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A�������. We explicitly compute the limiting slope gap distribution for saddle connections on any
2n-gon for n � 3. Our calculations show that the slope gap distribution for a translation surface
is not always unimodal, answering a question of Athreya. We also give linear lower and upper
bounds for number of non-differentiability points as n grows. The latter result exhibits the first
example of a non-trivial bound on an infinite family of translation surfaces and answers a question
by Kumanduri-Wang.

�. I�����������

Consider, for n � 3, a regular 2n-gon O2n in the plane R2 ⇠= C where the opposite sides of O2n

are glued by Euclidean translations. The resulting surface, also denoted by O2n, is topologically
a closed surface. If n = 2k, then O2n is a surface of genus k and has a single cone point of angle
2⇡(n � 1). If n = 2k + 1, then O2n is a surface of genus k, with two cone points where the cone
angles are both ⇡(n� 1) [��]. For example, gluing the opposite sides of the regular decagon yields
a genus 2 surface with two cone points (marked with black and red), where at each of the cone
points the total angle is 4⇡. See section �.� for details.

F����� �. The regular decagon, O10. Black vertices are identified together and red
vertices are identified together.

Outside of the finitely many cone points, the surface O2n is locally Euclidean and hence one can
talk about straight lines. A saddle connection � on O2n is a straight line trajectory that connects a
cone point to another cone point without passing through a cone point in the interior. To each
saddle connection � one can assign a holonomy vector v� which records how far � travels in C.

In this article we are interested in fine statistical properties of the set of holonomy vectors on
O2n. Veech proved that the number of saddle connections (rather, the set of holonomy vectors
associated to saddle connections) grow quadratically with length, and saddle connection direc-
tions equidistribute on S1 with respect to Lebesgue measure [��, ��], which suggests that saddle
connection directions appear “randomly.” As a finer notion of randomness, one can study the gaps
between saddle connections [�]. Since the set of saddle connections are symmetric with respect to
the coordinate axes, we consider the set of holonomy vectors that lie in the first quadrant.

Let S2n denote the set of slopes of holonomy vectors v� of O2n with positive real component and
non-negative imaginary component. Write S2n as an increasing union of S2n(k) for k ! 1, where

S2n(k) = {v� | 0 < Re(v�)  k, Im(v�) � 0} ,
�



and write the slopes in S2n(k) in increasing order, denoted by

S2n(k) =
n
0 = sk0 < sk1 < sk2 < · · ·

o
.

We are interested in the distribution of gaps sk
i
� sk

i�1 between consecutive slopes in S2n(k) as
k ! 1. It can be shown that the gaps in S2n(k) eventually repeat after an index N(k) depending
on k (for details, see Section �). Moreover, Veech shows in [��] that for any Veech (lattice) surface,
N(k) grows quadratically with k, see also [��]. Thus we define the set of renormalized slope gaps
on O2n as

G2n(k) =
n
k2(ski � ski�1) 1  i  N(k), ski 2 S2n(k)

o
.

We have the following theorem for the limiting distribution of these sets.

Theorem �.�. For any regular 2n-gon O2n where n � 3, there exists a limiting probability distribution
function f : R ! [0,1) such that

lim
k!1

|G2n(k) \ (a, b)|

N(k)
=

Z
b

a

f(x) dx.

The distribution is a piecewise analytic function with finitely many domains of analyticity that are describable
in terms of integrals of elementary functions. Moreover, the distribution has finitely many points of non-
differentiability, has no support at 0, and has a quadratic tail.

Theorem �.� is a special case of the results contained in [�, ��], and it tells us that the slopes
of the 2n-gon are not randomly distributed because if they were, we would expect the slope gap
distribution to have support at 0 and an exponential tail. The novelty of this paper is that our
results allow one to explicitly calculate the distribution function f in an algorithmic way for any
n. For examples of the distributions for a variety of n, see Figure ��. One consequence of our
calculations is the observation that the slope gap distribution of a translation surface is not always
unimodal (that is, it can have multiple local maxima). To our knowledge, this is the first example
of such a distribution, answering a question of Athreya.

Following the strategy in [�, �] and [��], we will translate the problem of finding the slope
gap distribution into a problem involving dynamics. In particular, we will exploit the slope gap
preserving properties of the horocycle flow and study return times (under the horocycle flow) of
translation surfaces to an appropriate Poincaré section, i.e. a lower dimensional subset of the space
through which almost every horocycle orbit passes in a nonempty, discrete set of times.

The information needed to explicitly calculate the distribution is a generalized description of
the first return time function of the horocycle flow pertaining to the slope gaps of the regular unit
2n-gon, as described in the following theorem.

Theorem �.�. There is a staircase surface S2n in the GL2(R)-orbit of O2n for which a Poincaré section to
the horocycle flow on SL2(R) · S2n can be parametrized by two disjoint triangles. In these coordinates the
return time function is a piecewise function which can be described by n + 1 elementary functions of the
form

R(x, y) =
b

x(ax+ by)

where a and b are constants with explicit formulas computed in Propositions �.� and �.�.

The slope gap distribution of the 2n-gon is then easily determined from the slope gap distribution
of the staircase surface by a simple rescaling. See Section �.� for a description of this staircase
surface. Furthermore, building on Theorems �.� and �.� we prove:
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Theorem �.�. The number of non-differentiable points in the slope gap distribution for a regular �n-gon
has linear lower and upper bounds. In particular,

n

5
� 11  #(Non-Differentiable Points)  2n+

jn
2

k
+ 1.

To the best of our knowledge this theorem gives the first infinite family of translation surfaces
for which there is a non-trivial upper (and lower) bound on the number of non-differentiability
points. Theorem �.� answers a question by [��]. Furthermore, in Section � we provide experimental
evidence towards the precise asymptotics.

�.�. Some History on Slope Gap Distributions. There is a rich body of work on the statistics
of gaps between saddle connections, combining aspects of the geometry of translation surfaces,
homogeneous dynamics, and number theory.

Inspired by work of Eskin-Masur and Marklof-Strömbergsson [�, ��], Athreya-Chaika prove that
a translation surface is not a lattice surface if and only if the smallest gap in directions between
saddle connections of bounded length decays faster than quadratically in length [�]. Their results
show that the limiting gap distribution exists and is the same for almost every surface, and that
this distribution has a quadratic tail and has support at zero, in contrast to lattice surfaces which
never have support at zero.

In [�], Athreya-Cheung use dynamical methods to rederive the Hall distribution for the limiting
behavior of gaps between elements in the Farey sequence of level n (realized as slopes of saddle
connections on the marked torus) and use their construction to obtain new fine statistical results
in this setting. In [�], Athreya-Chaika-Lelièvre compute the slope gap distribution for saddle
connections on the golden L, the first example of an explicit computation of a slope gap distribution
for a surface which is not a branched cover of a torus. In [�], Athreya codifies the methods applied
in the previous works into a series of meta-theorems that apply to gap sequences satisfying a set
of quite general conditions, which in particular apply to studying the slopes of saddle connections
on both lattice and non-lattice translation surfaces.

In [��], Uyanik-Work expand the list of surfaces for which the slope gap distribution has been
explicitly calculated by finding the distribution for the regular octagon, which directly inspired the
present work. They also provide an algorithm for finding the slope gap distribution for any lattice
surface, and use this to show that the distribution of any such surface is piecewise real analytic.
Their algorithm is improved upon by Kumanduri-Sanchez-Wang in [��] to further show that the
distribution of a lattice surface always has a finite number of points of non-differentiability. They
also prove that the slope gap distribution of any lattice surface has quadratic decay in the tail.

In [�], Heersink uses a method developed by Fisher and Schmidt to lift the Poincaré section for
SL2(R)/SL2(Z) found by Athreya-Cheung for any finite index subgroup H of SL2(Z), and uses
that to compute gap distributions for various subsets of Farey fractions. In [��, ��], Taha finds
a Poincaré section for the geodesic and horocycle flows on quotients SL2(R) by Hecke triangle
groups to study the statistics of generalized Farey sequences.

In [��], Sanchez provides the first explicit computation of a slope gap distribution for a non-
lattice surface by finding the distribution for the class of surfaces known as double-slit tori. In
a step toward computing the slope gap distribution for a generic surface (as described by [�]),
Work finds a Poincaré section for the horocycle flow on H1(2), the stratum of unit area translation
surfaces with a single cone point of angle 6⇡, and provides bounds on the return time function to
this section [��].
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�. P������������

�.�. Translation Surfaces and the GL2(R) action. A translation surface is a pair (X,!) where X
is a Riemann surface, and ! is a holomorphic 1-form on X . Outside of a finite subset ⌃ of X , the
1-form ! induces an atlas of charts

'i : Ui ⇢ X \ ⌃ ! R2

where transition maps are Euclidean translations. The finite set of points in ⌃ are called the
singularities and correspond to zeroes of the holomorphic one form [��]. At a zero of order k � 1
(which means that in local coordinates the chart looks like zk and hence ! = d(zk) = zk�1dz) the
total angle is 2⇡k.

Equivalently, a translation surface is given by a finite collection of polygons {P1, . . . , Pn} in the
plane together with a preferred vertical direction and such that for each edge there exists a parallel
edge of the same length and opposite orientation (with respect to the interior of the polygons), and
these pairs are glued together by a translation. Since translations are holomorphic functions and
they preserve the standard 1-form dz on the plane, one gets a holomorphic 1-form on the glued
together surface [��].

Two translation surfaces are equivalent if there is an orientation preserving isometry that pre-
serves the preferred vertical direction. Equivalently, there is a cut-translate-paste transformation
from one to another.

A translation surface (X,!) comes equipped with topological data: the genus g, the number of
cone points (number of zeroes of !), and the excess angle at each cone point (order of zeroes). The
Riemann–Roch theorem asserts that the sum of the order of zeroes is equal to 2g � 2. Hence, we
can record this topological data by a vector ~↵ = (↵1, . . . ,↵k) where ↵i is the order of ith zero. The
set of equivalence classes of translation surfaces with fixed topological data ~↵ is called a stratum,
and denoted by H(~↵).

A saddle connection � on (X,!) is a straight line trajectory that connects a cone point to another
(not necessarily distinct) cone point without any other cone point in the interior.

F����� �. A saddle connection � on X10

Integrating the 1-form along an (oriented) saddle connection � determines a holonomy vector

v� =

Z

�

! 2 C

which records how far and in what direction � travels inC. This paper is concerned with holonomy
vectors corresponding to saddle connections on (X,!), but for brevity we will call them also saddle
connections following the convention in [�, ��] and denote the set of saddle connections on (X,!)
by ⇤sc(X,!). For any translation surface (X,!) the set ⇤sc(X,!) is a discrete subset of C, see
[�, ��].
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There is a natural action of GL2(R) on the space of translation surfaces coming from the linear
action of GL2(R) on R2 ⇠= C: for a matrix A 2 GL2(R) and a translation surface (X,!) given by a
collection {P1, . . . , Pn} of polygons, A · (X,!) is the translation surface given by {A ·P1, . . . , A ·Pn}.
For A 2 SL2(R), the action preserves the Euclidean area, hence induces an action on H1(~↵) of unit
area translation surfaces of given topological type.

The stabilizer of (X,!) under the SL2(R) action is called the Veech group of (X,!) and denoted
by SL(X,!). If SL(X,!) is a lattice, meaning that it has finite covolume in SL2(R) with respect to
the Haar measure, then (X,!) is called a lattice surface or a Veech surface [�].

�.�. Flat geometry of 2n-gons and Staircases. Let O2n be the regular 2n-gon. In this section we
prove that the matrix

M =

 
1 � cot(⇡/(2n))

0 sec
⇣
(n�2)⇡

2n

⌘
!

=

 
1 0

0 sec
⇣
(n�2)⇡

2n

⌘
!✓

1 � cot(⇡/(2n))
0 1

◆

takes O2n to a staircase shape S2n that is easier to study. In other words, instead of studying the
slope gap distribution on O2n, we will study the slope gap distribution on S2n and relate it to that
of O2n. In what follows we will blur the distinction between the polygon S2n and the glued up
surface, and denote both of them by S2n. Further, for the ease of notation we will denote S2n by S .

For 0  i  dn/2e� 1 and 0  j  bn/2c� 1, we define the finite sequences hi and vj as follows:

hi = 1 +
iX

k=1

2 cos(k⇡/n) = csc
⇣ ⇡

2n

⌘
sin

✓
⇡(1 + 2i)

2n

◆

vj = cos

✓
(n� 2� 2j)⇡

2n

◆
sec

✓
(n� 2)⇡

2n

◆
= csc

⇣⇡
n

⌘
sin

✓
⇡(1 + j)

n

◆

For 1  i  dn/2e � 1, let Hi be the rectangle with height vi�1 and length hi. Moreover, for
0  j  bn/2c � 1, let Vj be the rectangle with height vj and length hj . Create the surface S by
gluing the left edge of H1 to the right edge of the unit square (which is V0), the top edge of Hi with
the bottom edge of Vi, and the right edge of Vi with the left edge of Hi+1 for all relevant i. Finally,
identify opposite edges of the resulting staircase shape. This surface S is a staircase shape whose
edge lengths are in the sets of all hi and vj .

<v0

|

|

h0
||

h1

<
|||

h2

>

||||

h3



|||||||

v2

||

>v1

V0

V1

V2

H1

H2

H3

F����� �. An example of S for n = 7.
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Proposition �.�. Left multiplication by the matrix M =

 
1 � cot(⇡/(2n))

0 sec
⇣
(n�2)⇡

2n

⌘
!

takes O2n to S .

Proof. The surface O2n has a cylinder decomposition in ✓ = ⇡/2n direction. Hence by a cut and
paste transformation while keeping track of the side identifications, we can obtain a slanted staircase
representation of O2n as in Figure �.

F����� �. Cylinder decomposition of O2n in the ✓ = ⇡/2n direction

The matrix ✓
1 � cot(⇡/(2n))
0 1

◆

is a shear that preserves the horizontal lines and distances and sends the lines with slope ⇡/2n to
vertical lines. Hence we get a staircase to the left, see Figure �.

On the other hand, the matrix  
1 0

0 sec
⇣
(n�2)⇡

2n

⌘
!

only scales the vertical direction while keeping the x component constant, and it is only necessary
to get the shortest vertical side to be of length 1. We can then apply a cut-and-paste transformation
to orient our staircase from left to right. The claim about the edge lengths of the staircase follows
from a straightforward computation.

⇠

|

|||

⇠

|||

�

|||



||

�


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|

h0
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h1

<
|||

h2

>

|||

v2

||

>v1



F����� �. A staircase representative of O12

⇤
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We finish this section by recording some geometric properties of S that will be useful in the
future. These result from the formulae for hi and vi and trigonometric identities.

Remark �.�. For 1  i  bn/2c � 1,
vi�1 + vi = hi.

Equivalently, for all relevant i, the rectangle formed by Vi [Hi is a square.

Remark �.�. For 0  i  b(n� 1)/2c � 1,

2 + 2 cos(⇡/n) =
hi + hi+1

vi
.

Equivalently, the rectangles formed by Vi [Hi+1 all have the same aspect ratio.

Remark �.�. For all i and n, we have the identities
hn�i = hi�1

and
vn�i = vi�2.

Although the interpretation of hi and vi as side lengths on our staircase shape does not make sense
for i > bn/2c or i < 0, it will still be convenient in stating some of our results to use the formulas
for hi and vi outside of this region.

�. F��� S���� G��� �� D�������

�.�. Dynamical Reframing. Let S be the staircase representative of a regular 2n-gon. Recall from
the introduction that

S(k) = {0 = s0 < s1 < s2 < · · · }

is the ordered set of slopes of holonomy vectors on S with nonnegative imaginary component and
positive real component  k. Recall that the gaps between consecutive elements of S(k) repeat
with a period of N(k), and that N(k) grows like k2.

