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Abstract—P4  (Programming  Protocol-Independent
Packet Processors) represents a paradigm shift in
network programmability by providing a high-level
language to define packet processing behavior in
network switches/devices. The importance of P4 lies in
its ability to overcome the limitations of OpenFlow, the
previous de facto standard for software-defined
networking (SDN). Unlike OpenFlow, which operates on
fixed match-action tables, P4 offers an approach where
network operators can define packet processing
behaviors at various protocol layers. P4 provides a
programmable platform to create and implement custom
network switches/devices protocols. However, this opens
a new attack surface for threat actors who can access P4-
enabled switches/devices and manipulate custom
protocols for malicious purposes. Attackers can craft
malicious  packets to exploit protocol-specific
vulnerabilities in these network devices. This ongoing
research work proposes a blockchain-based model to
secure P4 custom protocols. The model leverages the
blockchain’s  immutability, tamperproof ability,
distributed consensus for protocol governance, and
auditing to guarantee the transparency, security, and
integrity of custom protocols defined in P4
programmable switches. The protocols are recorded as
transactions and stored on the blockchain network. The
model's performance will be evaluated using execution
time in overhead computation, false positive rate, and
network scalability.
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I. INTRODUCTION

In recent years, network programmability has emerged
as a transformative concept in networking, enabling
unprecedented flexibility and control over network
behavior. The emergence of the P4 (Programming Protocol-
Independent Packet Processors) language has revolutionized
the way network engineers design and deploy custom
protocols in network switches/devices, offering significant
innovations and opportunities for network programmability.
Essentially, P4 programmable switches have removed the
entry barrier to network design, previously reserved for
network vendors [1].

P4 brings a paradigm shift by allowing network
engineers to define the forwarding behavior of packets in a
highly customizable and protocol-independent manner. P4 is
currently the most widespread abstraction, programming

language, and concept for data plane programming; that was
first published as a research paper in 2014 and is now
developed and standardized in the P4 Language Consortium
[2]. With P4, engineers can tailor network protocols to meet
specific requirements, optimize performance, and introduce
new functionalities. These custom protocols are specifically
designed to address unique use cases or scenarios that
cannot be fully achieved with traditional, standardized
protocols.

Creating custom protocols in P4-enabled
switches/devices involves a multi-step process. This process
begins by defining the desired protocol, specifying the
packet format and the intended behavior. The P4 codes
utilize the high-level language constructs offered by P4 to
describe the packet parsing, header modifications,
forwarding tables, and actions. The compiled P4 program is
installed onto the P4-enabled switch/device, enabling the
custom protocol’s execution and behavior. An example of a
custom protocol is the P4-KBR (P4 Key-Based Routing)
which defines a network-level routing protocol where
endpoints are identified by virtual identifiers (keys) instead
of traditional IP addresses, and P4 network elements are
configured to route packets adequately [3].

The custom protocols are created to optimize network
performance by tailoring products to specific traffic patterns
or application requirements or to achieve load balancing
among switches [4]. Additionally, specialized functionalities
or modifications can be introduced to the existing protocols,
enhancing network capabilities, such as security, Quality of
Service (QoS), or multicast support. Custom protocols allow
the designing of highly adaptable networks to dynamic
environments and specific use cases.

However, the openness and programmability offered by
custom protocols also raise concerns regarding security and
potential misuse by threat actors. Malicious actors may
exploit vulnerabilities within the custom protocol
implementations if they gain unauthorized access to P4-
enabled switches/devices. Exploitation could lead to
disruptions in network operations, unauthorized access to
sensitive information, or manipulation of network traffic
flows.

