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Abstract—P4 (Programming Protocol-Independent 
Packet Processors) represents a paradigm shift in 
network programmability by providing a high-level 
language to define packet processing behavior in 
network switches/devices. The importance of P4 lies in 
its ability to overcome the limitations of OpenFlow, the 
previous de facto standard for software-defined 
networking (SDN). Unlike OpenFlow, which operates on 
fixed match-action tables, P4 offers an approach where 
network operators can define packet processing 
behaviors at various protocol layers. P4 provides a 
programmable platform to create and implement custom 
network switches/devices protocols. However, this opens 
a new attack surface for threat actors who can access P4-
enabled switches/devices and manipulate custom 
protocols for malicious purposes. Attackers can craft 
malicious packets to exploit protocol-specific 
vulnerabilities in these network devices. This ongoing 
research work proposes a blockchain-based model to 
secure P4 custom protocols. The model leverages the 
blockchain’s immutability, tamperproof ability, 
distributed consensus for protocol governance, and 
auditing to guarantee the transparency, security, and 
integrity of custom protocols defined in P4 
programmable switches.  The protocols are recorded as 
transactions and stored on the blockchain network. The 
model's performance will be evaluated using execution 
time in overhead computation, false positive rate, and 
network scalability. 

 

Keywords—Programming Protocol-Independent Packet 
Processors (P4) Switches, SDN, OpenFlow, Blockchain, 
Programmable Networks 

I. INTRODUCTION 
In recent years, network programmability has emerged 

as a transformative concept in networking, enabling 
unprecedented flexibility and control over network 
behavior. The emergence of the P4 (Programming Protocol-
Independent Packet Processors) language has revolutionized 
the way network engineers design and deploy custom 
protocols in network switches/devices, offering significant 
innovations and opportunities for network programmability. 
Essentially, P4 programmable switches have removed the 
entry barrier to network design, previously reserved for 
network vendors [1]. 

P4 brings a paradigm shift by allowing network 
engineers to define the forwarding behavior of packets in a 
highly customizable and protocol-independent manner. P4 is 
currently the most widespread abstraction, programming 

language, and concept for data plane programming; that was 
first published as a research paper in 2014 and is now 
developed and standardized in the P4 Language Consortium 
[2]. With P4, engineers can tailor network protocols to meet 
specific requirements, optimize performance, and introduce 
new functionalities. These custom protocols are specifically 
designed to address unique use cases or scenarios that 
cannot be fully achieved with traditional, standardized 
protocols. 

Creating custom protocols in P4-enabled 
switches/devices involves a multi-step process. This process 
begins by defining the desired protocol, specifying the 
packet format and the intended behavior. The P4 codes 
utilize the high-level language constructs offered by P4 to 
describe the packet parsing, header modifications, 
forwarding tables, and actions. The compiled P4 program is 
installed onto the P4-enabled switch/device, enabling the 
custom protocol’s execution and behavior. An example of a 
custom protocol is the P4-KBR (P4 Key-Based Routing) 
which defines a network-level routing protocol where 
endpoints are identified by virtual identifiers (keys) instead 
of traditional IP addresses, and P4 network elements are 
configured to route packets adequately [3]. 

The custom protocols are created to optimize network 
performance by tailoring products to specific traffic patterns 
or application requirements or to achieve load balancing 
among switches [4]. Additionally, specialized functionalities 
or modifications can be introduced to the existing protocols, 
enhancing network capabilities, such as security, Quality of 
Service (QoS), or multicast support. Custom protocols allow 
the designing of highly adaptable networks to dynamic 
environments and specific use cases. 

However, the openness and programmability offered by 
custom protocols also raise concerns regarding security and 
potential misuse by threat actors. Malicious actors may 
exploit vulnerabilities within the custom protocol 
implementations if they gain unauthorized access to P4-
enabled switches/devices. Exploitation could lead to 
disruptions in network operations, unauthorized access to 
sensitive information, or manipulation of network traffic 
flows. 

