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Abstract

In this paper, we study the deep Ritz method for solving the linear elasticity equation from a numerical analysis perspective.
A modified Ritz formulation using the H 1/2('p) norm is introduced and analyzed for linear elasticity equation in order to deal
with the (essential) Dirichlet boundary condition. We show that the resulting deep Ritz method provides the best approximation
among the set of deep neural network (DNN) functions with respect to the “energy” norm. Furthermore, we demonstrate that
the total error of the deep Ritz simulation is bounded by the sum of the network approximation error and the numerical
integration error, disregarding the algebraic error. To effectively control the numerical integration error, we propose an adaptive
quadrature-based numerical integration technique with a residual-based local error indicator. This approach enables efficient
approximation of the modified energy functional. Through numerical experiments involving smooth and singular problems, as
well as problems with stress concentration, we validate the effectiveness and efficiency of the proposed deep Ritz method with
adaptive quadrature.
©2023 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decade, Deep Neural Networks (DNNs) have achieved remarkable success in computer vision, natural
language processing, and many other machine learning (ML) applications. More recently, scientific machining
learning methods based on DNN have also been applied to modeling and solving complex engineering systems.
These methods can be broadly divided into three categories based on how the DNN is used: (i) purely data-driven
approaches, which use supervised ML to create a surrogate model that regresses a physical model from a given
simulation dataset or experimental observations [1-6]; (ii) physics-enhanced approaches, which use semi-supervised
ML to implement physical laws as a regularizing term to solve a target regression problem with limited observation
data [7-9] ; and (iii) physics-driven approaches, which impose physics into the loss functional and training process
and rely on unsupervised ML to directly solve various types of PDEs [10-17]. Mathematically speaking, purely
data-driven approaches can be thought of as methods for finding the best curve fit through the data points, using
techniques such as least-squares regression. Physics-driven approaches, on the other hand, typically involve solving
PDEs using numerical optimization methods. Numerous studies have demonstrated that DNNs possess highly
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desirable approximation properties that are not available in commonly used finite element methods. One such
advantage is that a DNN can adapt its physical partition to match the underlying function being approximated [18—
20]. In other words, a DNN model can dynamically adjust its function representation, akin to a moving mesh
method, but without the necessity of a geometric mesh.

Due to the fact that the set of DNN functions does not form a linear space, existing physics-driven methods
are typically based on either the energy minimization formulation [13,21,22] or various least-squares formula-
tions [11,12,14,15]. Energy minimization formulations are particularly suitable for problems that possess a natural
minimization principle, such as many problems encountered in solid mechanics. On the other hand, the effectiveness
of least-squares formulations depends on the specific principle employed. For example, the deep Galerkin method
(DGM) [11] and the physics-informed neural networks (PINN) [14] rely on the discrete /?> norm least-squares
principle, which applies to differential equations, and boundary and initial conditions. However, these methods suffer
from suboptimal approximation and are limited to problems with H?-smooth solutions, thereby excluding problems
with geometric or interface singularities. To overcome these limitations, well-designed least-squares methods for
PDEs can be employed, as described in books such as [23] and papers such as [24,25] for linear elasticity. Recently,
the DNN-based first-order system least-squares (FOSLS) formulation has been utilized for the second-order elliptic
PDEs [15,26].

In this paper, we aim to investigate the deep Ritz method for solving the linear elasticity equation from a numer-
ical analysis perspective, as well as to introduce a deep Ritz method with adaptive quadrature. Originally proposed
in [13] for scalar elliptic PDEs, the deep Ritz method employs DNNs as the class of approximating functions
and is based on the Ritz formulation of the underlying PDE. However, unlike finite element approximations, the
deep Ritz method encounters two fundamental challenges arising from the characteristics of DNN functions. The
first challenge pertains to enforcing the Dirichlet boundary condition effectively. The second challenge involves
devising a numerical integration scheme that plays a crucial role in ensuring the accuracy and robustness of the
DNN approximation to the solution of the underlying problem.

Regarding the first issue, there are mainly two approaches. One is the Nitsche method [27,28] that converts the
Dirichlet boundary condition into the Robin boundary condition by penalizing the Neumann boundary condition, and
the penalization constant has to be sufficiently small. This approach is equivalent to penalize the energy functional
by the L? norm of the residual of the Dirichlet boundary condition [13]. The other one is to enforce the Dirichlet
boundary condition exactly through an auxiliary continuous function vanishing on the Dirichlet boundary [29].
In this paper, we explore the penalization method with H'/> norm that guarantees stability of the perturbed
problem. Specifically, the standard minimization formulation is modified by adding the H'/?> norm of the residual
of the Dirichlet boundary condition to the energy functional. By using a fundamental inequality of Korn’s type in
H'(9) (see, e.g., [30]), the modified minimization problem is shown to have a unique solution and the solution
continuously depends on the data (see Proposition 1). Based on the modified minimization problem, the deep Ritz
method is defined by minimizing the modified energy functional over the set of DNN functions and the deep Ritz
approximation with the exact integration and differentiation is proved to be the best approximation in the modified
energy norm (see Theorem 1).

An evaluation of the modified energy functional includes integration over both the domain and the boundary, as
well as differentiation at integration points. Naturally, the integration is approximated by quadrature-based methods,
since the dimension of the linear elasticity problem is at most four (including space and time). Under a reasonable
assumption on numerical integration, we demonstrate that the total error in the energy norm is bounded by the
approximation error of the set of DNNs plus the numerical integration error (see Theorem 2). It is important to note
that solving the minimization problems under the deep Ritz formulation using DNNs gives rise to a high-dimensional
and non-convex optimization problem. However, the algebraic error introduced during the solving/training process
falls beyond the scope of this discussion.

