image resizing and decouple the impact of 
image resizing and intermittent inspection, Algorithm  2 will be called at most M 
times (i.e. the number of target sizes) in actual scheduling execution.

Algorithm 4: Generalized Batched Proportional Balancing (GBPB)
Policy
Input: Object set {O1, . . . ,ON}, object weights {w1, . . . , wN}, number of

frames K − 1, target size set {s1, . . . , sM}.
Output: A feasible schedule with minimized generalized uncertainty.

1 Initialize: Min uncertainty GUmin := +∞, output schedule Sout ;
2 for smax ∈ {s, . . . , s2, s1} (reverse order of used target sizes) do
3 Calculate the confined target sizes {s′1, . . . , s′N} and the approx. acc.

degradation factors {d1, . . . , dN} with smax;
4 Update the object weights as {w1

d1
, . . . , wN

dN
} ;

5 Feed {s′1, . . . , s′N} and {w1
d1

, . . . , wN
dN

} into Algorithm 2, return the
achieved generalized uncertainty GU and schedule S (including the
confined target sizes);

6 if GU < GUmin then
7 GUmin := GU, Sout := S ;
8 end
9 end

10 Return the schedule Sout.
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7 � Empirical optimization

In this section, we list some practical considerations and empirical optimizations we 
performed in our implementation.

7.1 � New object arrival

We first show in Fig. 8 that there is no object arrival or departure in most ( ≈ 80% ) 
frames. Most new objects have very small sizes so they only cause minor extra 
workload. Some existing objects can disappear during the scheduling horizon. The 
slots for these objects, together with the idle slots in incomplete batches, can be used 
to schedule the new object regions. To (roughly) localize new objects, we apply a 
lightweight mechanism based on optical flow. We define the pixels in the new frame 
that are not mapped to any pixel in the previous frame as the newly appeared pixel, 
and then use connected component analysis (Grana et al. 2010) to extract new object 
regions. An example is shown in Fig. 9.

7.2 � Partial region merge

If two candidate regions have significant overlap, it is beneficial to merge them into 
one so we can avoid repetitively scanning the same area. In our case, if there is an 
unscheduled region such that its overlap ratio with a scheduled region is above a 
threshold I, we use the merged region to replace the scheduled region. This approach 
could help reduce the redundant inspections of overlapping regions on different par-
tial frames extracted from the same frame.

7.3 � Bounding box filtering

We perform a bounding box filtering procedure, as a postprocessing step, to remove 
fragmented detections that correspond to only part of a physical object. Specifically, 
we remove detected bounding boxes that lie on the partial image boundaries, unless 
the partial image boundaries coincide with the full image boundaries. We provide an 
illustrative example in Fig. 10. Intact redundant inspections can be easily removed 
by the non-maximum suppression (NMS) step of the detector.

8 � Evaluation

In this section, we evaluate the effectiveness and efficiency of the proposed frame-
work on an NVIDIA Jetson Xavier board with a real-world self-driving dataset.
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8.1 � Experimental setup

8.1.1 � Hardware platform

All experiments are conducted on an NVIDIA Jetson Xavier SoC, which is designed 
for automotive platforms. It is equipped with an 8-core Carmel Arm v8.2 64-bit 
CPU, a 512-core Volta GPU, and 32 GB memory. The mode is set as MAXN with 
the maximum CPU/GPU/memory frequency capacity.

8.1.2 � Dataset

Our experiment is performed on the Waymo Open Dataset (Sun et al. 2020), a large-
scale autonomous driving dataset collected by Waymo self-driving cars in diverse 
geographies and conditions. It consists of driving video segments of 20 s each, col-
lected by onboard cameras at 10Hz with resolution 1920 × 1280. Only front camera 
data is used.

8.1.3 � Neural network for detection

We use the YOLOv57 model in PyTorch as the object detection network, which was 
pretrained on the general-purpose COCO (Lin et al. 2014) dataset. We specifically 
use the default “large” config in the evaluation, with both depth and width multipli-
ers set to 1. The model precision is set to FP16. The YOLO inference latencies with 
different target sizes are profiled in advance.

8.1.4 � Workload manipulation

Unless otherwise indicated, we choose our scheduling horizon to be 10 frames, 
and manually change the time interval P between two consecutive frame arrivals 
to induce different workload. Intuitively, a shorter frame interval leads to a higher 
scheduling load. Our experiments use three interval lengths (150 ms, 100 ms, and 70 
ms) to denote the easy, moderate, and hard scheduling situations (corresponding to 
frame rates of roughly 6.67 Hz, 10 Hz, and 14 Hz).