To address these security challenges, we propose a 
blockchain-based solution to ensure the integrity and 
availability of the custom protocols. The proposed solution 
relies on the tamperproof ability, decentralization nature, 
and data immutability capability to ensure transparency, 
integrity, and resistance against protocol tampering. 
Decentralized consensus mechanisms provide governance 
and auditing capabilities, ensure protocol changes' 
authenticity, and mitigate unauthorized modifications. 
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Fig. 1: Data Plane with PISA model
  
Therefore, the objectives of the research can be 

summarized as follows: 
• To propose a blockchain-based architecture for 

custom protocols security in P4 switches 

• The proposed solution will ensure the integrity, 
transparency, and resistance to tampering of the 
custom protocols. 

• The proposed model can promptly detect 
malicious activities on the custom protocol by 
invoking the smart contract verification module 
at regular intervals. 

• The solution will not introduce extra overhead 
on the P4 switches as it performs its verification 
in the blockchain network at the control plane. 

The rest of this paper is structured as follows: Section II 
describes the background and related works. In section III, 
we describe the methodology and the proposed architecture. 
Section IV presents the performance metrics to evaluate our 
proposed solution. Finally, in section V, we present our 
conclusions and further work to be done. 
 

II. BACKGROUND AND RELATED WORK 

A. Programming Protocol-Independent Packet Processors 
(P4) 

P4 is a high-level programming language for 
programming data plane network devices like switches, 
routers, and network interface cards (NICs). P4 represents a 
similar approach to how central processing unit (CPU), 
graphics processing unit (GPU), or digital signal processor 
(DSP) work, where they execute code written in a specific 
programming language (e.g., C++ for CPU, OpenCL for 
GPU, or MATLAB for DSP); In this way, P4 can be 
compiled against different execution machines like field-
programmable gate array (FPGA), application-specific 
integrated circuit (ASICs), or network processors [5]. It 
provides a high-level abstraction that allows network 
operators and researchers to define the packet processing 
behavior in network switches and other network devices. 

The P4 language allows network operators to define their 
packet processing logic independently of the specific 
networking protocols used. Hence, programmers can create 
target-independent programs that a compiler can map to 
various forwarding devices [6]. The programmer can define 
and parse new protocols, customize packet-processing 

functions, measure events occurring in the data plane, and 
inspect and analyze each packet. The idea of P4 was initially 
born in 2013, and the first formal specification of the P4 
language was released in 2014, called P414. After that, an 
updated specification, P416, was released in 2016 [7].  

B. P4 Architectures and Programmable Switches 
P4 architectures refer to how the target device is designed 

so that the compiler can properly compile the program to the 
device. The concept of various “architectures” types came 
up with the introduction of P416. This is because when the 
previous version, P414, was designed, it assumed it would be 
used only for switches based on the PISA (Protocol 
Independent Switching Architecture) model. Hence, P416 
overcomes this limitation by embracing architectural 
heterogeneity [8]. 
PISA presented the first answer to the need for data plane 
programmability. It is an architecture for high-speed 
programmable packet forwarding switches [8]. 
 
Fig. 1 presents the components that make up PISA. These 
include a programmable parser, match-action pipeline, and 
programmable deparser. 

• Programmable Parser: packet processing in the 
programmable data plane starts with a 
programmable parser responsible for extracting 
relevant header fields from the incoming packets to 
set them as input for the match-action units. The 
parser allows the programmer to define custom or 
standard header protocols. After the packet is 
parsed into individual headers, it can be used for 
the algorithm execution in the match-action 
pipeline [9].  

• Programmable Match-Action Pipeline: This 
sequence of several match-action stages consists of 
memory and arithmetic logic units. Here, some 
fields in the incoming parsed packet headers are 
compared with values in the memory table to see if 
there is a match and then perform some action 
based on the matching condition. Some of the 
activities performed include modifying packet 
headers or dropping the packet. The match-action 
pipeline can have 10 to 15 stages, containing 
multiple match-action units in both the ingress and 
egress stages. It is also possible to run part of an 



application’s logic here [9], such as analyzing and 
dropping packets for attack signatures. 

• Programmable Deparser: The final output of the 
match-action pipeline is fed to the deparser, which 
reassembles the packet, including new or modified 
headers, and serializes them for transmission. 

