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Abstract: This article shows that for a large class of discrete periodic Schrodinger op-
erators, most wavefunctions resemble Bloch states. More precisely, we prove quantum
ergodicity for a family of periodic Schrodinger operators H on periodic graphs. This
means that most eigenfunctions of H on large finite periodic graphs are equidistributed
in some sense, hence delocalized. Our results cover the adjacency matrix on 74 the
triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrodinger
operators on Z¢. The theorem applies more generally to any periodic Schrodinger oper-
ator satisfying an assumption on the Floquet eigenvalues.

1. Introduction

We consider a sequence of finite graphs I"y that converges (in the sense of Benjamini-
Schramm) to some infinite graph I'. If we take the Schrodinger operator Hy = Ay +Qn
on £%(T'y), then quantum ergodicity is a spatial delocalization criterion stating that, in
a weak sense, most eigenvectors of Hy are equidistributed on the graph I'y.

The terminology comes from [10,20,24], where the ergodicity of the geodesic flow
on a compact manifold M of unit volume (meaning the classical particle’s free motion
covers the manifold uniformly) is shown to imply a quantum counterpart of ergodicity,
namely, the Laplacian wavefunctions v, are equally likely to be anywhere on M (more
precisely [ (x) |2 dVol(x) approaches the uniform measure dVol(x), when A gets large).
In that setting, quantum ergodicity is regarded as a quantum chaos phenomenon. In the
large graph limit however, quantum ergodicity should be regarded instead as providing
rich information on the spectral structure of the limiting operator Hr on the infinite graph.
As such, it is important to control all eigenbases of the approximating operators Hy,
or at least generic eigenbases. In fact, periodic operators always have “one” delocalized
basis, namely Bloch states, but this occurs even in scenarios of strong localization for
Hr.
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Quantum ergodicity for large regular graphs that are spectral expanders with few
cycles was first proved in [3], for the adjacency matrix Hy = Ay. In this case the
limiting graph T is the regular tree. Further results established that this is true in the
more general setting where the limiting graph is an infinite tree which is not necessarily
regular and Hy = Ay + Qn, assuming Hp has absolutely continuous spectrum [4].
This includes regimes of the Anderson model [5], as well as “periodic trees with periodic
potentials,” more precisely universal covers of finite graphs [6].

Note that all of these results require the Benjamini-Schramm limit to be a tree. Proofs
of quantum ergodicity, such as [3,8] and the four proofs in [1], fundamentally use the
orthogonality of different powers of the non-backtracking walk or a similar operator on
these trees, and the contribution of cycles is treated as an error term that can be shown to
be negligible. This tree condition is also a requirement for the quantum ergodicity result
in quantum graphs [2].

Along with this line of work, the first author of the present paper gave examples
showing that quantum ergodicity does not necessarily hold if one only requires the
graphs to be expanders, i.e. if the requirement of being tree-like is removed [16]. This
is still the case if we have the requirement that the Benjamini Schramm limit Hr has
absolutely continuous spectrum. Nevertheless, it remained open whether more specific
families of graphs satisfy quantum ergodicity.

In this paper we show that quantum ergodicity is in fact satisfied for a large family of
non-tree graphs I", namely graphs which are periodic with respect to a basis of Z¢. The
simplest example is the adjacency matrix on Z¢, but the results apply to large classes
of Schrodinger operators with periodic potentials on various lattices. These graphs do
not satisfy the expansion or tree properties of previous proofs. Therefore we need new,
different techniques to solve the problem in this case. To our knowledge, Theorems 1.1
and 1.2 are the first positive results establishing quantum ergodicity for a general family
of graphs I' having cycles.

By virtue of their homogeneity, it is quite intuitive to expect delocalization on peri-
odic lattices. Indeed, the spectrum is generally absolutely continuous, though flat bands
(infinitely degenerate eigenvalues) can appear [15]. The dynamics are also ballistic [7],
meaning the waves spread at maximum speed with time. Here we show that from a
spatial point of view, the behavior is quite rich:

e There is a simple family of periodic graphs which is quantum ergodic, i.e. the proba-

bility measure erl—N |1//,£N) (x) |28x is close to the uniform measure ﬁ erl—N Oxs
for most u € [N]. See Theorem 1.1. Here (wl(N), ...,1//1(\,N)) is any orthonormal

eigenbasis.
e In another class of periodic Schrodinger operators, we have partial quantum er-

godicity, in the sense that we no longer have |I/I,EN) (x)l2 ~ ﬁ, but the sum of

|1pb(,N) (x)|? over any periodic block V¢ +n is approximately the same (Theorem 1.2,
Proposition 1.4). This means that w;N) does not favor any particular block, but the
mass of 1//L5N) may not be uniform within the block.

o In other classes of periodic graphs, quantum ergodicity fails completely (Sects. 3.3
and 3.4).