In the finite element setting, it is trivial to control the numerical integration error because the unknown
finite element approximation is a piece-wise polynomial on a fixed triangulation of the computational domain.
However, controlling the numerical integration error for the deep Ritz method is difficult since the unknown DNN
approximation is a composition function with several layers. Moreover, the accuracy of the DNN approximation
is determined by the quality of numerical integration mesh on which the solution can be approximated well by a
selected quadrature rule [31]. To overcome this obstacle, we propose an adaptive quadrature method that refines
integration mesh and quadrature points adaptively. A modified residual-based local error indicator is used for
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marking subdomains to be refined. The effectiveness and efficiency of the deep Ritz method with adaptive quadrature
is studied for several benchmarks.

The rest of the paper is organized as follows. Section 2 introduces the modified Ritz formulation for linear
elasticity problems and establishes its well-posedness (existence, uniqueness, and stability). Section 3 describes
the discretization of the problem with DNN functions and shows the upper bounds of the approximation error. In
Section 4, we propose the adaptive quadrature method and introduce the corresponding local error indicator. The
last two sections present the numerical results and conclude the paper.

We will use the standard notation and definitions for the Sobolev space H*(£2)? and H*(I') for a subset I" of
the boundary of the domain (2 € R9. The standard associated inner product and norms are denoted by (-, -)s. 0.4
and (-, )s.r.¢ and by || - |ls.2.¢ and || - ||, .4, respectively. When there is no ambiguity, the subscript {2 and d in
the designation of norms will be suppressed. When s = 0, H 0(2) coincides with L?(£2)?. In this case, the inner
product and norm will be denoted by (-, -) and || - ||.

2. Modified Ritz formulation of linear elasticity

Let {2 be a bounded domain in R? (d = 2 or 3) with Lipschitz boundary 92 = I'p U I'y, where I'p and I'y are
disjoint. Let n be the outward unit vector normal to the boundary. Denote by u and o the displacement field and
the stress tensor. Consider the following linear elasticity problem

-V-o = f, in 2, 1)
o(w) = 2ue(w)+AV-udyy in 2
with boundary conditions u| r, = & and (orn)|FN = g, where V. is the divergence operator; e(u) =

%(Vu + (Vu)T) is the strain tensor; the f, g b and g y are given vector-valued functions defined on (2, I'p, and
I'y, representing body force, boundary displacement and boundary traction force condition respectively; 8, is the
d-dimensional identity matrix; u and A are the material Lamé constants.

Since it is difficult for directly constraining neural network functions to satisfy boundary conditions (see [13]),
as in [15], we enforce the Dirichlet (essential) boundary condition weakly using a half norm through the energy
functional. The modified Ritz formulation of problem (1) is to find u € H '(12)? such that

J(w)= min J(v), 2
veH!(02)d

where the modified energy functional is given by

1

J) =3 {/Q 2ule@) +1|V-v*)dx + y v — g[,u%/z,pD} —(f. ) — (g, Vory- 3)
Here, y = uy, is a penalization constant scaled by , and || - |12, ,, denotes the Sobolev—Slobodeckij norm given
by

1/2
lv(x) — () ,
vlli/2.rp = / lv[*dS +/ / ——— o —dS(x)dS(x) |, “)
/2o < I'n rpJr, dx,x)

where d(x, x") is the geodesic distance between x and x’ in I'p. Let
a(u,v) =2u(e(u), €(v)) + M(V-u,V-v) + y (u, v)%,pD
and f(v) = (f,0) + (g, Vo.ry + 7 (&, 01 p,
then the variational form of (2) is to finding u € H'(2)? such that
aw,v)= f(v), YveH (). 5)

Proposition 1. Problem (2) has a unique solution u € H'(2)*. Moreover, the solution u satisfies the following a
priori estimate:

lulie < C (Ifl-1.0+ g, liar, + g -1/2.0y) - (6)
3
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Fig. 1. Deep Ritz NN architecture. A fully connected L-layer network is employed to generate the map from an arbitrary spatial point
x in {2 to its displacement u(x), numerical operators are used to approximate the gradient, divergence and integral in the discrete energy
functional J(u, ) as the Ritz loss.

O :
/ ',\ Ua ¢ Numerical Integration
o

With the following Korn inequality (see, e.g., [30]),

Ivlli.e < C (lle@llo.e + lvll2ry) -

the proof of the proposition is standard.

3. Deep Ritz neural network method

In this section, we describe the deep Ritz method which includes a standard fully connected DNN as the class
of approximating functions and the discrete energy functional J-(v) as an approximation of the energy functional
J(v) by numerical integration and differentiation. The structure of the deep Ritz NN is illustrated in Fig. 1.

3.1. Deep neural network

For j=1,...,1—1,let N9 :R%-1 — R"% be the vector-valued ridge function of the form
N(j)(x(j—l)) — r(w(j)x(j_l) _ b(j)) for xVUD ¢ RM-1, @)

where @) € R%*"i-1 and bY) € R" are the respective weights and bias to be determined; x© = x; and 7(¢) is
a non-linear activation function. There are many activation functions such as ReLU, ReLU?, sigmoids, sinusoidal,
and hyperbolic tangent. (see, e.g., [32]).

Let ©” € R¥-1 and b € R? be the output weights and bias. Then a [-layer neural network generates the
following set of vector fields in R?

My)={e' N Po---oND(x) —b': @€ R"*"i-1 b € R" for all j}, (8)

where the symbol o denotes the composition of functions.

