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Abstract. The integral fractional Laplacian of order s € (0,1) is a nonlocal operator. It
is known that solutions to the Dirichlet problem involving such an operator exhibit an algebraic
boundary singularity regardless of the domain regularity. This, in turn, deteriorates the global
regularity of solutions and as a result the global convergence rate of the numerical solutions. For
finite element discretizations, we derive local error estimates in the H®-seminorm and show optimal
convergence rates in the interior of the domain by only assuming meshes to be shape-regular. These
estimates quantify the fact that the reduced approximation error is concentrated near the boundary
of the domain. We illustrate our theoretical results with several numerical examples.
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1. Introduction. In this work we consider finite element discretizations of the
problem

(—Ayu=f inQ,
(11) { u=0 1in Q°:= Rd \ Q7

where  C R? is a bounded domain and (—A)? is the integral fractional Laplacian of
order s € (0,1),

Sy () u(z) — u(y)
(12) (—A) ’U,(J,‘) = Cd,s p.V. /Rd W d
N 2258F(s+%) . .
The normalization constant Cy s = T s makes the integral in (1.2), calculated

in the principal value sense, coincide with the Fourier definition of (—A)%u. It is
well understood that even if the data is smooth (for example, if 02 € C* and
f € C°(€)), then the unique solution to (1.1) develops an algebraic singularity near
0, i.e., a singularity of the form dist(z,dQ)° (cf. Example 2.2). This is in stark
contrast with the classical Laplacian equation.

Nevertheless, in such a case one expects the solution to be locally smooth in
and thus the discretization error to be smaller in the interior of the domain. Our main
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result (Theorem 5.3) is a quantitative estimate of the fact that the finite element error
is concentrated around 0.

The fractional Laplacian (1.2) is a nonlocal operator: computing (—A)*u(z) re-
quires the values of u at points arbitrarily far away from x. Nonlocality is also reflected
in the variational formulation of (1.1): the natural space in which the problem is set
is the zero-extension fractional Sobolev space H* (Q), and the norm therein is not sub-
additive with respect to domain partitions. Furthermore, it is not possible to localize
the inner product in H*(2), because functions with supports arbitrarily far away from
each other may have a nonzero H?-inner product. This is also in stark contrast with
the local case (i.e., with the inner product in H!(Q)) and makes the development of
local estimates for such a nonlocal problem a more delicate matter, especially in the
case of general shape-regular meshes. This is the main purpose of this paper.

In recent years, there has been significant progress in the numerical analysis and
implementation of (1.1) and related fractional-order problems. Finite element dis-
cretizations naturally provide the best approximation in the energy norm. A priori
convergence rates in the energy norm for approximations using piecewise linear basis
functions on either quasi-uniform or graded meshes were derived in [2]; similar re-
sults, but regarding convergence in H'(Q2) in the case s > %, were obtained in [9].
The use of adaptive schemes and a posteriori error estimators has been studied in
[3, 23, 26, 35, 39]. A nonconforming discretization, based on a Dunford-Taylor repre-
sentation, was proposed and analyzed in [8]. We refer to [7, 10] for further discussion
on these methods. In contrast, the analysis of finite difference schemes typically leads
to error estimates in the L°°(2)-norm under regularity assumptions that cannot be
guaranteed in general [18, 19, 29].

We learned about [22] after our paper was submitted. Reference [22] also performs
a local error analysis for the problem (1.1). The local estimates in [22] differ from ours
in several respects. The main differences lie in the form of the pollution term, which
is expressed in the H s=2_norm instead of the L?-norm, and that the error estimates
are measured in the H'-norm besides the H®-energy norm. The analytical techniques
differ as well. While the proof in [22] is based on the use of the Caffarelli-Silvestre
extension, our approach is purely nonlocal and is based on Caccioppoli estimates that
are valid for a more general class of kernels [5, 15], and meshes.

The rest of the paper is organized as follows. In section 2, we review the fractional-
order spaces and the regularity of solutions to (1.1) in either standard or weighted
Sobolev spaces. In section 3, we describe our finite element discretization, review
basic energy based error estimates, and combine such estimates with Aubin—Nitsche
techniques to derive novel convergence rates in L?-norm. In section 4, we provide a
proof of a Caccioppoli estimate for the continuous problem. In section 5, which is the
central part of the paper, we combine Caccioppoli estimates and superapproximation
techniques to obtain interior error estimates with respect to H®-seminorms. At the
end of this section we show some applications of our interior error estimates. In
particular, we discuss the convergence rates of the finite element error in the interior
of the domain with respect to smoothness of the domain and the right-hand side in
the case of quasi-uniform and graded meshes. The results are summarized in Tables
1 and 2. Finally, several numerical examples at the end of the paper illustrate the
theoretical results from section 5.

2. Variational formulation and regularity. In this section, we briefly discuss

important features of fractional-order Sobolev spaces that are instrumental for our
analysis. Furthermore, we consider regularity properties of the solution to (1.1) and
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review some negative results that lead to the use of certain weighted spaces, in which
the weight compensates the singular behavior of the gradient of the solution near
the boundary of the domain. Having regularity estimates in such weighted spaces
at hand, we shall be able to increase the convergence rates by constructing a priori
graded meshes.

2.1. Sobolev spaces. Sobolev spaces of order s € (0,1) provide the natural
setting for the variational formulation of (1.1). More precisely, we consider H*(R?)
to be the set of L?-functions v : R? — R such that

1/2
(2.1) |v] g (may = C“ @) =v@F 0} <
: Hs(RE) ra Jra |x— |d+25 Yy )

where Cy s is taken as in (1.2). Clearly, these are Hilbert spaces; we shall denote by
(+,-), the bilinear form that gives rise to the fractional-order seminorms, namely,

(2.2) (v,w), : _ Ca /]Rd /Rd |x _));T;Ei)s—w(y)) dy dx.

For the variational formulation of (1.1), we need the zero-extension spaces

H*(Q) := {v € H*(R?): supp(v) C Q},

for which the form (-, -), becomes an inner product. Moreover, if v,w € Hs (©), then
integration in (2.2) takes place in (R% x R%)\ (¢ x Q¢). We shall denote the H*(£2)-
norm by HUHgs(Q) = (U,U)i/z = |v| s (re) and remark that the L?-norm of v is not
needed because a Poincaré inequality holds in the zero-extension Sobolev spaces.

Fractional-order Sobolev spaces can be equivalently defined through interpola-
tion of integer-order spaces; remarkably, if one suitably normalizes the standard K-
functional, then the norm equivalence constants can be taken to be independent of
s [32, Lemma 3.15 and Theorem B.9]. Although the constant Cy s in (2.1) is funda-
mental in terms of the continuity of Sobolev seminorms as s — 0,1, we shall omit it
whenever s is fixed. For simplicity of notation, throughout this paper we shall adopt
the convention H°(Q)) = L2().

Let H—*(€2) denote the dual space to H*(€2) and (-,-) be their duality pairing.
Because of (2.2) it follows that if v € H*(€2), then (—A)*v € H~*(Q) and

(v,w), = ((-A)°v,w) Yw e H*(Q).

This integration by parts formula motivates the following weak formulation of (1.1):
given f € H*(Q), find v € H*(2) such that

(2.3) (u,v), = (f,v) Yo e H*(Q).

Because this formulation can be cast in the setting of the Lax—Milgram theorem, the
existence and uniqueness of weak solutions, and stability of the solution map f +— u,
are straightforward.

2.2. Sobolev regularity. The well-posedness of (2.3) in H*(Q) if f € H~*() is
a consequence of the Lax—Milgram theorem. A subsequent question is what additional
regularity does u inherit for smoother f. For the sake of finite element analysis, here
we shall focus on Sobolev regularity estimates.
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By now it is well understood that for smooth domains €2 and data f, solutions to
(1.1) develop an algebraic singular layer of the form (cf., for example, [28, 36])

(2.4) u(z) dist(z, 0Q)~° = v(z),

where v is Holder continuous up to 0€2; this limits the global smoothness of solutions.
Indeed, if u is locally smooth in Q but behaves as (2.4), then one cannot guarantee
that u belongs to H5%2(Q); actually, in general u ¢ H*2(Q) (see Example 2.2).

We now quote a recent result [11] that characterizes the regularity of solutions
in terms of Besov norms. Its proof follows a technique introduced by Savaré [37]
that consists in combining the classical Nirenberg difference quotient method with
suitably localized translations and exploiting certain convexity properties. We refer
to [37, section 4] for a definition and basic properties of Besov spaces.