To address these security challenges, we propose a
blockchain-based solution to ensure the integrity and
availability of the custom protocols. The proposed solution
relies on the tamperproof ability, decentralization nature,
and data immutability capability to ensure transparency,
integrity, and resistance against protocol tampering.
Decentralized consensus mechanisms provide governance
and auditing capabilities, ensure protocol changes'
authenticity, and mitigate unauthorized modifications.
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Fig. 1: Data Plane with PISA model

Therefore, the objectives of the research can be
summarized as follows:

e To propose a blockchain-based architecture for
custom protocols security in P4 switches

e The proposed solution will ensure the integrity,
transparency, and resistance to tampering of the
custom protocols.

e The proposed model can promptly detect
malicious activities on the custom protocol by
invoking the smart contract verification module
at regular intervals.

e The solution will not introduce extra overhead
on the P4 switches as it performs its verification
in the blockchain network at the control plane.

The rest of this paper is structured as follows: Section 11
describes the background and related works. In section III,
we describe the methodology and the proposed architecture.
Section IV presents the performance metrics to evaluate our
proposed solution. Finally, in section V, we present our
conclusions and further work to be done.

II. BACKGROUND AND RELATED WORK

A. Programming Protocol-Independent Packet Processors
(P4)

P4 is a high-level programming language for
programming data plane network devices like switches,
routers, and network interface cards (NICs). P4 represents a
similar approach to how central processing unit (CPU),
graphics processing unit (GPU), or digital signal processor
(DSP) work, where they execute code written in a specific
programming language (e.g., C++ for CPU, OpenCL for
GPU, or MATLAB for DSP); In this way, P4 can be
compiled against different execution machines like field-
programmable gate array (FPGA), application-specific
integrated circuit (ASICs), or network processors [5]. It
provides a high-level abstraction that allows network
operators and researchers to define the packet processing
behavior in network switches and other network devices.

The P4 language allows network operators to define their
packet processing logic independently of the specific
networking protocols used. Hence, programmers can create
target-independent programs that a compiler can map to
various forwarding devices [6]. The programmer can define
and parse new protocols, customize packet-processing

functions, measure events occurring in the data plane, and
inspect and analyze each packet. The idea of P4 was initially
born in 2013, and the first formal specification of the P4
language was released in 2014, called P44. After that, an
updated specification, P41, was released in 2016 [7].

B. P4 Architectures and Programmable Switches

P4 architectures refer to how the target device is designed
so that the compiler can properly compile the program to the
device. The concept of various “architectures” types came
up with the introduction of P4s. This is because when the
previous version, P44 was designed, it assumed it would be
used only for switches based on the PISA (Protocol
Independent Switching Architecture) model. Hence, P46
overcomes this limitation by embracing architectural
heterogeneity [8].
PISA presented the first answer to the need for data plane
programmability. It is an architecture for high-speed
programmable packet forwarding switches [8].

Fig. 1 presents the components that make up PISA. These
include a programmable parser, match-action pipeline, and
programmable deparser.

o  Programmable Parser: packet processing in the
programmable data plane starts with a
programmable parser responsible for extracting
relevant header fields from the incoming packets to
set them as input for the match-action units. The
parser allows the programmer to define custom or
standard header protocols. After the packet is
parsed into individual headers, it can be used for
the algorithm execution in the match-action
pipeline [9].

o  Programmable Match-Action Pipeline: This
sequence of several match-action stages consists of
memory and arithmetic logic units. Here, some
fields in the incoming parsed packet headers are
compared with values in the memory table to see if
there is a match and then perform some action
based on the matching condition. Some of the
activities performed include modifying packet
headers or dropping the packet. The match-action
pipeline can have 10 to 15 stages, containing
multiple match-action units in both the ingress and
egress stages. It is also possible to run part of an



application’s logic here [9], such as analyzing and
dropping packets for attack signatures.

e  Programmable Deparser: The final output of the
match-action pipeline is fed to the deparser, which
reassembles the packet, including new or modified
headers, and serializes them for transmission.

