Real-Time Systems (2023) 59:302-343
https://doi.org/10.1007/511241-023-09396-z

®

Check for
updates

Generalized self-cueing real-time attention scheduling
with intermittent inspection and image resizing

Shengzhong Liu'® - Xinzhe Fu? - Yigong Hu' - Maggie Wigness3 - Philip David3 -
Shuochao Yao* - Lui Sha' - Tarek Abdelzaher'

Accepted: 25 March 2023 / Published online: 8 June 2023
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract

This paper proposes a generalized self-cueing real-time attention scheduling framework
for DNN-based visual machine perception pipelines on resource-limited embedded plat-
forms. Self-cueing means we identify subframe-level regions of interest in a scene inter-
nally by exploiting temporal correlations among successive video frames as opposed to
externally via a cueing sensor. One limitation of our original self-cueing-and-inspection
strategy (Liu et al. in Proceedings of the 28th IEEE real-time and embedded technology
and applications symposium (RTAS), 2022b) lies in its lack of computational efficiency
under high workloads, like busy traffic scenarios where a large number of objects are
identified and separately inspected. We extend the conference publication by integrat-
ing image resizing with intermittent inspection and task batching in attention schedul-
ing. The extension enhances the original algorithm by accelerating the processing of
large objects by reducing their resolution at the cost of only a negligible degradation in
accuracy, thereby achieving a higher overall object inspection throughput. After extract-
ing partial regions around objects of interest, using an optical flow-based tracking algo-
rithm, we allocate computation resources (i.e. DNN inspection) to them in a criticality-
aware manner using a generalized batched proportional balancing algorithm (GBPB), to
minimize a concept of generalized system uncertainty. It saves computational resources
by inspecting low-priority regions intermittently at low frequencies and inspecting large
objects at low resolutions. We implement the system on an NVIDIA Jetson Xavier plat-
form and extensively evaluate its performance using a real-world driving dataset from
Waymo. The proposed GBPB algorithm consistently outperforms the previous BPB
algorithm that only uses intermittent inspection and a set of baselines. The performance
gain of GBPB is larger in facing more significant resource constraints (i.e., lower sam-
pling intervals or busy traffic scenarios) because its multi-dimensional scheduling strat-
egy achieves better resource allocation of machine perception.

Keywords Real-time scheduling - Object detection - Temporal correlations - Cyber-
physical systems

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0002-7643-7239
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09396-z&domain=pdf

Real-Time Systems (2023) 59:302-343 303

1 Introduction

Attention prioritization and scheduling of intelligent perception pipelines is a
novel problem in real-time systems literature (Liu et al. 2020a) that refers to algo-
rithms for prioritizing and scheduling of data processing at a subframe level in
data-intensive workflows, such as neural-network-based camera or LiDAR data
processing. The problem is cyber-physical in nature in that our physical under-
standing of the importance of observed objects in various parts of the scene
drives the needed fidelity of their real-time tracking and thus the frequency/prior-
ity at which they need to be inspected and localized by the Al in the loop. This
is as opposed to applying the AI to entire (video or LiDAR) frames in a FIFO
manner.

This paper extends a previous conference publication (Liu et al. 2022b) by
proposing a generalized self-cueing attention scheduling framework for visual
machine perception on embedded platforms. It generalizes the original self-cue-
ing framework by simultaneously optimizing image resizing decisions along with
the original intermittent inspection and task batching strategies. Compared to
external-cueing frameworks (Liu et al. 2020b; Hu et al. 2021; Kang et al. 2022b)
that rely on light-weight processing of an external cueing sensor (e.g. LiDAR
depth clustering) to extract object regions of interest on image frames, self-cue-
ing frameworks fundamentally remove the dependency on external cueing by
exploiting temporal correlations between object locations in successive frames,
thus cueing attention to expected future object locations given their recent past.
The main workload to optimize is object detection [e.g. YOLO (Redmon et al.
2016)] and tracking that exploits deep neural networks (DNNs). Specifically,
low-frequency full-frame inspections are performed periodically, at a period we
call the scheduling horizon (i.e. once per second), to identify the locations of
all objects. In between full-frame inspections, a set of partial-frame inspections
are scheduled that are focused only on predicted locations of individual objects,
thereby reducing computational demand (compared to full-frame inspections)
and latency. We next explain how the two contributing dimensions in this paper,
intermittent inspection and image resizing, open up a novel optimization space
for self-cueing scheduling.

First, intermittent inspection selectively decides which objects to inspect in a
frame instead of inspecting every object in every frame. As explained in Liu et al.
(2022b), the period at which an object is inspected is determined by the uncer-
tainty growth in its location in between inspections. To bound the location uncer-
tainty of the object, faster or more erratically-moving objects are scheduled for
inspection at higher frequencies, while relatively static or slow-moving objects
are scheduled at lower frequencies.

Second, compared to the original framework, we further integrate image resiz-
ing to save the execution latency on each scheduled inspection task. One exist-
ing limitation of the original self-cueing-and-inspection strategy lies in its lack of
computational efficiency in dealing with busy traffic scenarios when a large num-
ber of (potentially overlapped) regions are extracted and separately inspected. In

@ Springer

304 Real-Time Systems (2023) 59:302-343

such scenarios, the processing demand can be even higher than inspecting full
frames. With image resizing, we can reduce the spatial resolution of the extracted
regions before feeding them into the DNN model. Smaller images are known to
have a lower execution latency by DNN models, at the cost of possibly degraded
detection accuracy. Image resizing is computationally lightweight, easy to imple-
ment, and does not require modifications or switching on the deployed DNN
model. Appropriately downsizing the partial frames facilitates higher object
inspection frequencies, but does not sacrifice much in detection accuracy. Com-
paratively, large objects are more tolerant of image resizing than small objects
with more latency savings and less accuracy degradation. Accordingly, we differ-
entiate the degrees of resizing for objects of different sizes.

To jointly model the impact of both optimization dimensions, we formulate
the scheduling problem as one of minimizing the maximum weighted generalized
uncertainty. The new optimization objective multiplies the object location uncer-
tainty caused by intermittent inspection with the accuracy degradation factor caused
by image resizing, along with an application-specific object weight indicating the
object criticality. The underlying assumption behind this metric is that the errors
resulting from the two sources of uncertainty are multiplicative. Consequently, there
is a tradeoff between inspecting the objects at higher frequencies or at higher resolu-
tions. The optimal choice depends on the specific perception scenario. For example,
slow-moving small objects might benefit more from higher resolutions, as opposed
to higher frequencies, whereas fast-moving large objects might benefit more from
higher frequencies over higher resolutions. Autonomous driving is used as an exam-
ple application, although the design generalizes to other cyber-physical applications
as well, such as delivery drones and surveillance applications.

We correspondingly propose a generalized batched proportional balancing
(GBPB) algorithm to approximately solve the formulated scheduling problem. At
each scheduling horizon after the full-frame inspection, the GBPB algorithm jointly
produces three parts of output: the target size for each object after resizing, the
inspection frequency of each object, and the task batching decisions among objects.
Task batching means inspecting multiple images of the same size in parallel on
the GPU, which achieves higher execution efficiency than serialized execution of
inspection tasks. To reduce the complexity of the decision space, which originally
grows exponentially with the number of objects, we uniformly set an upper bound
on target sizes (such that any object regions beyond a threshold will be downsized to
this size) and set the object inspection frequencies proportional to their uncertainty
growth rates. In addition, object inspection tasks are scheduled in a batch-aware
load-balanced manner such that the objects are inspected as many times as possible.
At runtime, the algorithm adaptively trades off between object inspection frequen-
cies and inspection qualities (i.e. target sizes) such that the resulting generalized
maximum uncertainty can be minimized while the system resources are maximally
utilized. Compared to the BPB policy in Liu et al. (2022b), GBPB achieves higher
accuracy for high workloads under significant resource constraints (i.e. short frame
intervals or busy traffic scenarios) but sustains a similar performance in light work-
load, because we avoid extremely low inspection frequencies on critical objects by
compressing computation and saving time with effective image resizing. The DNN

@ Springer

Real-Time Systems (2023) 59:302-343 305

processing resources are better allocated and maximally utilized when using the new
multi-dimensional scheduling strategy.

We implement the proposed framework on an NVIDIA Jetson Xavier platform
and extensively evaluate its performance using real-world driving datasets from
Waymo (Sun et al. 2020). The results show that the proposed policy achieves a
higher detection, localization, and classification quality (compared to baselines)
under different workloads. It also provides better response times to physically close
objects. In addition, the GBPB policy with image resizing integrated outperforms
the original batched proportional balancing (BPB) policy under the same time con-
straints in busy traffic scenarios.

The rest of this paper is organized as follows: In Sect. 2, we briefly review the
related literature. We give an overview of the architecture in Sect. 3, then explain the
data slicing module in Sect. 4. We introduce the original BPB algorithm in Sect. 5,
and further integrate the image resizing in Sect. 6. We discuss some adopted empiri-
cal optimizations in Sect. 7, before presenting the evaluation results in Sect. 8.
Finally, we conclude the paper in Sect. 9.

2 Related work
2.1 Real-time machine perception

Most previous research to support real-time machine perception focused on com-
pressing neural networks to reduce the inference latency (Yao et al. 2018; Zhou et al.
2018; Lee and Nirjon 2020a; Yao et al. 2020b; Minnehan and Savakis 2019). How-
ever, existing compression approaches do not offer the flexibility to tailor the degree
of compression at a subframe level. Recently, real-time scheduling has emerged as a
key challenge in Al-based perception systems (Yang et al. 2021). Related work can
be divided into three categories: (i) system-level scheduling; (ii) model-level sched-
uling; and (iii) data-level scheduling. System-level scheduling algorithms try to
optimize CPU-GPU interactions by appropriately allocating and pipelining the com-
putational stages (Amert et al. 2017; Capodieci et al. 2018; Xiang and Kim 2019;
Jang et al. 2020; Kang et al. 2021; Amert et al. 2021) or utilize specialized DNN
accelerators Restuccia and Biondi (2021). Besides, there have been works on opti-
mizing the predictability (Liu et al. 2022a) and resource efficiency (Ji et al. 2022;
Razavi et al. 2022) of DNN executions. In contrast, model-level scheduling algo-
rithms dynamically adjust the utilized neural network structures to meet inference
deadlines (Bateni and Liu 2018; Lee and Nirjon 2020b; Heo et al. 2020; Yao et al.
2020a; Kannan and Hoffmann 2021). Finally, the data-level scheduling algorithms
change the amount of data to be processed by data scaling (Heo et al. 2022) or slic-
ing the data into partial regions and processing them in a fine-grained and critical-
ity-aware manner (Soyyigit et al. 2022). One drawback of existing approaches (Liu
et al. 2020a, 2021; Hu et al. 2021, 2022; Kang et al. 2022b) lies in their reliance
on an external attention cueing sensor (e.g. a ranging LiDAR), which might not be
an option in some autonomous systems. For example, some autonomous car man-
ufacturers, such as Tesla, famously objected to having LiDAR. In this paper, we

@ Springer

306 Real-Time Systems (2023) 59:302-343

therefore build a self-cueing system that relies only on the original data flow without
needing external secondary sensors. Different from Kang et al. (2022a) that targets
scheduling multiple tracking tasks, we focus on fine-grained object tracking sched-
uling within a single task.

2.2 Temporal correlations in video object detection

Our self-cueing scheme fundamentally relies on object permanence to hypothesize
that objects observed in earlier frames will still be located some bounded distance
away in the current frame. In other words, frames are highly correlated. Video tem-
poral correlations have been extensively studied in continuous object detection.
Some papers, including (Zhu et al. 2017b; Wang et al. 2019; Zhu et al. 2017a; Xu
et al. 2018), rely on motion vectors between consecutive frames to reduce the net-
work depth to extract features on new frames. They utilized motion vectors to map
(part of) past features into the new frame. Buckler et al. (2018) proposed an optical
flow-based hardware solution to propagate latent features from previous frames to
the new frame. The uncertainty in the estimated motion is not counted. Some work
also leverages pairwise image differences to guide an object detector to focus on
changing areas in the new frame (Cavigelli et al. 2017; Zhang et al. 2017). However,
they are only applicable to statically mounted cameras, which no longer work in
autonomous driving systems. Song et al. (2020) applied different quantization lev-
els to process regions with different sensitivity on the same frame, which was lim-
ited to image classification models only. Both Kumar et al. (2019) and Mao et al.
(2018) proposed to use object tracker projections to extract regions of interest in
the new frame. We build on such prior solutions, using them to determine possible
object locations in the current frame, ahead of actual frame inspection by the (Al-
based) perception subsystem, thus providing input into our attention prioritization
and scheduling problem. The idea is generally applicable and can also be extended
into mobile offloading scenarios (Liu et al. 2022d) and multi-camera collaborative
sensing when spatial correlations are also considered (Liu et al. 2022c¢).

