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ABSTRACT

The increased use of video conferencing applications (VCAs) has
made it critical to understand and support end-user quality of expe-
rience (QoE) by all stakeholders in the VCA ecosystem, especially
network operators, who typically do not have direct access to client
software. Existing VCA QoEF estimation methods use passive mea-
surements of application-level Real-time Transport Protocol (RTP)
headers. However, a network operator does not always have access
to RTP headers, particularly when VCAs use custom RTP protocols
(e.g., Zoom) or due to system constraints (e.g., legacy measurement
systems). Given this challenge, this paper considers the use of more
standard features in the network traffic, namely the IP and UDP
headers, to provide per-second estimates of key VCA QoE metrics
such as frame rate and video resolution. We develop a method that
uses machine learning with a combination of flow statistics (e.g.,
throughput) and features derived based on the mechanisms used by
the VCAs to fragment video frames into packets. We evaluate our
method for three prevalent VCAs running over WebRTC: Google
Meet, Microsoft Teams, and Cisco Webex. Our evaluation consists
of 54,696 seconds of VCA data collected from both (1), controlled
in-lab network conditions, and (2) 15 real-world access networks.
We show that our approach yields similar accuracy compared to the
RTP-based baselines, despite using only IP/UDP data. For instance,
we can estimate frame rate within 2 FPS for up to 83.05% of one-
second intervals in the real-world data, which is only 1.76% lower
than using the RTP headers.
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1 INTRODUCTION

As users continue to depend on video conferencing applications
(VCAs) for remote participation in work, education, healthcare, and
recreation, ensuring a high quality of experience (QoE) when using
VCAs is critical. Although QoE depends to some degree on the spe-
cific circumstances of end users, network operators can often play
important role in mitigating QoE degradation resulting from poor
local network conditions. A network operator who can observe a
VCA'’s QoE metrics may be able to diagnose and react to QoE degra-
dation, potentially preventing even transient congestion events from
affecting user experience. Unfortunately, network operators lack
direct access to application QoE, and must infer QoE from the en-
crypted application traffic as it traverses the network. Methods exist
to infer QoE from video-on-demand applications, but these meth-
ods do not apply to inferring QoE for VCAs, which turns out to be
a different problem. An important distinction between VCAs and
video-on-demand applications is that video-on-demand applications
react to delay or loss by relying on a large playout buffer (i.e., of at
least a few seconds); on the other hand, VCAs must keep a short jitter
buffer (specifically, less than 100 ms) and thus are susceptible to a
wide range of incidents that can disrupt or degrade network quality.

In this paper, we explore how to enable network operators to in-
fer objective VCA QoE metrics at a per-second time granularity from
passive measurements of network traffic. QoE is inherently subjec-
tive [22], making it challenging to infer on a large scale, even for
service providers, let alone network operators who have no data from
instrumentation of the client which can be useful for directly infer-
ring user experience. To address this challenge, objective application
metrics are commonly employed as a substitute for subjective QoE.
The precise relationship between these application-level metrics
and user QoE can be determined through user studies or data-driven
methods [5] - this is complementary to the estimation of objective
application metrics and is out of scope of this paper. Furthermore,
although VCA performance is determined by both audio and video,
past work has extensively examined audio QoE as a function of net-
work quality of service metrics [4, 12]. Our primary focus, therefore,
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is to infer objective metrics (described in Section 2) that impact VCA

video quality.

Recent work has proposed data-driven techniques, often leverag-
ing machine learning, to estimate VCA QoE metrics from network-
layer metrics [9, 35, 45]. However, most of these studies assume the
ability to parse application-level headers, which is not always the
case. Some VCAs, like Zoom, use proprietary application protocols,
posing challenges for extracting information using standard network
monitors [32]. In recent work, Michel et al. [34] develop a method to
detect Zoom application traffic and extract encapsulated application
headers. Yet, the proposed approach will not work if Zoom changes
its protocol format (e.g., if it starts using a more complex encapsu-
lation mechanism in the future). Moreover, application headers are
encrypted in certain scenarios, such as when traffic is routed over
a virtual private network (VPN), and it is likely that all application
headers will eventually be encrypted even for regular traffic [42].
Thus, this paper proposes methods to estimate video QoE using more
standard features of the network traffic, specifically only IP/UDP head-
ers. A notable advantage of using IP/UDP headers is that existing
network monitoring systems can readily extract such information
at scale [41].

The QoE inference method we develop uses the semantics of video
delivery in VCA network protocols: due to VCAs’ real-time nature,
each video frame is encoded and transmitted immediately. These
transmission characteristics give rise to packet sizes and inter-arrival
times that contain important signal about various QoE metrics, such
as frame rate. By leveraging these insights, we develop both a heuris-
tic and a machine learning-based model that estimate VCA QoE
metrics at a fine time granularity. We evaluate our approach on three
popular VCAs (Meet, Teams, and Webex) that use WebRTC, an open-
source framework providing real-time communication capabilities
to browsers and smartphones . To evaluate our approach, we collect
data from in-lab under diverse emulated network conditions as well
as from 15 households spanning different ISPs and speed tiers over a
period of two weeks. Our evaluation demonstrates that the proposed
method achieves high accuracy in estimating video QoE metrics for
VCAs.

We make the following contributions:

e We develop a machine learning-based method that uses features
informed by mechanisms used by VCAs to fragment a frame into
packets and infer VCA QoFE metrics at finer time granularity using
only the IP/UDP headers.

o We develop an automated browser-based, VCA data collection
framework and use it to evaluate our approach by collecting data
under controlled in-lab network conditions as well as data from
15 households spanning a variety of ISP and speed tiers over a
period of two weeks. Both the code and data from the paper has
been made public [40].

e We demonstrate that using only IP/UDP headers can yield frame
rate estimates within 1.50 frames of the ground truth QoE on an
average. To put it in perspective, we also compare accuracy using
RTP headers which is 1.33 of the ground truth QoE on average, a
difference of only 0.17 frames.

'We focus on WebRTC-based VCAs as it provides mechanisms to collect ground truth
QoE metrics, which are essential to evaluate the method we have developed. Our
approach, however, applies to all VCAs that use Real-time Transport Protocol (RTP)
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e We show that a predictive model trained on data from controlled
lab settings transfer to real-world networks. Our results show that
the model transfers with marginal drop in accuracy for two out of
three VCAs. Furthermore, we characterize the network conditions
under which the model have high errors and the potential reasons
leading to errors.

2 PROBLEM CONTEXT

We provide background on video conferencing applications, the QoE
metrics, and detail the QoE inference problem.

2.1 Video Conferencing Applications

VCAs typically use Real-Time Transport Protocol (RTP) [38] for send-
ing audio and video data and Real-Time Transport Control Protocol
(RTCP) [23] for control traffic. Although VCAs can independently
implement each of these protocols in the application, the WebRTC
open-source real-time communication framework has become ex-
tremely prevalent, as it is supported by most modern browsers and
devices (e.g., Android). We focus on WebRTC-based VCAs.

QoE metrics. We focus on inferring objective metrics pertaining to
the video quality of conferencing. More specifically, we focus on the
following four metrics: (1) Video bitrate, defined as the total number
of bits received per second, with a lower bitrate indicating lower
video quality.; (2) Frame rate, defined as the number of video frames
received by the application per second. A low frame rate leads to
reduced smoothness and realism of viewing experience ; (3) Frame
jitter calculated as the standard deviation of the time gaps between
consecutive frames or inter-frame delay. A high frame jitter also
affects smoothness of video playback, resulting in a jerky playback.
and (4) Resolution, the number of pixels in a video frame, with lower
resolution indicating lesser details in the video.

Additional metrics can affect a VCA’s QoE, including end-to-end
network latency, as well as the resulting quality of the audio [17].
End-to-end network latency can be challenging to measure from a
single vantage point for UDP-based traffic; previous work already
estimates audio QoE for VoIP [12].