This class of approximating functions is rich enough to accurately approximate any continuous function defined
on a compact set 2 € R (see [33,34] for the universal approximation property). However, this is not the main
reason why NNs are so effective in practice. One way to understand its approximation power is from the viewpoint
of polynomial spline functions with free knots [35]. The set My (I) may be regarded as a beautiful extension of
free knot splines from one dimensional scalar-valued function to multi-dimensional vector-valued function. It has
been shown that the approximation of functions by splines can generally be dramatically improved if the knots are
free.

3.2. Discretization

Note that neural network functions in My(l) are nonlinear with respect to the weights {@! )}lj_:'l and the bias
{b(f)}lj.;ll. This implies that it is difficult to discretize (1) by the conventional approach based on the corresponding
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variational formulation (5). Instead, discretization using NNs should be based on an optimization formulation. In
this paper, we employ the Ritz formulation (2) that minimizes the energy functional.

To approximate the solution of (1) using a neural network, the deep Ritz method minimizes the energy functional
over the set My(/), i.e., finds u,, € M, () C H'(2)? such that

J(u,) = ven/\}lin(l J(v). )

N

Since ./\/l,ll(l) is not a linear space, problem (9) may have many solutions.

Theorem 1. Let u € H'(2)? be the solution of problem (5), and let u,, € M, (l) be a solution of (9). Then we
have

u—u = inf |u—v|,, 10
lu—uyla=_inf = vl (10)

where ||v], = a(v, v) is the energy norm.

Proof. Since u, € M, () C H'(2), (10) is a direct consequence of
e —uy |7 =2(J@y) = J@) <2(J () — J@) = lu— 0|
for any v € M, (). O

Theorem 1 indicates that u,, is the best approximation with respect to the energy norm | - ||, within the neural
network functions class M y(1).

3.3. Numerical integration

Evaluation of the energy functional requires integration and differentiation which are often computed numerically
in practice. This section discusses numerical integration schemes suitable for neural network functions. To this end,
let us partition the domain {2 by a collection of subdomains

T ={K : K is an open subdomain of (2}
such that
Q2=UgerK and KNT =90, VK, TeT.

That is, the union of all subdomains of 7 equals to the whole domain {2, and any two distinct subdomains of 7
have no intersection. The resulting partitions of the boundary I',) and I', are

E,={E=0KNT,: KT} and & ={E=0KNT,: K<eT}

When using a smooth activation function such as sigmoid, ReLU? etc., neural network functions belong to at
least C1(2), i.e.,

My() c C(92). (11)

In this case, as in [15] numerical integration may use the composite quadrature rule, such as composite mid-point,
trapezoidal, Simpson, Gaussian, etc., defined on an artificial partition 7 of the domain 2. Here the artificial partition
refers its independence of the underlying geometry of the approximating function and it allows us to partition the
domain with few restrictions. With a chosen numerical integration, differentiation is evaluated at quadrature points
and can be done by either numerical differentiation with relatively small step size or automatic differentiation.
For simplicity of presentation, we describe the composite mid-point rule for interior and boundary integration in
(3) and (4) in two dimensions. Let x, and x, be the centroids of T € 7 and E € & for § = D and N. For any
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integrand v(x), the composite “mid-point” quadrature rule over the domain {2 and the boundary [’ are given by

N
/v(x)dx% > vx,)IT| and / vx)ds ~ Y vx,)|E|,
2 r

TeT B E€&q

where |T'| and |E| are the respective volume of element T € 7 and area of boundary element E € &,.

Let the Dirichlet boundary I'p be the union of several disjoint Ff) fork=1,...,1.0Oneach Ff), to approximate
the Sobolev-Slobodeckij semi-norm in two dimensions, denote by v[x; x’] the integrand in the second term of (4)
as the divided difference of a vector-valued function v(x) along I'X, where each component of v[x; x'] is given by

dutx) -

T A ’
K T S

—d(x,x/) , X #x.

Then we have

Iv(x)—v(x/)| -
/Fk /rk A x — L ds(x)ds(x) Z Z Iv[xb,xE,]| |E| |E'|. (12)

k ! k
EegD E eSD

Define the discrete bilinear and linear forms, a-(-, -) and f(-), by

ar(u,v) =2u Z(e(u) : e(v))(xT) + A Z(V-uv . v)(xT)

TeT TeT
1
tuyy 4 D@ n@E)+ Y0 D> Y ulxgix, ] vk, x E|E
Eeg,, k=1 pegk E'egk
L) =) (foE)+ Y (g, v)x,)
TeT Eegy,

1
vy 1 Y (@, vE )+ Y Y Y g lxsx, ] vl X )E|E

Ee& k=1 k preck
D EEEDEGSD

Define the discrete counterpart of the energy function J(-) by

1
J(v) = aT(v v) — f(v).
Then the deep Ritz approximation to the solution of (1) is to seek u- € M, (/) such that

J(uy)= ver/\I}li,rvl(l) J(v). (13)

To understand the effect of numerical integration, we extend the first Strang lemma for the Galerkin approximation
over a subspace (see, e.g., [36]) to the Ritz approximation over a subset.
Theorem 2. Assume that there exists a positive constant B independent of M, (l) such that

Blvlz <ar(v.v), YveMD) (14)
Let u be the solution of (2) and u a solution of (13). Then we have

2 - 2 i - 5
es2 sup LEZST@N 24P e by, g g MR 0@ RN g
ﬂWEMzN(l) ”w”a ﬂ DEMN(I) wEMzN(l) ”w”a

|l — u

Proof. For any v € M, (1) C H'(2)?, we have

Jrw)<J (v) and a(u,u—v)= f(u,—v).