8.1.5 � Object criticality

The object criticality is the product of two terms: (1) Class criticality, (2) approxi-
mated object distance. The class criticality is manually assigned to simulate how 
humans prioritize different types of objects. For example, “human” class has a much 
higher criticality than “vehicle” class. Besides, we assume the physical sizes of 
objects belonging to one class are similar, so we use the bounding box size (i.e. 
width) as an approximation of object distance. We separately evaluate the detection 

7  https://​github.​com/​ultra​lytics/​yolov5.

https://github.com/ultralytics/yolov5
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performance on all objects and critical objects. A separate object size threshold for 
critical objects is set for each class.

8.1.6 � Evaluation metrics

Given a list of detections and a list of groundtruth object locations, we match the 
detections with the groundtruth objects based on their bounding box overlap. A 
detection is said to be matched with a groundtruth object if their IoU ratio is larger 
than a predefined threshold (set as 0.5 in this paper) and larger than the remaining 
detections, in which case we say that the object is successfully detected. It has been 
shown by Liu et  al. (2022b) that the achieved localization error and classification 
accuracy are similar across different approaches, so they are skipped in this evalua-
tion. The following set of metrics are utilized:

•	 Detection recall (DR): The ratio between the number of successful detections 
(matched with groundtruth objects) and the count of all groundtruth objects.

•	 Detection precision (DP): The ratio between the number of successful detections 
(matched with groundtruth objects) and the count of all detections.

•	 Mean average precision (mAP): It is used as an end-to-end metric, which simul-
taneously captures the error in both location and classification. An open sourced 
mAP evaluation engine8 is used.

Fig. 8   Distributions on number of newly arrived objects and departured objects, as well as the (quan-
tized) new object size distribution, at each frame. Results obtained on Waymo Open dataset (Sun et al. 
2020)

Fig. 9   An example of new pixels in the current frame highlighted in red (Color figure online)

8  https://​github.​com/​Cartu​cho/​mAP.

https://github.com/Cartucho/mAP
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The YOLO performance on full frames is listed in Table 1, which serves as the ceil-
ing condition for the proposed framework. In addition, we separately evaluate the 
detection performance on all objects and the critical objects.

8.2 � Impact of image slicing

A good slicing module should be lossless and lead to no degradation in detec-
tion quality. To isolate the impact of image slicing, we run inspections on all 
sliced candidate regions. Besides, two empirical optimizations are considered: (i) 
bounding box filtering, and (ii) candidate region merge. We evaluate the detec-
tion recall and precision with and without bounding box filtering, under different 
candidate region merge criteria (i.e. the intersection ratios) in Fig. 11. First, the 
detection precision is degraded after slicing, because more false positive detec-
tions (i.e. fragmented object parts) are generated. The region merge does help 
partially improve detection precision, but bounding box filtering is the key factor 
that makes the slicing lossless. The red curve of Fig.  11b indicates the slicing 
with bounding box filtering shows negligible degradation on detection precision 
under different merging criteria. The fragmented detections are mostly removed. 
Second, the detection recall is not affected no matter whether bounding box fil-
tering is applied, which indicates the sliced partial frames completely cover the 
groundtruth objects. We set the intersection ratio for merge as 0.5 to achieve a 
good tradeoff between detection recall and precision.

8.3 � Tracking algorithm

We compare our flow-based tracker (denoted by “Flow”) with a state-of-the-
art tracking algorithm, SORT  (Bewley et  al. 2016), which uses a Kalman filter 
to model object motions. It extrapolates future object locations from the past 
object trajectories. The results are presented in Fig. 12. We separately show the 
results on overall objects and critical objects, under three workloads (i.e., frame 

Fig. 10   An example of bounding box filtering. Note we preserve the yellow box although its bottom edge 
lies on the bottom border of the partial image, because the partial image bottom coincides with the full 
image bottom (Color figure online)
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intervals). We found that optical flow generally works better than SORT in track-
ing. They show similar detection precision under each workload, but the detec-
tion recall and mAP of Flow are clearly better than SORT, especially when the 
frame interval is short. We rely more on the tracking algorithm to predict object 
locations when there is no GPU resource to run their partial-frame detection 
tasks. Flow is more accurate in estimating object motions, because it proactively 
extracts the information from newly captured frames, as opposed to the extrapo-
lated motions in SORT.

8.4 � Robustness of flow‑based tracking and slicing

In this experiment, we explicitly evaluate the robustness of the proposed flow-based 
tracking algorithm, by answering the following question: Does missing frames dur-
ing a scheduling horizon affect the detection result? We randomly delete differ-
ent portions (from 10% to 60% ) of frames from each scheduling horizon (i.e., 10 
frames), and compare the relative detection performance between our approach 
and full-frame inspection on the remaining frames. All sliced candidate regions are 
inspected. If the key frame is missing, we regard the next available frame as the key 
frame instead. The results are summarized in Fig. 13. We use a reproducible random 
number generator to generate the same subset of missing frames between the two 
compared approaches. Our flow-based tracking and slicing approach consistently 
shows a close performance on both overall mAP and critical mAP to the full-frame 
inspection approach when different portions of frames are missing within a schedul-
ing horizon. Only negligible relative degradation is observed as the frame missing 
ratio increases. When intermediate frames are missing, the optical flow algorithm 
would directly compute the flow map between two consecutive available frames, and 
the proposed expansion steps further consider the potential uncertainty contained in 
the estimated flow map.