Let
G(k) = {k2(si � si�1) | 1  i  N(k), si 2 S(k)}

denote the associated set of renormalized slope gaps on S . Our goal is to compute the limit

lim
k!1

|G(k) \ (a, b)|

N(k)

for any interval (a, b) ✓ R. To compute this limit, we reframe the question about gaps between
slopes in terms of return times for the horocycle flow to an appropriate Poincaré section.

In this article, the horocycle flow is given by the left action of the following one parameter
subgroup: ⇢

hs =

✓
1 0
�s 1

◆
s 2 R

�
.

Observe that given any vector v,
slope(hsv) = slope(v)� s,

so this definition of the horocycle flow acts on slopes by translation. Most importantly, the horocycle
flow preserves gaps in slopes.

Let � denote the Veech group of S . We will study the action of hs on the space SL2(R)/�, which
we can identify with SL2(R) · S . If we denote the set of holonomy vectors on S by ⇤sc(S), then for
any g 2 GL2(R) we have

g · ⇤sc(S) = ⇤sc(g · S).
�



Consider the set
⌦ = {g� | g · ⇤sc(S) \ (0, 1] 6= ;}

in SL2(R)/�, where the interval (0, 1] is considered as a subset of the real axis inside of C. In [�],
Athreya proved that ⌦ is a Poincaré section to the horocycle flow hs on SL2(R)/�, meaning that for
almost every g� 2 SL2(R)/�, the horocycle orbit {hsg�}s2R intersects ⌦ in a nonempty, countable,
discrete set of times. It is then possible to study the continuous horocycle flow on SL2(R)/� by
studying its discrete time return map to the lower-dimensional set⌦. Building on work of [�, ��] we
parametrize this Poincaré section and relate the first return time function for the Poincaré section
to the slope gap distribution of S .

�.�. Description of the Poincaré Section. We now give an explicit description of the Poincaré
section for the surface S following the algorithm described in [��]. The parabolic and elliptic
generators for �O2n , the Veech group of O2n, are respectively given by

S =

✓
1 �2 cot(⇡/(2n))
0 1

◆
, R =

✓
cos(⇡/n) sin(⇡/n)
� sin(⇡/n) cos(⇡/n)

◆
,

so the corresponding generators S0 and R0 for �, the Veech group of S , are given by conjugating S
and R by M :

S0 = MSM�1 =

✓
1 �2(1 + cos(⇡/n))
0 1

◆
,

R0 = MRM�1 =

✓
1 + 2 cos(⇡/n) 2(1 + cos(⇡/n))

�1 �1

◆
.

It has been shown by Veech, see [�], that the Veech group for O2n (and hence S) has two cusps.
In fact, the image of �O2n in PSL2(R) is isomorphic to the triangle group �(n,1,1).

Let P1 and P2 be the maximal parabolic subgroups representing the conjugacy classes of all
maximal parabolic subgroups corresponding to these cusps. It follows from [��] that the set
⇤sc(S) of saddle connections is a disjoint union of � = SL(S) orbits of saddle connections,

⇤sc(S) = � · w1 t � · w2

where each wi is the shortest holonomy vector in the eigenspace corresponding to a generator for
the infinite cyclic factor of Pi. We will see in the proof of Proposition �.� that for our setting we

may use w1 =

✓
1
0

◆
and w2 =

✓
0
1

◆
.

The decomposition of ⇤sc(S) into disjoint orbits allows us to write
⌦ = ⌦w1 [ ⌦w2 ,

where ⌦wi = {g� | g� · wi \ (0, 1] 6= ;}.
Let

Mx,y =

✓
x y
0 x�1

◆
,

⌦1 = {(x, y) 2 R2
| 0 < x  1, 1� 2(1 + cos(⇡/n))x < y  1},

and
⌦2 = {(x, y) 2 R2

| 0 < x  1, 1� x < y  1}.

Proposition �.�. There are coordinates from the set ⌦ to ⌦1 [ ⌦2. More precisely, the bĳection between
SL2(R)/� and SL2(R) · S induces a bĳection from ⌦wi to {Mx,yCi · S | (x, y) 2 ⌦i} where the latter set
is in bĳection with ⌦i for a suitable matrix Ci.
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Proof. This statement follows from Theorem �.� in [��], but we illustrate the explicit computations
for our setting. The Veech group � has two cusps, and let S1 and S2 be the generators of the infinite
cyclic factors corresponding to maximal parabolic subgroups. One can check that

S1 = S0 =

✓
1 �2(1 + cos(⇡/n))
0 1

◆

and

S2 = ((R0)n�1S0)�1 =

✓
1 0
1 1

◆
. (�)

Note that S1 and S2 both have eigenvalue 1, and that their eigenvectors are in the directions of w1

and w2, respectively. Moreover, w1 and w2 are the shortest holonomy vectors in these directions.

Now, pick C1 =

✓
1 0
0 1

◆
, so that

C1S1C
�1
1 =

✓
1 ↵1

0 1

◆
=

✓
1 �2(1 + cos(⇡/n))
0 1

◆

and C1 · w1 =

✓
1
0

◆
. Thus, we can set

⌦1 = {(x, y) | 0 < x  1, 1� 2(1 + cos(⇡/n))x < y  1}.

Now, pick C2 =

✓
0 1
�1 0

◆
, so that

C2S2C
�1
2 =

✓
1 ↵2

0 1

◆
=

✓
1 �1
0 1

◆

and C2 · w2 =

✓
1
0

◆
. Thus, we can set

⌦2 = {(x, y) | 0 < x  1, 1� x < y  1}.

⇤
�.�. Return time and volume computations. Recall that the Poincaré section ⌦ is defined as

⌦ = {g� | g · ⇤sc(S) \ (0, 1] 6= ;}.

Given a point X in ⌦ the return time function R : ⌦ ! R+ gives the amount of time required
for X to return to ⌦ under the horocycle flow hs. Since hs acts on slopes by translation, in the
language of our parametrization, for any (x, y) 2 ⌦i, the return time R(x, y) is the slope of the
saddle connection (with horizontal component at most 1) on Mx,yCi ·S with smallest positive slope
among all saddle connections with horizontal component at most 1.

In this section, we prove that there are finitely many saddle connections of interest on Ci · S , i.e.
for any given (x, y) 2 ⌦i, there is a finite set of fixed saddle connections on CiS that are candidates
for being the saddle connection on Mx,yCi · S of minimum positive slope.

Following the terminology introduced in [��], we say that a (holonomy) vector on Ci · S is a
winner or a winning saddle connection at the point (x, y) 2 ⌦i if it is the vector whose image under
Mx,y has the smallest slope among all saddle connections with positive slope and horizontal length
at most 1 on Mx,yCi · S .

In Section �.�.�, we show that the only winning saddle connection for ⌦2 is
✓
0
1

◆
. On the other

hand, there are n saddle connections of interest for ⌦1, given by
✓
0
1

◆
and the diagonals of the

�



rectangles Hi and Vi (see Figure �). Each of these saddle connections wins at some point on ⌦1 and
hence partition ⌦1 into n regions. We provide an explicit description of this partition in Section
�.�.�. These divisions and saddle connections therefore give us an explicit description of the return

time function: if (x, y) 2 ⌦i is arbitrary and
✓
a
b

◆
is the winning saddle connection on Mx,yCi · S ,

then
R(x, y) =

b

x(ax+ by)
.

v0

h0 h1

h2

h3

v2

v1

F����� �. The saddle connections of interest for ⌦1 (in magenta) on S for n = 7.

�.�.�. Description of R(x, y) Over ⌦2. We describe R(x, y) for (x, y) 2 ⌦2 by showing that
✓
0
1

◆
is

the only winning vector on ⌦2.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

⌦2

x

y

F����� �. An illustration of ⌦2 with coordinates in R2, for any n.

Proposition �.�. The vector
✓
0
1

◆
is the only winning saddle connection on ⌦2, so the return time function

is given by R(x, y) = 1
xy

for (x, y) 2 ⌦2.
��



Proof. Since we will be studying ⌦2, we will let SR = C2S and study the saddle connections on

S
R. We claim that the image of the saddle connection

✓
0
1

◆
on S

R is the only saddle connection

whose image is a vector with positive slope and horizontal component at most 1.

Let
✓
a
b

◆
be some saddle connection on S

R with an image under Mx,y (for (x, y) 2 ⌦2) that

has positive slope and horizontal component at most 1. Note that Mx,y

✓
a
b

◆
=

✓
ax+ by
b/x

◆
where

0 < ax+ by  1. Observe that b � 0 by as ⌦2 is in the first quadrant.

For the saddle connection
✓
a
b

◆
we compute the slope of its image as

b

x(ax+ by)
=

1

x(x(a/b) + y))
.

Then, note that if a/b < 0 (recall that the slope is positive), then the slope would be greater

than the case where a/b = 0, i.e. when
✓
a
b

◆
=

✓
0
1

◆
, so we need only consider the cases when

a � 0. Moreover, since
✓
a
b

◆
cannot be horizontal (or else its image would be horizontal), b must

be positive.
The shortest positive vertical distance on S

R between any cone points is 1, so b � 1. Suppose for

the sake of contradiction that
✓
a
b

◆
6=

✓
0
1

◆
, and hence a > 0. Since the shortest positive horizontal

distance between cone points on the surface S
R is 1, we have a � 1. Combining this with the fact

that b � 1, we have
ax+ by � x+ y.

Since (a, b) 2 ⌦2 we have
ax+ by � x+ y > x+ 1� x = 1,

which is a contradiction. This forces a = 0, so our desired original saddle connection must be✓
a
b

◆
=

✓
0
1

◆
over all of ⌦2. ⇤

�.�.�. Description of R(x, y) Over ⌦1. To rephrase an earlier remark, given (x, y) 2 ⌦1, we say the

saddle connection v =

✓
a
b

◆
is a winner at (x, y) if Mx,yv has horizontal component 0 < ax+ by  1

and positive slope, and if for all v0 =
✓
a0

b0

◆
saddle connections such that Mx,yv0 has horizontal

component 0 < a0x+ b0y  1 and positive slope, we have 0 < slope(Mx,yv)  slope(Mx,yv0). In ⌦1,
there are only finitely many winners and each winner has an associated convex polygonal region
Pi ⇢ ⌦1 as described in Proposition �.�.

Proposition �.�. In the region
P1 = {(x, y) 2 ⌦1 | x+ y > 1}

the winner is
✓
0
1

◆
, which forms the vertical edge of the rectangle V0, so the return time is given by

R(x, y) =
1

xy
.

��



For 2  i  n� 1, in the region
Pi = {(x, y) 2 ⌦1 | xhi�2 + yvi�2  1, xhi�1 + yvi�1 > 1, xh1 + y > 1}

the winner is
✓
hi�2

vi�2

◆
=

✓
hn+1�i

vn�i

◆
. For 2  i  bn/2c + 1, this is the positive-sloped diagonal of the

rectangle Vi�2. For bn/2c+2  i  n� 1, this is the positive-sloped diagonal of Hn+1�i. Hence the return
time in either case is given by

R(x, y) =
vi�2

x(hi�2x+ vi�2y)
.

In the region
Pn = {(x, y) 2 ⌦1 | h1x+ y  1}

the winner is
✓
h1
v0

◆
, which is the positive-sloped diagonal of the rectangle H1, so the return time is given by

R(x, y) =
v0

x(h1x+ v0y)
.

F����� �. Color-coded relevant saddle connections for n = 7

The proof of Proposition �.� is quite long, and requires a case-by-case analysis, hence it is
postponed to Appendix A. On the other hand, using hyperbolic geometry we can compute the
volume of SL2(R)/�O2n and compare it to the volume computation via integrating the return
time function over the horocycle flow. More precisely, since R(x, y) is a roof function over ⌦ in
the suspension space SL2(R)/�, computing the volume under R(x, y) should yield the volume of
SL2(R)/�. The table in Figure �� provides numerical volume computations for several values of n
to experimentally verify our division of the Poincaré section.

�. S���� G�� D������������

Let k 2 N. Denote by V (k) the vertical strip (0, k]⇥ [0,1) and let ⇤S
sc(k) be the set of holonomy

vectors of S that lie inside V (k). Let
S(k) = {0 = s0 < s1 < s2 < . . . }

denote the ordered set of slopes of vectors in ⇤S
sc(k). Recall that the horocycle flow

⇢
hs =

✓
1 0
�s 1

◆
s 2 R

�

acts on slopes by translation, so the slopes in S(k) are precisely the times when one of the vectors
in ⇤S

sc(k) hits the horizontal axis.
From (�) we see that the Veech group � of S contains the parabolic element S�1

2 = h1, which
implies that S is periodic under the horocycle flow with period 1. Hence h1⇤S

sc(k) = ⇤S
sc(k),

��



0.2 0.4 0.6 0.8 1

�3

�2

�1

1

F����� �. The corresponding division of ⌦1 for n = 7 using coordinates in R2. Each
saddle connection is color coded to match the region it wins in. The purple region
is P1, the blue region is P2, the green region is P3, the yellow region is P4, the gray
region is P5, the orange region is P6, and the red region is P7.

i.e. after subtracting 1 from all of the slopes of holonomy vectors in the vertical strip V (k) and
removing the slopes that are negative, we get the same ordered set of slopes S(k) that we started
with. In other words, there exists some N(k) 2 N such that sN(k)+i � 1 = si for all i � 0. This in
turn implies that the slope gaps si � si�1 repeat after i = N(k), since

sN(k)+i � sN(k)+i�1 = (si + 1)� (si�1 + 1) = si � si�1.

Thus the gaps between the elements of S(k) are given by the (not renormalized) gap set

G(k) = {si � si�1 si 2 S(k), 1  i  N(k)}.

Since N(k) grows like k2 (this follows from work of Veech [��] for any Veech surface, of which S

is an example), we may thus define our renormalized gap set to be

G(k) = {k2(si � si�1) si 2 S(k), 1  i  N(k)}.

Recall that our goal is to find the distribution of the renormalized gaps in G(k) as k ! 1, i.e. we
want to find a probability density function f : R ! [0,1) such that

lim
k!1

|G(k) \ (a, b)|

N(k)
=

Z
b

a

f(x)dx

��



n Computed Volume Actual Volume Error
� �.���� ⇡2/2 < 0.001%
� �.���� 2⇡2/3 < 0.001%
� �.���� 3⇡2/4 < 0.001%
� �.���� 4⇡2/5 < 0.001%
� �.���� 5⇡2/6 < 0.001%
� �.���� 6⇡2/7 < 0.001%
� �.���� 7⇡2/8 < 0.001%
� �.���� 8⇡2/9 < 0.001%
�� �.���� 9⇡2/10 < 0.001%
�� �.���� 49⇡2/50 < 0.001%
��� �.���� 99⇡2/100 < 0.001%

F����� ��. Numerical computation of the volume of SL2(R)/�O2n using our
Poincaré section and return time function compared to the exact volume. Within the
limits of our computational software, there was essentially no error in the computed
volume.

for any interval (a, b) ✓ R. We will do this by representing the quantity on the left as a limit of
Birkhoff sums over longer and longer periodic orbits for the first return map to ⌦ and leveraging
known ergodic theory results for such limits.

Let

gk =

✓
1/k 0
0 k

◆
.

Observe that gkV (k) = V (1) and slope(gkv) = k2slope(v) for any v 2 R2 and k 2 N. Moreover, one
can verify that

gk · ⇤
S
sc(k) = ⇤gkS

sc (1),

k2S(k) = SgkS ,

and thus

G(k) = G
gkS

where SgkS denotes the ordered set of slopes of vectors in ⇤gkS
sc (1) and G

gkS is the associated non-
renormalized gap set. In other words, the renormalized gaps between slopes of saddle connections
onS with horizontal length less than or equal to k is precisely equal to the set of (non-renormalized)
gaps between slopes of saddle connections on gkS with horizontal length less than or equal to 1.