6
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It follows from assumption (14) and the definition of J(-) that
, 1
E||u7_ - < EaT(uT —v,u; —0)
=Ju)—J W+ frlur—v)—a(v,u, —v)< f(ur—v)—a,(v,u, —v)
= (fT(uT —v)— flu,— v)) + (a(v, ur—v)—ar(v,u, — v)) +am—v,u, —v).

which, together with the triangle and Cauchy—Schwarz inequalities, implies

U, —v)— flu, —v vu,. —v)—a, (v,u, —v
B, — ol < lfru, —v)— flur —v)| |a@w,ur —v)—a (v,u, —v) T
2 e, —vla le —vlla
w) — f(w a(v,w) —a (v, w
< sup | f-(w) — f( )|+ la(v, w) —a( )|+||u—v||a.
weMay () lwlla we Moy () lwla

Combining the above inequality with the triangle inequality

e —urlla < llu—=vla+ v —urla

and taking the infimum over all v € M, (I) yield (15). This completes the proof of the theorem. [J

This theorem indicates that the total error in the energy norm is bounded by the approximation error of the set
of neural network functions plus the numerical integration error.

4. Adaptive quadrature method

As indicated in Theorem 2, numerical integration plays an important role in NN-based numerical methods. How
to control the numerical integration error for the deep Ritz method is a non-trivial matter because the unknown
DNN approximation is a composition function with several layers. To overcome this obstacle, in this section we
propose adaptive Ritz method that refines integration mesh adaptively.

Numerical integration defined in the previous section is based on an artificial partition 7 of the domain 2. This
partition may not capture well the variation of the underlying solution and hence (13) would possibly lead to an
inaccurate approximation.

One may choose a uniform partition with sufficient fine mesh; however, it is cost inefficient. In this section, we
describe an adaptive quadrature algorithm on numerical integration introduced in [18] under the assumption that
the neural network is large enough to approximate the solution accurately.

A key ingredient for an adaptive quadrature scheme is an efficient local error indicator. In this paper, we use a
modified residual-based indicator. To this end, let 7 be the current integration mesh and u- be a solution of (13).
For each T € T, we define the following local error indicator for each T € T,

np(uy) = |T|1/d”v"77*+f“0,r’ (16)
where o is the numerical stress given by
o, =2ue (uT) +AV U d4xa.

Note that the typical jump terms in finite element vanish due to the fact that M, (/) is in C'({2). The L? norm of
the residual V-0 - + f on each T € 7 may be approximated as follows,

/T(V-UT—}-f)dx /aTaTndS+/dex

/ aTndS—i—/fdx . (17)
T T

With this local error indicator, we then define a subset T of T by using either the following bulk marking
strategy: finding a minimal subset 7 of 7 such that

Yomiz=w oy . for y €0, 1) (18)

TeT TeT

— T2

IV 0+ flyp > 171

which implies

2-d
Ny (r) ~ |T| *
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or the average marking strategy:

f’:{TGT:nTZ;/—;,ZUT}, for yz€<0,%;i”}2nr> (19)

TeT TeT

where #7 is the number of subdomains of 7. For each marked domain T € 7A', we subdivide T into 2¢ subdomains
uniformly and denote the refinement partition by 7.

Let u be an approximation of (13) based on an initial partition 7, which in general, is an uniform partition of
the domain, the adaptive quadrature refinement method is summarized as follows,

Algorithm 3.1 Adaptive Quadrature Refinement (AQR) with a fixed NN.

(1) for each T € T, compute the local error indicator nrs

(2) mark 7 by the marking strategy and refine marked element to obtain a new partition 7”;
(3) numerically solve the minimization problem in (13) on 77;

@) if n(u_,) < yn(u;), go to Step (1) with 7" = T'; otherwise, output 7.

As indicated in [18], the stopping criterion used in Algorithm 3.1 is based on whether or not the quadrature
refinement on numerical integration improves approximation accuracy. When the refinement does not improve
accuracy much, the adaptive quadrature stops and outputs the current integration mesh.

5. Numerical studies

In this section, we present our numerical results for several 2D problems. In all experiments, the DNN structure
is represented as d;, —ny —ny - --n;_; — d,,, for a [-layer network with n, n, and n;_; neurons in the respective
first, second, and (/ — 1)th hidden layers, and d;, = d,,, represent the network input and output dimensions. The
minimization of the deep Ritz NN loss function (13) is solved using the Adam version of gradient descent [37]. All
differential operators are calculated using numerical differentiation (ND) with the step size Ax = h/4, where
h = min{}T|]/ d} is the smallest partition size of an adaptive integration mesh. All experiments use sigmoid
(o) = #) as the activation function. For adaptive quadrature, the average marking strategy is reported due
to its computational simplicity.

5.1. Test case I: smooth stress distribution

Consider problem (1) defined on {2 = (—1, 1) x (=1, 1) with the body force
f= Z/L(S —x?—2y? —2xy,3 242 —y* — ny)T + ZA(l —y*—2xy, 1 —x*— 2xy)T,
and the traction

g, =207 = D2+ u)

on I, ={(1,y): y € (=1, 1)}, with the clamped boundary condition on I', = d{2 \ I',. The exact solution of the
test problem has the form

u(x,y) = (1— x>0 —y)(1,1)".