Examples of these three types are .A on Z¢, on an infinite cylinder (Fig. 6), and on the
graph in Fig. 4, respectively.

If we focus attention to Z¢, the adjacency matrix on a sub-cube 'y of sidelength
N with periodic boundary conditions has the eigenbasis eﬁN) (k) = ﬁez” ikr/N yWe
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Fig. 1. 1d crystals. Left: 0 = 0, V¢ = {(0,0)}, v = 1, a1 = (1,0). Center: 0 = {Q1, 02}, Vy = {0, 1},
v=2,a; =2¢ =2.Right: 0 =0, Vy ={(0,0), (0.5, 1), (0.5, -}, v=3,a; = (1,0)

note that |e, N)(k)|2 = Nd is perfectly uniformly distributed on I'y. Similarly, for a
periodic Schrodinger operator H on a periodic lattice, the Bloch theorem ensures that
for any A € o(Hy), we can find an eigenfunction W, such that |\, ()% is a periodic
function (see Sect. 5.2 for a discussion and a proof of this result in our context). In this
paper, we study whether such eigenvector delocalization is satisfied for any eigenbasis
of the Schrodinger operator. The question is highly nontrivial as the multiplicity m A

of eigenvalues can grow with N. For example, for I' = Z? and N even, the multiplicity
of )»,(CN) = 0 is the set of all (ky, k) such that 2 cos % +2cos 27}\# = 0. This contains
all kp = % + ky, where k1 =0, ..., % — 1 is arbitrary. So here, m, (v > N.

k

1.1. Mainresults. LetT be aconnected, locally finite graph in some Euclidean space. We
assume I" is invariant under translations of some linearly independent vectors ay, . .., a4.
If we let

Vy ={vr, ..., 0}

be a fundamental cell containing v vertices, then the graph I' consists of periodic
Vs blocks of size v. More precisely, if for x = (x,...,xg) € R“ we denote Xq =

Z;i=1 x;a;, then
V() =74+ vy, (1.1)

where Z‘é = {nq :n € 7%). By “periodic blocks” we will mean sets of the form V¢ +n,.
Any u € V(I') takes the form u = |u]q + {u},, where |ulq € Z‘é and {u}, € Vy
represent the integer and fractional parts of u, respectively.

In the case of the simple lattice I' = Z¢ we may take a j = ¢; the standard basis and
V¢ = {0}. In general one can view (1.1) as expressing the vertex set V(I") as v copies
of the sub-lattices Zﬁ, shifted by vertices v, € V.

Having fixed V¢, we consider a Schrodinger operator H = A+ Q on I', where A is
the adjacency matrix and Q satisfies

Qv +a;) = Q(vn)
forv, € Vyandi =1, ..., d. The potential Q is thus periodic with at most v values.
Let 'y = U, cpo,.n—17¢ (Vs +nq) and Hy be the Schrodinger operator defined anal-

ogously on I'y, considered with periodic boundary conditions : if ¥ € ¢2(I'y), then
Y (v £ Naj) := ¥ (v). Our first result is the following.

Theorem 1.1 (Case v = 1). Let w,SN) be an orthonormal basis of £*(T'y) consisting of
eigenvectors of Hy. Suppose the fundamental cell has only one vertex, Vy = {0}. Then
for any observable a = ay : FN — C such that lay (v)| < 1 forall vand N, we have

Z)W) ™)~ (@] =0, (1.2)

LS IFNI
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where (WY, ayi™y = 3 1N () 2a(v) and (a) = 7 X a() is the uniform

vel'y vel'y
average.

This means that in a weak sense, we have |1//L5N)(v)|2 ~ ﬁ when N is large

enough. That is, the eigenvectors wLSN) are uniformly distributed. This theorem applies
to the adjacency matrix on Z¢ and the triangular lattice, see Sect. 4.1 for more graphs.