Let T : ⌦ ! ⌦ denote the first return map for the horocycle flow to the Poincaré section ⌦, i.e.
for x = g� 2 ⌦ (considered as a subset of SL2(R)/�) we have

T (x) = hR(x)x

where R : ⌦ ! R+ is the usual return time function.
Observe that since � 2 ⌦ is periodic under the horocycle flow with period 1, then gk� 2 ⌦ is

periodic with period k2. Since the horocycle flow acts on slopes by translation, it preserves gaps
between slopes. Then the slope gaps in

G(k) = G
gkS = {s0i � s0i�1 s0i 2 SgkS , 1  i  N(k)}

��



are precisely the times elapsed between consecutive intersections of the orbit of gk� with ⌦ under
the horocycle flow, i.e.

s0i � s0i�1 = R(T i(gk�))

for all i � 0. If we let

�t(x) =

(
1 R(x) < t

0 R(x) � t
,

be the indicator function on R�1([0, t)), then we can write a formula for the distribution of slope
gaps as a limit of Birkhoff sums of the form

lim
k!1

|G(k) \ [0, t)|

N(k)
= lim

k!1

1

N(k)

N(k)�1X

i=0

�t(T
i(gk�)). (�)

Thus, we have reframed our geometric problem about slope gaps on S into a dynamical problem
concerning return times for a sequence of periodic points in ⌦.

We may now apply the following theorem and its corollary, which are adapted from Theorems
�.�-�.� in [�], or Theorem �.� in [�], which applies in a more general context. An analogous theorem
that applies to non-lattice surfaces also appears in [�, �] and relies on the equidistribution of long
horocycle orbits proved in [�], however we do not need that result for our setting.

Theorem �.� ([�], Theorem �.�). Let (X,!) be a lattice surface with Veech group�, and let⌦ ⇢ SL2(R)/�
and T be the Poincaré section and associated return map defined previously. If xk 2 ⌦ is a sequence of
points that are periodic under the return map T with periods N(k) ! 1 as k ! 1, then for any bounded,
measurable function f : ⌦ ! R, we have

lim
k!1

1

N(k)

N(k)�1X

i=0

f(T i(xk)) =

Z

⌦
fdm

where m is the unique ergodic probability measure for T supported on ⌦.

Proof. We can realize SL2(R)/� as a suspension space over ⌦ with roof function given by the return
time function:

SL2(R)/� ⇠= {(x, s) x 2 ⌦, s 2 [0, R(x, y)]}/ ⇠

where (x,R(x)) ⇠ (T (x), 0). The probability Haar measure µ on SL2(R)/� then decomposes as
dµ = Cdsdm for some constantC. A point xk 2 ⌦ is periodic for the return mapT if and only if xk is
periodic under the continuous horocycle flow on SL2(R)/�. Let ⌧(k) denote the period of xk under
the horocycle flow and let ⇢k denote the invariant probability measure on SL2(R)/� supported on
the periodic horocycle orbit of xk. Let �k denote the invariant probability measure on ⌦ supported
on the periodic orbit of xk under T . Observe that for bounded, measurable f : SL2(R)/� ! R,

Z
fd⇢k =

1

⌧(k)

Z
⌧(k)

0
f(hsxk)ds,

=
N(k)

⌧(k)

1

N(k)

N(k)�1X

i=0

Z
R(T i(xk))

0
f(hsT

i(xk))ds,

=
N(k)

⌧(k)

Z

⌦

Z
R(x)

0
f(hsx)dsd�k(x),

in other words, d⇢k = N(k)
⌧(k) dsd�k. Moreover, by a theorem of Sarnak [��], we know that long

periodic horocycle orbits equidistribute with respect to the Haar measure, i.e. d⇢k ! dµ = dsdm.
��



It follows from results in [��] that N(k)
⌧(k) ! C, and this implies that the corresponding long periodic

orbits under T must equidistribute in ⌦, i.e. d�k ! dm, which gives the result. ⇤
One can check that the measure dm on ⌦ is the appropriately scaled Lebesgue measure dxdy on

our parametrization of the Poincaré section given in Proposition �.�.

Corollary �.� ([�], Theorem �.�). Let the setting be as in Theorem �.�, and let G(k) be the renormalized
gap set for (X,!). Then

lim
k!1

|G(k) \ [0, t)|

N(k)
= m ({(x, y) 2 ⌦ R(x, y) 2 [0, t)}) . (�)

Proof. This is a direct application of Theorem �.� for the function �t and the sequence of points
xk = gk� with periods N(k) = k2, along with the identity in (�). ⇤

With our parametrization of ⌦ and formula for the return time function at every point in ⌦
calculated in the last section, it is now a standard problem in multivariable calculus to compute
the right hand side of (�). This gives us Theorem �.� from the introduction.

Since our limiting distribution has no support at 0 (indicating that there are no small gaps
between slopes of saddle connections), this implies that the slope gap distribution for O2n is not
random (if this were the case, we would expect an exponential distribution with support at 0). In
Figure �� we provide a few examples of the slope gap distributions on O2n for several values of n.

An interesting conclusion that can be drawn from our calculation of the distribution for the
2n-gon is that the slope gap distribution of a translation surface is not always unimodal. For
example, in the distribution for O14 one finds that there is a local maximum at t ⇡ 0.715353 of
about 0.691264, followed by a local minimum at t ⇡ 0.781831 of about 0.681558, followed by
another local maximum at t ⇡ 0.870497 of about 0.700232. This answers a question of Jayadev
Athreya.

�. B����� �� ��� N����� �� N��-D���������������� P�����

Now that we have an explicit description of the slope gap distribution, we can prove Theorem
�.�. Recall the theorem statement as follows.

Theorem �.�. The number of non-differentiable points in the slope gap distribution for a regular �n-gon
has linear lower and upper bounds. In particular,

n

5
� 11  #(Non-Differentiable Points)  2n+

jn
2

k
+ 1.

Proof. Since the slope gap distribution is computed by finding the area bounded by R(x, y) = 0
and R(x, y) = t over ⌦ = ⌦1 [ ⌦2, we can see that the distribution has a non-differentiable point
at t only if the level set of the return time function crosses a boundary of some Pi at time t. Recall
our division of ⌦1 into the regions P1, P2, . . . , Pn. We can disregard the boundary crossings on
⌦2 since they coincide with the boundary crossings for P1 (they are the same region in R2 and
have the same return time function as well). Thus, we can find an upper bound on the number
of non-differentiable points by simply finding a bound on the number of boundary crossings on
⌦1. The bulk of our proof will be in finding this upper bound. We will then use the information
we gather for computing the upper bound to get a linear lower bound in the second half of this
section. There are five cases we must consider.

Case �. We first count the number of boundary crossings in the region P1. Recall the definition
of

P1 = {(x, y) 2 ⌦1 | x+ y > 1}

and the return time function R(x, y) = 1
xy

over P1, which are displayed in Figure �� for any n.
��



(�) Limiting gaps for O10 (�) Limiting gaps for O12

(�) Limiting gaps for O14 (�) Limiting gaps for O16

(�) Limiting gaps for O18 (�) Limiting gaps for O20

F����� ��. Gap distributions for the 2n-gon for several values ofn. Note the changed
scaling on the horizontal axis in the last two graphs.

As t ! 1, the function 1
xy

= t moves towards the origin, but never crosses the points (0, 1) and
(1, 0) (the upper left and lower right corners of P1). Thus, 1

xy
first enters P1 through the point (1, 1),

which it crosses when
t = 1,

giving us a possible point of non-differentiability there. Moreover, when

t = 4,

1
xy

= t crosses the line y = 1 � x, giving us another possible point of non-differentiability. Since
this function never passes through (0, 1) or (1, 0), there are no other possible boundary crossings
for this region. Thus, we have two boundary crossings in this case.

��
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P1

x

y

F����� ��. An illustration of P1 with coordinates in R2, for any n, along with the
hyperbola R(x, y) = t (in black; here t = 3).

Case �. We now count the number of boundary crossings in the region P2. Recalling that
h0 = v0 = 1 for all n, we have that

P2 = {(x, y) 2 ⌦1 | x+ y  1, xh1 + yv1 > 1, xh1 + y > 1}

with R(x, y) = 1
x(x+y) . The constraints on P2 give us four sides: the line x + y = 1, the line

xh1 + yv1 = 1, the line xh1 + y = 1, and the line x = 1. Denote the intersection of x + y = 1 and
xh1+ y = 1 as A, the intersection of x+ y = 1 and x = 1 as B, the intersection of xh1+ yv1 = 1 and
x = 1 as C, and the intersection of xh1 + yv1 = 1 and xh1 + y = 1 as D. Observe that for any n, we
have A = (0, 1), B = (1, 0), and C = (1,�1). Refer to the diagram in Figure �� for an example of
the shape of P2 and the given labeling.

0.5 1

�1

�0.5

0.5

1
A

B

C

D

P2

F����� ��. In this example, n = 7. The black line is the hyperbola R(x, y) = 3.6.

The hyperbola enters the region from the right and moves to the left as t ! 1, so the hyperbola
always enters the region at the point B. Then

R(x, y) =
1

x(x+ y)
= t

intersects B = (1, 0) at t = 1, which does not give us a new possible non-differentiability point
(since we have already accounted for t = 1 in Case �).

Since the hyperbola R(x, y) = t is asymptotic to the lines x = 0 and y = �x, we can see that it
will never cross the points A and C, but it will cross the lines AD and CD inside the region P2.

��



Solving for the first intersection of R(x, y) = t and the line AD given by xh1 + y = 1 gives us a
quadratic equation with discriminant t2 � 8 cos(⇡/n)t. This means that

t = 8 cos(⇡/n)

gives us the first intersection between the hyperbola and AD. Similarly, solving for the intersection
between R(x, y) = t and the line CD given by xh1 + yv1 = 1 also gives us a quadratic equation
with discriminant t2�8 cos(⇡/n)t, so the first intersections of the hyperbola with the lines AD and
CD happen simultaneously.

Finally, we can compute that the crossing of D happens at t = (1 + 2 cos(⇡/n))2. Thus, this case
gives us at most two new boundary crossings: the simultaneous crossing of AD and DC and the
crossing of D.

Case �. We now count the number of boundary crossings in the regions Pi for 2 < i < n � 1.
Recall that in this case,

Pi = {(x, y) 2 ⌦1 | xhi�2 + yvi�2  1, xhi�1 + yvi�1 > 1, xh1 + y > 1}

with R(x, y) = vi�2

x(hi�2x+vi�2y)
. The constraints on Pi in this case give us four sides: the line

xhi�2 + yvi�2 = 1, the line xhi�1 + yvi�1 = 1, the line xh1 + y = 1, and the line x = 1. Denote
the intersection of xhi�2 + yvi�2 = 1 and xh1 + y = 1 as A, the intersection of xhi�2 + yvi�2 = 1
and x = 1 as B, the intersection of xhi�1 + yvi�1 = 1 and x = 1 as C, and the intersection of
xhi�1 + yvi�1 = 1 and xh1 + y = 1 as D. Refer to Figure �� for an example of the shape of these Pi

and the given labeling.

0.2 0.4 0.6 0.8 1

�1.5

�1

�0.5

A

D

C

B
Pi

F����� ��. In this example, n = 7 and i = 3. The black curve is the hyperbola
R(x, y) = 3.6.

The hyperbola enters the region at point B, which has coordinates (1, 1�hi�2

vi�2
). We can solve to

see that this happens at

t = k(i, n) := vi�2 = csc
⇣⇡
n

⌘
sin

✓
⇡(i� 1)

n

◆
.

However, note that because vn�i = vi�2, the values of the vi repeat after bn/2c indices. Since
we start at t = v1 when i = 3, this means that only the first bn/2c � 1 of the n � 4 regions
where 2 < i < n� 1 can have distinct values for the time when R(x, y) = t crosses B. Then for the
remaining n�bn/2c�3 regions we do not need to count an additional point of non-differentiability
for the crossing of B because we have already taken those times into account.

Solving for the intersection ofR(x, y) = t andAD gives a quadratic with discriminant t2�4t(h1�
hi�2/vi�2), i.e., the first intersection happens at t = 4(h1 � hi�2/vi�2). Moreover, solving for the
intersection of R(x, y) = t and CD gives a quadratic with discriminant t2/v2

i�1 � 4t(hi�1/vi�1 �

��



hi�2/vi�2), i.e., the first intersection happens at t = 4v2
i�1(hi�1/vi�1 � hi�2/vi�2). We may then

verify that both of these quantities are equal to
t = l(i, n) := 4 sin(i⇡/n) csc(⇡(i� 1)/n),

meaning that the hyperbola crosses AD and CD at the same time.
Observe, however, that the crossing of the lines AD and CD only counts as a boundary crossing

for the region Pi if it happens inside the region i.e. if it occurs after the hyperbola has already
crossed B. This is equivalent to the condition that k(i, n) < l(i, n). For small n, this is indeed the
case for all 2 < i < n � 1. However for large n, we find that l(i, n) < k(i, n) for all but a small
number of 2 < i < n� 1. In fact, one can show that l(i, n) < k(i, n) for 7  i  n� 2 for all n � 13.
We will take this into consideration when making our final count of boundary crossings arising
from these regions.

We now note that since A is the intersection of xhi�2 + yvi�2 = 1 and xh1 + y = 1, it has
coordinates ✓

vi�2 � 1

hi�2 � h1vi�2
, 1�

h1(vi�2 � 1)

hi�2 � h1vi�2

◆
.

Similarly, we find that C has coordinates
✓
1,

1

vi�1
�

hi�1

vi�1

◆
.

We may then compute that R(x, y) = t crosses A and C simultaneously at

t = m(i, n) :=
csc2(⇡/n) sin((i� 1)⇡/n)

cot(⇡/n)� cot(i⇡/(2n))
.

We can similarly solve to see that the hyperbola crosses point D at

t = r(i, n) :=
csc(⇡/n) sin(⇡(i� 1)/n) sin2(⇡(i+ 1)/n)

(sin(i⇡/n)� sin(⇡/n))2
.

Thus for n � 13 and 3  i  6, we have at most four total new crossings: a crossing at B, a
simultaneous crossing of AD and CD, a simultaneous crossing of A and C, and a crossing of D.
For 6  i  bn/2c+1, we have at most three new crossings, since the crossing of the lines AD and
CD happens before the hyperbola reaches the region Pi. Finally, for bn/2c + 2  i < n � 1, we
have at most two new crossings, since we do not count the crossing at B.

Although we have assumed here that n � 13, we may check directly that the resulting upper
bound we obtain applies even when 4  n < 13. The true number of non-differentiable points for
4  n < 12 (calculated using numerical methods in Mathematica) is given in the table in Figure
��, along with our upper bound. Unfortunately, calculating the true number of non-differentiable
points for n � 12 exceeds our computational capacity. However, for n = 12 we may verify that
the number of distinct time stamps corresponding to boundary crossings is 29, which is less than
our upper bound. Since the number of non-differentiable points is bounded above by the number
of boundary crossings, this is enough to show that our upper bound holds in all cases n � 4.
Formulas for the time stamps corresponding to boundary crossings for each region Pi for a given
n can be found in the table in Figure ��.

Case �. We now count the number of boundary crossings in Pn�1. Our region is
Pn�1 = {(x, y) 2 ⌦1 | xh2 + yv1  1, xh1 + y > 1}

with return time given by
R(x, y) =

v1
x(h2x+ v1y)

.