Set the material property i = 1, and A = 1, we first test three-layer DNNs of varying number of neurons and
different numerical quadrature resolutions. Uniformly distributed quadrature points of size 100 x 100, 200 x 200
and 400 x 400 are used to evaluate the effect of numerical integration combined with three network structures.
Table 1 list the numerical results. As shown in the table, With a small DNN of 106 parameters (2-8-8-2) and
100 x 100 uniformly distributed quadrature points, deep Ritz can approximate the problem at a relative energy norm
of 0.1658. Increasing the resolution of quadrature reduces the numerical integration error and therefore improves the
approximation accuracy. E.g. by increasing the number of quadrature points to 200 x 200, and further to 400 x 400,
the accuracy of the numerical solution is continuously improved, as measured by the relative energy norm, or the L2
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Table 1
Numerical results of deep Ritz method for test case I using fixed quadrature.
DNN 4T llu —uylla lo —oyll llu —uyll
(No. para) lula ol lul
2.8.82 100 x 100 16.58% 16.35% 6.42%
(106) 200 x 200 10.81% 10.61% 3.91%
400 x 400 6.09% 6.00% 2.15%
2-16-16-2 100 x 100 11.94% 11.77% 4.17%
(338) 200 x 200 8.55% 8.50% 2.90%
400 x 400 5.94% 5.93% 1.96%
2-32-32.2 100 x 100 3.3% 3.67% 1.42%
(1186) 200 x 200 2.76% 2.73% 1.13%
400 x 400 2.19% 2.17% 0.93%

*Training details: y, = 100;

Total number of iterations for each row: 200,000;
Learning rate initial is 0.01 and it decays 90% every 50000 iterations.

(a) The Problem
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Fig. 2. Test case I problem (u =1, and A = 1) and numerical results using deep Ritz (2-32-32-2) with fixed 400 x 400 quadrature points.

norm of # and o. On the other hand, larger DNNs with more parameters have better expressive power and thus can
approximate the solution with better accuracy, this is a property from Theorem 2 and is confirmed experimentally as
the results given in Table 1. A three-layer DNN (2-32-32-2) combined with finer quadrature points 400 x 400 has a
better accuracy compared with smaller network or coarser quadrature points. The result is also depicted graphically
in Fig. 2.

Second, we test the adaptive quadrature refinement (AQR) method using the DNN structure 2-32-32-2. Starting
from the initial 100 x 100 uniformly distributed quadrature points, and using the residual-based local error indicator
(16) and the average marking strategy (19) with y, = 1, the AQR process stops at run 4 and reaches a relative
energy norm 0.0174. As shown in Table 2, with 45,757 quadrature points after three-run AQR, the adaptive deep
Ritz can achieve a similar relative energy norm as the fixed uniform quadrature method using 160,000 quadrature
points. Adding more runs of adaptive quadrature process will improve the approximation accuracy, but it converges
to a limit when the network approximation error becomes dominant. For example, by increasing the number of
quadrature points from 45,757 to 99,262, error measured by the three norms are not improving significantly. To
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Table 2
Numerical results of deep Ritz for experiment 1 using AQR.
lluw —uylla llo — oyl llw —uyll 2rer s
AQRmm — #7 1l o] Ju #T
1 10,000 3.73% 3.67% 1.42% 0.0004
2 21,145 2.81% 2.78% 1.17% 0.0002
3 45,757 1.98% 1.97% 0.89% S5e—5
4 99,262 1.74% 1.73% 0.82% 2e—5

*Training details: y, = 100;
Run 24 are trained using weight transferred from the previous run;
Each trained 100,000 iterations using fixed learning rate 0.001.

further improve the accuracy, one may need to enlarge the DNN size to obtain a better network approximation
power.

5.2. Test case II: L-shape plate with corner singularity

The second test is a common benchmark problem with a re-entrant corner forming a typical point singularity [38].
The problem is posed on an L—shaped domain 2 = (—1, 1)? \ ([0, 1] x [—1, 0]) with a body force f = 0. The
known analytical solution is,

u=[Acos® — Bsinf, Asin6 + B cos8]”,
where r, 6 are the polar coordinates and
A= % —(1 4+ a)cos((1 +a)f) + C1(Cr — 1 —a)cos((1 — a)@)),
B = % 1+ ) sin((l + a)@) —Ci(Cy; — 14 ) sin((l - a)@)).

Here the critical exponent o ~ 0.544483737 is the solution of the equation « sin (2w)+sin (awa) = 0 with w = 37 /4
and C; = —(cos (@ + Dw)/(cos (¢ — Dw), C; = 2(A+2w))/(A+ ) [39]. A bronze material with Young’s modulus
E = 100000 and Poisson’s ratio v = 0.3 is tested with the Neumann BCs prescribed on I'y, = {(1,y) : y € (0, 1)}
and Dirichlet BCs on I'), =92\ I',.

Due to a stress singularity at the corner point (0, 0), the direct LS physics-driven methods do not apply to this
type of problems. Using the deep Ritz method, we test the performance of a four layer DNN structure (2-48-48-48-2,
4898 parameters) with fixed uniform quadrature and adaptive quadrature refinement (AQR). As shown in Table 3,
with AQR generated non-uniformly distributed quadrature points, adaptive deep Ritz approximates the solution using
less data (quadrature points) compared with the uniform fixed quadrature method. During the iterative process, the
marked regions with larger residuals who need refinement are depicted in Figs. 3(g)-3(i) and the generated non-
uniform quadrature points are plotted in Fig. 3(f). The stress singularity is well captured by the local error indicators
and correspondingly, more quadrature points are distributed over the re-entrant corner region. The final numerical
solutions obtained are plotted in Figs. 3(a)-3(d). This experiment shows the validity of the proposed local error
estimator for the adaptive quadrature scheme.