This statement is generally false for higher v, quantum ergodicity can be completely
violated for v = 2 without further assumptions, see Sect. 3.4.1. For general v, we make
an assumption on the Floquet eigenvalues and relax the conclusion. Let by, ..., by be
the dual basis, satisfying a; - b; = 276; ;. We similarly denote 0y = Zfl: 1 0ib;. Then
we have:

Theorem 1.2 (General case). Let WLEN) be an orthonormal basis of ¢*(T' ) consisting of
eigenvectors of Hy. Let H(0y) be the v X v matrix arising in the Floquet decomposition,

with eigenvalues E1(0y), . .., E\,(6p). Suppose that for any s, w € {1, ..., v}, we have
#{r e LY : Eg(0Xe) — B, (%) =0
lim sup { v B Nd) w(F) }=0, (1.3)
N_mome]]_&, N
m#0

where Ly = {0, 1,..., N — 1}. Then,

(i) For any observable ay : T'y — C such that lay (v)| < 1 for all v and N, we have

> [, au) - ™. opx@v™| =0,

lim
N—o00 IFNI

where Opn(a) is an explicit operator (see (2.12)).
If a = ay is real-valued, we have

min (a(- +v,)) < (YN, Opn@y (V) < max (a(-+ vg)), (1.5)
VgEVF

vy eVy

where (a(- +vg)) = # de‘?’v a(ky + vg).
(i) If a is locally constant, in the sense that it takes a constant value on each periodic
block, a(v, + kq) = a(vy + kq) VYn, then

1
W, opn@yM) = (a) = 3 al). (1.0
TNl o

Specifically, this is true if v = 1.

Point (ii) holds more generally if {(a(- +vy)) = (a(- +v1)) Vg, i.e. the average of a
over each sublattice ]L;iv + v, of I'y is the same.

This theorem applies, for example, to the adjacency matrix on the honeycomb lattice
(Sect. 4.2) and to periodic Schrodinger operators on Z (Sect. 4.4). As we discuss later,
it actually applies to periodic operators on Z¢ for all d, this relies on a separate work.

Assumption (1.3) says in particular that the Floquet eigenvalues should not have a
short period and should not “hesitate” while tracing the band, going back and forth too
often at exactly the same speed. More precisely, for any nonzero « and any s, the set

Ags =10 €0, D)9 : Es(Bp +ap) = E5(6p)} (1.7)
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should be of zero measure. For example, for d = 1, we should not have E(0p) =

cos4m6, as then for o = % we get Eg(Op + ap) = Es(6p) for all 6. Assumption (1.3)

can only hold if there is no point spectrum: if a flat band exists, it corresponds to a

constant E, for some s, so {r € ]L‘]iv DEg(R) — Eg(5%) =0} = ]L?v, violating (1.3).
In order to prove Theorem 1.2, we average the test function a by considering

1 T . .
- / e N ge=1HN g (1.8)
0

In [1], this is done for the treelike case by considering limr_, o, limy — oo of (1.8).
However, local analysis of this limit becomes difficult in the case that there are many
cycles. Instead, in our case, we take the time limit first, taking advantage of the periodicity
of our operator. We show that in the limit 7 — oo, (1.8) converges to 0 outside of the
subspace of phase space given on the left hand side of 1.3.

In an earlier version of the manuscript we left as an open problem whether assumption
(1.3) is satisfied for Schrodinger operators on Z¢ with a periodic potential. This has since
been solved by Wencai Liu [23] using algebraic and analytic properties of Bloch varieties.
See Sect. 5.3 for background and further criteria. In particular, [23] and Theorem 1.2
imply the following.

Corollary 1.3. Schrodinger operators with periodic potentials on the triangular lattice
and on 74 are quantum ergodic for any d.

Theorem 1.1 only applies to the adjacency matrix on regular graphs of even degree
(as follows from the assumption v = 1, see Sect. 3.1). The following proposition uses
Theorem 1.2 to provide concrete applications to non-regular graphs endowed with a
periodic potential.

Proposition 1.4 (Cartesian products). Suppose that " is a Z‘;—periodic graphwithv = 1,
and let G be any finite graph, endowed with some potential Q. Then the Cartesian
product ' O GF is a periodic graph with fundamental cell Vy = Gp and periodic
potential Q copied across the G layers. Moreover, assumption (1.3) is satisfied, so
(1.4) holds true.

If for I' O GF, the orthonormal basis is of the form Y, j = ¢, ® wj, where (¢y) is
an orthonormal eigenbasis for Hr, and (w;) is an orthonormal eigenbasis for Hg .,
then

(W OPN@ Y ) = D {al+ ) [w; (g2, (1.9)

v €GF

where (a(- +vy)) = ﬁ deﬂ’v a(kq +vg).

Theorem 1.2(ii) shows that for most u, |I/IM(N) |2 behaves as a periodic function across
the blocks, but the distribution of its mass within each block may be non-uniform. Loosely
speaking, one has the picture that most eigenfunctions behave like Bloch functions. More
precisely, for most u, quevf WLEN) (kq + vq)|2 ~ ﬁ, for any k.