THEOREM 2.1 (Besov regularity on Lipschitz domains). Let Q be a bounded Lip-
schitz domain, s € (0,1), and f € L*(2). Then, there exist constants C,( depending
on Q d such that the solution u to (1.1) belongs to the Besov space BS+9(Q), where

for <s<landf@=s5—e>0for0<s<?i 5, and satisfies the estimates

(2.5) [ul| go+o .y < Oz 1) I fllz2 (0, 1<s<l,
YT M o, 0<s<i

Combining (2.5) with the Sobolev embedding ||u|| g7s+6-<(0) < % HUHBE,J;z(Q) yields

(2.6) ]| rsto-< () 3 ||fHL2(Q) V0 <e<s,

where £ = 1/2 for % <s<land{=1/2+(for0<s< % and C' = C(Q,d, s).

There are two conclusions to be drawn from the previous result. In the first
place, assuming the domain to be Lipschitz is optimal, in the sense that if 2 was a
C* domain, then no further regularity could be inferred. Thus, reentrant corners play
no role in the global regularity of solutions: the boundary behavior (2.4) dominates
any point singularities that could originate from them; we refer to [25] for further
discussion on this point. In the second place, in general the smoothness of the right-
hand side cannot make solutions any smoother than N.soH st3—e (©2). The expression
(2.4) holds in spite of the smoothness of f near 9. We illustrate these two points
with a well-known example [24].

Ezample 2.2 (limited regularity). Let Q = B(0,1) € R? and f = 1. Then, the
solution to (1.1) is

r(g)
Z2)0(1+ 5)

where ¢, = max{t,0}. Therefore, u € N.soH*t25(1).

(2.7) u(z) = (1= |23,

2251"(

We also point out a limitation in the technique of proof in Theorem 2.1 from [11]
that is related to the example above. Namely, in the case s < % and f € H"(Q)
for some r > 0, solutions are expected to be smoother than just H?*(Q); however,
one cannot derive such higher regularity estimates from Theorem 2.1. For smooth

domains (i.e., 902 € C*°), the following estimate holds [38]:

1 -
(2.8) feH (), —s<r< 378 = u€ H*77(Q).
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2.3. Regularity in weighted Sobolev spaces. By developing a fractional
analogue of the Krylov boundary Harnack method, Ros-Oton and Serra [36] obtained
a fine characterization of boundary behavior of solutions to (1.1) and derived Holder
regularity estimates. In order to exploit these estimates and apply them in a finite
element analysis, reference [2] introduced certain weighted Sobolev spaces, where the
weight is a power of the distance to 0f2. Let

0(z) := dist(x,09), d(x,y) = min{d(z),0(y)}.
Then, for k € NU {0} and v > 0, we consider the norm

(29) ol = [ R@PF+ 3 10%@) | 6@ s

1BI<k

and define H%(Q2) and fIfj(Q) as the closures of C*° () and C§°(2), respectively, with
respect to the norm (2.9).
Next, for t = k + s, with k € NU {0} and s € (0,1), and v > 0, we consider

||U||§1§(Q) = ||”||§1§(Q) + M%{;(Q):

VEu(a) — Viu(y)?
v|%, ;://' §(z,y)> dy dz
| ‘HW(Q) ola |z — y|dt+2s (z,9)

and the associated space H!(Q) := {v € HA’f(Q): ||v||H$(Q) < oo}
In analogy with the notation for their unweighted counterparts, we define zero-
extension weighted Sobolev spaces by

(2.10) HY(Q) = {ve H(RY): v=0ae. inQ°}

with ||v|| + |v|§{§(Rd). The convenience of using the same weight in

2 ]2

e = Pla @)

both the function and its fractional-order derivatives is discussed in [12, section 3].
We have the following regularity estimate in the scale (2.10) [2, Proposition 3.12],

[7, Formula (3.6)].

THEOREM 2.3 (weighted Sobolev estimate). Let Q be a bounded, Lipschitz do-
main satisfying the exterior ball condition (i.e., there exists r > 0 such that for all
x € 08, there exists B(y,r) C Q° satisfying B(y,7)NQ = {z}), s € (0,1), f € C#(Q)
for some B € (0,2—2s), v >0, t <min{B+ 25,7+ s+ 3}, and u be the solution of
(2.3). Then, it holds that u € FNL’;(Q) and

- C(Q,d,s) _
Hu||H;(Q) < NS T e e ) 1fllce -

Remark 2.4 (optimal parameters). In finite element applications of Theorem
2.3, discussed in section 3, we will design graded meshes with a grading dictated by
7. The optimal choice of parameters ¢ and v depends on both the smoothness of the
right-hand side f € C#(Q) and the dimension d of the space. We illustrate this now:
let d > 2, s < 2(%1), 8 = 2(d%d—1) — s, and € > 0 be sufficiently small, and choose
t=s+ ﬁim —ed and v = ﬁ — ¢, to obtain the optimal regularity estimate
C(d, s)

< -— 7 7
9

||UHH§(Q) = ||f||CB(ﬁ)-
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In contrast, if s > ﬁ‘_w we set § to be any positive number and take ¢, as above
to arrive at C(9.d.5.5)
s,
||uHﬁ§(Q) < f”f”cﬂ(ﬂ)

Remark 2.5 (exterior ball condition). Taking into account the results from [25],
the exterior ball condition could be relaxed. Indeed, such a reference proves that
the asymptotic expansion (2.4) is valid also for corner singularities, which implies
that graded meshes also give rise to optimal convergence rates in that situation.
Nevertheless, because the analysis of effects of reentrant corners is beyond the scope
of this paper, we leave the exterior ball assumption on 2.

3. Finite element discretization. We next consider the finite element dis-
cretizations of (2.3) by using piecewise linear continuous functions. Let hg > 0; for
h € (0, hg], we let Tp, denote a triangulation of §, i.e., T, = {T'} is a partition of §2
into simplices T of diameter hr. We assume the family {7} }r~0 to be shape-regular,
namely,

0 = sSup max — < oo,
h>0T€Th pT
where hr = diam(7T) and pr is the diameter of the largest ball contained in 7. As
usual, the subindex h denotes the element size, h = maxre7;, hr; moreover, we take
elements to be closed sets.

We shall also need a smooth mesh function h(x), which is locally comparable with
the element size. Note that shape-regularity yields |[Vh| < C(o) (cf. [34, Lemma 5.1]),
and thus

(3.1) Ih(z) ~ h(y)| < Clo)la —y| Va.ye .

Let A}, be the set of interior vertices of 75, N be its cardinality, and {¢;}Y,
be the standard piecewise linear Lagrangian basis, with ¢; associated to the node
x; € Nj,. With this notation, the set of discrete functions is

VY = {UEC'O ’U—sztpz}.

It is clear that V,, C H*(Q) for all s € (0, 1) and therefore we have a conforming
discretization.

3.1. Interpolation and inverse estimates. Fractional-order seminorms are
not subadditive with respect to domain decompositions; therefore, some caution must
be exercised when localizing them. With the goal of deriving interpolation estimates,
we define the star (or patch) of a set A € Q2 by

Sa=J{T eTh: TNAH0}.
Given T € Ty, the star Sp of T is the first ring of T' and the star Sg, of Sp is the

second ring of T. The star of the node x; € N, is S; := supp(;).
We have the following localization estimate for all v € H*(Q) [20, 21]:

v(y)? C(d, o)
(32) |’U|Hs < Z |:// |z7 ‘d+2s dydx—i— h25 || HLZ(T)

TeT
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This inequality shows that to estimate fractional seminorms over €2, it suffices to com-
pute integrals over the set of patches {T'x St }re7, plus local zero-order contributions.
In addition, if these L? contributions have vanishing means over elements—as is often
the case whenever v is an interpolation error—a Poincaré inequality allows one to
estimate them in terms of local H*-seminorms. Thus, one can prove the following
local quasi-interpolation estimates (see, for example, [2, 12, 14]).

PROPOSITION 3.1 (local interpolation estimates). Let T € Tp, s € (0,1), t €
(s,2], and I1j, be a suitable quasi-interpolation operator. If v € H'(Ss,.), then

(v— Hhv ) (v = Tp0)(y)[? 2(t—s
(3.3) / /S M=z dy dx < ChT(t )|Uﬁqt(SST)a
T

where C = C(Q,d, s,0,t). Moreover, considering the weighted Sobolev scale (2.10), it
holds that for all v € H.(Ss,),

v—Iv)(x) — (v —TILv)(y)|? s
(3.4) //S (v =1L )ér)_y'fms IO 4, 4 < 2 ol (sa,)-

For the purpose of this paper, we shall make use of a variant of (3.2). Even though
the fractional-order norms can be localized, it is clear that the H®-inner product of two
arbitrary functions cannot: it suffices to consider two positive functions with supports
sufficiently far from each other. The following observation is due to Faermann [21,
Lemma 3.1]. Since we use it extensively, we reproduce it here for completeness.