5.3. Test case Ill: A quadratic membrane under tension

The third test problem is given by a quadratic membrane of elastic isotropic material with a circular hole in
the center. Traction forces act on the upper and lower edges of the strip, body forces are ignored. Because of the
symmetry of the problem, it suffices to compute only a fourth of the total geometry. The computational domain is
then given by

R={xeR:0<x<10,0<y<10x>+y*>1}.

The boundary condition on the top edge of the computation domain (I} : {y = 10,0 < x < 10}) are set to
on = (0,4.5)", the boundary condition on the bottom (I : {y = 0,1 < x < 10}) are set to (0, Oxy)n=0,u, =0
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Table 3
Numerical results of adaptive deep Ritz for test case II using a DNN structure 2-48-48-48-2.
Quadrature oT lu —uylla lo —ayll llu —uyll
ethod lully ol lul
uniform 120,000 10.99% 10.20% 1.83%
fixed
run 1 30,000 23.38% 21.58% 3.31%
non-uniform run 2 42,897 14.44% 13.45% 1.78%
AQR run 3 60,306 11.32% 10.48% 1.69%
run 4 90,237 10.71% 9.86% 1.68%

*Training details: y, =1 ;

For the uniform quadrature and the AQR run 1: trained with 200,000 iterations with learning rate
starts from 0.01 and decays 90% every 50,000 iterations;

For non-uniform AQR run 2-4, trained with 100,000 iterations using fixed learning rate le—S5.

1e3 1es
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025 ar0
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- 1665 030 _ 000
2220 = Bt
-0 - 075 -0.
080
2715 o2
100 100 002 E

s s o s
100 -0.15 -050 -025 0.00 035 050 075 100 100 -0.15 -050 -025 0.00 035 050 075 100 -100 -0.75 -0.50 ~0.25 0.00 025 050 075 100

(a) Displacement g (b) Displacement wuy (c) Stress oo
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no
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(d) Stress oyy (e) Stress ogy (f) Quadrature points (run

1)

o012
0.0025
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025 0.004
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00020
o.008
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0 100 0!
100 <075 050 025 000 025 050 075 100 100 <075 050 025 000 025 050 075 100 ~100 ~0.75 -050 025 0.00 025 050 075 100

(g) Marked elements at run 2 (h) Marked elements at run 3 (i) Marked elements at run 4

Fig. 3. Test case II numerical solution using adaptive deep Ritz (2-48-48-48-2). (a—d) component-wise numerical solution # and o (f) final
quadrature points obtained through AQR; (g—i) marked element during the four-run AQR process.

(symmetry condition), and finally, the boundary condition on the left (I3 : {x = 0,1 < y < 10}) are given
by (0yx,0y,)-n = 0, and u, = 0 (symmetry condition). The material parameters are £ = 206900 for Young’s
modulus and v = 0.29 for Poisson’s ratio. The challenge of this test is the stress concentration located around point
(0,1) due to the presence of the small hole. Since there is no analytic solution, a reference solutions is obtained
using finite element analysis (FEA) with an adaptive mesh refinement (adaptive p-element refined with highest
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Fig. 4. Test case III Numerical solution using adaptive FEA p-element and deep Ritz with adaptive quadrature. (Rtiz solution is obtained
with a DNN structure: 2-64-64-64-2 of 8578 DoF. FEA solution is obtained using p-element with 14786 DoF).

Table 4

Using Deep Ritz with adaptive quadrature to solve test case III.
Iteration No. of quad max ||u]| max oy, 21;777:%
1 28,392 2.1327e—4 7.9155 9.5942e—3
2 40,878 2.1566e—4 10.0728 6.7179e—4
3 60,434 2.1623e—4 13.2632 4.4317e—4
4 88,574 2.2672e—4 13.8912 2.9309e—4

*Training details: y, = 1;

Run 1 is trained with 200,000 iterations, with learning rate starts from 0.01 and decays
90% every 50,000 iterations;

Run 2-4: 50,000 iterations each with fixed learning rate le—5.

polynomial order of 7). The reference solution is given in Figs. 4(b) and 4(c), where we use two key measures:
max oy, = 13.8876, an max |lu|| =2.288e—4 as references (a similar reference solution is also provided in [24]
using adaptive h-elements).

We tested the adaptive deep Ritz with a four-layer structure (2-64-64-64-2, 8578 parameters). Initially, 28,392
uniform quadrature points using polar coordinates are used for getting the first iteration that captures well for the
displacement field #. However the stress concentration factor is not accurate with uniformly distributed quadrature
points. After four iterations of AQR using the average marking strategy (y» = 1.5), a total of 88,574 quadrature
points are generated adaptively as shown in Fig. 4(d) and with this set of non-uniform quadrature points, the method
is capable of obtaining a similar stress concentration factor compared with the adaptive FEA solution, see the
numerical results depicted in Figs. 2(a)-2(c) and Table 4. As expected, more quadrature points are distributed
adaptively near the small hole region during the AQR processes such that the stress concentration can be simulated
accurately.

Furthermore, we explored the potential of using transfer learning to solve a family of stress problems. To this
end, we conducted a sensitivity study by varying the center hole from » = 1 to r = 5, taking a step size of 0.5.
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Fig. 5. Sensitivity study of the test case III with varying hole radii. First row shows the generated adaptive quadrature points at the listed
hole radius steps; second and third rows show the numerical solution using adaptive deep Ritz, and the last row give the reference adaptive
FEA solutions.

