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Abstract: This article shows that for a large class of discrete periodic Schrödinger op-
erators, most wavefunctions resemble Bloch states. More precisely, we prove quantum
ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This
means that most eigenfunctions of H on large finite periodic graphs are equidistributed
in some sense, hence delocalized. Our results cover the adjacency matrix on Z

d , the
triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger
operators on Zd . The theorem applies more generally to any periodic Schrödinger oper-
ator satisfying an assumption on the Floquet eigenvalues.

1. Introduction

We consider a sequence of finite graphs �N that converges (in the sense of Benjamini-
Schramm) to some infinite graph�. If we take the Schrödinger operator HN = AN +QN
on �2(�N ), then quantum ergodicity is a spatial delocalization criterion stating that, in
a weak sense, most eigenvectors of HN are equidistributed on the graph �N .

The terminology comes from [10,20,24], where the ergodicity of the geodesic flow
on a compact manifold M of unit volume (meaning the classical particle’s free motion
covers the manifold uniformly) is shown to imply a quantum counterpart of ergodicity,
namely, the Laplacian wavefunctions ψλ are equally likely to be anywhere on M (more
precisely |ψλ(x)|2 dVol(x) approaches the uniformmeasure dVol(x), when λ gets large).
In that setting, quantum ergodicity is regarded as a quantum chaos phenomenon. In the
large graph limit however, quantum ergodicity should be regarded instead as providing
rich information on the spectral structure of the limiting operator H� on the infinite graph.
As such, it is important to control all eigenbases of the approximating operators HN ,
or at least generic eigenbases. In fact, periodic operators always have “one” delocalized
basis, namely Bloch states, but this occurs even in scenarios of strong localization for
H� .
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Quantum ergodicity for large regular graphs that are spectral expanders with few
cycles was first proved in [3], for the adjacency matrix HN = AN . In this case the
limiting graph � is the regular tree. Further results established that this is true in the
more general setting where the limiting graph is an infinite tree which is not necessarily
regular and HN = AN + QN , assuming H� has absolutely continuous spectrum [4].
This includes regimes of the Andersonmodel [5], as well as “periodic trees with periodic
potentials,” more precisely universal covers of finite graphs [6].

Note that all of these results require the Benjamini-Schramm limit to be a tree. Proofs
of quantum ergodicity, such as [3,8] and the four proofs in [1], fundamentally use the
orthogonality of different powers of the non-backtracking walk or a similar operator on
these trees, and the contribution of cycles is treated as an error term that can be shown to
be negligible. This tree condition is also a requirement for the quantum ergodicity result
in quantum graphs [2].

Along with this line of work, the first author of the present paper gave examples
showing that quantum ergodicity does not necessarily hold if one only requires the
graphs to be expanders, i.e. if the requirement of being tree-like is removed [16]. This
is still the case if we have the requirement that the Benjamini Schramm limit H� has
absolutely continuous spectrum. Nevertheless, it remained open whether more specific
families of graphs satisfy quantum ergodicity.

In this paper we show that quantum ergodicity is in fact satisfied for a large family of
non-tree graphs �, namely graphs which are periodic with respect to a basis of Zd . The
simplest example is the adjacency matrix on Z

d , but the results apply to large classes
of Schrödinger operators with periodic potentials on various lattices. These graphs do
not satisfy the expansion or tree properties of previous proofs. Therefore we need new,
different techniques to solve the problem in this case. To our knowledge, Theorems 1.1
and 1.2 are the first positive results establishing quantum ergodicity for a general family
of graphs � having cycles.

By virtue of their homogeneity, it is quite intuitive to expect delocalization on peri-
odic lattices. Indeed, the spectrum is generally absolutely continuous, though flat bands
(infinitely degenerate eigenvalues) can appear [15]. The dynamics are also ballistic [7],
meaning the waves spread at maximum speed with time. Here we show that from a
spatial point of view, the behavior is quite rich:

• There is a simple family of periodic graphs which is quantum ergodic, i.e. the proba-
bility measure

∑
x∈�N

|ψ(N )
u (x)|2δx is close to the uniform measure 1

|�N |
∑

x∈�N
δx ,

for most u ∈ [N ]. See Theorem 1.1. Here (ψ
(N )
1 , . . . , ψ

(N )
N ) is any orthonormal

eigenbasis.
• In another class of periodic Schrödinger operators, we have partial quantum er-
godicity, in the sense that we no longer have |ψ(N )

u (x)|2 ≈ 1
|�N | , but the sum of

|ψ(N )
u (x)|2 over any periodic block V f +na is approximately the same (Theorem 1.2,

Proposition 1.4). This means that ψ
(N )
u does not favor any particular block, but the

mass of ψ
(N )
u may not be uniform within the block.

• In other classes of periodic graphs, quantum ergodicity fails completely (Sects. 3.3
and 3.4).

Examples of these three types are A on Z
d , on an infinite cylinder (Fig. 6), and on the

graph in Fig. 4, respectively.
If we focus attention to Z

d , the adjacency matrix on a sub-cube �N of sidelength
N with periodic boundary conditions has the eigenbasis e(N )

r (k) = 1
Nd/2 e

2π ik·r/N . We
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Fig. 1. 1d crystals. Left: Q = 0, V f = {(0, 0)}, ν = 1, a1 = (1, 0). Center: Q = {Q1, Q2}, V f = {0, 1},
ν = 2, a1 = 2e1 = 2. Right: Q = 0, V f = {(0, 0), (0.5, 1), (0.5,−1)}, ν = 3, a1 = (1, 0)

note that |e(N )
r (k)|2 = 1

Nd is perfectly uniformly distributed on �N . Similarly, for a
periodic Schrödinger operator H on a periodic lattice, the Bloch theorem ensures that
for any λ ∈ σ(HN ), we can find an eigenfunction 
λ such that |
λ(x)|2 is a periodic
function (see Sect. 5.2 for a discussion and a proof of this result in our context). In this
paper, we study whether such eigenvector delocalization is satisfied for any eigenbasis
of the Schrödinger operator. The question is highly nontrivial as the multiplicity m

λ
(N )
k

of eigenvalues can grow with N . For example, for � = Z
2 and N even, the multiplicity

of λ
(N )
k = 0 is the set of all (k1, k2) such that 2 cos

2πk1
N + 2 cos 2πk2

N = 0. This contains
all k2 = N

2 ± k1, where k1 = 0, . . . , N
2 − 1 is arbitrary. So here, m

λ
(N )
k

� N .

1.1. Main results. Let� be a connected, locally finite graph in someEuclidean space.We
assume� is invariant under translations of some linearly independent vectors a1, . . . , ad .

If we let

V f = {v1, . . . , vν}
be a fundamental cell containing ν vertices, then the graph � consists of periodic
V f blocks of size ν. More precisely, if for x = (x1, . . . , xd) ∈ R

d we denote xa =∑d
i=1 xiai , then

V (�) = Z
d
a + V f , (1.1)

whereZd
a = {na : n ∈ Z

d}. By “periodic blocks” we will mean sets of the form V f +na.
Any u ∈ V (�) takes the form u = �u�a + {u}a, where �u�a ∈ Z

d
a and {u}a ∈ V f

represent the integer and fractional parts of u, respectively.
In the case of the simple lattice � = Z

d we may take a j = e j the standard basis and
V f = {0}. In general one can view (1.1) as expressing the vertex set V (�) as ν copies
of the sub-lattices Zd

a, shifted by vertices vn ∈ V f .
Having fixed V f , we consider a Schrödinger operator H = A + Q on �, where A is

the adjacency matrix and Q satisfies

Q(vn + ai ) = Q(vn)

for vn ∈ V f and i = 1, . . . , d. The potential Q is thus periodic with at most ν values.
Let �N = ∪n∈[[0,N−1]]d (V f + na) and HN be the Schrödinger operator defined anal-

ogously on �N , considered with periodic boundary conditions : if ψ ∈ �2(�N ), then
ψ(v ± Na j ) := ψ(v). Our first result is the following.

Theorem 1.1 (Case ν = 1). Let ψ(N )
u be an orthonormal basis of �2(�N ) consisting of

eigenvectors of HN . Suppose the fundamental cell has only one vertex, V f = {o}. Then
for any observable a = aN : �N → C such that |aN (v)| ≤ 1 for all v and N, we have

lim
N→∞

1

|�N |
∑

u∈�N

∣
∣
∣〈ψ(N )

u , aψ(N )
u 〉 − 〈a〉

∣
∣
∣
2 = 0, (1.2)
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where 〈ψ(N )
u , aψ

(N )
u 〉 = ∑

v∈�N

|ψ(N )
u (v)|2a(v) and 〈a〉 = 1

|�N |
∑

v∈�N

a(v) is the uniform

average.

This means that in a weak sense, we have |ψ(N )
u (v)|2 ≈ 1

|�N | when N is large

enough. That is, the eigenvectors ψ
(N )
u are uniformly distributed. This theorem applies

to the adjacency matrix on Zd and the triangular lattice, see Sect. 4.1 for more graphs.
This statement is generally false for higher ν, quantum ergodicity can be completely

violated for ν = 2 without further assumptions, see Sect. 3.4.1. For general ν, we make
an assumption on the Floquet eigenvalues and relax the conclusion. Let b1, . . . , bd be
the dual basis, satisfying ai · b j = 2πδi, j . We similarly denote θb = ∑d

i=1 θibi . Then
we have:

Theorem 1.2 (General case). Letψ(N )
u be an orthonormal basis of �2(�N ) consisting of

eigenvectors of HN . Let H(θb) be the ν×ν matrix arising in the Floquet decomposition,
with eigenvalues E1(θb), . . . , Eν(θb). Suppose that for any s, w ∈ {1, . . . , ν}, we have

lim
N→∞ sup

m∈Ld
N

m �=0

#{r ∈ L
d
N : Es(

rb+mb
N )− Ew(

rb
N ) = 0}

Nd
= 0, (1.3)

where LN = {0, 1, . . . , N − 1}. Then,
(i) For any observable aN : �N → C such that |aN (v)| ≤ 1 for all v and N, we have

lim
N→∞

1

|�N |
∑

u∈�N

∣
∣
∣〈ψ(N )

u , aψ(N )
u 〉 − 〈ψ(N )

u ,OpN(a)ψ(N )
u 〉

∣
∣
∣
2 = 0, (1.4)

where OpN(a) is an explicit operator (see (2.12)).
If a = aN is real-valued, we have

min
vq∈V f

〈a(· + vq)〉 ≤ 〈ψ(N )
u ,OpN(a)ψ(N )

u 〉 ≤ max
vq∈V f

〈a(· + vq)〉, (1.5)

where 〈a(· + vq)〉 = 1
Nd

∑
k∈Ld

N
a(ka + vq).

(ii) If a is locally constant, in the sense that it takes a constant value on each periodic
block, a(vn + ka) = a(v1 + ka) ∀n, then

〈ψ(N )
u ,OpN(a)ψ(N )

u 〉 = 〈a〉 :=
1

|�N |
∑

v∈�N

a(v). (1.6)

Specifically, this is true if ν = 1.

Point (ii) holds more generally if 〈a(· + vq)〉 = 〈a(· + v1)〉 ∀q, i.e. the average of a
over each sublattice Ld

N + vq of �N is the same.
This theorem applies, for example, to the adjacency matrix on the honeycomb lattice

(Sect. 4.2) and to periodic Schrödinger operators on Z (Sect. 4.4). As we discuss later,
it actually applies to periodic operators on Zd for all d, this relies on a separate work.

Assumption (1.3) says in particular that the Floquet eigenvalues should not have a
short period and should not “hesitate” while tracing the band, going back and forth too
often at exactly the same speed. More precisely, for any nonzero α and any s, the set

Aα,s := {θ ∈ [0, 1)d : Es(θb + αb) = Es(θb)} (1.7)
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should be of zero measure. For example, for d = 1, we should not have Es(θb) =
cos 4πθ , as then for α = 1

2 , we get Es(θb + αb) = Es(θb) for all θ . Assumption (1.3)
can only hold if there is no point spectrum: if a flat band exists, it corresponds to a
constant Es for some s, so {r ∈ L

d
N : Es(

rb+mb
N )− Es(

rb
N ) = 0} = L

d
N , violating (1.3).

