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Abstract. The integral fractional Laplacian of order s \in (0, 1) is a nonlocal operator. It
is known that solutions to the Dirichlet problem involving such an operator exhibit an algebraic
boundary singularity regardless of the domain regularity. This, in turn, deteriorates the global
regularity of solutions and as a result the global convergence rate of the numerical solutions. For
finite element discretizations, we derive local error estimates in the Hs-seminorm and show optimal
convergence rates in the interior of the domain by only assuming meshes to be shape-regular. These
estimates quantify the fact that the reduced approximation error is concentrated near the boundary
of the domain. We illustrate our theoretical results with several numerical examples.
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1. Introduction. In this work we consider finite element discretizations of the
problem

(1.1)

\biggl\{ 
( - \Delta )su = f in \Omega ,

u = 0 in \Omega c := \BbbR 
d \setminus \Omega ,

where \Omega \subset \BbbR 
d is a bounded domain and ( - \Delta )s is the integral fractional Laplacian of

order s \in (0, 1),

(1.2) ( - \Delta )su(x) := Cd,s p.v.

�
\BbbR d

u(x) - u(y)

| x - y| d+2s
dy.

The normalization constant Cd,s =
22ss\Gamma (s+ d

2 )
\pi d/2\Gamma (1 - s)

makes the integral in (1.2), calculated

in the principal value sense, coincide with the Fourier definition of ( - \Delta )su. It is
well understood that even if the data is smooth (for example, if \partial \Omega \in C\infty and
f \in C\infty (\Omega )), then the unique solution to (1.1) develops an algebraic singularity near
\partial \Omega , i.e., a singularity of the form dist(x, \partial \Omega )s (cf. Example 2.2). This is in stark
contrast with the classical Laplacian equation.

Nevertheless, in such a case one expects the solution to be locally smooth in \Omega 
and thus the discretization error to be smaller in the interior of the domain. Our main
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FRACTIONAL LAPLACIAN: LOCAL ENERGY ESTIMATES 1919

result (Theorem 5.3) is a quantitative estimate of the fact that the finite element error
is concentrated around \partial \Omega .

The fractional Laplacian (1.2) is a nonlocal operator: computing ( - \Delta )su(x) re-
quires the values of u at points arbitrarily far away from x. Nonlocality is also reflected
in the variational formulation of (1.1): the natural space in which the problem is set

is the zero-extension fractional Sobolev space \widetilde Hs(\Omega ), and the norm therein is not sub-
additive with respect to domain partitions. Furthermore, it is not possible to localize
the inner product in \widetilde Hs(\Omega ), because functions with supports arbitrarily far away from
each other may have a nonzero Hs-inner product. This is also in stark contrast with
the local case (i.e., with the inner product in H1(\Omega )) and makes the development of
local estimates for such a nonlocal problem a more delicate matter, especially in the
case of general shape-regular meshes. This is the main purpose of this paper.

In recent years, there has been significant progress in the numerical analysis and
implementation of (1.1) and related fractional-order problems. Finite element dis-
cretizations naturally provide the best approximation in the energy norm. A priori
convergence rates in the energy norm for approximations using piecewise linear basis
functions on either quasi-uniform or graded meshes were derived in [2]; similar re-
sults, but regarding convergence in H1(\Omega ) in the case s > 1

2 , were obtained in [9].
The use of adaptive schemes and a posteriori error estimators has been studied in
[3, 23, 26, 35, 39]. A nonconforming discretization, based on a Dunford--Taylor repre-
sentation, was proposed and analyzed in [8]. We refer to [7, 10] for further discussion
on these methods. In contrast, the analysis of finite difference schemes typically leads
to error estimates in the L\infty (\Omega )-norm under regularity assumptions that cannot be
guaranteed in general [18, 19, 29].

We learned about [22] after our paper was submitted. Reference [22] also performs
a local error analysis for the problem (1.1). The local estimates in [22] differ from ours
in several respects. The main differences lie in the form of the pollution term, which
is expressed in the Hs - 1

2 -norm instead of the L2-norm, and that the error estimates
are measured in the H1-norm besides the Hs-energy norm. The analytical techniques
differ as well. While the proof in [22] is based on the use of the Caffarelli--Silvestre
extension, our approach is purely nonlocal and is based on Caccioppoli estimates that
are valid for a more general class of kernels [5, 15], and meshes.

The rest of the paper is organized as follows. In section 2, we review the fractional-
order spaces and the regularity of solutions to (1.1) in either standard or weighted
Sobolev spaces. In section 3, we describe our finite element discretization, review
basic energy based error estimates, and combine such estimates with Aubin--Nitsche
techniques to derive novel convergence rates in L2-norm. In section 4, we provide a
proof of a Caccioppoli estimate for the continuous problem. In section 5, which is the
central part of the paper, we combine Caccioppoli estimates and superapproximation
techniques to obtain interior error estimates with respect to Hs-seminorms. At the
end of this section we show some applications of our interior error estimates. In
particular, we discuss the convergence rates of the finite element error in the interior
of the domain with respect to smoothness of the domain and the right-hand side in
the case of quasi-uniform and graded meshes. The results are summarized in Tables
1 and 2. Finally, several numerical examples at the end of the paper illustrate the
theoretical results from section 5.

2. Variational formulation and regularity. In this section, we briefly discuss
important features of fractional-order Sobolev spaces that are instrumental for our
analysis. Furthermore, we consider regularity properties of the solution to (1.1) and
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1920 BORTHAGARAY, LEYKEKHMAN, AND NOCHETTO

review some negative results that lead to the use of certain weighted spaces, in which
the weight compensates the singular behavior of the gradient of the solution near
the boundary of the domain. Having regularity estimates in such weighted spaces
at hand, we shall be able to increase the convergence rates by constructing a priori
graded meshes.

2.1. Sobolev spaces. Sobolev spaces of order s \in (0, 1) provide the natural
setting for the variational formulation of (1.1). More precisely, we consider Hs(\BbbR d)
to be the set of L2-functions v : \BbbR d \rightarrow \BbbR such that

(2.1) | v| Hs(\BbbR d) :=

\biggl( 
Cd,s

2

�
\BbbR d

�
\BbbR d

| v(x) - v(y)| 2
| x - y| d+2s

dy dx

\biggr) 1/2

<\infty ,

where Cd,s is taken as in (1.2). Clearly, these are Hilbert spaces; we shall denote by
(\cdot , \cdot )s the bilinear form that gives rise to the fractional-order seminorms, namely,

(2.2) (v, w)s :=
Cd,s

2

�
\BbbR d

�
\BbbR d

(v(x) - v(y))(w(x) - w(y))

| x - y| d+2s
dy dx.

For the variational formulation of (1.1), we need the zero-extension spaces

\widetilde Hs(\Omega ) := \{ v \in Hs(\BbbR d) : supp(v) \subset \Omega \} ,

for which the form (\cdot , \cdot )s becomes an inner product. Moreover, if v, w \in \widetilde Hs(\Omega ), then

integration in (2.2) takes place in (\BbbR d \times \BbbR 
d) \setminus (\Omega c \times \Omega c). We shall denote the \widetilde Hs(\Omega )-

norm by \| v\| \widetilde Hs(\Omega ) := (v, v)
1/2
s = | v| Hs(\BbbR d) and remark that the L2-norm of v is not

needed because a Poincar\'e inequality holds in the zero-extension Sobolev spaces.
Fractional-order Sobolev spaces can be equivalently defined through interpola-

tion of integer-order spaces; remarkably, if one suitably normalizes the standard K-
functional, then the norm equivalence constants can be taken to be independent of
s [32, Lemma 3.15 and Theorem B.9]. Although the constant Cd,s in (2.1) is funda-
mental in terms of the continuity of Sobolev seminorms as s \rightarrow 0, 1, we shall omit it
whenever s is fixed. For simplicity of notation, throughout this paper we shall adopt
the convention H0(\Omega ) = L2(\Omega ).

Let H - s(\Omega ) denote the dual space to \widetilde Hs(\Omega ) and \langle \cdot , \cdot \rangle be their duality pairing.

Because of (2.2) it follows that if v \in \widetilde Hs(\Omega ), then ( - \Delta )sv \in H - s(\Omega ) and

(v, w)s = \langle ( - \Delta )sv, w\rangle \forall w \in \widetilde Hs(\Omega ).

This integration by parts formula motivates the following weak formulation of (1.1):

given f \in H - s(\Omega ), find u \in \widetilde Hs(\Omega ) such that

(2.3) (u, v)s = \langle f, v\rangle \forall v \in \widetilde Hs(\Omega ).

Because this formulation can be cast in the setting of the Lax--Milgram theorem, the
existence and uniqueness of weak solutions, and stability of the solution map f \mapsto \rightarrow u,
are straightforward.

2.2. Sobolev regularity. The well-posedness of (2.3) in \widetilde Hs(\Omega ) if f \in H - s(\Omega ) is
a consequence of the Lax--Milgram theorem. A subsequent question is what additional
regularity does u inherit for smoother f . For the sake of finite element analysis, here
we shall focus on Sobolev regularity estimates.
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By now it is well understood that for smooth domains \Omega and data f , solutions to
(1.1) develop an algebraic singular layer of the form (cf., for example, [28, 36])

(2.4) u(x) dist(x, \partial \Omega ) - s = v(x),

where v is H\"older continuous up to \partial \Omega ; this limits the global smoothness of solutions.
Indeed, if u is locally smooth in \Omega but behaves as (2.4), then one cannot guarantee

that u belongs to Hs+ 1
2 (\Omega ); actually, in general u /\in Hs+ 1

2 (\Omega ) (see Example 2.2).
We now quote a recent result [11] that characterizes the regularity of solutions

in terms of Besov norms. Its proof follows a technique introduced by Savar\'e [37]
that consists in combining the classical Nirenberg difference quotient method with
suitably localized translations and exploiting certain convexity properties. We refer
to [37, section 4] for a definition and basic properties of Besov spaces.

Theorem 2.1 (Besov regularity on Lipschitz domains). Let \Omega be a bounded Lip-
schitz domain, s \in (0, 1), and f \in L2(\Omega ). Then, there exist constants C, \zeta depending
on \Omega , d such that the solution u to (1.1) belongs to the Besov space Bs+\theta 

2,\infty (\Omega ), where

\theta = 1
2 for 1

2 < s < 1 and \theta = s - \epsilon > 0 for 0 < s \leq 1
2 , and satisfies the estimates

(2.5) \| u\| Bs+\theta 
2,\infty (\Omega ) \leq 

\Biggl\{ 
C
\bigl( 

1
2s - 1

\bigr) \zeta \| f\| L2(\Omega ),
1
2 < s < 1,

C
\bigl( 
s
\varepsilon 

\bigr) \zeta \| f\| L2(\Omega ), 0 < s \leq 1
2 .

Combining (2.5) with the Sobolev embedding \| u\| Hs+\theta  - \varepsilon (\Omega ) \leq C\surd 
\varepsilon 
\| u\| Bs+\theta 

2,\infty (\Omega ) yields

(2.6) \| u\| Hs+\theta  - \varepsilon (\Omega ) \leq 
C

\varepsilon \xi 
\| f\| L2(\Omega ) \forall 0 < \varepsilon < s,

where \xi = 1/2 for 1
2 < s < 1 and \xi = 1/2 + \zeta for 0 < s \leq 1

2 and C = C(\Omega , d, s).
There are two conclusions to be drawn from the previous result. In the first

place, assuming the domain to be Lipschitz is optimal, in the sense that if \Omega was a
C\infty domain, then no further regularity could be inferred. Thus, reentrant corners play
no role in the global regularity of solutions: the boundary behavior (2.4) dominates
any point singularities that could originate from them; we refer to [25] for further
discussion on this point. In the second place, in general the smoothness of the right-
hand side cannot make solutions any smoother than \cap \varepsilon >0

\widetilde Hs+ 1
2 - \varepsilon (\Omega ). The expression

(2.4) holds in spite of the smoothness of f near \partial \Omega . We illustrate these two points
with a well-known example [24].