Using the trained DNN model in the previous experiment (with an initial hole size of r = 1) as the starting point,
we stepped through the various hole sizes by training a DNN using weight transferring. Our assumption was that
the DNN trained from the previous step forms a good initial for the next parametric step, and therefore the adaptive
deep Ritz would converge faster if applied to a family of similar problems. In our test, we verified this assumption
and it took significantly fewer number of iterations (in this example, 50,000 iterations and two-run AQR for each
hole size step) to converge to the results. This is compared to the total 350,000 iterations used for the result obtained
in Table 4, demonstrating that transfer learning saves significant time. Our results at each step also align with the
numerical solutions evaluated through FEA adaptive p-refinement method. Fig. 5 lists the displacement component
u, and the associate stress tensor component o'y, obtained from adaptive deep Ritz transfer learning and adaptive
FEA.

5.4. Discussion

Numerical Differentiation (ND) or Automatic Differentiation (AD). For each quadrature point x,, the
evaluations of s(v(xT)) and V-v(x,) in the energy functional are based on the first order partial derivatives that
may be calculated through either automatic differentiation (AD) or numerical differentiation (ND). AD is a common
choice for some physics-driven methods such as the PINN and its variants. When a DNN function has the first order
derivatives at all sampling points, AD eliminates numerical error caused by ND. However, when using AD, there are
some difficulties in training PINN as noticed in [40]; moreover, a discrete differential operator combining AD and
ND was proposed. In our experiments, pathologies in training deep Ritz with AD were also observed. Nevertheless,
our experiments show numerically that ND with quadrature-based numerical integration is robust in training/solving
the deep Ritz.

Here, we use the test case I as an example and list the results of using combinations of different integration and
differentiation methods: (1) standard quadrature-based integration plus AD (SQ+AD), (2) standard quadrature-based
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Fig. 6. Comparison study for test case I using numerical differentiation v.s. automatic differentiation, and standard quadrature-based integration
v.s. quasi-Monte Carlo-based integration. All results are trained using deep Ritz DNN structure (2-32-32-2).

integration plus ND (SQ+ND), (3) quasi-Monte Carlo-based integration plus AD (QMC+AD), and (4) quasi-Monte
Carlo-based integration plus ND (qMC+ND). As shown in Fig. 6(a), only SQ+ND converges to the real potential
energy of the tested problem J*(u) ~ —11.2 within 100,000 iterations, the other three methods are suspiciously
trapped in local minima and the obtained solutions are non-physical as shown in Figs. 6(c)-6(e).

Non-convex optimization The exceptional approximation power of neural networks allows them to effectively
represent a wide range of solutions, including those with irregular geometries, discontinuities, or singularities that
can pose challenges for traditional finite element methods. However, this type of approximating functions also
introduces a computationally demanding optimization problem. NN-based algorithms for solving PDEs typically
involve a high-dimensional and non-convex optimization for which the first order stochastic gradient descent-
based methods are the most widely employed solvers. Currently, NN-based methods are not competitive with
well-established mesh-based methods due to the considerable computational cost of the algebraic solvers, even
though NN-based methods may require fewer degrees of freedom than their mesh-based counterparts. Developing
fast solvers is an open and challenging problem and requires lots of efforts from numerical analysts.

6. Conclusion

In this paper, linear elasticity problems are formulated under the Ritz framework and are discretized using DNN
functions. To enforce the essential boundary condition, the energy functional is modified with an extra penalization
term using H'/? norm. It is shown that within the function class, the minimization of the modified energy functional
yields the best approximation with respect to the modified energy norm. To calculate the modified energy functional
accurately and efficiently, adaptive quadrature refinement equipped with a local residual-based error indicator was
proposed and tested, and its effectiveness and efficiency in improving numerical simulation was demonstrated.

There are still numerous unresolved issues that require further research. In this study, we make the assumption
that the DNN is sufficiently large to approximate the solution. However, selecting an appropriate network structure
for different problems and establishing a suitable initial DNN model are still open questions. While we conducted
a basic sensitivity analysis to demonstrate the potential of DNNs for parametric PDEs, exploring efficient methods
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to extend the transfer learning strategy to general design space exploration and even solving topology optimization
problems requires further investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the National Science Foundation, United States under grant DMS-2110571
and the Future of Work at the Human Technology Frontier (FW-HTF) 1839971. We also acknowledge the Feddersen
Distinguished Professorship Funds. Any opinions, findings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the funding agency. We thank the support of DARPA project
on symbiotic design and Stanford Research International (SRI) for partial support of the project.

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

L. Liang, M. Liu, C. Martin, W. Sun, A deep learning approach to estimate stress distribution: a fast and accurate surrogate of
finite-element analysis, J. R. Soc. Interface 15 (138) (2018) 20170844.

W. Gao, X. Lu, Y. Peng, L. Wu, A deep learning approach replacing the finite difference method for in situ stress prediction, IEEE
Access 8 (2020) 44063-44074.

S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM
J. Sci. Comput. 43 (5) (2021) A3055-A3081.

P. Vurtur Badarinath, M. Chierichetti, F. Davoudi Kakhki, A machine learning approach as a surrogate for a finite element analysis:
Status of research and application to one dimensional systems, Sensors 21 (5) (2021).

V. Iakovlev, M. Heinonen, H. Lihdesmiki, Learning continuous-time PDEs from sparse data with graph neural networks, in: International
Conference on Learning Representations, 2021.

Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric
partial differential equations, in: International Conference on Learning Representations, 2021.

M. Raissi, G.E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys.
(2017).

Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys.
399 (2019).

Y. Khoo, L. Ying, SwitchNet: A neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (5)
(2019) A3182-A3201.

W. E., J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and
backward stochastic differential equations, Commun. Math. Stat. 5 (4) (2017) 349-380.

J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)
1139-1364.