In order to prove Theorem 1.2, we average the test function a by considering

1

T

∫ T

0
eit HN ae−it HN dt. (1.8)

In [1], this is done for the treelike case by considering limT→∞ limN→∞ of (1.8).
However, local analysis of this limit becomes difficult in the case that there are many
cycles. Instead, in our case,we take the time limit first, taking advantage of the periodicity
of our operator. We show that in the limit T →∞, (1.8) converges to 0 outside of the
subspace of phase space given on the left hand side of 1.3.

In an earlier version of themanuscript we left as an open problemwhether assumption
(1.3) is satisfied for Schrödinger operators onZd with a periodic potential. This has since
been solved byWencaiLiu [23] using algebraic and analytic properties ofBloch varieties.
See Sect. 5.3 for background and further criteria. In particular, [23] and Theorem 1.2
imply the following.

Corollary 1.3. Schrödinger operators with periodic potentials on the triangular lattice
and on Z

d are quantum ergodic for any d.

Theorem 1.1 only applies to the adjacency matrix on regular graphs of even degree
(as follows from the assumption ν = 1, see Sect. 3.1). The following proposition uses
Theorem 1.2 to provide concrete applications to non-regular graphs endowed with a
periodic potential.

Proposition 1.4 (Cartesian products). Suppose that� is aZd
a-periodic graphwith ν = 1,

and let GF be any finite graph, endowed with some potential Q. Then the Cartesian
product � �GF is a periodic graph with fundamental cell V f = GF and periodic
potential Q copied across the GF layers. Moreover, assumption (1.3) is satisfied, so
(1.4) holds true.

If for � �GF, the orthonormal basis is of the form ψn, j = φn ⊗ w j , where (φn) is
an orthonormal eigenbasis for H�N , and (w j ) is an orthonormal eigenbasis for HGF ,
then

〈ψn, j ,OpN(a)ψn, j 〉 =
∑

vq∈GF

〈a(· + vq)〉|w j (vq)|2, (1.9)

where 〈a(· + vq)〉 = 1
Nd

∑
k∈Ld

N
a(ka + vq).

Theorem 1.2(ii) shows that for most u, |ψ(N )
u |2 behaves as a periodic function across

theblocks, but the distributionof itsmasswithin eachblockmaybenon-uniform.Loosely
speaking, one has the picture thatmost eigenfunctions behave likeBloch functions.More
precisely, for most u,

∑
vq∈V f

|ψ(N )
u (ka + vq)|2 ≈ 1

Nd , for any k.
On the other hand, (1.9) shows that the mass distribution within each block is not uni-

versal and can depend on the eigenbasis in general (see Sect. 4.5 for a concrete example).
Such basis-dependence never appeared in the tree models of [1,4]. There, the theorems

established that |ψ(N )
u (v)|2 ≈ Im g̃

λ j
N (ṽ,ṽ)

∑
v∈�N

Im g̃
λ j
N (ṽ,ṽ)

, where g̃zN is the Green’s function of the
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universal cover of �N . In particular, it is certainly independent of ψ
(N )
λ j

. Here we have
a different phenomenon which can be regarded as partial quantum ergodicity.

Such partial quantum ergodicity can be violated even in dimension one :

Proposition 1.5. There exist Z-periodic graphs which violate (1.4).

Wegive examples in Sects. 3.3 and 3.4. These graphs have point spectrum and (1.3) is
not satisfied. It is natural to ask if assumption (1.3) can be dropped if we simply assume
that H� has pure ac spectrum. We construct a counterexample in Sect. 3.4:

Proposition 1.6. There exist periodic graphs with purely absolutely continuous spec-
trum which are not quantum ergodic.

Remark 1.7. Instead of considering the whole spectrum in Theorem 1.2, we can instead
suppose that (1.3) is satisfied in some interval I , then the conclusion (1.4) now holds
if we average over λ

(N )
u ∈ I instead of u ∈ �N . This is similar to what is done in [4]

for the high girth regime. In other words, if part of the spectrum is well-behaved, then
the corresponding eigenfunctions are quantum ergodic. This is helpful for example for
graphs having flat bands but satisfying (1.3) away from the degenerate eigenvalue. Then
our theorem applies to these regions. For the technical details, see Remark 2.5.

This remark applies in particular to Schrödinger operators with periodic potentials
on the Lieb lattice and decorated lattice, recently studied in [12]. These models have
flat bands in general. The characteristic polynomial of the Floquet matrix thus takes
the form p(z; λ) = s(λ)q(z; λ), where z j = e2π iθ j , s(λ) = ∏m

j=1(λ − λ j ) and λ j are
all the flat bands. The results of [12] show that for each fixed λ, q is irreducible as a
Laurent polynomial in z, except for finitely many λ. The argument in [22, Th. 2.4] then
implies that, after removing the flat bands, the Bloch variety is irreducible. This allows to
verify the assumptions of [23] to conclude that quantum ergodicity holds in any spectral
interval avoiding the flat bands.

Remark 1.8 (Convergence rate). The proof shows that the variance on the LHS of (1.4)
is essentially bounded from above by the fraction in (1.3). For ν = 1, we bound the
latter by C

N in Sect. 3.1, so the speed of convergence is at least 1
N in Theorem 1.1, which

is significantly faster than the logarithmic rate 1
log N of the tree case [1,3,4].

Remark 1.9. The fact that a perfectly homogeneous graph like the one in Fig. 4 supports
localized eigenfunctions is quite counterintuitive. This topic is further analyzed in [18].
Based on physics literature, it is expected that such “flat bands” disappear after adding
a generic periodic potential/edge weight and the spectrum becomes purely absolutely
continuous. In this spirit, we show that the graph in Fig. 4 becomes quantum ergodic
once we add any potential

(Q1
Q2

)
with Q1 �= Q2, copied across the layers.

1.2. Stronger statements. The following two paragraphs illustrate that one cannot obtain
much stronger results than the ones we provide.

1.2.1. Quantum unique ergodicity In [3], it was suggested to check whether

lim
N→∞ sup

1≤ j≤|�N |
|〈ψ(N )

j , aNψ
(N )
j 〉 − 〈aN 〉| = 0 (1.10)

as an indication of quantum unique ergodicity (QUE). This would mean that we can
avoid the Cesàro average in (1.2). This criterion is too strong however, at least in our
context, in fact it is already violated for the adjacency matrix on Zd . See Sect. 5.1.
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1.2.2. Eigenvector correlators In [1], instead of taking observables aN (n) which are
functions on�N , a quantum ergodicity theoremwas provedmore generally for bandma-
trix observables, that is, KN (n,m), where KN (n,m) = 0 if d(n,m) > R. It was shown
(in Cesàro sense) that 〈ψ(N )

j , KNψ
(N )
j 〉 ≈ 〈KN 〉λ j , where 〈KN 〉λ = 1

|�N |
∑

n,m KN

(n,m)�λ(d(x, y)) and �λ is the spherical function of the tree; it has an explicit form in

terms of Chebyshev polynomials. Since 〈ψ(N )
j , KNψ

(N )
j 〉 =

∑
n,m KN (n,m)ψ

(N )
j (n)

ψ
(N )
j (m), this shows that the eigenfunction correlator ψ

(N )
j (n)ψ

(N )
j (m) ≈ 1

|�N |�λ(d

(n,m)), a universal quantity; this generalizes the statement that |ψ(N )
j (n)|2 ≈ 1

|�N | .

This stronger statement fails in our case;ψ(N )
j (n)ψ

(N )
j (m) is not universal, it depends

on the basis, even for AZd . See Sect. 5.1.
Still, our proof can be generalized to matrix observables KN . If ν = 1, we show that

1

Nd

∑

j∈Ld
N

∣
∣〈ψ(N )

j , Kψ
(N )
j 〉 − 〈K 〉ψ(N )

j

∣
∣2 → 0,

where 〈K 〉ψ = 1
Nd

∑
n∈Ld

N

∑
|τ |≤R K (na, na + τa)〈ψ,ψ(· + τa)〉, and R is the width of

the band matrix. So in a weak sense,ψ(N )
j (na)ψ

(N )
j (na + τa) ≈ 1

Nd 〈ψ(N )
j , ψ

(N )
j (·+ τa)〉

for any n ∈ Z
d .

1.3. Structure of the paper. We prove the general Theorem 1.2 in Sect. 2. In Sect. 3.1,
we prove that (1.3) is satisfied for ν = 1, thereby proving Theorem 1.1. We then discuss
Cartesian products in Sect. 3.2 and prove Proposition 1.4. In Sects. 3.3 and 3.4, we dis-
cuss graph decorations, tensor products and strong products of graphs, giving examples
of graphs violating quantum ergodicity. In Sect. 4, we give more specific examples sat-
isfying quantum ergodicity. Finally in Sect. 5, we discuss complementary results such
as quantum unique ergodicity, eigenvector correlators, the Bloch theorem, as well as
further criteria for checking (1.3) based on Bloch varieties considerations.

2. Proof of the General Criterion

Here we prove Theorem 1.2. The argument is very different than the proof for trees
[1,3,4]. We will use some ideas from [14] where ergodic averages for the continuous
Laplacian −� on the torus Rd/Zd are studied in the high frequency limit.

Throughout, N � 1 is larger than the maximum adjacency range.

2.1. Step 1. Since e−it HN ψ
(N )
u = e−itλ

(N )
u ψ

(N )
u , 〈ψ(N )

u , eit HN ae−it HN ψ
(N )
u 〉 = 〈ψ(N )

u ,

aψ
(N )
u 〉 and we have

〈ψ(N )
u , aψ(N )

u 〉 =
〈
ψ(N )
u ,

1

T

∫ T

0
eit HN ae−it HN dtψ(N )

u

〉
. (2.1)

In the spirit of Egorov’s theorem, we show the sandwich eit HN ae−it HN can be ex-
pressed as a kind of phase space operator.
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Let Ld
N = [[0, N − 1]]d and define U : �2(�N )→⊕ j∈Ld

N
�2(V f ) by

(Uψ) j (vn) = 1

Nd/2

∑

k∈Ld
N

e−
i jb
N ·kaψ(vn + ka). (2.2)

Lemma 2.1. The operator U is unitary and

UHNU
−1 = ⊕

j∈Ld
N

H
( jb
N

)
, (2.3)

where H(θb) acts on �2(V f ) by

H(θb) f (vn) =
∑

u∼vn

eiθb·�u�a f ({u}a) + Q(vn) f (vn). (2.4)

The sum is over the vertices u connected to vn in the whole graph � (not just V f )
and we have u = �u�a + {u}a, with �u�a ∈ Z

d
a and {u}a ∈ V f , cf. (1.1).

Proof. We have ‖Uψ‖2 = ‖ψ‖2 (expand and use∑ j∈Ld
N
e
2π i j ·(k′−k)

N = Ndδk,k′ and ka ·
jb = 2πk· j).Next,U−1((g j ) j∈Ld

N

) = ψ ,whereψ(ka+vn) = 1
Nd/2

∑
r∈Ld

N
gr (vn)eika·

rb
N .

In fact, ( 1
Nd/2 e

−ika· jb/N ) j∈Ld
N
is an orthonormal basis of �2(Ld

N ). So for such ψ we have

(Uψ) j (vn) = 1
Nd

∑
k,r∈Ld

N
e−

i jb
N ·kagr (vn)eika·

rb
N =∑k∈Ld

N
〈 1
Nd/2 e

−2π ik
N ·•, g•(vn)〉�2(Ld

N )

( 1
Nd/2 e

− i jb
N ·ka) = g j (vn). This proves unitarity.