Example 2.2 (limited regularity). Let \Omega = B(0, 1) \subset \BbbR 
d and f \equiv 1. Then, the

solution to (1.1) is

(2.7) u(x) =
\Gamma (d2 )

22s\Gamma (d+2s
2 )\Gamma (1 + s)

(1 - | x| 2)s+,

where t+ = max\{ t, 0\} . Therefore, u \in \cap \varepsilon >0
\widetilde Hs+ 1

2 - \varepsilon (\Omega ).

We also point out a limitation in the technique of proof in Theorem 2.1 from [11]
that is related to the example above. Namely, in the case s < 1

2 and f \in Hr(\Omega )
for some r > 0, solutions are expected to be smoother than just H2s(\Omega ); however,
one cannot derive such higher regularity estimates from Theorem 2.1. For smooth
domains (i.e., \partial \Omega \in C\infty ), the following estimate holds [38]:

(2.8) f \in Hr(\Omega ),  - s \leq r <
1

2
 - s \Rightarrow u \in \widetilde H2s+r(\Omega ).
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2.3. Regularity in weighted Sobolev spaces. By developing a fractional
analogue of the Krylov boundary Harnack method, Ros-Oton and Serra [36] obtained
a fine characterization of boundary behavior of solutions to (1.1) and derived H\"older
regularity estimates. In order to exploit these estimates and apply them in a finite
element analysis, reference [2] introduced certain weighted Sobolev spaces, where the
weight is a power of the distance to \partial \Omega . Let

\delta (x) := dist(x, \partial \Omega ), \delta (x, y) := min\{ \delta (x), \delta (y)\} .

Then, for k \in \BbbN \cup \{ 0\} and \gamma \geq 0, we consider the norm

(2.9) \| v\| 2Hk
\gamma (\Omega ) =

�
\Omega 

\left( 
 | v(x)| 2 +

\sum 

| \beta | \leq k

| \partial \beta v(x)| 2
\right) 
 \delta (x)2\gamma dx

and define Hk
\gamma (\Omega ) and \widetilde Hk

\gamma (\Omega ) as the closures of C
\infty (\Omega ) and C\infty 

0 (\Omega ), respectively, with
respect to the norm (2.9).

Next, for t = k + s, with k \in \BbbN \cup \{ 0\} and s \in (0, 1), and \gamma \geq 0, we consider

\| v\| 2Ht
\gamma (\Omega ) := \| v\| 2Hk

\gamma (\Omega ) + | v| 2Ht
\gamma (\Omega ),

| v| 2Ht
\gamma (\Omega ) :=

�
\Omega 

�
\Omega 

| \nabla kv(x) - \nabla kv(y)| 2
| x - y| d+2s

\delta (x, y)2\gamma dy dx

and the associated space Ht
\gamma (\Omega ) := \{ v \in Hk

\gamma (\Omega ): \| v\| Ht
\gamma (\Omega ) <\infty \} .

In analogy with the notation for their unweighted counterparts, we define zero-
extension weighted Sobolev spaces by

(2.10) \widetilde Ht
\gamma (\Omega ) := \{ v \in Ht

\gamma (\BbbR 
d) : v = 0 a.e. in \Omega c\} 

with \| v\| 2
\widetilde Ht
\gamma (\Omega )

:= \| v\| 2
\widetilde Hk
\gamma (\Omega )

+ | v| 2Ht
\gamma (\BbbR 

d). The convenience of using the same weight in

both the function and its fractional-order derivatives is discussed in [12, section 3].
We have the following regularity estimate in the scale (2.10) [2, Proposition 3.12],

[7, Formula (3.6)].

Theorem 2.3 (weighted Sobolev estimate). Let \Omega be a bounded, Lipschitz do-
main satisfying the exterior ball condition (i.e., there exists r > 0 such that for all
x \in \partial \Omega , there exists B(y, r) \subset \Omega c satisfying B(y, r)\cap \Omega = \{ x\} ), s \in (0, 1), f \in C\beta (\Omega )
for some \beta \in (0, 2 - 2s), \gamma \geq 0, t < min\{ \beta + 2s, \gamma + s+ 1

2\} , and u be the solution of

(2.3). Then, it holds that u \in \widetilde Ht
\gamma (\Omega ) and

\| u\| \widetilde Ht
\gamma (\Omega ) \leq 

C(\Omega , d, s)\sqrt{} 
(\beta + 2s - t) (1 + 2(\gamma + s - t))

\| f\| C\beta (\Omega ).

Remark 2.4 (optimal parameters). In finite element applications of Theorem
2.3, discussed in section 3, we will design graded meshes with a grading dictated by
\gamma . The optimal choice of parameters t and \gamma depends on both the smoothness of the
right-hand side f \in C\beta (\Omega ) and the dimension d of the space. We illustrate this now:
let d \geq 2, s < d

2(d - 1) , \beta = d
2(d - 1)  - s, and \varepsilon > 0 be sufficiently small, and choose

t = s+ d
2(d - 1)  - \varepsilon d and \gamma = 1

2(d - 1)  - \varepsilon , to obtain the optimal regularity estimate

\| u\| \widetilde Ht
\gamma (\Omega ) \leq 

C(\Omega , d, s)

\varepsilon 
\| f\| C\beta (\Omega ).
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In contrast, if s \geq d
2(d - 1) , we set \beta to be any positive number and take t, \gamma as above

to arrive at

\| u\| \widetilde Ht
\gamma (\Omega ) \leq 

C(\Omega , d, s, \beta )\surd 
\varepsilon 

\| f\| C\beta (\Omega ).

Remark 2.5 (exterior ball condition). Taking into account the results from [25],
the exterior ball condition could be relaxed. Indeed, such a reference proves that
the asymptotic expansion (2.4) is valid also for corner singularities, which implies
that graded meshes also give rise to optimal convergence rates in that situation.
Nevertheless, because the analysis of effects of reentrant corners is beyond the scope
of this paper, we leave the exterior ball assumption on \Omega .

3. Finite element discretization. We next consider the finite element dis-
cretizations of (2.3) by using piecewise linear continuous functions. Let h0 > 0; for
h \in (0, h0], we let \scrT h denote a triangulation of \Omega , i.e., \scrT h = \{ T\} is a partition of \Omega 
into simplices T of diameter hT . We assume the family \{ \scrT h\} h>0 to be shape-regular,
namely,

\sigma := sup
h>0

max
T\in \scrT h

hT
\rho T

<\infty ,

where hT = diam(T ) and \rho T is the diameter of the largest ball contained in T . As
usual, the subindex h denotes the element size, h = maxT\in \scrT h

hT ; moreover, we take
elements to be closed sets.

We shall also need a smooth mesh function h(x), which is locally comparable with
the element size. Note that shape-regularity yields | \nabla h| \leq C(\sigma ) (cf. [34, Lemma 5.1]),
and thus

(3.1) | h(x) - h(y)| \leq C(\sigma )| x - y| \forall x, y \in \Omega .

Let \scrN h be the set of interior vertices of \scrT h, N be its cardinality, and \{ \varphi i\} Ni=1

be the standard piecewise linear Lagrangian basis, with \varphi i associated to the node
xi \in \scrN h. With this notation, the set of discrete functions is

\BbbV h :=

\Biggl\{ 
v \in C0(\Omega ): v =

N\sum 

i=1

vi\varphi i

\Biggr\} 
.

It is clear that \BbbV h \subset \widetilde Hs(\Omega ) for all s \in (0, 1) and therefore we have a conforming
discretization.

3.1. Interpolation and inverse estimates. Fractional-order seminorms are
not subadditive with respect to domain decompositions; therefore, some caution must
be exercised when localizing them. With the goal of deriving interpolation estimates,
we define the star (or patch) of a set A \in \Omega by

SA :=
\bigcup 

\{ T \in \scrT h : T \cap A \not = \emptyset \} .

Given T \in \scrT h, the star ST of T is the first ring of T and the star SST
of ST is the

second ring of T . The star of the node xi \in \scrN h is Si := supp(\varphi i).
We have the following localization estimate for all v \in Hs(\Omega ) [20, 21]:

(3.2) | v| 2Hs(\Omega ) \leq 
\sum 

T\in \scrT h

\biggl[ �
T

�
ST

| v(x) - v(y)| 2
| x - y| d+2s

dy dx+
C(d, \sigma )

sh2sT
\| v\| 2L2(T )

\biggr] 
.
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This inequality shows that to estimate fractional seminorms over \Omega , it suffices to com-
pute integrals over the set of patches \{ T\times ST \} T\in \scrT h

plus local zero-order contributions.
In addition, if these L2 contributions have vanishing means over elements---as is often
the case whenever v is an interpolation error---a Poincar\'e inequality allows one to
estimate them in terms of local Hs-seminorms. Thus, one can prove the following
local quasi-interpolation estimates (see, for example, [2, 12, 14]).

Proposition 3.1 (local interpolation estimates). Let T \in \scrT h, s \in (0, 1), t \in 
(s, 2], and \Pi h be a suitable quasi-interpolation operator. If v \in Ht(SST

), then

(3.3)

�
T

�
ST

| (v  - \Pi hv)(x) - (v  - \Pi hv)(y)| 2
| x - y| d+2s

dy dx \leq C h
2(t - s)
T | v| 2Ht(SST

),

where C = C(\Omega , d, s, \sigma , t). Moreover, considering the weighted Sobolev scale (2.10), it
holds that for all v \in Ht

\gamma (SST
),

(3.4)

�
T

�
ST

| (v  - \Pi hv)(x) - (v  - \Pi hv)(y)| 2
| x - y| d+2s

dy dx \leq Ch
2(t - s - \gamma )
T | v| 2Ht

\gamma (SST
).

For the purpose of this paper, we shall make use of a variant of (3.2). Even though
the fractional-order norms can be localized, it is clear that theHs-inner product of two
arbitrary functions cannot: it suffices to consider two positive functions with supports
sufficiently far from each other. The following observation is due to Faermann [21,
Lemma 3.1]. Since we use it extensively, we reproduce it here for completeness.

Lemma 3.2 (symmetry). For any v, w \in L1(\Omega ) and \rho : \BbbR + \rightarrow \BbbR 
+ bounded, there

holds

\sum 

T\in \scrT h

�
T

�
Sc
T

v(y)w(x) \rho (| x - y| )dydx =
\sum 

T\in \scrT h

�
T

�
Sc
T

v(x)w(y) \rho (| x - y| )dydx.

Proof. We note that, for any two elements T, T \prime \in \scrT h, it holds that T \prime \in Sc
T if

and only if T \in Sc
T \prime . Thus, we can write

\sum 

T\in \scrT h

�
T

�
Sc
T

v(y)w(x) \rho (| x - y| )dydx =
\sum 

T\in \scrT h

\sum 

T \prime \in Sc
T

�
T

�
T \prime 

v(y)w(x) \rho (| x - y| )dydx

=
\sum 

T \prime \in \scrT h

\sum 

T\in Sc
T \prime 

�
T

�
T \prime 

v(y)w(x) \rho (| x - y| )dydx.

The proof follows by applying Fubini's theorem and interchanging the roles of x and
y.