On the other hand, (1.9) shows that the mass distribution within each block is not uni-
versal and can depend on the eigenbasis in general (see Sect. 4.5 for a concrete example).
Such basis-dependence never appeared in the tree models of [1,4]. There, the theorems

)‘4 .
Img,/ (0,0)

established that [\ (v)[? ~ ——Ev 00D
Yvery Mgy (0.9)

, where g3, is the Green’s function of the
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universal cover of I'y. In particular, it is certainly independent of I/f)E}jv). Here we have

a different phenomenon which can be regarded as partial quantum ergodicity.
Such partial quantum ergodicity can be violated even in dimension one :

Proposition 1.5. There exist Z-periodic graphs which violate (1.4).

We give examples in Sects. 3.3 and 3.4. These graphs have point spectrum and (1.3) is
not satisfied. It is natural to ask if assumption (1.3) can be dropped if we simply assume
that Hr has pure ac spectrum. We construct a counterexample in Sect. 3.4:

Proposition 1.6. There exist periodic graphs with purely absolutely continuous spec-
trum which are not quantum ergodic.

Remark 1.7. Instead of considering the whole spectrum in Theorem 1.2, we can instead
suppose that (1.3) is satisfied in some interval I, then the conclusion (1.4) now holds

if we average over A,(,N) € I instead of u € I'y. This is similar to what is done in [4]
for the high girth regime. In other words, if part of the spectrum is well-behaved, then
the corresponding eigenfunctions are quantum ergodic. This is helpful for example for
graphs having flat bands but satisfying (1.3) away from the degenerate eigenvalue. Then
our theorem applies to these regions. For the technical details, see Remark 2.5.

This remark applies in particular to Schrodinger operators with periodic potentials
on the Lieb lattice and decorated lattice, recently studied in [12]. These models have
flat bands in general. The characteristic polynomial of the Floquet matrix thus takes
the form p(z; 1) = s(A)q(z; 1), where z; = e2m0i g(0) = ]_[7':1()\ —Aj)and A; are
all the flat bands. The results of [12] show that for each fixed A, ¢ is irreducible as a
Laurent polynomial in z, except for finitely many A. The argument in [22, Th. 2.4] then
implies that, after removing the flat bands, the Bloch variety is irreducible. This allows to
verify the assumptions of [23] to conclude that quantum ergodicity holds in any spectral
interval avoiding the flat bands.

Remark 1.8 (Convergence rate). The proof shows that the variance on the LHS of (1.4)
is essentially bounded from above by the fraction in (1.3). For v = 1, we bound the
latter by % in Sect. 3.1, so the speed of convergence is at least % in Theorem 1.1, which

is significantly faster than the logarithmic rate @ of the tree case [1,3,4].

Remark 1.9. The fact that a perfectly homogeneous graph like the one in Fig. 4 supports
localized eigenfunctions is quite counterintuitive. This topic is further analyzed in [18].
Based on physics literature, it is expected that such “flat bands” disappear after adding
a generic periodic potential/edge weight and the spectrum becomes purely absolutely
continuous. In this spirit, we show that the graph in Fig.4 becomes quantum ergodic

once we add any potential ( g;) with Q1 # Q», copied across the layers.

1.2. Stronger statements. The following two paragraphs illustrate that one cannot obtain
much stronger results than the ones we provide.

1.2.1. Quantum unique ergodicity In [3], it was suggested to check whether

lim  sup (W™, any™) = (an) =0 (1.10)
Nooorgj<iryl !
as an indication of quantum unique ergodicity (QUE). This would mean that we can
avoid the Cesaro average in (1.2). This criterion is too strong however, at least in our
context, in fact it is already violated for the adjacency matrix on Z?. See Sect. 5.1.
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1.2.2. Eigenvector correlators In [1], instead of taking observables ay (n) which are
functions on I'y, a quantum ergodicity theorem was proved more generally for band ma-
trix observables, that is, Ky (n, m), where Ky (n, m) = 0ifd(n, m) > R. It was shown

(in Cesaro sense) that (w(N) KNw(N)) (KN)»;» where (Ky)) = IFNI Zn m KN
(n,m)®, (d(x, y)) and ®, is the sphencal function of the tree; it has an expllclt form in

terms of Chebyshev polynomials. Since (1//(. ) , K 1/f(.N) = Zn w Kn(n, m)w(N)(n)

I/f(N)(m) this shows that the eigenfunction correlator w(N) (n)lp(N) (m) ~ <I>;L (d

L
Tl

This stronger statement fails in our case; 1//](.N) (n) 1//](.N) (m) is not universal, it depends

on the basis, even for Aq. See Sect. 5.1.
Still, our proof can be generalized to matrix observables Ky . If v = 1, we show that

(n, m)), a universal quantity; this generalizes the statement that |1/f/(.N) (n)> ~

1
~a 2 1w ki) — <K>¢;N>\2 -0,

jeLd,
where (K )y = ﬁ ZneLd Z\r|<R K(ng,ng+1ta){¥, ¥ (-+14)), and R is the width of

the band matrix. So in a weak sense, 1/f(N)(n )w(N)(na+ra) Ld(l//(N), 1//;N)(-+ru))
for any n € Z4.