��



Our region is bounded by three lines: xh2+ yv1 = 1, xh1+ y = 1, and x = 1. Label the intersection
of xh2 + yv1 = 1 and xh1 + y = 1 as A, the intersection of xh2 + yv1 = 1 and x = 1 as B, and the
intersection of xh1 + y = 1 and x = 1 as C. Refer to Figure �� for an example of the shape of this
region and the given labeling.

0.7 0.85 1
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A

C

B

F����� ��. This is the example of n = 7. The black curve is the equation R(x, y) = 2.

The hyperbola first enters the region at B. We find that this happens at t = v1, which has already
been accounted for in Case �. Moreover, the same calculation we used in Case � to show that the
hyperbola passes through A and C at the same time still applies in this case. We may then calculate
that the hyperbola passes through the line AC at t = 2 sec(⇡/n).

Thus, this case gives us at most two new boundary crossings: a crossing of the line AC and the
simultaneous crossing of A and C.

Case �. We finally count the number of boundary crossings in Pn. Recall that
Pn = {(x, y) 2 ⌦1 | xh1 + y  1}

with R(x, y) = v0
x(h1x+v0y)

= 1
x(h1x+y) . Thus, our region has three boundaries: the line xh1 + y = 1,

the line x = 1, and the line 2(1 + cos(⇡/n))x + y = 1. Figure �� gives an example of what this
region looks like.

0.2 0.4 0.6 0.8 1

�3

�2

�1

1

F����� ��. The region Pn with n = 7 with the graph of the equation R(x, y) = 3.

We find that the three corners of the region are (1, 1 � h1), (0, 1) and (1, 1 � 2(1 + cos(⇡/n)).
We can easily compute to see that the hyperbola enters the region by passing through (1, 1 � h1)
first at t = 1, which does not contribute a new time. Moreover, we can verify that the hyperbola
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does not pass through (0, 1) and (1, 1 � 2(1 + cos(⇡/n)) because substituting these points into
R(x, y) yields an undefined value. Finally, we may then solve to see that the hyperbola passes
through the line 2(1 + cos(⇡/n))x+ y = 1 at t = 4, which also does not contribute a new point of
non-differentiability.

Thus, in this case we have no new boundary crossings.

Finishing Touches. We now add up all the boundary crossings we have counted. In Case �,
we found at most 2 boundary crossings. In Case �, we found at most 2 new boundary crossings
as well. In Case �, we found at most 4 new crossings for each 2 < i  6, of which there are �, at
most 3 new crossings for 6 < i  bn/2c + 1, of which there are n � bn/2c � 5, and at most 2 new
crossings for bn/2c+ 2  i < n� 1, of which there are n� bn/2c � 3. In Case �, we found at most
2 new boundary crossings, and in Case � we found no new boundary crossings. Adding these
values together, we have our desired upper bound of

#(Non-Differentiability Points)  2 + 2 + 4 · 4 + 3
⇣jn

2

k
� 5
⌘
+ 2

⇣
n�

jn
2

k
� 3
⌘
+ 2

 2n+
jn
2

k
+ 1.

Lower Bound. In order to compute a lower bound, we must understand the possible ways in
which our upper bound has over counted the true number of non-differentiability points. First,
we may have counted boundary crossings that do not actually happen. For example, in Case � we
were somewhat conservative in our estimate for when the crossing ofAD andCD happens outside
of the region Pi, and for larger n the range of i for which m(i, n) < k(i, n) can likely be expanded.
Second, we could have over counted times where the boundary crossings of two different regions
happen to coincide. We have already accounted for this in a number of cases, but there could be
additional cases of simultaneous crossings that we have not taken into account.

If this was the only concern, then it would suffice to show the existence of an infinite family
of distinct time stamps of boundary crossings. However, it is a priori possible that two or more
simultaneous boundary crossings for different regions could "cancel out" an apparent point of
non-differentiability, leading to the final distribution actually being differentiable at that point.
Thus to prove our lower bound, we must demonstrate the existence of an infinite family of distinct
boundary crossings that do not cancel out with any other boundary crossings coming from different
regions.

The time stamps where the boundary crossings occur in each case are summarized in Figure ��.
Experimental evidence based on computations in Mathematica suggests that the bn/2c � 1

distinct times coming from k(i, n) and the n�4 times coming from m(i, n) and r(i, n), respectively,
are all mutually distinct from each other for large n. Since there are only a finite number of
remaining time stamps which could potentially cancel out a point of non-differentiability, this
suggests a conjectural lower bound for the number of non-differentiability points of order 2n +
bn/2c, which is comparable to the upper bound.

In what follows we will provide a reasoning for the more modest lower bound. First, we will
show that there are a large number of time stamps coming from m(i, n) that are distinct from
all time stamps coming from k(i, n). Suppose that there are coinciding time stamps from these
functions. That means that there are integers 3  i  bn/2c+ 1 and 3  j  n� 2 such that

k(i, n) = m(j, n)

csc
⇣⇡
n

⌘
sin

✓
⇡(i� 1)

n

◆
=

csc2(⇡/n) sin(⇡(j � 1)/n)

cot(⇡/n)� cot(⇡j/(2n))
.
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Region Time Stamps

P1 t = 1, t = 4

P2 t = 1, t = 8 cos(⇡/n), t = (1 + 2 cos(⇡/n))2

Pi, 2 < i < n� 1 t = k(i, n) := csc
�
⇡

n

�
sin
⇣
⇡(i�1)

n

⌘
,

t = l(i, n) := 4 sin(i⇡/n) csc(⇡(i� 1)/n),

t = m(i, n) := csc2(⇡/n) sin(⇡(i�1)/n)
cot(⇡/n)�cot(i⇡/(2n)) ,

t = r(i, n) := csc(⇡/n) sin(⇡(i�1)/n) sin2(⇡(i+1)/n)
(sin(i⇡/n)�sin(⇡/n))2

Pn�1 t = csc(⇡/n) sin(2⇡/n), t = m(n� 1, n), and t = 2 sec(⇡/n)

Pn t = 1, t = 4

F����� ��. Time stamps for boundary crossings.

Solving for i, we get

i = f(j, n) := 1 +
n

⇡
arcsin

✓
csc(⇡/n) sin(⇡(j � 1)/n)

cot(⇡/n)� cot(⇡j/(2n))

◆

where we only need to consider the usual branch of arcsine since 3  i  bn/2c+1 by assumption.
An investigation of the function f(j, n) in Mathematica suggests that for large n, the function is
quite close to j + 2 in the first half of its domain and it is close to n� j + 2 in the second half of its
domain. We claim that for any n � 38 we have

0 < f(j, n)� j � 2 < 1

for 5  j  n/5 and for n � 5 we have

0 < f(j, n)� n+ j � 2 < 1

for 4n/5  j  n � 2. This implies that there is no integer solution to the equation i = f(j, n) for
j in these domains, which implies that the time stamps coming from m(j, n) for these j cannot
coincide with any of the time stamps coming from k(i, n).

First consider the inequality 0 < f(j, n)� j � 2. Observing that sine is an increasing function in
the stated region, we can rearrange this to

sin

✓
⇡(j + 1)

n

◆
<

csc(⇡/n) sin(⇡(j � 1)/n)

cot(⇡/n)� cot(⇡j/(2n))

=
sin(⇡(j � 1)/n) sin(⇡j/(2n))

sin(⇡j/(2n)) cos(⇡/n)� cos(⇡j/(2n)) sin(⇡/n)

=
sin(⇡(j � 1)/n) sin(⇡j/(2n))

sin(⇡(j � 2)/(2n))
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where we have used a trigonometric identity to simplify the denominator. Since sine is positive in
this region, this is equivalent to

sin

✓
⇡(j + 1)

n

◆
sin

✓
⇡(j � 2)

2n

◆
< sin

✓
⇡(j � 1)

n

◆
sin

✓
⇡j

2n

◆

cos

✓
⇡(j + 4)

2n

◆
� cos

✓
3⇡j

2n

◆
< cos

✓
⇡(j � 2)

2n

◆
� cos

✓
⇡(3j � 2)

2n

◆

cos

✓
⇡(3j � 2)

2n

◆
� cos

✓
3⇡j

2n

◆
< cos

✓
⇡(j � 2)

2n

◆
� cos

✓
⇡(j + 4)

2n

◆

sin

✓
⇡(3j � 1)

2n

◆
sin
⇣ ⇡

2n

⌘
< sin

✓
⇡(j + 1)

2n

◆
sin

✓
3⇡

2n

◆
.

Now, using the Taylor series for sine, we may say that

sin

✓
⇡(3j � 1)

2n

◆
sin
⇣ ⇡

2n

⌘
<

⇡(3j � 1)

2n
·
⇡

2n

as well as 
⇡(j + 1)

2n
�

1

6

✓
⇡(j + 1)

2n

◆3
!

·

 
3⇡

2n
�

1

6

✓
3⇡

2n

◆3
!

< sin

✓
⇡(j + 1)

2n

◆
sin

✓
3⇡

2n

◆

so long as 0 < j < 2
p
6n
⇡

� 1. It is then straightforward to check that

⇡(3j � 1)

2n
·
⇡

2n
<

 
⇡(j + 1)

2n
�

1

6

✓
⇡(j + 1)

2n

◆3
!

·

 
3⇡

2n
�

1

6

✓
3⇡

2n

◆3
!

for n � 4 and j � 3.
A similar calculation shows that the inequality f(j, n)� j � 2 < 1 is equivalent to

sin

✓
⇡(j + 2)

2n

◆
sin

✓
2⇡

n

◆
< sin

✓
3⇡j

2n

◆
sin
⇣⇡
n

⌘
.

Again using the Taylor series approximations, we know that the above holds whenever

⇡(j + 2)

2n
·
2⇡

n
<

 
3⇡j

2n
�

1

6

✓
3⇡j)

2n

◆3
!

·

✓
⇡

n
�

1

6

⇣⇡
n

⌘3◆

which is true for 5  j  n/5 when n � 38.
The inequality 0 < f(j, n)� n+ j � 2 can be reduced to the inequality

sin

✓
⇡(j � 2)

2n

◆
< sin

✓
⇡j

2n

◆

which is true since sine is an increasing function for 4n/5  j  n � 2. Similarly, the inequality
f(j, n)� n+ j � 2 < 1 is equivalent to

cos

✓
⇡(3j � 6)

2n

◆
< cos

✓
⇡(3j � 2)

2n

◆

which is again true since cosine is increasing for j in the stated region, so long as n � 5. This
demonstrates the above claim. For 4  n < 38, we can verify by direct computation that k(i, n) 6=
m(j, n) for any 3  i  bn/2c+ 1 and 5  j  n/5 or 4n/5  j  n� 2.

This means that only time stamps coming from m(j, n) for j = 3, 4 or n/5 < j < 4n/5 could
possibly coincide with any of the time stamps coming from k(i, n). Since k(i, n) is a sinusoid with
maximum at bn/2c + 1, we note that k(i, n)  k(j, n) for any 3  i  n/5 and n/5  j  4n/5.
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Moreover, since k(i, n) represents the time at which the hyperbola for region Pi crosses the point
B and m(i, n) represents the time at which it crosses the points A and C, we may observe that
k(i, n) < m(i, n) for any i and n. Combining these bounds, we see that

k(i, n)  k(j, n) < m(j, n)

for any 3  i  n/5 and n/5  j  4n/5. This means that for 3  i  n/5, the function k(i, n)
(which is strictly increasing in this region) could only possibly coincide with either m(3, n) or
m(4, n). In other words, there are at least n/5 � 4 values of k that do not coincide with any value
of m. We also note that since the hyperbola always crosses the point B for each region Pi, all of
these times represent true boundary crossings.

To finish the proof of our lower bound, we now observe that in order for two simultaneous
boundary crossings to "cancel out" an apparent point of non-differentiability, they would have to
have opposing effects on the derivative of the the probability distribution, i.e. one would have
to represent a sudden increase in the rate of area accumulation as the hyperbola sweeps through
its corresponding transversal region, while the other would have to represent a sudden decrease
in the rate area accumulation for its region. Recalling their definitions in Case �, we find that the
functions k(i, n) and r(i, n) represent an increase in the rate of area accumulation, while l(i, n) and
m(i, n) represent a decrease in the rate of area accumulation for the region Pi. Recall also that for
n � 13, the function l(i, n) represents at most 4 true boundary crossings, as the rest occur outside
of the transversal region. We furthermore find that there are a total of 3 boundary crossings of
decreasing type coming from Cases �, �, �, and �.

Thus, the n/5 � 4 (increasing-type) values of k(i, n) which we have already argued are distinct
from any of the values of m(i, n) can only possibly cancel with finitely many decreasing-type values
coming from other regions. Assuming that all possible cancellations happen, we get our lower
bound of

#(Non-Differentiability Points) �
⇣n
5
� 4
⌘
� 4� 3 =

n

5
� 11.

Combining these two bounds, we conclude:
n

5
� 11  #(Non-Differentiability Points)  2n+

jn
2

k
+ 1.

⇤
The plot in Figure �� and the table in Figure �� show our upper bound against the actual

number of non-differentiable points on the distribution (computed using numerical methods
in Mathematica). We can see that our bound is a reasonable estimate for the number of non-
differentiable points and appears to grow at roughly the same rate. In any case, we have shown
that there is a linear upper and lower bound on the number of non-differentiable points for the
slope gap distribution of the 2n-gon.

A������� A. R����� T��� F������� C�����������

Proof of Proposition �.�. We begin with an outline of how the proof proceeds. We must show that
at every point in ⌦1, the winning vector is the one we assert it to be in Proposition �.�; the winning
vector will dictate the return time at that point. We begin by finding the set of all saddle connection
holonomy vectors which win at some (x, y) 2 ⌦1. By Lemma A.�, this is exactly the set of vectors
which win at points (1, y) 2 ⌦1, meaning that it suffices to find the winning vectors for points
along the right edge (x = 1) of ⌦1. We claim that the vectors specified in Proposition �.� win at
these points (i.e. �i wins at points (1, y) 2 Pi). To prove this, we establish conditions which any
other vector must satisfy in order to win over our proposed vector in each region Pi, then we prove
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F����� ��. Plot of the upper bound from Theorem �.� (olive dashed line) and the
actual number of non-differentiable points (pink squares) against n.

n Upper Bound # of Non-Differentiable Points
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F����� ��. Table of the upper bound from Theorem �.� and number of non-
differentiable points for small n.

by exhaustive casework that for each Pi there is no saddle connection holonomy vector satisfying
these conditions. This proves that our candidate vectors (those specified in Proposition �.�) are
the only vectors which win at points (1, y) 2 ⌦1, and hence at any point in ⌦1. Finally, we use
the definition of a winning vector to describe the regions where each member of this finite set of
vectors (the �i vectors) wins, fully determining the return time function on ⌦1.

We will first establish some useful lemmas, then we will address the � cases provided in the
lemma separately.

Take an arbitrary saddle connection holonomy vector
✓
a
b

◆
and an arbitrary point (x, y) 2

⌦1. First notice that the three restrictions ax + by > 0, slope(Mx,yv) > 0, and x > 0 together
necessitate that b > 0, so to find the winning vector at (x, y) (i.e., the vector with smallest slope
on Mx,yS), we need only consider saddle connections whose holonomy vectors have positive
horizontal component.
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Second, we make the observation that Mx,y preserves the ordering of slopes. Intuitively, this
follows because Mx,y has positive determinant (so it is orientation preserving), and the image
under Mx,y of any vector with positive x-coordinate also has positive x-coordinate. Formally, for

v =

✓
a
b

◆
and w =

✓
c
d

◆
, if slope(v)  slope(w), then we have:

slope(Mx,yv)� slope(Mx,yw) =
bx�1

ax+ by
�

dx�1

cx+ dy

=
bc+ bdyx�1

� ad� bdyx�1

(ax+ by)(cx+ dy)

=
bc� ad

(ax+ by)(cx+ dy)

=
ac(b/a� d/c)

(ax+ by)(cx+ dy)
 0

Thus, slope(v)  slope(w) implies slope(Mx,yv)  slope(Mx,yw), so to determine if w wins over v,
we can directly compare slopes. With these observations in mind, we proceed to our lemmas.