8.5 � Scheduling algorithm comparison

8.5.1 � Baselines

We compare the following algorithms in this evaluation.

•	 Downsizing (DS): It always runs full-frame inspections at the largest resolution 
that can finish in real-time.

•	 Highest Uncertainty First (HUF): It always schedules the partial frame inspec-
tion task with the highest weighted uncertainty. Batching is not used.

•	 Batched highest uncertainty first (BHUF)  (Liu et  al. 2020a): It always sched-
ules the partial frame inspection tasks with the highest weighted uncertainty, and 
batches the tasks under the same target size in a greedy manner.

•	 Batched proportional balancing policy (BPB) (Liu et al. 2022b): The proposed 
scheduling algorithm in Sect.  5 that controls the inspection frequency of each 
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object according to their criticality and uncertainty growth. No image resizing is 
applied.

•	 Generalized batched proportional balancing policy (GBPB): The generalized 
scheduling algorithm in Sect.  6 that integrates image resizing and intermittent 
inspection, as well as task batching in the optimization.

8.5.2 � Results

The corresponding results are summarized in Fig. 14. We test the scheduling algo-
rithms at different workloads (i.e. frame intervals) and report the following obser-
vations: First, both BPB and GBPB improve the mAP compared to the baselines, 
a metric that captures both localization and classification errors in object detec-
tion. GBPB further improves the mAP of BPB by introducing image resizing in 
the scheduling framework, especially when the frame interval is short (i.e. 70 ms). 
Instead, BPB and GBPB achieve similar mAP when the frame interval is 150ms, 
proving that GBPB can maximally utilize the available resources by setting larger 
max confined target sizes when the computation demand is low. Through the com-
parison, we conclude that GBPB achieves better computational resiliency than BPB 
with less degradation in the face of higher workloads (i.e. 70 ms). This is because 
image resizing provides an alternative dimension for computational savings, which 
avoids extremely low inspection frequency on critical objects. Otherwise, relying 
too much on optical flow-based projection to predict object locations impairs track-
ing of fast-moving objects. Second, GBPB achieves the best recall, but at the cost 

Table 1   YOLOv5 performance on Waymo dataset

All values in this table are in percent, except the latency

Model Ove. Det. Rec Ove. Det. Pre Ove. Cls. Acc Ove. Loc. Err

YOLOv5l 70.09 87.54 99.88 4.68
Cri.Det.Rec Cri.Det.Pre Cri.Cls.Acc Cri.Loc. Err
82.29 92.05 99.96 3.97
Ove.mAP Cri.mAP XavierLatency
62.76 78.14 239ms

Fig. 11   Impact of slicing on detection quality



333

1 3

Real-Time Systems (2023) 59:302–343	

of minor degradation in precision, compared to full-frame downsizing (DS). This 
is because both the image slicing and partial-frame downsizing can result in minor 
degradation in the detection precision, which is less important than detection recall. 
Finally, compared to BHUF, the proposed approaches do better at planning when to 
invoke the detector to minimize (generalized) location error without hurting recall.

8.5.3 � Evaluation on busy traffic scenarios

To further demonstrate the additional value of GBPB over BPB, we separately 
extract a new dataset from Waymo with dense object distributions, which are not in 
the previous dataset, to evaluate the performance of the new GBPB algorithm under 
busy traffic scenarios. Example scenarios of this dataset are visualized in Fig.  15 
and the associated detection results are presented in Fig.  16. We find the advan-
tage of GBPB over BPB is larger in busy traffic scenarios, which achieves 5.42% 
overall mAP and 6.33% critical mAP improvement when the frame interval is 70 
ms. When the number of objects in the scene is large, BPB can only reduce the 
inspection frequency of all objects, which leads to more “inferred object locations 
from the past” in the generated detections that are possibly shifted from the actual 
object locations, while GBPB can balance between lower inspection frequencies and 
lower image resolutions, which offers a larger optimization space in combination. 
We also notice that the image downsizing in GBPB leads to minor degradation in 
the achieved detection precision (DP), in exchange for higher detection recall (DR), 
but GBPB still outperforms BPB on the mAP metric. The results in this experi-
ment also validate our previous observation that GBPB provides better resiliency 
on machine perception in facing higher computation workload through applying its 

Fig. 12   The impact of tracking algorithms on the detection quality of overall objects and critical objects
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multi-dimensional resource allocation, which slightly reduces the inspection fidelity 
on downsized images, but sustains a reasonable range of inspection frequencies.