Next, for ψ ∈ D(HN ), UHNψ = U ANψ + UQψ , with UQψ = QUψ since
(Qψ)(vn + ka) = Q(vn)ψ(vn + ka) by definition of the periodic potential. On the other
hand,

(U ANψ) j (vn) = 1

Nd/2

∑

k∈Ld
N

e
−i jb
N ·ka

∑

w∼vn+ka

ψ(w)

= 1

Nd/2

∑

k∈Ld
N

e
−i jb
N ·ka

∑

u∼vn

ψ(u + ka)

=
∑

u∼vn

e
i jb·�u�a

N · 1

Nd/2

∑

k∈Ld
N

e
−i jb ·(ka+�u�a)

N ψ(ka + �u�a + {u}a).

Weclaim the inner sum is simply (Uψ) j ({u}a). In fact, for fixed u, denote r = �u� ∈ Z
d .

Then the second sum has the form
∑

k∈Ld
N
f (k+r).We partitionLd

N into≤ 2d rectangles

Ai such that Ai + r + �(N ,i) = Bi , Bi ⊂ L
d
N and �

(N ,i)
j ∈ {0,±N }. Roughly speaking,

this says that Ai + r = Bi mod NZ
d . For example, if r = (3,−2, 0), we may take A1 =

[[0, N−4]]×[[2, N−1]]×[[0, N−1]], A2 = [[N−3, N−1]]×[[2, N−1]]×[[0, N−1]],
A3 = [[0, N − 4]]× [[0, 1]]× [[0, N − 1]], A4 = [[N − 3, N − 1]]× [[0, 1]]× [[0, N − 1]]
and �(N ,1) = 0, �(N ,2) = (−N , 0, 0), �(N ,3) = (0, N , 0), �(N ,4) = (−N , N , 0). Clearly
(Bi ) partitions Ld

N .
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Since ψ is chosen to satisfy periodic conditions,
∑

k∈Ai
f (k + r) = ∑k∈Bi f (k)

for each i , hence
∑

k∈Ld
N
f (k + r) = ∑k∈Ld

N
f (k). As r is arbitrary, we have shown

that (U ANψ) j (vn) =∑u∼vn
e
i jb ·�u�a

N (Uψ) j ({u}a). Thus, (UHNψ) j = H(
jb
N )(Uψ) j .

This completes the proof. ��
Note that H(θb) is a ν × ν matrix with orthonormal eigenbasis f θb

s and eigenvalues
Es(θb), s = 1 . . . , ν. Let Ps(θb) = 〈 f θb

s , ·〉 f θb
s be the corresponding eigenprojections.

Let e(N )
r (k) := 1

Nd/2 e
2π ik·r/N . Given F ∈ �2(L2d

N × V 2
f ), we now let

OpN(F)ψ(ka + vn) :=
∑

r∈Ld
N

ν∑

�=1
(Uψ)r (v�)F(k, r; vn, v�)e

(N )
r (k), (2.5)

The “quantization” (2.5) is such that if F(k, r; vn, v�) = F(ka + vn)δvn ,v�
, then

OpN(F)ψ = Fψ . The presence of δvn ,v�
may seem unusual; indeed it would not be

here if we were dealing with just the adjacency matrix on Z
d . The presence of δvn ,v�

is
related to the fact that the Floquet transform (2.2) is only a partial transform in the sense
that it keeps vn fixed.

Define

FT (k, r; vn, v�) :=
∑

m∈Ld
N

ν∑

q,s,w=1

1

T

∫ T

0
eit[Es (

rb+mb
N )−Ew(

rb
N )] dt

×Ps
(rb + mb

N

)
(vn, vq)a

(N )
m (vq)Pw

(rb
N

)
(vq , v�)e

(N )
m (k), (2.6)

where a(N )
m (vq) := 〈 e

imb·•a
N

Nd/2 , a(vq + •a)〉�2(Ld
N ) are the Fourier coefficients of a.

Lemma 2.2. We have

1

T

∫ T

0
eit HN ae−it HN dt = OpN(FT ).

Although the definitions are somewhat long, the meaning is straightforward: this
sandwich can be expressed in phase space. FT “smooths” the function over different
eigenvalues of the phase space operator, and OpN gives the averaging under which this
occurs.

Proof. First, we expand ψ in order to relate it to the form of OpN(FT ).

ψ(ka + vn) = (U−1Uψ)(ka + vn) =
∑

r∈Ld
N

(Uψ)r (vn)e
(N )
r (k).

Recalling (2.3), we obtain

(HNψ)(ka + vn) =
∑

r∈Ld
N

[
H
(rb
N

)
(Uψ)r

]
(vn)e

(N )
r (k).
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Knowing this, we can now examine the operator eit HN ae−it HN and expand over the
various (vn, vq). This yields

(eit HN ae−it HN ψ)(ka + vn) =
∑

r∈Ld
N

ν∑

q=1
eit H(

rb
N )(vn, vq)(Uae−it HN ψ)r (vq)e

(N )
r (k).

Expanding a(vq + na) = 1
Nd/2

∑
m∈Ld

N
a(N )
m (vq)e

imb ·na
N , we have

(Uae−it HN ψ)r (vq) = 1

Nd

∑

n∈Ld
N

∑

m∈Ld
N

e
−irb
N ·naa(N )

m (vq)e
imb·na

N (e−it HN ψ)(vq + na)

= 1

Nd/2

∑

m∈Ld
N

a(N )
m (vq)(Ue−it HN ψ)r−m(vq) .

Here, r −m is understood in (Z/NZ)d . More precisely, if ri −mi is negative for some
i , it is replaced by N + ri − mi (this uses e−2π i j ·k = 1). The last term expands as

(Ue−it HN ψ)r−m(vq) = [e−it H(
rb−mb

N )(Uψ)r−m](vq)

=
ν∑

�=1
e−it H(

rb−mb
N )(vq , v�)(Uψ)r−m(v�).

Moreover, we can write e±it H(θb) =∑ν
s=1 e±it Es (θb)Ps(θb) through its eigendecompo-

sition. Applying this gives us

(eit HN ae−it HN ψ)(ka + vn) = 1

Nd/2

∑

r,m∈Ld
N

ν∑

q,�,s,w=1
eit Es (

rb
N )Ps

(rb
N

)
(vn, vq)

×a(N )
m (vq)e

−it Ew(
rb−mb

N )

Pw

(rb − mb

N

)
(vq , v�)(Uψ)r−m(v�)e

(N )
r (k)

= 1

Nd/2

∑

r,m∈Ld
N

ν∑

q,�,s,w=1
eit[Es (

rb+mb
N )−Ew(

rb
N )]

Ps
(rb + mb

N

)
(vn, vq)

×a(N )
m (vq)Pw

(rb
N

)
(vq , v�)(Uψ)r (v�)e

(N )
r+m(k)

with r +m again understood in (Z/NZ)d . Since 1
Nd/2 e

(N )
r+m(k) = e(N )

r (k)e(N )
m (k), we get

1

T

∫ T

0
eit Hae−it H dtψ(ka + vn) =

∑

r∈Ld
N

ν∑

�=1
(Uψ)r (v�)FT (k, r; vn, v�)e

(N )
r (k),

with FT in (2.6). Therefore, according to (2.5), 1
T

∫ T
0 eit HN ae−it HN dt = OpN(FT ). ��
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2.2. Step 2. Now we observe that if Es(
rb+mb

N ) − Ew(
rb
N ) �= 0 for some m ∈ L

d
N and

s, w ∈ {1, . . . , ν}, then the corresponding term in FT vanishes as T →∞. So define

b(k, r, vn, v�) =
∑

m∈Ld
N

ν∑

q,s,w=1
1Sr (m, s, w)Ps

(rb + mb

N

)
(vn, vq)

×a(N )
m (vq)Pw

(rb
N

)
(vq , v�)e

(N )
m (k), (2.7)

where Sr = {(m, s, w) : Es(
rb+mb

N )− Ew(
rb
N ) = 0}.

Lemma 2.3. We have convergence in norm,1

lim
T→∞‖OpN(FT )− OpN(b)‖2HS = 0.

Proof. We use the special basis φ
(N )
r,v�
= e(N )

r ⊗ δv�
of �2(VN ). That is, φ(N )

r,v�
(ka + vq) =

e(N )
r (k)δv�

(vq) = e2π ir ·k/N
Nd/2 δv�

(vq). By (2.2), (Uφr,v�
) j (vq) = 〈e(N )

j , e(N )
r 〉�2(Ld

N )δv�
(vq) =

δ j,rδv�
(vq). Bydefinition (2.5), this impliesOpN(F)φ

(N )
r,v�

(ka+vn) = F(k, r, vn, v�)e
(N )
r (k).

Note that ‖F(·, r, �, v�)e
(N )
n (·)‖2

�2(�N )
= 1

Nd ‖F(·, r, �, v�)‖2�2(�N )
, where · runs over

k ∈ L
d
N and � runs over vn ∈ V f . Therefore,

‖OpN(F)‖2HS =
∑

r∈Ld
N

ν∑

�=1
‖OpN(F)φ(N )

r,v�
‖2 = 1

Nd

∑

r∈Ld
N

ν∑

�=1
‖F(·, r, �, v�)‖2

(2.8)

To prove the lemma, we should thus examine the norm of the symbols,
∥
∥FT (·, r, �, v�)− b(·, r, �, v�)

∥
∥2

=
∥
∥
∥
∥

∑

m∈Ld
N

ν∑

q,s,w=1
1Scr (m, s, w)

eiT [Es (
rb+mb

N )−Ew(
rb
N )] − 1

T [Es(
rb+mb

N )− Ew(
rb
N )]

×Ps
(rb + mb

N

)
(�, vq)a

(N )
m (vq)Pw

(rb
N

)
(vq , v�)e

(N )
m (·)

∥
∥
∥
∥

2

.

This implies that

‖OpN(FT )− OpN(b)‖2HS =
1

T 2Nd

∑

r,m∈Ld
N

ν∑

�=1
∥
∥
∥
∥

ν∑

q,s,w=1
1Scr (m, s, w)

eiT [Es (
rb+mb

N )−Ew(
rb
N )] − 1

Es(
rb+mb

N )− Ew(
rb
N )

×Ps
(rb + mb

N

)
(�, vq)a

(N )
m (vq)Pw

(rb
N

)
(vq , v�)

∥
∥
∥
∥

2

Cν

≤ CN ,a

T 2 ,

1 It is worthwhile to note that in the case of trees [1,3,4], we usually evolve the dynamical system in time
T , essentially up to the girth of the graph, take the size of the graph N →∞, then finally take T →∞. Here
we first consider the equilibrium limit in T , then take N →∞ in the end of the proof.
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where CN ,a is finite for any N and is independent of T . Taking T → ∞ yields that
OpN(FT )→ OpN(b) in HS norm. ��

2.3. Step 3. We are thus reduced to studying OpN(b) with b given in (2.7).
Note that

∑ν
p=1 Pp(θ) = id, so

∑ν
p=1 Pp(θ)(vi , v j ) = δvi ,v j . Therefore, if we

remove the 1Sr term, (2.7) becomes

∑

m∈Ld
N

a(N )
m (vn)e

(N )
m (k)δvn ,v�

= a(ka + vn)δvn ,v�

and the corresponding OpN applied to ψ simply gives a(ka + vn)ψ(ka + vn). Hence,
OpN(b)ψ is just aψ but with many suppressed Floquet modes.

Let a be the part of b corresponding to m = 0. Let ã = a − OpN(a) and c = b − a.
Then collecting the previous steps, we have

∑

u∈�N

|〈ψ(N )
u , ãψ(N )

u 〉|2 =
∑

u∈�N

lim
T→∞ |〈ψ

(N )
u ,OpN(FT − a)ψ(N )

u 〉|2

≤
∑

u∈�N

lim
T→∞ 2(‖OpN(c)ψ(N )

u ‖2 + ‖OpN(FT − b)ψ(N )
u ‖2)

= 2‖OpN(c)‖2HS .