Proposition 3.3 (equivalent fractional inner product). Let v, w \in Hs(\Omega ).
Then, it holds that

(v, w)Hs(\Omega ) =
\sum 

T\in \scrT h

\biggl[ �
T

�
ST

(v(x) - v(y))(w(x) - w(y))

| x - y| d+2s
dy dx

+ 2

�
T

�
Sc
T

v(x) (w(x) - w(y))

| x - y| d+2s
dy dx

\biggr] 
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Proof. It suffices to write

(v, w)Hs(\Omega ) =
\sum 

T\in \scrT h

\biggl[ �
T

�
ST

(v(x) - v(y))(w(x) - w(y))

| x - y| d+2s
dydx

+

�
T

�
Sc
T

(v(x) - v(y))(w(x) - w(y))

| x - y| d+2s
dydx

\biggr] 
,

and notice that

\sum 

T\in \scrT h

�
T

�
Sc
T

v(x)w(x)

| x - y| d+2s
dy dx =

\sum 

T\in \scrT h

�
T

�
Sc
T

v(y)w(y)

| x - y| d+2s
dy dx

and \sum 

T\in \scrT h

�
T

�
Sc
T

v(x)w(y)

| x - y| d+2s
dy dx =

\sum 

T\in \scrT h

�
T

�
Sc
T

v(y)w(x)

| x - y| d+2s
dy dx

in view of Lemma 3.2 (symmetry) with \rho (t) = t - d - 2s\chi [\rho min,\infty )(t), where \rho min =
minT\in \scrT h

\rho T and we recall that \rho T is the diameter of the largest ball contained in T .
This completes the proof.

Remark 3.4 (fractional inner product on subdomains). Proposition 3.3 is also
valid for any subdomain D \subset \Omega , i.e.,

(v, w)Hs(D) =
\sum 

T\in \scrT h

\biggl[ �
T\cap D

�
ST\cap D

(v(x) - v(y))(w(x) - w(y))

| x - y| d+2s
dy dx

+ 2

�
T\cap D

�
Sc
T\cap D

v(x) (w(x) - w(y))

| x - y| d+2s
dy dx

\biggr] 
.

Next, we write some inverse estimates that we shall use in what follows. By using
standard scaling arguments, one can immediately derive the estimate

(3.5) \| vh\| Ht(T ) \leq Cinvh
s - t
T \| vh\| Hs(T ) \forall vh \in \BbbV h, 0 \leq s \leq t \leq 1.

Let \eta : \Omega \rightarrow \BbbR be a fixed smooth function. We shall also need the following variant
of (3.5) with t = 1, whose proof follows immediately because the space \eta \BbbV h is finite
dimensional:

(3.6) | \eta vh| H1(ST ) \leq Chs - 1
T | \eta vh| Hs(ST ) \forall vh \in \BbbV h, T \in \scrT h, 0 \leq s \leq 1.

3.2. Energy-norm error estimates. The discrete counterpart of (2.3) reads
as follows: find uh \in \BbbV h such that

(3.7) (uh, vh)s = \langle f, vh\rangle \forall vh \in \BbbV h.

Subtracting (3.7) from (2.3) we get Galerkin orthogonality

(3.8) (u - uh, vh)s = 0 \forall vh \in \BbbV h.

The best approximation property

(3.9) \| u - uh\| \widetilde Hs(\Omega ) = min
vh\in \BbbV h

\| u - vh\| \widetilde Hs(\Omega )
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1926 BORTHAGARAY, LEYKEKHMAN, AND NOCHETTO

follows immediately from (3.8). Consequently, in view of the regularity estimates of
u discussed in section 2, the only ingredient missing to derive convergence rates in
the energy norm is some global interpolation estimate. Even though the bilinear form
(\cdot , \cdot )s involves integration over \Omega \times \BbbR 

d, it is possible to prove that the corresponding
energy norm \| \cdot \| \widetilde Hs(\Omega ) is bounded in terms of fractional-order norms \| \cdot \| Hs(\Omega ) on \Omega 

by resorting to fractional Hardy inequalities (see [2]).
Therefore, for quasi-uniform meshes, if s \not = 1

2 , one can simply combine (3.2) and
(3.3) with a fractional Hardy inequality [27, Theorem 1.4.4.4] to replace \| \cdot \| \widetilde Hs(\Omega ) by

\| \cdot \| Hs(\Omega ) [2, 12] and obtain for t \in (s, 1)

(3.10) \| v  - \Pi hv\| \widetilde Hs(\Omega ) \leq C(\Omega , d, s, \sigma , t)ht - s| v| Ht(\Omega ) \forall v \in Ht(\Omega ).

In the case s = 1
2 , one cannot apply a fractional Hardy inequality. Instead, one may

exploit the precise blow-up of the Hardy constant of H
1
2+\epsilon (\Omega ) as \epsilon \downarrow 0 to deduce [2,

section 3.4], [12, Theorem 4.1] for t \in ( 12 , 1) and \varepsilon \in (0, t - 1
2 )

(3.11) \| v  - \Pi hv\| \widetilde H
1
2 (\Omega )

\leq C(\Omega , d, \sigma , t)

\varepsilon 
ht - 

1
2 - \varepsilon | v| Ht(\Omega ) \forall v \in Ht(\Omega ).

Alternatively, one could derive either (3.10) or (3.11) by simply interpolating standard
global L2 and H1 estimates. However, if we aim to exploit Theorem 2.3 (weighted
Sobolev estimate), then we require a suitable mesh refinement near the boundary of
\Omega . For that purpose, following [27, section 8.4] we now let the parameter h represent
the local mesh size in the interior of \Omega and assume that, besides being shape-regular,
the family \{ \scrT h\} is such that there is a number \mu \geq 1 such that for every T \in \scrT h

(3.12) hT \leq C(\sigma )

\biggl\{ 
h\mu if T \cap \partial \Omega \not = \emptyset ,

hdist(T, \partial \Omega )(\mu  - 1)/\mu if T \cap \partial \Omega = \emptyset .

This construction yields a total number of degrees of freedom (see [4, 12])

(3.13) N = dim\BbbV h \approx 

\left\{ 
 
 

h - d if \mu < d
d - 1 ,

h - d| log h| if \mu = d
d - 1 ,

h(1 - d)\mu if \mu > d
d - 1 .

Thus, if \mu \leq d
d - 1 , the interior mesh size h and the dimension N of \BbbV h satisfy the

optimal relation h \simeq N - 1/d (up to logarithmic factors if \mu = d
d - 1 ). As anticipated

in Remark 2.4 (optimal parameters), the weight \gamma in Theorem 2.3 (weighted Sobolev
estimate) needs to be related to the parameter \mu , which satisfies (3.12). To do so, we
combine (3.2) with either (3.4) or (3.3), depending on whether SST

intersects \partial \Omega or
not, to find the relation \gamma = (t  - s)(\mu  - 1

\mu ) for t \in (s, 2]. If s \not = 1
2 , it suffices to use a

fractional Hardy inequality to replace \| \cdot \| \widetilde Hs(\Omega ) by \| \cdot \| Hs(\Omega ) [2, 12] and obtain

(3.14) \| v  - \Pi hv\| \widetilde Hs(\Omega ) \leq 
\Biggl\{ 

Cht - s| v| Ht
\gamma (\Omega ) if s \not = 1

2 ,
C
\varepsilon h

t - s - \varepsilon | v| Ht
\gamma (\Omega ) if s = 1

2

for all v \in Ht
\gamma (\Omega ) with a constant that depends on \Omega , d, s, \sigma , t, and \gamma . On the other

hand, if s = 1
2 , we choose \gamma = (t - s)(\mu  - 1

\mu ) - \varepsilon , where \varepsilon > 0 is sufficiently small, and

exploit the explicit blow-up of the Hardy constant of H
1
2+\epsilon (\Omega ) as \epsilon \downarrow 0, as we did
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earlier with (3.11), to derive the second estimate in (3.14). We point out that (3.14)
does not follow by interpolation of global estimates.

We gather the energy error estimates for quasi-uniform and graded meshes in a
single theorem.

Theorem 3.5 (global energy-norm convergence rates). Let \Omega \subset \BbbR 
d be a bounded

Lipschitz domain and u denote the solution to (2.3) and denote by uh \in \BbbV h the solution
of the discrete problem (3.7), computed over a mesh \scrT h consisting of elements with
maximum diameter h. If f \in L2(\Omega ), then we have

(3.15) \| u - uh\| \widetilde Hs(\Omega ) \leq C(\Omega , d, s, \sigma )h\alpha | log h| \kappa \| f\| L2(\Omega ),

where \alpha = min\{ s, 12\} and \kappa = \xi if s \not = 1
2 , \kappa = 1 + \xi if s = 1

2 , and \xi \geq 1/2 is the
constant in Theorem 2.1. Additionally, if \Omega satisfies an exterior ball condition, let
\beta > 0 be such that

(3.16) \beta \geq 
\biggl\{ 

2 - 2s if d = 1,
d

2(d - 1)  - s if d \geq 2
and \mu =

\biggl\{ 
2 - s if d = 1,

d
d - 1 if d \geq 2.

Then, if f \in C\beta (\Omega ), and the family \{ \scrT h\} satisfies (3.12) with \mu as above, we have

(3.17) \| u - uh\| \widetilde Hs(\Omega ) \leq C(\Omega , s, \sigma )

\Biggl\{ 
h2 - s| log h| \kappa  - 1\| f\| C\beta (\Omega ) if d = 1,

h
d

2(d - 1) | log h| \kappa \| f\| C\beta (\Omega ) if d \geq 2,

where \kappa = 1 if s \not = 1
2 and \kappa = 2 if s = 1

2 . In terms of the number of degrees of freedom
N , the estimate (3.17) reads

(3.18) \| u - uh\| \widetilde Hs(\Omega ) \leq C(\Omega , s, \sigma )

\Biggl\{ 
N - (2 - s)(logN)\kappa  - 1\| f\| C\beta (\Omega ) if d = 1,

N - 1
2(d - 1) (logN)

1
2(d - 1)

+\kappa \| f\| C\beta (\Omega ) if d \geq 2.

Proof. If s \not = 1
2 , we combine (3.9) and (3.10) with (2.6) to obtain

(3.19) \| u - uh\| \widetilde Hs(\Omega ) \leq Ch\theta  - \varepsilon | u| Hs+\theta  - \varepsilon (\Omega ) \leq C
h\theta  - \varepsilon 

\varepsilon \xi 
\| f\| L2(\Omega ),

where \theta = min\{ s - \varepsilon , 1/2\} , namely, \theta = \alpha if s > 1/2 and \theta = \alpha  - \varepsilon if s \leq 1/2. In the
case s = 1

2 , instead of (3.10) we use (3.11) with the same \varepsilon as in (2.6) to get

(3.20) \| u - uh\| \widetilde Hs(\Omega ) \leq 
C

\varepsilon 
h\theta  - 2\varepsilon | u| Hs+\theta  - \varepsilon (\Omega ) \leq C

h\theta  - 2\varepsilon 

\varepsilon 1+\xi 
\| f\| L2(\Omega ).