 
As more programmable devices were built, it became 

clear that P416 had outgrown the PISA model. So the P4 
community introduced the Portable Switch Architecture 
(PSA), which was created to abstract the hardware pipeline 
so that P4 developers need not worry about the specifics of 
the target device when programming the data plane, but 
allow the compiler to execute and map the program to the 
specific target device [10]. 
As shown in Fig. 2, PSA consists of six (6) P4 
programmable blocks and two (2) fixed-function blocks. The 
behavior of the programmable blocks is specified using P4. 
The Packet Buffer and Replication Engine (PRE) and the 
Buffer Queueing Engine (BQE) are target-dependent 
functional blocks that may be configured for a fixed set of 
operations [11]. As an analogy, the PSA is to the P416 
language as the C standard library is to the C programming 
language [11]. 

From Fig. 1 and 2, it can be observed that the six (6) 
programmable blocks in the PSA pipeline are analogous to 
two PISA models, with the first three (3) representing an 
“ingress PISA” and the last three (3), an “egress PISA.” This 
means that when the packets reach the switch, they get 
processed via the ingress parser, ingress pipeline, and ingress 
deparser before they are sent to the PRE. After that, they get 
processed again via the egress parser, egress pipeline, and 
egress deparser and then forwarded to the BQE. 

C. Blockchain 
Blockchain is a decentralized ledger that records 

transactions or activity between participants permanently 
with verification. This verification comes in the form of 
reviewing cryptographic functions and timestamps. The 
transactions can be verified on multiple computers, which 
are called nodes. A good example is BitTorrent [12], which 
is a peer-to-peer file-sharing protocol that does not rely on 
any one server, company, or entity to work. 

Blockchains have been extensively used as a security 
solution in many areas. The authors in [13] leveraged 
blockchain’s distributive technology, tamper-proof ability, 
and immutability to detect and prevent malicious activities 
and solve data consistency problems facing cooperative 
intrusion detection. In healthcare, [14] used blockchain 
technology as a decentralized record management system to 
handle Electronic Health Records (EHRs), giving patients a 
comprehensive immutable log and easy access to their 
medical information across providers and treatment sites. 
The authors in [15] proposed blockchain as a decentralized 
application for secure authentication in fog and IoT 
environments. [16] proposed a security architecture that 
integrates blockchain and multi-controller software-defined 
networks to deal with network attacks like false data 
injection.   

Cryptography and hash functions are the most integral 
things securing the blockchain. Public key cryptography is 

the foundation for how digital wallets work, how tokens are 
traded, how identity is verified, and is used to create 
verifiable historical records of transactional data. Generally, 
the public key generates the wallet address, while the private 
key signs transactions to confirm it is genuinely from the 
address. The hash function creates data that is recorded to 
the blockchain, making any change to a single piece of data 
easily identifiable. Some of the important properties of these 
hash functions are irreversibility and the impossibility of 
collision – it is extremely unlikely that two different inputs 
to a hash function produce the same output. Each block in 
the chain contains the previous block’s hash, meaning every 
block is linearly connected back to the original Genesis 
block. The difficulty in changing a single block and finding 
valid hashes for all subsequent blocks makes blockchain 
nearly immutable [16]. 
 

D. Related Work 
There are various security concerns in programmable 

networks generally because each plane can serve as an 
attack surface. For example, when considering the control 
plane of a programmable network, the centralized controller 
can present a potential single point of failure, making it 
attractive to denial-of-service (DoS) attacks [17]. With 
respect to the application layer, applications can be 
malicious if an adversary takes control of it and then injects 
malicious application flows into the control plane via the 
northbound API calls. 

However, the security focus for this paper is on the 
programmable data plane. P4 provides a programmable data 
plane that allows the creation of custom protocols and 
implement them in network switches. However, this also 
opens a new attack surface for threat actors who can gain 
access to P4-enabled switches and hijack custom protocol 
implementations for malicious purposes. Attackers can 
easily trigger injection attacks by creating specially crafted 
packets or exploiting other protocol-specific vulnerabilities 
in these network devices. Several research efforts have 
focused on addressing the security challenges in P4 data 
plane networks. 