Proof of (1.4). It now suffices to show that lim
N→∞

1
|�N | ‖OpN(c)‖2HS = 0. Using (2.8),

we have 1
|�N | ‖OpN(c)‖2HS = 1

νN2d

∑
r∈Ld

N

∑ν
�=1 ‖c(·, r, �, v�)‖2�2(VN )

.
We thus consider

1

N 2d

∑

r∈Ld
N

ν∑

�=1

∥
∥
∥
∥

∑

m �=0

ν∑

q,s,w=1
1Sr (m, s, w)

Ps
(rb + mb

N

)
(�, vq)a

(N )
m (vq)Pw

(rb
N

)
(vq , v�)e

(N )
m (·)

∥
∥
∥
∥

2

= 1

N 2d

∑

r∈Ld
N

ν∑

�=1

∑

m �=0

ν∑

n=1

∣
∣
∣

ν∑

q,s,w=1
1Sr (m, s, w)

Ps
(rb + mb

N

)
(vn, vq)a

(N )
m (vq)Pw

(rb
N

)
(vq , v�)

∣
∣
∣
2

Denote Ps := Ps(
rb+mb

N ), Pw := Pw(
rb
N ) and expand the square modulus to get

1

N 2d

∑

r∈Ld
N

ν∑

�=1

∑

m �=0

ν∑

n=1

ν∑

q,s,w,q ′,s′,w′=1
1Sr (m, s, w)Ps(vn, vq)a

(N )
m (vq)Pw(vq , v�)

×1Sr (m, s′, w′)Ps′(vn, vq ′)a(N )
m (vq ′)Pw′(vq ′, v�). (2.9)
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But

ν∑

n=1
Ps(vn, vq)Ps′(vn, vq ′) =

ν∑

n=1
(Psδvq )(vn)(Ps′δvq′ )(vn) = 〈Ps′δvq′ , Psδvq 〉.

Similarly,
∑ν

�=1 Pw(vq , v�)Pw′(vq ′ , v�) = 〈Pwδvq , Pw′δvq′ 〉. If Es �= Es′ or Ew �= Ew′ ,
these scalar products vanish. So (2.9) is concentrated on the s′, w′ for which Es′ = Es
and Ew′ = Ew, in which case 1Sr (m, s, w) = 1Sr (m, s′, w′) and we obtain

1

N 2d

∑

r∈Ld
N

∑

m �=0

ν∑

q,s,w,q ′,s′,w′=1
1Sr (m, s, w)〈Ps′δvq′ , Psδvq 〉a(N )

m (vq )〈Pwδvq , Pw′δvq′ 〉a(N )
m (vq ′ )

= 1

N 2d

∑

m∈Ld
N

m �=0

ν∑

q,q ′=1
a(N )
m (vq ′ )a

(N )
m (vq )

∑

r∈Ld
N

ν∑

s,w,s′,w′=1
1Am (r, s, w)〈Ps′δvq′ , Psδvq 〉〈Pwδvq , Pw′δvq′ 〉,

where Am = {(r, s, w) : Es(
rb+mb

N ) − Ew(
rb
N ) = 0} and we used that (m, s, w) ∈

Sr ⇐⇒ (r, s, w) ∈ Am . By hypothesis (1.3), we know that

lim
N→∞ sup

m∈Ld
N

m �=0

|Am |
Nd
= 0. (2.10)

Since |〈Ps′δvq′ , Psδvq 〉| ≤ 1, it follows that the above is

oN (1)
1

Nd

∑

m

ν∑

q,q ′=1
a(N )
m (vq ′)a

(N )
m (vq)

= oN (1)
1

Nd

ν∑

q,q ′=1
〈a(·a + vq ′), a(·a + vq)〉�2(Ld

N ) = oN (1)

using |a(na + vp)| ≤ 1. This completes the proof of (1.4). ��

2.4. Step 4. Let us now explore the main term a. Recall that it corresponds to m = 0
in (2.7). Having (0, s, w) ∈ Sr means that Es(

rb
N ) = Ew(

rb
N ). This is automatically true

for w = s. Thus,

a =
ν∑

q,s=1
a(N )
0 (vq)e

(N )
0 (k)Ps

(rb
N

)
(vn, vq)

(

Ps
(rb
N

)
(vq , v�) +

∑

w �=s
Es=Ew

Pw

(rb
N

)
(vq , v�)

)

=
ν∑

q=1
〈a(· + vq)〉

ν′∑

s=1
PEs

(rb
N

)
(vn, vq)PEs

(rb
N

)
(vq , v�) , (2.11)
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where 〈a(· + vq)〉 = 1
Nd

∑
n∈Ld

N
a(na + vq), ν′ ≤ ν is the number of distinct eigen-

values of H(θb) and PEs (θb) =∑Ew=Es
Pw(θb) is the orthogonal projection onto the

eigenspace corresponding to Es(θb). In general, ν′ is independent of θb, except perhaps
on a subvariety of dimension ≤ d − 1, hence of measure zero, as follows from [19, Th.
3.5.3].

Proof of (1.5)–(1.6). By the definition of OpN, we can write out

〈ψ,OpN(a)ψ〉 =
∑

k∈Ld
N

∑

vn∈V f

ψ(ka + vn)[OpN(a)ψ](ka + vn)

=
∑

vn∈V f

∑

r∈Ld
N

ν∑

�=1
(Uψ)r (v�)a(r, vn, v�)

∑

k∈Ld
N

ψ(ka + vn)e
(N )
r (k) .

But
∑

k ψ(ka + vn)e
(N )
r (k) = (Uψ)r (vn). Thus,

〈ψ,OpN(a)ψ〉 =
∑

vn∈V f

∑

r∈Ld
N

ν∑

�=1
(Uψ)r (v�)(Uψ)r (vn)a(r, vn, v�)

=
ν∑

q=1

∑

r∈Ld
N

ν∑

�=1

ν′∑

s=1
PEs (vq , v�)(Uψ)r (v�)

ν∑

n=1
PEs (vq , vn)(Uψ)r (vn)〈a(· + vq)〉

=
ν∑

q=1
〈a(· + vq)〉

∑

r∈Ld
N

ν′∑

s=1
[PEs (Uψ)r ](vq)[PEs (Uψ)r ](vq) .

where Ps = Ps(
rb
N ). We have shown that

〈ψ,OpN(a)ψ〉 =
ν∑

q=1
〈a(· + vq)〉

∑

r∈Ld
N

ν′∑

s=1

∣
∣
∣
[
PEs

(rb
N

)
(Uψ)r

]
(vq)

∣
∣
∣
2
. (2.12)

In the special case where 〈a(·+vq)〉 = 〈a(·+v1)〉 for q = 1, . . . , ν, the above reduces
to

〈a(· + v1)〉
∑

r∈Ld
N

ν′∑

s=1
‖PEs (Uψ)r‖2Cν = 〈a(· + v1)〉

∑

r∈Ld
N

‖(Uψ)r‖2Cν = 〈a(· + v1)〉‖ψ‖2.

In particular,ψ = ψ
(N )
u gives the uniform average 〈a(·+v1)〉 = 1

Nd

∑
n∈Ld

N
a(na+v1) =

1
|�N |

∑
v∈�N

a(v). This proves (1.6). In the sameway, if a is real-valued, we deduce (1.5)
from (2.12). ��
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Remark 2.4. (Necessity of the assumptions) In the previous proof, the only inequality
that we used is in Step 3, when bounding the variance by the Hilbert-Schmidt norm
of the evolved observable. This bound is standard in proofs of quantum ergodicity, it
seems unlikely that we can avoid it. On the other hand, the decay of the Hilbert-Schmidt
norm almost necessitates (1.3). In fact, if we can choose the normalized eigenvectors
f θb
s corresponding to Es(θb) such that for some v�, we have f θb

s (v�) �= 0 for all s, θ ,

then by taking a(ka + vq) = e
im̂b·ka

N δv�
(vq) in the calculation preceding (2.10), we see

that |Am |
Nd = oN (1) must hold ∀m �= 0 for the HS norm to go to zero.

Remark 2.5. The main theorem holds more generally if instead of summing over the
whole spectrum in (1.4), we sum over eigenvalues in some interval I , in which case we
only need (1.3) to hold on I . To see this, we slightlymodify the proof as follows : in (2.1),
we insert a spectral projection χI (HN ), so the operator is now 1

T

∫ T
0 eit HN ae−it HN χI

(HN ) dt . In (2.6), we replace the sum over all w by the sum over Ew(
rb
N ) ∈ I . In

fact, by adding the spectral projection through the proof of Lemma 2.2, we now get

(Ue−it HχI (H)ψ)r−m = e−it H(
rb−mb

N )χI (H(
rb−mb

N ))(Uψ)r−m . Consequently, the lim-
iting symbol b now also sums over Ew(

rb
N ) ∈ I instead. The proofs carry over mutatis

mutandis.
In the end, the symbol a in (2.11) now sums over Es(

rb
N ) ∈ I . This gives the illusory

impression that the weighted average changes, which of course makes no sense as the
term 〈ψ(N )

u , aψ
(N )
u 〉 should approach a fixed quantity whether the Cesàro mean is over

the whole spectrum or not. However the quantity 〈ψ(N )
u ,OpN(a)ψ

(N )
u 〉 is indeed the

same as before. In fact, if we know that λ(N )
u ∈ I , we may again insert a projector so that

(Uψ
(N )
u )r in (2.12) becomes (UχI (HN )ψ

(N )
u )r = χI (H(

rb
N ))(Uψ

(N )
u )r , so the sum

over all Es in (2.12) reduces to the sum over Es(
rb
N ) ∈ I , which is what we obtained

when averaging over I .

Remark 2.6. In this paper we always take HN with periodic conditions. We believe these
to be the most natural conditions to approximate the infinite model, avoiding boundary
effects from finite truncations. However, it is also interesting to ask if the result remains
true if we consider HN with Dirichlet conditions instead. In this case our Schrödinger
operater HN on �N is the operator on the induced subgraph �N ⊂ �. This has been
studied e.g. in [9].

In the proof, we use the periodic conditions to diagonalize HN in Lemma 2.1. This
property no longer holds for Dirichlet conditions if we take the same U . A natural
candidate is to consider a discrete sine transform. For simplicity, consider H = A on

� = Z
d . If s(N )

k (n) = ∏d
i=1 ski (ni ), with s�(r) =

√
2

N+1 sin π
(r+1)(�+1)

N+1 for �, r =
0, . . . , N − 1, consider for j ∈ L

d
N ,

(Sψ) j = 〈s(N )
j , ψ〉

L
d
N
=
∑

k∈Ld
N

s(N )
j (k)ψ(k).

This operator is unitary. Using that (s(N )
j ) are eigenfunctions of AN with eigenvalue

μ
(N )
j =∑d

i=1 2 cosπ
ji+1
N+1 , we see that (SANψ) j = 〈s(N )

j , ANψ〉 = μ
(N )
j (Sψ) j .

However, if we use this sine transform S, we need to replace all later occurrences
of e(N )

r (k) by s(N )
r (k). This becomes difficult because these sine functions are not as
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well-behaved as the exponentials used in periodic conditions. Namely, s(N )
m+n is not a

multiple of s(N )
m s(N )

n . This creates complications, the proof does not carry over directly,
and further work should be done to check whether or not quantum ergodicity holds for
HN .

3. Special Classes of Graphs

In this section we discuss the validity of assumption (1.3) for various classes of graphs.
We start with graphs having ν = 1, proving Theorem 1.1. We then discuss Cartesian
products, proving Proposition 1.4, and conclude with graph decorations, tensor and
strong products, proving Propositions 1.5 and 1.6 along the way.

3.1. Scalar fibers. Step 4 in Sect. 2.4 shows that if ν = 1, then 〈ψ(N )
u ,OpN(a)ψ

(N )
u 〉 =

〈a〉. To prove Theorem 1.1, it remains to establish (1.3) in this context. Here of course
w = s.