Moreover, coupling (3.9), the first estimate in (3.14), and Theorem 2.3 (weighted
Sobolev estimate) with t = 2 - \varepsilon and \gamma = 2 - s if d = 1 and t = s+ d

2(d - 1)  - \varepsilon d and

\gamma = 1
2(d - 1)  - \varepsilon if d \geq 2 yields for s \not = 1

2

(3.21) \| u - uh\| \widetilde Hs(\Omega ) \leq Cht - s| u| Ht
\gamma (\Omega ) \leq 

\Biggl\{ 
Ch2 - s - \varepsilon \| f\| C\beta (\Omega ) if d = 1,

C
\varepsilon h

d
2(d - 1)

 - \varepsilon d\| f\| C\beta (\Omega ) if d \geq 2;

analogous estimates hold if s = 1
2 but with an additional factor \varepsilon  - 1h - \varepsilon according to

the second estimate in (3.14). Upon taking \varepsilon = | log h|  - 1, we end up with (3.15) and
(3.17), as asserted. Inequality (3.18) follows by the choice of \mu and (3.13).
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Remark 3.6 (exponents of logarithms). In the case s \geq d
2(d - 1) , which can only

happen if d \geq 3, the exponents of logarithms in Theorem 3.5 can actually be reduced
by a factor of 1

2 (see the discussion in Remark 2.4).

Remark 3.7 (optimality). The convergence rates derived in Theorem 3.5 are the-
oretically optimal for shape-regular elements. Nevertheless, because we deal with

continuous piecewise linear basis functions, one would expect convergence rate  - (2 - s)
d

with respect to N . It is remarkable that such a rate can only be achieved if d = 1
upon grading meshes according to (3.12). For dimensions d \geq 2, anisotropic meshes
are required in order to obtain optimal convergence rates. This limitation stems from
the algebraic singular layer (2.4) and becomes more apparent as d increases, but a
comparison of (3.15) and (3.17) shows that in all cases graded meshes improve the
convergence rates with respect to N .

We also point out that setting the grading parameter to be \mu > d
d - 1 would lead

to a higher rate in (3.17) in terms of the interior mesh size h. However, the resulting
rate in (3.18) would be the same as for \mu = d

d - 1 (up to logarithmic factors) but the
finite element matrix would turn out to be worse conditioned.

3.3. \bfitL 
\bftwo -norm error estimates. Upon invoking the new regularity estimates of

Theorem 2.1 for data f \in L2(\Omega ), we now perform a standard Aubin--Nitsche duality
argument to derive novel convergence rates in L2(\Omega ). We distinguish between quasi-
uniform and graded meshes.

Proposition 3.8 (convergence rates in L2(\Omega ) for quasi-uniform meshes). Let \Omega 
be a bounded Lipschitz domain. If f \in L2(\Omega ), then for all 0 < s < 1 we have

(3.22) \| u - uh\| L2(\Omega ) \leq Ch2\alpha | log h| 2\kappa \| f\| L2(\Omega ),

where \alpha = min\{ s, 12\} , \kappa = \xi if s \not = 1
2 , \kappa = 1 + \xi if s = 1

2 , and \xi \geq 1/2 is the constant
in (2.6).

Proof. Let e = u  - uh be the error, and let \phi be the solution to (2.3) with e
instead of the right-hand side f . Then, the Galerkin orthogonality (3.8) and the
Cauchy--Schwarz inequality yield

\| e\| 2L2(\Omega ) = (\phi , e)s = (\phi  - \Pi h\phi , e)s \leq \| \phi  - \Pi h\phi \| \widetilde Hs(\Omega )\| e\| \widetilde Hs(\Omega ),

where \Pi h is a quasi-interpolation operator satisfying (3.10) if s \not = 1
2 or (3.11) if s = 1

2 .
Combining these estimates with (2.6), we deduce for \varepsilon > 0 sufficiently small

(3.23) \| \phi  - \Pi h\phi \| \widetilde Hs(\Omega ) \lesssim 

\Biggl\{ 
h\theta  - \varepsilon 

\varepsilon \xi 
\| e\| L2(\Omega ), s \not = 1

2 ,
h\theta  - 2\varepsilon 

\varepsilon 1+\xi \| e\| L2(\Omega ), s = 1
2 ,

where \theta = min\{ s  - \varepsilon , 1/2\} , precisely as with (3.19) and (3.20). The latter, together
with (3.23), implies

\| e\| L2(\Omega ) \lesssim 

\Biggl\{ 
h2(\theta  - \varepsilon )

\varepsilon 2\xi 
\| f\| L2(\Omega ), s \not = 1

2 ,
h2(\theta  - 2\varepsilon )

\varepsilon 2(1+\xi ) \| f\| L2(\Omega ), s = 1
2 .

Finally, taking \varepsilon = | log h|  - 1 gives rise to (3.22).

In Proposition 3.8, the assumption f \in L2(\Omega ) is made in order to apply Theorem
2.1 (Besov regularity on Lipschitz domains). Stronger estimates are valid provided \Omega 
is smooth.
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Lemma 3.9 (further regularity). Let \partial \Omega \in C\infty and f \in Hr(\Omega ) for some r \geq  - s.
If \gamma = min\{ s + r, 12\} , \alpha = min\{ s, 12\} and \kappa = 1 if s \not = 1

2 , \kappa = 2 if s = 1
2 , then there

holds

\| u - uh\| \widetilde Hs(\Omega ) \leq Ch\gamma | log h| \kappa \| f\| Hr(\Omega ),

\| u - uh\| L2(\Omega ) \leq Ch\alpha +\gamma | log h| 2\kappa \| f\| Hr(\Omega ).
(3.24)

Proof. Use the regularity result from [28, Theorem 7.1] (which coincides with
(2.8) if s < 1

2 ) in the proofs of Theorem 3.5 and Proposition 3.8.

As discussed in sections 2.2 and 3.2, we obtain a finer characterization of the
boundary behavior of solutions by using weighted spaces, and we can take advantage
of this by constructing suitably graded meshes. In such a case, the same standard
argument as above, but using (3.21) instead of (3.19), leads to the following estimate.

Proposition 3.10 (convergence rates in L2(\Omega ) for graded meshes). Let \Omega \subset \BbbR 
d

be a bounded Lipschitz domain satisfying an exterior ball condition, f \in C\beta (\Omega ) and
the family \{ \scrT h\} satisfy (3.12), where \beta and \mu are taken according to (3.16). Then,
there exists a constant C = C(\Omega , s, \sigma ) such that

(3.25) \| u - uh\| L2(\Omega ) \leq C

\Biggl\{ 
h2 - s+\alpha | log h| \kappa  - 1\| f\| C\beta (\Omega ) if d = 1,

h
d

2(d - 1)
+\alpha | log h| \kappa \| f\| C\beta (\Omega ) if d \geq 2,

where \alpha = min\{ s, 12\} , \kappa = \xi + 1 if s \not = 1
2 , \kappa = \xi + 2 if s = 1

2 , and \xi is the constant in
(2.6). In terms of the number of degrees of freedom N , the estimate (3.25) reads

\| u - uh\| L2(\Omega ) \leq C

\Biggl\{ 
N - (2 - s+\alpha )(logN)\kappa  - 1\| f\| C\beta (\Omega ) if d = 1,

N - \alpha 
d  - 1

2(d - 1) (logN)
\alpha 
d + 1

2(d - 1)
+\kappa \| f\| C\beta (\Omega ) if d \geq 2.

Remark 3.11 (sharpness of the L2-estimates). Combining Galerkin orthogonality
(3.8) with (2.3) and applying the Cauchy--Schwarz inequality, we immediately obtain

\| u - uh\| 2\widetilde Hs(\Omega )
= (u - uh, u)s = (u - uh, f)0 \leq \| u - uh\| L2(\Omega )\| f\| L2(\Omega ),

from which we deduce that

(3.26) \| u - uh\| L2(\Omega ) \geq 
\| u - uh\| 2\widetilde Hs(\Omega )

\| f\| L2(\Omega )
.

If we knew that the error bound (3.15) were sharp in the sense that \| u - uh\| \widetilde Hs(\Omega ) \simeq 
h\alpha | log h| \kappa \| f\| L2(\Omega ), a reasonable assumption in practice unless u \in \BbbV h [31], then we
would obtain from (3.22) and (3.26)

(3.27) \| u - uh\| L2(\Omega ) \simeq h2\alpha | log h| 2\kappa \| f\| L2(\Omega ).

We point out that a similar consideration cannot be made if we inspect weighted
estimates. Indeed, let us assume d \geq 2 and meshes are graded with parameter \mu =
d

d - 1 ; similar considerations are valid if the meshes are graded differently. If (3.17)
were sharp, then we could only deduce (up to logarithmic factors)

h
d

(d - 1)

\| f\| 2
C\beta (\Omega )

\| f\| L2(\Omega )
\lesssim \| u - uh\| L2(\Omega ) \lesssim h

d
2(d - 1)

+\alpha \| f\| C\beta (\Omega )

D
o

w
n
lo

ad
ed

 1
0
/2

5
/2

3
 t

o
 1

3
2
.1

7
4
.2

5
0
.2

2
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1930 BORTHAGARAY, LEYKEKHMAN, AND NOCHETTO

and \alpha = min\{ s, 12\} < d
2(d - 1) . The issue here is that Theorem 2.3 (weighted Sobolev

estimate) does not yield a regularity estimate in terms of L2-norms of the data.
Therefore, we still need to use (3.23), which, in turn, is based on the unweighted
estimate (2.6), a consequence of Theorem 2.1 (Besov regularity on Lipschitz domains).

4. Caccioppoli estimate. The following result is well-known for usual har-
monic functions. For the fractional Laplacian (1.2) it can be found, for example, in
[15] (see also [5, 13, 17, 30]). We present a proof below, because for our purposes
it is crucial to trace the dependence of the constants on the radius R and the exact
form of the global term. Moreover, it turns out that the technique of proof will be
instrumental in section 5.

Lemma 4.1 (Caccioppoli estimate). Let BR denote a ball of radius R centered at

x0 \in \Omega . If u \in Hs(\BbbR d) is a function satisfying
�
Bc

R

| u(x)| 
| x - x0| d+2s dx <\infty and (u, v)s = 0

for all v \in Hs(\BbbR d) supported in BR, then there exists a constant C independent of R
such that

(4.1) | u| 2Hs(BR/2)
\leq C

R2s
\| u\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(x)| 
| x - x0| d+2s

dx

\Biggr) 2

.

Proof. Let \eta : \BbbR d \rightarrow [0, 1] be a smooth cut-off function with the following prop-
erties:

\eta \equiv 1 in BR/2,(4.2a)

\eta \equiv 0 in Bc
3R/4,(4.2b)

| \nabla \eta | \leq CR - 1.(4.2c)

Thus,

0 =
\bigl( 
u, \eta 2u

\bigr) 
s
=

�
\BbbR d

�
\BbbR d

(u(x) - u(y))(\eta 2(x)u(x) - \eta 2(y)u(y))

| x - y| d+2s
dydx = I1 + I2,

where

I1 :=

�
BR

�
BR

(u(x) - u(y))(\eta 2(x)u(x) - \eta 2(y)u(y))

| x - y| d+2s
dydx,

I2 := 2

�
BR

�
Bc

R

(u(x) - u(y))(\eta 2(x)u(x) - \eta 2(y)u(y))

| x - y| d+2s
dydx.

Using the identity

(u(x) - u(y))(\eta (x)2u(x) - \eta (y)2u(y)) = [\eta (x)u(x) - \eta (y)u(y)]2 - u(x)u(y)[\eta (x) - \eta (y)]2,

we obtain I1 = | \eta u| 2Hs(BR)  - I11, where

I11 =

�
BR

�
BR

u(x)u(y)[\eta (x) - \eta (y)]2

| x - y| d+2s
dydx.

In view of of (4.2c), we have | \eta (x) - \eta (y)| \leq CR - 1| x - y| and, applying the Cauchy--
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Schwarz inequality, we deduce

I11 \leq C

R2

�
BR

�
BR

| u(x)| | u(y)| 
| x - y| d - 2+2s

dydx

\leq C

R2

�
BR

�
BR

| u(x)| 2
| x - y| d - 2+2s

dydx \leq C

R2s
\| u\| 2L2(BR),

because the kernel | x - y|  - d+2 - 2s is integrable on \{ x = y\} and using polar coordinates
\rho = | x - y| yields

�
BR

dy

| x - y| d - 2+2s
\leq c

� R

0

\rho 1 - 2sd\rho = cR2 - 2s.