LEMMA 3.2 (symmetry). For anyv,w € L*(Q) and p : RT — R bounded, there
holds

Z// ) pllz— y)dyde = 3 // ) p(| — yl)dyd.

TETh TETh

Proof. We note that, for any two elements 7,7 € Ty, it holds that 77 € S5 if
and only if T' € S%,. Thus, we can write

Z// p(lz = ydyde = Y~ > // p(lz — yl)dyda

TeTh TeTh T'€SS

-y >/ /T | ol — yl)dyds.

T'€Tn TESY,

The proof follows by applying Fubini’s theorem and interchanging the roles of x and
Y. ]

PROPOSITION 3.3 (equivalent fractional inner product). Let v,w € H?®(Q).
Then, it holds that
S[[ [ Lot —ue)
s y| e
TETh T

Rl

(v, w) s ()
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Proof. 1t suffices to write

o [,

TeThH
() (w(z) —w(y))
v/, / T ey Wi
and notice that

Z//C| |d+2sd ydr = Z//C |z — |d+25dydx

TeT TET
and (@)
//c| |d+25 Ay dr = Z// |x—y|d+25dydx
TET, TET

in view of Lemma 3.2 (symmetry) with p(t) = ¢t=9725x(, = (t), where pmin =

minpe7, pr and we recall that pr is the diameter of the largest ball contained in 7.
This completes the proof. 0

Remark 3.4 (fractional inner product on subdomains). Proposition 3.3 is also
valid for any subdomain D C €, i.e.,

—v(y)(w(z) —w(y))
(v,w)gs(p) = {/TND /STmD [ — |72 dy dz

TeTh
v(z) (w(z) —w(y))
—|—2/ / —— 7 dydz|.
TnD JSenD |z —y

Next, we write some inverse estimates that we shall use in what follows. By using
standard scaling arguments, one can immediately derive the estimate

(3.5) lvrllzecry < Cinoh vnllgs(ry Yon €V, 0<s<t<1

Let n: © — R be a fixed smooth function. We shall also need the following variant
of (3.5) with ¢ = 1, whose proof follows immediately because the space nV}, is finite
dimensional:

(3.6) |77Uh‘H1(ST) < Chéﬂ_lmvh‘HS(ST) Yop €V, T €T, 0<s<1.

3.2. Energy-norm error estimates. The discrete counterpart of (2.3) reads
as follows: find uj € Vj, such that

(3.7) (un,vn)s = (fyon) VYop € V.
Subtracting (3.7) from (2.3) we get Galerkin orthogonality
(3.8) (u—up,vp)s =0 Yo € V.
The best approximation property

(3-9) ”U - uh”ﬁs(g) = Uflnel{}h ||U - Uh”ﬁs(g)
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follows immediately from (3.8). Consequently, in view of the regularity estimates of
u discussed in section 2, the only ingredient missing to derive convergence rates in
the energy norm is some global interpolation estimate. Even though the bilinear form
(-,+)s involves integration over Q x R?, it is possible to prove that the corresponding
energy norm | - || 7. q) is bounded in terms of fractional-order norms | - ||+ () on €2
by resorting to fractional Hardy inequalities (see [2]).

Therefore, for quasi-uniform meshes, if s £ %, one can simply combine (3.2) and
(3.3) with a fractional Hardy inequality [27, Theorem 1.4.4.4] to replace || - ||HS(Q) by

| |5+ () [2, 12] and obtain for ¢ € (s,1)
(3.10) lv — Hthfls(Q) < C(Q,d,s,0,t) ' olge) Yo € HY(Q).

In the case s = %,

exploit the precise blow-up of the Hardy constant of H 3t (Q) as € ] 0 to deduce [2,
section 3.4], [12, Theorem 4.1] for ¢ € (3,1) and € € (0, — )

one cannot apply a fractional Hardy inequality. Instead, one may

c(Q,d,o,t)  ,_1_
(3.11) |lv —Hhv||ﬁ1( < %ht 2l Vv € H'(Q).

7(Q) =
Alternatively, one could derive either (3.10) or (3.11) by simply interpolating standard
global L? and H'! estimates. However, if we aim to exploit Theorem 2.3 (weighted
Sobolev estimate), then we require a suitable mesh refinement near the boundary of
Q. For that purpose, following [27, section 8.4] we now let the parameter h represent
the local mesh size in the interior of €2 and assume that, besides being shape-regular,
the family {75} is such that there is a number g > 1 such that for every T' € Ty,

W AT NOQ A0,

(3.12) hr < C(o) { hdist(T, dQ)=1/1if T N oQ = 0.

This construction yields a total number of degrees of freedom (see [4, 12])

R ifp < d%

(3.13) N =dimV, ~<{ h~?logh| if p= 3%
W=Dk i > ol

Thus, if p < %7 the interior mesh size h and the dimension N of V}, satisfy the
optimal relation A ~ N~'/¢ (up to logarithmic factors if u = d%‘ll). As anticipated
in Remark 2.4 (optimal parameters), the weight + in Theorem 2.3 (weighted Sobolev
estimate) needs to be related to the parameter p, which satisfies (3.12). To do so, we
combine (3.2) with either (3.4) or (3.3), depending on whether Sg, intersects 9 or
not, to find the relation v = (¢ — s)(”T_l) for t € (s,2]. If s # 1, it suffices to use a

fractional Hardy inequality to replace || - ”17*‘(9) by || - [ #=(q) [2, 12] and obtain

Chtis"l}‘H’ty(Q) if s 75 %,

) — ~ <
(3 14) ||U HhUHHS(Q) - { ghtfsfe"v‘H’ty(Q) lf S =

1
2

for all v € H,tY(Q) with a constant that depends on €2, d, s, 0,t, and v. On the other
hand, if s = %, we choose vy = (t — s)(%) — ¢, where € > 0 is sufficiently small, and

exploit the explicit blow-up of the Hardy constant of Hzte (Q) as € | 0, as we did
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earlier with (3.11), to derive the second estimate in (3.14). We point out that (3.14)
does not follow by interpolation of global estimates.

We gather the energy error estimates for quasi-uniform and graded meshes in a
single theorem.

THEOREM 3.5 (global energy-norm convergence rates). Let Q@ C R? be a bounded
Lipschitz domain and u denote the solution to (2.3) and denote by up, € V}, the solution
of the discrete problem (3.7), computed over a mesh Ty consisting of elements with
mazximum diameter h. If f € L?(Q), then we have

(3.15) = unll ey < O d,5,0) b log hl* [1£]] (-

where « = min{s, 1} and k = { if s # 5, k =1+ & if s = 5, and & > 1/2 is the
constant in Theorem 2.1. Additionally, if Q satisfies an exterior ball condition, let

B > 0 be such that

2-2 ifd =1 _ ] —
(3.16) 52{ s if  and M:{2ds ifd=1,

sy — s fd>2 4 ifd>2.

Then, if f € CP(Q), and the family {Tp} satisfies (3.12) with u as above, we have

h?=?| 10gh|ﬁil||chﬁ(§) ifd=1,
d
h=@= [log h|"|| fllce (@) if d =2,

(3.17) lw = unl| o) < C(€25,0) {
where k = 1 if s # % and Kk =2 if s = % In terms of the number of degrees of freedom

N, the estimate (3.17) reads

N=C=)(1og N)* M fllesm #d=1,
1 1
N72@ (log N) @0 | fll gy if d > 2.

(3.18) [lu = unll 7. (o) < C(2,s,0) {

Proof. 1f s # 1, we combine (3.9) and (3.10) with (2.6) to obtain

0—¢

_ h
(3.19) [l — uhHﬁs(Q) <cn’ E|U;‘Hs+975(ﬂ) <C Hf||L2(Q)7

33
where 6 = min{s —¢,1/2}, namely, § = aif s > 1/2 and § = a — ¢ if s < 1/2. In the
case s = 1, instead of (3.10) we use (3.11) with the same ¢ as in (2.6) to get

C h6‘72e

(3:20) lu = unl| o) < W72 ul oro-e () < OEITHJCHL?(SU

B
Moreover, coupling (3.9), the first estimate in (3.14), and Theorem 2.3 (weighted

Sobolev estimate) Witht:2—5and7:2—sifd:1andt:s—i—ﬁ—sdand

Vzﬁ—gideQyieldsfors#%

CP* | floem ifd=1,
d

%h“d*”_sdlﬁllcg@ ifd>2;

(3:21)  lu—unllgeq) < Ch'™*lul e () < {

analogous estimates hold if s = % but with an additional factor e 'h~¢ according to
the second estimate in (3.14). Upon taking ¢ = |log h|~!, we end up with (3.15) and
(3.17), as asserted. Inequality (3.18) follows by the choice of i and (3.13). d
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Remark 3.6 (exponents of logarithms). In the case s > ﬁ'ﬂn, which can only
happen if d > 3, the exponents of logarithms in Theorem 3.5 can actually be reduced
by a factor of 1 (see the discussion in Remark 2.4).