If ν = 1, then the graph is 2D-regular for some D ∈ N. In fact, V f = {o} for some
o, and � = Z

d
a + {o}. If u ∼ o, then u = �u�a + o. By translation invariance we have

u − na ∼ o − na. Applying this to na = �u�a gives o ∼ o − �u�a. We may thus
arrange the neighbors of o into N +

o ∪N−o , where N +
o = {o + na} and N−o = {o− na},

for some D nonzero integers na = ∑d
i=1 niai with ni ∈ {0, 1, . . . } depending on the

adjacency rule (in case of lattices with only nearest-neighbor adjacency like � = Z
d ,

then ni ∈ {0, 1}). Since the rest of the graph is just a periodic copy of the star around o,
we see it is 2D-regular.

If ν = 1, then the potential Q must be constant. We assume without loss of generality
that Q = 0.

Proof of Theorem 1.1. The ν × ν matrix H(θb) is now just a scalar given by

H(θb) =
∑

u∼o
eiθb·�u�a = 2

D∑

p=1
cos(2πθ · n(p))

for some n(1), . . . , n(D) ∈ {0, 1, . . . }d \ {0}. We only have one eigenvalue here given by
E(θb) = H(θb). So we should show that for any fixed m �= 0, the equation

E
(rb + mb

N

)
− E

(rb
N

)
= 2

D∑

p=1

(
cos
(
2π

(r + m) · n(p)

N

)
− cos

(
2π

r · n(p)

N

))
= 0

(3.1)

has o(Nd) solutions in r ∈ L
d
N . By the sum to product formula, we are led to consider

the zeroes of

fm
( r

N

)
:=

D∑

p=1
sin
(
π
m · n(p)

N

)
sin
(
π

(2r + m) · n(p)

N

)
. (3.2)

For this, we consider the projection of the surface Am = {r ∈ L
d
N : fm( r

N ) = 0} onto a
vector φ ∈ L

d
N to be specified. More precisely, given j ∈ L

d
N , we write j = r + yφ, for
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r ∈ φ⊥ and y = 〈φ, j〉
‖φ‖2 . Note that y ∈ [0, N − 1] since 0 ≤∑φi ji ≤ (N − 1)

∑
φi ≤

(N − 1)
∑

φ2
i for φ ∈ L

d
N . We will show that for fixed r ∈ φ⊥, there are at most M

points y such that fm(
j
N ) = 0, with M independent of N . By varying r ∈ φ⊥, it follows

that |Am | ≤ M |φ⊥| ≤ MNd−1 = o(Nd) as required.
We therefore consider the function

gm,r (x) = fm
( r

N
+ xφ

)
= 0

for x ∈ [0, 1). Denote

αp = sin
(
π
m · n(p)

N

)
, βp = π

(2r + m) · n(p)

N
, γp = 2φ · n(p). (3.3)

Then

gm,r (x) =
D∑

p=1
αp sin(βp + πγpx) = 1

2i

D∑

p=1
αp(e

iβpeiπγpx − e−iβpe−iπγpx ).

Setting z = eiπx , this reduces to

g̃m,r (z) =
D∑

p=1
(ρpz

γp + ρ′pz−γp )

for some ρp, ρ
′
p ∈ C. By definition (3.3), γp ≥ 0 is an integer.We thus seek the solutions

of g̃m,r (z) on the unit circle. We have g̃m,r (z) = 0 iff
∑D

p=1(ρpzγ�+γp +ρ′pzγ�−γp ) = 0,
where γ� = maxp γp. This is a polynomial in z. By the fundamental theorem of algebra,
if this polynomial is nontrivial, it has at most M = 2maxp γp roots. In turn, we have
at most M solutions x j for gm,r (x) = 0, and the proof of (2.10) is complete (recall the
discussion after (3.2)).

So it remains to check the polynomial zγ∗ g̃m,r (z) =∑D
p=1(ρpzγ�+γp + ρ′pzγ�−γp ) is

nontrivial. For this, we check that

1. At least one ρp is nonzero.
2. We can choose φ such that γp �= 0 for all p and γp �= γp′ for p �= p′. This way, no

two terms in the sum have the same power, so no cancellation can occur. And since
no γp is zero, no cancellation can occur from ρp′ = −ρp.

Proof of 1. Since m �= 0, we have m j �= 0 for some j . Note that o + a j ∈ � by

translation invariance. Since� is connected, some integer combination o+
∑D

p=1 kpn
(p)
a

of the neighbors of o is o + a j , where kp ∈ Z is the number of adjacencies of type n(p)

traversed on the geodesic from o to o + a j . It follows that

sin
(
π
m

N
·

D∑

p=1
kpn

(p)
)
= sin

(mb

2N
·

D∑

p=1
kpn

(p)
a

)
= sin

(mb

2N
· a j

)
= sin

πm j

N
�= 0.

(3.4)

If we had sin(π m·n(p)

N ) = 0 for all p, we would have m·n(p)

N ∈ Z for all p and thus
m
N ·

∑D
p=1 kpn(p) ∈ Z, contradicting (3.4). Thus, αp �= 0 for at least one p. This

completes the proof.
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Fig. 2. The ladder graph, Z� P2

Proof of 2.Weneedφ to avoid the subspacesVp = {v : v·n(p) = 0} for all p = 1, . . . , D
and Vp,p′ = {v : v · n(p) = v · n(p′)} for all D(D − 1) pairs of p �= p′. Each of these is
d − 1 dimensional, since the n(p) are nonzero and distinct.

It is not difficult to see that such a φ exists. However, we give a quite explicit con-
struction below, which in turn gives an explicit bound on M .

Suppose we give a list of �D = (d − 1)D2 + 1 vectors in Ld
N such that any d of them

forms a basis. Then each of the subspaces Vp or Vp,p′ can only contain at most d − 1 of
our vectors, therefore there must be some vector not contained in any of the subspaces
and we are done.

A possible list is given by the row vectors

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 2 22 · · · 2d−1
1 3 32 · · · 3d−1
...

...
. . .

...

1 �D �2D · · · �d−1D

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Indeed, any subset of d of these vectors, say the ones from the x1, . . . , xd rows, forms a
Vandermonde matrix with determinant

∏
i< j (xi − x j ), which is nonzero, meaning any

set of d vectors is linearly independent. This finishes the proof. ��
We may obtain an upper bound over M = 2maxp γp. In fact, the worst case is if the

last vector in the list is the first φ that avoids all Vp,p′ . In this case, γp = 2φ · n(p) ≤
2d�d−1D q, where q = maxi,p n

(p)
i , so M ≤ 4d�d−1D q.

3.2. The case of Cartesian products. The Cartesian product � �G of � and G is the
graph with vertex set V (�)× V (G), in which (u, v) ∼ (u′, v′) if either

(i) (u = u′ and v ∼ v′),
(ii) or (u ∼ u′ and v = v′).

For example, to construct Z� P2, where P2 is the 2-path, replace each vertex of Z
with a 2-path, and connect edges between matching vertices. The result is an infinite
ladder.

Similarly, for Z�Cp, where Cp is a p-cycle, replace each vertex of Z with a p-
cycle, and connect edges between matching vertices (Fig. 6). The graph is 4-regular,
naturally embedded in R

3, and is clearly Z-periodic with fundamental cell V f = Cp.
We may endow Cp with a potential Q and copy it in each layer. Then H(θb) f (u, v) =
2 cos 2πθ f (u, v) + f (u, v + 1) + f (u, v − 1) + Qv f (u, v). In other words, H(θb) =
AZ(θb)⊗ I + I⊗HGF . The eigenvalues are thus {2 cos 2πθ+μ j }, where {μ j }pj=1 are the
eigenvalues of the Schrödinger operator of the p-cycle. These observations are general :
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Lemma 3.1. If � is a periodic graph with ν = 1 and GF is a finite graph endowed a
potential Q, then � �GF is a periodic graph with fundamental cell V f = GF and

H� �GF (θb) = H�(θb)⊗ I + I ⊗ HGF . (3.5)

Proof. Replace each u ∈ � by a copy of GF . The result has vertex set V (�)× V (GF ).
According to rules (i)-(ii), we should have A� �GF = I ⊗AGF +A� ⊗ I . This means
that if we arrange the vertices of � �GF as successive GF -layers, then a given (u, v)

is connected on the one hand to the neighbors (u, v′) in the same layer (rule (i)) and
to the neighbors (u′, v) outside (rule (ii)). This means that the edges are precisely the
old edges of GF in each layer, as well as bridges between successive layers between
the matching vertices. Recalling (2.4), we see that the θ -dependence only arises in
the bridges from (u, v) to another layer (the neighbors within GF have �u�a = 0).
The bridges occur precisely at the bridges from u to its neighbors in �. We conclude
that A� �GF (θb) = A�(θb) ⊗ I + I ⊗ AGF . If we finally endow GF a potential and
copy it across the layers, then (Q f )(u, v) = Qv f (u, v), so we obtain (3.5) (note that
A�(θb) = H�(θb) as ν = 1). ��
Proof of Proposition 1.4. Since ν = 1 for �, H�(θb) has just one eigenvalue E�(θb).
So the spectrum of H� �GF is the set {E�(θb) + μ j }, where μ j are the eigenvalues of
HGF on the finite graph GF .

Given nonzero m, we should thus control the quantity

Es

(rb + mb

N

)
− Ew

(rb
N

)
= E�

(rb + mb

N

)
− E�

(rb
N

)
+ μs − μw.

Here, E�(θb) = 2
∑D

p=1 cos(2πθ · n(p)) is precisely the quantity we controlled in
Sect. 3.1. Following the arguments, we see that the same proof continues to hold here. In
fact, g̃m,r (z) only has an additional term μs−μw, and the proof continues to hold, as no
γp is zero so this term cannot induce cancellations in the polynomial zγ∗ g̃m,r (z). Thus,
the quantity in (1.3) is ≤ MN−1 → 0 as required, with the same M ≤ 4d�d−1D q of the
case ν = 1. This shows that the assumption of Theorem 1.2 is satisfied for � �GF .

By (3.5), the eigenvectors of H� �GF (θb) are simply the eigenvectors of HGF (re-
call that H�(θb) is just a scalar 1 × 1 matrix). They are thus independent of θb, and
so are the eigenprojectors Ps(θb). This makes (2.12) a bit simpler here. If moreover
we choose ψ = ψ

(N )
u to consist of a tensor basis ψ

(N )
u = φn ⊗ w j , where (φn) is an

orthonormal eigenbasis of H� on � and (w j ) is an orthonormal eigenbasis of HGF ,
then the expression simplifies further. In fact, recalling (2.2), we have (Uψ)r (vq) =
1

Nd/2

∑
k e
−2π ir ·k/Nφn(ka)w j (vq) = φ̂n(r)w j (vq), where φ̂n(r) is the Fourier coeffi-

cient of φn in the basis e(N )
k of �2(Ld

N ). Hence, (Ps(Uψ)r )(vq) = φ̂n(r)(Psw j )(vq).
Thus, (2.12) simplifies to

ν∑

q=1
〈a(· + vq)〉

∑

r

ν′∑

s=1
|φ̂n(r)|2|(PEsw j )(vq)|2 =

ν∑

q=1
〈a(· + vq)〉

ν′∑

s=1
|(PEsw j )(vq)|2,

where we used that ‖φn‖2 = 1. But w j is an eigenvector, so PEsw j = w j if Es = E j
and PEsw j = 0 otherwise. This completes the proof. ��
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−1 1

0

Fig. 3. Decorating Z with triangles. The values of an eigenfunction are shown (it is then extended by zero)

3.3. Graph decorations. Anotherway to create a newgraph fromgiven infinite andfinite
graphs � and GF is to simply attach a copy of GF at each vertex of �. More precisely,
we identify a special vertex oF ∈ GF to each v ∈ �. This process is called graph
decoration. A very simple example is given in Fig. 3. The resulting graph is sometimes
denoted by � �GF (which reflects the procedure).

In contrast to Cartesian products, this process can be problematic for delocalization.
For example, as shown in Fig. 3, this can create compactly supported eigenfunctions.
The corresponding eigenvalue is a flat band, i.e. an infinitely degenerate eigenvalue. The

example in Fig. 3 has the Floquet eigenvalues {−1, 2 cos 2πθ+1±√4 cos2 2πθ−4 cos 2πθ+9
2 }.