Lemma A.�. The set of saddle connections which win at some (x, y) 2 ⌦1 is exactly the set of saddle
connections which win at some (1, y) 2 ⌦1.

Proof. Suppose the saddle connection with holonomy vector v0 =

✓
a0
b0

◆
is the saddle connection

whose image under some K = Mx0,y0 with (x0, y0) 2 ⌦1 has the smallest positive slope of any
image of a saddle connection with horizontal length at most 1. We claim v0 is also the vector
satisfying this property for the matrix

K 0 = M1,y0�(1�x0)a0/b0 =

✓
1 y0 � (1� x0)a0/b0
0 1

◆
.

Observe that the matrix K 0 corresponds to the point where the line with slope a0/b0 passing
through the point (x0, y0) intersects the line x = 1. In other words, we will show that v0 must win
at this intersection point as well. We first provide a high-level outline of our argument for why this
claim should be true. Since v0 wins at (x0, y0), we know that Kv0 has horizontal component with
length at most 1. Then, the point (1, y0 � (1� x0)a0/b0) has the property that K 0v0 has horizontal
component with length at most 1 as well, so v0 is a valid candidate at this new point. Any vector
v winning over v0 at (1, y0 � (1 � x0)a0/b0) must have greater slope than v0, so a straightforward
computation shows that K 0v has a longer horizontal component than Kv. Since v cannot win at
(x0, y0), this means that Kv has horizontal component longer than 1, contradicting the fact that
the horizontal component of K 0v is at most 1.

We proceed to our complete argument. First we must show that (1, y0 � (1� x0)a0/b0) 2 ⌦1. In
order for v0 to be a candidate winning vector at (x0, y0), it must satisfy the condition that Mx0,y0v0
has x-coordinate between 0 and 1, hence it must be true that a0x0 + b0y0  1. We also know from
the boundaries of ⌦1 that y0 > �2(1 + cos(⇡/n))x0 + 1, and we know that because the smallest
vertical edge in S0 is 1, b0 � 1. Using these inequalities, we find:

a0x0 � 2(1 + cos(⇡/n))b0x0  a0x0 � 2(1 + cos(⇡/n))b0x0 + b0 � 1

< a0x0 + b0y0 � 1  0,
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and
a0/b0 > �2(1 + cos(⇡/n)).

We also know a0/b0 is positive, so �a0/b0 < 0. Thus, �a0/b0 is between the slopes of the lower
and upper boundaries of ⌦1, so the line of slope �a0/b0 passing through (x0, y0) will intersect the
right edge of ⌦1 (which is included in ⌦1) at x = 1; this point is exactly (1, y0 � (1� x0)a0/b0).

Now we show that K 0v0 is the saddle connection of horizontal length at most 1 with the smallest
positive slope. Since the image of v0 under K has horizontal length at most �, we know

x0a0 + y0b0  1

Well, the same must be true for the horizontal length of the image of v0 under K 0. Henceforth we
will denote the horizontal component of Kv0 as c, and we will denote the horizontal component
of K 0v0 as c0.

c0 = 1 · a0 + (y0 � (1� x0)a0/b0) · b0 = x0a0 + y0b0  1,

so K 0v0 has horizontal length at most 1 as well (making it a valid candidate). Now let us consider
the set of vectors v whose image under K 0 may have a smaller positive slope than K 0v0. Both K
and K 0 are shear matrices which preserve the order of slopes of vectors, so v must have smaller

slope than v0, and Kv must have smaller slope than Kv0. In other words, for v =

✓
a
b

◆
, it must be

true that
b/a < b0/a0 =) a0b/b0 < a

Let d := ax0+by0 denote the horizontal component ofKv. Now consider the horizontal component
of K 0v (which we will denote by d0):

d0 = 1 · a+ (y0 � (1� x0)a0/b0) · b

= (a� a0b/b0)(1� x0) + ax0 + by0

= |a� a0b/b0| · |1� x0|+ ax0 + by0

> ax0 + by0 = d

Well, since v0 is the saddle connection whose image under K has the smallest positive slope of
any image of a saddle connection with horizontal length at most �, and since Kv has smaller slope
than Kv0, it must be true that the horizontal component of Kv is greater than �, so

d0 > d > 1,

contradicting the fact that the horizontal length of K 0v0 must be at most 1. Thus there is no vector
v such that K 0v has smaller slope than K 0v0 and K 0v has horizontal component at most 1. In other
words, if v0 is the saddle connection whose image under some K = Mx0,y0 with (x0, y0) 2 ⌦1 has
the smallest positive slope of any image of a saddle connection with horizontal length at most �,
then v0 also satisfies this property for some K 0 = M1,y with (1, y) 2 ⌦1. ⇤

For the sake of brevity, we introduce some new notation. Let �i for 1  i  dn/2e � 1 represent
the saddle connections joining the lower left and upper right vertices on the rectangles Hi and
⌫i for 0  i  bn/2c � 1 represent the saddle connections joining the lower left and upper right
vertices on on the rectangles Vi, as shown in the diagram in Figure �� for n = 7.

Note that as holonomy vectors, �i =
✓

hi
vi�1

◆
and ⌫i =

✓
hi
vi

◆
. Thus, restating Proposition 3.3 in

terms of this new notation, our goal is to show that the vector
✓
0
1

◆
wins on P1, that ⌫i�2 wins on
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(�,�)
⌫0 �1

⌫1 �2

⌫2 �3

F����� ��. Labeling of S 0 using �’s and ⌫’s for n = 7

�1
�2 �7

�3 �6

�4 �5

F����� ��. Labeling of S 0 with �’s for n = 7

Pi for 1 < i  dn/2e, that �n�i wins on Pi for bn/2c+1 < i < n, and that
✓
h1
v0

◆
wins on Pn. Finally,

let �i denote the vector which we claim wins on Pi.
Lemma A.� implies that in order to find the full set of winning vectors for ⌦1, we only need to

consider the set of vectors which win at points in the intersection of ⌦1 and the line x = 1. We
will first establish that this set of vectors is indeed the vectors �i. Then, knowing that one of the
�i wins at every point in ⌦1 , we will show that each �i wins on Pi as compared to the other �j

vectors; since [iPi = ⌦1, this provides a full description of the return time function on ⌦1.
For each i, in order to prove that �i wins on Pi \ {x = 1}, we establish four conditions which

must be satisfied by any vector
✓
a
b

◆
which wins over �i in the region, and prove that all saddle

connections on S
0 apart from �i violate at least one condition.

• Condition � is a restriction on the horizontal length of the vector, i.e. there exists some
q > 0 such that a < q (we use an explicit q which differs between cases).

• Condition � is the restriction that b/a < slope(�i) (otherwise
✓
a
b

◆
would not have a smaller

slope than �i).
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• Now, for vector
✓
a
b

◆
, define f

✓
a
b

◆
= 1�a

b
. Notice that for (1, y) 2 ⌦1, in order for the

image of
✓
a
b

◆
to have horizontal component at most 1, y must be at most f

✓
a
b

◆
. Thus

we can invoke another condition, Condition �, that for a candidate vector v, f(v) must be
greater than the lower bound for y in the region Pi \ {x = 1}, which is simply f(�i+1). So
this condition can be simplified to a � b · f(�i+1) < 1. Notice that this constraint can be
rephrased as follows, with m = b/a being the slope of a given vector

a(1�m · f(�i+1)) < 1

So, if v and v0 are vectors such that v0 has a larger horizontal length a and a smaller slope
m than v, then if v does not satisfy the above constraint, neither will v0.

• Condition � is the restriction that a/b < 2+2 cos(⇡/n) (which is incidentally the aspect ratio
of the rectangle formed by merging Hi+1 and Vi for all i). This is because for (1, y) 2 ⌦1,

y > 1 � (2 + 2 cos(⇡/n)), and for any saddle connection
✓
a
b

◆
of S0, 1/b  1, so we can

rearrange the previously-mentioned constraint a+ by  1 as follows:
1� a/b � 1/b� a/b � y > �1� 2 cos(⇡/n)

The inequality a/b < 2 + 2 cos(⇡/n) directly follows from the above inequality.

Remark A.�. Conditions �, �, and � do not refer to anything specific about S 0, so these conditions
must hold for all Veech surfaces. Of course, the value q in Condition 1 will depend on the surface;
we demonstrate how to explicitly compute q in our casework. On the other hand, an analogue of
Condition � should hold for all Veech surfaces (after scaling to have 1/b  1 for all holonomy vectors✓
a
b

◆
on the surface): the constraint a+ by  1 yields an analogous inequality after substituting in

the minimum y-coordinate in some region ⌦i for a general Veech surface.

Remark A.�. Since straightforward analogues of the aforementioned four conditions can be applied
to narrow down winning vectors for any Veech surface and since the techniques we used in Section
� can be easily adapted once the winning vectors are known, we believe that the methods in this
paper can be generalized to compute bounds on the number of non-differentiability points in the
slope gap distributions of general Veech surfaces.

Lemma A.�. f(�i) < f(�i+1)

Proof. We first show f(⌫0) > f

✓
0
1

◆
:

f(⌫0)� f((0, 1)) =
h0 � 1

v0
�

0� 1

1
=

1� 1

1
+ 1 = 1 > 0

Now we show show f(⌫i+1) > f(⌫i):

f(⌫i+1)� f(⌫i) =
hi+1 � 1

vi+1
�

hi � 1

vi

=
v2
i
+ vivi+1 � vi � vivi+1 � vi�1vi+1 + vi+1

vivi+1

=
1 + vi+1 � vi

vivi+1
> 0
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Now we show f(�i+1) > f(⌫i):

f(�i+1)� f(⌫i) =
hi+1 � 1

vi
�

hi � 1

vi
=

hi+1 � hi
vi

> 0

Finally we show f(�i) > f(�i+1):

f(�i)� f(�i+1) =
hi � 1

vi�1
�

hi+1 � 1

vi

=
vi(vi�1 + vi � 1)� vi�1(vi + vi+1 � 1)

vi�1vi

=
v2
i
� vi�1vi+1 + vi�1 � vi

vi�1vi

=
1 + vi�1 � vi

vi�1vi
> 0

⇤
Lemma A.�.

Slope(�2) > Slope(�3) > · · · > Slope(�n)

Proof. First we show that for 0  i < bn/2c � 1, Slope(⌫i) > Slope(⌫i+1). By direct computation,

Slope(⌫i) =
1

sin
�
⇡i

n

�
csc
⇣
⇡(i+1)

n

⌘
+ 1

,

so we show that this is a decreasing function of i. Indeed, computing the derivative:
d

di
Slope(⌫i) = �

⇡ sin
�
⇡

n

�

n
⇣
sin
�
⇡i

n

�
+ sin

⇣
⇡(i+1)

n

⌘⌘2 < 0.

Since �i+1 = ⌫i for 0  i  bn/2c � 1, we’ve shown the inequality Slope(�j) > Slope(�j+1) for
j = 2, . . . , bn/2c.

Now we show thatSlope(�bn/2c+1) > Slope(�bn/2c+2). For evenn, we must show thatSlope(⌫n/2�1) >
Slope(�n/2�1). The horizontal component of both of these vectors is hn/2�1. However, the vertical
component of ⌫n/2�1 is vn/2�1, which is greater than vn/2�2, the vertical component of �n/2�1. This
proves the claim for even n. For odd n, we must show that Slope(⌫(n�3)/2) > Slope(�(n�1)/2). The
vertical components of both of these vectors is v(n�3)/2, so it suffices to compare the horizontal
components. The horizontal component of ⌫(n�3)/2 is h(n�3)/2, which is less than h(n�1)/2, the
horizontal component of �(n�1)/2. This proves the inequality for odd n.

Finally we show that for 1  i < dn/2e � 1, Slope(�i+1) > Slope(�i). By direct computation,

Slope(�i) =
1

sin
⇣
⇡(i+1)

n

⌘
csc
�
⇡i

n

�
+ 1

so we show that this is an increasing function of i. Indeed, computing the derivative:
d

di
Slope(�i) =

⇡ sin
�
⇡

n

�

n
⇣
sin
�
⇡i

n

�
+ sin

⇣
⇡(i+1)

n

⌘⌘2 > 0.

Since �n+1�i = �i for 1  i < dn/2e � 1, we’ve shown the inequality Slope(�j) > Slope(�j+1) for
dn/2e+ 1  j < n. Together, these inequalities are equivalent to the lemma. ⇤
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High-level overview of casework. Recall that the goal of our casework is to show that the winning

vectors are found among the �i. In Case �, we prove that
✓
0
1

◆
wins when 0 < y  1. In Case �,

we show that the vectors ⌫i win on Pi+1 \ {x = 1} for 0  i  bn/2c � 1. In Case �, we prove
that the vector ⌫bn/2c�1 wins on the region Pbn/2c+1 \ {x = 1}. In Case �, we show that the vectors
�i win in Pn+1�i \ {x = 1}. In Case �, we show that �1 wins on Pn \ {x = 1}. Each of our
cases are divided into several subcases which each eliminate certain vectors from winning over the
proposed winning vector. After our casework, we argue that the vectors �i win in the subregions
prescribed in Proposition �.�.

Case �. First we will prove
✓
0
1

◆
wins on x = 1, 0 < y  1. Condition � stipulates that a < 1; since

each horizontal length in S0 is at least �, the only vectors satisfying this constraint are vertical ones.
These have the same slope, as do their images when multiplied by matrices Mx,y, so we simply

choose
✓
0
1

◆
as the winning vector (any choice of vertical saddle connection on S0 would be valid).

Note that for x = 1, 0 < y  1, Mx,y

✓
0
1

◆
=

✓
y
1

◆
, so the image has positive horizontal length at

most 1 as desired.

Before proceeding to the other cases, we will label vertices as follows: the concave vertex on the
upper left side where the sides of length vk and hk�1 meet will be labeled Lk, and the concave
vertex on the lower right side where the sides of length vk�1 and hk meet will be labeled Rk, as
shown in the diagram in Figure ��. Under this labeling, note that ⌫i joins Li and Li+1.

L0 R0

L1

R1

L2

R2

L3 R3

F����� ��. An example of vertex labeling on S
0 for n = 7.

Case �. We now prove that ⌫i wins on Pi+2 \ {x = 1} for 0  i  bn/2c � 1.

Fix some i satisfying 0  i  bn/2c � 1. Recall that as a holonomy vector, vi =
✓
hi
vi

◆
. We first

compute the bound q for Condition 1 in this case. Suppose ⌫ 0 =

✓
a
b

◆
is a vector whose image has

horizontal component at most 1 and slope less than the image of ⌫i. In order for the image of ⌫ 0 to
have horizontal component at most �, we require a+ by  1. Because ⌫ 0 is a saddle connection on
the staircase shape, which has horizontal and vertical distances � 1, it must be the case that a � 1
and b � 1. Furthermore, since the matrices in the Poincaré section preserve the ordering of slopes,
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in order for the image ⌫ 0 to have smaller slope that the image of ⌫i, it must be true that b/a < vi/hi
(where the latter quantity is the slope of ⌫i). Combining these facts, we find

a  1� by < 1�
vi
hi
ay < 1 +

vi(hi+1 � 1)

hivi+1
a =)

a

✓
1�

vi(hi+1 � 1)

hivi+1

◆
= a

✓
vi � 1

vivi+1 + vi�1vi+1

◆
< 1 =)

a <
vivi+1 + vi�1vi+1

vi � 1
= 1 + hi+1 +

vi+1

vi � 1
.