Next, since \eta is supported in B3R/4, according to (4.2b), and bounded by 1, we have

| I2| \leq 2

�
BR

�
Bc

R

| u(x) - u(y)| \eta 2(x)| u(x)| 
| x - y| d+2s

dydx

\leq 2

�
B3R/4

| u(x)| 
�
Bc

R

| u(x) - u(y)| 
| x - y| d+2s

dydx \leq I21 + I22

with

I21 :=2

�
B3R/4

\Biggl( 
| u(x)| 2

�
Bc

R

dy

| x - y| d+2s

\Biggr) 
dx,

I22 :=2

�
B3R/4

\Biggl( 
| u(x)| 

�
Bc

R

| u(y)| 
| x - y| d+2s

dy

\Biggr) 
dx.

Using that dist(B3R/4, B
c
R) = R/4 and integrating in polar coordinates, we deduce

�
Bc

R

dy

| x - y| d+2s
\leq C

� \infty 

R/4

\rho  - 1 - 2sd\rho = CR - 2s \forall x \in B3R/4,

and as a consequence

I21 \leq C

R2s
\| u\| 2L2(BR).

To estimate I22, we first observe that for all x \in B3R/4 and y \in Bc
R, we have

R < | y - x0| \leq | x - x0| +| y - x| \leq 3R

4
+| y - x| \leq 3

4
| y - x0| +| y - x| \Rightarrow 1

4
| y - x0| \leq | y - x| .

Utilizing now the H\"older's inequality, in conjunction with the Young's inequality,
yields

I22 \leq 2\| u\| L1(BR) sup
x\in B3R/4

�
Bc

R

| u(y)| 
| x - y| d+2s

dy \leq CRd/2\| u\| L2(BR)

�
Bc

R

| u(y)| 
| y  - x0| d+2s

dy

\leq C

R2s
\| u\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y  - x0| d+2s

dy

\Biggr) 2

.
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Writing | \eta u| 2Hs(BR) = I11  - I2, and combining the estimates above, we obtain

| \eta u| 2Hs(BR) \leq 
C

R2s
\| u\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y  - x0| d+2s

dy

\Biggr) 2

.

The estimate (4.1) follows because

| u| 2Hs(BR/2)
\leq | \eta u| 2Hs(BR),

due to (4.2a). This concludes the proof.

5. Local energy estimates. In this section we derive error estimates in local
Hs-seminorms. For that purpose, we first develop a local superapproximation theory
in fractional norms and afterward combine it with the techniques used in the derivation
of the Caccioppoli estimate (4.1).

Here we consider the usual nodal interpolation operator Ih : C0(\Omega ) \rightarrow \BbbV h, which
satisfies for 1 \leq p \leq \infty , j \leq k \leq 2, k > d

p

(5.1) | v  - Ihv| W j,p(T ) \leq Chk - j | v| Wk,p(T ) \forall v \in W k,p(T ).

5.1. Superapproximation. Superapproximation is an essential tool in local
energy finite element error estimates [33]. Below we adapt the ideas from [16], which
lead to improved superapproximation estimates applicable to a general class of meshes.
Similarly to [16], we require only shape-regularity.

For an arbitrary \eta \in C2(\Omega ) and vh \in \BbbV h, it turns out that the function

(5.2) \psi := \eta 2vh  - Ih(\eta 
2vh)

is smaller than expected in various norms, a property called superapproximation [33].
To see this, we let T \in \scrT h be arbitrary and combine (5.1) with the fact that vh is
linear on T , to obtain the following Lp-type superapproximation estimate for \psi in
(5.2) and any 1 \leq p \leq \infty :
(5.3)

\| \psi \| Lp(T ) + hT | \psi | W 1,p(T ) \leq Ch2T | \eta 2vh| W 2,p(T )

\leq Ch2T

\Bigl( 
\| \nabla \eta \| L\infty (T )\| \nabla (\eta vh)\| Lp(T )

+
\bigl( 
\| \eta \| L\infty (T )\| \nabla 2\eta \| L\infty (T ) + \| \nabla \eta \| 2L\infty (T )

\bigr) 
\| vh\| Lp(T )

\Bigr) 
,

where we used that

\partial 2(\eta 2vh) = \partial 2\eta (\eta vh) + 2 \partial \eta \partial (\eta vh) + \eta \partial 2(\eta vh)

= \partial 2\eta (\eta vh) + 2 \partial \eta \partial (\eta vh) + \eta 
\bigl( 
\partial 2\eta vh + 2 \partial \eta \partial vh

\bigr) 

= 2 \partial 2\eta (\eta vh) + 4 \partial \eta \partial (\eta vh) - 2 (\partial \eta )2 vh

with \partial denoting any partial derivative. These estimates suffice for second-order elliptic
problems. However, for fractional problems we need to account for the fact that the
Hs-norm is nonlocal. We embark on this endeavor now upon first examining stars ST

and next interior balls

BR := B(x0, R) \subset \Omega , hR := max
T\in \Lambda R

hT , \Lambda R := \{ T \in \scrT h : T \cap BR \not = \emptyset \} .
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In this setting, \eta is a suitable localization function, namely, \eta \in C\infty (\Omega ) is the cut-off
function of (4.2):

(5.4) 0 \leq \eta \leq 1, \eta \equiv 1 in BR/2, \eta \equiv 0 in Bc
3R/4, | \nabla k\eta | \leq CR - k (k \geq 1).

Lemma 5.1 (superapproximation in Hs(ST )). Let T \in \scrT h, 0 \leq s \leq 1, and \eta 
satisfy (5.4). For any vh \in \BbbV h and \psi given by (5.2), there is a constant C depending
on shape-regularity of \scrT h such that

(5.5) | \psi | Hs(ST ) \leq C
hT
R

| \eta vh| Hs(ST ) + C
h2 - s
T

R2
\| vh\| L2(ST ).

Proof. Since the norms involved in (5.3) are local and the size of ST is proportional
to hT because \scrT h is shape-regular, we realize that (5.3) is also valid in ST . This leads
to the desired estimate for s = 0, 1. For s \in (0, 1), we apply space interpolation theory
to (5.3) over ST to infer that

(5.6) | \psi | Hs(ST ) \leq C
h2 - s
T

R
\| \nabla (\eta vh)\| L2(ST ) + C

h2 - s
T

R2
\| vh\| L2(ST ).

We finally resort to (3.6), namely, \| \nabla (\eta vh)\| L2(ST ) \lesssim hs - 1
T | \eta vh| Hs(ST ), to finish the

proof.

Lemma 5.2 (superapproximation in Hs(BR)). Let hR satisfy 16hR \leq R and let
0 \leq s \leq 1. For any vh \in \BbbV h and \psi given in (5.2), there exists a constant C depending
on the shape-regularity of \scrT h such that

(5.7) | \psi | Hs(BR) \leq CR - s\| vh\| L2(BR).

Proof. If s = 0, 1, then the estimate follows immediately from (5.3), the additivity
of squares of integer-order L2-norms with respect to domain partitions, the inverse
inequality (3.6), and the fact that hR \leq R/16.

For s \in (0, 1), we make use of (3.2) to obtain

| \psi | 2Hs(BR) \leq 
\sum 

T\in \Lambda R

\biggl( �
T

�
ST

| \psi (x) - \psi (y)| 2
| x - y| d+2s

dydx+
C

h2sT
\| \psi \| 2L2(T )

\biggr) 
.

Let T \in \Lambda R and x \in T be a generic point. We first point out that if x \in Bc
7R/8, then

the vertices y of T satisfy | x0  - y| \geq 7
8R - 1

16R > 3
4R and \psi (x) = 0 according to the

definition (5.2). We now let y \in ST and examine two mutually exclusive cases.
If x \in B7R/8, then y belongs to a triangle in \Lambda R because the vertices of T are at

distance 7
8R+ 1

16R < R from x0, whence | x - y| \leq 2hR \leq 1
8R. Therefore

| x - x0| \leq 
7

8
R \Rightarrow | y  - x0| \leq | x - x0| + | y  - x| \leq R \Rightarrow ST \subset BR.

On the other hand, if x \in Bc
7R/8 and y \in T \prime \in \Lambda R, then | x - y| \leq 2hR \leq 1

8R and

| x - x0| \geq 
7

8
R \Rightarrow | y  - x0| \geq | x - x0|  - | y  - x| \geq 3

4
R.

Since y is allowed to be any element vertex on ST , the latter implies that

(5.8) \psi 
\bigm| \bigm| 
ST

\equiv 0 \forall T \in \Lambda R \setminus \Lambda 7R/8.
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We thus realize that the only T 's that matter in the sum above are those T \in \Lambda 7R/8

| \psi | 2Hs(BR) \leq 
\sum 

T\in \Lambda 7R/8

\biggl( 
| \psi | 2Hs(ST ) +

C

h2sT
\| \psi \| 2L2(T )

\biggr) 
.

To estimate each term on the right-hand side we exploit the property that ST \subset BR

for all T \in \Lambda 7R/8. For the first term, we also employ (5.6), together with (3.6) with
s = 0 and (5.4). For the second term we resort to (5.3) for p = 2 together with (3.6)
for s = 0. In both cases, we get

\sum 

T\in \Lambda 7R/8

\biggl( 
| \psi | 2Hs(ST ) +

C

h2sT
\| \psi \| 2L2(T )

\biggr) 
\leq C

\sum 

T\in \Lambda 7R/8

\Bigl( h2 - 2s
T

R2
+
h4 - 2s
T

R4

\Bigr) 
\| vh\| 2L2(ST )

\leq C

R2s
\| vh\| 2L2(BR),

because hT \leq 1
16R. The desired estimate follows immediately.

The proof of Lemma 5.2 (superapproximation in Hs(BR)) reveals that

(5.9) \psi 
\bigm| \bigm| 
Bc

7R/8

= 0.

5.2. Local energy estimates. Recall that the finite element solution to (2.3)
satisfies (3.7), which gives the Galerkin orthogonality relation (3.8). In order to
localize such a relation, given a subdomain D \subset \Omega , we define \BbbV h(D) = \BbbV h\cap H1

0 (D) as
the space of continuous piecewise linear functions restricted to D that vanish on \partial D.
We will derive error estimates for a function \widetilde uh \in \BbbV h that satisfies the local Galerkin
orthogonality relation

(5.10) (u - \widetilde uh, vh)s = 0 \forall vh \in \BbbV h(BR).

Theorem 5.3 (local energy error estimate). Let u \in \widetilde Hs(\Omega ) and \widetilde uh \in \BbbV h satisfy
(5.10). If 16hR \leq R, then there exists a constant C depending on shape-regularity
such that for any vh \in \BbbV h,

| u - \widetilde uh| 2Hs(BR/2)
\leq C| u - vh| 2Hs(BR) +

C

R2s
\| u - vh\| 2L2(BR)

+ CRd+2s

\Biggl( �
Bc

R

| u(x) - vh(x)| 
| x - x0| d+2s

dx

\Biggr) 2

+
C

R2s
\| u - \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(x) - \widetilde uh(x)| 
| x - x0| d+2s

dx

\Biggr) 2

.