1.3. Structure of the paper. We prove the general Theorem 1.2 in Sect.2. In Sect. 3.1,
we prove that (1.3) is satisfied for v = 1, thereby proving Theorem 1.1. We then discuss
Cartesian products in Sect. 3.2 and prove Proposition 1.4. In Sects. 3.3 and 3.4, we dis-
cuss graph decorations, tensor products and strong products of graphs, giving examples
of graphs violating quantum ergodicity. In Sect. 4, we give more specific examples sat-
isfying quantum ergodicity. Finally in Sect.5, we discuss complementary results such
as quantum unique ergodicity, eigenvector correlators, the Bloch theorem, as well as
further criteria for checking (1.3) based on Bloch varieties considerations.

2. Proof of the General Criterion

Here we prove Theorem 1.2. The argument is very different than the proof for trees

[1,3,4]. We will use some ideas from [14] where ergodic averages for the continuous

Laplacian —A on the torus R? /Z¢ are studied in the high frequency limit.
Throughout, N >> 1 is larger than the maximum adjacency range.

2.1. Step 1. Since e~ (N = =itk y (N - (N) ity g =itHyy 3y, (V) -y, (N)
aw,gN)) and we have

1 T . .
i ayl ) = (. [ e ), @D
0

In the spirit of Egorov’s theorem, we show the sandwich el//V ge =N can be ex-
pressed as a kind of phase space operator.
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Let L = [0, N — 1]¢ and define U : €*("y) — @14 €*(Vy) by

1 iy,
(U on) = w7z D & N oy (on +ka). 2.2)

d
kel

Lemma 2.1. The operator U is unitary and

UHyU ' = & H(J—"), (2.3)
jerd, N

where H (0y) acts on Ez(Vf) by

HOo) f(wn) = Y _ e f({u}q) + Qvn) £ (). 24)

U~vy

The sum is over the vertices u connected to v, in the whole graph I" (not just V)
and we have u = |u|q + {u}q, with |u]4 € Z‘é and {u}q € Vg, cf. (1.1).
27ij-(k'—k)

Proof. We have ||U||> = ||¥|* (expand and use Zjem e TN = N8 4 and kg -
. . _ k..o
Jjo = 2mk-j).Next, U 1((g(,~)j€L(11V) = v, where ¥ (kq+v,) = ﬁ Zrd‘% gr(vy)eike W .

In fact, (#e_ik” /Ny jeld, is an orthonormal basis of Ez(L‘I{,). So for such iy we have

1 _ie g T 1 —2mik |
U) (o) = N Zk,ré]Lij e N g (et N = Zkél‘fv(We NS, g-(”n))p([y](])

ijp | . .
(#e_ N k“) = g;(v,). This proves unitarity.

Next, for v € D(Hy), UHNY = UAnY + UQy, with UQy = QU since
(OV) (v +kq) = Q(vn)¥ (v, + kq) by definition of the periodic potential. On the other
hand,

1 —ijp
AN ;) = gz Do e ™ b 30 dr(w)

kE]L}dv w~v,+kg
*l_]’
_ ﬁ S e ke 3 ko)
kelg, U™~vn
ijp-lula 1 —ijp(ka+lula)
=Y eV agm e N Ulkat lufo+lulo).
U™vn kelg,

We claim the inner sum is simply (Uv/) j ({u}q). Infact, for fixed u, denote r = |u] € Z-.
Then the second sum has the form ) _, eLd, f (k+r). We partition L‘fv into < 29 rectangles
A; such that A; +r + (™) = B, B; € LE and £""" € {0, £N}. Roughly speaking,
this says that A; +» = B; mod NZ4. For example, if r = (3, —2, 0), we may take A| =
[0, N—4]x[[2, N—1]x [0, N—1],Ay =[N—-3, N—1] x[2, N—1] x [0, N —1]],
A3 =0, N —4] x [0, 1] x [0, N — 1], Ay = [N —3, N — 1] x [0, 1] x [0, N —1]]
and (N-D =0, ¢N:2 = (=N, 0,0), NI = (0, N, 0), tNH = (=N, N, 0). Clearly
(B;) partitions ]L?\,.
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Since ¥ is chosen to satisfy periodic conditions, } ;4. fk+7) = 3y cp f(k)
for each i, hence ZkeMv flk+r) = Zke]Ld f (k). As r is arbitrary, we have shown

that (UANY) ;o) = X, € 5 U ) (the). Thus, (UHy W) ; = HOEUY),.
This completes the proof. a)