Now, note that vi+1

vi�1 varies inversely with i:
d

di

✓
vi+1

vi � 1

◆
= �

⇡ sin(⇡/n)(1 + cos((2 + i)⇡/n))

n(sin((1 + i)⇡/n)� sin(⇡/n))2
< 0.

Since vi+1

vi�1 decreases as i increases, we find

a < 1 + hi+1 +
vi+1

vi � 1
 1 + hi+1 +

v2
v1 � 1

= 1 + h1 + hi+1

Thus, our bound q for Condition � will be 1 + h1 + hi+1.
Subcase �.�. We first rule out all vectors that do not pass through an edge of the staircase; that

is, we will show that any vector other than ⌫i that does not pass through an edge of the staircase
fails to meet at least one of the conditions. Recall the labeling of S 0 with an example given in Figure
��. All �j and the ⌫j with j > i violate Condition � by the ordering of the f(�j)s proven in Lemma
A.�, and for j < i, the vector ⌫j has larger slope than ⌫i by Lemma A.�, so Condition � is violated.

Subsubcase �.�.�. Now consider vectors linking Lj and Lk for some k > j +1 (we don’t need to
consider k = j + 1 because the vectors linking Lj and Lj+1 are precisely the set of ⌫j). If k  i+ 1,

we note that
✓
a
b

◆
will be strictly steeper than ⌫k and hence violates Condition �; this is because

✓
a
b

◆
would have to pass to the right of Lk�1 and hence would be steeper than ⌫k�1 (since ⌫k�1

joins Lk�1 and Lk). Since ⌫k�1 is at least as steep as ⌫i for k  i+ 1, Condition � is violated.

L0 R0

L1

R1

L2

R2

L3 R3⌫2

F����� ��. If fix i = 2 in this case, we see that any vector linking Lj and Lk (black
vectors) with k  i+1 while staying in the staircase is either steeper than ⌫1 (green
vector) or ⌫2 (yellow vector).

Now suppose k > i+ 1. It must be true that j � k � 2, otherwise Condition � is violated:
a � hk + hk�1 + hk�2 � hi+1 + h1 + 1
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If k > i + 2, then j > i, meaning
✓
a
b

◆
has larger a and smaller slope than ⌫j , which we showed

earlier violates Condition �, and hence
✓
a
b

◆
violates Condition � as well. This leaves the case of

k = i+ 2, meaning j = i is forced. The holonomy vector here is
✓
hi + hi+1

vi + vi+1

◆
and can be shown to

violate Condition �:

hi + hi+1 � (vi+1 + vi)

✓
hi+1 � 1

vi+1

◆
= 1 + hi � vi

✓
hi+1 � 1

vi+1

◆

= 1 + vi�1 + vi � vi

✓
vi + vi+1 � 1

vi+1

◆

= 1 +
vi � (v2

i
� vi�1vi+1)

vi+1

= 1 +
vi � 1

vi+1
� 1

Thus, all vectors connecting an Lj to another Lk have been eliminated.
Subsubcase �.�.�. Now consider the vectors linking some Rj to some Lk. If k  i + 1, then

Condition � is violated, for the same reasons that we mentioned in the k  i + 1 case for vectors
connecting Lj and Lk.

L0 R0

L1

R1

L2

R2

L3 R3⌫2

F����� ��. If fix i = 2 in this case, we see that any vector linking Lj and Rk with
k  i+1 while staying in the staircase (black vectors) is either steeper than ⌫1 (green
vector) or ⌫2 (yellow vector).

Suppose k > i+ 1. If j < k � 3, then Condition � is violated:

a � hk�1 + hk�2 + hk�3 � hi+1 + h1 + 1.

If j = k � 2, then Condition � is violated:

b/a = (vk�1 + vk�2)/hk�1 = 1 � vi/hi
��



Since it must be true that j < k � 1 for
✓
a
b

◆
to have positive slope, we are left with j = k � 3,

j � i� 1. Any of these vectors violates Condition �:

b/a =
vj + vj+1 + vj+2

hj+1 + hj+2

>
vj + vj+1 + vj+2

hj + hj+1 + hj+2

=
(vj + vj+1 + vj+2)(vj + vj+1)

(hj + hj+1 + hj+2)hj+1

=
v2
j
+ 2vjvj+1 + v2

j+1 + vjvj+2 + vj+1vj+2

(hj + hj+1 + hj+2)hj+1

=
v2
j
� vj�1vj+1 � v2

j+1 + vjvj+2 + v2
j+1 + 2vjvj+1 + v2

j+1 + vj�1vj+1 + vj+1vj+2

(hj + hj+1 + hj+2)hj+1

=
1� 1 + vj�1vj+1 + 2vjvj+1 + 2v2

j+1 + vj+1vj+2

(hj + hj+1 + hj+2)hj+1

=
(hj + hj+1 + hj+2)vj+1

(hj + hj+1 + hj+2)hj+1
= vj+1/hj+1 � vi/hi.

Thus, all vectors connecting a vertex of the form Rj to a vertex of the form Lk violate at least one
condition.

Subsubcase �.�.�. Now consider a saddle connection staying in the staircase connecting an Rj

or Lj to some Rk. We showed previously that all �i’s violate Condition �. Given any k, a vector✓
a
b

◆
terminating at Rk has a at least as large as the horizontal component of �k and slope that is

shallower than the slope of �k (
✓
a
b

◆
passes into Hk�1 above the starting point of �k and terminates

at the same place as �k), so any such
✓
a
b

◆
violates Condition �. This eliminates all vectors staying

in the staircase (i.e., vectors that do not pass through an edge).

L0 R0

L1

R1

L2

R2

L3 R3

�2

F����� ��. For the example of k = 2, we see that any vector connecting some Rj or
Lj (in this case L0) and R2 will pass above R1 and hence be longer and shallower
than �2.
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Subcase �.�. We now rule out vectors that pass through the edges of the staircase.

Subsubcase �.�.�. If the first edge that a vector
✓
a
b

◆
passes through is a vertical edge of length

vk, then
✓
a
b

◆
is longer and shallower than �k+1, and so

✓
a
b

◆
violates Condition �.

L0 R0

L1

R1

L2

R2

L3 R3

�2

F����� ��. For the example of k = 1, we see that any vector passing through v1 is
longer and shallower than �2.

Subsubcase �.�.�. Thus we are left with vectors that first pass through a horizontal edge hk.

Note that in this case, the vector must travel a horizontal distance of at least hk. If k  i, then
✓
a
b

◆

is steeper than ⌫k, which we showed is at least as steep as ⌫i, so Condition � is violated.

L0 R0

L1

R1

L2

R2

L3 R3

F����� ��. If fix k = 1 and i = 2 in this case, we see that any vector passing through
the side of length h1 is steeper than ⌫1 (green vector), which in turn is steeper than
⌫2.

Given that k > i, the vector
✓
a
b

◆
can travel at most two horizontal distances (with a single

exception), otherwise Condition � is violated for i > 0; more precisely, if
✓
a
b

◆
travelled three

horizontal distances, note that a must be at least hk + hk+1 + hl for some distance hl. This is
because the vector must traverse hk if it crosses through a horizontal edge with length hk, and
moreover, since the vector must have slope less than 1 to satisfy Condition �, it must pass through
the vertical edge of length vk�1 after passing through the horizontal edge of length hk, then traverse
horizontal length hk�1 as well. In this case, Condition � is violated:

a � hk + hk�1 + hl � hi+1 + hi + hl � hi+1 + h1 + 1
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Thus, we are left with vectors
✓
a
b

◆
passing through at most 2 horizontal distances, with a

singular exception. In the special case of i = 0, there is one particular vector of this form that does
not violate Condition �.

This is the vector beginning at L0, passing through the horizontal face just to the left of L2,

passing through the vertical face below R1, then ending at L1. This vector is
✓
2 + h1
2 + v1

◆
, and it

violates Condition �:

a� b

✓
h1 � 1

v1

◆
= 2 + h1 � (2 + v1) = 1 � 1.

Now we eliminate all other vectors passing through a horizontal side of length hk. Note that✓
a
b

◆
cannot travel only hk horizontally, because if

✓
a
b

◆
first passes through a horizontal side hk,

then it must travel at least vk + vk�1 = hk vertically, so having horizontal length hk would mean

having a slope of at least 1, violating Condition �. Thus,
✓
a
b

◆
must then pass through the vertical

side of length vk�1 and then horizontally travel length hk�1. This is only possible if
✓
a
b

◆
begins at

Lk or Rk�1.

Suppose
✓
a
b

◆
begins at Rk�1. As it travels the horizontal length of hk, it must climb vertically at

least vk�1+ vk = hk in order to pass through the horizontal edge of length hk. As we found before,
this violates Condition �.

So we are left with
✓
a
b

◆
beginning atLk and passing through the horizontal edge of length hk for

k > i. After passing through hk, the vector must pass through the vertical edge of length vk�1 as

stated earlier. Upon passing through vk�1,
✓
a
b

◆
can only end at Lk or pass through the horizontal

edge of length hk�1 and end at Rk�1 without travelling horizontally more than the width of two
rectangles or having slope at least 1.

If the saddle connection ends at Lk, it is the vector (hk�1 + hk, vk�1 + vk), the same vector as
the saddle connection connecting Lk�1 and Lk+1 without passing through edges, which we have
previously eliminated.

If the saddle connection ends at Rk�1, it is the vector (hk�1 + hk, vk�1 + vk�1 + vk), the same
vector as the saddle connection connecting Rk�2 and Lk+1 without passing through edges, which
we have previously eliminated.

Subcase �.�. We have now eliminated all vectors passing through edges of the staircase, with a
few exceptions.

The previous proof assumes the staircase extends for an arbitrary number of rectangles in either
direction from the rectangle containing ⌫i, so in order to complete this proof we must eliminate
vectors that reach the ends of the staircase shape.

Subsubcase �.�.�. The vectors that pass through the edge between L0 and R0 will first be

eliminated. For
✓
a
b

◆
passing through the edge between L0 and R0, consider where it intersects

the edge of the staircase or a vertex. If
✓
a
b

◆
ends at some Rk or passes through a vertical edge

below some Rk, then
✓
a
b

◆
is both longer and less steep than �k, which violates Condition �, so

��



✓
a
b

◆
also violates Condition �. If

✓
a
b

◆
travels the length of the staircase to the edge at the opposite

end of the staircase, then a � 1 + h1 + hi, so Condition � is violated. Hence,
✓
a
b

◆
must end at

some Lk or pass through a horizontal edge to the left of some Lk. If k  i+ 1 then
✓
a
b

◆
is steeper

than ⌫k�1, which itself is at least as steep as ⌫i, so Condition � is violated. If k > i + 1, then
a � 1 + h1 + hk�1 � 1 + h1 + hi+1, so Condition � is violated.

Subsubcase �.�.�. For even n, we will eliminate the vectors passing through the vertical edge
below Ln/2, which forms an edge of the staircase when n is even. Let k = n/2 � 1. Notice that
such a vector necessarily crosses hk at least twice. Thus, such a vector cannot travel more than
2 horizontal distances or else it would violate Condition �. In fact, such a vector must travel a
horizontal distance of exactly 2hk.

We first suppose that n � 6. The distance travelled by this vector is 2hk, so it suffices to show
that hk � 1 + h1 in order to violate Condition �. We compute

hk � 1� h1 = �2 cos
⇣⇡
n

⌘
+ cot

⇣ ⇡

2n

⌘
� 2.

The derivative of this function is

⇡
�
csc2

�
⇡

2n

�
� 4 sin

�
⇡

n

��

2n2
,

which is positive for n � 3. At n = 6, this difference evaluates to 0, meaning that the difference is
indeed nonnegative for all n � 6. In other words, Condition � is violated for n � 6.

Let n = 4. The only possible ⌫i vector in this case is ⌫0, since we address the last ⌫i as an entirely
separate case from the other ⌫is. Thus Condition � is

a� b

✓
h1 � 1

v1

◆
= a� b  1

Knowing a = 2h1, b can be v1, 1 + v1, or 2 + v1 without reaching a slope of at least that of ⌫1. So,

a� b � 2h1 � (2 + v1) = v1 > 1

Thus Condition � is violated. Recall that we do not consider the n = 2 case in this paper, so this
completes Case � for even n.

Subsubcase �.�.�. Let n be odd. In this case we must eliminate the vectors passing through the
horizontal edge to the right of Lbn/2c. Let k = (n � 3)/2. This vector cannot travel more than 2
horizontal distances, otherwise we would have b � hk+1 + hk + hk�1 � 1+ h1 + hi, which violates

Condition �. So
✓
a
b

◆
must start at Lk, Rk�1 or Rk. Any

✓
a
b

◆
that begins at Lk and passes through

the horizontal face before any other faces will have larger a and smaller slope than ⌫k, meaning it
violates Condition �.

Otherwise,
✓
a
b

◆
must pass through the horizontal face to the left of Lk+1 then travel above

Rk, meaning that over a horizontal distance of hk, it travels vertically at least vk + vk�1 = hk, so
Condition � is violated.

Now suppose
✓
a
b

◆
begins at Rk�1. The only way for

✓
a
b

◆
to avoid violating Condition � is by

ending at Rk+1 after passing through the horizontal edge once. For n > 5, this violates Condition
��



�, as h1 + 1  hk+1:

hk+1 � h1 � 1 =

✓
sin
⇣ ⇡

2n

⌘
+ sin

✓
3⇡

2n

◆
� 1

◆⇣
� csc

⇣ ⇡

2n

⌘⌘
> 0.

For n = 5, this violates Condition �:

f((h1 + h2, 1 + 2v1)) =
1� h1 � h2
1 + 2v1

�3�

1 + 2�
< �1 =

1� h1
v1

= f(⌫1),

where � is the golden ratio � = 1+
p
5

2 . For n = 3, this saddle connection does not exist.

In the last case, where
✓
a
b

◆
begins at Rk, it can end at either Rk+1, Rk, or Lk+1 after crossing

the right edge precisely once, or else it would violate Condition �. If
✓
a
b

◆
ends at Rk+1, then from

direct computation (the lower bound of 1 is the slope when the vector crosses the edge exactly
once), this vector has slope at least 1, which is definitely too steep.

If
✓
a
b

◆
ends at Lk+1, then it has smaller slope and larger horizontal component than ⌫k (since it

would pass through the vertical edge above Lk) and thus violates Condition �.
The only other possible vector that does not travel horizontally across more than two rectangles

is ⌫ 0 starting at Rk, passing through the horizontal edge to the right of Lk+1, passing through the
vertical edge below Rk+1, passing through the horizontal edge to the left of Lk+1, then ending at
Rk. This is the same vector as the one beginning at Rk�1, passing through the horizontal edge to
the left of Lk+1, and ending at Rk+1, which we have eliminated. This eliminates all vectors other
than ⌫i for Case �.

Furthermore, ⌫i has positive slope vi/hi and is such that 0 < a+ by  1:

a+ by = hi + viy > hi + vi ·
1� hi+1

vi+1

=
hivi+1 + vi � hi+1vi

vi+1

=
vi�1vi+1 + vivi+1 + vi � v2

i
� vivi+1

vi+1

=
vi�1vi+1 + vi � v2

i

vi+1

=
vi � 1

vi+1
� 0,

and
a+ by = hi + viy  hi + vi ·

1� hi
vi

= 1

Thus we have shown that for ⌫i with 0  i < bn/2c � 1, ⌫i is the winning saddle connection on
Pi+2 \ {x = 1}.

Case �. We now prove ⌫bn/2c�1 has the smallest slope of any saddle connection whose image
has horizontal component at most 1 for all (1, y) 2 ⌦1 in the region the region Pbn/2c+1 \ {x = 1}.