This generates the spectrum of H = A consisting of two bands which do not intersect.
This spectrum is not very nice as the eigenvalue−1 is embedded in the left band, as can
be seen by taking θ = 1

4 .
It may be interesting to observe that in general, if � is a periodic graph having ν = 1,

then�,� �GF and� �GF are all “loop graphs” in the sense ofKorotyaev and Saburova
[15]. This class of graphs was singled out in [15] for being more amenable to spectral
analysis. We see that not all graphs in this class are quantum ergodic.

Proof of Proposition 1.5. For the graph in Fig. 3, we have |�N | = 3N , and on �N , we
may construct N localized eigenfunctions f j , one on each triangle, each supported on
only two vertices. Let N be even and take the locally constant observable a which is iden-
tically 1 on triangles attached to even vertices, and identically zero on triangles attached
to odd vertices. Then 〈a〉 = 1

2 . On the other hand, if we normalize the eigenfunctions f j
so that their values are ( 1√

2
, −1√

2
, 0, 0, . . . , 0), then 〈 f2 j , a f2 j 〉 =∑v a(v)| f2 j (v)|2 = 1,

while 〈 f2 j+1, a f2 j+1〉 = 0 for each j . Hence,

1

|�N |
∑

u∈�N

|〈ψ(N )
u , aψ(N )

u 〉 − 〈a〉|2 ≥
1

3N

N∑

j=1
|〈 f j , a f j 〉 − 〈a〉|2

= 1

3N

[N

2

(∣
∣
∣1− 1

2

∣
∣
∣
2
+
∣
∣
∣0− 1

2

∣
∣
∣
2)] = 1

12
.

��

3.4. More product operations. Further operations to construct new graphs from old are
the tensor product and the strong product of graphs.

3.4.1. Strong products The strong product G � H has vertex set V (G) × V (H), with
(u, v) ∼ (u′, v′) iff (u = u′ and v ∼ v′) or (u ∼ u′ and v = v′) or (u ∼ u′ and v ∼ v′).
We thus add more edges to the Cartesian product.

This operation is not as well behaved as the Cartesian one. For example, consider
Z � P2, where P2 is a 2-path. The result (Fig. 4) is an infinite sequence of boxes �.
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1

−1

Fig. 4. Z � P2. An eigenfunction localized on two vertices is shown

Unlike the ladder, this graph has some point spectrum. In fact, the Floquet matrix here is

H(θb) =
(

2 cos 2πθ 1 + 2 cos 2πθ

2 cos 2πθ + 1 2 cos 2πθ

)

, with eigenvalues {−1, 1 + 4 cos 2πθ}. Quan-
tumergodicity is violated (use the eigenfunction shown inFig. 4 and argue as inSect. 3.3).

See Sect. 4.6 for a further analysis when we add a potential.
Still, this product sometimes behaves well. For example,Z�Z gives the king’s graph,

which is quantum ergodic since it is periodic with ν = 1.

3.4.2. Tensor products Next, the tensor product G × H has vertex set V (G)× V (H),
with (u, v) ∼ (u′, v′) iff (u ∼ u′ and v ∼ v′). Equivalently, AG×H = AG ⊗AH . The
edges of this product are precisely the ones we added to the Cartesian product when
discussing strong products.

The product of two connected graphs is not necessarily connected. For example, the
tensor product of two path graphs of length 2 {a, b} and {v,w} gives the union of the
two paths {(a, v), (b, w)} and {(a, w), (b, v)}. To consider a product graph of the form
� × GF for quantum ergodicity, where � is a quantum ergodic graph and GF is some
finite graph, we first need � × GF to be connected. It turns out this is satisfied if and
only if either � or GF contains an odd cycle, see [21].

Assume now that we are given a periodic � with ν = 1, for simplicity. Just like
Cartesian products, the tensor structure of the adjacency matrix translates well into the
Floquet fibers. To see this, it is best to first picture the product operation. Geometrically,
we simply consider the GF -layers structure of Cartesian products, but then we remove
all edges and add instead the following ones : a given (u, v) in a GF layer is connected
to all vertices (u′, v′), where u′ is in a different GF layer and v′ ∼ v in GF . Note that
V f = GF contains no edges. Instead, if we “project” the edges going from a neighboring
GF layer to the starting one, we obtain the finite graph GF that we started with. We may
also endow GF with some potential Q which is copied across the layers.

By definition (2.4), we have H(θb) f (u, v) = ∑u′∼u,v′∼v e
iθb·�u′�a f (u, v′) + Qv f

(u, v) = H�(θb) ⊗ HGF f (u, v), where we used here that {(u′, v′)}a = (u, v′) and
�(u′, v′)�a = �u′�a by construction. This shows that H�×GF (θb) = H�(θb) ⊗ HGF .
Consequently,

σ(H�×GF (θb)) = {μ j E�(θb)}νj=1, (3.6)

where μ j are the eigenvalues of HGF . Note that if μ j = 0 for some j , then this creates
a flat band {0} for H�×GF , i.e. an infinitely degenerate eigenvalue.

We now consider the special case of Z× GF . So E�(θb) = 2 cos 2πθ .

Proof of Proposition 1.6. To construct a counterexample, we take GF such that

(i) GF is not bipartite,
(ii) 0 /∈ σ(AGF ),
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v1

v2

v3 v4

v5

Fig. 5. The butterfly graph GF (left) and part of the tensor product Z × GF (right). A fundamental set is
colored in red

(iii) there exists s such that μs and −μs belong to σ(AGF ).

Point (i) is necessary to make Z × GF connected, (ii) is necessary to avoid a point
spectrum {0}, and (iii) is what will contradict (1.3).

We take GF as the butterfly graph, Fig. 5.
Since AGF is a 5 × 5 matrix, we can compute its eigenvalues and eigenvectors

explicitly and find the following:

μ1 = 1 +
√
17

2
, μ2 = 1−√17

2
, μ3 = −1, μ4 = −1, μ5 = 1

w1 = c1
(
1, 1,

−1 +√17
2

, 1, 1
)
, w2 = c2

(
1, 1,

−1−√17
2

, 1, 1
)
,

w3 = 1√
2
(0, 0, 0,−1, 1), w4 = 1√

2
(−1, 1, 0, 0, 0), w5 = 1

2
(−1,−1, 0, 1, 1)

for normalization constants c1, c2. We actually only need w4, w5 for the following ar-
gument, it is immediate to check that they are eigenvectors for μ4, μ5, respectively.

We see properties (i)–(iii) are satisfied, take e.g. μs = 1.
By (3.6), σ(AZ×GF (θb)) is just {2μ j cos 2πθ}, where μ j runs over the above list of

eigenvalues. It follows that σ(AZ×GF ) is purely absolutely continuous (as each Floquet
eigenvalue is analytic and nonconstant, see [17, Th. XIII.86]). The graph Z×GF is also
connected, since [[−n, n]] × GF is connected for any n by [21].

If μs = 1 and μw = −1, we find that

Es(θb + αb)− Ew(θb) = μs(2 cos(2π(θ + α)) + 2 cos 2πθ)

= μs cosπ(2θ + α) cosπα.

This is zero if α = 1
2 , for all θ . This suffices to contradict (1.3). In fact, takingm = N

2 ∈
LN assuming N is even, the fraction in (1.3) is equal to 1 and does not vanish.

We now show the tensor product Z × GF is not quantum ergodic. The hint for
the choice of the observable comes from Remark 2.4. Namely, consider a(k + vq) =
e2π imk/N δv1(vq). Then 〈a(· + vq)〉 = 0 for all vq , so 〈ψ,OpN(a)ψ〉 = 0 by (2.12). We
choose the problematic value ofm, namelym = N

2 , so we take a(k+vq) := eπ ikδv1(vq).
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Now, choose φn(k) = 1√
N
e2π ink/N as an eigenbasis forAPN with periodic conditions

and consider the orthonormal sequence

gn =
φn ⊗ w4 + φn+ N

2
⊗ w5√

2

in �N = PN ⊗ GF , for n = 0, . . . , N
2 − 1, with eigenvalue −λn = −2 cos 2πn

N .
Since 〈ψ,OpN(a)ψ〉 = 0, it suffices to show that 1

|�N |
∑

u∈�N
|〈ψu, aψu〉|2 does not

converge to zero. We have

〈gn, agn〉 =
N−1∑

k=0

5∑

q=1
a(k + vq)|gn(k + vq)|2

= 1

2

N−1∑

k=0
eπ ik |φn(k)w4(v1) + φn+ N

2
(k)w5(v1)|2

= 1

2N

N−1∑

k=0
eπ ik

∣
∣
∣
e2π ink/N√

2
+
e2π i(n+

N
2 )k/N

2

∣
∣
∣
2

= 1

4N

N−1∑

k=0
eπ ik

∣
∣
∣1 +

eπ ik

√
2

∣
∣
∣
2

= 1

4N

N−1∑

k=0
eπ ik

(3

2
+
eπ ik + e−π ik

√
2

)
= 1

2
√
2
.

Thus, by completing the orthonormal family (gn) to an o.n.b. (ψu), we get

1

|�N |
∑

u∈�N

|〈ψu, aψu〉|2 ≥ 1

5N

N
2 −1∑

n=0
|〈gn, agn〉|2 = N/2

5N
· 1
8
= 1

80
.

This completes the proof. ��

4. Concrete Examples

4.1. Graphs with scalar fibers. For the adjacency matrix H = A onZd or the triangular
lattice (sometimes called hexagonal, see [15, Fig. 3]) where each vertex has 6 neighbors,
or the king’s graph (sometimes called EHM lattice), we have ν = 1 so Theorem 1.1
applies.

The family of periodic graphs having ν = 1 is quite rich. For example, one can
consider Z and add edges up to some fixed distance k from each vertex. More precisely,

(A f )(n) = f (n − k) + f (n − k + 1) + · · · + f (n + k − 1) + f (n + k).

Then V f = {0}, a1 = e1 and H(θb) = 2 cos 2πθ + 2 cos 4πθ + · · · + 2 cos 2πkθ . See
Fig. 1 (left) for k = 2. Similar variations can be performed on Z

d .
We remark that the connectedness of � is important. For example, if we consider Z

with (A f )(n) = f (n − 2) + f (n + 2), then the graph is disconnected (there are two
copies of Z, for the even and odd vertices, respectively). Here, V f = {0}, a1 = e1 and
H(θb) = 2 cos 4πθ , which does not obey (1.3), since for α = 1

2 , we have E(θb +αb) =
E(θb) for all θ .
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4.2. Honeycomb lattice. Consider the honeycomb lattice ([15, Fig. 7], a.k.a graphene
or hexagonal lattice) where each vertex has 3 neighbors. Here ν = 2, H(θb) =(

0 ξ(θb)

ξ(θb) 0

)

, where ξ(θb) = 1 + e−iθb·a1 + e−iθb·a2 for the crystal basis a1 = a(1, 0),

a2 = a
2 (1,
√
3), a > 0. This gives the eigenvalues ±|ξ(θb)| = ±√

3 + 2 cos 2πθ1 + 2 cos 2πθ2 + 2 cos 2π(θ1 − θ2). Assumption (1.3) is clearly satisfied
if w �= s as the bands only meet at 0 (for (θ1, θ2) = ( 23 ,

1
3 )). On the other hand, we can

control the event that |ξ(θb + αb)| = |ξ(θb)| by squaring, deducing as a special conse-
quence of the arguments in Sect. 3.1 that (1.3) is satisfied. This shows that Theorem 1.2
holds true. Let us investigate (2.12).

The eigenvectors are w±(θb) = 1√
2
(1,±e−iφ(θb))ᵀ, where φ(θb) is the argument of

ξ(θb). So P±(θb) f (v1)= f (v1)±eiφ(θb) f (v2)
2 , P±(θb) f (v2)= f (v1)±eiφ(θb) f (v2)

2 (±e−iφ(θ)b).