Remark 3.7 (optimality). The convergence rates derived in Theorem 3.5 are the-
oretically optimal for shape-regular elements. Nevertheless, because we deal with
continuous piecewise linear basis functions, one would expect convergence rate #
with respect to N. It is remarkable that such a rate can only be achieved if d = 1
upon grading meshes according to (3.12). For dimensions d > 2, anisotropic meshes
are required in order to obtain optimal convergence rates. This limitation stems from
the algebraic singular layer (2.4) and becomes more apparent as d increases, but a
comparison of (3.15) and (3.17) shows that in all cases graded meshes improve the
convergence rates with respect to N.

We also point out that setting the grading parameter to be p > ﬁ would lead
to a higher rate in (3.17) in terms of the interior mesh size h. However, the resulting
rate in (3.18) would be the same as for 4 = 2% (up to logarithmic factors) but the

1
finite element matrix would turn out to be worse conditioned.

3.3. L?-norm error estimates. Upon invoking the new regularity estimates of
Theorem 2.1 for data f € L*(Q2), we now perform a standard Aubin—Nitsche duality
argument to derive novel convergence rates in L2(£2). We distinguish between quasi-
uniform and graded meshes.

PROPOSITION 3.8 (convergence rates in L?(Q) for quasi-uniform meshes). Let Q
be a bounded Lipschitz domain. If f € L?(Q), then for all 0 < s < 1 we have
(3.22) s — unll 2oy < CH2]log A2 (£l 2.
where o = min{s, %}, k=CEif s # %, k=1+&ifs= %, and £ > 1/2 is the constant
in (2.6).

Proof. Let e = u — uy, be the error, and let ¢ be the solution to (2.3) with e
instead of the right-hand side f. Then, the Galerkin orthogonality (3.8) and the
Cauchy—Schwarz inequality yield

eIz = (61 €), = (6 — Tndre), < 6 — bl o el 7
where II, is a quasi-interpolation operator satisfying (3.10) if s # % or (3.11) if s = %
Combining these estimates with (2.6), we deduce for € > 0 sufficiently small

hS*E 1
A e s 1
(3.23) H¢*Hh¢||gs(9) < ,LSEQEH 20, # ?
WHeHLZ(Q), s =3,

where § = min{s — ¢,1/2}, precisely as with (3.19) and (3.20). The latter, together
with (3.23), implies

2(0—¢)
< e Il s# 3
H€HL2(Q) ~ p2(0—22) 1
22(118) ||f||L2(Q), §=3.
Finally, taking e = |log h|~! gives rise to (3.22). 0

In Proposition 3.8, the assumption f € L?(£2) is made in order to apply Theorem
2.1 (Besov regularity on Lipschitz domains). Stronger estimates are valid provided Q
is smooth.
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LEMMA 3.9 (further regularity). Let 9Q € C* and f € H"(Q) for somer > —s.
If v = min{s + r, %}, a= min{s,%} and k =1 if s # %, k=21ifs= %, then there
holds

lu = unll g oy < CR[log hI™ || fllz+(02),

(3.24) aty 26
lu — unlr2i) < ChOTlog BI**|| £ ()

Proof. Use the regularity result from [28, Theorem 7.1] (which coincides with
(2.8) if s < %) in the proofs of Theorem 3.5 and Proposition 3.8. d

As discussed in sections 2.2 and 3.2, we obtain a finer characterization of the
boundary behavior of solutions by using weighted spaces, and we can take advantage
of this by constructing suitably graded meshes. In such a case, the same standard
argument as above, but using (3.21) instead of (3.19), leads to the following estimate.

PROPOSITION 3.10 (convergence rates in L2(f2) for graded meshes). Let Q C R¢
be a bounded Lipschitz domain satisfying an exterior ball condition, f € C#(Q) and
the family {Tp} satisfy (3.12), where § and p are taken according to (3.16). Then,
there exists a constant C' = C (8, s,0) such that

Rt log hl* | fllcs @y if d=1,

3.25 - <C
(3.25) = unllze @) < {hw‘%ﬁ"‘lloghl“lfllcm) ifd>?2,

where a =min{s, 3}, k =+ 1ifs# L2, k=642 if s= 1, and € is the constant in
(2.6). In terms of the number of degrees of freedom N, the estimate (3.25) reads

N=C=*) (log N)* | fllgsy #d=1,
1

N~ 3@T (log N) 4 50| fll gy if d > 2.

lu —unll20) < C’{

Remark 3.11 (sharpness of the L?-estimates). Combining Galerkin orthogonality
(3.8) with (2.3) and applying the Cauchy—Schwarz inequality, we immediately obtain

lu = unlF. ) = (u = un,u), = (w—un, flg < llu—unlz2@llfllL2 ().

from which we deduce that

lu —unll%,
(326) Hu - uh||L2(Q) > Sl (D)
£l 22 (@)

If we knew that the error bound (3.15) were sharp in the sense that ||u — uh||ﬁs(m o~

he|log h|*|| f||z2(q), a reasonable assumption in practice unless u € Vj, [31], then we
would obtain from (3.22) and (3.26)

(3.27) lu— unllp2(0) = h**|log h[**[| f|| 2(q)-

We point out that a similar consideration cannot be made if we inspect weighted
estimates. Indeed, let us assume d > 2 and meshes are graded with parameter p =
%1; similar considerations are valid if the meshes are graded differently. If (3.17)
were sharp, then we could only deduce (up to logarithmic factors)

o 112 d
hl@a—1) —— 5 U — Up, 2(Q S hz(d,l)-‘ra f .
o ~ 10~ el 1 llesy
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and a = min{s, 3} < AT d rj- The issue here is that Theorem 2.3 (weighted Sobolev
estimate) does not yield a regularity estimate in terms of L?-norms of the data.
Therefore, we still need to use (3.23), which, in turn, is based on the unweighted

estimate (2.6), a consequence of Theorem 2.1 (Besov regularity on Lipschitz domains).

4. Caccioppoli estimate. The following result is well-known for usual har-
monic functions. For the fractional Laplacian (1.2) it can be found, for example, in
[15] (see also [5, 13, 17, 30]). We present a proof below, because for our purposes
it is crucial to trace the dependence of the constants on the radius R and the exact
form of the global term. Moreover, it turns out that the technique of proof will be
instrumental in section 5.

LEMMA 4.1 (Caccioppoli estimate). Let Br denote a ball of radius R centered at
xo € Q. Ifu € H*(R?) is a function satisfying ch %dm < o0 and (u,v), =0

for all v € H*(RY) supported in Br, then there exists a constant C independent of R
such that

c ju(z)|
2 2 d+2s
(4.1) |U|HS(BR/2) < R2s [ullz2(pp) + CR (/B |z — ao|d+2s dz
R

Proof. Let n: RY — [0, 1] be a smooth cut-off function with the following prop-
erties:

(4.2a) n=1 in Bg,,
(4.2b) n=0 in Bjg,
(4.2¢) V| < CR™.
Thus,
2 )
o= (af), = [ [ MNP D)
Rd JRY |z — y[d+2s
where

|z — y| P2

_ (u(z) = u(y) (*@)u(z) —*W)uy) ,
IQ.Q/BR/C dydz.

|z — y|d+2e

oo [ [ () 0P ee) - Pl

Using the identity

(u(z) —u(y) () *u(z) —n(y)*u(y)) = [(@)u(z) —nly)uy)) —u(@)uly) ) -0 )]

we obtain I = |77u|%15(BR) — I11, where

[n(x) — n(y)?
I —/ / dydzx.
H Br J Br |$ — y|dt2s Y

In view of of (4.2c), we have |n(z) — n(y)| < CR™!|z — y| and, applying the Cauchy—
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Schwarz inequality, we deduce

z)|u(y)|
— " dydx
/BR/BR = |d 2425

|u(x C 2
< R2 /BR /BR yla- 2+25d yda < R25||UI|L2(BR)’

because the kernel |z —y|~9+272¢ is integrable on {x = y} and using polar coordinates

p = |z — y| yields
dy /R 1-2 2—2
———<c p%dp = cR“T°.
/BR |z — y[d=2+2s 0

Next, since 7 is supported in Bsg/4, according to (4.2b), and bounded by 1, we have