2.2 Inference Problem

Problem Statement. We take as input a sequence of packets col-
lected from access nodes (e.g., border router), and output the desired
QoE metrics at a W-second granularity. The choice of W ultimately
depends on the network operator’s ability to react to the inferred
QoE degradation by, for example, reconfiguring the network to miti-
gate the inferred QoE degradation incidents. We also assume that
the input consists only of RTP packets from the VCA and contains no
other traffic. We can safely make this assumption because previous
work has developed traffic classification methods to identify packets
associated with a specific VCA session [36].

Measurement Context. We consider the case when operators use
only IP and UDP headers. This scenario is motivated by several ob-
servations: First, for some VCAs that use non-standard versions of
RTP (e.g., the native Zoom client [32]), network operators do not
have access to RTP headers as these VCAs. Second, as has transpired
with many other applications and protocols (e.g., DNS [7], TLS [10]),
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Figure 1: Packet sizes vs payload type for Teams.

we expect VCAs to encrypt the RTP headers in the future. Finally, ex-
tracting IP and UDP headers is much more efficient and scalable than
extracting RTP headers; in fact, many existing network monitoring
systems [41] already support extracting IP/UDP headers along with
packet sizes and times.

3 METHOD

In this section, we describe our QoE estimation method that uses
only IP/UDP headers. We assume access to traffic from a single
VCA session and it consists of two steps. The first step involves
isolating the video traffic from the audio component. Given the
distinct transmission techniques (e.g., encoding, error control) used
for audio and video, it becomes important to differentiate audio and
video packets. Once the video traffic is identified, the second step
involves using information from this traffic to infer the video QoE
metrics. We first describe these two steps for our method. This is
followed by a description of RTP baselines used for comparison.

3.1 Media Classification

Past work to distinguish media type relies on RTP headers [32, 36].
More specifically, a seven-bit RTP header called payload type can be
used to identify the payload format. For example, in case of Teams,
we observe three different payload types (PT): (1). PT = 111 for audio
encoded using OPUS, (2) PT=102 for video encoded using H.264, and
(3) PT = 103 for video retransmissions. However, with no access to
RTP headers, it becomes challenging to identify the media type of
an RTP packet.

To overcome this challenge, we use the insight that voice samples
can be encoded in fewer bits than images. As a result, the audio
packets are typically smaller than video packets. Figure 1 illustrates
this phenomenon, showing the CDF of packet sizes corresponding
to audio, video, and video retransmissions from 16528 seconds of
Teams calls (see Section 4 for details). The actual packet media type is
identified using the RTP Payload Type header. The audio packet sizes
range between [89, 385] bytes; the video packets are significantly
larger, with 99% of packets being larger than 564 bytes. Among video
retransmissions, which constitute 8% of video packets, we find a
significant proportion (92%) of packets with a packet length of 304.
These are likely keep-alive messages for the retransmission transport
stream as retransmissions are typically only sent in the case of packet
losses. Because these packets do not contain any video payload, it
makes sense to filter them out from the QoE inference step. The
remaining video retransmission packets are significantly larger.
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Figure 2: Intra- and inter-frame packet size difference for
Teams

This characteristic allows us to use a size threshold denoted as
Vimin to identify video packets. Any packet with size greater than
or equal to Viyip is tagged as a video packet, while the remaining
packets are not considered. The value of V;;;;,, can be determined by
inspecting a few VCA traces collected in the lab.

3.2 QoE inference

We develop two approaches to infer QoE metrics from video traf-
fic using only IP/UDP headers. The first approach, referred to as
IP/UDP Heuristic, utilizes VCA video delivery semantics. We find
that relying solely on the heuristic approach canlead to errors, partic-
ularly under high network jitter and loss. We thus propose a machine
learning(ML)-based approach called IP/UDP ML that relies on a com-
bination of network features, including both statistics on network
traffic and features derived using insights from the IP/UDP Heuristic.

3.2.1 Heuristic. Because VCAs are real-time and low latency ap-
plication, each video frame generated at the sender is transmitted
over the network as soon as it has been encoded. From the network
perspective, each frame comprises one or more RTP packets. The
VCA client transmits these packets immediately, without waiting
for additional frames. As a result, a VCA session can be abstracted as
a sequence of video frames, with each frame transmitted sequentially
over a group of RTP packets separate from other frames. Identifying the
video frame boundaries (by identifying frame end time) and frame
size can enable inference of key QoE metrics described in Section 2.
Past work has relied on using RTP headers to identify frame bound-
aries [32]. Without access to the RTP headers, it is challenging to
identify the frame boundaries.

Key Insights: To identify frame boundaries using IP/UDP headers,
we use insights from the mechanisms that VCAs use to divide frames
into packets. We first consider whether there are patterns in packet
inter-arrival times (IAT). A frame is packetized and transmitted
immediately, which leads to microbursts on the network, causing
the inter-departure times to be shorter for packets within the frame
as compared to packets across frames. Unfortunately, this insight
is challenging to apply reliably to determine frame boundaries as
packet timings can change when packets traverse along the network.
Thus, the patterns in the inter-departure times may not appear in
the inter-arrival time (IAT) at the receiver.

We next consider whether there are unique patterns in packet
sizes. An advantage of using packet size is that it does not change
during packet transmission over the network. Interestingly, we find a
unique pattern in the packet sizes, i.e., packet sizes tend to resemble
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those within the same frame and differ from packet sizes in con-
secutive frames. This phenomenon occurs because VCAs typically
fragment a frame into equal-sized packets. This is done because
the Forward Error Correction (FEC) mechanisms used to protect
against network losses are most bandwidth-efficient when packets
in a frame have equal length [25, 27]. Furthermore, due to dynamic
nature of the underlying video content along with variable bitrate
encoding used by VCAs, consecutive frames exhibit different sizes
and, consequently different packet sizes.

Figure 2 illustrates this characteristic, showing the CDF of size
difference in consecutive intra-frame and inter-frame packets, for
more than 360,000 frames. The true frame boundaries are identified
based on the RTP timestamp header as explained in Section 3.3. For
frames with more than two packets, we show only the maximum
size difference across all packets. The inter-frame size difference is
the absolute size difference between the first and the last packets
of two consecutive frames. We find that the intra-frame packet size
difference is less than two bytes for all but one packet. The inter-
frame packet size difference on the other hand is at least 2 bytes for
more than 99.4% of the frames.

Frame boundary estimation: Thus, we use a packet size difference
threshold A7??* and declare frame boundary if the size difference
between consecutive packets is greater than AT??Y. However, it is
not sufficient to compare only consecutive packets as packets can
arrive out of order. Therefore, instead of comparing with only the last
packet, we iteratively compare with up to N packets that arrived
before this packet, beginning with the most recent packet. If the
size difference of the current packet is within AT72Y for any of these
packets, it is considered as part of the same frame as the matching
packet. Otherwise, the packet is assigned as a part of new frame. The
exact heuristic is described in Algorithm 1 in the Appendix.

The parameters of the heuristic, i.e., N"** and A;’i’gg ,canbe deter-
mined by inspecting few traces for a given VCA in the lab. Intuitively,
alarge value of N™%¥ can account for all out-of-order packet arrivals.
However, it also increases the probability of incorrectly combining a
packet from a new frame to an earlier frame with a similar size. Thus,
the value of N™%* should be set carefully. We analyze the sensitivity
of the heuristic to different values of N%* in our evaluation.

QOE estimation from frames: Once the frame boundaries have

been identified, for a single session S, we obtain a sequence of frames

along with their sizes. We use this information to estimate the key

QoE metrics over a window W of duration w seconds in the following

manner:

o Video bitrate: It is simply the time average of the total bits across
all frames transmitted in the window W.

e Frame rate: It is simply the number of frames transferred
per second in the window W. More specifically, Frame rate =

w Here, indicator function I equals one if the frame

end time is within the window, and zero otherwise.

e Frame jitter: It is calculated as the standard deviation of differ-
ence in end times (ET; - ETj—1) of consecutive frames received
over the window W.