Proof. To simplify the notation, we assume that BR = B(0, R) is centered at the
origin, i.e., we take x0 = 0. We point out that it is sufficient to establish

(5.11)

| \widetilde uh| 2Hs(BR/2)
\leq C| u| 2Hs(BR) +

C

R2s
\| u\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(x)| 
| x| d+2s

dx

\Biggr) 2

+
C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| \widetilde uh(x)| 
| x| d+2s

dx

\Biggr) 2

.
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In fact, the assertion would then follow upon writing u  - \widetilde uh = (u  - vh) + (vh  - \widetilde uh)
and using the fact that the local Galerkin orthogonality (5.10) holds with u \mapsto \rightarrow u - vh
and \widetilde uh \mapsto \rightarrow \widetilde uh - vh and the triangle inequality. We argue along the lines of Lemma 4.1
(Caccioppoli estimate). We divide the proof into several steps.

Step 1: Decomposing the Hs-seminorm. Let \eta \in C\infty (\Omega ) be as in (5.4). Recalling
the definition (5.2) of \psi = \eta 2\widetilde uh  - Ih(\eta 

2\widetilde uh), whence Ih(\eta 2\widetilde uh) = 0 in Bc
7R/8 according

to the proof of Lemma 5.2, and using the local Galerkin orthogonality (5.10), we have

(5.12)

\bigl( 
\widetilde uh, \eta 2\widetilde uh

\bigr) 
s
=
\bigl( 
\widetilde uh, Ih(\eta 2\widetilde uh)

\bigr) 
s
+ (\widetilde uh, \psi )s

=
\bigl( 
u, Ih(\eta 

2\widetilde uh)
\bigr) 
s
+ (\widetilde uh, \psi )s

=
\bigl( 
u, \eta 2\widetilde uh

\bigr) 
s
 - (u, \psi )s + (\widetilde uh, \psi )s .

In the same fashion as in the proof of Lemma 4.1, we have

\bigl( 
\widetilde uh, \eta 2\widetilde uh

\bigr) 
s
= | \eta \widetilde uh| 2Hs(BR)  - 

�
BR

�
BR

\widetilde uh(x)\widetilde uh(y)[\eta (x) - \eta (y)]2

| x - y| d+2s
dydx

+ 2

�
BR

�
Bc

R

(\widetilde uh(x) - \widetilde uh(y))\eta 2(x)\widetilde uh(x)
| x - y| d+2s

dydx.

Invoking (5.12) we thus obtain the decomposition | \eta \widetilde uh| 2Hs(BR) =
\sum 5

k=1 Ik, where

(5.13)

I1 :=

�
BR

�
BR

\widetilde uh(x)\widetilde uh(y)[\eta (x) - \eta (y)]2

| x - y| d+2s
dydx,

I2 := - 2

�
BR

�
Bc

R

(\widetilde uh(x) - \widetilde uh(y))\eta 2(x)\widetilde uh(x)
| x - y| d+2s

dydx,

I3 :=
\bigl( 
u, \eta 2\widetilde uh

\bigr) 
s
, I4 :=  - (u, \psi )s , I5 := (\widetilde uh, \psi )s .

Step 2: Bounding I1 + I2. Proceeding exactly as in the proof of Lemma 4.1, we
obtain

I1 + I2 \leq C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| \widetilde uh(x)| 
| x| d+2s

dx

\Biggr) 2

.

Step 3: Bounding I3. Using the definition of the Hs-inner product, we write
I3 = I31 + I32 with

I31 :=

�
BR

�
BR

[u(x) - u(y)] [\eta 2(x)\widetilde uh(x) - \eta 2(y)\widetilde uh(y)]
| x - y| d+2s

dydx,

I32 :=2

�
BR

�
Bc

R

[u(x) - u(y)] [\eta 2(x)\widetilde uh(x) - \eta 2(y)\widetilde uh(y)]
| x - y| d+2s

dydx.

In light of the identity

\eta 2(x)\widetilde uh(x) - \eta 2(y)\widetilde uh(y) = \eta (x)[\eta (x)\widetilde uh(x) - \eta (y)\widetilde uh(y)] + \eta (y)[\eta (x) - \eta (y)]\widetilde uh(y),
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we arrive at

I31 =

�
BR

�
BR

[u(x) - u(y)]\eta (x)[\eta (x)\widetilde uh(x) - \eta (y)\widetilde uh(y)]
| x - y| d+2s

dydx

+

�
BR

�
BR

[u(x) - u(y)]\eta (y)[\eta (x) - \eta (y)]\widetilde uh(y)
| x - y| d+2s

dydx

\leq | u| Hs(BR)| \eta \widetilde uh| Hs(BR) +
C

R

�
BR

�
BR

| u(x) - u(y)| | \widetilde uh(y)| 
| x - y| d - 1+2s

dydx,

where in the last step we used that | \eta | \leq 1 and | \eta (x) - \eta (y)| \leq CR - 1| x - y| according
to (5.4). Employing the Cauchy--Schwarz inequality, we estimate

�
BR

�
BR

| u(x) - u(y)| | \widetilde uh(y)| 
| x - y| d - 1+2s

dydx

\leq 
\biggl( �

BR

�
BR

| u(x) - u(y)| 2
| x - y| d+2s

dydx

\biggr) 1
2
\biggl( �

BR

�
BR

| \widetilde uh(y)| 2
| x - y| d - 2+2s

dydx

\biggr) 1
2

\leq CR1 - s| u| Hs(BR)\| \widetilde uh\| L2(BR).

In the last step above we used that the kernel | x - y| d - 2+2s is integrable at \{ x = y\} ,
and combined Fubini's theorem with integration in polar coordinates, to deduce

�
BR

dx

| x - y| d - 2+2s
\leq C

� 2R

0

\rho d - 1 - d+2 - 2sd\rho = CR2 - 2s \forall y \in BR.

As a result, the Young's inequality yields

I31 \leq C\varepsilon | u| 2Hs(BR) + \varepsilon | \eta \widetilde uh| 2Hs(BR) +
C

R2s
\| \widetilde uh\| 2L2(BR),

where \varepsilon > 0 is a number to be chosen.
To deal with I32 we proceed similarly to the estimate of I2 in the proof of Lemma

4.1. Since | \eta | \leq 1 and \eta = 0 on Bc
3R/4, in view of (5.4), we thus get

I32 \leq 2

�
B3R/4

| \widetilde uh(x)| 
�
Bc

R

| u(x) - u(y)| 
| x - y| d+2s

dydx \leq I321 + I322

with

I321 := 2

�
B3R/4

\Biggl( 
| u(x)| \cdot | \widetilde uh(x)| 

�
Bc

R

dy

| x - y| d+2s

\Biggr) 
dx,

I322 := 2

�
B3R/4

\Biggl( 
| \widetilde uh(x)| 

�
Bc

R

| u(y)| 
| x - y| d+2s

dy

\Biggr) 
dx.

Consequently, integrating in polar coordinates
�
Bc

R

dy

| x - y| d+2s
\leq C

� \infty 

R/4

\rho  - 1 - 2sd\rho =
C

R2s
\forall x \in B3R/4

and using the Cauchy--Schwarz inequality leads to

I321 \leq CR - 2s\| \widetilde uh\| L2(BR)\| u\| L2(BR) \leq CR - 2s\| \widetilde uh\| 2L2(BR) + CR - 2s\| u\| 2L2(BR).
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By the H\"older's inequality and the fact that 1
4 | y| \leq | x  - y| for all x \in B3R/4 and

y \in Bc
R, we have

I322 \leq \| \widetilde uh\| L1(BR) sup
x\in B3R/4

�
Bc

R

| u(y)| 
| x - y| d+2s

dy \leq CRd/2\| \widetilde uh\| L2(BR)

�
Bc

R

| u(y)| 
| y| d+2s

dy

\leq C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y| d+2s

dy

\Biggr) 2

.

Collecting the estimates above, we deduce

I3 \leq \varepsilon | \eta \widetilde uh| 2Hs(BR) + C\varepsilon | u| 2Hs(BR) +
C

R2s
\| u\| 2L2(BR)

+
C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y| d+2s

dy

\Biggr) 2

.

Step 4: Bounding I4. Using that \psi = 0 on Bc
R yields the splitting I4 = I41 + I42

with

I41 :=  - 
�
BR

�
BR

[u(x) - u(y)][\psi (x) - \psi (y)]

| x - y| d+2s
dydx,

I42 :=  - 2

�
BR

�
Bc

R

[u(x) - u(y)]\psi (x)

| x - y| d+2s
dydx.

Employing (5.7) and the Young's inequality, we obtain

I41 \leq | u| Hs(BR)| \psi | Hs(BR) \leq C| u| 2Hs(BR) +
C

R2s
\| \widetilde uh\| 2L2(BR).

We handle I42 similarly to I32, namely, we use (5.9) to write I42 \leq I421 + I422 with

I421 := 2

�
B7R/8

\Biggl( 
| u(x)| | \psi (x)| 

�
Bc

R

dy

| x - y| d+2s

\Biggr) 
dx\leq C

R2s
\| u\| 2L2(BR)+

C

R2s
\| \widetilde uh\| 2L2(BR)

and

I422 :=2

�
B7R/8

\Biggl( 
| \psi (x)| 

�
Bc

R

| u(y)| 
| x - y| d+2s

dy

\Biggr) 
dx \leq C\| \psi \| L1(BR)

�
Bc

R

| u(y)| 
| y| d+2s

dy

\leq C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y| d+2s

dy

\Biggr) 2

,

in view of (5.7) with s = 0, and the fact that 1
8 | y| \leq | x  - y| for all x \in B7R/8 and

y \in Bc
R and argue as in Step 3. Combining the estimates above, we obtain

I4 \leq C| u| 2Hs(BR) +
C

R2s
\| u\| 2L2(BR) +

C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(y)| 
| y| d+2s

dy

\Biggr) 2

.

Step 5: Bounding I5. We will treat I5 differently from I4, because it contains \widetilde uh
in place of u, which causes serious challenges on shape-regular meshes. Using that
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\psi = 0 on Bc
R, we split I5 = I51 + I52 with

I51 :=

�
BR

�
BR

[\widetilde uh(x) - \widetilde uh(y)][\psi (x) - \psi (y)]

| x - y| d+2s
dydx,

I52 := 2

�
BR

�
Bc

R

[\widetilde uh(x) - \widetilde uh(y)]\psi (x)
| x - y| d+2s

dydx.

Recalling Remark 3.4 (fractional inner product on subdomains), we decompose the
integral over BR\times BR into sums over (T \cap BR)\times (ST \cap BR) and (T \cap BR)\times (Sc

T \cap BR)
for T \in \Lambda R, and use the fact that

�
Sc
T
| x  - y|  - d - 2sdy \leq Ch - 2s

T for every x \in T , to

end up with I51 \leq I511 + I512 + I513, where

I511 :=
\sum 

T\in \Lambda 7R/8

| \widetilde uh| Hs(ST )| \psi | Hs(ST ),

I512 :=
\sum 

T\in \Lambda 7R/8

C

h2sT

�
T

| \widetilde uh(x)| | \psi (x)| dx,

I513 := 2
\sum 

T\in \Lambda R

�
T\cap BR

�
Sc
T\cap BR

| \widetilde uh(x)| | \psi (y)| 
| x - y| d+2s

dydx.