" <2/BR/C )~ e g,

u
< 2/ |u(x)|/ H)idf%)ldydx < Iog + I
B3rya |z — yl

Iy

I /\

with

dy
Iy =2 / ok / W g
B3r/a ( & |$ - y|d+25

I ::2/ <|u(a:)| %dy) dx.
Bsnys B |

Using that dist(Bsg/4, Bf) = R/4 and integrating in polar coordinates, we deduce

dy o —1—-2s —2s
/BCHWSC e = CRT Vo € Buy,
R

and as a consequence
C
In < ﬂHUH%%BR)'

To estimate I22, we first observe that for all z € B3g/4 and y € Bf, we have

3R 3 1
R <|y—zo| < |z—z0|+|y—2| < TH?J—%\ < Z|y—$o|+|y—$| = Z|y—f€0| < ly—mx|

Utilizing now the Holder’s inequality, in conjunction with the Young’s inequality,
yields

Ju(y)| Ju(y)|
Iz < 2lfulli(5y)  sup / deywwnuuwﬂ e Ty — ol Y
R

TEB3R/4

2
¢ 2 d+2s |u(y)]
< gl + R4 { [ iy
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Writing |’7u‘?{s(33) = I;1 — I5, and combining the estimates above, we obtain

2
c lu(y)]
2 . < 2 CRd+2s / d
multr (g < R25||u||L2(BR) + Be, [y — 2ol Yy

The estimate (4.1) follows because
‘u|2H5(BR/2) S |77u‘%15(BR)7

due to (4.2a). This concludes the proof. |

5. Local energy estimates. In this section we derive error estimates in local
H?-seminorms. For that purpose, we first develop a local superapproximation theory
in fractional norms and afterward combine it with the techniques used in the derivation
of the Caccioppoli estimate (4.1).

Here we consider the usual nodal interpolation operator Ij,: Co(Q) — V},, which
satisfies for 1 <p < oo, j <k <2, k>%

(51) |U — Ih/U‘Wj,p(T) < Ch/k_j|v‘Wk,p(T) Yo e Wk’p(T)

5.1. Superapproximation. Superapproximation is an essential tool in local
energy finite element error estimates [33]. Below we adapt the ideas from [16], which
lead to improved superapproximation estimates applicable to a general class of meshes.
Similarly to [16], we require only shape-regularity.

For an arbitrary n € C?(Q) and vj, € Vj, it turns out that the function

(5.2) ¥ = n?u, — Ih(n2vh)

is smaller than expected in various norms, a property called superapproximation [33].
To see this, we let T € T;, be arbitrary and combine (5.1) with the fact that vy, is
linear on 7', to obtain the following LP-type superapproximation estimate for 1 in
(5.2) and any 1 <p < oo:
(5.3)

9]l Loy + hr[¥lwiery < Chpnon|wae(r)

< C12 (9l ¢y IV om) | o)
+ (Il 90l ey + 198 ) oo )
where we used that

9*(n*vn) = 0% (npun) + 20 O(pur) + 1 0 (1u,)
=% (nup) + 200 0(nvp) + 1 (8277 vp +20n th)
=20%n (nun) + 49 0(nur) — 2 () vy,
with 0 denoting any partial derivative. These estimates suffice for second-order elliptic
problems. However, for fractional problems we need to account for the fact that the

H?-norm is nonlocal. We embark on this endeavor now upon first examining stars St
and next interior balls

Bgr = B({L‘(),R)CQ, hgr ::Zr"%%\x hr, Agr:= {TEIThTﬂBR#(Z)}
R
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In this setting, 7 is a suitable localization function, namely, n € C*(Q) is the cut-off
function of (4.2):

(54) 0<n<1, =1 inBrp, n=0 inBj,, [V <CR™* (k>1).

LEMMA 5.1 (superapproximation in H*(St)). LetT € Tp, 0 < s < 1, and n
satisfy (5.4). For any v, € Vy, and ¢ given by (5.2), there is a constant C' depending
on shape-regularity of Ty such that

2—5
(5.5) V] £r5 (5) <C |77'Uh|H s(sp) T C—25 7 lvnllz2(s7)-

Proof. Since the norms involved in (5.3) are local and the size of St is proportional
to hr because Ty, is shape-regular, we realize that (5.3) is also valid in Sp. This leads
to the desired estimate for s = 0,1. For s € (0, 1), we apply space interpolation theory
to (5.3) over St to infer that

2—s 2—s

h
(5.6) [lms(sr) < C % IV (nor)llL2(sz) + C%llvhHLz(ST)'

We finally resort to (3.6), namely, |V (nun)||z2(sp) S R ' [nvnlme(sp), to finish the
proof. 0
LEMMA 5.2 (superapproximation in H*(Bg)). Let hgr satisfy 16 hg < R and let

0 < s<1. For any v, € Vy, and v given in (5.2), there exists a constant C depending
on the shape-regularity of Tp such that

(5.7) [VlEe(Br) < CR™®||vnllL2(Bg)-

Proof. If s = 0, 1, then the estimate follows immediately from (5.3), the additivity
of squares of integer-order L?-norms with respect to domain partitions, the inverse
inequality (3.6), and the fact that hR < R/16.

For s € (0,1), we make use of (3.2) to obtain
whn < 3 ([ [ OB e+ Sl )
H#(Bgr) = = S |x _ y‘d+25 h25 L

Let T € Ag and x € T be a generic point. We first point out that if x € B7R/87 then

the vertices y of T satisfy |zg — y| > %R — 7R > 3R and v () = 0 according to the
definition (5.2). We now let y € St and examine two mutually exclusive cases.

Ifzx e B?R/s, then y belongs to a triangle in Ag because the vertices of T are at
distance LR + R < R from zo, whence |z — y| < 2hg < §R. Therefore

7
|x—m0\§§R = |ly—wzo|<|z—x9|+|y—2|<R = SrCBg

On the other hand, if x € B¢ and y € T" € AR, then |z —y| < 2hp < %R and

TR/8
7 3
\$—$0|Z§R = |Z/—$0|Z|x—xo\—|y—x|21R.

Since y is allowed to be any element vertex on S, the latter implies that

(58) w|ST =0 VTGAR\A'”%/E;.
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We thus realize that the only T’s that matter in the sum above are those T' € A7g/s

C
Py < 3 (|w|zs<sT>+,ﬁ7§||¢||%z<T>).

TeA7Rrys

To estimate each term on the right-hand side we exploit the property that S C Bg
for all T € A7gr/s. For the first term, we also employ (5.6), together with (3.6) with
s =0 and (5.4). For the second term we resort to (5.3) for p = 2 together with (3.6)
for s = 0. In both cases, we get

C h2725 h472s
2 2 2
Z <|7/)|Hs(sT) + hgs”?/’Lz(T)) <C Z ( 22 + %)HU}L”L%ST)
TEA7R/s T TEA7Rys
< ﬁ”vhH%?(BRV
because hr < %R. The desired estimate follows immediately. O

The proof of Lemma 5.2 (superapproximation in H*(Bpg)) reveals that

=0.

c
TR/8

(5.9) ol

5.2. Local energy estimates. Recall that the finite element solution to (2.3)
satisfies (3.7), which gives the Galerkin orthogonality relation (3.8). In order to
localize such a relation, given a subdomain D C €2, we define V(D) = V,NH}(D) as
the space of continuous piecewise linear functions restricted to D that vanish on dD.
We will derive error estimates for a function u, € Vj, that satisfies the local Galerkin
orthogonality relation

(5.10) (u—tp,vp), =0 Yo, € Vi(Bg).
THEOREM 5.3 (local energy error estimate). Let u € H*(Q) and Uy € V), satisfy

(5.10). If 16 hg < R, then there exists a constant C depending on shape-regularity
such that for any vy, € Vy,

C
~ 12 2 2
lu— Uh|Hs(BR/2) < Clu—vnlgs(py) + R lw—vrll72(8,)

2
e
by, o~ wl

2
C o ’ ju(z) — in(z)]
— C R4+2s / = "R
+ R2s | Uh||L2(BR) + ( B |z — ao|dt2s z

Proof. To simplify the notation, we assume that Br = B(0, R) is centered at the
origin, i.e., we take g = 0. We point out that it is sufficient to establish

2
~ c s |u(z)]
|uh|§15(BR/z) < C(|u|%"*(BR) + ﬁ”uH%Q(BR) + R (/Bc |z[d+2s dx
(5.11) "

2
C -~ 2 d+2s |tup ()]
+ ﬁ”“hHLZ(BR) +CR /B}% |z|d+2s dx
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In fact, the assertion would then follow upon writing v — u, = (u — vp,) + (v — Up)
and using the fact that the local Galerkin orthogonality (5.10) holds with u — u— vy,
and uy, — up, — vy, and the triangle inequality. We argue along the lines of Lemma 4.1
(Caccioppoli estimate). We divide the proof into several steps.