We do not estimate frame resolution using this method as there is
no direct signal in the frame reflecting its resolution. Intuitively, one
can design a machine learning-based method that uses frame sizes
and FPS from the heuristic to predict video resolution. This, however,
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is similar in principle to the machine learning-based method de-
scribed in Section 3.2.2; hence, we skip implementing the approach
for simplicity.

3.2.2  Machine Learning Approach. Why use machine learning?:
The heuristic described in Section 3.2.1 relies on assumptions that
can break under certain conditions. For instance, under high latency
jitter or packet loss, packets can arrive out of order leading to incor-
rect estimation of frame boundaries. Although we add parameters
(e.g., use a packet lookback N"%* > 1) that alleviate the errors to
some extent, it still does not completely solve the problem. More
importantly, there are other, complimentary, signals in the network
data that can inform QoE estimation. For instance, given the real-time
nature of the VCAs, throughput is a potential indicator of few QoE
metrics such as video bitrate. Including multiple such signals into a
heuristic can quickly make it complicated. Therefore, we consider a
data-driven approach that considers multiple features derived from
the network data along with supervised machine learning models.
We now describe our approach.

Input features: We use a common set of features to predict all QoE
metrics. The features considered can be divided into two categories:

e VCA semantics-based: These include two features that are in-
formed by how VCAs fragment frame into packets as described
in Section 3.2.1. The first feature is the number of unique packet
sizes observed in the prediction window W. The second feature
is the number of microbursts of packets in the prediction window
W. A microburst is defined as a sequence of packets with the con-
secutive inter-arrival times within a threshold 6;41. Therefore,
the microburst count is simply the number of consecutive packets
with inter-arrival time > 0747 Intuitively, these features can help
inform the frame boundaries and consequently the key video QoE
metrics.

o Flow-level statistics: We also derive a set of key statistics from
the IP/UDP headers of video packets. These include number of
bytes and packets per second as well as five statistics on packet
sizes and inter-arrival times namely mean, standard deviation,
median, minimum and maximum. Intuitively, given the real-time
nature of VCAs, any transient degradation in the VCA QoE metrics
would also be evident in one or more of these statistics.

In total, we compute 14 features for each prediction window W

as summarized in Table 1.

3.3 RTP Baselines

To benchmark the accuracy of our approach using IP/UDP head-
ers, we also consider two RTP-based approaches as baselines. The
first approach is a heuristic approach, called RTP Heuristic, and the
other is a machine learning-based approach called RTP ML. We now
describe both of these approaches.

RTP Heuristic: This is similar to the approach used by Michel et
al. to estimate QoE metrics for Zoom [34] and is based on the same
insight as the IP/UDP Heuristic approach, i.e., a VCA session can
be modeled as a sequence of frames. To identify frame boundaries,
it uses the RTP timestamp field from the packet headers. The RTP
timestamp is used to determine the correct order for media playback,
as well as to synchronize audio and video streams. Packets belonging
to the same frame receive the same RTP Timestamp, and thus the
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Category

Features ]

Flow-level statistics

Bytes per second, packets per second, packet size (5) and inter-arrival statistics (5)

IP/UDP features based on VCA semantics

# unique packet sizes, # microbursts

RTP Headers

# unique RTP timestamps (4), marker bit sum (1), out-of-order sequence numbers (1), RTP lag (5)

Table 1: Summary of features extracted from traffic. Numbers in parantheses reflect the count of features. The IP/UDP ML
approach uses the first two categories of features, while the RTP ML approach uses the first and third category of features.

field can be used to identify frame boundaries. To detect the end of
frames, the approach also uses the Marker bit in the RTP header. This
bit is set only for the last packet of each frame and is used to detect
the end of frames.

Using this approach, we can identify the sequence of frames in
the prediction window W, along with frame completion time and
frame size. We then use similar method as described in Section 3.2.1
to estimate frame rate, frame jitter and bitrate.

RTP ML: This is similar to the IP/UDP ML approach and uses ma-

chine learning-based methods to estimate QoE metrics. The input

features, however, are derived from RTP headers. We consider the
following set of RTP-based features:

e RTP timestamps: We calculate the number of unique RTP times-
tamps over each stream individually as well as their intersection
and union.

e Marker bit sum: It is the sum of marker bit for all packets in the
prediction window. We calculate this feature separately for video
and retransmission streams.

e Number of out-of-order video sequence numbers: We cal-
culate the total number of discontinuities in video packet RTP
sequence numbers over the prediction window. It is used as a
signal for packet re-ordering and loss.

o RTP Lag: It captures the delays in frame transmission. We as-
sume that the first frame had zero delay. For each frame i, we
calculate the transmission delay as the difference between its
reception time t; and transmission time, which is calculated as
to+ % .Here, SF is the sampling frequency for generating
RTP timestamps and is typically 90,000 for most video codecs [25].
We then calculate the five statistics across frame transmission
delays.

In addition, we also use the flow-level statistics as summarized in

Table 1. This is done for similar reasons as described for the IP/UDP

ML approach.

4 EXPERIMENT SETUP AND DATASETS

This section describes our experimentation framework and the dif-
ferent datasets we use to evaluate our methodology.

We consider WebRTC-based VCAs for evaluation as WebRTC
is a popular framework used by most VCAs for their browser ver-
sion. Moreover, it is possible to obtain ground truth QoE metrics
for WebRTC-based VCAs using the webrtc-internals API pro-
vided by Google Chrome [3]. To collect data for evaluation, we build
an automated browser-based framework that initiates calls for a
given VCA over a browser. The framework uses PyAutoGUI, a UL
automation framework, for starting and ending the calls. We collect
data for three popular VCAs, namely Meet, Teams, and Webex. The
framework, however, is extensible to other VCAs.
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We conduct 2-person calls, each lasting for a variable duration.
For consistency, we use a virtual web camera at one of the endpoints
streaming a predefined short video on loop and log the QoE metrics
on the other endpoint. At the end of the call, we collect both network
traces and WebRTC logs.

4.1

We compare our QoE estimates with per-second metrics reported by
webrtc-internals. We match the two datasets using the timestamp
fields in the two datasets. The webrtc-internals reports only the start
and end times of data collection. We assume that the reported per-
second metrics are collected at one-second interval; this matching
approach may not be perfect in certain cases, such as when WebRTC
logs contain time intervals that are slightly out of phase. To address
this as much as possible, during our analysis, we filter out logs where
we observe fewer per-second logs compared to the duration of the
call.

Matching ground truth with estimates.

4.2 Network Conditions

To evaluate under diverse network conditions, we collect two kinds
of data: (1). in-lab data under emulated network conditions, and (2).
data from 15 households under real-world network conditions.

In-lab Data The data is collected by conducting calls between two
machines in the lab under emulated network conditions. We emulate
dynamic network conditions using the tcp-info stats dataset from
the Measurement Lab’s Network Diagnostic Test (NDT), a public
dataset containing speed tests taken by real users across the world [2].
The test measures TCP throughput by flooding the link for ten sec-
onds. We use the samples of instantaneous throughput and RTT,
called tcp-info stats, collected multiple times during the test [1].
More specifically, we emulate the same sequence of RTT and packet
loss values as observed in a single test, while the throughput values
are sampled from a normal distribution with the same mean and
variance as the test throughput. We did not use the throughput sam-
ples directly as they include throughput observed during the TCP
slow-start period. Each throughput, delay, and loss value is emulated
for a period of 1 second. We only use traces with average speeds
below 10 Mbps to create challenging network conditions. We collect
around 11k seconds, 15k seconds, and 13k seconds of Meet, Teams,
and Webex data, respectively. As expected, we find differences in
ground truth QoE metrics across the VCAs despite the presence
of similar network conditions. For instance, the median bitrate is
500 kbps for Webex, whereas it is 1700 kbps for Teams (see Figure A.1
in Appendix for other metrics). These differences can be attributed
to design variations within the VCAs. Conducting evaluation across
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multiple VCAs can help us understand the generalizability of our
methodology.