Suppose
✓
a
b

◆
6= ⌫bn/2c�1 wins over ⌫bn/2c�1. We start by computing the bound q for Condition �.
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We have two cases, based on the parity of n.
First suppose that n is even. Note that n � 4, as we exclude the n = 2 case from this paper.
The bounds on y demand that y >

1�hbn/2c�1

vn/2�2
. Then, using the fact that a � 1 and a+ by  1, we

find:

a  1� by < 1�
vbn/2c�1

hbn/2c�1
ay

< 1�
vbn/2c�1

hbn/2c�1
a

✓
1� hbn/2c�1

vbn/2c�2

◆

= 1�
vbn/2c�1

vbn/2c�2
a

✓
1� hbn/2c�1

hbn/2c�1

◆

Rearranging,

a

✓
1 +

vbn/2c�1

vbn/2c�2

✓
1� hbn/2c�1

hbn/2c�1

◆◆
< 1

Therefore,

a

✓
hbn/2c�1 +

vbn/2c�1

vbn/2c�2
(1� hbn/2c�1)

◆
= a

✓
cos(⇡/(2n))� sin(⇡/(2n))

cos(⇡/(2n)) + sin(⇡/(2n))

◆
< hbn/2c�1

For n � 4, cos(⇡/(2n))� sin(⇡/(2n)) > 0, so we can safely rearrange:

a < hbn/2c�1

✓
cos(⇡/(2n)) + sin(⇡/(2n))

cos(⇡/(2n))� sin(⇡/(2n))

◆
= hbn/2c�1

✓
1 +

2

cot(⇡/(2n))� 1

◆

Now, we claim that
2hbn/2c�1

cot(⇡/(2n))� 1
 1 + h1.

We prove this by showing that

2hbn/2c�1

cot(⇡/(2n))� 1
� (1 + h1)  0.

To do so, we first see that when n = 4, this expression is 0. Moreover, taking the derivative with
respect to n gives us

⇡
�
2 sin

�
⇡

n

�
+ cos

�
2⇡
n

��

n2
�
sin
�
⇡

n

�
� 1
� ,

which is indeed always negative for n � 4. Hence, our bound becomes

a < hbn/2c�1

✓
1 +

2

cot(⇡/(2n))� 1

◆
 1 + h1 + hbn/2c�1.
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Now suppose that n is odd and greater than 3 (we will consider the case n = 3 later). Then,
y >

1�hbn/2c
vbn/2c�1

. Combining this with previously mentioned facts, we find:

a  1� by < 1�
vbn/2c�1

hbn/2c�1
ay

< 1�
vbn/2c�1

hbn/2c�1

✓
1� hbn/2c
vbn/2c�1

◆
a

= 1� a

✓
1� hbn/2c
hbn/2c�1

◆

Rearranging,

a

✓
1 +

1� hbn/2c
hbn/2c�1

◆
= a

✓
hbn/2c�1 � hbn/2c + 1

hbn/2c�1

◆
= a

✓
1� 2 cos((bn/2c)⇡/n)

hbn/2c�1

◆
< 1,

so we conclude

a

✓
1� 2 cos((n� 1)⇡/(2n))

hbn/2c�1

◆
< 1.

Observe that
1� 2 cos((n� 1)⇡/(2n)) > 0.

Hence, we rearrange:

a <
hbn/2c�1

1� 2 cos((n� 1)⇡/(2n))
=

hbn/2c�1

1� 2 sin(⇡/(2n))
.

We find that in fact,

(1 + h1 + hbn/2c)�
hbn/2c�1

1� 2 sin(⇡/(2n))
=

1

2 sin
�

⇡

2n

�
� 1

+ 2 cos
⇣⇡
n

⌘
+ 1 � 0,

meaning that our inequality becomes

a <
hbn/2c�1

1� 2 sin(⇡/(2n))
 1 + h1 + hbn/2c.

Thus for all n > 3, we have that a < 1+ h1 + hbn/2c for odd n, and a < 1+ h1 + hbn/2c�1 for even
n; this is our bound q for Condition � in this case.

By Lemma A.�, we note that the vectors ⌫j for all j < bn/2c�1 are steeper than ⌫bn/2c�1, meaning
that they all violate Condition �. Moreover, we know from the same lemma that all � vectors fail
Condition �, because we are comparing to a ⌫ vector.

Subcase �.�. We begin with saddle connections staying in the staircase.
Subsubcase �.�.�. Consider saddle connections staying in the staircase linking any vertex to

a vertex Lj for any j. Since these saddle connections stay entirely within the staircase, we note
that they are necessarily steeper than the vector ⌫j joining Lj�1 and Lj (they enter the rectangle
containingLj�1 andLj at a point farther to the right thanLj�1). This means they violate Condition
� since ⌫j is at least as steep as ⌫bn/2c�1.

Subsubcase �.�.�. We proceed to saddle connections ending at Rk for any m. Condition � is
violated, as this vector necessarily has larger slope and lower a value than �k.

Subcase �.�. This rules out all saddle connections that do not pass through the edges of the
staircase, so we now proceed to saddle connections that do pass through the edges of the staircase.
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Subsubcase �.�.�. Any saddle connection which first passes through a horizontal edge to the
left of some Lk is necessarily steeper than ⌫k�1, violating Condition �.

Subsubcase �.�.�. If a saddle connection first passes through the vertical edge below some Rk

for k > 0, then this vector necessarily has larger slope and lower a value than �k, meaning that it
violates Condition �.

Subsubcase �.�.�. The saddle connections that first pass through the horizontal edge between
L0 and R0 will now be eliminated. The only possible starting vertex for such a saddle connection is
L0; in this case, the slope of the vector is higher than �, meaning Condition � is violated. Note that
all other saddle connections which pass through the edge between L0 and R0 first pass through a
different edge, and these have been eliminated in previous cases.

Subsubcase �.�.�. If n is even, we must eliminate the vectors passing through the vertical edge
below Ln/2. Notice that such a vector necessarily crosses hn/2�1 at least twice. Thus, such a vector
cannot travel more than 2 horizontal distances or else it would violate Condition �. In fact, such a
vector must travel a horizontal distance of exactly 2hn/2�1.

We first suppose that n � 6. If we show that hbn/2c�1 � 1 + h1, then this vector would violate
Condition �. We compute

hbn/2c�1 � 1� h1 = �2 cos
⇣⇡
n

⌘
+ cot

⇣ ⇡

2n

⌘
� 2.

The derivative of this function is

⇡
�
csc2

�
⇡

2n

�
� 4 sin

�
⇡

n

��

2n2
,

which is positive for n � 3. At n = 6, this difference evaluates to 0, meaning that the difference
is indeed nonnegative for all n � 6. In other words, Condition � is violated for n � 6, leaving us
with the case n = 4.

Now consider the case n = 4. In this case,
✓
a
b

◆
must begin at R0 or L1 and end at either R1 or

L2.
If
✓
a
b

◆
begins at R0, it must pass through the vertical face below L2 and either (a) end at L2,

or (b) pass through the horizontal face to the left of L2 and end at R1. In case (a), the vector is
(2h1, 1 + v1), which violates Condition �:

a� b(h1 � 1) = 2 + 2v1 � (1 + v1)v1 = 2 + v1 � v21 =
p

2 > 1

In case (b), the vector is
✓

2h1
2 + v1

◆
, which has slope 1+v1/2

h1
> v1

h1
, which violates Condition �. If

✓
a
b

◆
instead begins at L1, then it must pass through the vertical edge below L2, and either (c) end

at L2 or (d) pass through the horizontal edge to the left of L2 and end at R1. In case (c), the vector

is
✓
2h1
v1

◆
which has smaller slope and larger a than �1 =

✓
h1
1

◆
, so it violates Condition �. The

vector in case (d) is
✓

2h1
1 + v1

◆
, which we already eliminated. This concludes the proof for n = 4

and hence for the case where n is even.
Subsubcase �.�.�. Finally, we will eliminate the saddle connections passing through the hori-

zontal edge to the right of Lbn/2c, which forms an edge of the staircase when n is odd and greater
than �.
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Such a saddle connection can travel no more than 2 horizontal distances, otherwise it will violate
Condition � (since one of these horizontal distances must be hbn/2c. So, letting k = bn/2c � 1, a
candidate saddle connection must start at Lk, Rk�1 or Rk.

If
✓
a
b

◆
begins at Lk, we observe that in order to avoid violating Condition �, it must end at

Rk+1. The vector must therefore be (hk + hk+1, 2vk). For n > 5, this violates Condition �, as
h1 + 1  hbn/2c:

hbn/2c � h1 � 1 =

✓
sin
⇣ ⇡

2n

⌘
+ sin

✓
3⇡

2n

◆
� 1

◆⇣
� csc

⇣ ⇡

2n

⌘⌘
> 0.

For n = 5, this vector violates Condition �:

a� b

✓
hk+1 � 1

vk

◆
= hk + hk+1 � 2vk

✓
hk+1 � 1

vk

◆
= 2 + hk � hk+1 � 1

Now suppose
✓
a
b

◆
begins at Rk�1. The only way for

✓
a
b

◆
to avoid violating Condition �

is by ending at Rk+1 after passing through the horizontal edge at least once. For n > 5, this
violates Condition �, as h1 + 1  hbn/2c. For n  5, consider the vector crossing the edge once,
(hk + hk+1, vk�1 + 2vk). For n = 5 this vector has slope greater than vk/hk, violating Condition �.

Since any
✓
a
b

◆
crossing the edge more than once will have even larger slope, this case also

violates Condition �.
Finally, suppose that

✓
a
b

◆
begins at Rk. Then, it must end at Rk+1, Lk+1, or Rk or else it would

violate Condition �. If it ends at Rk+1, then because the lower bound of 1 is the slope when the
vector crosses the edge exactly once, this vector has slope at least 1, which violates Condition �.

The only possible
✓
a
b

◆
ending at Lk+1 in this case is the vector passing once through the

horizontal edge to the left of Rk+1, then through the vertical edge below Rk+1, before ending at
Lk+1. This is the same vector as the saddle connection beginning at Lbn/2c�1, then passing through
the horizontal edge to the right of Lk+1, and finally ending at Rk+1, which we have eliminated
earlier.

The only other possible vector that does not travel horizontally across more than two rectangles
starts at Rk, passes through the horizontal edge to the right of Lk+1, then passes through the
vertical edge below Rk+1, then passes through the horizontal edge to the left of Lk+1, and finally
ends at Rk. This is the same vector as the one beginning at Rk�1 and ending at Rk+1 discussed
earlier, which we have eliminated. This completes this case for all n > 3.

Subcase �.�. Finally, suppose n = 3. We directly check that no other vectors win in the region
corresponding to ⌫bn/2c�1. In this case, hbn/2c�1 = h0 = 1, vbn/2c�1 = v0 = 1, y > �1, and h1 = 2.

Suppose that a vector
✓
a
b

◆
wins. Then, we must have that a + by  1. As y > �1 in this region,

this gives us a � b < 1, or equivalently, a < b + 1. We must also have that a > b, or else the slope
of the vector wouldn’t be less than that of ⌫bn/2c�1. Thus, b < a < b + 1, which is a contradiction
since all lengths and heights in the staircase when n = 3 are integers.

Thus we have shown that ⌫bn/2c�1 wins for all (1, y) 2 ⌦1 with 1�hdn/2e�1

vdn/2e�2
< y 

1�hbn/2c�1

vbn/2c�1
,

which is simply Pbn/2c+1 \ {x = 1}.
Case �. We now prove that the vectors �i win on Pn+1�i \ {x = 1}. Begin by fixing i.
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We first compute a bound q for Condition � in this case. In order for the image of some
✓
a
b

◆

to have horizontal length at most 1, we must have a + by  1. We also have a � 1 and b � 1, as
these are the shortest horizontal and vertical distances on the S0, respectively. Moreover, we must
have that b/a < vi�1/hi, as this is the slope of the candidate vector for Pi. Finally, we have that
y > 1�hi�1

vi�2
. Combining these facts, we find

a  1� by < 1�
vi�1

hi
ay < 1�

vi�1

hi

✓
1� hi�1

vi�2

◆
a =)

a

✓
1 +

vi�1(1� hi�1)

hivi�2

◆
< 1 =)

a

✓
hi +

vi�1(1� hi�1)

vi�2

◆
= a

✓
vi�1 � 1

vi�2

◆
< hi =)

a < hi

✓
vi�2

vi�1 � 1

◆
= 1 + hi�1 +

vi�2

vi�1 � 1
< 1 + hi�1 +

vi
vi�1 � 1

.

In Case �, we showed
vi

vi�1 � 1
< h1,

so we can conclude that
a < 1 + h1 + hi�1

This gives us the desired bound q for Condition �.
By Lemma A.�, we note that vectors ⌫k for all k and �k with k < i are steeper than �i, violating

Condition �. Moreover, Lemma A.� implies that all �k with k > i violate Condition �.
Subcase �.�. We begin with saddle connections staying in the staircase.
Subsubcase �.�.�. First consider any saddle connection staying in the staircase that ends at a

vertex Lk for any k. Since these saddle connections stay entirely within the staircase, we note
that they are necessarily steeper than the vector ⌫k joining Lk�1 and Lk (they enter the rectangle
containingLk�1 andLk at a point farther to the right thanLk�1). This means they violate Condition
� as ⌫k violates Condition �. This can be seen in Figure ��.

L0 R0

L1

R1

L2

R2

L3 R3

F����� ��. Vectors ending at Lk for any k (shown in black here) are necessarily
steeper than the ⌫ vector that ends at Lk (shown in green or yellow), which is in
turn steeper than every � vector.

Subsubcase �.�.�. We now eliminate vectors staying in the staircase linking Rj and Rk (with
k > j + 1). If k < i, then Condition � is violated, as this vector is necessarily shallower and longer
than the vector �k which also ends at Rk as seen in Figure ��. On the other hand, if j � i, then this
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saddle connection is necessarily steeper than the saddle connection �j+1 starting at Rj and ending
at Rj+1, as seen in Figure ��, meaning that these vectors violate Condition �.

L0 R0

L1

R1

L2

R2

L3 R3

�2

F����� ��. Let n = 7 and i = 3 (so the vector we are trying to show victory for is �3).
Vectors ending at Rk for any k < i (shown in black here) are necessarily shallower
and longer than the � vector that ends at Rk (in orange), which in turn violates
Condition �.

L0 R0

L1

R1

L2

R2

L3 R3

�1

F����� ��. Let n = 7 and i = 2 (so the vector we are trying to show victory for is
�2). Vectors starting at Rj for any j  i (shown in black here) are necessarily steeper
than the � vector that starts at Rj (in red), which in turn violates Condition �.

Finally, we check the case where j < i and k � i. If k � j � 3, then this saddle connection must
travel through at least hk and two other horizontal lengths, which violates Condition � (as one of
these lengths must be at least 1 and the other length, being distinct from the first length, must be
at least h1). This implies that k � j = 2, so the only cases we need to consider are k = i, j = i � 2
and k = i+ 1, j = i� 1. In the latter case, the vector is steeper than �i (it begins at the same vertex
as �i but travels higher than Ri), violating Condition �.
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This leaves us with the former case. We show that in this case, f
✓
a
b

◆
> 1, violating Condition

�. We have that

hi�1 + hi � (vi�1 + vi�2)

✓
hi�1 � 1

vi�2

◆
= vi�2 + 2vi�1 + vi � (vi�1 + vi�2)

✓
vi�2 + vi�1 � 1

vi�2

◆

= vi�2 + 2vi�1 + vi � vi�2 � vi�1 + 1�
vi�2vi�1 + v2

i�1 � vi�1

vi�2

=
vi�2vi�1 + vi�2vi + vi�2 � vi�2vi�1 � v2

i�1 + vi�1

vi�2

=
�1 + vi�1 + vi�2

vi�2
= 1 +

vi�1 � 1

vi�2
> 1,

as we know that i � 2, meaning vi�1 > 1. Thus we have eliminated all vectors connecting some
Rj to some Rk without passing through an edge of S0.