Note that H(fp)isav x v matrix with orthonormal eigenbasis fsgb and eigenvalues
Es(0p),s =1...,v.Let Ps(0p) = 6 fge" be the corresponding eigenprojections.
Let erN)(k) = 1 e2mikr/N leen F € KZ(}L%? X V2) we now let

OpN(F)Y (ko + ) = Y Y (UY), (w)Fk, 7500, v0)eM k), (2.5)

d (=
reLNz 1

The “quantization” (2.5) is such that if F(k,r;v,, v¢) = F(kq + v4)8y,,0,, then
OpN(F)Yy = Fr. The presence of §,, ,, may seem unusual; indeed it would not be
here if we were dealing with just the adjacency matrix on Z¢. The presence of 8v,,vp 18
related to the fact that the Floquet transform (2.2) is only a partial transform in the sense
that it keeps v, fixed.

Define

rp+m
Frk,rive, v) = 3 Z / STE(E) £, (58] 4

meLd, 4.5, w=1

x By (B ) e vl ) Pu () g, vl . 2.6)

1mb oq
where am )(vq) = (0 Nd/2 ,a(vg + Oa))ez(]Ld are the Fourier coefficients of a.

Lemma 2.2. We have

1 T . .
= / eV ge= AN 4t = OpN (Fr).
0

Although the definitions are somewhat long, the meaning is straightforward: this
sandwich can be expressed in phase space. Fr “smooths” the function over different
eigenvalues of the phase space operator, and Opy gives the averaging under which this
occurs.

Proof. First, we expand ¢ in order to relate it to the form of OpN(FT).

Yika +va) = (UTUP) ko +v0) = Y (UP)r (wa)el™ (k).

d
relfy

Recalling (2.3), we obtain

(Hy ) ka+vn) = Y [H(T) W) [ne o).

d
relly
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Knowing this, we can now examine the operator e!#Vge™#HN and expand over the
various (vy, vg). This yields

@M ae T V) (ko +ug) = Y 3 T (v, v) (Uae N ), (v)e™ (k).

re]L‘]{, q=1

. 1 (N) img-na
Expanding a(vg +na) = w7 ZmeIL‘,{, am ' (vg)e N, we have

(Uae_HHNilf) (vg) = Nd Z Z e - nua(N)(v )e TR (e_llHNlﬂ)(Uq"‘na)

ne]Ld me]Ld

1 .
= an 2 AU Y (vy).

d
meLf,

Here, r — m is understood in (Z/NZ)?. More precisely, if r; — m; is negative for some
i,itis replaced by N + r; — m; (this uses e =271/’ = 1), The last term expands as

mp

W), (vg) = [T W), (vg)

B Z —irH (e >(Uq,w)(U1//), m(ve).

Moreover, we can write et/ %) — Yoy et E:O) P (0y) through its eigendecompo-
sition. Applying this gives us

i » 1 ’ o b
Mae Iy ket ) = g 3 Y SERR(G )

r,meIL‘]jv q.ts,w=1

xa,%N)(vq)e_'

Pu (572 ) g vOW ) )N )

%
_ 2/2 Y CHMECF-EGh
N

r,me]L’I{I q.t.s,w=1

rp + mp
Ps( N )(Una Uq)

xa™ (vg) P ( ©) (g U, (el )

with  +m again understood in (Z/NZ)?. Since N}, 7 efivn)l k) = N (k)e(N) (k), we get

T v
% / e"Mae™™ dty (ko +va) = Y Y (U, o) Fr(k, r5 vp, vp)e™ k),
0

d (=
re]LNz 1

with Fr in (2.6). Therefore, according to (2.5), % fOT el N ge~itHy g = Opn(Fr). O
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2.2. Step 2. Now we observe that if Eg("372) — Ey, (%) # 0 for some m € ]L‘f\, and
s, w € {1, ..., v}, then the corresponding term in F7 vanishes as T — oo. So define