8.6 � Responsiveness to physically close objects

We evaluate the achieved detection recall on all objects within 30 ms to the ego-
vehicle (according to the groundtruth object distances in the dataset). The results are 
normalized by the detection recall achieved on full frames, and reported in Fig. 17. 
Both BPB and GBPB outperform the baselines in close object recall, especially 
when the frame interval is short. The evaluation demonstrates that the absence of 
a physical ranging sensor is not a hindrance and that (visual) size-based assignment 
of priority offers higher recall on close objects compared to baselines such as whole 
image resizing. We also acknowledge that GBPB shows slightly worse recall on 

Fig. 13   The impact of missing frames on our slicing and partial inspection approach

Fig. 14   Scheduling algorithms comparison. The first row shows detection results on overall objects, and 
the second row shows results on critical objects
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close objects than BPB, because we only differentiate the object resizing decisions 
according to their sizes, but do not consider their criticality.

8.7 � Breakdown of overhead quantification

Next, we separately report the breakdown latency overhead induced by BPB and 
GBPB algorithms. The results are shown in Fig. 18. Since the BPB and GBPB pol-
icy only executes once per scheduling horizon, their overhead is divided into each 
frame. We notice that the per-frame latency of GBPB increases to < 9 ms compared 
to < 2 ms in BPB, which is because we iterate over different max confined target 
sizes in Algorithm 4 by repetitively calling Algorithm 2 as a subrountine. Since dif-
ferent max confined target sizes are independently tested, we can further improve 
the efficiency of GBPB by scheduling their Algorithm  2 calls in parallel on dif-
ferent CPUs in the future. The preprocessing overhead is generally below 20 ms 
and the postprocessing overhead is generally below 5 ms in both algorithms, which 

Fig. 15   Example scenarios in the extracted busy-traffic dataset

Fig. 16   Scheduling algorithms comparison on busy traffic scenarios. The first row shows detection 
results on overall objects, and the second row shows results on critical objects
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are acceptable compared to 100 ms frame intervals. Specifically, the preprocess-
ing steps include new object localization, image slicing, candidate region merge, 
resizing, and batching at each frame, while the postprocessing steps filter the gen-
erated detections and map the remaining detections to the full frame coordinates. 
The optical flow estimator runs in an independent process on the CPU and poses no 
overhead to the detection pipeline on GPU. In conclusion, the proposed scheduling 
framework does not induce significant latency overhead (generally below 30 ms) to 
the backbone DNN inspection system on Jetson Xavier.

8.8 � Choice of scheduling horizon length

Here, we investigate the impact of the scheduling horizon length in BPB and GBPB 
policies. We vary the horizon length from 5 to 20 frames, and evaluate how the 
detection quality is affected. We set the frame arrival interval P = 100 ms. The 
results are summarized in Fig. 19. Both BPB and GBPB are generally resilient to 
the horizon length, and large variations on achieved object detection quality are not 

Fig. 17   The normalized detection recall on physically close objects

Fig. 18   Breakdown latency overhead of the proposed algorithms
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seen. Relatively short scheduling horizons show slightly better mAP than longer 
scheduling horizons. When the scheduling horizon is too long, we do not have 
timely updates on the object presence and criticality and may waste time tracking 
objects that are not critical anymore. However, when the scheduling horizons are too 
short, the full-frame inspections would be frequently invoked, which could lead to 
delays in obtaining object locations in real time. Therefore, we believe a moderate 
length of scheduling horizon (i.e. 10 frames) is the best choice.

9 � Conclusions

We proposed a generalized self-cueing attention scheduling framework that inte-
grates intermittent inspection, image resizing, and task batching to optimize the effi-
ciency of DNN-based visual machine perception pipelines on resourced-constrained 
embedded platforms. It minimizes a concept of generalized system uncertainty that 
simultaneously considers the detection accuracy degradation caused by image resiz-
ing and object location uncertainty caused by skipped object inspections. Under the 
time constraint, the proposed scheduling algorithm, called GBPB policy, can bal-
ance between the inspection quality and the inspection frequencies on object regions 
depending on the object motion distributions and object size distributions. Extensive 
evaluations with real-world driving datasets on an NVIDIA Jetson Xavier platform 
demonstrate the effectiveness of the proposed scheduling framework. Compared 
with the original BPB policy in  Liu et  al. (2022b), the additional image resizing 
component in GBPB is especially effective when dealing with busy traffic scenarios 
under short time limits because resizing offers a better alternative to extreme reduc-
tion in inspection frequency, especially in the presence of large objects.

Fig. 19   The impact of the scheduling horizon length on detection quality
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