Note that we have used (5.8) in the definition of I511 and exploited (5.9) in the
definition of I512 to replace \Lambda R by \Lambda 7R/8. We next apply the local inverse inequality
(3.5) in conjunction with the superapproximation estimate (5.5) to deduce

I511 :=
\sum 

T\in \Lambda 7R/8

| \widetilde uh| Hs(ST )| \psi | Hs(ST )

\leq C
\sum 

T\in \Lambda 7R/8

\| \widetilde uh\| L2(ST )

\Bigl( h1 - s
T

R
| \eta \widetilde uh| Hs(ST ) +

h2 - 2s
T

R2
\| \widetilde uh\| L2(ST )

\Bigr) 

\leq \varepsilon | \eta \widetilde uh| 2Hs(BR) +
C\varepsilon 

R2s
\| \widetilde uh\| 2L2(BR),

because 16hT \leq R and
\sum 

T\in \Lambda 7R/8
| v| 2Hs(ST ) \leq C(\sigma )| v| 2Hs(BR) for all v \in Hs(BR), the

latter due to the uniformly bounded overlap of stars ST in the shape-regular mesh
\scrT h. The upper bound for I512 employs instead the superapproximation estimate (5.3)
with p = 2, the inverse inequality (3.6), and Young's inequality

I512 \leq C
\sum 

T\in \Lambda 7R/8

1

h2sT
\| \widetilde uh\| L2(T )\| \psi \| L2(T )

\leq C
\sum 

T\in \Lambda 7R/8

\| \widetilde uh\| L2(ST )

\Bigl( h1 - s
T

R
| \eta \widetilde uh| Hs(ST ) +

h2 - 2s
T

R2
\| \widetilde uh\| L2(ST )

\Bigr) 

\leq \varepsilon | \eta \widetilde uh| 2Hs(BR) +
C\varepsilon 

R2s
\| \widetilde uh\| 2L2(BR).

The remaining term I513 is rather tricky and reveals the nonlocal nature of our
problem. Manipulating I513 is the most delicate and innovative part of the proof
relative to the second-order case [16, 33]. To keep notation short, we set

TR := T \cap BR, Sc
T,R := Sc

T \cap B7R/8, \Lambda c
T,R :=

\bigl\{ 
T \prime \in \scrT h : T \prime \cap Sc

T,R \not = \emptyset 
\bigr\} 
.
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We exploit (5.9) to rewrite I513 as

I513 = 2
\sum 

T\in \Lambda R

\sum 

T \prime \in \Lambda c
T,R

�
TR

| \widetilde uh(x)| 
�
T \prime 

R

| \psi (y)| 
| x - y| d+2s

dydx

\leq C
\sum 

T\in \Lambda R

\sum 

T \prime \in \Lambda c
T,R

\| \widetilde uh\| L1(TR)\| \psi \| L1(T \prime 

R) d(T, T
\prime ) - d - 2s,

where d(T, T \prime ) denotes the distance between elements T and T \prime . We make use of the
superapproximation estimate (5.3) with p = 1 to infer that I513 \leq I1513 + I2513, where

I1513 := C
\sum 

T\in \Lambda R

\sum 

T \prime \in \Lambda c
T,R

\| \widetilde uh\| L1(TR)\| \widetilde uh\| L1(T \prime 

R) d(T, T
\prime ) - d - 2s h

2
T \prime 

R2
,

I2513 := C
\sum 

T\in \Lambda R

\sum 

T \prime \in \Lambda c
T,R

\| \widetilde uh\| L1(TR)\| \nabla (\eta \widetilde uh)\| L1(T \prime 

R) d(T, T
\prime ) - d - 2s h

2
T \prime 

R
.

The first term I1513 is problematic. We rewrite it again in integral form upon invok-
ing the meshsize function h(y), which is locally equivalent to the element meshsize,
namely, h(y) \approx hT \prime for all y \in T \prime :

I1513 \leq CR - 2
\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

| \widetilde uh(x)| 
h(y)2| \widetilde uh(y)| 
| x - y| d+2s

dydx \leq I11513 + I12513

with

I11513 = CR - 2
\sum 

T\in \Lambda R

�
TR

| \widetilde uh(x)| 2
�
Sc
T,R

h(y)2

| x - y| d+2s
dydx,

I12513 = CR - 2
\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

h(y)2| \widetilde uh(y)| 2
| x - y| d+2s

dydx.

The first term does not scale correctly unless the meshsize is quasi-uniform, a restric-
tion on \scrT h that is too severe for us to assume. It is here that we resort to the Lipschitz
property (3.1) of h(y), valid for shape-regular \scrT h, and integrate in polar coordinates
| x - y| = \rho , to compute for x \in T \in \Lambda R

�
Sc
T,R

h(y)2

| x - y| d+2s
dy \leq C

�
Sc
T\cap BR

h(x)2 + C| x - y| 2
| x - y| d+2s

dy

\leq C

� R

ChT

h(x)2 + \rho 2

\rho d+2s
\rho d - 1d\rho \leq CR2 - 2s,

whence

I11513 \leq C

R2s

\sum 

T\in \Lambda R

�
TR

| \widetilde uh(x)| 2dx \leq C

R2s
\| \widetilde uh\| 2L2(BR).
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1940 BORTHAGARAY, LEYKEKHMAN, AND NOCHETTO

On the other hand, resorting to Lemma 3.2 (symmetry), we have

I12513 \leq CR - 2
\sum 

T\in \scrT h

�
T

�
Sc
T

h(y)2| \widetilde uh(y)| 2\chi BR
(y)\chi BR

(x)

| x - y| d+2s
dydx

= CR - 2
\sum 

T\in \scrT h

�
T

�
Sc
T

h(x)2| \widetilde uh(x)| 2\chi BR
(x)\chi BR

(y)

| x - y| d+2s
dydx

= CR - 2
\sum 

T\in \scrT h

�
T

h(x)2| \widetilde uh(x)| 2\chi BR
(x)

�
Sc
T

\chi BR
(y)

| x - y| d+2s
dydx,

where \chi BR
denotes the characteristic function of BR. Since

�
Sc
T

\chi BR
(y)

| x - y| d+2s
dy \leq C

� R

ChT

\rho  - 1 - 2sd\rho \leq Ch - 2s
T \forall x \in T,

h(x) \approx hT for all x \in T and 16hT \leq R, we see that

I12513 \leq CR - 2
\sum 

T\in \scrT h

h2 - 2s
T

�
T

\chi BR
(x)| \widetilde uh(x)| 2dx \leq CR - 2s\| \widetilde uh\| 2L2(BR).

Collecting the preceding estimates for I1513, we realize that

I1513 \leq CR - 2s\| \widetilde uh\| 2L2(BR).

We handle I2513 similarly to I1513, namely,

I2513 \leq CR - 1
\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

| \widetilde uh(x)| 
h(y)2| \nabla (\eta \widetilde uh)(y)| 

| x - y| d+2s
dydx

\leq C\varepsilon R
 - 2
\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

| \widetilde uh(x)| 2h(y)2
| x - y| d+2s

dydx

+ C\varepsilon 
\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

h(y)2| \nabla (\eta \widetilde uh)(y)| 2
| x - y| d+2s

dydx

\leq C\varepsilon R
 - 2s\| \widetilde uh\| 2L2(BR) + C\varepsilon 

\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

h(y)2| \nabla (\eta \widetilde uh)(y)| 2
| x - y| d+2s

dydx,

since the first term is identical to I11513. For the other term in the right-hand side, we
proceed exactly as with I12513, thereby exploiting again Lemma 3.2 (symmetry) and
combining it with the inverse-type estimate (3.6), to obtain

\sum 

T\in \Lambda R

�
TR

�
Sc
T,R

h(y)2| \nabla (\eta \widetilde uh)(y)| 2
| x - y| d+2s

dydx \leq C
\sum 

T\in \scrT h

h2 - 2s
T | \eta \widetilde uh| 2H1(T ) \leq C | \eta \widetilde uh| 2Hs(BR).

Combining the estimates for I511, I512, I513 we deduce that

I51 \leq C\varepsilon R
 - 2s\| \widetilde uh\| 2L2(BR) + C \varepsilon | \eta \widetilde uh| 2Hs(BR).

It only remains to bound I52, which is exactly the same as I42 but with u replaced by
\widetilde uh. Hence, proceeding similarly to the estimate for I42, we readily arrive at

I52 \leq C

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| \widetilde uh(y)| 
| y| d+2s

dy

\Biggr) 2

.

D
o

w
n
lo

ad
ed

 1
0
/2

5
/2

3
 t

o
 1

3
2
.1

7
4
.2

5
0
.2

2
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRACTIONAL LAPLACIAN: LOCAL ENERGY ESTIMATES 1941

This together with the previous estimate yields

I5 \leq C\varepsilon | \eta \widetilde uh| 2Hs(BR) +
C\varepsilon 

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| \widetilde uh(y)| 
| y| d+2s

dy

\Biggr) 2

.

Step 6: Conclusion. Inserting the bounds proved in Steps 2 through 5 for Ii, 1 \leq 
i \leq 5 into (5.13), we deduce that

| \eta \widetilde uh| 2Hs(BR) \leq C\varepsilon | u| 2Hs(BR) +
C

R2s
\| u\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| u(x)| 
| x| d+2s

dx

\Biggr) 2

+ C\varepsilon | \eta \widetilde uh| 2Hs(BR) +
C\varepsilon 

R2s
\| \widetilde uh\| 2L2(BR) + CRd+2s

\Biggl( �
Bc

R

| \widetilde uh(x)| 
| x| d+2s

dx

\Biggr) 2

for all \varepsilon > 0. We now set \varepsilon to be such that the factor multiplying | \eta \widetilde uh| 2Hs(BR) in the

right-hand side equals 1
2 and kick that term back to the left-hand side. This finally

implies the estimate (5.11) because | \widetilde uh| 2Hs(BR/2)
\leq | \eta \widetilde uh| 2Hs(BR).

We can derive explicit local Hs-convergence rates by combining Theorem 5.3 with
the convergence estimates from section 3. We explore this next.

5.3. Applications to interior error estimates. Theorem 5.3 (local energy
error estimate) gives us new ways to examine the behavior of the numerical error and,
more importantly, check the sharpness of known estimates. Bounding the low-order
terms in Theorem 5.3 by global L2-terms, we get the following immediate consequence
of Theorem 5.3.

Corollary 5.4 (local error estimate). Let u \in Hs(\Omega ) be the solution of (2.3)
and uh be the finite element solution of (3.7). Then there is a constant C depending
on shape-regularity such that

| u - uh| Hs(BR/2) \leq C inf
vh\in \BbbV h

\Bigl( 
| u - vh| Hs(BR) +

1

Rs
\| u - vh\| L2(\Omega )

\Bigr) 
+

C

Rs
\| u - uh\| L2(\Omega ).

Proof. We apply Theorem 5.3 to u and uh, which clearly satisfies the local
Galerkin orthogonality condition (5.10). The proof then follows from the Cauchy--
Schwarz inequality and integration in polar coordinates

Rd+2s

\Biggl( �
Bc

R

w(x)

| x - x0| d+2s
dx

\Biggr) 2

\leq Rd+2s\| w\| 2L2(\Omega )

�
Bc

R

1

| x - x0| 2d+4s
dx

\leq CRd+2s\| w\| 2L2(\Omega )

� \infty 

R

\rho d - 1

\rho 2d+4s
d\rho =

C

R2s
\| w\| 2L2(\Omega )

for w = | u - vh| and w = | u - uh| . This concludes the proof.

Since \| u - \Pi hu\| L2(\Omega ) \leq C\| u - uh\| L2(\Omega ) generically, Corollary 5.4 shows that the
interior Hs-error consists of a local approximation error in the Hs-norm and a global
L2-Galerkin error that accounts for pollution from the rest of the domain. We observe
that this estimate is similar to local estimates for second-order elliptic problems [16,
33], except that the L2-terms are now global. This is a mild manifestation of the
nonlocal nature of (1.1). We examine below the extreme cases of quasi-uniform and
graded meshes.