%
rp +m
b(k,r, vy, v) = Z Z 1s, (m,s, w)Ps( o N b)(vn, vg)
meld, 4.5 w=1
N "o N
xafl" (vg) P (37 ) vy ve)eft (), @)

where S, = {(m, s, w) : Eg("5) — E,, (%) = 0}.
1

Lemma 2.3. We have convergence in norm,
lim || OpN(Fr) — Opn (D) 375 = 0.
Proof. We use the special basis ¢>,(11\2 = e,N) ® 8y, of £2(Vy). That is, d)r Ve (ka +vy) =
e (084, (vg) = 80, (v). BY (22), U b)) (wg) = (€5, ™) 121080, (vg) =
8,r08u, (vg). By definition (2.5), this implies OpN(F)¢,,w (kg+vy) = F(k,r, vy, vg)e£N>(k).
Note that || F (-, 7, %, vg)elV (- My =

k e IL?V and * runs over v, € Vy. Therefore,

10PN (F)lizrs = Y > I0pn(F)¢ )17 Nd > ZuF( rox vp) 2

1 2
~7 | F (-, r, %, vg) ||£2(FN), where - runs over

reld, ¢=1 reLy, ¢=1
(2.8)
To prove the lemma, we should thus examine the norm of the symbols,
2
| Fr(orow ve) = b rx, ve)”
TIE;(“F)—Eu ()] _ |
DD S URENLA LS
oy Pyt [E, (%) — E, ()]
2
rp +myg rp
x Py () o, vq)a;N><vq)Pw(ﬁ)(vq, v)es) () H :
This implies that
1 v
| OpN(Fr) = OpN(B)lliys = 757 D D
r,meld, =1
i S TTE () —E, ()] _
1gc(m, s, w)
g.s,w=1 ' ES(M%) - Ew(rﬁb)
2
rp +mp
XPS( N )(* vq)a(N (vq)Pw< )(vqa ve)
Cv
< CN,a
[— T2 b

! Tt is worthwhile to note that in the case of trees [1,3,4], we usually evolve the dynamical system in time
T, essentially up to the girth of the graph, take the size of the graph N — oo, then finally take 7" — oo. Here
we first consider the equilibrium limit in 7', then take N — oo in the end of the proof.
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where Cy , is finite for any N and is independent of T'. Taking T — oo yields that
Opn(F7) — Opn(b) in HS norm. 0O

2.3. Step 3. We are thus reduced to studying Opn (b) with b given in (2.7).
Note that Z;zl P,(0) = id, so Z;zl Py(0)(vi, vj) = 8y;.v;. Therefore, if we
remove the 1g, term, (2.7) becomes

D il Waely) ()8y,,0, = alka + )8y, v,

d
mely,

and the corresponding Opy applied to v simply gives a(kq + v,) ¥ (kq + v,). Hence,
Opn (D) is just ayr but with many suppressed Floquet modes.

Let @ be the part of b corresponding tom = 0. Leta = a — Opn(a) andc = b —a.
Then collecting the previous steps, we have

D M ap it =3 tim 1™, Opn(Fr =@y, )12

uel'y uel'y
< Y dim 23 Opn (¥ VI + | Opn (Fr — by |1%)
wely T—o00

= 2|l OpN () lI%-

Proof of (1.4). Tt now suffices to show that Nlim |F]T” Opn(0)l|3;¢ = 0. Using (2.8),
— 00

1 2 _ 1 v . 2
we have m” OpN(C)”HS — WN2d Zrel]ﬂdv ZZ:] ”C( s Fy o, UK)HEZ(VN)'
‘We thus consider

F XYY Y i

re]]_f}{] =1 "m#0gq,s,w=1

2
rp +m ,
Ps( b = b)(*, vq)a'%N)(vq)Pw (Nb)(qu W)er(nN)(')H

1 v v v
=3 L X2 X dsmsw

re]L‘,{, =1 m#0n=1 q,s,w=1

PS(”’ jvm")(un, v)a™ (v) P (%’)(vq, w)(z

Denote Py := Py("37), P, := P, () and expand the square modulus to get

T XXTY Y s w P el ) Pug, v0)

rdl‘(liv =1 m#0n=1gq,s,w,q’,s",w'=1

1, (m, s', w') Py (g, vy )asy’ (vg) Puy (Vg7 ve). (2.9)
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But

ZP (Vn, vg) Pyl (vn,vq>—Z(P 80,) (W) (P8, ) () = (Pyy,, Psbu,).

q
n=1 n=1

Similarly, 22}:1 Py (vg, ve) Py (Vg ve) = (Pudy, Pw/(qu,).If E; £ EgorEy # Eyy,
these scalar products vanish. So (2.9) is concentrated on the s’, w’ for which Ey = E;
and E,y = E,, in which case 15, (m, s, w) = 1s,(m, s’, w’) and we obtain

1 v
T 0 2 Asmos w)Pody, Pad)ag’ (v) (Pude, Pusa, ) (i)

reld, m#0q.s,w.q’s" w'=1

o XY e ¥

me]L‘l q.9'=1 rE]Ld
myé()
v

Z 1A (r s, w)( qua Psavqﬂpwavqy Pw’(qu/)v

s,w,s’ , w'=1

where A, = {(r,s,w) : Eg(%3) — Ey(%) = 0} and we used that (m, s, w) €
Sy = (r,s,w) € A,. By hypothems (1.3), we know that