2.3 Dynamic DNN acceleration with image resizing

Image resizing has been used as one of the major controllable dimensions for
dynamic latency saving in DNN execution on resource-limited platforms. Down-
sizing images accelerates inspection at the cost of different degrees of accuracy
degradation. Downsizing is easy to implement, and DNN object detection mod-
els typically present sublinear accuracy degradation with respect to the down-
sizing ratio. Multiple efforts have proposed to adaptively downsize input images
to catch up with runtime execution deadlines (Hu et al. 2021; Chin et al. 2019;
Wu et al. 2022; Bastani and Madden 2021; Heo et al. 2022), or detect objects
of different sizes at appropriate scales that optimize the model accuracy/latency
trade-off (Najibi et al. 2019; Li et al. 2021). AdaScale (Chin et al. 2019) also
shows that appropriately downsizing the images may even slightly improve the
general model accuracy in detecting large objects in the scene. Both Hu et al.

@ Springer

Real-Time Systems (2023) 59:302-343 307

(2021) and Heo et al. (2022) adopt image resizing as the control knob to achieve
different tradeoffs between model accuracy and inference latency in the context
of real-time edge AI. To the best of our knowledge, we are the first that formally
study the cooperation of intermittent inspection and image resizing in achieving
real-time machine perception on embedded platforms, which jointly achieve bet-
ter accuracy-latency tradeoff than either knob alone.

3 System overview

Assume the system uses a camera to continuously observe its surroundings at a
fixed frame rate. An object detector (e.g., YOLO) is used to localize and cate-
gorize all objects in the captured image frames. The detector can accept vari-
able image sizes as input and has an inference latency that depends on input
size. The deployed detector is computationally intensive such that inspection of
a full image (e.g., 1920 x 1280 resolution) can not finish before the next frame
arrives. Instead, we inspect full frames at a longer interval T (say, 1-2s). We refer
to processing of full frames as full-frame inspections. Between them, we iden-
tify regions of interest using optical flow (Kroeger et al. 2016), a much faster
algorithm (than neural networks) that compares successive frames and estimates
approximate motion vectors for pixels. It is used to guess (within some error mar-
gin) where objects of interest, detected in previous frames, might have moved to
in the current one. The attention scheduler then decides which of these regions
are to be inspected by the object detector and how large these regions should be
set for exact localization of the corresponding objects. We call the approach that
integrates intermittent inspection and image resizing as generalized partial-frame
inspections. We define the time between two full-frame inspections as a schedul-
ing horizon, and propose a novel scheduling algorithm to decide the schedule of
partial-frame inspections within each horizon to minimize the maximum weighted
location uncertainty.

Two core components are included in the proposed architecture: (i) the frame
slicing and region tracking module, and (ii) the generalized partial-frame inspec-
tion scheduling module. An overview of the architecture is shown in Fig. 1.

3.1 Frame slicing and region tracking

This module slices image frames (between full-frame inspections) into regions
where objects may be present. After a full-frame inspection localizes all objects
in a frame, an optical-flow based tracking algorithm tracks the object locations in
subsequent frames (until the next full-frame inspection). Within each frame, the
module determines the approximate regions that contain these tracked objects,
taking into account the uncertainty in their predicted locations. These regions are
the candidates to be inspected by the detector. Background regions are filtered
out.

@ Springer

308 Real-Time Systems (2023) 59:302-343

Frame Slicing and Region Tracking

Optical Flow
Estimation

Previous Frame

/ Predicted

Optical Flow Map Object Locations

Object Tracker

T

Tracked Object
Buffer

Updated
Object Locations

Current Frame

Y

| Expanded Candidate Regions |<—| Criticality and Uncertainty Calculation |

saweld ||y

Generalized Partial Frame Object Detector | |Postprocessing

Inspection Scheduling
w ol — @ =
Local Det. - Global Det.

Selection Resizing Batching

Full Frame Inspection Full Frame Inspection

Fig. 1 The overview of the proposed scheduling framework. It is generally applicable to any object
detector

3.2 Generalized partial-frame inspection scheduling

This model jointly decides how often each object should be inspected and how
large its partial frame should be set after resizing, in order to achieve optimized
tracking accuracy on each object. Every object is associated with a criticality
indicating its application-level importance, and an uncertainty growth rate indi-
cating the increase speed of its location uncertainty if no new inspection is per-
formed. Partial-frame inspections of objects with low criticality or slow uncer-
tainty growth are scheduled less frequently. In addition, we can safely reduce the
image sizes for large objects without losing too much on their detection accu-
racy. Finally, we consider task batching on modern GPUs, which means multiple
regions can be batched together and submitted as a single GPU request, as long
as they have the same size (because low-end GPUs can only batch identical com-
putational kernels). Batched processing achieves much lower latency than serial-
ized processing.

4 Frame slicing and region tracking

In this section, we introduce the optical flow-based tracking algorithm, and explain
how it induces location uncertainties.

4.1 Optical flow background

Optical flow algorithms take two consecutive frames as input and estimate the pixel-
level motion vectors between them, as caused by the relative movement between

@ Springer

Real-Time Systems (2023) 59:302-343 309

objects and the observer. They return a map of single pixel motions, which is called
optical flow map. The RGB image is first converted to gray scale, where each pixel
value represents the light intensity at that location. We use I(x, y,) to denote the
image intensity at pixel (x, y) of frame z. The optical flow map is a matrix of coordi-
nate displacements (d,, d,), such that,

Iy,) =1(x+d,y+d,t+1). 1)

Optical flow assumes that the pixel intensities of an object are constant across two
consecutive frames. In this paper, we use the DIS method (Kroeger et al. 2016),
which is a widely used and efficient optical flow estimation algorithm.

In autonomous driving, although the relative movement between the camera,
object and light sources may cause drastic change on the lighting and reflection
on objects (especially during night driving), optical flow tends to err on the safe
side. Specifically, it may introduce false positives (e.g. spurious areas may be
highlighted for visual inspection), but is less likely to produce false negatives
(i.e. missing actual changes in locations of visible objects). Merging the trajec-
tory-based tracking (or a physical mobility model) with optical flow observations
can reduce false positives (similar to the way Kalman filters leverage both imper-
fect models and imperfect empirical observations to produce improved trajectory
estimates). We leave the integration of physical models as a future direction.

4.2 Optical flow-based object tracking

The motivation of using optical flow for tracking primarily comes from its high
reliability in identifying an appropriately expanded region around the inferred
object location for further DNN inspection without needing multiple prior obser-
vations (e.g., to form a trajectory). We use optical flow as a non-parametric
motion model to estimate possible object locations in intermediate frames based
on observed pixel movement. We chose it over conventional parametric tracking
models, such as Kalman Filters [e.g. in SORT (Bewley et al. 2016)], because the
latter models often require a sequence of past observations to correctly estimate
trajectories, and may fail to correctly predict location in the presence of sudden
unexpected movements (such as swerves to avoid an obstacle). Instead, as dis-
cussed above, optical flow makes is less likely to miss actual object movement, so
it achieves a higher recall on retaining tracking. It is noteworthy that optical flow
estimates object movement in a proactive way, which means the object bound-
ing boxes are shifted according to the pixel motions estimated between the new
frame and the previous frame, instead of relying on the motion predictions from
the past. It does not pose an assumption on object moving patterns. If the object
has appeared in the previous frame, then its movement would be identified. Oth-
erwise, if the object never appears in previous frames, we have a separate module
for detecting blobs of new pixels which may correspond to new objects (as will be
introduced in Sect. 7.1). Finally, we believe distant new objects that are not easily
detected by the blob detection are considered not critical and will be detected in
the next full-frame inspection.

@ Springer

310 Real-Time Systems (2023) 59:302-343

Region
Inferred Inferred
Object Object
Location Location

Detection at t

Frame at t Frameatt+1 Frameatt+2

Fig.2 Comparison between different regions used in the tracking

Algorithm 1 details our tracking algorithm. We start from the set of objects
detected by the last full-frame inspection. Each time a new frame arrives, we first
compute its optical flow map compared to its preceding frame, then calculate the
following three regions for each tracked object:

1. Inferred object location It tightly bounds the most likely object location as
inferred from the optical flow map. We use this updated location as a best guess
of current object location in the absence of an actual object inspection by a vision
(Al-based) component.

2. Expanded candidate region It expands the inferred object location on account of
potential inaccuracy. This is the area that should be inspected by the detector if
we want to localize the object again. It is a box whose area keeps expanding from
frame to frame because each future application of optical flow contrasts the new
frame with pixels in the expanded candidate region to produce a new box that
encapsulates all new locations of these pixels in the new frame, likely resulting in
box enlargement. The effect continues until an inspection of the expanded region
is scheduled thus pinpointing the actual object again.

3. Quantized candidate region We pad the expanded candidate region to the nearest
quantized size from a predefined set. This is done to improve subsequent batching
opportunities, since same-size images can be processed in parallel (batched) as
will be discussed in more detail in Sect. 5.

Figure 2 illustrates the difference between the three regions. Next, we explain how
they are calculated.

4.2.1 Computing inferred object locations
To compute the predicted location for an object, we compute the median motion
vector of all pixels within the previous object bounding box, and move the bounding

box by that vector. The median motion is chosen over the mean motion to eliminate
the impact of outliers and static background pixels (e.g. road or sky).

@ Springer

Real-Time Systems (2023) 59:302-343 311

Algorithm 1: Optical Flow-based Object Tracking

Input: Set of object {1,..., N}, K — 1 frames between two full-frame
inspections, object detector.
Maintain a set of object tracks for target objects;
for frame k =2,..., K do
Calculate the flow map between frame k and k — 1;
for objecti=1,...,N do
Calculate object representative flow (dacgk), dyiC)) by taking the
median flow of previous object location;

R W N

6 Update tracked object center location cx := cmgk_l) + dxz(-k),

cy = cyfkil) + dygk);

end

Generate set of partial detections by the object detector;

Data association using Hungarian algorithm between object tracks
and new detections using IoU metric;

10 for objecti=1,...,N do

11 if mapped with a new detection then

12 ‘ new object location := mapped detection location
13 end

14 else

15 ‘ new object location := inferred object location

16 end

17 end

18 end

4.2.2 Computing expanded candidate regions

This region starts from a previously detected object location, and then keeps
expanding, until a new detection is made. Specifically, at a new frame k, we use
0 Y0 ® | o denote the new object location, and use D = [D;,D,] to
min min max max y

denote the partial flow matrix corresponding to its previous expanded candidate

region, say [)Acff;ll), jsz;ll),)%fr’fa‘xl), $*-D]. If the previous expanded candidate region

completely covers the previous object location, then the new object location satisfies:

%D 4 min d. < x® <x® <% =D 4 max d.,
min d,€D; X min max max d.€D, X

~(k=1) : (k) k) S(k=1)

Voin T+ (;\Pel]r)lc, dy <Y, S Voo S + max d;.

max — < max
d, €Dy,

Thus, we define the new expanded candidate region as:

@ Springer

312 Real-Time Systems (2023) 59:302-343

min x?
€D €Dy

%D 4 min d,, 3%V + min 4,
min di’ J

d;€D €D,

~(k=1) ~(k=1)
X+ max d;, Ve T glaxﬂ dy .

The expansion considers the possibly different pixel motions for different parts of an
object. Since the expanded candidate region starts from the exact object location, it
holds by induction that the expanded candidate region will cover the (groundtruth)
object location at every future frame, if the estimated optical flows are accurate.

4.2.3 Computing quantized candidate regions

To facilitate batching of image processing, we pad the expanded candidate region to the
nearest quantized (squared) farget size s; chosen from a finite set, s; € {s;, ..., s, }. The
padded region is then called the quantized candidate region. We assign a fixed padded
target size s; to each object within a scheduling horizon. We provide three justifications
for this choice: First, the quantized size is larger than the initial object size, so it leaves
space for object size increase in upcoming frames. Second, if the expanded candidate
region increases beyond s;, we reduce its resolution to make it fit into s;, because down-
sizing large objects does not degrade their perception quality (Torralba 2009).

4.2.4 Data association

After we receive the detected object locations from the detector, we perform data asso-
ciations between the existing object tracks (represented by their inferred object locations)
and the newly detected bounding boxes. We do so by using the Hungarian algorithm
based on their location overlaps with an Intersection-over-Union (IoU) metric. We then
update the mapped object locations to the newly detected locations. Those objects not
inspected by the detector in a given frame will retain their inferred object locations.