Step 1: Decomposing the H*-seminorm. Let n € C*°(£2) be as in (5.4). Recalling
the definition (5.2) of ¢ = n*uy — In(n*un), whence I, (n*un) = 0 in Bgy g according
to the proof of Lemma 5.2, and using the local Galerkin orthogonality (5.10), we have

(@n,n*un) , = (U, In(n*tn)) , + (n, ¥),
(5.12) = (u, In(n*un)) , + (Un, ),
= (Uﬂ? uh) ( W (uhvw)s .

In the same fashion as in the proof of Lemma 4.1, we have

SO un(x)un(y)In(x) — ny))?
(tn, 772Uh) |77Uh|Hs(BR) / /B |$ —y|des dydzx
R

un(x) — un(y))n* (x)un(z)
+2/BR/0 dydzx.

|(E _ ‘d+2s

Invoking (5.12) we thus obtain the decomposition |771~Lh|?{s(BR) = 22:1 I, where

up(@)un (y) (=) — n(y))?
= /BR /BR Iw — y|tt2s Ay
(5.13) L—— 2/ / (un(x) — an(y))n® (x)un (x) dydz,
BR <

‘.% 7y|d+25

I3 = (U>7l2ah)s7 | I4 = (U,’(/J)S, -[5 = (Hhaw)s .

Step 2: Bounding I1 + I>. Proceeding exactly as in the proof of Lemma 4.1, we
obtain

2
C s |tn ()|
I + 1 < R2s [un 725,y + CRM? </ x|Ld+25 dx

B

Step 3: Bounding I3. Using the definition of the H®-inner product, we write
13 = I31 + 132 with

I = / / [u(x) = u@)] b (@)in(@) = P @E) ) 4

o = g5

e [ [ ) P ) P,

|$ _ y|d+2s

In light of the identity

n?(x)un (x) — n*(y)un(y) = n(x)n(@)in (@) — n(y)uny)] + n@)n() —ny)in ),
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we arrive at

g LG G RUIC P
Br /Br

|z — yl|dt2s
[u(z) — u(y)In(y) (=) — ny)lun(y)
+/BR/BR o — [t dydx

) — u(y)| [un(y)|
< |’u’|Hs BR)lnuh‘H $(BRr) + R/ /B ‘I* ‘d 1+2s dyd.’l?,

where in the last step we used that |n| < 1 and |n(z) —n(y)| < CR™!|z — y| according
o (5.4). Employing the Cauchy—Schwarz inequality, we estimate

|u(z) — u(y)] [un(y)]
dydx
/BR /BR |a:— |d 1+2s

|un (y )5
d dx / / _ PRI dud
</BR /BR |‘T - y|d+25 ) ( Br JBgr |x — y|d 2+25 Y

< CR'~™ *|ulms () [tnllL2(Br)-

In the last step above we used that the kernel |z — y|9~2+2% is integrable at {z = y},

and combined Fubini’s theorem with integration in polar coordinates, to deduce

dx 2R
S O/ d717d+2725d _ CR2725 v c BR-
/BR |z — y|=-2+2s o p p y

As a result, the Young’s inequality yields

~ C -
I31 < Celulfe gy + elntnlie 5y + ﬁ”uhH%?(BR)v

where € > 0 is a number to be chosen.
To deal with I35 we proceed similarly to the estimate of I5 in the proof of Lemma
4.1. Since [n| <1 and 7 =0 on Bgp ,, in view of (5.4), we thus get

- u
I3p < 2/ |un(z)| Ld_f%)‘dydz < Iso1 + I3o2
B3r/a B%, | |

with

1321 = 2/ "LL |Uh |/
Barya ( |.Z‘ _ y|d+2s
~ u
1322 = 2/ ‘uh(l‘”/ %d@/ dx.
Bsr/a Bg lz =y

Consequently, integrating in polar coordinates

dy X o c
/ mfc R/4p dp:R23 V& € Bagya

and using the Cauchy—Schwarz inequality leads to

Iso1 < CR™*|[un| 2By llull L2(3r) < CR™*unlZ2(p,) + CR™ullfz(5y)-
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By the Hélder’s inequality and the fact that f|y| < |z — y| for all € Bsp/4 and
y € B%, we have

_ u(y ~ uly
Is2o < |[unllL1(Bg) sup / |x|_(|3i+2sdy < CRd/?HUhHLZ(BR)/ || |§+)2|S dy
e Y B Y

£U€B3R/4

2
C -~ 2 d+2s lu(y)l
< R2s [unlz2(py) + CR /B% |y|d+25dy

Collecting the estimates above, we deduce

B c
I3 < S‘UUh‘?-IS(BR) + Ca|u|?-IS(BR) + ﬁ”uHQLQ(BR)

2
C 9 d+2s [u(y)|
+ RgsHuhHH(BR) +CR /B% |y|d+2sdy

Step 4: Bounding 14. Using that ¢ = 0 on B, yields the splitting Iy = 41 + I42

with
_ u@llé(E) — )],
Iy = /BR /BR \x—y|d+29 dydz,

e [, [ 1000

Employing (5.7) and the Young’s inequality, we obtain

(O
Ly < ulge )¢l (8r) < Clulie gy + ﬂ”uh‘liz(BR)'

We handle 45 similarly to Ise, namely, we use (5.9) to write Iyo < Iyo1 + I490 with

C C
Iyo1 =2 ——— | d
421 /Bm/g <|U ) ()] / yd+2s> TS oo R2s ||u||L2(BR R2s ||Uh||L2(BR)

and

u(y)|
i —2/ (e |/ D]y ) dr < Ol / dy
Bm/s< | PO L Tyl

2
C o~ 2 d+2s u(y)|
< arlnliny + or ([ ian)

in view of (5.7) with s = 0, and the fact that 1|y| < |z — y| for all z € Brg/s and
y € B% and argue as in Step 3. Combining the estimates above, we obtain

C c lu(y)|
2 2 2 d+2s
Iy < Clulfys (g + s 1ullz2sr) + gz 10nllz2(5,) + CR (/BR s

Step 5: Bounding Is. We will treat I5 differently from I, because it contains uy,
in place of u, which causes serious challenges on shape-regular meshes. Using that
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1/) =0 on B%, we Spllt 15 = 151 + I52 with

_ [an(z) — un W)l (z) — ¥, o
151.—/;12/81? dyd,

|x_y|d+25

L, Q/BR/L (@) = B W) ) g

|z — y|dt2s

Recalling Remark 3.4 (fractional inner product on subdomains), we decompose the
integral over Br x Bp into sums over (T'NBg) x (St NBr) and (TN BR) x (55N Bg)
for T € AR, and use the fact that fs; |z — y|~ 1 25dy < C’h;2S for every z € T, to
end up with I51 < ]511 + 1512 + 1513, where

I5iq = Z [Un| frs (571U o (S0 5

TeA7R/s
u= Y o [ @),
TeA7Rrys
Up(T
O
TeAR TNBRr CﬁBR x

Note that we have used (5.8) in the definition of Is;; and exploited (5.9) in the
definition of I512 to replace Ar by A7r/s. We next apply the local inverse inequality
(3.5) in conjunction with the superapproximation estimate (5.5) to deduce

Iiii= > [nlmeso [¥]ae(sr)

T€A7R/s
hl s 2—2s
<C Y Nnllease (ol uesr) + = linllzasn) )
T€A7R/s

< elnunlHe g + R72€S||ah”%2(BR)v

because 16 hy < R and ZTeAm/s |v|%{S(ST) < C(O‘)|’U|§{S(BR) for all v € H*(Bg), the
latter due to the uniformly bounded overlap of stars St in the shape-regular mesh
Tr. The upper bound for I512 employs instead the superapproximation estimate (5.3)
with p = 2, the inverse inequality (3.6), and Young’s inequality

Is1p <C Z 2 |Uh||L2(T)||1/’||L2(T)

TeMrRrys
hlfs h2725
<C Y lNnlzese (o= il aese) + e lnlliasn))
TeMrRrys

_ Ce \~
< el gy + o5 bl 250

The remaining term I513 is rather tricky and reveals the nonlocal nature of our
problem. Manipulating I513 is the most delicate and innovative part of the proof
relative to the second-order case [16, 33]. To keep notation short, we set