As more programmable devices were built, it became

clear that P46 had outgrown the PISA model. So the P4
community introduced the Portable Switch Architecture
(PSA), which was created to abstract the hardware pipeline
so that P4 developers need not worry about the specifics of
the target device when programming the data plane, but
allow the compiler to execute and map the program to the
specific target device [10].
As shown in Fig. 2, PSA consists of six (6) P4
programmable blocks and two (2) fixed-function blocks. The
behavior of the programmable blocks is specified using P4.
The Packet Buffer and Replication Engine (PRE) and the
Buffer Queueing Engine (BQE) are target-dependent
functional blocks that may be configured for a fixed set of
operations [11]. As an analogy, the PSA is to the P4y
language as the C standard library is to the C programming
language [11].

From Fig. 1 and 2, it can be observed that the six (6)
programmable blocks in the PSA pipeline are analogous to
two PISA models, with the first three (3) representing an
“ingress PISA” and the last three (3), an “egress PISA.” This
means that when the packets reach the switch, they get
processed via the ingress parser, ingress pipeline, and ingress
deparser before they are sent to the PRE. After that, they get
processed again via the egress parser, egress pipeline, and
egress deparser and then forwarded to the BQE.

C. Blockchain

Blockchain is a decentralized ledger that records
transactions or activity between participants permanently
with verification. This verification comes in the form of
reviewing cryptographic functions and timestamps. The
transactions can be verified on multiple computers, which
are called nodes. A good example is BitTorrent [12], which
is a peer-to-peer file-sharing protocol that does not rely on
any one server, company, or entity to work.

Blockchains have been extensively used as a security
solution in many areas. The authors in [13] leveraged
blockchain’s distributive technology, tamper-proof ability,
and immutability to detect and prevent malicious activities
and solve data consistency problems facing cooperative
intrusion detection. In healthcare, [14] used blockchain
technology as a decentralized record management system to
handle Electronic Health Records (EHRs), giving patients a
comprehensive immutable log and easy access to their
medical information across providers and treatment sites.
The authors in [15] proposed blockchain as a decentralized
application for secure authentication in fog and IoT
environments. [16] proposed a security architecture that
integrates blockchain and multi-controller software-defined
networks to deal with network attacks like false data
injection.

Cryptography and hash functions are the most integral
things securing the blockchain. Public key cryptography is

the foundation for how digital wallets work, how tokens are
traded, how identity is verified, and is used to create
verifiable historical records of transactional data. Generally,
the public key generates the wallet address, while the private
key signs transactions to confirm it is genuinely from the
address. The hash function creates data that is recorded to
the blockchain, making any change to a single piece of data
easily identifiable. Some of the important properties of these
hash functions are irreversibility and the impossibility of
collision — it is extremely unlikely that two different inputs
to a hash function produce the same output. Each block in
the chain contains the previous block’s hash, meaning every
block is linearly connected back to the original Genesis
block. The difficulty in changing a single block and finding
valid hashes for all subsequent blocks makes blockchain
nearly immutable [16].

D. Related Work

There are various security concerns in programmable
networks generally because each plane can serve as an
attack surface. For example, when considering the control
plane of a programmable network, the centralized controller
can present a potential single point of failure, making it
attractive to denial-of-service (DoS) attacks [17]. With
respect to the application layer, applications can be
malicious if an adversary takes control of it and then injects
malicious application flows into the control plane via the
northbound API calls.

However, the security focus for this paper is on the
programmable data plane. P4 provides a programmable data
plane that allows the creation of custom protocols and
implement them in network switches. However, this also
opens a new attack surface for threat actors who can gain
access to P4-enabled switches and hijack custom protocol
implementations for malicious purposes. Attackers can
easily trigger injection attacks by creating specially crafted
packets or exploiting other protocol-specific vulnerabilities
in these network devices. Several research efforts have
focused on addressing the security challenges in P4 data
plane networks.