4.3 Object location uncertainty

The object location uncertainty reflects our confidence on the inferred object location.
Intuitively, if the size of the expanded candidate region is close to the inferred object
location, we have a low uncertainty (i.e., high confidence) on the inferred object loca-
tion; otherwise, if the object can appear at much larger area than the inferred object loca-
tion, we have a high uncertainty (i.e., low confidence) on the inferred object location.
We assign an object weight w; = v; - u; to each tracked object O;, where: (1) v; is
the object criticality representing the application-specific importance, which is static
within a scheduling horizon. This is a policy decision that is outside the scope of this
paper. Even though the visual images do not directly contain distance information, it
is still possible to distinguish the nearby and distant objects by combining object
locations with the background (i.e., the road), which we assume is separately solved
by other Al techniques. (2) u; is the uncertainty growth rate, defined as the average
rate of its candidate region expansion. After we obtain the full-frame inspection

@ Springer

Real-Time Systems (2023) 59:302-343 313

Object Uncertainty = U[Wait Interval] + U[Inspection Latency]

S T e ey — — ey
2 Uncertainty by Start
T Wait Interval Partial-Frame
'GCJ' Inspectio
9 Start Full-frame P Partial-Frame Obtain Object
5 Inspectio - . Location Uncertainty.
= —~ =" Uncertainty by Inspection att =3 by Wait Interval
o . - Inspection Latency
s 2 Wy - meeectiontatentyl o e
S “:;“ce(‘i\“/ - - = | Uncertainty by - -
S 0 =~ - Inspection Latency ~ ~~

0 1 Full-Frame 2 3 Partial-Frame 4 Wait Interval 6

Inspection Latency Inspection Latency
Time

Fig.3 The object uncertainty comes from both wait intervals and inspection latencies. The reset value
only depends on inspection latency

result, we calculate the uncertainty growth rate as u; = /SF® /SP /1,, where SER is

the area of the expanded candidate region, S? is the area of the detected location, and
1, is the latency of full-frame inspection. The uncertainty grows linearly with time if
no new inspection is performed, which relies on the assumption that we have a suffi-
ciently small gap between consecutive inspections, such that the concatenation of lin-
ear segments can closely approximate the actual uncertainty growth. We set object
weight as the product of the above two terms to balance the uncertainty-based prior-
itization and the configurable application-specific criticality assignment. For exam-
ple, users can set much higher object criticality to humans than traffic signs such that
the inspection frequency of humans is always higher than the traffic signs, no matter
their relative moving speed to the ego-vehicle. Instead, setting the same criticality on
all objects leads to entirely uncertainty-based prioritization, where object inspection
frequencies will be set proportional to their location uncertainty growth rate.

As shown in Fig. 3, the overall object uncertainty comes from two sources: wait inter-
vals and inspection latencies. Wait interval is defined as the elapsed time since we obtained
the last inspection result. Inspection latency refers to the time running the last inspection
task. The second part exists because the obtained object location does not correspond
to the finish time of the inspection task, but its start time. After each inspection task, the
uncertainty is reset to the value solely caused by the inspection latency. By separating the
uncertainty into the weight factor and the elapsed time, we can simply denote the weighted
uncertainty of object O, as U;(t) = w;(t — t;) + u;, where ¢ — t,1s the elapsed time since the
end of its last inspection, and i; is the uncertainty resulted from its inspection latency.

5 Partial-frame inspection scheduling
In this section, we formulate the partial-frame inspection scheduling (PFIS) problem
without considering image resizing, and introduce the batched proportional balanc-

ing (BPB) algorithm that only applies intermittent inspection and tasking batching,
which will be further extended by integrating image resizing in the next section.

@ Springer

314 Real-Time Systems (2023) 59:302-343

©
o

o))
o

Batch size: 14

N
o

[}
[}
1
1
1
1
1
I
[}
1
[}
1
1
1

o
o

Model Latency (ms)
s
T
1

10

15 20 25
#Batched Images with Size: 128x128

Fig.4 YOLO execution latencies of 128 x 128 images with different batch sizes on Jetson Xavier. The
inflection point is highlighted in red, where the batch size is 14. We set the batch limit and batch latency
correspondingly (Color figure online)

5.1 Task execution model

We divide the time into fixed-length segments, where each segment is called a schedul-
ing horizon T. K frames are captured within each scheduling horizon. The platform is
equipped with a single GPU that runs the detector. We run a full-frame inspection at the
first frame of each scheduling horizon, which identifies N objects {O;, O,, ..., Oy}
We subtract the latency of the preprocessing steps and the full-frame inspection to get
the time budget for partial-frame inspections. Each object O, is associated with a target
size s; € {s, ..., Sy}, within horizon T, which restricts the size of its quantized can-
didate regions and facilitates batching. For each target size s, there exists a maximum
number of regions that can be batched and processed in parallel on the GPU. We call it
the batching limit k for size s. Although the detector execution time can increase with
the number of batched regions, by appropriately setting the batching limit, we operate
in a region where execution time changes only slightly with batching (before an inflec-
tion point is reached where the slope increases, as shown in Fig. 4). We denote the
worst-case batch execution time by 7. In other words, the GPU can simultaneously run
partial-frame inspections for k (1 < k < k) objects of target size s within time z,.

5.2 Scheduling problem formulation

A good perception system should selectively run partial-frame inspections to main-
tain low location uncertainty on each object throughout the scheduling horizon. Recall
that the (weighted) location uncertainty of object O, at time ¢ is U,(¢) = w;(t — t,) + u;.
Without loss of generality, we assume w; < ... < wy. The maximum uncertainty for
object O; over the scheduling horizon is denoted by U; = max ¢ 7 U;(#). Our goal is
to minimize the maximum weighted uncertainty over all objects, which we refer to as
the system uncertainty U. It is defined as U = maxe(; _y; U;. The problem we study,
is to design a schedule of partial-frame inspections such that the system uncertainty is
minimized. A schedule specifies the ordering and batching of partial-frame inspections.

Definition 1 (Schedule) A schedule is a sequence of tuples (N'!,s' ¢, k"),

(N2, 82,22,k ... ,(NT, st k). Both ¢!, ...,/ and k', ... , k' are in non-decreasing
order. For a generic j-th tuple, it represents the j-th batch, where:

@ Springer

Real-Time Systems (2023) 59:302-343 315

e M is the subset of objects that get inspected in the batch. No object can appear
more than once in the subset.

e 5 denotes the target size of the batch.

o fe [#, T]is the start execution time of the batch.

e kK €{2,...,K} represents the frame on which the partial-frame inspection is run.

A schedule is feasible if it satisfies for each batch j: (1) The number of batched
regions is within the batching limit, i.e., ||j\fj|| < k. (2) We define the valid period
of a frame as the interval between its arrival and the arrival of the next frame. Any
batch can only run on the currently valid frame. (3) The start time of the batch is no
earlier than the finish time of its previous batch, i.e., # > #~! + Tg41. (4) The finish
time of the last batch is no later than T, i.e., t + Ty <T.

Note that each feasible schedule can be executed on the physical machine, and
each execution on the physical machine can be translated to a feasible schedule.
With the above preliminaries, we formulate our problem as follows.

Definition 2 (Partial-frame inspection scheduling problem) The Partial-Frame
Inspection Scheduling (PFIS) problem asks for a feasible schedule that minimizes
the system uncertainty within a scheduling horizon.

The PFIS problem requires us to carefully select subsets of objects to run and batch
on each frame. Although it can be optimally solved by the dynamic-programming par-
adigm, the resulted computational complexity would be high. Instead, we will propose
a low-complexity policy, called the Batched Proportional Balancing (BPB) policy, that
computes approximately optimal schedules with provable uncertainty guarantee.

Algorithm 2: The BPB Policy

Input: Object set {O4,...,On}, weights {w1,...,wx}, number of
frames K — 1 for partial-frame inspections.
Output: A feasible schedule with minimized uncertainty.

1 Sort and reindex the objects such that wy; < ... < wy;

2 fori=1,...,N do

3 ‘ x; = 2Uosa(wi/wi)].

4 end

5 C={t =, 1,23, | EL] B}

6 Binary search for the maximum ¢ € C such that the schedule
computed by Algorithm 3 for task set {|cz1],..., [czn]} is feasible

(i.e., the finishing time is no larger than T');
7 Return the schedule for the task set of the maximum c.

5.3 Scheduling policy

The general idea of the proposed Batched Proportional Balancing (BPB) policy
is to set the number of partial-frame inspection tasks for each object proportional

@ Springer

316 Real-Time Systems (2023) 59:302-343

to its object weight, such that the objects with high criticality or high uncertainty
growth would receive more attention. For object O,, we use the inspection fre-
quency x; to denote its number of scheduled partial-frame inspection tasks within
the scheduling horizon. The inspection frequency set, is thus defined as:

Definition 3 (Inspection frequency set) The inspection frequency set {x,...,xy} is
a set of inspection frequencies corresponding to the number of partial-frame inspec-
tion tasks of all objects in the scheduling horizon where, for each object O,, x; par-
tial-frame inspection tasks are scheduled.

Algorithm 3: Batching-Aware Scheduling (BAS)

Input: Inspection frequency set {z1,...,zx}
Output: A schedule for the inspection frequency set
// (1) Calculate the task-bin mapping.

1 L:=xn;

2 for i € {N,N —1,...,1} (decreasing order of x;) do

3 Let L; be the first L/x; bins {B1,...,Br /s, };

4 s; := the target size of O;;

5 if 3B; € L; with incomplete batch of size s; then
6 ‘ Add the first task of O; to B;

7 end

8 else

9

‘ Add the first task of O; to the bin in L; with the minimum load;
10 end

11 Replicate the mapping of the remaining tasks of n to the
remaining subset of bins;

12 end

// (2) Convert the task-bin mapping to a schedule.
13 j = 1,t/ =0, schedule S = ;
14 for 1 € {1,...,L} do

15 t; := max{t;, start of valid period of the I-th frame}.
for s € {s1,...,sp} do

16 k := the number of objects of size s in By;

17 while x > 0 do

18 N7 := min{k, rs} objects of size s in B;

19 k := the most recent camera frame at ¢;

Add (N7, s,t7,k) to S;

20 i+l ::tj+7'57j::j+1;

21 Remove the selected objects from Bj;

22 end

23 end

24 end

25 Return the schedule S

@ Springer

Real-Time Systems (2023) 59:302-343 317

We aim at computing an inspection frequency test where the inspection fre-
quency x; for object O, is approximately proportional to its weight w; (i.e., Pro-
portional), and make sure the intervals between consecutive partial-frame
inspections of each object are evenly distributed in the schedule (i.e. Balanc-
ing). The design so far seems similar to the well-studied pinwheel scheduling prob-
lem (Holte et al. 1989). However, we go a step further by considering task batching
(i.e. Batched), where we need to simultaneously decide when to detect each object
and how to batch the inspections of objects such that the system uncertainty is mini-
mized. Improper batching may result in low utilization on the GPU and much higher
system uncertainty. The pseudocode of the BPB policy is presented in Algorithm 2.
It searches for an inspection frequency set with the minimum system uncertainty,
and invokes the Batch-Aware Scheduling (BAS) algorithm (Algorithm 3) as a sub-
procedure to derive an optimal schedule for a given inspection frequency set.

To reduce the search effort, the BPB policy first proportionally derives the nor-
malized inspection frequencies of objects such that the object with the smallest
weight is detected only once. They are computed by dividing the object weights by
the minimum weight, and rounding down to the nearest power of 2 if they are not.!
Let the normalized inspection frequency set be {x,,...,xy}. BPB then searches a
maximum scaling factor ¢ such that the schedule returned by the BAS algorithm
for the inspection frequency set { |cx, |, ..., lcxy]} is feasible. Note that the scaling
factor ¢ can be smaller than one, and thus in the resulting inspection frequency set,
lex,, | can be zero for some objects. Such objects will not be scheduled. As we will
show in the sequel, if the schedule calculated by the BAS algorithm for c is feasible,
so is the schedule calculated by the BAS for any ¢’ < c. Thus, the maximum ¢ can
be identified via binary search due to this monotonicity property.

The Batch-Aware Scheduling (BAS) algorithm (Algorithm 3) computes an opti-
mal schedule that minimizes the system uncertainty for a given inspection fre-
quency set {x;,...,xy}. BAS works as a two-step procedure. First, BAS maps the
partial-frame inspection tasks for objects to L = x, temporally distributed virtual
bins {B, ..., B;}. The virtual bins do not correspond to camera frames. No object
can have more than K — 1 partial-frame inspections in a scheduling horizon, so we
assume L < K — 1. BAS sequentially assigns the tasks of each object O; in decreas-
ing order of x;. Since each x; is an integer power of 2 multiple of the minimum
non-zero element in C, when mapping tasks for object O;, BAS only designates
the mapping of its first task to the first L/x; bins> and replicates the mapping for
the remaining tasks to the corresponding bins in remaining subsets. By doing so,
when assigning tasks of an object, the matched bins in different subsets always have
perfectly symmetric load. The first task of each object is assigned in a batch-aware
load-balanced fashion. At object O,, BAS first checks whether there is a bin that
has incomplete batch with size s,, i.e., the number of tasks with size s, in the bin is
not a multiple of K- If such a bin exists, it assigns the task to that bin; otherwise,

! This operation is used to align the inspection times among objects to trigger more batching opportuni-
ties.