It follows that |P+ f (v1)|2 + |P− f (v1)|2 = | f (v1)+eiφ(θb) f (v2)|2+| f (v1)−eiφ(θb) f (v2)|2
4 =

| f (v1)|2+| f (v2)|2
2 = ‖ f ‖22 = |P+ f (v2)|2 + |P− f (v2)|2.

We showed that for the honeycomb lattice, (2.12) reduces to

2∑

q=1

∑

r∈Ld
N

‖(Uψ)r‖2Cν

2
〈a(· + vq)〉 = 〈a(· + v1)〉 + 〈a(· + v2)〉

2
‖ψ‖2

which is the uniform average.

4.3. Ladder graph. Consider the ladder graph Z� P2 in Fig. 2. As a Cartesian product,
we already know that Proposition 1.4 holds true, but we show here that we always get
the uniform average in this example.

We have H(θb) f (v1) = e2π iθ f (v1) + e−2π iθ f (v1) + f (v2) and H(θb) f (v2) =
e2π iθ f (v2)+ e−2π iθ f (v2)+ f (v1). Thus, H(θb) =

(
2 cos 2πθ 1

1 2 cos 2πθ

)

. The eigen-

values are E±(θb) = 2 cos 2πθ ± 1. Clearly (1, 1) and (1,−1) are eigenvectors. So the
eigenprojectors are P±(θb) f = 〈w±, f 〉w±, with w± = 1√

2
(1,±1), independently of

θ . Thus, P± f (v1) = f (v1)± f (v2)
2 and P± f (v2) = − f (v1)± f (v2)

2 . As in the honeycomb

lattice, we deduce that (2.12) reduces to 〈a(·+v1)〉+〈a(·+v2)〉
2 ‖ψ‖2.

If we endow P2 with a potential Q•, Q◦, then we get a ladder with a potential coming
in two parallel sheets, the upper sheet only containing Q•, the lower only Q◦. The
construction can be generalized to Z� Pk to create an infinite k-strip. Proposition 1.4
continues to apply, but the average may be non-uniform.

4.4. Periodic potentials on the integer lattice. Consider Z endowed with a periodic
potential taking ν values Qi . We have V f = {1, . . . , ν}, a1 = νe1 and b1 = 2π

ν
e1.

Now H(θb) f (1) = Q1 f1 + f2 + e−2π iθ f (ν), H(θb) f (i) = Qi fi + fi−1 + fi+1 for
1 < i < ν and H(θb) f (ν) = Qν fν + fν−1 + e2π iθ f1. We thus have
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H(θb) =

⎛

⎜
⎜
⎜
⎜
⎝

Q1 1 0 · · · e−2π iθ
1 Q2 1 0

. . .

1
e2π iθ 0 1 Qν

⎞

⎟
⎟
⎟
⎟
⎠

.

Let z = e2π iθ . Expanding the determinant of the characteristic polynomial p(z; λ)

in detail, we see that [13, Lemma 3.1]

p(z; λ) = �(λ)− z − z−1 (4.1)

for some polynomial �(λ, Q). This splitting into pure λ and z parts is specific to one
dimension.

Now fix α �= 0, let ζ = e2π iα and suppose that Es(θb + αb) = Ew(θb) for some
s, w. Then λ = Es(θb + αb) solves (4.1). On the other hand, λ = Es(θb + αb) is also a
root of the characteristic polynomial of H(θb + αb), which is

p(zζ ; λ) = �(λ)− zζ − (zζ )−1.

For this choice of λwe thus have p(λ; z) = p(λ; zζ ) = 0. So z + z−1 = zζ + (zζ )−1.
This yields a quadratic expression for z. Hence, for any fixed α �= 0, there are at most
two θ such that Es(θb + αb) = Ew(θb). This implies (1.3).

The case of A + Q on Z
d , d > 1, with Q(n + p j e j ) = Q(n), is more delicate.

The criterion has been established in [23] using the point of view of Bloch varieties;
see Sect. 5.3 for some background. Here we simply mention that for this model, it is
equivalent to study

H̃(θ) = Dθ + BQ,

on �2(V f ), where Dθ is a diagonal operator and BQ is a convolution given by

(Dθ f )(u) =
( d∑

j=1
2 cos 2π

(u j + θ j

p j

))

f (u),

(BQ f )(u) =
∑

vq∈V f

Q̂
(u − vq

p

)
f (vq),

with Q̂(σ ) = 1
ν

∑
vn∈V f

Q(vn)e−2π iσ ·vn and u
p := ( u1p1

, . . . ,
ud
pd

).

Note that V f = ×d
j=1[[0, p j − 1]], so that ν = ∏d

j=1 p j . It is not difficult to show

that our operator H(θb) is unitarily equivalent to H̃(θ), with

H(θb) = F−1θ H̃(θ)Fθ ,

where Fθ : �2(V f )→ �2(V f ) is given by

(Fθ f )(u) = 1√
ν

∑

vq∈V f

e−2π i(
u+θ
p )·vq f (vq).

This equivalence is used in the proof of [23].
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Back to d = 1, let us examine (2.12) for Z with a 2-periodic potential Q•, Q◦.

Here H(θb) =
(

Q• 1 + e−2π iθ
1 + e2π iθ Q◦

)

. The eigenvalues solve (Q• − λ)(Q◦ − λ) −
(2 + 2 cos 2πθ) = 0, so E±(θb) = Q•+Q◦±c

2 , with w± = (
Q•−Q◦±c
2(1+e2π iθ )

, 1) and c =
√

(Q• − Q◦)2 + 16 cos2 πθ .
After some tedious calculations, we conclude that (2.12) takes the form

〈ψ,OpN(a)ψ〉 =
2∑

q=1
〈a(· + vq)〉

N−1∑

r=0

[
|P+
(rb
N

)
(Uψ)r (vq)|2

+|P−
(rb
N

)
(Uψ)r (vq)|2

]

= 〈a(·)〉
N−1∑

r=0

[ 8 cos2 πr
N + (Q◦ − Q•)2

16 cos2 πr
N + (Q◦ − Q•)2

|(Uψ)r (0)|2

+
8 cos2 πr

N

16 cos2 πr
N + (Q◦ − Q•)2

|(Uψ)r (1)|2

− 2(Q◦ − Q•)
16 cos2 πr

N + (Q◦ − Q•)2
Re(1 + e−

2π ir
N )(Uψ)r (0)(Uψ)r (1)

]

+〈a(· + 1)〉
N−1∑

r=0

[ 8 cos2 πr
N

16 cos2 πr
N + (Q◦ − Q•)2

|(Uψ)r (0)|2

+
8 cos2 πr

N + (Q◦ − Q•)2

16 cos2 πr
N + (Q◦ − Q•)2

|(Uψ)r (1)|2

+
2(Q◦ − Q•)

16 cos2 πr
N + (Q◦ − Q•)2

Re(1 + e−
2π ir
N )(Uψ)r (0)(Uψ)r (1)

]
.

(4.2)

Note that if 〈a(·)〉 = 〈a(· + 1)〉, this indeed reduces to 〈a(·)〉‖ψ‖2.
Let us study the expression in the limit |Q◦ − Q•| → ∞. We obtain

lim|Q◦−Q•|→∞
〈ψ,OpN(a)ψ〉 = 〈a(·)〉

N−1∑

r=0
|(Uψ)r (0)|2 + 〈a(· + 1)〉

N−1∑

r=0
|(Uψ)r (1)|2.

Here, (Uψ)r (0) = 1√
N

∑N−1
k=0 e

−2π irk
N ψ(2k) and (Uψ)r (1) = 1√

N

∑N−1
k=0 e

−2π irk
N ψ(2k+

1). It follows that

lim|Q◦−Q•|→∞
〈ψ,OpN(a)ψ〉 = 〈a(·)〉

N−1∑

k=0
|ψ(2k)|2 + 〈a(· + 1)〉

N−1∑

k=0
|ψ(2k + 1)|2.



Quantum Ergodicity for Periodic Graphs 1503

Fig. 6. The cylinder, Z�C4

4.5. Cylinders. Consider the Cartesian product � = Z�C4, where C4 is the 4-cycle.
Given any o.n.b. (φn) for A on the N -path, consider the bases

w1 = 1

2
(1, 1,−1,−1), w2 = 1√

2
(0, 1, 0,−1),

w3 = 1√
2
(1, 0,−1, 0), w4 = (1, 1, 1, 1)

and

κ j = 1

2
(1, ω j , ω2 j , ω3 j )

for AC4 , where ω = eπ i/2 and j = 0, . . . , 3. By Proposition 1.4, we know that the
orthonormal eigenbases of � approach some weighted averages.

If we choose the eigenbasis ψn, j = φn ⊗ w j , then by (1.9),

〈ψn, j ,OpN(a)ψn, j 〉 =

⎧
⎪⎨

⎪⎩

1
4

∑4
q=1〈a(· + vq)〉 if j = 1, 4

〈a(·+v2)〉+〈a(·+v4)〉
2 if j = 2,

〈a(·+v1)〉+〈a(·+v3)〉
2 if j = 3.

On the other hand, if ψ̃n, j = φn ⊗ κ j , then for j = 1, . . . , 4,

〈ψ̃n, j ,OpN(a)ψ̃n, j 〉 = 1

4

4∑

q=1
〈a(· + vq)〉.

This example shows that 〈ψ(N )
u ,OpN(a)ψ

(N )
u 〉 in general depends on the choice of

the basis, even for simple regular graphs, and it may or may not be the uniform average.
In fact, this gives the uniform average for the basis ψ̃n, j , but not for ψn, j , take for
example the observable

a(i + v1) = a(i + v3) = −1, a(i + v2) = a(i + v4) = 1,

where we parametrized the vertices of the cylinder Z�C4 by u = i + vq , where i ∈ Z

is the layer’s level and vq ∈ C4 = (v1, v2, v3, v4) are the vertices within it.
The problem with ψn, j is that it is concentrated on half the cylinder for j = 2, 3,

while ψ̃n, j is spread on the whole. The semi-delocalization of ψn, j is not detected by
locally constant observables.
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4.6. Boxes again. Back to Fig. 4, let us show that the graph becomes quantum ergodic
once we add a potential (Q1, Q2) which is copied across the layers, for any Q1 �= Q2.

First assume (Q1, Q2) = (Q,−Q), Q > 0. In this case we get the Floquet eigen-
values

E±(θb) = 2 cos 2πθ ±
√

(1 + 2 cos 2πθ)2 + Q2.

We now use the idea in Sect. 4.4: if for some s, w we have Es(θb + αb) = Ew(θb), then
λ = Es(θb + αb) solves both the characteristic polynomial of H(θb) and H(θb + αb).
Denote cθ := 2 cos 2πθ . It follows that for such λ,

λ2 − 2cθ+αλ− (1 + Q2 + 2cθ+α) = λ2 − 2cθλ− (1 + Q2 + 2cθ )

In turn, this implies

(cθ+α − cθ )(λ + 1) = 0.

So either λ = −1 or cθ+α − cθ = 0. The case λ = −1 never happens. In fact, if
λ = c +

√
(1 + c)2 + Q2, then one can easily show that there is an M such that λ ≥

−1 + Q
M > −1. Similarly, if λ = c − √(1 + c)2 + Q2, then we can find M such that

λ ≤ −1− Q
M < −1.

Thus, the only way the Floquet assumption can be violated is if cθ+α − cθ = 0.
Clearly, for a given nonzero α, only θ = 1−α

2 is possible. In particular, (1.3) is satisfied.
Renumbering v1 ↔ v2 in V f , the previous discussion also applies if Q < 0. Finally,

any (Q1, Q2) = (Q,−Q) + cQId for Q = Q1−Q2
2 and cQ = Q1+Q2

2 . If Q1 �= Q2, then
A� + (Q,−Q) satisfies (1.3), hence so does A� + (Q1, Q2).

5. Complementary Results

5.1. QUE and eigenvector correlators.

5.1.1. Quantum unique ergodicity We first investigate QUE for AZ and AZ2 .
For � = Z, taking LN with periodic conditions amounts to considering N -cycles.