Subsubcase �.�.�. We now eliminate the vectors starting at Lj and ending at Rk for k � j+1. If
k < i, then Condition � is violated as this vector is necessarily shallower and longer than �k, which
also ends at Rk (which we noted earlier violates Condition �), as seen in Figure ��.

L0 R0

L1

R1

L2

R2

L3 R3

�2

F����� ��. Let n = 7 and i = 3 (so the vector we are trying to show victory for is �3).
Vectors starting at some Lj and ending at Rk for any k < i (shown in black here)
are necessarily shallower and longer than the � vector that ends at Rk (in orange),
which in turn violates Condition �.

Suppose that k � i. If k � j � 2, this saddle connection violates Condition � (as it encompasses
at least three horizontal distances on the staircase, of which one is at least as long as the length hi,
and the other two of which are distinct). Thus, we must have k � j = 1, in which case the slope of
the saddle connection is precisely the aspect ratio 2 + 2 cos(⇡/n) (it will be the diagonal of some
rectangle, as seen in Figure ��), which fails Condition �. This rules out all vectors that do not pass
through the edges of the staircase.

Subcase �.�. We now proceed to vectors that do pass through the edges of the staircase.
Subsubcase �.�.�. Any of these vectors that starts by passing through the horizontal edge

containing Lk is necessarily steeper than the ⌫ vector ending at Lk, meaning these vectors violate
Condition �, as in Figure ��.

Subsubcase �.�.�. Now consider a vector that starts by passing through a right wall. Suppose
the vector started at Lj and passed the vertical edge below Rj+1. Then, this vector would be
shallower than the aspect ratio of the rectangle and can thus be eliminated on account of failing
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L0 R0

L1

R1

L2

R2

L3 R3

F����� ��. Let n = 7. Vectors starting at Lj and ending at Rj+1 are precisely the
diagonals of the large rectangles, which have aspect ratio equal to 2 + 2 cos(⇡/n).

L0 R0

L1

R1

L2

R2

L3 R3

F����� ��. For instance, any vector passing through the side of length h1 is steeper
than ⌫1 (green vector), which in turn is steeper than every � vector.

Condition �. If the vector starts atRk orLk with k > i and travels across more than three horizontal
distances, then it violates Condition �, as one of the horizontal distances it traverses is at least as
long as hi.

Now suppose that the saddle connection first crosses the right edge below Rk for some k < i.
Then, this saddle connection is longer and shallower than the � vector in that rectangle, meaning
that it violates Condition �, as in Figure ��.

L0 R0

L1

R1

L2

R2

L3 R3

�2

F����� ��. Fix i = 3. For instance, we see that any vector passing through v1 is
longer and shallower than �2, which fails Condition �.

Proceed to the case of saddle connections that first cross the right edge below Rk for some i  k.
Then, if the vector originates from some Lj , we know that the vector must have originated at Lk�2
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or before, or else it would have slope shallower than the aspect ratio. However, this vector must
cross at least three horizontal distances and therefore violates Condition �. Thus, in this case, the
vector must originate from some Rj . In particular, to avoid violating Condition �, it must originate
from Rk�1 or Rk�2. However, in either case, the vector must pass through the horizontal edge to
the left of Lk after passing through the vertical edge to avoid violating Condition �. Thus if the
vector begins at Rk�2, we have

a � hk�1 + hk + hk�1 > 1 + h1 + hi�1

We deduce that Condition � is violated, and we are left with vectors beginning at Rk�1. Such
a vector may only travel 2 horizontal distances without violating Condition �, so it must end at
either Lk or Rk�1 upon passing through the horizontal edge to the left of Lk. If it were to end at Lk

it would have slope greater than �, violating Condition �. The only remaining option, the vector
ending at Rk�1, is the same as the vector connecting Rk�2 and Rk lying within the staircase, which
we have previously eliminated.

Subcase �.�. Now let us address the special cases of vectors passing through edges at the ends
of the staircase.

Subsubcase �.�.�. The vectors that pass through the edge between L0 and R0 will first be
eliminated. Consider the point where such a vector next intersects an edge of S0 or terminates at a
vertex after passing through the aforementioned horizontal edge. Such a vector that proceeds to
intersect a horizontal edge to the left of some Lk or terminate at some Lk has a larger slope than
⌫k�1, meaning it violates Condition �. On the other, if such a vector proceeds to intersect a vertical
edge below some Rk or end at some Rk for k < i, then it has larger a value and smaller slope
than �i�1, meaning it violates Condition �. This leaves vectors which, after passing through the
horizontal edge between L0 and R0, intersect a vertical edge below some Rk with k � i or reach
the opposite end of S0. In this case, we have:

a � 1 + h1 + hk > 1 + h1 + hi�1,

whence Condition � is violated.
Subsubcase �.�.�. When n is even, we must consider the special case of saddle connections

crossing the vertical edge below Ln/2. Let k = n/2 � 1. Notice that such a vector necessarily
crosses hk > hi�1 at least twice. Such a vector cannot travel more than 2 horizontal distances or
else it would violate Condition �.

Thus, such a vector must either start at Rk�1 or Lk. If the vector starts at Rk�1, then it must be
steeper than �k�1, which is at least as steep as �i, meaning such vectors fail Condition �. Now,
suppose that the vector starts at Lk. Then the vector must end at Lk+1 or Rk after traversing hk
twice (steeper vectors have slope greater than �, violating Condition �). In the first case, the slope
of the vector is at most the aspect ratio, which means it violates Condition �. In the second case,
we have:

b/a =
vk + vk�1

2hk
>

vk�1

hk
Thus this vector has a higher slope than �k, which has slope at least as steep as �i, meaning
Condition � is violated.

Subsubcase �.�.�. We must also consider a special case when n is odd.
In this case, we must eliminate saddle connections crossing the horizontal edge to the right of

L(n�1)/2. Let k = (n� 3)/2. First of all, notice that any such vector crosses the horizontal distance
hk+1 > hi�1, meaning that any such vector which travels horizontally across at least � rectangles
violates Condition �. Furthermore, vectors which start at Rk have larger slope than �k and thus fail
Condition �. Thus we are left with vectors beginning at Lk and Rk�1, which must end at Rk+1 to
avoid violating Condition �. Both of these vectors have larger slope than �k+1, violating Condition
�.
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Finally, note that the vectors �i do indeed have positive slope vi�1/hi and is such that 0 <
a+ by  1:

a+ by = hi + vi�1y > hi + vi�1

✓
1� hi�1

vi�2

◆

=
vi�2vi�1 + vi�2vi + vi�1 � vi�2vi�1 � v2

i�1

vi�2

=
vi�1 � 1

vi�2
> 0.

On the other hand,

a+ by = hi + vi�1y  hi + vi�1

✓
1� hi
vi�1

◆
= 1

Thus we have shown that for 1 < i  dn/2e � 1, �i wins on Pn�i+1 \ {x = 1}.
Case �. We finally show that �1 wins on Pn \ {x = 1}.

We first establish bounds on the horizontal length of a candidate vector
✓
a
b

◆
if it were to win

over �1. In order to satisfy Condition �, we must have that 1�a

b
> �h1, or equivalently, a < 1+h1b.

Condition � stipulates that a/b > h1, so
h1b < a < 1 + h1b.

For any
✓
a
b

◆
satisfying the above conditions, the endpoint of the saddle connection must be a

distance of between 0 and 1 to the right of a line of slope 1/h1 passing through the starting vertex

of
✓
a
b

◆
. So let us consider the lines of slope 1/h1 passing through each vertex of the staircase.

The line of slope 1/h1 beginning at Li travels within the staircase to Ri+2, as using trigonometric
identities gives us that

(hi�1 + hi + hi+1)

hi
= h1.

This equation also shows that the line of slope 1/h1 beginning at Ri with i > 0 passes through
the vertical edge below Ri+1, then through the horizontal edge to the left of Li+1, then through the
vertical edge below Ri, before intersecting Li, as this saddle connection has the same holonomy
vector (and thus slope) as the one connecting Li and Ri+2. For i = 0, the line of slope 1/h1
beginning at Ri simply connects directly to R1.

Now we observe that there are no vertices with horizontal distance between 0 and 1 to the right
of the lines of slope 1/h1 described above. The vertex Ri+1 is horizontally at least distance 1 to the
right of the line from Li. We show that

vih1 + 1  hi + hi+1.

We first compute that

hi + hi+1 � vih1 � 1 = csc
⇣⇡
n

⌘
sin

✓
⇡(i+ 1)

n

◆
� 1.

Notice that for fixed n, when i = 0, this expression evaluates to 0. Moreover, the partial derivative
with respect to i is

⇡ csc
�
⇡

n

�
cos
⇣
⇡(i+1)

n

⌘

n
,
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which is strictly positive for i  n/2� 1 (which is indeed true for our purposes).
Therefore,

hi + hi+1 � vih1 � 1 � 0

for all relevant i, meaning that
vih1 + 1  hi + hi+1.

This calculation also shows the vertex Li+1 is horizontally at least distance 1 to the right of the
line from Ri. All other vertices are horizontally at least some distance hj � 1 to the right of the
lines from each Li or Ri described above.

The only special case we have failed to consider above is when the lines constructed above pass
through the upper edge of the staircase shape. For even n, the following calculation shows that the
line of slope 1/h1 from Ln/2�2 passes through the vertical edge below Ln/2 once before intersecting
Ln/2, as through trigonometric identities, we can verify that

h1(vn/2�2 + vn/2�1) = hn/2�2 + 2hn/2�1.

The above calculation also shows that the line of slope 1/h1 through Ln/2�1 passes through the
vertical face below Ln/2, then passes through the horizontal face to the left of Ln/2, then passes
through the vertical face below Rn/2�1, before ending at Ln/2�1, because this saddle connection
has the same holonomy vector as the one described immediately before. Again, notice that there
are no vertices with horizontal distance between 0 and 1 to the right of the lines described above.
By the following calculation, the vertex Ln/2 is horizontally at least distance 1 to the right of the
line from Ln/2�1. We show that

h1vn/2�1 + 1  2hn/2�1

by proving the equivalent inequality
2hn/2�1 � h1vn/2�1 � 1 � 0.

Using the definitions of hi and vi, we have

2hn/2�1 � h1vn/2�1 � 1 =
1

2

⇣
tan

⇣ ⇡

2n

⌘
+ cot

⇣ ⇡

2n

⌘
� 2
⌘
.

Note that we must have n > 2. Evaluating the above expression at n = 2 gives us
2h2/2�1 � h1v2/2�1 � 1 = 0.

Moreover, the derivative of this expression with respect to n is
⇡
�
csc2

�
⇡

2n

�
� sec2

�
⇡

2n

��

4n2
,

and since csc
�

⇡

2n

�
� sec

�
⇡

2n

�
whenever n � 2, the derivative is positive for all n � 2, meaning that

we can conclude
2hn/2�1 � h1vn/2�1 � 1 � 0,

and hence the desired inequality follows. All other vertices are horizontally at least some distance
hj � 1 to the right of the lines from each Li or Ri described above, or have been addressed in the
earlier cases ignoring the edges at the upper end of S0.

For odd n, the following calculation shows that the line of slope 1/h1 from Lbn/2c�1 passes
through the horizontal face to the right of Lbn/2c, then intersects Lbn/2c. Using trigonometric
identities, we can verify that

2h1vbn/2c�1 = 2hbn/2c�1 + hbn/2c.

As before, all other vertices are horizontally at least some distance hj � 1 to the right of the line
from each Li or Ri, or have been addressed in the earlier cases in which the edges at the upper end
of S0 were ignored.
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Thus, for every vertex in the staircase, there is no
✓
a
b

◆
beginning at that vertex and ending at

another vertex such that h1b < a < 1 + h1b. We conclude that �1 wins in the region of ⌦1 with
x = 1 and �h1 < y  1� h1.

Finishing Touches. Our case work gives us that the �i vectors for 1  i  n are exactly the set
of saddle connection vectors which win at points (1, y) 2 ⌦1. By Lemma A.�, the �i vectors are
therefore the complete set of vectors which win at any point in ⌦1.

Now, in order to completely describe the return time on ⌦1, we must simply determine which
�i wins over the other �j vectors at each point in ⌦1.

By Lemma A.�, we know that the �i vectors are in order of decreasing slope, so the vector which
wins at (x, y) 2 ⌦1 is �i with maximal i such that ax + by  1. Well, �n has the maximal i value

among the all �i vectors, so �n =

✓
h1
1

◆
wins at every (x, y) 2 ⌦1 with h1x+ y  1; this is exactly

the region Pn. Thus the return time at (x, y) will be the slope of Mx,y�n, which is
v0

x(h1x+ v0y)
.

For bn/2c+2  i < n, �i = �n�i+1 wins at every point (x, y) 2 ⌦1 withhn�i+1x+yvn�i  1where�j

for j > idoes not satisfy the same condition, or equivalently, hn�j+1x+yvn�j > 1 for i < j  n. For
j < k < n and for all (x, y) 2 ⌦1, if hn�j+1x+ yvn�j > 1 and h1x+ y > 1 then hn�k+1x+ yvn�k > 1
as well, meaning that the above conditions can be simplified to hn�ix+yvn�i�1 > 1 and h1x+y > 1,
which along with the aforementioned condition hn�i+1x+ yvn�i  1 exactly defines Pi. Thus the
return time at (x, y) will be the slope of Mx,y�i, which is

vn�i

x(hn+1�ix+ vn�iy)
.

For i = bn/2c + 1, �i = ⌫bn/2c�1 wins at every point (x, y) 2 ⌦1 with hbn/2c�1x + yvbn/2c�1  1
where �j for j > i does not satisfy the same condition, or equivalently, hjx + yvj�1 > 1 for all
1  j < dn/2e. As noted earlier, this condition can be simplified to hdn/2e�1x+ yvdn/2e�2 > 1 and
h1x + y > 1, which along with the aforementioned condition hbn/2c�1x + yvbn/2c�1  1 exactly
defines Pi. Thus the return time for (x, y) 2 Pi will be the slope of Mx,y�i, which is

vbn/2c�1

x(hbn/2c�1x+ vbn/2c�1y)
.

For 1 < i  bn/2c, �i = ⌫i�2 wins at every point (x, y) 2 ⌦1 with hi�2x + yvi�2  1 where �j for
j > i does not satisfy the same condition, or equivalently, hjx+yvj > 1 for all j > i, hjx+yvj�1 > 1
for all 1  j < dn/2e. For j < k and for all (x, y) 2 ⌦1, if hjx + yvj > 1 and h1x + y > 1 then
hkx+ yvk > 1 as well, and if hjx+ yvj > 1 for any j then hk+1x+ yvk > 1 for all k, meaning that
the above conditions can be simplified to hi�2x + yvi�2  1, hi�1x + vi�1y > 1, and h1x + y > 1.
These conditions together exactly describe the region Pi. Thus the return time for (x, y) 2 Pi will
be the slope of Mx,y�i, which is

vi�2

x(hi�2x+ vi�2y)
.

Now the only � vector that remains is �1 =

✓
0
1

◆
. Since this vector has higher slope than all other

� vectors, it can only win within the region ⌦1 \
S

i>1 Pi, which is exactly P1. �1 wins throughout
P1 because 0 · x+1 · y = y  1 at every point in P1. Thus the return time for (x, y) 2 P1 will be the
slope of Mx,y�1, which is

1

xy
.
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