D
o

w
n
lo

ad
ed

 1
0
/2

5
/2

3
 t

o
 1

3
2
.1

7
4
.2

5
0
.2

2
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1942 BORTHAGARAY, LEYKEKHMAN, AND NOCHETTO

Since the polynomial degree of \BbbV h is 1, no error estimate can be of order larger
than 2 and exploit regularity of u beyond H2 regardless of mesh structure. With
this in mind, we let f \in Hr(\Omega ) for 0 \leq r \leq 2  - 2s and assume it leads to the local
H2s+r

loc -regularity of u and the local approximation error

(5.14) inf
vh\in \BbbV h

| u - vh| Hs(BR) \leq Chs+r\| f\| Hr(\Omega ).

We remark that this regularity assumption is plausible and known to be true for
r \leq 1  - s (see, for example, [22], and [6] for a proof in the case r = 0) and that
if \Omega is smooth and f \in W r,p(\Omega ) for some p > d/s, then u \in W r+2s,p

loc (\Omega ) [28]. In
order to compare with the global Hs-estimate of Theorem 3.5 (global energy-norm
convergence rates), we consider below the best scenario of maximal interior regularity,
namely, the case where the rate s+ r in (5.14) is sufficiently large s+ r \geq 1, so that
the local Hs-rate is dictated by the global L2-error.

Quasi-uniform meshes. Combining (5.14) with the estimates of Proposition
3.8 (convergence rates in L2(\Omega ) for quasi-uniform meshes) and Lemma 3.9 (further
regularity) of section 3.3, we obtain

| u - uh| Hs(BR/2) \leq Chs+r\| f\| Hr(\Omega ) +

\Biggl\{ 
Ch2\alpha | log h| 2\kappa \| f\| L2(\Omega ) for \Omega Lipschitz,

Ch\alpha +\gamma | log h| 2\kappa \| f\| Hr(\Omega ) for \Omega smooth,

where \alpha = min\{ s, 12\} , \gamma = min\{ s + r, 12\} , and if \Omega is Lipschitz, then \kappa = \xi for s \not = 1
2

and \kappa = \xi + 1 for s = 1
2 (\xi is the constant in (2.6)), whereas if \Omega is smooth, then

\kappa = 1 for s \not = 1
2 and \kappa = 2 for s = 1

2 . We summarize these estimates in Table 1 (up to
logarithmic factors); we remark that the rates therein for Lipschitz domains do not
require the exterior ball condition. Compared with Theorem 3.5 (global energy-norm
convergence rates)

(5.15) \| u - uh\| \widetilde Hs(\Omega ) \leq Chmin\{ s, 12\} | log h| \kappa \| f\| L2(\Omega ),

we see that all interior Hs-rates of Table 1 are improvements over the global rate of
(5.15). For a more regular right-hand side f \in Hr(\Omega ) with s+ r \geq 1

2 and in smooth
domains, we observe an improvement over the global rate dictated by Lemma 3.9,

\| u - uh\| \widetilde Hs(\Omega ) \leq Ch
1
2 | log h| \kappa \| f\| Hr(\Omega ).

Table 1

Comparison of convergence rates (up to logarithmic factors) between interior | u - uh| Hs(BR/2)

and global | u  - uh| Hs(\Omega ) error estimates on quasi-uniform meshes for f \in Hr(\Omega ) with s + r \geq 1.

The interior estimates exhibit an improvement hmin\{ s,1/2\} regardless of the regularity of \Omega .

Local rates Global rates
\Omega -smooth \Omega -Lipschitz \Omega -smooth \Omega -Lipschitz

s \leq 1
2

hs+ 1
2 h2s h

1
2 hs

s > 1
2

h h h
1
2 h

1
2

Graded meshes. Section 3 shows that graded meshes satisfying (3.12) are able
to compensate for the singular boundary layer for Lipschitz domains satisfying the
exterior ball condition and smooth right-hand sides. Even though the next discussion
is valid for any dimension d, for the sake of clarity and because our numerical exper-
iments in section 6 are carried out for d = 2, we shall focus on this case. Moreover,
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we assume s \not = 1
2 , for otherwise additional logarithmic factors arise in our estimates

below. We set \mu = 2 and \beta = 1  - s in Theorem 3.5 (global energy-norm conver-
gence rates) and Proposition 3.10 (convergence rates in L2(\Omega ) for graded meshes) to

establish the global rates of convergence in \widetilde Hs(\Omega ) and L2(\Omega )

\| u - uh\| \widetilde Hs(\Omega ) \leq Ch| log h| \| f\| C1 - s(\Omega ),(5.16)

\| u - uh\| L2(\Omega ) \leq Chmin\{ 1+s,3/2\} | log h| \xi +1 \| f\| C1 - s(\Omega );(5.17)

\xi is the constant in (2.6). In contrast, Theorem 5.3 (local energy error estimate) in
conjunction with (5.17) for f \in C1 - s(\Omega ) \cap Hr(\Omega ), 0 \leq r \leq 2  - 2s, gives the local
Hs-estimate

| u - uh| Hs(BR/2) \leq Chs+r\| f\| Hr(\Omega ) + Chmin\{ 1+s,3/2\} | log h| \xi +1\| f\| C1 - s(\Omega ).

The condition r \leq 2 - 2s above is related to the use of piecewise linear finite elements.
We now assume that s+ r = 2 - s to write

| u - uh| Hs(BR/2) \leq Chmin\{ 1+s,2 - s\} | log h| \xi +1
\Bigl( 
\| f\| C1 - s(\Omega ) + \| f\| H2 - 2s(\Omega )

\Bigr) 
.

Comparing with the global Hs-error estimate in (5.16), we thus see an overall im-
provement rate hmin\{ s,1 - s\} . We summarize these results in Table 2.

Table 2

Comparison of order of convergence (up to logarithmic factors) between interior | u  - 
uh| Hs(BR/2)

and global | u  - uh| Hs(\Omega ) error estimates on graded meshes with parameter \mu = 2

for f \in H2 - 2s(\Omega ) \cap C1 - s(\Omega ). The interior estimates exhibit an improvement rate hmin\{ s,1 - s\} for
\Omega either smooth or Lipschitz with an exterior ball condition (e.b.c.).

\Omega -smooth or Lipschitz e.b.c.
Local rates Global rates

s \leq 1
2

hs+1 h

s > 1
2

h2 - s h

We conclude with a comparison between local error rates on quasi-uniform and
graded meshes for smooth data (domain and right-hand side). Tables 1 and 2 show

that graded meshes yield an improvement of order h
1
2 for all s \leq 1

2 , whereas the
improvement is of order h1 - s for s > 1

2 . Therefore, such an improvement is valid for
all 0 < s < 1 but becomes less significant in the limit s\rightarrow 1 of classical diffusion.

6. Numerical experiments. In this section we present some numerical exper-
iments in a two-dimensional domain that illustrate the sharpness of our theoretical
estimates. These experiments were performed with the aid of the code documented
in [1]; we also refer to [1] for details on the implementation. Some discussion about
the construction of graded meshes satisfying (3.12) can be found in [2].

In all of the experiments below we set \Omega = B(0, 1) \subset \BbbR 
2 and f \equiv 1, so that

we have an explicit solution at hand (cf. Example 2.2). This corresponds to smooth
data (both domain and right-hand side) and the discussion of section 5.3 applies. We
computed errors with respect to the dimension N of the finite element spaces \BbbV h

because N = \#Dofs is a measure of complexity. In view of (3.13) with \mu = 2, we
always have the relation N \approx h - 2 for both quasi-uniform and graded meshes, the
latter up to logarithmic terms. Therefore, the rates of convergence of section 5.3 can
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be expressed in terms of N as follows:

(6.1) h\beta \approx N - \beta /2

for appropriate exponents \beta > 0. We next explore computationally our error estimates
in section 3.3 for both the global L2-norm and local Hs-seminorm.

6.1. Global \bfitL \bftwo -norm error estimates. We start with quasi-uniform meshes
and s = 0.5, 0.6, 0.7, 0.8, 0.9. Our findings are summarized in Figure 1: in all cases, we
see good agreement with the linear convergence rate \beta = 1 predicted by Proposition
3.8 for s \geq 1/2, or equivalently N - 1/2 according to (6.1). Since the exact solution

satisfies u \in \cap \varepsilon >0
\widetilde Hs+1/2 - \varepsilon (\Omega ), we infer that the L2-interpolation error obeys the

inequality \| u  - Ihu\| L2(\Omega ) \leq Chs+1/2| log h| . Interestingly, the finite element error
\| u  - uh\| L2(\Omega ) \leq Ch| log h| 2 is of lower order for s > 1/2, which turns out to be
consistent with (3.27).

Fig. 1. Global L2-errors for the finite element solution to Example 2.2 over quasi-uniform
meshes with s = 0.5, 0.6, 0.7, 0.8, 0.9. The decay rate N - 1/2, which is of lower order than the
interpolation error, is consistent with (3.22) for s \geq 1/2.

We next consider approximations using graded meshes that satisfy (3.12) with
\mu = 2. By Proposition 3.10, we expect a convergence rate of order N - min\{ 1/2+s/2,3/4\} ,
according to (6.1). In Figure 2 we display the computational rates of convergence for
s = 0.2, 0.4, 0.6, 0.8, which are in good agreement with theory.

6.2. Local \bfitH \bfits -norm error estimates. We next explore the sharpness of our
local error estimates derived in section 5 and summarized in Tables 1 and 2. More
precisely, we find computational rates of convergence in Hs(B(0, 0.3)), namely, the
ball of radius 0.3 centered at the origin, upon evaluating | Ihu - uh| Hs(B(0,0.3)) via the
same techniques used when building the stiffness matrix. This is because

| u - uh| Hs(B(0,0.3)) \leq | u - Ihu| Hs(B(0,0.3)) + | Ihu - uh| Hs(B(0,0.3))

and the first term in the right-hand side above is of higher order than the second
for the locally smooth function u of (2.7). We display the errors in Hs(B(0, 0.3))
for s = 0.2, 0.4, 0.6, 0.8 in Figures 3 and 4 for quasi-uniform and graded meshes,
respectively. We observe good agreement with the theoretical rates N - min\{ 1

4+
s
2 ,

1
2\} of

Table 1 and N - min\{ 1
2+

s
2 ,1 - s

2\} of Table 2 in each case.
Finally, we emphasize that, according to our discussion in section 3.2, the global

Hs-errors decay with rate N - 1/4 (for uniform meshes) and N - 1
2 (for graded meshes);
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Fig. 2. Global L2-errors for the finite element solution to Example 2.2 over graded meshes with
\mu = 2 and s = 0.2, 0.4, 0.6, 0.8. The computational decay rates are consistent with the theoretical
prediction N - min\{ 1/2+s/2,3/4\} of (3.25).

Fig. 3. Errors in Hs(B(0, 0.3)) for the finite element solution to Example 2.2 over quasi-
uniform meshes with s = 0.2, 0.4, 0.6, 0.8. Computational rates are consistent with the theoretical

rates N - min\{ 1
4
+ s

2
, 1
2
\} of Table 1.

Fig. 4. Errors in Hs(B(0, 0.3)) for the finite element solution to Example 2.2 over graded
uniform meshes with \mu = 2 and s = 0.2, 0.4, 0.6, 0.8. Computational rates are consistent with the

theoretical rates N - min\{ 1
2
+ s

2
,1 - s

2
\} of Table 2.
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see (3.24) and (3.17). It can be seen from our numerical experiments that in all cases
the finite element solutions converge with higher order in Hs(B(0, 0.3)). Therefore,
these experiments illustrate that the finite element error is effectively concentrated
around \partial \Omega .
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