2 L/x; is an integer since both L and x; are powers of 2 multiples of the minimum non-zero element in C
and x; < L.

@ Springer

318 Real-Time Systems (2023) 59:302-343

it assigns the task to the bin with the minimum load. The bin load 4, is the execu-
tion time sum for batches in bin B,. The assignment process is visually illustrated in
Fig. 5. Second, it converts the generated task-bin mapping to a schedule by sequen-
tially executing the bins, and greedily batching tasks with the same target size in
each bin. When compositing a batch, we select the valid frame at that time to run
partial-frame inspection.

5.4 Theoretical analysis

In this part, we analyze the approximation ratio on achieved system uncertainty by
BPB, with the following theorem.

Theorem 1 Let U be the overall system uncertainty under the BPB policy, U* be the
optimal uncertainty caused by wait intervals, and Uy be the uncertainty caused by
full-frame inspection latency, where U* < U We use U* to denote the optimal
overall uncertainty. If the object weights wy, ..., wy are integer powers of 2, then

U<+ %)U*; otherwise in general case, U < (1 + “l]ﬁ)y*.
| ;

We reindex the objects in the decreasing order of their weight factors, i.e.,
wy > -+ > wy. We first utilize the symmetric structure of the schedule computed by
BAS (i.e., the mapping of each subsequent task of an object is a duplicate of the first
task to the corresponding subset of bins), to bound the uncertainty caused by wait
intervals. Then, we include the uncertainty caused by inspection latency, and derive
the bound for overall uncertainty. The proof consists of four steps:

e Step 1: We prove in Lemma 1 that the load difference A;(i) — 4,(0), between
the max bin load 4,(i) := max, 4,({) and the min bin load A,(i) := min; 4,(i),
is always bounded, where 4,(i) is the load for bin B, after assigning the first i
objects.

e Step 2: We prove in Lemma 2 that given an inspection frequency set, BAS is
optimal in minimizing the overall execution latency.

e Step 3: We prove in Lemma 3 the bound on the system uncertainty caused by
wait intervals, by bounding the maximum bin load with the optimal system
uncertainty.

e Step 4: We include the uncertainty caused by inspection latency, and prove the
overall uncertainty bound in Theorem 1.

Next, we go through the above steps one by one. Due to the space limitation, we
skip the proof of some lemmas here.

Step 1: We first claim that the bin load difference is bounded at every step of BAS
execution.

3 We base on the assumption that it is beneficial to slice the image and run the inspection tasks at the
sub-frame level.

@ Springer

Real-Time Systems (2023) 59:302-343 319

Time | frame2 | frame 3 | | frameK-1 | frame K | Assigned
Empty
- 011 013 1 013 N 014
2| Assigno 1 Q€ i Newly
< 2 0. nd (0] S 3E A
] 21 2 task | 22 Swn3I] Assigned
g_ Det. Freq. 2 for 0. . R H
@ | Targe Size s; 1 1 o0 % 1
< Bin v s v
£ B B Choose B, B Batch Size s, Replicate to B,
S 1 2 from first 2 bins 3 Batch Limit 2<% for bins [Bs, B,
L
8 011 012 013 014
T| Assign 03 0 031 1 i 03, .
3| pet. Freq. 2 AL : 2 :
L | Target Size s, ! |
3 ! 1
b N v
2 Batch Size s3 B Choose B, B B Replicate to B,
'_g' Batch Limit 1 2 from first 2 bins 3 4 forbins [B3, B4]
g . 011 012 @ 013 014 @
5 Assign O, 021 31 022 32 :
< | Det.Freq.1 041 |
Target Size s3 1
‘ ‘
Bl BZ B3 34 Choose B;

from first 4 bins

Fig.5 Graphical illustration on how BAS generates the task-bin mapping. We have four objects denoted
by (object, inspection frequency, target size): (O,,4,s,), (O,,2,s)), (0s,2,5,), (O4,1,55). We have 4
(virtual) bins, which are not aligned with the frame boundaries. For object O,, its first task is assigned
to bin B, because there is an incomplete batch with size s,, and the decision is replicated to bin Bs. For
object O, its first task is assigned to bin B,, and the decision is replicated to bin B,. The task for object
O, is assigned to bin B with the min load

Lemma 1 For each object O, A(i) — Mi) < max{A(G — 1) — A -1,z }, where s; is
the target size for the object O; and T, IS its corresponding batch execution time.

Proof For eachi,letL; := f, where x; is the detection frequency for object O,. L; is

an integer power of 2 by' construction. When assigning object O;, we have
A0 = A,() forl = I'(mod L,) (as exemplified in Fig. 5).

e If there exists an incomplete batch for target size s; in the first L; bins, then
A(i) = A(i — 1) and A(i) = A(i — 1), and the claim follows.

e [f there is no incomplete batch, then based on induction, there are a subset of
bins, that for all / such that 4;(n — 1) = A(i — 1), and they are equivalent modulo
Li_,. Since L,_; <L; and L, mod L,_; =0, there exists at least one bin / € L,
with load A(i — 1). After assigning O; to [, its load will increase to A(i — 1) + 7y,
If Ai-D+7z 2 AGi—1), we have A®i)— AG) < 7,; otherwise, we have
A0 = Mi) < A = 1) = 4G = .

O
Step 2: We give the optimality of BAS schedule in minimizing the system load of

given inspection frequency set.

Lemma 2 Given an inspection frequency set {x|,X,, ..., Xy}, we use Ag,q to denote
the total load of the schedule computed by the BAS algorithm (Algorithm 3). It

@ Springer

320 Real-Time Systems (2023) 59:302-343

minimizes the total load over all feasible schedules for the given inspection fre-
quency set, i.e., Agsg < A, with A being the total load of any other feasible schedule.

Proof As tasks of different sizes cannot be batched, the total load of a schedule is
determined by the batching composition of each size. For a given size, the total load
of tasks is minimized when the number of batches is minimized. It can be proven by
induction that, for the same size, BAS minimizes the number of batches for the first
i objects. The base step is trivial, since no tasks of the same object can be batched.
For the induction step, assume the claim holds for i. When deciding on the mapping
of tasks on object O,,,, if there exists an incomplete batch, then the schedule by BAS
has the same number of batches as that for the first i objects, from which the claim fol-
lows. If no incomplete batch exists, consider any partial schedule for the first i objects.
If for that partial schedule, an incomplete batch exists, then it contains at least one
more batch than the partial schedule by BAS for the first i objects. It is contradictory
with the assumption that BAS minimizes the batch count for the first i objects. In both
cases, for the first i 4+ 1 objects, the partial schedule by BAS contains no more batches
than any other partial schedule, which completes the induction argument. O

Step 3: We prove the bound on system uncertainty caused by wait intervals only.

Lemma 3 Let U* be the optimal system uncertainty caused by wait intervals, and U
be that part in BPB policy, respectively. If the object weights are all integer powers
of 2, then U < 2U*; otherwise in general case, U < 4U".

Proof Let{X},...,X) } be the inspection frequency set that achieves U*. We construct
its proportional adaptation using the following procedure.

o Let T'= T—tf. Under the optimal schedule, we have U+ > max; W)‘C—T/ Let

i %< :— Since each icl* is an integer, it follows that

w,T .
= arg max —~. For each i,

b
~T%

i

l ws

e WS wx? " wNSc!f 4
r>—> L. Weset¢ = Ll > 1
wa wh

o Let x; = 2lloa0n/wv)l that is, {x,, ..., xy} is the output of step 3 of Algorithm 2,
i.e., the ratios of the inspection frequency set of BPB. By definition, xy = 1.

According to the construction, for each i, we have x; = 2 logy(w;/wi)l < leJ
N

e We define {Cx,, ..., Cxy} as the proportional adaptation of the optimal inspection
frequency set. Since both ¢ and x; are both integers, we have |&x;| = &x;.

We next prove that the constructed proportional adaptation is feasible that can finish
within 7”. For each object O,

Wk X
4 Without loss of generality, we assume that l%J > land - is an integer; otherwise, we can just take
the largest i with non-zero value of this equation and leave out the remaining objects.

@ Springer

Real-Time Systems (2023) 59:302-343 321

~% ~k
Wy w.x wx
N N Wi i -
ox, <e|—| = —l<|—]<s—L<x
Wy w; Wy w;i w;

Since the optimal schedule is feasible, there also exists a feasible schedule for the
inspection frequency set {¢x, ..., Cxy).

We have proved (Lemma 2) that BAS minimizes the system load, thus the factor
¢ by BAS is at least ¢, i.e.,, ¢ > ¢. In the BPB policy, the object uncertainty is
bounded by w;(max; Al)f = w;(max; /ll))%, where 4, is the load of bin B;. We bound

the maximum bin load of the BPB schedule, under the following two cases.
(Case 1) If A(N) < 2A(N), we have

. 22 27 ZT'
max 4, =2min 4; < BAS <= <=
l l L cx éxy
From the construction of {x,, ..., xy}, we have for each object O,, ;— < :— < ii Its
N N N

uncertainty satisfies,

WX WX 1 4w, T’ 4w, T’ -
1 mlax/11<—1-2l N N < 4U*.

— = pors
X; X, ox Cxy wa /w;

L

(Case 2) If A(N)>2A(N), consider the last i where A(i) increases (i.e.,
Ai) > A — 1), we have A(N) — A(N) < A() — A() < 7,. We have 7, > maxl%
Even under the optimal schedule, the maximum uncertainty of object O, is at least
w7, < U*, 50 we have max; 4; < % Hence,

WX, WX [2wy X - -
1 omax 4, < L. ZLS_N._N.QU*=4U*_
X; ! X; wy Xy Wy
Specially, if each w, is integer power of 2, we have ;— = -4, then it holds U < U* in
N WN
both cases. O

Step 4: We prove the bound on the overall system uncertainty, including uncertainty
caused by inspection latencies.

Proof We use t; to denote the full-frame inspection latency. Recall that U* is the
optimal uncertainty caused by inspection intervals, U* is the optimal overall uncer-
tainty, and U* < U*. They can correspond to two different schedules. We have,

U=max{U,,...,Uy} < max{U, +wyty, ..., Uy + wyt}
< max{f]l,.. UN} + U

<4U*+Uf=(+1)Uf
f

40~

<(U

S

+ DU,

@ Springer

322 Real-Time Systems (2023) 59:302-343

Since every schedule includes the full-frame inspection, which induces uncertainty
Uy, we have Uy < U*. The proof follows. Similarly, when all w,’s are integer power

of 2, we have U < (1 + ZUE)U *. This completes the proof of Theorem 1. O
y

6 Generalized scheduling with image resizing

In previous formulation, we established the scheduling problem as a max-uncer-
tainty minimization problem by controlling the object inspection frequency along
with their batching decisions. In this section, we generalize the scheduling problem
by further considering image resizing. We first introduce the design rationale behind
integrating image resizing, followed by a formulation of the generalized scheduling
algorithm, and finally explain how we extend the proposed scheduling algorithm to
solve it.

6.1 Design rationale

As addressed before, common CNN-based object detection models, like YOLO, are
able to process input images of different resolutions with different latencies, as long
as they are subject to certain constraints (e.g., the image sizes should be multiples
of 32 in YOLO). To utilize this property, we can not only slice out partial regions
of different sizes, but also resize the large regions into smaller sizes. Reducing the
image resolutions (or called image resizing) before feeding them into DNN models
trades part of the model accuracy for reduced execution latency. We investigate the
impact of image resizing on achieved detection quality and inference latency. We
downsize the full images to different resolutions, and evaluate the detection accu-
racy (i.e., mAPS) on objects of different sizes, as well as the associated inference
latency. As shown in Fig. 6, image resizing leads to different accuracy degradation
curves on objects of different sizes. Large objects are more tolerable to image resiz-
ing than small objects, and very large objects (object size > 160) almost suffer from
no accuracy degradation even if we reduce the image size by 5 times (i.e., down-
size ratio as 0.2). According to our profiling result, image resizing runs fast on Jet-
son Xavier with a latency of <lms in most cases. Besides, as we will introduce in
Sect. 7.2, we merge highly overlapped partial regions, so only a limited number of
large partial regions are extracted from each frame.