Real-world Data. We note that the in-lab data is not a perfect
emulation of the real-world networks; therefore, we complement
our data with real-world VCA data. For this purpose, we deploy
Raspberry Pi (RPi) devices in 15 households, directly connected to
the home router. These households are recruited with the help from
community organizations and are located in a major city, spanning
different neighborhoods, ISPs, and speed tiers [29, 39]. Although our
sample size is limited, it serves as an additional independent data
source, capturing real-world network conditions, which allows us
to thoroughly test our methods.

The RPi collects VCA data by initiating a 15-25s call every 30
minutes to an end point located inside a cloud network. The VCA
is selected randomly from the three VCAs. The cloud endpoint and
the RPi both join the VCA call as two different participants. During
the call, the video on the RPi is kept off while the cloud-network end
point streams a predefined video over a virtual camera interface,
same as in the lab experiments. We do not stream video on the RPi as
itincreases the CPU utilization, leading to degradation in call quality
due to non-network reasons. For each call, we log the ground truth
QoE metrics and the network traffic on the RPi and export the data
to a centralized server at the end of the call.

The data collection spanned over a period of two weeks and
includes 320 Meet calls, 178 Teams calls, and 417 Webex calls. Com-
pared to the in-lab data, the average QoE metrics exhibit higher
values (see Figure A.2 in Appendix for the distribution). This im-
provement is expected as the download speeds of access networks,
likely to be the bottleneck in this case, have significantly improved.
We also, however, observe a small fraction of calls with low QoE,
indicating the presence of variability in the real-world network con-
ditions.

4.3 Parameter Setting and Model Training

The IP/UDP Heuristic uses two parameters, A;’;f: and N™4% thatare
VCA-specific. We set these parameters by sampling a few sessions
for each VCA. We use a value of 2 bytes for AT'** across all VCAs.
The value of N™4X js set to 3, 2, and 1 for Meet, Teams, and Webex,
respectively. For the ML methods, we use random forests as it was
the most accurate among the classical supervised machine learning
models. The accuracy numbers for these methods are reported over
a 5-fold cross validation.

For the ML methodology, we experiment with several classical
supervised ML models, specifically Support Vector Machines (SVMs),
decisiontrees,and random forests. However, in this paper, we present
the results obtained using only random forests, as they consistently
yield the highest accuracy. This finding aligns with prior research
within the field that has leveraged ML-based techniques for network
data analysis [9, 14, 15, 31]. In addition, the accuracy numbers for
ML-based techniques are reported after 5-fold cross-validation.

5 EVALUATION

Our evaluation analyzes the accuracy of IP/UDP methods, partic-
ularly in comparison to the RTP baselines, using both in-lab and
real-world datasets. Furthermore, we examine the potential sources
of errors as well as identify the most important features for ML
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Predicted
A 1 Total
ctua Non-Video | Video ota
Non-video 98.3% 1.7% 67,830
Video 0% 100% | 360,481

Table 2: Media classification accuracy for Meet

methods. Later, we analyze the transferability of ML models, char-
acterize the network conditions where the models err, and quantify
the impact of prediction window on model accuracy.

5.1 In-lab Data Results

We describe the accuracy of our methods in classifying media and
estimating each QoE metrics for in-lab data.

5.1.1 Media Classification Accuracy. The identification of video
packets is a common step for both the IP/UDP methods. The ground
truth is obtained by inspecting the Payload Type RTP Header. Ta-
ble 2 shows the normalized confusion matrix for video packet iden-
tification for Meet. The accuracy of identifying video packets is
generally high. However, a small fraction of non-video packets get
misclassified as video. Upon closer inspection, we find that these
misclassified packets are server hello messages over DTLSv1.2 and
key exchanges in the beginning of the call.

Impact of misclassification on QoE estimation. For IP/UDP
Heuristic, these additional packets can result in false frame bound-
aries, leading to overestimation of number of frames. On the other
hand, the IP/UDP ML method may be more resilient to minor errors
in video traffic classification as it relies on multiple signals in the
network traffic.

B RTP ML
N 1P/UDP ML

[ RTP Heuristic
= IP/UDP Heuristic

o 1.61.71.8
a 121311
—
s8]
n
[
=
T
Meet Teams Webex
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Figure 3: Frame rate errors. The whiskers represent the 10"

and 90?" percentile values. The numbers represent the MAE.

5.1.2  Frame Rate. Figure 3 shows the distribution of error in frame
rate along with the Mean Absolute Error (MAE) values across VCAs.
We observe a consistent trend in MAE values across all VCAs: RTP
ML < IP/UDP ML < RTP Heuristic < IP/UDP Heuristic. However,
we observe a deviation from this trend in Webex where MAE of
RTP Heuristic is lower than that of both RTP ML and IP/UDP ML
approaches and in Meet where MAE of IP/UDP Heuristic is lower
than that of RTP Heuristic. Moreover, the MAE remains within 2
FPS margin in all cases, except for IP/UDP Heuristic over Teams.

In general, both heuristics tend to have higher errors compared to
the ML-based methods. One potential reason for this could be that
the WebRTC frame rate is reported after accounting for additional
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application-level delays such as jitter buffer delay which are not
observable directly from the network traffic. The ML-based methods
trained on application-level ground truth can potentially calibrate
their prediction to account for such mismatch while this is simply
not possible for the two heuristics.

Interestingly, the errors for the IP/UDP ML method have similar
distribution as RTP ML. This indicates that IP/UDP headers can esti-
mate frame rate with comparable accuracy to RTP headers. In contrast,
the IP/UDP Heuristic has the highest errors. This is surprising as we
expect IP/UDP Heuristic to have similar accuracy as the RTP Heuris-
tic. We now examine the causes of error for the IP/UDP Heuristic
approach.

Why does the IP/UDP Heuristic exhibit higher errors? The
IP/UDP Heuristic relies on the observation that inter-frame packet
size difference is larger than intra-frame packet-size difference. How-
ever, this is not true for few cases:

Case 1. If two consecutive frames are similar in size, it will end up
combining those two frames or frame coalesces.

Case 2. If the packets within a frame have size difference greater
than AT}%%, they will be split into multiple frames. We observe this
mostly for Meet where a fraction of frames contain packets with
large intra-frame packet-size difference.

Case 3. If packets arrive out-of-order, the frames will get interleaved.
As a result, the heuristic will end up creating false frame boundaries
and overestimate the frame rate.

We analyze the frequency of each type of error in our data as
shown in Figure 4. For Meet, we observe a greater number of splits for
about 0.72 frames in one prediction window on an average, leading
to overestimation (see Figure 3). We detect these splits by calculating
the number of frames where the intra-frame packet size is greater
than AT??*. In Figure 4, we also see that a higher percentage of
erroneous coalesces leads to underestimation of FPS in Webex. We
calculate these by estimating the number of frames to which more
than one RTP timestamps were assigned by IP/UDP Heuristic in the
prediction window.