In [18], the authors proposed using formal verification
techniques, such as model checking and theorem proving, to
ensure the correctness and security of P4 programs. Their
solution is internal and considers the P4 program internally
before execution. A security-aware compiler design is
proposed to improve the security of P4 programmable
networks [19]. This could involve incorporating security
checks and constraints into the compilation process to
ensure that P4 programs comply with security policies.
Although the solution proposed in [19] is similar to ours, the
difference is that their solution focused on the compilation
process. While ours is centered on the integrity of the user-
defined protocols. Researchers have also proposed some
network-level security measures, such as intrusion detection
and prevention systems, firewalls, and secure
communication protocols to protect P4 programs from
external threats [20]. Many of these tools can generate high
false positives, which may affect their effectiveness.
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Our proposed solution is specifically aimed at

overcoming these security problems by using blockchain for
verifying and guaranteeing the integrity of P4 protocols.

III. METHODOLOGY

The proposed solution focuses on securing the custom
protocols defined in the programmable data plane P4
switches. These user-defined protocols are created either as
new protocols or by modifying existing standard protocols
like ethernet, IP, MPLS, etc. These user-defined protocols
can be modified or updated from the control plane of the P4
switches. Any update on the custom protocol directly affects
how the P4 data process packets. Our solution introduces a
blockchain network to the control plane, as shown in Fig. 3.
Due to the computational overhead the blockchain network
may introduce, the setup is run outside the control plane of
the P4 switches so that many controllers can be part of the
network. The solution is built on the Ethereum blockchain
platform. Ethereum blockchain handles many concurrent
transactions; the latest version runs PoS as against the PoW
consensus algorithm run by the older version. This makes it
faster and more scalable [21]. It is an open-source
blockchain-based distributed computing featuring smart
contracts. The smart contract is an agreement among
consortium members that is stored on the chain and run by
all participants[22]. Although the Ethereum platform
blockchain platform is considered a public blockchain, in this
work, we configured it to exhibit the characteristic of a
private blockchain network as done in our previous work
[21]. The solution is considered a private blockchain
because only permissioned controllers can join and
participate in the network.

The architecture consists mainly of two operations:
Protocol Verification and Protocol Governance, as shown in
Fig. 3.
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Fig. 3: Architecture of the Proposed Blockchain-based System for Securing
P4 Custom Protocols

A. Protocol Verification

The smart contract handles the protocol verification
process. The protocol verification step ensures that all
malicious activities on user-defined protocols running in the

Buffer
Egress » Deparser -+ Queueing
Engine

\d

Parser

P4 switches are identified and thwarted, thereby ensuring
the integrity of the P4 protocols. The verification also
ensures that any submitted transaction's integrity and
consistency are verified before attaching it to the blockchain
network. In this architecture, the smart contract guarantees
that malicious intentions or errors do not manipulate the P4
protocols by constantly comparing a copy with what is
stored in the blockchain. We implement a transaction access
control policy in the private network. This means the
architecture verifies both the node submitting the transaction
and the transaction submitted. Authenticating a transaction
requires that the smart contract invokes a code that
compares transaction accompanying information with stored
information.

Here, a copy of the custom protocols defined in the P4
switch is recorded as transactions and stored in the
blockchain network. At a predefined regular interval, a
blockchain node (controller) extracts a copy of the running
protocol, which we denote as a “challenge request”. The
challenge request is prepared as a transaction and submitted

1 Algorithml: Protocol Verification
.

3 Procedure: Protocol verification

4 Inputs: Protocol Information

5

6 If hash(transaction) == hash(stored information)
7

8 Return Success

9 Discard transaction

10 Return to 6

11 else:

12 push transaction for validation

13 alert administrator

14 broadcast copy to other controllers
15 end if

16 end procedure

to the blockchain network. On receiving the transaction, the
smart contract verifies the authenticity of the running
protocol by comparing the hash with the stored hash. If the
hashes are the same, the transaction is discarded. However, if
the hashes are different, the transaction is pushed to the
transaction validation stage [23], and this triggers the smart
contract alert module, which informs the
administrator/Network engineer about possible manipulation
of the running protocol while pushing a copy to other
controllers via a new block of the blockchain. The
Administrator/ network engineer reviews the alert and takes
necessary action. This action can be that the administrator
informs the parser in the data plane to drop the traffic,
thereby enforcing security policies. The smart contract keeps
monitoring the hash of the submitted transaction for prompt
detection of malicious activities on the custom protocols
running on the P4 switches. The pseudocode below
(Algorithm 1) describes the snippet of how the smart contract
handles protocol verification.