There are two potential benefits if we integrate image resizing into the proposed
scheduling framework. First, after downsizing some partial frames, the execution
latency of every single inspection will decrease, thus we can schedule more inspec-
tions for both downsized objects and the remaining objects. Second, image resizing
could further facilitate task batching of partial frames which originally have differ-
ent sizes. For example, if we downsize partial frames of 512 X 512 to 256 X 256,
we can further batch them with the remaining 256 X 256 partial frames. Ultimately,

5 The specific definition of the metric will be given later.

@ Springer

Real-Time Systems (2023) 59:302-343 323

100 Orig I
4 + 4 —t - 1280 I
80 O 1152 |
—_ 21024 .
8 60 2 896 I—
o 0, 40 o 768 N
< 40 (0. 40) & 640
E T 14080 1)
20 —— [80,160) | £ e —
. —— [160, +inf) 756 mmm
0.1 0.2 0.4 _0.6 . 0.8 1 0 50 100 150 200 250
Image Downsize Ratio Inference Latency (ms)

Fig.6 Impact of image resizing on detection quality and inference latency. In the left figure, different
curves represent detection accuracy degradation on objects of different sizes

lower system uncertainty can be achieved with the appropriate use of image resiz-
ing. However, we can not ignore the detection quality degradation caused by image
resizing, which is not reflected in system uncertainty, thus it can no longer be used
as a proper proxy objective of the object detection accuracy. We next solve this issue
by defining a generalized optimization objective and scheduling algorithm.

6.2 Generalized scheduling problem formulation

To address the aforementioned issue, we first define the execution model related
to image resizing operation, and then define a new optimization objective, named
generalized uncertainty, integrating the effect of image downsizing, inspection fre-
quency, and task batching.

6.2.1 Image resizing and accuracy degradation

As defined before, each object O, is associated with a fixed target size
s; € {sy,....5y} within a scheduling horizon, which was calculated by expanding
and quantizing the inferred object location at the first frame after the full frame
inspection. It represents the size of the partial frame to be processed in each of its
inspection task. We further define a confined target size for each object below.

Definition 4 (Confined target size) The confined target size sl’. € {5y, ..., 5} for object
O; could be any size in the limited size set that is no larger than s;, i.e., s < s5;. To
maintain the task batching opportunities, the same confined target size for an object
persists across a scheduling horizon. At one frame, if the expanded candidate region is
larger than the confined target size, we would first pad the expanded candidate region
into a square region (to keep the same aspect ratio), and then downsize it to s.

In order to depict the accuracy degradation associated with image resizing, we
define an accuracy degradation profile, which is essentially a lookup table using
the object size® and downsizing ratio as two input dimensions (as shown in the left

% We want to remind that the object size is not identical to the object target size because the target size
not only depends on the object size, but also the object motion.

@ Springer

324 Real-Time Systems (2023) 59:302-343

Accuracy Degradation Profile

Downsize

Ratio| 1 1/2 | 1/4 1/8
Object Size

[0, 20) 1 07] 05 0.1 Detected Location Frame 1 Accuracy Frame 2

@ Degradation u
[20, 50) 1 |09 |06 | .. |o02 @ JFactor
D @dl « .

Confined Target Size Downsized Images

[160,inf) | 1 1 1 .. | 08
dy+dy+d;

Accuracy degradation factor over the scheduling horizon: d =

Fig.7 Illustration of the accuracy degradation profile and degradation factor

part of Fig. 7). The element in each cell represents the ratio between the accuracy on
downsized images and original images, which is also called the accuracy degrada-
tion factor. This table is obtained through offline profiling by downsizing the images
with different downsize ratios and separately counting the obtained accuracy on dif-
ferent object sizes.

To accurately calculate the accuracy degradation factor d;(f) of object O, at time ¢,
the following steps should be performed: We first compute the size of its expanded
candidate region according to its uncertainty growth rate u; and the time since its last
inspection ¢ — t;. Next, we get the downsize ratio by calculating the ratio between its
confined target size and expanded candidate region size. Finally, we use the detected
object size and the downsize ratio to query the accuracy degradation profile to get its
accuracy degradation factor.

Since the object region projections are iteratively expanded in each frame, with a
given confined target size, the downsize ratio of an object is different at each frame.
As a consequence, the exact accuracy degradation of an object over a scheduling
horizon also depends on its inspection schedule (i.e., at which frame the inspection
is performed). This could significantly complicate the scheduling problem since we
use the accuracy degradation profile as input to the scheduling algorithm. To sim-
plify the problem, we propose an approximated approach to calculate the accuracy
degradation factor of an object over a scheduling horizon in a schedule-independent
way, which is defined below.

Definition 5 (Approximated object accuracy degradation factor in a schedul-
ing horizon) Given an object O;, and its calculated accuracy degradation factor
d;(1),...,d,(T — 1) at each frame (when no partial frame inspection is performed),
its approximated accuracy degradation factor for the whole scheduling horizon is
calculated as the weighted average of its accuracy degradation factors at each frame,
discounting the weights of frames by their distance to the key frame,
., d(1) + 5d,2) + - + 55d(T — 1)

oT-2

@)

i

1 1
1+5+”'+F

@ Springer

Real-Time Systems (2023) 59:302-343 325

There are two reasons behind this design choice: First, most objects are more
likely to get high inspection frequencies than low inspection frequencies. Second,
even if we assume the same probability for different inspection frequencies, high
inspection frequencies will lead to higher absolute inspection times, which happen
at frames close to last inspected frames. In such a way, we formulate the impact of
image resizing independent of the specific object inspection schedules, and leave the
image resizing a higher level decision above the inspection frequency.

6.2.2 Generalized problem formulation

In the generalized problem formulation, we intend to integrate the effect of object
location uncertainty caused by skipped object inspection and the detection accuracy
degradation caused by image resizing defined above. We first define the generalized
weighted object uncertainty GU,(¢) at time ¢ as,

Definition 6 (Generalized object uncertainty) Given an object O; and the last
inspection time #;, its generalized uncertainty GU;,(¢) at time ¢ is defined as the ratio
between its location uncertainty and its approximated accuracy degradation factor in
the scheduling horizon:

U w—-1)+uy
d d.)

L 1

GU,(t) =

3

Intuitively, we should compensate the downsized objects with more inspections
to bound its generalized uncertainty, otherwise we will be more likely to lose the
tracking of this object. Next, the generalized partial-frame inspection scheduling
problem is correspondingly defined as,

Definition 7 (Generalized partial-frame inspection scheduling problem) The Gen-
eralized Partial-Frame Inspection Scheduling (GPFIS) problem asks for a feasible
schedule that minimizes the system uncertainty within a scheduling horizon.

The definition of schedule remains the same as Definition 1 except that we also
need to decide a confined target size for each object. We next introduce how can we
extend the proposed BPB policy to solve the new GPFIS problem.

6.3 Generalized BPB scheduling policy

There is a tradeoff between the decision space complexity and scheduling flexibility
when we jointly determine the downsizing factors for all objects. If we determine a
confined target size for all objects, the decision space is constant to the number of
objects, but the achieved model accuracy could be suboptimal. On the contrary, if
we separately determine a confined target size for each object, the achieved model
accuracy is optimized, but the decision space grows exponentially to the number of
objects, which makes the problem NP-hard even if we do not consider the inspection

@ Springer

326 Real-Time Systems (2023) 59:302-343

schedule. Therefore, we propose to decide the resizing factors at the granularity of
object groups segmented by the object sizes, because it has been shown in Fig. 6 that
the difficulty of detecting objects with different sizes are different with heterogene-
ous accuracy degradation curves. Large objects are more tolerable to image resizing,
while small objects can not be aggressively downsized.

Even under this restricted setting, the decision choices is still exponential to the
number of (discretized) object sizes. As we can observe from Fig. 6, it is always more
beneficial to downsize larger objects than smaller objects, because doing so saves
more in DNN model latency (with more inspection area reduction), while suffering
from less accuracy degradation, under the same downsizing factor. Thus, we further
reduce the decision space by only deciding a maximum target size s, € {s,... 8y}
such that any larger candidate regions should be downsized to s,,,,,.

Specifically, we propose the Generalized Batched Proportional Balancing (GBPB)
policy in Algorithm 4, which uses Algorithm 2 as a subroutine, and feed different
max target size values to compute the optimized schedule that achieves the minimum
generalized system uncertainty. We use a loop to iterate over all used target sizes (too
large target sizes are skipped if no object uses them). At each iteration, we first use
the selected max target size to calculate the confined target sizes {s’l, ,s;V} and the
approximated object accuracy degradation factors {d,, ...,dy} for the objects, and

correspondingly update the object weights to { %, s Z—N}. Next, they are fed into
1 N

Algorithm 2 to compute the object inspection schedule and the achieved generalized
system uncertainty. The maximum target size value that achieves the minimum gen-
eralized system uncertainty and its schedule are used as the algorithm output. Since
we greatly reduce the decision space of image resizing and decouple the impact of
image resizing and intermittent inspection, Algorithm 2 will be called at most M
times (i.e. the number of target sizes) in actual scheduling execution.

Algorithm 4: Generalized Batched Proportional Balancing (GBPB)
Policy

Input: Object set {O1,...,On}, object weights {w1, ..., wx}, number of
frames K — 1, target size set {s1,...,snp}-
Output: A feasible schedule with minimized generalized uncertainty.
1 Imitialize: Min uncertainty GU,,j, := +00, output schedule Spyt ;

2 for Smax € {s,..., 82,81} (reverse order of used target sizes) do
3 Calculate the confined target sizes {5/1, cee 53\,} and the approx. acc.
degradation factors {di,...,dn} with smax;
Update the object weights as {w—ll, ce 75—;’ ;
Feed {s},...,sy} and {gh -, g} into Algorithm 2, return the

achieved generalized uncertainty GU and schedule S (including the
confined target sizes);

if GU < GUpj, then
‘ GUnin := GU, Sout : =S ;

end

© o g o

end

10 Return the schedule Syq¢.

(=]

@ Springer

Real-Time Systems (2023) 59:302-343 327

7 Empirical optimization

In this section, we list some practical considerations and empirical optimizations we
performed in our implementation.

7.1 New object arrival

We first show in Fig. 8 that there is no object arrival or departure in most (~ 80%)
frames. Most new objects have very small sizes so they only cause minor extra
workload. Some existing objects can disappear during the scheduling horizon. The
slots for these objects, together with the idle slots in incomplete batches, can be used
to schedule the new object regions. To (roughly) localize new objects, we apply a
lightweight mechanism based on optical flow. We define the pixels in the new frame
that are not mapped to any pixel in the previous frame as the newly appeared pixel,
and then use connected component analysis (Grana et al. 2010) to extract new object
regions. An example is shown in Fig. 9.

7.2 Partial region merge

If two candidate regions have significant overlap, it is beneficial to merge them into
one so we can avoid repetitively scanning the same area. In our case, if there is an
unscheduled region such that its overlap ratio with a scheduled region is above a
threshold 7, we use the merged region to replace the scheduled region. This approach
could help reduce the redundant inspections of overlapping regions on different par-
tial frames extracted from the same frame.

7.3 Bounding box filtering

We perform a bounding box filtering procedure, as a postprocessing step, to remove
fragmented detections that correspond to only part of a physical object. Specifically,
we remove detected bounding boxes that lie on the partial image boundaries, unless
the partial image boundaries coincide with the full image boundaries. We provide an
illustrative example in Fig. 10. Intact redundant inspections can be easily removed
by the non-maximum suppression (NMS) step of the detector.

8 Evaluation

In this section, we evaluate the effectiveness and efficiency of the proposed frame-
work on an NVIDIA Jetson Xavier board with a real-world self-driving dataset.

@ Springer

328 Real-Time Systems (2023) 59:302-343

8.1 Experimental setup
8.1.1 Hardware platform

All experiments are conducted on an NVIDIA Jetson Xavier SoC, which is designed
for automotive platforms. It is equipped with an 8-core Carmel Arm v8.2 64-bit
CPU, a 512-core Volta GPU, and 32 GB memory. The mode is set as MAXN with
the maximum CPU/GPU/memory frequency capacity.

8.1.2 Dataset

Our experiment is performed on the Waymo Open Dataset (Sun et al. 2020), a large-
scale autonomous driving dataset collected by Waymo self-driving cars in diverse
geographies and conditions. It consists of driving video segments of 20 s each, col-
lected by onboard cameras at 10Hz with resolution 1920 x 1280. Only front camera
data is used.

8.1.3 Neural network for detection

We use the YOLOV5’ model in PyTorch as the object detection network, which was
pretrained on the general-purpose COCO (Lin et al. 2014) dataset. We specifically
use the default “large” config in the evaluation, with both depth and width multipli-
ers set to 1. The model precision is set to FP16. The YOLO inference latencies with
different target sizes are profiled in advance.

8.1.4 Workload manipulation

Unless otherwise indicated, we choose our scheduling horizon to be 10 frames,
and manually change the time interval P between two consecutive frame arrivals
to induce different workload. Intuitively, a shorter frame interval leads to a higher
scheduling load. Our experiments use three interval lengths (150 ms, 100 ms, and 70
ms) to denote the easy, moderate, and hard scheduling situations (corresponding to
frame rates of roughly 6.67 Hz, 10 Hz, and 14 Hz).