HEE Splits B Interleaves WM Coalesces

é 1.00

0.75
©
Ll | ||
« |l W _ B | ]
o))
Z 0.00

Meet Teams Webex
VCA

Figure 4: Different types of errors in the inter- and intra-frame
packet size difference assumption

Feature importance for IP/UDP ML method. Figure 5 shows the
top-5 features for frame rate prediction in the case of Teams. We
observe a high feature importance for the # unique sizes feature. We
also observe a significant importance of this feature for Meet and
Webex (see Figure A.4 in Appendix). The prevalence of # unique sizes

491

IMC ’23, October 24-26, 2023, Montreal, QC, Canada

# unique sizes ---I
Size [median]
IAT [stdev]
Size [mean]
Size [max]
o 20 40 60

80 100
Feature Importance [%]

Feature

Figure 5: Top-5 feature importance scores for IP/UDP ML
frame rate predictions for Teams

I RTP ML [ RTP Heuristic
o I P/UDP ML [ IP/UDP Heuristic
o
£ 06 26%
5]
o
g 0.4 .
8 b o 9O
L 0.2 429%2% 10035%2 2° T
: It ezz
3 00 =TT
3
2 IT
B -02 T T ‘
an] Meet Teams Webex
VCA
(a) Bitrate
I RTP ML [ RTP Heuristic
@ I 1P/UDP ML [ IP/UDP Heuristic
= 31 37
= s 28 38
o
40 35
g 23 24 28
&3] 20 28
5 23
:
5 0 ==
: TIT
© T T T
‘LI: Meet Teams Webex
VCA
(b) Frame jitter

Figure 6: Distribution of errors across the VCAs. The whiskers
represent 10" and 90" percentile values. The numbers repre-
sent the MRAE for bitrate and MAE for frame jitter.

among the top-5 features of all VCAs suggests a strong correlation
between frame rate and unique packet sizes, enabling accurate frame
prediction even without utilizing the RTP headers.

Notably, the other semantic-based feature, # microbursts, does
not appear among the top-5 features. This suggests that there is
significant distortion of inter-packet times along the network path.
Furthermore, an ML approach, like IP/UDP ML, can take advantage of
other signals in the network, which is absent in the IP/UDP Heuristic.
For example, the most important feature is IAT [min] for Meet and #
bytes for Webex.

5.1.3 Bitrate. We calculate the relative bitrate error, defined as the
ratio of bitrate error and the ground truth bitrate. Using relative
values facilitate comparison of errors across VCAs, especially be-
cause the ground truth bitrate distributions differ significantly across
VCA:s. Figure 6a shows the box plot of relative bitrate error distri-
bution across the VCAs. The numbers displayed on the whiskers
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Figure 7: Top-5 features along with feature importance scores
for bitrate estimation using the IP/UDP ML method for Webex
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Figure 8: A time series for frame jitter IP/UDP ML predictions
over a single Meet trace

represent the mean relative absolute error (MRAE). The error distri-
bution and the MRAE values exhibit similar values for both IP/UDP
ML and RTP ML methods across all three VCAs. For example, in the
case of Meet, the IP/UDP ML predictions are within 25% of ground
truth bitrate in 87% of cases, while in Teams, it is 89% and in Webex,
it is 95%. Comparatively, in RTP ML method, these percentages are
89%, 91%, and 95% for Meet, Teams, and Webex, respectively.

We observe higher errors for both heuristics in comparison to the

ML methods, except in the case of Teams. Moreover, the errors are
systemic with median relative bitrate error consistently exceeding
zero across all VCAs for both heuristics. This is because neither of
these heuristics considers any application-layer overheads, such
as due to encoding metadata. It should be noted that we do take
into account the overhead due to fixed portion of the RTP headers,
i.e., 12 bytes. However, incorporating encoding overheads remains
challenging even with RTP headers, as these parts of the traffic are
encrypted. The ML methods, on the other hand, can address these
systemic errors by training on video bitrate values observed at the
application level.
Feature importance for IP/UDP ML method. Figure 7 shows the
top-5 important features for the IP/UDP ML method in the case of
Webex. As expected, the feature # byteshas the highest importance. In
fact, thatis the case across all three VCAs. Most of the other important
features also relate to data volumes, such as Size [mean] and # packets.
Interestingly, we do not observe any semantics-based features among
the top-5 features, except for # unique sizes, which appears as the
fourth most important feature for Webex. This is because video
bitrate is inherently correlated with observed throughput. In fact,
the top-5 features for the RTP ML method are also found to be derived
from flow statistics (see Figure A.7 in Appendix).
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Figure 9: Top-5 feature importance scores for IP/UDP ML res-
olution predictions for Webex

5.1.4  FrameJitter. Figure 6b showsthe boxplot of the errorsin frame
jitter predictions for the three VCAs. It is evident that all methods,
including the RTP-based approaches, tend to overestimate frame
jitter in most cases. Furthermore, we find that the MAE values are
unusually high for this metric. The average ground truth frame jitter
observed across all three VCAs falls within the range of 27-33 ms,
which is comparable to the MAE values obtained from all methods.
Upon further examination, we discover that the WebRTC ground-
truth statistic reports the jitter over decoded frames, encompassing
additional application delays such as jitter buffer and decoding de-
lays. The jitter buffer introduces variable delay to ensure smooth
video playback, while decoding delays can vary based on the client’s
computational resources. Capturing these variable application-level
delays can be challenging using only the network data.

Figure 8 illustrates this phenomenon with the frame jitter values
reported by the IP/UDP ML and WebRTC for an example Meet call.
TheIP/UDP ML method reports several spikes in frame jitter through-
out the call. While most of the smaller spikes seem to be smoothed
out in the WebRTC data, there is a significant spike around t=10s
that appears in both cases. Additionally, the IP/UDP ML method
estimates the spike prior to t=10s, indicating jitter in frame arrival
around that time. The application jitter buffer might have attempted
to mitigate this frame jitter by emitting frames at constant rate until
it is emptied, resulting in a larger spike later.

From the perspective of a network operator, it is more important
to predict and respond to network-level frame jitter. Ensuring a
smooth frame arrival will automatically lead to low frame jitter. In
future work, we plan to modify our experiment methods to collect
ground truth frame jitter calculated before the frame is enqueued
to the jitter buffer. This will allow us to more accurately assess the
error of our method by providing a reliable basis for comparison.

Accuracy
Method Meet | Teams | Webex
IP/UDP ML | 97.74% | 87.22% 99.30%
RTP ML 97.87% | 87.78% 99.31%

Table 3: Resolution estimation accuracy across VCAs

5.1.5 Resolution. We use frame height as the measure for resolution.
Within our dataset, we observe 3 distinct frame height values for
Meet: 180, 270, and 360; 11 distinct values for Teams ranging from 90
to 720; and only 2 distinct values for Webex: 180 and 360. For Meet
and Webex, we apply classification on per-value basis. For Teams,
we bin the frame height into three classes: low (< 240), medium
((240, 480]), and high (> 480). Table 3 shows the overall resolution
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Predicted
Actual e dram | High | ot
Low 96.41% 1.65% 1.95% 5038
Medium | 8.08% | 4540% | 46.52% | 1782
High | 120% | 7.85% | 90.95% | 7588

Table 4: The normalized confusion matrix for resolution pre-
dictions by IP/UDP ML model for Teams.

accuracies across all VCAs. In all cases, the accuracy is comparable
to that of RTP ML method.

Table 4 shows the confusion matrix for Teams using the IP/UDP
ML method. It is evident that the IP/UDP ML method accurately
predicts the low and high resolution classes. However, it misclassi-
fies 46.52% of medium resolution intervals as high resolution. This
discrepancy could be attributed to either class imbalance in one or
more of the 5-fold cross validation splits or the inherent difficulty in
distinguishing between the medium and high resolution classes. It
should be noted that within the medium resolution bin, 70% of the
intervals have a frame height of 404, which is close to the threshold
of 480 used to differentiate medium and high resolution classes.

Feature importance. For IP/UDP ML method, packet size statistics
consistently appear in the top-5 features for all VCAs. In fact, for
Meet and Teams, 3 out of top-5 features are related to packet sizes,
suggesting strong correlation between frame resolution and packet
sizes. For Webex (see Figure 9), the most important feature is #
unique sizes, indicating a correlation between frame rate and frame
resolution. We find similar patterns in feature importance plots
for the RTP ML method (see Figure A.9 in Appendix). The only
exception is Webex, where the # unique sizes feature is replaced by
uniqueRTP,;;TS and Marker,;4 bit sum features. This finding re-
affirms that packet size difference is valuable for identifying frame
boundaries.