In [18], the authors proposed using formal verification 
techniques, such as model checking and theorem proving, to 
ensure the correctness and security of P4 programs. Their 
solution is internal and considers the P4 program internally 
before execution. A security-aware compiler design is 
proposed to improve the security of P4 programmable 
networks [19]. This could involve incorporating security 
checks and constraints into the compilation process to 
ensure that P4 programs comply with security policies. 
Although the solution proposed in [19] is similar to ours, the 
difference is that their solution focused on the compilation 
process. While ours is centered on the integrity of the user-
defined protocols. Researchers have also proposed some 
network-level security measures, such as intrusion detection 
and prevention systems, firewalls, and secure 
communication protocols to protect P4 programs from 
external threats [20]. Many of these tools can generate high 
false positives, which may affect their effectiveness. 

 
 



Fig. 2: PSA Pipeline
 
Our proposed solution is specifically aimed at 

overcoming these security problems by using blockchain for 
verifying and guaranteeing the integrity of P4 protocols. 

III. METHODOLOGY 
The proposed solution focuses on securing the custom 

protocols defined in the programmable data plane P4 
switches. These user-defined protocols are created either as 
new protocols or by modifying existing standard protocols 
like ethernet, IP, MPLS, etc. These user-defined protocols 
can be modified or updated from the control plane of the P4 
switches. Any update on the custom protocol directly affects 
how the P4 data process packets. Our solution introduces a 
blockchain network to the control plane, as shown in Fig. 3. 
Due to the computational overhead the blockchain network 
may introduce, the setup is run outside the control plane of 
the P4 switches so that many controllers can be part of the 
network. The solution is built on the Ethereum blockchain 
platform. Ethereum blockchain handles many concurrent 
transactions; the latest version runs PoS as against the PoW 
consensus algorithm run by the older version. This makes it 
faster and more scalable [21]. It is an open-source 
blockchain-based distributed computing featuring smart 
contracts. The smart contract is an agreement among 
consortium members that is stored on the chain and run by 
all participants[22]. Although the Ethereum platform 
blockchain platform is considered a public blockchain, in this 
work, we configured it to exhibit the characteristic of a 
private blockchain network as done in our previous work 
[21].  The solution is considered a private blockchain 
because only permissioned controllers can join and 
participate in the network.  

The architecture consists mainly of two operations: 
Protocol Verification and Protocol Governance, as shown in 
Fig. 3.  

 
Fig. 3: Architecture of the Proposed Blockchain-based System for Securing 
P4 Custom Protocols  

A. Protocol Verification 
The smart contract handles the protocol verification 

process. The protocol verification step ensures that all 
malicious activities on user-defined protocols running in the 

P4 switches are identified and thwarted, thereby ensuring 
the integrity of the P4 protocols. The verification also 
ensures that any submitted transaction's integrity and 
consistency are verified before attaching it to the blockchain 
network. In this architecture, the smart contract guarantees 
that malicious intentions or errors do not manipulate the P4 
protocols by constantly comparing a copy with what is 
stored in the blockchain. We implement a transaction access 
control policy in the private network. This means the 
architecture verifies both the node submitting the transaction 
and the transaction submitted. Authenticating a transaction 
requires that the smart contract invokes a code that 
compares transaction accompanying information with stored 
information.  

Here, a copy of the custom protocols defined in the P4 
switch is recorded as transactions and stored in the 
blockchain network. At a predefined regular interval, a 
blockchain node (controller) extracts a copy of the running 
protocol, which we denote as a “challenge request”. The 
challenge request is prepared as a transaction and submitted 

to the blockchain network. On receiving the transaction, the 
smart contract verifies the authenticity of the running 
protocol by comparing the hash with the stored hash. If the 
hashes are the same, the transaction is discarded. However, if 
the hashes are different, the transaction is pushed to the 
transaction validation stage [23], and this triggers the smart 
contract alert module, which informs the 
administrator/Network engineer about possible manipulation 
of the running protocol while pushing a copy to other 
controllers via a new block of the blockchain. The 
Administrator/ network engineer reviews the alert and takes 
necessary action. This action can be that the administrator 
informs the parser in the data plane to drop the traffic, 
thereby enforcing security policies.  The smart contract keeps 
monitoring the hash of the submitted transaction for prompt 
detection of malicious activities on the custom protocols 
running on the P4 switches. The pseudocode below 
(Algorithm 1) describes the snippet of how the smart contract 
handles protocol verification. 