8.1.5 Object criticality

The object criticality is the product of two terms: (1) Class criticality, (2) approxi-
mated object distance. The class criticality is manually assigned to simulate how
humans prioritize different types of objects. For example, “human” class has a much
higher criticality than “vehicle” class. Besides, we assume the physical sizes of
objects belonging to one class are similar, so we use the bounding box size (i.e.
width) as an approximation of object distance. We separately evaluate the detection

7 https://github.com/ultralytics/yolov5.

@ Springer

https://github.com/ultralytics/yolov5

Real-Time Systems (2023) 59:302-343 329

0 3.57% 0.79% | 0.35%0.16% 3.69% 0.93% 0.37% 0.04% 512 I3.26
ml
u384 e
w2 &
3 g 256 [l 1165

=4 “ 128 [184

=5 o+ N o 25
0 25 50 75

Percentage (%)
New Object Count Distribution Departured Object Count Distribution New Object Size Distribution

Fig. 8 Distributions on number of newly arrived objects and departured objects, as well as the (quan-
tized) new object size distribution, at each frame. Results obtained on Waymo Open dataset (Sun et al.
2020)

Previous Frame Current Frame New Pixels Highlighted in Red

Fig. 9 An example of new pixels in the current frame highlighted in red (Color figure online)

performance on all objects and critical objects. A separate object size threshold for
critical objects is set for each class.

8.1.6 Evaluation metrics

Given a list of detections and a list of groundtruth object locations, we match the
detections with the groundtruth objects based on their bounding box overlap. A
detection is said to be matched with a groundtruth object if their IoU ratio is larger
than a predefined threshold (set as 0.5 in this paper) and larger than the remaining
detections, in which case we say that the object is successfully detected. It has been
shown by Liu et al. (2022b) that the achieved localization error and classification
accuracy are similar across different approaches, so they are skipped in this evalua-
tion. The following set of metrics are utilized:

e Detection recall (DR): The ratio between the number of successful detections
(matched with groundtruth objects) and the count of all groundtruth objects.

e Detection precision (DP): The ratio between the number of successful detections
(matched with groundtruth objects) and the count of all detections.

e Mean average precision (mAP): It is used as an end-to-end metric, which simul-
taneously captures the error in both location and classification. An open sourced
mAP evaluation engine® is used.

8 https://github.com/Cartucho/mAP.

@ Springer

https://github.com/Cartucho/mAP

330 Real-Time Systems (2023) 59:302-343

2) Filter

=

Current Full Frame Unfiltered Partial Detections Filtered Partial Detections

Fig. 10 An example of bounding box filtering. Note we preserve the yellow box although its bottom edge
lies on the bottom border of the partial image, because the partial image bottom coincides with the full
image bottom (Color figure online)

The YOLO performance on full frames is listed in Table 1, which serves as the ceil-
ing condition for the proposed framework. In addition, we separately evaluate the
detection performance on all objects and the critical objects.

8.2 Impact of image slicing

A good slicing module should be lossless and lead to no degradation in detec-
tion quality. To isolate the impact of image slicing, we run inspections on all
sliced candidate regions. Besides, two empirical optimizations are considered: (i)
bounding box filtering, and (ii) candidate region merge. We evaluate the detec-
tion recall and precision with and without bounding box filtering, under different
candidate region merge criteria (i.e. the intersection ratios) in Fig. 11. First, the
detection precision is degraded after slicing, because more false positive detec-
tions (i.e. fragmented object parts) are generated. The region merge does help
partially improve detection precision, but bounding box filtering is the key factor
that makes the slicing lossless. The red curve of Fig. 11b indicates the slicing
with bounding box filtering shows negligible degradation on detection precision
under different merging criteria. The fragmented detections are mostly removed.
Second, the detection recall is not affected no matter whether bounding box fil-
tering is applied, which indicates the sliced partial frames completely cover the
groundtruth objects. We set the intersection ratio for merge as 0.5 to achieve a
good tradeoff between detection recall and precision.

8.3 Tracking algorithm

We compare our flow-based tracker (denoted by “Flow”) with a state-of-the-
art tracking algorithm, SORT (Bewley et al. 2016), which uses a Kalman filter
to model object motions. It extrapolates future object locations from the past
object trajectories. The results are presented in Fig. 12. We separately show the
results on overall objects and critical objects, under three workloads (i.e., frame

@ Springer

Real-Time Systems (2023) 59:302-343 331

intervals). We found that optical flow generally works better than SORT in track-
ing. They show similar detection precision under each workload, but the detec-
tion recall and mAP of Flow are clearly better than SORT, especially when the
frame interval is short. We rely more on the tracking algorithm to predict object
locations when there is no GPU resource to run their partial-frame detection
tasks. Flow is more accurate in estimating object motions, because it proactively
extracts the information from newly captured frames, as opposed to the extrapo-
lated motions in SORT.

8.4 Robustness of flow-based tracking and slicing

In this experiment, we explicitly evaluate the robustness of the proposed flow-based
tracking algorithm, by answering the following question: Does missing frames dur-
ing a scheduling horizon affect the detection result? We randomly delete differ-
ent portions (from 10% to 60%) of frames from each scheduling horizon (i.e., 10
frames), and compare the relative detection performance between our approach
and full-frame inspection on the remaining frames. All sliced candidate regions are
inspected. If the key frame is missing, we regard the next available frame as the key
frame instead. The results are summarized in Fig. 13. We use a reproducible random
number generator to generate the same subset of missing frames between the two
compared approaches. Our flow-based tracking and slicing approach consistently
shows a close performance on both overall mAP and critical mAP to the full-frame
inspection approach when different portions of frames are missing within a schedul-
ing horizon. Only negligible relative degradation is observed as the frame missing
ratio increases. When intermediate frames are missing, the optical flow algorithm
would directly compute the flow map between two consecutive available frames, and
the proposed expansion steps further consider the potential uncertainty contained in
the estimated flow map.

8.5 Scheduling algorithm comparison
8.5.1 Baselines
We compare the following algorithms in this evaluation.

e Downsizing (DS): It always runs full-frame inspections at the largest resolution
that can finish in real-time.

e Highest Uncertainty First (HUF): It always schedules the partial frame inspec-
tion task with the highest weighted uncertainty. Batching is not used.

e Batched highest uncertainty first (BHUF) (Liu et al. 2020a): It always sched-
ules the partial frame inspection tasks with the highest weighted uncertainty, and
batches the tasks under the same target size in a greedy manner.

e Batched proportional balancing policy (BPB) (Liu et al. 2022b): The proposed
scheduling algorithm in Sect. 5 that controls the inspection frequency of each

@ Springer

332 Real-Time Systems (2023) 59:302-343

Table1 YOLOVS performance on Waymo dataset

Model Ove. Det. Rec Ove. Det. Pre Ove. Cls. Acc Ove. Loc. Err
YOLOV51 70.09 87.54 99.88 4.68
Cri.Det.Rec Cri.Det.Pre Cri.Cls.Acc Cri.Loc. Err
82.29 92.05 99.96 3.97
Ove.mAP Cri.mAP XavierLatency
62.76 78.14 239ms

All values in this table are in percent, except the latency

__100 5100
X —— Slice-wFilter < - P Sy S
= g0 —=— Slice-noFilter s 80 Full-frame Detection Precision
© @
1o -—
[T —— 1o
f 60 Full-frame Detection Recall g 60 o Slice-wFilter
A g’ —=— Slice-noFilter
4075 20 40 _ 60 80 4075 20 40 _ 60 80
Intersection Ratio (%) Intersection Ratio (%)
(a) Detection recall. (b) Detection precision.

Fig. 11 Impact of slicing on detection quality

object according to their criticality and uncertainty growth. No image resizing is
applied.

e Generalized batched proportional balancing policy (GBPB): The generalized
scheduling algorithm in Sect. 6 that integrates image resizing and intermittent
inspection, as well as task batching in the optimization.

8.5.2 Results

The corresponding results are summarized in Fig. 14. We test the scheduling algo-
rithms at different workloads (i.e. frame intervals) and report the following obser-
vations: First, both BPB and GBPB improve the mAP compared to the baselines,
a metric that captures both localization and classification errors in object detec-
tion. GBPB further improves the mAP of BPB by introducing image resizing in
the scheduling framework, especially when the frame interval is short (i.e. 70 ms).
Instead, BPB and GBPB achieve similar mAP when the frame interval is 150ms,
proving that GBPB can maximally utilize the available resources by setting larger
max confined target sizes when the computation demand is low. Through the com-
parison, we conclude that GBPB achieves better computational resiliency than BPB
with less degradation in the face of higher workloads (i.e. 70 ms). This is because
image resizing provides an alternative dimension for computational savings, which
avoids extremely low inspection frequency on critical objects. Otherwise, relying
too much on optical flow-based projection to predict object locations impairs track-
ing of fast-moving objects. Second, GBPB achieves the best recall, but at the cost

@ Springer

Real-Time System

$(2023) 59:302-343

333

e}
o

100 = 80
S g 90 g ?IORT
ot = o ow
g 70 % 80 <E(70
s T 70 =
g 60 SORT | © SoRrT | 560
3 Flow 3 60 Flow 3
)
30 70 100 150 50 70 100 150 50 70 100 150
Frame Interval (ms) Frame Interval (ms) Frame Interval (ms)
(a) Overall DR. (b) Overall DP. (c) Overall mAP.
80 100 80
8 g 90 S
= [-%
g 70 g 80 g 70
E T 70 ®
£ 60 SORT | i SORT | 560 SORT
(s} Flow & 60 Flow 5 Flow
50 50

70 100 150
Frame Interval (ms)

(d) Critical DR.

70 100 150
Frame Interval (ms)

(e) Critical DP.

%
o

70 100 150
Frame Interval (ms)

(f) Critical mAP.

Fig. 12 The impact of tracking algorithms on the detection quality of overall objects and critical objects

of minor degradation in precision, compared to full-frame downsizing (DS). This
is because both the image slicing and partial-frame downsizing can result in minor
degradation in the detection precision, which is less important than detection recall.
Finally, compared to BHUF, the proposed approaches do better at planning when to
invoke the detector to minimize (generalized) location error without hurting recall.

8.5.3 Evaluation on busy traffic scenarios

To further demonstrate the additional value of GBPB over BPB, we separately
extract a new dataset from Waymo with dense object distributions, which are not in
the previous dataset, to evaluate the performance of the new GBPB algorithm under
busy traffic scenarios. Example scenarios of this dataset are visualized in Fig. 15
and the associated detection results are presented in Fig. 16. We find the advan-
tage of GBPB over BPB is larger in busy traffic scenarios, which achieves 5.42%
overall mAP and 6.33% critical mAP improvement when the frame interval is 70
ms. When the number of objects in the scene is large, BPB can only reduce the
inspection frequency of all objects, which leads to more “inferred object locations
from the past” in the generated detections that are possibly shifted from the actual
object locations, while GBPB can balance between lower inspection frequencies and
lower image resolutions, which offers a larger optimization space in combination.
We also notice that the image downsizing in GBPB leads to minor degradation in
the achieved detection precision (DP), in exchange for higher detection recall (DR),
but GBPB still outperforms BPB on the mAP metric. The results in this experi-
ment also validate our previous observation that GBPB provides better resiliency
on machine perception in facing higher computation workload through applying its

@ Springer

334 Real-Time Systems (2023) 59:302-343

80 80
9 Full Inspection Ours 3
& 70 % 70
1S 1S
T 60 360
g 2
o o Full Inspection Ours
0775 01 02 03 04 05 06 50775 01 02 03 04 05 06
Frame Missing Ratio Frame Missing Ratio
(a) Overall mAP. (b) Critical mAP.

Fig. 13 The impact of missing frames on our slicing and partial inspection approach

multi-dimensional resource allocation, which slightly reduces the inspection fidelity
on downsized images, but sustains a reasonable range of inspection frequencies.

8.6 Responsiveness to physically close objects

We evaluate the achieved detection recall on all objects within 30 ms to the ego-
vehicle (according to the groundtruth object distances in the dataset). The results are
normalized by the detection recall achieved on full frames, and reported in Fig. 17.
Both BPB and GBPB outperform the baselines in close object recall, especially
when the frame interval is short. The evaluation demonstrates that the absence of
a physical ranging sensor is not a hindrance and that (visual) size-based assignment
of priority offers higher recall on close objects compared to baselines such as whole
image resizing. We also acknowledge that GBPB shows slightly worse recall on

85 100 75
= = ? DS BPB
£75 E 90 =65 HUF GBPB
x % 80 E BHUF
=65 DS BPB 3 70 DS BPB =
Tss HUF GBPB | © HUF GepB | $55
3 BHUF S 60 BHUF 3

770 100 150 07770 100 150 770 100 150

Frame Interval (ms) Frame Interval (ms) Frame Interval (ms)
(a) Overall DR. (b) Overall DP. (c) Overall mAP.