5.2 Real-world data

This section describes the results over the data collected from 15
access networks. We do observe some differences between the real-
world dataset. Teams and Webex use a different payload type com-
pared to the in-lab data. For Teams, we observe a payload type of
100 for video, 101 for video retransmission, while for Webex, the
payload type for video is 100, with no retransmissions as in the
lab data. We adjust the media classification approach for the RTP
methods accordingly, while the remaining methodology is same as
in-lab.

5.2.1 Frame Rate. Figure 10a shows the boxplot of frame rate es-
timation errors. The overall accuracy is high for the IP/UDP ML
method and is comparable to the RTP ML method, a difference of
0.1 FPS across all VCAs. Interestingly, the RTP Heuristic has the high-
estaccuracy among all methods. We believe it could be due to the fact
that network conditions are more stable in the real-world data, thus
reducing any errors in RTP Heuristic due to any application-level
delays such as jitter buffer delay.

The IP/UDP Heuristic, on the other hand, has the highest errors
among all methods. While, the MAE difference between IP/UDP
Heuristic and RTP Heuristic is only 0.5 FPS and 0.7 FPS for Teams
and Webex, it is 2.3 FPS for Meet. Upon further inspection, we find
that the high errors for Meet are because of higher fraction of frames
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in the real-world data where the intra-frame packet size difference
is greater than the AT;%Y, the threshold used to determine frame
boundaries. More specifically, in the lab data, the intra-frame size
difference exceeded AT}2X for only 4.26% frames, while this number
is 14.48% in the real-world data. This also explains consistent overes-
timation for Meet. Note that using a higher value for AT'?* will not
help as it will lead to underestimation due to combining of frames
with similar size. The discrepancy in Meet could be a codec-specific
issue, Meet uses VP8 or VP9 while both Teams and Webex use H.264,
leading to fragmentation of frames into unequal-sized packets. We
will examine this further in our future work.

We also notice this anomaly in the feature importance analysis
for IP/UDP ML. While # unique sizes is among the top-5 features for
Teams and Webex, it is not the case for Meet. Instead, this is replaced
by the IAT statistics, indicating that packet arrival patterns are better
signals for detecting frame boundaries. This finding confirms that #
unique sizes is not as strongly correlated with frame rate for Meet in
the real-world data. This also shows the resiliency of ML models as
they can rely on multiple features together more effectively.

5.2.2  Bitrate. Figure 10b shows the boxplot of relative error distri-
bution with overall MRAE values mentioned over the top whisker.
The MRAE values in the real-world data are smaller compared to the
in-lab data across all methods. For example, IP/UDP ML method can
estimate bitrate within 25% of ground truth in 92.17% of the intervals
for Meet, 82.43% for Teams, and 95.14% for Webex. This is likely
because the bitrate values are more stable, making them easier to
predict. The feature importance trends for bitrate were found to be
similar as in-lab data for each VCA. The most important features for
both RTP ML and IP/UDP ML are again derived from flow statistic
and correspond to data volume such as # bytes and # packets.

5.2.3 Frame Jitter. We observe that the overall frame jitter errors
are lower in the real-world data compared to the in-lab data for most
methods (see Figure 10c and Figure 6b). For example, when analyzing
IP/UDP ML MAE value for Meet, the MAE is 9.3 ms in real-world data,
whereas it is 22.6 ms for in-lab data. This difference is likely because
the network conditions tend to be more stable in the real-world
dataset. This leads to lower network-level frame jitter, reducing the
smoothening effect of the application-level delay jitter buffer. Thus,
the differences between the predicted frame jitter (only network-
data) and the WebRTC frame jitter (includes effect of application
delay jitter buffer) will be smaller, leading to reduced overall errors.
The remaining trends are similar as the in-lab data.

5.24 Resolution. The real-world dataset for Meet contains two
additional frame height values: 540 and 720. This is likely because
of greater throughput availability and explains the greater overall
bitrate values for Meet. For Teams, the same set of resolution values
were observed as in-lab data. For Webex, we only observe a single
resolution, and thus skip its accuracy computation.

The accuracy for resolution classification using IP/UDP ML is
96.26% and 86.82% for Meet and Teams, respectively. This is com-
parable to the RTP ML accuracy — 96.75% for Meet and 87.11% for
Teams, respectively. As in the lab data, in this case as well IP/UDP
ML model can distinguish extreme resolution values (see Table A.3
for Teams) with high accuracy, while the accuracy is low for medium
resolution intervals.



IMC ’23, October 24-26, 2023, Montreal, QC, Canada

Taveesh Sharma, Tarun Mangla, Arpit Gupta, Junchen Jiang, & Nick Feamster

B RTP ML [ RTP Heuristic BN RTP ML RTP Heuristic BN RTP ML RTP Heuristic
B [P/UDPML [ IP/UDP Heuristic . B IP/UDPML [ IP/UDP Heuristic z EEN [P/UDP ML  [EE IP/UDP Heuristic
o
2 5 04 o0 25
& K Lao,  13204% S i 21
o o /o
SR uﬂ/ 5 Y i fa ol
5 222318 13301 12131018 = 10%11%; 11%11% 5%6%6A77A’ fzo 8 TT g 10 g 9 5 11
2 Bl bl I § *TT ¢ meld iiid
2 & = iil
) © = T =T =T
5 -02 g
b= T 5} T T T
Meet Teams Webex @ Meec Teams Webex E Meet Teams Webex
VCA VCA VCA
(a) Frame rate (b) Bitrate (c) Frame jitter

Figure 10: Distribution of errors across the VCAs for the real-world dataset. The whiskers represent the 107 h and 90" percentile
values. The numbers above the top whisker represent the MAE values for frame rate and frame jitter and MRAE for bitrate.

VCA
Method Meet | Teams | Webex
IP/UDP ML | 12.41 2.07 1.56
RTP ML 3.11 2.51 1.51

Table 5: Frame rate MAE results after using lab-trained models
to predict real-world MAE

5.3 Model Transferability

We examine the transferability of ML models by testing the in-lab
trained ML models with the real-world data. Table 5 shows the overall
MAE values for frame rate estimation. When considering the IP/UDP
ML approach, there is a slight increase in MAE for both Teams and
Webex, specifically 0.7 FPS and 0.3 FPS, respectively, compared to
using models trained on real-world data. However, for Meet, the
MAE significantly increases by 10 FPS. Upon further inspection,
we find that IAT [min] is the most important feature for the in-lab-
trained IP/UDP ML model in this case. Considering the disparity in
bitrates between real-world and lab data for Meet, it is likely that
the IAT distribution differs as well, consequently leading to errors in
frame rate prediction. Interestingly, the decline in performance for
Meet using the RTP ML method is not as pronounced as observed in
the IP/UDP ML method. This disparity can be attributed to the higher
importance of the number of unique RTP timestamps as a feature
which in some sense is a direct indicator of frame rate compared to
IAT.

The trend persists for video bitrate and resolution with a sig-
nificant drop in accuracy for Meet, but only a slight decrease for
Teams and Webex (see Tables A.4 and A.5 in Appendix). The non-
transferability for Meet can again be attributed to the presence of a
distinct distribution that was not previously encountered, i.e, calls
with high bitrate and high resolution. This discrepancy suggests
that the model lacks the ability to effectively extrapolate to unseen
distributions.