OnC4N , consider the observable aN = (1, 0, 1, 0, . . . , 1, 0) and the eigenvector v(N ) =
1√
2N

(0, 1, 0,−1, . . . , 0, 1, 0,−1) with eigenvalue 0, where the string (0, 1, 0,−1) is

repeated N times. Then 〈v(N ), aNv(N )〉 = 0 while 〈aN 〉 = 1
2 , so (1.10) is violated.

OnZ2, thewhole sequencemay converge to a nonzero limit. If e(N )
� (k) = 1

N e
2π ik·�/N ,

take φ(�1,�1) = e(�1,�1) and φ(�1,�2) = 1√
2
e(N )
(�1,�2)

+ sgn(�1 − �2)
1√
2
e(N )
(�2,�1)

if �1 �= �2.

This gives an orthonormal eigenbasis with |φ(N )
(�1,�2)

(n)|2 = 1±cos 2π [(�1−�2)(n1−n2)/N ]
N2

if �1 �= �2. So 〈φ(�1,�2), aNφ(�1,�2)〉 = 〈aN 〉 ± 1
N2

∑
n aN (n) cos 2π (�1−�2)(n1−n2)

N . If
aN (n) = f (n/N ), we thus get

〈φ(N )
(�1,�2)

, aNφ
(N )
(�1,�2)

〉 − 〈aN 〉 → ±
∫

[0,1]2
f (x, y) cos 2π(�1 − �2)(x − y) dxdy.

This is nonzero for f (x, y) = cos 2π(�1 − �2)(x − y).
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5.1.2. No correlator universality We next consider the question of matrix observables.

On Z
2, consider standard basis (e(N )

� )�∈L2
N
and the basis (φ

(N )
� )�∈L2

N
defined in the

previous paragraph. Consider

KN (n,m) =
{
1 if n − m = (±1, 0),
0 otherwise.

Then 〈e(N )
� , Ke(N )

� 〉 = 2 cos( 2π�1
N ), so 1

N2

∑

�∈L2
N

|〈e(N )
� , Ke(N )

� 〉|2 →
∫ 1
0 4 cos2(2πx)

dx = 2.
On the other hand, 〈φ(N )

� , Kφ
(N )
� 〉 = cos( 2π�1

N ) + cos( 2π�2
N ), so 1

N2

∑

�∈L2
N

|〈φ(N )
� ,

Kφ
(N )
� 〉|2 →

∫
[0,1]2 cos

2(2πx1) + cos2(2πx2) + 2 cos(2πx1) cos(2πx2) dx = 1.
This implies there can be no quantity 〈KN 〉λ(N )

j
independent of the basis such that

1
N2

∑
j |〈ψ(N )

j , KNψ
(N )
j 〉 − 〈KN 〉λ(N )

j
|2 → 0.

5.1.3. Matrix generalization We finally sketch how to generalize quantum ergodicity to
matrix observables K . For simplicity we only discuss the case ν = 1. We may assume
V f = {0} up to translating coordinates. Here, H(θb) = E(θb).

For Step 1, we note that

(eit HN K e−it HN ψ)(ka) =
∑

r∈Ld
N

eit E(
rb
N )(UK e−it HN ψ)r e

(N )
r (k).

Here, (UK e−it HN ψ)r = 1
Nd/2

∑
n∈Ld

N
e−

irb
N ·na(K e−it HN ψ)(na). If R is the band width,

then (K e−it HN ψ)(na) =∑|τ |≤R K (na, na+τa)(e−it HN ψ)(na+τa). Denote K τ (na) :=
K (na, na + τa). Next, expand K τ (na) = 1

Nd/2

∑
m∈Ld

N
K τ
me

imb·na
N , where K τ

m = 〈e(N )
m ,

K τ (·a)〉�2(Ld
N ). Then we obtain

(UK e−it HN ψ)r = 1

Nd

∑

n,m∈Ld
N

∑

|τ |≤R
e−

i(rb−mb)·na
N K τ

m(eit HN ψ)(na + τa)

= 1

Nd/2

∑

m∈Ld
N

∑

|τ |≤R
K τ
me

i(rb−mb)·τa
N (Ue−it HN ψ)r−m .

From here, we proceed as before, replacing a(N )
m (vq) by

∑
|τ |≤R K τ

me
irb ·τa

N . There are
of course many simplifications because ν = 1. In the end, a is replaced by

K =
∑

|τ |≤R
K τ
0 e

irb ·τa
N e(N )

0 (k) =
∑

|τ |≤R
〈K τ 〉e irb ·τa

N ,
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where 〈K τ 〉 = 1
Nd

∑
n∈Ld

N
K (n, n + τ). Hence,

〈ψ,OpN(K )ψ〉 =
∑

k∈Ld
N

ψ(ka)
∑

r∈Ld
N

(Uψ)r
∑

|τ |≤R
〈K τ 〉e irb ·τa

N e(N )
r (k)

=
∑

|τ |≤R
〈K τ 〉

∑

k∈Ld
N

ψ(ka)ψ(ka + τa) =
∑

|τ |≤R
〈K τ 〉〈ψ,ψ(· + τa)〉 .

This is the same expression we stated in Sect. 1.2.2. Interestingly, by examining the
proof, we see that R can be taken to increase with N , like R � N δ with δ < 1

2d .

5.2. Bloch’s theorem. Weprove here a version of theBloch theorem for discrete periodic
operators. This result is well-known in the continuum, but doesn’t seem to have been
explored in our setting. We also comment on the corresponding eigenfunction average.

Theorem 5.1. Let H be a periodic Schrödinger operator over the infinite periodic graph
�, and suppose λ ∈ σ(H). Then we may find 
λ on � such that H
λ = λ
λ and

λ(ka + vn) = eiθb·ka f (vn), for some θ ∈ [0, 1)d and f on V f .

Similarly, if λ ∈ σ(HN ), we may find 
λ on �N such that HN
λ = λ
λ and


λ(ka + vn) = ei
jb ·ka
N f (vn), for some j ∈ L

d
N and f on V f .

Proof. H is unitarily equivalent to
∫
[0,1)d H(θb) dθ , so σ(H) = ∪ν

n=1σn , where σn =
Ran En(θb) = [E−n , E+

n ], see [7,15]. Hence, λ ∈ σ(H) implies λ = Er (θb) for some r
and θ ∈ [0, 1)d . Let ψ

θb
r be the corresponding eigenvector on V f and define 
λ(ka +

vn) := eiθb·kaψθb
r (vn). Then

H
λ(ka + vn) =
∑

u∼ka+vn


λ(u) + Q(vn)
λ(ka + vn)

=
∑

w∼vn


λ(w + ka) + Q(vn)
λ(ka + vn)

=
∑

w∼vn


λ(ka + �w�a + {w}a) + Q(vn)
λ(ka + vn)

= eiθb·ka
( ∑

w∼vn

eiθb·�w�aψθb
r ({w}a) + Q(vn)ψ

θb
r (vn)

)

= eiθb·ka(H(θb)ψθb
r )(vn) = eiθb·kaEr (θb)ψθb

r (vn) = λ
λ(ka + vn) .

The case of �N is the same since HN ≡ ⊕ j∈Ld
N
H(

jb
N ). ��

Note that on �N , we have ‖
λ‖2 = ∑k∈Ld
N

∑ν
n=1 | f (vn)|2 = Nd‖ f ‖2

Cν . If 
̃λ =
1
‖
λ‖
λ, then 〈
̃λ, a
̃λ〉 = 1

Nd‖ f ‖2
Cν

∑
k∈Ld

N

∑ν
n=1 | f (vn)|2a(ka + vn) = ∑ν

n=1〈a(· +
vn)〉 | f (vn)|2‖ f ‖2

Cν
. This average is in general not uniform unless a is locally constant. This is

in accord with Theorem 1.2.
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Remark 5.2. Note that theseBloch functions exist even in case of flat bands. For example,
in Fig. 4, instead of considering the localized functions (. . . , 0, 0,

( 1
−1
)
, 0, 0, . . . ), one

can consider the Bloch function e2π ik·θ
( 1
−1
)
, where k ∈ Z is the position. We see that

this delocalized function is also an eigenvector with the same eigenvalue −1.
This shows the limitations of this theorem; while there always exist an eigenfunction

with periodicmodulus (hencewell distributed over the crystal and delocalized), there can
also exist a lot of localized eigenfunctions for the same energy, which is the phenomenon
that quantum ergodicity investigates.

5.3. Bloch varieties and assumption (1.3). Let p(θ; λ) be the characteristic polynomial
of H(θb). Let z j = e2π iθ j . Bydefinition (2.4),we see that p(z; λ) is aLaurent polynomial
in z and polynomial in λ.

We say that p is irreducible if the only way to write it as a product of two Laurent
polynomials p(z; λ) = f (z; λ)g(z; λ) is to take f or g to be a Laurent monomial
Cza11 · · · zadd , for some a j ∈ Z, which are the units of the ring C[z, z−1, λ].

The important point in the previous definition is that the factors f, g should beLaurent
polynomials of (z; λ). For example, as we saw in (4.1), for Schrödinger operators with
a periodic potential on Z, we have p(z; λ) = �(λ) − z − z−1. In this case, studying
irreducibility is equivalent to considering the polynomial

z2 − z�(λ) + 1. (5.1)

In principle one can always write this as a product (z − g1(λ))(z − g2(λ)). However,
(5.1) is actually regarded as irreducible here because gi (λ) are not polynomials of λ,
cf. [13, p.19].

If a flat band Er (θb) ≡ c exists, then the characteristic polynomial is reducible, since
we then have p(z; λ) = (λ − c)g(z; λ) for some Laurent polynomial g(z; λ). Thus,
irreducibility implies pure ac spectrum.

Irreducibility entails that the Bloch variety of H ,

BH = {(θ, λ) ∈ C
d+1 : p(z; λ) = 0}

cannot be written as the union of two proper analytic subsets, except for periodicity. That
is, if �1 and �2 are two components of BH , then �2 = �1 + (k, 0) for some k ∈ Z

d .
Now, let us write

p(z; λ) = (−1)ν
K∏

m=1
pm(z; λ)

for some irreducible Laurent polynomials pm(z; λ). It is proved in [23] that if for all
nonzero α ∈ [0, 1)d and all m1,m2,

pm1(z; λ) �≡ pm2(ζ z; λ) (5.2)

as Laurent polynomials, where ζ = (e2π iα1 , . . . , e2π iαd ) and ζ z := (ζ1z1, . . . , ζd zd),
then (1.3) is satisfied. In particular, if p(z; λ) is irreducible and for any ζ �= 1 with
|ζ | = 1, we have p(z; λ) �≡ p(zζ ; λ) as polynomials, then (1.3) is satisfied. This is a
remarkable simplification as we now only need to study the condition for the character-
istic polynomial, instead of the eigenvalues which may be difficult to compute or may
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have complicated root expressions. This is in fact how (1.3) is established in [23], using
[22].

For comparison, to establish the criterion in general, we can always argue as in
Sect. 4.4, namely try to show that for fixed λ, there are not toomany z such that p(z, λ) =
p(zζ, λ). In case of irreducibility however, we just need to show that p(z, λ) �≡ p(zζ, λ)

as polynomials. This can be done for example by comparing the coefficients of λk or zk

for some k and showing they can only be equal on a set of zero measure.
In particular, the Bloch variety for periodic Schrödinger operators on the triangular

lattice and the EHM lattice is also irreducible [11], so one only needs to verify p(z; λ) �≡
p(zζ ; λ). The argument used in [23] applies to Schrödinger operators with a periodic
potential on the triangular lattice, so they are quantum ergodic as well.

It should be noted that irreducibility is not necessary for (1.3) to hold. For example,
the infinite ladder Sect. 4.3 has characteristic polynomial (z + z−1 − λ)2 − 1 = (z +
z−1 + 1− λ)(z + z−1 − 1− λ), hence reducible. Still, (1.3) is satisfied.

Even when the characteristic polynomial is reducible, criterion (5.2) applies, and it
can be much simpler to check than (1.3) directly.2
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