 

 
  
  
 

 
 
 
  
  
 

 
  
  
 

 
 
 
  
  
 

     
 

     
 

     
 

     
 

        

            
        

            
        

             

               

          
       

        
          

        
            

        
            

       
     

            
          



B. Protocol Governance 
Besides detecting malicious activities, the proposed 

architecture can accept new custom protocols or 
modifications to existing ones via the consensus mechanism. 
The following steps ensure the protocol governance of the 
P4 custom protocols:   

• Protocol definition: the P4 custom protocols are 
defined clearly by the developer or network 
operator as is or will be in the P4 programmable 
switch. 

• Hashing: cryptographic hash of the protocol is 
generated, which represents the unique fingerprint 
of the protocol and ensures its integrity. 

• Consensus mechanism: an appropriate consensus 
mechanism, like Proof of Stake (PoS), is chosen to 
govern how the nodes agree on the validity and 
ordering of protocol updates. 

• Blockchain storage: the hash of the protocol is 
stored on the blockchain, and each time a protocol 
update is proposed and accepted, a new hash is 
recorded. 

The protocol governance can be transparently managed 
by leveraging the consensus mechanism and 
blockchain. 

IV. PERFORMANCE METRICS 
The proposed architecture is implemented on an Ethereum 
blockchain platform. We use Solidity v 0.8.17 
implementation for smart contracts and geth v 1.12.0 for 
Ethereum. For initial proof-of-concept testing, the private 
blockchain network will be set up in the laboratory with 
three computers serving as blockchain nodes (controllers) 
(Fig. 1) to evaluate performance. Some key performance 
metrics will be evaluated to implement the feasibility of the 
proposed solution. These metrics are utilized in the 
implementation of the solution. Three key performance 
metrics to evaluate the efficiency of the proposed solution 
are: 

A. Rate of False positives 
The rate of false positives is calculated as the ratio between 
the number of negative events wrongly categorized as 
positive (false positives) and the total number of actual 
negative events (regardless of classification). In this 
concept, we define a false positive rate as the percentage of 
times the architecture fails to alert the administrator when it 
is supposed to. If the custom protocols have been tampered 
with or modified for malicious intents, the blockchain node 
should be able to detect it based on the hash comparison 
with what was stored in the blockchain. 

B. Detection  time 
We define the detection time as the time taken to decide on 
any transaction sent to the blockchain. This time spans from 
the transaction preparation time to the time the administrator 
receives an alert (in case of malicious activities). The 
following data are collected from each transaction to 
implement the detection time. 

• Transaction deployment time (t1): This is the time a 
transaction is submitted to the network. These data 
are collected directly from the sender console. 

• Execution time (t2): This is the time taken before an 
administrator receives an alert about possible 
protocol manipulation. The time is retrieved by 
setting on current time on all node consoles. 

C. Scalability 
We will evaluate the change in the detection time of the 
proposed solution with an increasing number of P4 
switches. This will enable us to know the relationship 
between the size of the P4 data plane and the blockchain 
performance. It will estimate the maximum number of 
switches that can tolerate an acceptable blockchain 
performance. 

V. CONCLUSION 
The advent of a programmable data plane comes with its 

security challenges. In this project, a blockchain-based 
security solution was proposed to tackle integrity issues of 
custom user-defined P4 protocols in the data plane. We 
proposed a blockchain network outside the control plane to 
avoid the additional overhead that may be introduced to the 
network by blockchain technology. With controllers as 
blockchain nodes, a copy of the running protocol is stored in 
the blockchain network. A challenge request is regularly 
prepared and sent to the blockchain for integrity 
confirmation.  The smart contract verifies the transaction by 
comparing the hash of the submitted transaction to the 
stored value. The transaction is only pushed to the validation 
stage, and alerts are sent to the administrator, if the 
challenge information is different from the stored value else, 
discard the transaction. 

Future Work 
• Implement the performance metrics and 

evaluate the results. 
• Implement and evaluate the performance of the 

solution using P4 switches. 
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