85 100 75
g7s g 9 £
o a go %65
Ses a g
3 DS BPB T 70 DS BPB = DS BPB
= HUF GBPB | | = HUF GBPB | 835 HUF GBPB
5 BHUF & 60 BHUF 5 BHUF

B0 100 150 07750 100 150 B0 100 150

Frame Interval (ms) Frame Interval (ms) Frame Interval (ms)
(d) Critical DR. (e) Critical DP. (f) Critical mAP.

Fig. 14 Scheduling algorithms comparison. The first row shows detection results on overall objects, and
the second row shows results on critical objects

@ Springer

Real-Time Systems (2023) 59:302-343 335

Fig. 15 Example scenarios in the extracted busy-traffic dataset

90 100 _ 75

g 80 g 90 § BPB GBPB

& % 80 1%

270 = E

g £ 70 T 55

> 60 > 60 o

o BPB GBPB] BPB GBPB 5
507755 100 150 507790 100 150 770 100 150

Frame Interval (ms) Frame Interval (ms) Frame Interval (ms)
(a) Overall DR. (b) Overall DP. (c) Overall mAP.

90 100 75

) 3 xX

g0 & 90 =

£ & 80 £

—70 - E

8 S0 Ss5

£60 5 60 2

O BPB GBPB o BPB GBPB S BPB GBPB
50770 100 150 50790 100 150 770 100 150

Frame Interval (ms) Frame Interval (ms) Frame Interval (ms)
(d) Critical DR. (e) Critical DP. (f) Critical mAP.

Fig. 16 Scheduling algorithms comparison on busy traffic scenarios. The first row shows detection
results on overall objects, and the second row shows results on critical objects

close objects than BPB, because we only differentiate the object resizing decisions
according to their sizes, but do not consider their criticality.

8.7 Breakdown of overhead quantification

Next, we separately report the breakdown latency overhead induced by BPB and
GBPB algorithms. The results are shown in Fig. 18. Since the BPB and GBPB pol-
icy only executes once per scheduling horizon, their overhead is divided into each
frame. We notice that the per-frame latency of GBPB increases to < 9 ms compared
to < 2 ms in BPB, which is because we iterate over different max confined target
sizes in Algorithm 4 by repetitively calling Algorithm 2 as a subrountine. Since dif-
ferent max confined target sizes are independently tested, we can further improve
the efficiency of GBPB by scheduling their Algorithm 2 calls in parallel on dif-
ferent CPUs in the future. The preprocessing overhead is generally below 20 ms
and the postprocessing overhead is generally below 5 ms in both algorithms, which

@ Springer

336 Real-Time Systems (2023) 59:302-343

100

S

£ 90

3

£ 80

s DS HUF BHUF BPB GBPB
70 70 100 150

Frame Interval (ms)

Fig. 17 The normalized detection recall on physically close objects

100
;\3 75
E 50 —— BPB Execution
O 25 —— Preprocessing
—— Postprocessing
0
0 5 10 15 20 25
Per-frame Latency (ms)
(a) BPB Overhead Distribution.
100
;\; 75
B 50 —— GBPB Execution
O 75 - Preprocessing
- Postprocessing
0

0 5 10 15 20 25
Per-frame Latency (ms)

(b) GBPB Overhead Distribution.

Fig. 18 Breakdown latency overhead of the proposed algorithms

are acceptable compared to 100 ms frame intervals. Specifically, the preprocess-
ing steps include new object localization, image slicing, candidate region merge,
resizing, and batching at each frame, while the postprocessing steps filter the gen-
erated detections and map the remaining detections to the full frame coordinates.
The optical flow estimator runs in an independent process on the CPU and poses no
overhead to the detection pipeline on GPU. In conclusion, the proposed scheduling
framework does not induce significant latency overhead (generally below 30 ms) to
the backbone DNN inspection system on Jetson Xavier.

8.8 Choice of scheduling horizon length

Here, we investigate the impact of the scheduling horizon length in BPB and GBPB
policies. We vary the horizon length from 5 to 20 frames, and evaluate how the
detection quality is affected. We set the frame arrival interval P = 100 ms. The
results are summarized in Fig. 19. Both BPB and GBPB are generally resilient to
the horizon length, and large variations on achieved object detection quality are not

@ Springer

Real-Time Systems (2023) 59:302-343 337

85 95 80
§80 —_————— §90 e . — 75
~ c —
T75 —— Overall | 385 ———— | =70 :.\o;m\-
Q "] o -
< 70 —=— Critical 980 < 65| —=— Critical
g | j.'_; —e— Overall 60
065 875] —— critical ——
55
60 5 10 15 20 70 5 10 15 20 5 10 15 20
#Frames in Horizon #Frames in Horizon #Frames in Horizon
(a) BPB Recall. (b) BPB Precision. (c) BPB mAP.
85 95 80
RO 290} u- le——
~ = —_
T75 —e— Overall j% 85 e | X70 —e— Overall
D -] o .
< 70 —s— Critical 980 <65 —a— Critical
v | ——— j"_; —e— Overall E
065 875| —— critical Ol ———
60 5 10 15 20 70 5 10 15 20 55 5 10 15 20
#Frames in Horizon #Frames in Horizon #Frames in Horizon
(d) GBPB Recall. (e) GBPB Precision. (f) GBPB mAP.

Fig. 19 The impact of the scheduling horizon length on detection quality

seen. Relatively short scheduling horizons show slightly better mAP than longer
scheduling horizons. When the scheduling horizon is too long, we do not have
timely updates on the object presence and criticality and may waste time tracking
objects that are not critical anymore. However, when the scheduling horizons are too
short, the full-frame inspections would be frequently invoked, which could lead to
delays in obtaining object locations in real time. Therefore, we believe a moderate
length of scheduling horizon (i.e. 10 frames) is the best choice.

9 Conclusions

We proposed a generalized self-cueing attention scheduling framework that inte-
grates intermittent inspection, image resizing, and task batching to optimize the effi-
ciency of DNN-based visual machine perception pipelines on resourced-constrained
embedded platforms. It minimizes a concept of generalized system uncertainty that
simultaneously considers the detection accuracy degradation caused by image resiz-
ing and object location uncertainty caused by skipped object inspections. Under the
time constraint, the proposed scheduling algorithm, called GBPB policy, can bal-
ance between the inspection quality and the inspection frequencies on object regions
depending on the object motion distributions and object size distributions. Extensive
evaluations with real-world driving datasets on an NVIDIA Jetson Xavier platform
demonstrate the effectiveness of the proposed scheduling framework. Compared
with the original BPB policy in Liu et al. (2022b), the additional image resizing
component in GBPB is especially effective when dealing with busy traffic scenarios
under short time limits because resizing offers a better alternative to extreme reduc-
tion in inspection frequency, especially in the presence of large objects.

@ Springer

338 Real-Time Systems (2023) 59:302-343

Acknowledgements Research reported in this paper was sponsored in part by the U.S. DEVCOM Army
Research Laboratory under Cooperative Agreement W911NF-17-20196, NSF CNS 20-38817, IBM
(IIDAI), and the Boeing Company. The views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the official policies of the U.S. DEVCOM
Army Research Laboratory or the U.S. government. The U.S. government is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright notation hereon.

References

Amert T, Otterness N, Yang M, et al (2017) GPU scheduling on the nvidia tx2: hidden details revealed. In:
2017 IEEE real-time systems symposium (RTSS), IEEE, pp 104-115

Amert T, Tong Z, Voronov S, et al (2021) Timewall: enabling time partitioning for real-time multicore+
accelerator platforms. In: 2021 IEEE real-time systems symposium (RTSS), IEEE, pp 455-468

Bastani F, Madden S (2021) Multiscope: efficient video pre-processing for exploratory video analytics.
CoRR abs/2103.14695. arXiv:2103.14695

Bateni S, Liu C (2018) Apnet: approximation-aware real-time neural network. In: 2018 IEEE real-time sys-
tems symposium (RTSS), IEEE, pp 67-79

Bewley A, Ge Z, Ott L, et al (2016) Simple online and realtime tracking. In: 2016 IEEE international con-
ference on image processing (ICIP), IEEE, pp 3464-3468

Buckler M, Bedoukian P, Jayasuriya S, et al (2018) Eva$"2$: Exploiting temporal redundancy in live com-
puter vision. In: 2018 ACM/IEEE 45th annual international symposium on computer architecture
(ISCA), IEEE, pp 533-546

Capodieci N, Cavicchioli R, Bertogna M, et al (2018) Deadline-based scheduling for gpu with preemption
support. In: 2018 IEEE real-time systems symposium (RTSS), IEEE, pp 119-130

Cavigelli L, Degen P, Benini L (2017) Cbinfer: change-based inference for convolutional neural networks on
video data. In: Proceedings of the 11th international conference on distributed smart cameras, pp 1-8

Chin T, Ding R, Marculescu D (2019) Adascale: Towards real-time video object detection using adaptive
scaling. In: Talwalkar A, Smith V, Zaharia M (eds) Proceedings of machine learning and systems
2019, MLSys 2019, Stanford, CA, USA, March 31-April 2, 2019. mlsys.org

Grana C, Borghesani D, Cucchiara R (2010) Optimized block-based connected components labeling with
decision trees. IEEE Trans Image Process 19(6):1596—-1609

Heo S, Cho S, Kim Y, et al (2020) Real-time object detection system with multi-path neural networks.
In: 2020 IEEE real-time and embedded technology and applications symposium (RTAS), IEEE, pp
174-187

Heo S, Jeong S, Kim H (2022) Rtscale: Sensitivity-aware adaptive image scaling for real-time object detec-
tion. In: 34th euromicro conference on real-time systems (ECRTS 2022), Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik

Holte R, Mok A, Rosier L, et al (1989) The pinwheel: A real-time scheduling problem. In: Proceedings of
the 22nd Hawaii international conference of system science, pp 693-702

Hu Y, Liu S, Abdelzaher T, et al (2021) On exploring image resizing for optimizing criticality-based
machine perception. In: 2021 IEEE 27th international conference on embedded and real-time comput-
ing systems and applications (RTCSA), IEEE, pp 169-178

Hu Y, Liu S, Abdelzaher T, et al (2022) Real-time task scheduling with image resizing for criticality-based
machine perception. Real-Time Systems pp 1-26

Jang W, Jeong H, Kang K, et al (2020) R-tod: Real-time object detector with minimized end-to-end delay
for autonomous driving. In: In Proc. IEEE Real-time Systems Symposium (RTSS)

JiM, Yi S, Koo C, et al (2022) Demand layering for real-time dnn inference with minimized memory usage.
In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 291-304

Kang W, Lee K, Lee J, et al (2021) Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-time dnn
tasks. In: 2021 IEEE real-time systems symposium (RTSS), IEEE, pp 329-341

Kang D, Lee S, Chwa HS, et al (2022a) Rt-mot: Confidence-aware real-time scheduling framework for
multi-object tracking tasks. In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 318-330

Kang W, Chung S, Kim JY, et al (2022b) Dnn-sam: Split-and-merge dnn execution for real-time object
detection. In: 2022 IEEE 28th real-time and embedded technology and applications symposium
(RTAS), IEEE, pp 160-172

@ Springer

http://arxiv.org/abs/2103.14695

Real-Time Systems (2023) 59:302-343 339

Kannan T, Hoffmann H (2021) Budget rnns: Multi-capacity neural networks to improve in-sensor inference
under energy budgets. In: 2021 IEEE 27th real-time and embedded technology and applications sym-
posium (RTAS), IEEE, pp 143-156

Kroeger T, Timofte R, Dai D, et al (2016) Fast optical flow using dense inverse search. In: European confer-
ence on computer vision, Springer, pp 471-488

Kumar AR, Ravindran B, Raghunathan A (2019) Pack and detect: Fast object detection in videos using
region-of-interest packing. In: Proceedings of the ACM India joint international conference on data
science and management of data, pp 150-156

Lee S, Nirjon S (2020a) Fast and scalable in-memory deep multitask learning via neural weight virtualiza-
tion. In: Proceedings of the 18th international conference on mobile systems, applications, and ser-
vices, pp 175-190

Lee S, Nirjon S (2020b) Subflow: A dynamic induced-subgraph strategy toward real-time dnn inference
and training. In: 2020 IEEE real-time and embedded technology and applications symposium (RTAS),
IEEE, pp 15-29

Li X, Yin F, Zhang X, et al (2021) Adaptive scaling for archival table structure recognition. In: Lladés J,
Lopresti D, Uchida S (eds) 16th International Conference on Document Analysis and Recognition,
ICDAR 2021, Lausanne, Switzerland, September 5-10, 2021, Proceedings, Part I, Lecture Notes in
Computer Science, vol 12821. Springer, pp 80-95

Lin TY, Maire M, Belongie S, et al (2014) Microsoft coco: Common objects in context. In: European con-
ference on computer vision, Springer, pp 740-755

Liu S, Yao S, Fu X, et al (2020a) On removing algorithmic priority inversion from mission-critical machine
inference pipelines. In: In Proc. IEEE real-time systems symposium (RTSS)