5.4 Effect of Network Conditions

We next characterize the network conditions under which the models
yield high errors. To do so, we collect data under synthetic network
conditions by varying one of the following five network parameters:
throughput (1500 kbps), throughput jitter (0 kbps), latency (50 ms),
latency jitter (0 ms), and packetloss (0%). The numbers in parantheses
represent the default values. For example, to analyze the impact of
loss, other parameters are set to default values and loss is varied
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Figure 11: IP/UDP ML MAE for frame rate with varying net-
work loss. The bands represent 95% confidence intervals

from 0% to 20% following a Bernoulli loss model. Each combination
of network conditions is repeated for four calls. For training ML
models, we use 50% of data, sampling uniformly randomly from each
combination of network condition. The remaining 50% data is used
for testing.

Figure 11 shows the accuracy under varying loss for the IP/UDP
ML method. Barring few exceptions, we observe an increasing trend
in errors as network loss increases. On further inspection, we found
that losses lead to retransmissions for video packets, leading to
packet reordering. It is not possible to determine the correct order of
the packets using only IP/UDP headers which causes higher errors.
We find that the errors are even higher for the IP/UDP Heuristic as it
relies only on packet sizes, and is more severely impacted by packet
reordering. We also observe similar behavior under high latency or
throughput jitter likely because both also lead to packet reordering.
However, this occurs at very high values of jitter, indicating some
robustness to minor jitters in the network. The errors do not change
significantly with varying mean throughput or mean latency.

5.5 Effect of Prediction Window Size

We analyze the impact of prediction window size on QoE estimation
accuracy. Figure 12 shows the IP/UDP ML MAE values for frame
rate under varying prediction window. The errors decrease as the
prediction window size increases. This can be attributed to two
reasons: (1). larger window sizes reduce the impact of sub-second-
level window misalignment between packet traces and WebRTC
logs, and (2). the frame rate values become more stable as they are
smoothed out over larger window, making the prediction task easier.
We observe similar patterns across other methods and metrics.
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Figure 12: Variation of IP/UDP ML MAE with prediction win-
dow size for frame rate predictions for in-lab traces

6 RELATED WORK

QoE Inference for Video Streaming. Past research has made
substantial progress in inferring QoE for on-demand video streaming.
One set of approaches propose heuristics that model a video session
relying on the properties of the underlying streaming protocol [13, 30,
37]. The second set of approaches propose using supervised machine
learning and use features derived from network data to estimate QoE
metrics [4, 8, 26, 33]. Inferring QoE for video conferencing is a fairly
distinct problem from video streaming due to the differences in the
nature of two applications, consequently leading to differences in the
underlying application and transport protocols, and the metrics that
determine user QoE. This paper tackles the problem of QoE inference
for VCAs and proposes both heuristic- and ML-based approaches.
VCA measurement studies. Early VCA measurement studies
focused on understanding the design and network performance of
Skype, one of the first and the most popular VCA of the time [6, 19, 21].
More recent studies have revisited similar questions for modern
VCAs [11, 20, 24, 28, 36]. Most of these studies rely on controlled
experiments and assume access to end-hosts to collect VCA per-
formance data. For instance, He et al. [20] identify the functional
differences (e.g., congestion control mechanisms) among modern
VCAs using controlled measurements. Our work considers a differ-
ent question, i.e., how to infer video QoE metrics without access to
end-hosts? Answering this question can enable network operators
to understand VCA performance for a wide-variety of application
and network contexts and appropriately manage their networks.
VCA QoE inference. Past work has proposed data-driven tech-
niques, based on supervised machine learning, to estimate QoE for
Voice over IP [4, 12]. More recent works propose similar techniques
but focus on video performance over VCAs. These works differ, how-
ever, in the set of inferred QoE metrics as well as the network features
used for inference. For instance, Garcia et al. infer metrics assuming
access to an unimpaired reference video[18]. Similarly, Yan et al.[44]
use WiFi-specific features to predict “good versus bad” QoE over the
entire VCA session. We focus on inferring no-reference, objective
VCA QoE metrics using measurements of passive network traffic.
Works by Nikravesh et al.[35] and Carofigilo et al. [9] are similar in
spirit in that regard. However, both of these works assume access
to RTP headers which may not be practical in many cases such as
with custom RTP protocols (e.g., Zoom), encrypted application-layer
headers (e.g., VPN), or legacy monitoring systems. Recent work by
Oliver et al. [32] uses entropy-based header analysis to infer Zoom’s
RTP encapsulation mechanisms. However, the approach may not
work if VCAs use complex encapsulation mechanisms or encrypt
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application-layer headers altogether. Morevoer, it requires network
monitoring systems that can process arbitrary portions of the traffic.
This may not be feasible for several network operators due to prac-
tical considerations. This paper considers whether more standard
features of the network traffic, i.e., IP/UDP headers, can be used to
infer the VCA QoE metrics.

7 LIMITATIONS AND FUTURE WORK

Generalizability to other VCAs. Our paper’s evaluation is focused
on WebRTC-based VCAs, although our methodology can be applied
to any RTP-based VCA. The reason to focus on WebRTC is the lack
of methods to obtain application-level QoE metrics for native VCA
clients. Additionally, we do not include the WebRTC version of
Zoom, one of the most popular VCAs, as its implementation uses
the datachannel API meant for non-audiovisual communication.
As aresult, the video QoE metrics are no longer available for Zoom
through thewebrtc-internals API Past work has considered other
metrics to obtain QoE metrics from the applications. Michel et al. [34]
used a custom Zoom client, but this approach will not work for the
native client of other VCAs. Another method to obtain application-
level logs is through screen capture of annotated video [16, 43],
but this method is resource intensive. Future work will explore
generalizable and lightweight methods to obtain application-level
QoE logs for native VCA clients and assess the accuracy of proposed
QoE estimation methods for these clients.

Cost of ML models. Using supervised ML models can be costly
due to the expense of acquiring labeled data for training. We present
one solution to gather labeled data, i.e., through automated data
collection frameworks, deployed either in-lab or across multiple
network vantage points. The framework is easily extensible to other
WebRTC-based VCAs. Another solution to explore in future would be
whether direct or calibrated estimations from non-machine learning
methods like IP/UDP Heuristic or RTP Heuristic can be used as
alternatives to labeled data.

Impact of application modes. We only evaluate our methodology
in a two-person call scenario. However, modern VCAs offer various
other application modes, such as disabling video, multi-party con-
ferencing, and screen sharing. Determining whether user video is
disabled seems possible by analyzing UDP packet size distribution,
but the other two modes pose challenges in QoE estimation, espe-
cially using only IP/UDP headers. In multi-party scenarios, multiple
video streams may be transmitted over the same UDP flow. This may
require an additional step in our methods to estimate the number of
participants before estimating QoE. Similarly, when screen sharing
is enabled, adjustments to the media classification steps will be re-
quired. These adjustments may be based on insights from differences
in encoding of video and screen sharing data. Additionally, a ma-
chine learning-based QoE inference approach such as IP/UDP ML,
when trained with appropriate data, could accurately estimate QoE
metrics even across different application modes. Further research
will explore this question and quantify the impact of application
modes on the accuracy of our methods.

System considerations. In theory, our approach relies on light-

weight features from the IP/UDP headers of network traffic. However,
we have not tested the scalability of our methods on a network-wide
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level, particularly when it comes to real-time QoF estimation. Addi-
tional optimization might be required in the implementation of our
methods such as using efficient data structures or implementation
of streaming versions of the methods. In future work, we plan to
implement these approaches within a real-world network, such as
campus network, to assess the scalability of our approach.

8 CONCLUSION

We have developed and evaluated two methods to infer QoE for
WebRTC-based VCAs at per-second granularity. Evaluation of our
method under diverse network conditions demonstrates the model’s
ability to estimate QoE metrics with high accuracy, even if the meth-
ods relies on only IP/UDP headers. This approach represents a sig-
nificant advance over previous work, which uses information in the
RTP headers. Future work will explore the generalizability of our
methods to a broader set of clients (e.g., device, operating systems,
native clients) and application modes (e.g., multi-party calls).
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A STATEMENT OF ETHICS

The real-world network traces used in this paper are collected after
obtaining approvals from our Institutional Review Board (IRB). We
prioritize the protection of user privacy and take extensive measures
to ensure it. Our deployment setup solely permits the collection
of active measurement data from participants’ homes; we can not
monitor any user network traffic. More specifically, the Raspberry
Pi (RPi) devices used for this study are connected to the home router
using a wired connection like any other device. We do not sit in
the middle of the user device and the home router. Additionally, we
remove any personally identifiable information, such as physical
address and demographics, before analyzing the collected data.