B. Protocol Governance

Besides detecting malicious activities, the proposed
architecture can accept new custom protocols or
modifications to existing ones via the consensus mechanism.
The following steps ensure the protocol governance of the
P4 custom protocols:

e Protocol definition: the P4 custom protocols are
defined clearly by the developer or network
operator as is or will be in the P4 programmable
switch.

e Hashing: cryptographic hash of the protocol is
generated, which represents the unique fingerprint
of the protocol and ensures its integrity.

e Consensus mechanism: an appropriate consensus
mechanism, like Proof of Stake (PoS), is chosen to
govern how the nodes agree on the validity and
ordering of protocol updates.

e Blockchain storage: the hash of the protocol is
stored on the blockchain, and each time a protocol
update is proposed and accepted, a new hash is
recorded.

The protocol governance can be transparently managed
by leveraging the consensus mechanism and
blockchain.

IV. PERFORMANCE METRICS

The proposed architecture is implemented on an Ethereum
blockchain platform. We use Solidity v 08.17
implementation for smart contracts and geth v 1.12.0 for
Ethereum. For initial proof-of-concept testing, the private
blockchain network will be set up in the laboratory with
three computers serving as blockchain nodes (controllers)
(Fig. 1) to evaluate performance. Some key performance
metrics will be evaluated to implement the feasibility of the
proposed solution. These metrics are utilized in the
implementation of the solution. Three key performance
metrics to evaluate the efficiency of the proposed solution
are:

A. Rate of False positives

The rate of false positives is calculated as the ratio between
the number of negative events wrongly categorized as
positive (false positives) and the total number of actual
negative events (regardless of classification). In this
concept, we define a false positive rate as the percentage of
times the architecture fails to alert the administrator when it
is supposed to. If the custom protocols have been tampered
with or modified for malicious intents, the blockchain node
should be able to detect it based on the hash comparison
with what was stored in the blockchain.

B. Detection time

We define the detection time as the time taken to decide on
any transaction sent to the blockchain. This time spans from
the transaction preparation time to the time the administrator
receives an alert (in case of malicious activities). The
following data are collected from each transaction to
implement the detection time.

e Transaction deployment time (t;): This is the time a
transaction is submitted to the network. These data
are collected directly from the sender console.

e  Execution time (t3): This is the time taken before an
administrator receives an alert about possible
protocol manipulation. The time is retrieved by
setting on current time on all node consoles.

C. Scalability

We will evaluate the change in the detection time of the
proposed solution with an increasing number of P4
switches. This will enable us to know the relationship
between the size of the P4 data plane and the blockchain
performance. It will estimate the maximum number of
switches that can tolerate an acceptable blockchain
performance.

V. CONCLUSION

The advent of a programmable data plane comes with its
security challenges. In this project, a blockchain-based
security solution was proposed to tackle integrity issues of
custom user-defined P4 protocols in the data plane. We
proposed a blockchain network outside the control plane to
avoid the additional overhead that may be introduced to the
network by blockchain technology. With controllers as
blockchain nodes, a copy of the running protocol is stored in
the blockchain network. A challenge request is regularly
prepared and sent to the blockchain for integrity
confirmation. The smart contract verifies the transaction by
comparing the hash of the submitted transaction to the
stored value. The transaction is only pushed to the validation
stage, and alerts are sent to the administrator, if the
challenge information is different from the stored value else,
discard the transaction.

Future Work

e Implement the performance
evaluate the results.

e Implement and evaluate the performance of the
solution using P4 switches.

metrics and
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