Tr:=TNBg, Stp:=257NBrgs, Ajg:={T"€Th:T' NSsx#0}.
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We exploit (5.9) to rewrite I513 as

Is13=2 Z Z / |tn (z |/ |d+25dyd$

TeAr T'EAG

<C Z Z lnllzr (o) 10N 22 (g AT, T7) ™ =2

TeAr T'EAG

where d(T,T") denotes the distance between elements T' and T'. We make use of the
superapproximation estimate (5.3) with p = 1 to infer that I3 < I}, + I25, where

_ _ o hZ,
Li=C Y > el ey, dT, 7))~ ZSR*TW
TeAr T'EAS

o~ o~ _— — 3 h2/
Bi=C Y > Nl V) oy, d(T, T) =42 =22

R
TeAr T'EAS L,

The first term I}, is problematic. We rewrite it again in integral form upon invok-
ing the meshsize function h(y), which is locally equivalent to the element meshsize,
namely, h(y) = hp for all y € T":

_ ) |un(y)l
I3 <CR™? / / y|d+as e dydr < Iy + 13T
TeEAR Tr

with

h(y)?
151113—03 ? Z / |un (2 |2/ _(y|)d+28dyd$,

TeEARr

— CR? |“h >|2d d
513 - Z y|d+23 xZ.

TeAr

The first term does not scale correctly unless the meshsize is quasi-uniform, a restric-
tion on T, that is too severe for us to assume. It is here that we resort to the Lipschitz
property (3.1) of h(y), valid for shape-regular 7, and integrate in polar coordinates
|z — y| = p, to compute for x € T € Ag

h(y)? h(z)? + Clz — y|?
/ (y)d+2sd <C ) L+2s d
8% n [z =yl S¢NBr lz =y
R 2 2
S C h(l’) +p pdfldp S CR272S’
d+2s
Chr P
whence
C
Ha g X [ @R < e,
TeAr /TR
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On the other hand, resorting to Lemma 3.2 (symmetry), we have

— u 2 €T
A%13<:(1R 2 EE:M/I/P |h | Xiiég)XBR( )dydx
TET yl
= CR™? Z / / |Uh )_|X12i§5 T)XBr(Y) dydz
TET, z =y
—CR?Y / )2|an (z)*x By (= )/ |xX_BR|(sz2dydx
TETh

where x g, denotes the characteristic function of Br. Since
R
XBx(Y) —1-2s —2s
/ mdygc p12dpSChT2 VSCET,
s¢, Y Chr
h(z) =~ hp for all z € T and 16 hy < R, we see that
By <CR? Y0 0 [ xog(@)fin(e)de < CR 3,
TeTh T
Collecting the preceding estimates for I35, we realize that
I35 < CR™*|[un| T2 -

We handle 12,5 similarly to I35, namely,

V(nu
foont s [ f SO

TEAR
SOEJT2 / / il d+(2s) dydz
Tean ! Tr /S5 |m—y|
2
// IV nztilgy)l dydz
TeAr’ TR — vl
Y)?|V (nun) (y)I°
< CR ([T, + Ce Z / / |x_y|d+28 dyda,

TeARr

since the first term is identical to I3{;. For the other term in the right-hand side, we
proceed exactly as with I3%;, thereby exploiting again Lemma 3.2 (symmetry) and
combining it with the inverse-type estimate (3.6), to obtain

Y)?V (nun) (y)? 28| ~ ~
/ / |$ [ dydz < C Z ha 2 |7’]Uh|?{1(T) <C |nuh|?qs(BR).
Tr T TETh

TeAR
Combining the estimates for I511, I512, I513 we deduce that
Isi < C-R™®|unll72(p,y + Ce [0nlFe (5,)-

It only remains to bound I53, which is exactly the same as I45 but with u replaced by
up. Hence, proceeding similarly to the estimate for I42, we readily arrive at

2
C 2 d+2s ‘ﬂh(y)‘
Is2 < R lanllz2(Bg) + CR /B}C% |yla+2s dy
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This together with the previous estimate yields

2
_ C. - s |[un (y)]
Is < Ceninliye (s + g @0l 22 () + OB (/B e
R

Step 6: Conclusion. Inserting the bounds proved in Steps 2 through 5 for I;,1 <
i <5 into (5.13), we deduce that

2
~ c s |u(2)]
|’I7uh|§{s(BR) S OE|U‘%IS(BR) + R2S HUH%Q(BR) + CRd+2 (/B x|d+25 dx

c
R

2
_ C: \~ s [un ()]
+ Celniinlfrs g + Fs 18l 7208, + R (/B jres 9
R

for all € > 0. We now set ¢ to be such that the factor multiplying |7717h|%15(BR) in the

right-hand side equals % and kick that term back to the left-hand side. This finally

implies the estimate (5.11) because |ﬂh|§{s(BR/2) < |77ah|§15(33)' d
We can derive explicit local H®-convergence rates by combining Theorem 5.3 with
the convergence estimates from section 3. We explore this next.

5.3. Applications to interior error estimates. Theorem 5.3 (local energy
error estimate) gives us new ways to examine the behavior of the numerical error and,
more importantly, check the sharpness of known estimates. Bounding the low-order
terms in Theorem 5.3 by global L?-terms, we get the following immediate consequence
of Theorem 5.3.

COROLLARY 5.4 (local error estimate). Let u € H*(Q) be the solution of (2.3)
and uyp, be the finite element solution of (3.7). Then there is a constant C' depending
on shape-reqularity such that

. 1 o
= 1oy < i (0= vnlremay + o5 0= vnll a2 + 5 e = wllzagon.

Proof. We apply Theorem 5.3 to w and wup, which clearly satisfies the local
Galerkin orthogonality condition (5.10). The proof then follows from the Cauchy—
Schwarz inequality and integration in polar coordinates

2
1
Ri+2s / w(z) d < RI+25 |12, / d
Be |z —:c0|d+25 € = ||wHLZ(Q) B, |1. _m0|2d+4s x

c
R

00 d—1

s P
< CR*? Hw||2L2(Q)/ de: ﬁHUJHQL?(Q)

R

for w = |u — vy| and w = |u — uy|. This concludes the proof. |

Since [Ju — Hpul|z2(0) < Cllu —upl|2(q) generically, Corollary 5.4 shows that the
interior H®-error consists of a local approximation error in the H*-norm and a global
L2-Galerkin error that accounts for pollution from the rest of the domain. We observe
that this estimate is similar to local estimates for second-order elliptic problems [16,
33], except that the L2-terms are now global. This is a mild manifestation of the
nonlocal nature of (1.1). We examine below the extreme cases of quasi-uniform and
graded meshes.
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Since the polynomial degree of V}, is 1, no error estimate can be of order larger
than 2 and exploit regularity of u beyond H? regardless of mesh structure. With
this in mind, we let f € H"(Q) for 0 < r < 2 — 2s and assume it leads to the local

leosjr—regularity of u and the local approximation error
(5.14) inf |u—vplps(gr) < CP° | fllur)-
VR EV)

We remark that this regularity assumption is plausible and known to be true for
r < 1—s (see, for example, [22], and [6] for a proof in the case r = 0) and that
if Q is smooth and f € W"?(Q) for some p > d/s, then u € W,I>*P(Q) [28]. In
order to compare with the global H*-estimate of Theorem 3.5 (global energy-norm
convergence rates), we consider below the best scenario of maximal interior regularity,
namely, the case where the rate s + r in (5.14) is sufficiently large s 4+ r > 1, so that
the local H*-rate is dictated by the global L2-error.

Quasi-uniform meshes. Combining (5.14) with the estimates of Proposition
3.8 (convergence rates in L%({2) for quasi-uniform meshes) and Lemma 3.9 (further
regularity) of section 3.3, we obtain

2 2K L. .

lu — Uh|Hs(BR/2) < Chs+r||f||H"'(Q) + {gZaleogM 2|;|<f||L2(Q) for €2 Lipschitz,
[log h|**|| f|| (@)  for £ smooth,

where o = min{s, %}, ~ = min{s + r, %}, and if € is Lipschitz, then k = £ for s # %
and k = £+ 1 for s = 3 (£ is the constant in (2.6)), whereas if Q is smooth, then
k=1fors+# % and k =2 for s = 2. We summarize these estimates in Table 1 (up to
logarithmic factors); we remark that the rates therein for Lipschitz domains do not
require the exterior ball condition. Compared with Theorem 3.5 (global energy-norm
convergence rates)

(5.15) lu = unll 7o gy < CH™ 3 log A% | ]2,

we see that all interior H®-rates of Table 1 are improvements over the global rate of
(5.15). For a more regular right-hand side f € H"(Q) with s +r > % and in smooth
domains, we observe an improvement over the global rate dictated by Lemma 3.9,

1 K

TABLE 1
Comparison of convergence rates (up to logarithmic factors) between interior |u — Uh|HS(BR/2)
and global |u — up|gs(q) error estimates on quasi-uniform meshes for f € H"(Q) with s +r > 1.