The network trace data that we make public corresponds to the
VCA calls between the Raspberry Pi and the cloud endpoint. As an
additional privacy measure, the IP addresses of both these endpoints
have been hashed in the network traces as well as the JSON files
obtained via webrtc-internals. The remaining datasets used in
this paper are collected within controlled lab setting and do not pose
any privacy-related issues.

B METHODOLOGY

Algorithm 1 An algorithm for VCA frame boundary estimation
using IP/UDP headers only

max max
Asize . N

Input: packets,
Output: frames
feo
frames «— {}
for p in packets do
assigned < False
for p’ in previously seen N™%* packets do
if |p’.size - p.size| < ATI2X then
frames [p] <« frames [p’]
assigned «— True
break
end if
if assigned = True then
f—f+1
frames [p] < f
end if
end for
end for
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C DATASETS

C.1 DataDescription

Figure A.1 and Figure A.2 show the CDF of ground truth QoE metrics
for in-lab and real-world datasets respectively.

Prediction
Actual Non-Video | Video Total
Non-video 98.2% 1.8% 50,799
Video 0% 100% | 946,769

Table A.1: Webex Media classification accuracy for in-lab data

Prediction
Actual Non-Video | Video Total
Non-video 98.5% 1.5% 378,249
Video 0% 100% 1,818,689

Table A.2: Teams Media classification accuracy for in-lab data

0.00 T T T T T T 1
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Ground Truth frame rate [FPS]
(a) Frames per second
= Meet Teams === Webex
1.00
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[
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@]
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0.00 T T T T T 1
0 500 1000 1500 2000 2500 3000
Ground Truth Bitrate [kbps]
(b) Video bitrate
= Meet Teams = Webex
1.00
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I
A 0.50
@)
0.25
0.00 T T T T 1
0 20 40 60 80 100

Ground Truth frame jiter [ms]

(c) Frame Jitter

Figure A.1: CDF of ground truth QoE metrics for in-lab data



IMC ’23, October 24-26, 2023, Montreal, QC, Canada

Predicted
Actual e dram | High | ot
Low 90.23% 5.58% 4.19% 573
Medium | 1432% | 3087% | 5481% | 447
High | 089% | 334% | 95.77% | 2576

Table A.3: The normalized confusion matrix for resolution
predictions by IP/UDP ML model for Teams on real-world
data. The percentages indicate the accuracy of our predictions
for each frame height.

VCA
Method Meet | Teams | Webex
IP/UDP ML | 889.93 114.06 29.53
RTP ML 793.86 167.18 29.22

Table A.4: Bitrate MAE results after using lab-trained models
to predict real-world MAE

VCA
Method Meet | Teams | Webex
IP/UDP ML | 89.74 64.36 29.78
RTP ML 30.31 19.87 95.43

Table A.5: Frame Jitter MAE results after using lab-trained
models to predict real-world MAE
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Figure A.2: CDF of ground truth QoE metrics for real-world
data
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D EVALUATION

D.1 In-labData

D.1.1  Media classification accuracy. Table A.2 and A.1 show the
media classification accuracy of Teams and Webex, respectively,
using only IP/UDP headers.

Assigned frames

(]
/1
/1
/0

.z ’

Packet RTP Timestamps

Figure A.3: A plot showing frame assignments by the IP/UDP
Heuristic approach over a 1-second window for Meet. The
solid arrows represent correct frame assignments while the
dotted arrows represent incorrect ones.

D.1.2  Frame rate. Figure A.3 illustrates a case of frame coalescing
from one of the Teams sessions. The red dots represent sequence
of packets over time with their respective RTP timestamp, while

the blue dots show the frame assignment by the IP/UDP Heuristic.
Packets with RTP timestamp 2 and 3 have a size of 1022 bytes and

1020 bytes, respectively, leading to these packets grouped into a
single frame. Similar is the case for packets with RTP timestamp 5
and 6.

Feature Importance. Figure A.4 and A.5 show the feature impor-
tance plots for IP/UDP ML and RTP ML methods, respectively.

D.1.3  Video bitrate. Feature Importance.Figure A.6 and A.7 show
the feature importance plots for IP/UDP ML and RTP ML methods,
respectively.

D.1.4  Frame Resolution. Feature Importance. Figure A.8 and A.9
show the feature importance plots for IP/UDP ML and RTP ML
methods, respectively.

D.2 Real-world Data

D.2.1 Resolution. Table A.3 showsthe IP/UDP ML confusion matrix
for resolution prediction for Teams on real-world data.

D.3 Model Transferability

Table A.4 and A.5 show the MAE of models trained using in-lab
data and tested on real-world data for video bitrate and frame jitter,
respectively.

D.4 Effect of Network Conditions

Table A.6 summarizes the synthetic network conditions emulated to
study the effect of network conditions on the accuracy of ML models.
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Figure A.4: Top-5 features along with importance scores for frame rate estimation across the three VCAs for the IP/UDP ML

method
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Figure A.5: Top-5 features along with importance scores for frame rate estimation across the three VCAs for the RTP ML method
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Figure A.6: Top-5 features along with feature importance scores for bitrate estimation using the IP/UDP ML method.
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Figure A.7: Top-5 features along with feature importance scores for bitrate estimation using the RTP ML method.
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Figure A.8: Top-5 features along with feature importance scores for resolution estimation using the IP/UDP ML method
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Figure A.9: Top-5 features along with feature importance scores for resolution estimation using the RTP ML method.

Impairment Throughput [kbps] Delay [ms] Packet Loss
Mean Throughput | :[100, 200, 500,1000, 2000, 4000], o: 0 p:50, 0: 0 0%
Throughput stdev. | p: 1500, o [0, 100, 200, 500, 1000, 1500] p:50, 0:0 0%

Mean Latency 41: 1500, 0: 0 4: [50, 100, 200, 300, 400, 500], 0: 0 0%

Latency stdev. p:1500,0: 0 H: 50, 0 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 0%

Packet Loss % p: 1500, 0: 0 §:50,0:0 [1,2,5,10,15,20]%

Table A.6: Different impairment profiles used for network sensitivity tests. Square brackets indicate a variation across different
calls. 4 and o denote mean and standard deviation respectively.

D.5 Effect of IP/UDP Heuristic packet lookback

Teams —@— Webex

4 5 6 7
Packet Lookback

Frame Rate MAE

Figure A.10: Variation of frame rate MAE with IP/UDP Heuris-
tic packet lookback parameter

500

The IP/UDP Heuristic packet lookback parameter was tuned on a
sample of 50 in-lab traces each for Meet, Teams and Webex. Fig-
ure A.10 shows the variation of frame rate MAE with the number
of packets we look back to match a packet with already assembled
frames. For Webex we see a clear increasing trend, while for Meet
and Teams we observe minima at lookbacks of 3 and 2 respectively.
Webex has an optimal lookback of 1 because 99.70% frames have a
maximum intra-frame size difference of 2 bytes, and 99.38% of the
frames are of size less than or equal to 3 packets. Our algorithm is
thus able to merge similarly sized frames together by not looking
too far back. For Teams, even though 98.56% of the frames have an
intra-frame size difference of 2 bytes, only 43.82% have a size less
than or equal to 3 packets. Thus, a greater lookback is required to
merge similarly sized packets together. For Meet, these percentages
are slightly lower than Webex (95.73% and 95.18%), thus the optimal
lookback is 2 packets.
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