J. Berg, K. Nystrom, A unified deep artificial neural network approach to partial differential equations in complex geometries,
Neurocomputing 317 (2018) 28-41.

W. E., B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems, Commun. Math.
Stat. 6 (1) (2018) 1-12.

M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707.

Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic
PDEs, J. Comput. Phys. 420 (2020) 109707.

Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys.
443 (2021) 110514.

W. Li, M.Z. Bazant, J. Zhu, A physics-guided neural network framework for elastic plates: Comparison of governing equations-based
and energy-based approaches, Comput. Methods Appl. Mech. Engrg. 383 (2021) 113933.

M. Liu, Z. Cai, J. Chen, Adaptive two-layer ReLU neural network: I. best least-squares approximation, Comput. Math. Appl. 113
(2022) 34-44.

Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law, Appl.
Numer. Math. 174 (2022) 163-176.

15


http://refhub.elsevier.com/S0045-7825(23)00353-5/sb1
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb1
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb1
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb2
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb2
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb2
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb3
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb3
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb3
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb4
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb4
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb4
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb5
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb5
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb5
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb6
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb6
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb6
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb7
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb7
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb7
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb8
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb8
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb8
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb9
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb9
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb9
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb10
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb10
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb10
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb11
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb11
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb11
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb12
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb12
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb12
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb13
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb13
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb13
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb14
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb14
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb14
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb15
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb15
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb15
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb16
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb16
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb16
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb17
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb17
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb17
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb18
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb18
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb18
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb19
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb19
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb19

M. Liu, Z. Cai and K. Ramani Computer Methods in Applied Mechanics and Engineering 415 (2023) 116229

[20]

[21]
[22]

(23]
[24]
[25]
[26]
(271
(28]
[29]

[30]
(311

(32]
[33]
(34]
[35]
[36]
[371

[38]
[391

[40]

Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation laws: discrete
divergence operator, J. Comput. Appl. Math. 433 (2023) 115298.

J. Xu, The finite neuron method and convergence analysis, Commun. Comput. Phys. 28 (2020) 1707-1745.

M. Liu, Z. Cai, Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic PDEs, Comput. Math. Appl. 113 (2022)
103-116.

P.B. Bochev, M.D. Gunzburger, Least-Squares Finite Element Methods, Vol. 166, Applied Mathematics Sciences, Springer, 2009.

Z. Cai, G. Starke, Least-squares methods for linear elasticity, STAM J. Numer. Anal. 42 (2) (2004) 826-842.

F. Bertrand, Z. Cai, E.-Y. Park, Least-squares methods for elasticity and Stokes equations with weakly imposed symmetry, Comput.
Methods Appl. Math 19 (3) (2019) 415-430.

E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework for inversion and surrogate
modeling in solid mechanics, Comput. Methods Appl. Mech. Engrg. 379 (2021) 113741.

J. Nitsche, Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilriumen, die keinen
Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. 36 (1) (1971) 9-15.

Y. Liao, P. Ming, Deep nitsche method: Deep Ritz method with essential boundary conditions, Commun. Comput. Phys. 29 (5) (2021)
1365-1384.

C. Uriarte, D. Pardo, I. Muga, J. Muiioz-Matute, A deep double Ritz method (D2RM) for solving partial differential equations using
neural networks, Comput. Methods Appl. Mech. Engrg. 405 (2023) 115892.

S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields, Math. Comp. 73 (2003) 1067-1087.

J.A. Rivera, J.M. Taylor, AL Omella, D. Pardo, On quadrature rules for solving partial differential equations using neural networks,
Comput. Methods Appl. Mech. Engrg. 393 (2022) 114710.

A. Pinkus, Approximation theory of the MLP model in nueral networks, Acta Numer. 15 (1999) 143-195.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (1989) 303-314.

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359-366.
L. Schumaker, Spline Functions: Basic Theory, John Wiley, New York, 1981.

P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 1978.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Representation Learning, San Diego,
2015.

G. Harper, J. Liu, S. Tavener, B. Zheng, Lowest-order weak Galerkin finite element methods for linear elasticity on rectangular and
brick meshes, J. Sci. Comput. 78 (3) (2019) 1917-1941.

J. Alberty, C. Carstensen, S.A. Funken, R. Klose, Matlab implementation of the finite element method in elasticity, Computing 69 (3)
(2002) 239-263.

P-H. Chiu, J.C. Wong, C. Ooi, M.H. Dao, Y.-S. Ong, CAN-PINN: A fast physics-informed neural network based on
coupled-automatic—numerical differentiation method, Comput. Methods Appl. Mech. Engrg. 395 (2022) 114909.

16


http://refhub.elsevier.com/S0045-7825(23)00353-5/sb20
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb20
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb20
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb21
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb22
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb22
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb22
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb23
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb24
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb25
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb25
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb25
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb26
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb26
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb26
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb27
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb27
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb27
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb28
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb28
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb28
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb29
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb29
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb29
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb30
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb31
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb31
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb31
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb32
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb33
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb34
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb35
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb36
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb37
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb37
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb37
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb38
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb38
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb38
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb39
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb39
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb39
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb40
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb40
http://refhub.elsevier.com/S0045-7825(23)00353-5/sb40

	Deep Ritz method with adaptive quadrature for linear elasticity
	Introduction
	Modified Ritz Formulation of Linear Elasticity
	Deep Ritz Neural Network Method
	Deep Neural Network
	Discretization
	Numerical integration

	Adaptive Quadrature Method
	Numerical Studies
	Test case I: smooth stress distribution
	Test case II: L-shape plate with corner singularity
	Test case III: A quadratic membrane under tension
	Discussion

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