The interior estimates exhibit an improvement h™15:1/2} regardless of the regularity of §2.

Local rates Global rates
Q-smooth | Q-Lipschitz Q-smooth | Q-Lipschitz
s < % hs+% hQS h% hs
s>1 h h hz hz

Graded meshes. Section 3 shows that graded meshes satisfying (3.12) are able
to compensate for the singular boundary layer for Lipschitz domains satisfying the
exterior ball condition and smooth right-hand sides. Even though the next discussion
is valid for any dimension d, for the sake of clarity and because our numerical exper-
iments in section 6 are carried out for d = 2, we shall focus on this case. Moreover,
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we assume s # %, for otherwise additional logarithmic factors arise in our estimates
below. We set 4 = 2 and 8 = 1 — s in Theorem 3.5 (global energy-norm conver-
gence rates) and Proposition 3.10 (convergence rates in L?({) for graded meshes) to
establish the global rates of convergence in H*(€2) and L2(£)

(5.16) flu— Uth[s(Q) < Chllogh| ||f||clfs(§)7

(5.17) lu = unl| 2@y < CH™E32  log BIEFH||f o

¢ is the constant in (2.6). In contrast, Theorem 5.3 (local energy error estimate) in
conjunction with (5.17) for f € C*=*(Q) N H"(Q), 0 < r < 2 — 2s, gives the local
H?*-estimate

= tunl i3y < Bl + O3 log A oy

The condition r < 2 —2s above is related to the use of piecewise linear finite elements.
We now assume that s +r = 2 — s to write

u — Uh|HS(BR/2) < Chmin{1+s,2fs}| log h|5+1 (”chlfs(ﬁ) + ||f||H2723(Q)).

Comparing with the global H*-error estimate in (5.16), we thus see an overall im-
provement rate h™{51=s} We summarize these results in Table 2.

TABLE 2
Comparison of order of convergence (up to logarithmic factors) between interior |u —
uh‘HS(BR/Q) and global |u — uthS(Q> error estimates on graded meshes with parameter p = 2

for f € H2725(Q) N CY=5(Q). The interior estimates exhibit an improvement rate h™nis:1=s}t for
Q either smooth or Lipschitz with an exterior ball condition (e.b.c.).

Q-smooth or Lipschitz e.b.c.
Local rates Global rates
1 hst1 h
5> % h?=s h

We conclude with a comparison between local error rates on quasi-uniform and
graded meshes for smooth data (domain and right-hand side). Tables 1 and 2 show
that graded meshes yield an improvement of order h% for all s < %, whereas the
improvement is of order h'=* for s > % Therefore, such an improvement is valid for
all 0 < s < 1 but becomes less significant in the limit s — 1 of classical diffusion.

6. Numerical experiments. In this section we present some numerical exper-
iments in a two-dimensional domain that illustrate the sharpness of our theoretical
estimates. These experiments were performed with the aid of the code documented
in [1]; we also refer to [1] for details on the implementation. Some discussion about
the construction of graded meshes satisfying (3.12) can be found in [2].

In all of the experiments below we set Q = B(0,1) C R? and f = 1, so that
we have an explicit solution at hand (cf. Example 2.2). This corresponds to smooth
data (both domain and right-hand side) and the discussion of section 5.3 applies. We
computed errors with respect to the dimension N of the finite element spaces Vj,
because N = #Dofs is a measure of complexity. In view of (3.13) with u = 2, we
always have the relation N ~ h~2 for both quasi-uniform and graded meshes, the
latter up to logarithmic terms. Therefore, the rates of convergence of section 5.3 can
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be expressed in terms of N as follows:
(6.1) hP ~ N=P/2

for appropriate exponents 5 > 0. We next explore computationally our error estimates
in section 3.3 for both the global L?-norm and local H*-seminorm.

6.1. Global L2-norm error estimates. We start with quasi-uniform meshes
and s = 0.5,0.6,0.7,0.8,0.9. Our findings are summarized in Figure 1: in all cases, we
see good agreement with the linear convergence rate 8 = 1 predicted by Proposition
3.8 for s > 1/2, or equivalently N~1/2 according to (6.1). Since the exact solution
satisfies u € ﬂs>0f15+1/2’5(§2), we infer that the L2-interpolation error obeys the
inequality ||u — Ipul|z2) < Ch**t1/2|logh|. Interestingly, the finite element error
lu — unllr2@) < Ch|logh|? is of lower order for s > 1/2, which turns out to be
consistent with (3.27).

s=09

5.5 —\\ -- (#Do"s)'“‘s

L2-error
&
o
T

F1G. 1. Global L?-errors for the finite element solution to Example 2.2 over quasi-uniform
meshes with s = 0.5,0.6,0.7,0.8,0.9. The decay rate N_l/z, which is of lower order than the
interpolation error, is consistent with (3.22) for s > 1/2.

We next consider approximations using graded meshes that satisfy (3.12) with
u = 2. By Proposition 3.10, we expect a convergence rate of order N~ ™in{l/2+s/2,3/4}
according to (6.1). In Figure 2 we display the computational rates of convergence for
s =0.2,0.4,0.6,0.8, which are in good agreement with theory.

6.2. Local H®-norm error estimates. We next explore the sharpness of our
local error estimates derived in section 5 and summarized in Tables 1 and 2. More
precisely, we find computational rates of convergence in H*(B(0,0.3)), namely, the
ball of radius 0.3 centered at the origin, upon evaluating |[Inu — un|fs(B(0,0.3)) via the
same techniques used when building the stiffness matrix. This is because

[u — un| g (B0,0.3)) < |4 — Inu|m=(B(0,0.3)) + Int — Un|m+(B(0,0.3))

and the first term in the right-hand side above is of higher order than the second
for the locally smooth function u of (2.7). We display the errors in H*(B(0,0.3))
for s = 0.2,0.4,0.6,0.8 in Figures 3 and 4 for quasi-uniform and graded meshes,
respectively. We observe good agreement with the theoretical rates N~ min{3+5.3} of
Table 1 and N~ ™in{z+5:1=5} of Table 2 in each case.

Finally, we emphasize that, according to our discussion in section 3.2, the global
He-errors decay with rate N~1/4 (for uniform meshes) and N~2 (for graded meshes):;
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——-s5=02
- - (#Dofs) *®
—-5=04
- - (#Dofs)*7
—-5=06
——s5=08
- - (#Dofs) *7®

Lz-error

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8
# Dofs

F1G. 2. Global L?-errors for the finite element solution to Example 2.2 over graded meshes with
p=2and s = 0.2,0.4,0.6,0.8. The computational decay rates are consistent with the theoretical
prediction N—in{l/2+s/2,3/4} of (3.25).

——-s=0.2
Al - - (#Dofs) 035
—5=04
__________________________________________________ - - (#Dofs) %4
——s=06
25 - - (#Dofs)*®
——s5=0.8
s %
§ | T T
m
I -3.5f
41 \
e
5L
I L L L L . L L
6.75 6.8 6.85 6.9 6.95 7 7.05 7.

F1G. 3. Errors in H®(B(0,0.3)) for the finite element solution to Ezample 2.2 over quasi-
uniform meshes with s = 0.2,0.4,0.6,0.8. Computational rates are consistent with the theoretical

rates N~ min{1+3.3} of Table 1.

——s5=0.2
- = (# Dofs)*®
——s=04
451 ——5=06
- - (#Dofs)®”
__________ ——s=08
5 | T el
550
k-
5.5~
6L
-6.5 L L L I L I L L L
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8
# Dofs

Fic. 4. Errors in H®(B(0,0.3)) for the finite element solution to Example 2.2 over graded
uniform meshes with p = 2 and s = 0.2,0.4,0.6,0.8. Computational rates are consistent with the

theoretical rates N~ ™in{3+5.1-3} of Table 2.
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see (3.24) and (3.17). It can be seen from our numerical experiments that in all cases
the finite element solutions converge with higher order in H*(B(0,0.3)). Therefore,
these experiments illustrate that the finite element error is effectively concentrated
around 0f).
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