Liu S, Yao S, Li J et al (2020) Giobalfusion: a global attentional deep learning framework for multisensor
information fusion. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(1):1-27

Liu S, Yao S, Fu X, et al (2021) Real-time task scheduling for machine perception in intelligent cyber-
physical systems. IEEE Trans Comput

Liu L, Dong Z, Wang Y, et al (2022a) Prophet: Realizing a predictable real-time perception pipeline for
autonomous vehicles. In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 305-317

Liu S, Fu X, Wigness M, et al (2022b) Self-cueing real-time attention scheduling in criticality-aware visual
machine perception. In: Proceedings of the 28th IEEE real-time and embedded technology and appli-
cations symposium (RTAS)

Liu S, Wang T, Guo H, et al (2022c) Multi-view scheduling of onboard live video analytics to minimize
frame processing latency. In: 2022 IEEE 42nd international conference on distributed computing sys-
tems (ICDCS), pp 503-514

Liu S, Wang T, Li J, et al (2022d) Adamask: Enabling machine-centric video streaming with adaptive frame
masking for dnn inference offloading. In: Proceedings of the 30th ACM international conference on
multimedia, pp 3035-3044

Mao H, Kong T, Dally WJ (2018) Catdet: cascaded tracked detector for efficient object detection from
video. arXiv:1810.00434

Minnehan B, Savakis A (2019) Cascaded projection: End-to-end network compression and acceleration. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 10,715-10,724

Najibi M, Singh B, Davis L (2019) Autofocus: Efficient multi-scale inference. In: 2019 IEEE/CVF inter-
national conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27-November 2,
2019. IEEE, pp 9744-9754

Razavi K, Luthra M, Koldehofe B, et al (2022) Fa2: fast, accurate autoscaling for serving deep learning
inference with sla guarantees. In: 2022 IEEE 28th real-time and embedded technology and applica-
tions symposium (RTAS), IEEE, pp 146-159

Redmon J, Divvala S, Girshick R, et al (2016) You only look once: unified, real-time object detection. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779-788

Restuccia F, Biondi A (2021) Time-predictable acceleration of deep neural networks on FPGA SOC plat-
forms. In: 2021 IEEE real-time systems symposium (RTSS), IEEE, pp 441-454

Song Z, Fu B, Wu F, et al (2020) Drq: dynamic region-based quantization for deep neural network accel-
eration. In: 2020 ACM/IEEE 47th annual international symposium on computer architecture (ISCA),
IEEE, pp 1010-1021

Soyyigit A, Yao S, Yun H (2022) Anytime-lidar: deadline-aware 3D object detection. In: 2022 IEEE 28th
international conference on embedded and real-time computing systems and applications (RTCSA),
IEEE, pp 3140

@ Springer

http://arxiv.org/abs/1810.00434

340 Real-Time Systems (2023) 59:302-343

Sun P, Kretzschmar H, Dotiwalla X, et al (2020) Scalability in perception for autonomous driving: Waymo
open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 24462454

Torralba A (2009) How many pixels make an image? Vis Neurosci 26(1):123-131

Wang S, Lu H, Deng Z (2019) Fast object detection in compressed video. In: Proceedings of the IEEE/CVF
international conference on computer vision, pp 7104-7113

Wu J, Subasharan V, Tran T, et al (2022) MRIM: enabling mixed-resolution imaging for low-power per-
vasive vision tasks. In: IEEE international conference on pervasive computing and communications,
PerCom 2022, Pisa, Italy, March 21-25, 2022. IEEE, pp 44-53

Xiang Y, Kim H (2019) Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference.
In: 2019 IEEE real-time systems symposium (RTSS), IEEE, pp 392405

Xu M, Zhu M, Liu Y, et al (2018) Deepcache: principled cache for mobile deep vision. In: Proceedings of
the 24th annual international conference on mobile computing and networking, pp 129-144

Yang Z, Nahrstedt K, Guo H, et al (2021) Deeprt: a soft real time scheduler for computer vision applications
on the edge. arXiv:2105.01803

Yao S, Zhao Y, Shao H, et al (2018) Fastdeepiot: towards understanding and optimizing neural network
execution time on mobile and embedded devices. In: Proceedings of the 16th ACM conference on
embedded networked sensor systems, pp 278-291

Yao S, Hao Y, Zhao Y, et al (2020a) Scheduling real-time deep learning services as imprecise computations.
In: Proc. IEEE international conference on embedded and real-time computing systems and applica-
tions (RTCSA)

Yao S, Li J, Liu D, et al (2020b) Deep compressive offloading: Speeding up neural network inference by
trading edge computation for network latency. In: Proceedings of the international conference on
embedded networked sensor systems (SenSys)

Zhang S, Lin W, Lu P, et al (2017) Kill two birds with one stone: boosting both object detection accu-
racy and speed with adaptive patch-of-interest composition. In: 2017 IEEE international conference on
multimedia & expo workshops (ICMEW), IEEE, pp 447452

Zhou Y, Moosavi-Dezfooli SM, Cheung NM, et al (2018) Adaptive quantization for deep neural network.
In: Thirty-Second AAAI conference on artificial intelligence

Zhu X, Wang Y, Dai J, et al (2017a) Flow-guided feature aggregation for video object detection. In: Pro-
ceedings of the IEEE international conference on computer vision, pp 408-417

Zhu X, Xiong Y, Dai J, et al (2017b) Deep feature flow for video recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 2349-2358

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Shengzhong Liu is a postdoc research associate at the University of
Illinois at Urbana-Champaign (UIUC). He received his Ph.D. from
UIUC in 2021. His current research interests include machine learn-
ing for the Internet of Things (IoT) and Cyber-Physical Systems
(CPS), intelligent real-time systems, deep sensor fusion, and social
network analysis.

@ Springer

http://arxiv.org/abs/2105.01803

Real-Time Systems (2023) 59:302-343 341

Xinzhe Fu received the B.S. degree in Computer Science from
Shanghai Jiao Tong University. He is currently a Ph.D. candidate in
Laboratory for Information and Decision Systems, and the Interdisci-
plinary Doctoral Program of Statistics at MIT. His research focuses
on scheduling and optimization problems in stochastic networks.

Yigong Hu received the BS degree from Shanghai Jiao Tong Univer-
sity and the MS degree from Columbia University, in 2018 and 2020,
respectively. He is currently working toward a PhD degree in com-
puter science at the University of Illinois at Urbana-Champaign
(UIUC). His current research interests include intelligent Real-Time
Systems, Internet of Things (IoT), and Cyber-Physical Systems
(CPS).

Maggie Wigness is a Senior Computer Scientist at the U.S. Army
Combat Capabilities Development Command (DEVCOM) Army
Research Laboratory (ARL). She earned her Ph.D. in Computer Sci-
ence from Colorado State University in 2015. Maggie has led and
shaped research directions in many ARL collaborative alliances
including the Robotics Collaborative Technology Alliance, the Scal-
able, Adaptive, and Resilient Autonomy Collaborative Research Alli-
ance (CRA), and most recently as the Collaborative Alliance Man-
ager for the Internet of Battlefield Things CRA. Maggie’s research
efforts are in the cross-section of machine learning, computer vision,
edge computation, and robot autonomy.

@ Springer

342

Real-Time Systems (2023) 59:302-343

@ Springer

Philip David received the B.S. (1985) and Ph.D. (2006) in computer
science from the University of Maryland, College Park. Since 1985,
he has worked as a scientist in the Computational and Information
Sciences Directorate of the U.S. Army Research Laboratory. His
research is focused on providing visual perception and intelligent
planning capabilities to small mobile robots. Dr. David is the author
of several peer-reviewed publications spanning the areas of 3D
object recognition, GPS-denied localization, machine learning, and
vision and LIDAR-based perception for unmanned ground vehicles.

Shuochao Yao is an assistant professor in the Department of Com-
puter Science at George Mason University. Yao received a PhD in
computer science from the University of Illinois at Urbana-Cham-
paign. His research focuses on building efficient and reliable artificial
intelligence systems for intelligent Internet of Things (IoT) and
Cyber-Physical Systems (CPS).

Lui Sha graduated with Ph.D. from CMU in 1985. He worked at the
Software Engineering Institute from 1986 t01998. He joined UIUC
in 1998 as a full professor. Currently, he is Donald B. Gillies Chair
Professor of Computer Science Department and Daniel C. Drucker
Eminent Faculty at UIUC’s College of Engineering. He is a fellow of
IEEE and ACM. He was a member of National Academic of Sci-
ence’s Committee on Certifiably Dependable Software Systems and
a member of NASA Advisory Council. He led the research, develop-
ment, and the transition to practice on real-time and embedded com-
puting technologies, which were cited as a major accomplishment in
the selected accomplishment section of the 1992 National Academy
of Science’s report, "A Broader Agenda for Computer Science and
Engineering" (P.193). He led a comprehensive revision of IEEE
standards on real-time computing, which have since become the best
practice in real-time computing systems. Now it has been widely
used in real-time systems such as airplanes, robots, cars, ships, trains,
medical devices. His work on real-time and safety-critical system

Real-Time Systems (2023) 59:302-343 343

integration has impacted many high technology programs, including GPS, Space Station, and Mars
Pathfinder.

Tarek Abdelzaher (Ph.D., UMich, 1999) is a Sohaib and Sara Abbasi
Professor of CS and Willett Faculty Scholar (UIUC), with over 300
refereed publications in Real-time Computing, Distributed Systems,
Sensor Networks, and IoT. He was Editor-in-Chief of J. Real-Time
Systems for 20 years, an AE of IEEE TMC, IEEE TPDS, ACM
ToSN, ACM TIoT, and ACM TolT, among others, and chair of mul-
tiple top conferences in his field. Abdelzaher received the IEEE Out-
standing Technical Achievement and Leadership Award in Real-time
Systems (2012), a Xerox Research Award (2011), and several best
paper awards. He is a fellow of IEEE and ACM.

Authors and Affiliations

Shengzhong Liu'® . Xinzhe Fu? - Yigong Hu' - Maggie Wigness? - Philip David® -
Shuochao Yao® - Lui Sha' - Tarek Abdelzaher'

< Tarek Abdelzaher
zaher @illinois.edu

Shengzhong Liu
sI29 @illinois.edu

Xinzhe Fu
xinzhe @mit.edu

Yigong Hu
yigongh2 @illinois.edu

Maggie Wigness
maggie.b.wigness.civ@army.mil

Philip David
philip.j.david4.civ@army.mil

Shuochao Yao
shuochao@gmu.edu

Lui Sha

Irs @illinois.edu

University of Illinois at Urbana-Champaign, Champaign, USA
Massachusetts Institute of Technology, Cambridge, USA

3 U.S. DEVCOM Army Research Laboratory, Adelphi, USA
George Mason University, Fairfax, USA

@ Springer

http://orcid.org/0000-0002-7643-7239

	Generalized self-cueing real-time attention scheduling with intermittent inspection and image resizing
	Abstract
	1 Introduction
	2 Related work
	2.1 Real-time machine perception
	2.2 Temporal correlations in video object detection
	2.3 Dynamic DNN acceleration with image resizing

	3 System overview
	3.1 Frame slicing and region tracking
	3.2 Generalized partial-frame inspection scheduling

	4 Frame slicing and region tracking
	4.1 Optical flow background
	4.2 Optical flow-based object tracking
	4.2.1 Computing inferred object locations
	4.2.2 Computing expanded candidate regions
	4.2.3 Computing quantized candidate regions
	4.2.4 Data association

	4.3 Object location uncertainty

	5 Partial-frame inspection scheduling
	5.1 Task execution model
	5.2 Scheduling problem formulation
	5.3 Scheduling policy
	5.4 Theoretical analysis

	6 Generalized scheduling with image resizing
	6.1 Design rationale
	6.2 Generalized scheduling problem formulation
	6.2.1 Image resizing and accuracy degradation
	6.2.2 Generalized problem formulation

	6.3 Generalized BPB scheduling policy

	7 Empirical optimization
	7.1 New object arrival
	7.2 Partial region merge
	7.3 Bounding box filtering

	8 Evaluation
	8.1 Experimental setup
	8.1.1 Hardware platform
	8.1.2 Dataset
	8.1.3 Neural network for detection
	8.1.4 Workload manipulation
	8.1.5 Object criticality
	8.1.6 Evaluation metrics

	8.2 Impact of image slicing
	8.3 Tracking algorithm
	8.4 Robustness of flow-based tracking and slicing
	8.5 Scheduling algorithm comparison
	8.5.1 Baselines
	8.5.2 Results
	8.5.3 Evaluation on busy traffic scenarios

	8.6 Responsiveness to physically close objects
	8.7 Breakdown of overhead quantification
	8.8 Choice of scheduling horizon length

	9 Conclusions
	Acknowledgements
	References