A
lim  sup % =0. (2.10)
N—o0 d

mely

m#0

Since [{ P, vq,, Psdy,)| < 1, it follows that the above is

on(D 55 Z Z a® (v,)a™ (vg)

m q,q'=1
v

1
=on(D4g D {aCa+vg),aCa+vg)pqg, = on()
q.q'=1

using |a(nq +vp)| < 1. This completes the proof of (1.4). O

2.4. Step 4. Let us now explore the main term a. Recall that it corresponds to m = 0
in (2.7). Having (0, s, w) € S, means that E;(55) = E,,(%5). This is automatically true
for w = s. Thus,

a= Z asN wy)elV () Py ( )(vn, vq)< (;)(vq, ve)+ Y Pu,(%)(vq, U())

q,s=1 wH#s
EY EU

I S T o
q s ’ s s ) .
= taC+u) Y Pe (5 ) v P, (50 w0 @11
q=1 s=1
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where (a(- +vy)) = # Znel‘;’, a(ng +vy), v/ < v is the number of distinct eigen-
values of H(6p) and Pg, (6p) = > Ey—E, Py, (0p) is the orthogonal projection onto the
eigenspace corresponding to Eg(0y). In general, v’ is independent of 8y, except perhaps

on a subvariety of dimension < d — 1, hence of measure zero, as follows from [19, Th.
3.5.3].

Proof of (1.5)—(1.6). By the definition of Opy, we can write out

(W, Opn@y) = Y Y Y lka + v)[OpN @Y 1(ka +v2)

ke]]_f}(] v €Vy
v
=D > 2 WU vave) Y Wlka+ e k).
un€Vy reld, =1 keL,

But Y, ¥ (ka + vl (k) = (U), (v,). Thus,

(U, Opn@VY) = Y > Y (U (w) (UY), w)a(r, vy, ve)

v €Vy rE]Lf] =1

=33 3N P (v v (WU, (00)

q:lre]]_‘?/ (=1 s=1

> Pe, (g, v) (UY), (Wa){al- +vy))

n=1

= Z a-+vy) Y Z[PEs(Ux/n 1) [P, (U)1(vy) -

re]Ld s=1
where P, = Ps(%). We have shown that
w.om@y) = Y tac+v) 3 Y |[Pe (L) wwr]eo| . @12
g=1 re]L?v s=1

In the special case where {(a(-+vy)) = {a(-+v)) forg =1, ..., v, the above reduces
to

(a(-+v0) D Y NP, UG = (aC+v) Y IUP)Ies = (@l +v)) ¥

d s=1 d
rellfy, relly,

In particular, ¥ = 1// glves the uniform average (a(-+v1)) = Nd Zn eLd, @ (ng+vy) =

ﬁ ZUEFN a(v). This proves (1.6). In the same way, if a is real-valued, we deduce (1.5)
from (2.12). O
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Remark 2.4. (Necessity of the assumptions) In the previous proof, the only inequality
that we used is in Step 3, when bounding the variance by the Hilbert-Schmidt norm
of the evolved observable. This bound is standard in proofs of quantum ergodicity, it
seems unlikely that we can avoid it. On the other hand, the decay of the Hilbert-Schmidt
norm almost necessitates (1.3). In fact, if we can choose the normalized eigenvectors

it & corresponding to E(0y) such that for some vy, we have fs (ve) # 0 for all s, 9,
then by taking a(kq +vy) = e N sz(vq) in the calculation preceding (2.10), we see
that %’Z' = oy (1) must hold Vm # 0 for the HS norm to go to zero.

Remark 2.5. The main theorem holds more generally if instead of summing over the
whole spectrum in (1.4), we sum over eigenvalues in some interval /, in which case we
only need (1.3) to hold on /. To see this, we slightly modify the proof as follows : in (2.1),
we insert a spectral projection x;(Hy), so the operator is now % fOT el N ge=itHN 5,
(Hy)dz. In (2.6), we replace the sum over all w by the sum over Ew(%) € I.In
fact, by adding the spectral projection through the proof of Lemma 2.2, we now get
Ue ™y (HYY)—p = e HOT™) y (H (5528 )) (U ), . Consequently, the lim-
iting symbol b now also sums over E w(%’) € I instead. The proofs carry over mutatis
mutandis.

In the end, the symbol @ in (2.11) now sums over E ( ) € 1. This gives the illusory
impression that the weighted average changes, which of course makes no sense as the

term (Y, (V) m//(N)> should approach a fixed quantity whether the Cesaro mean is over

the whole spectrum or not. However the quantity (W;N), Opn(a) wng)) is indeed the
same as before. In fact, if we know that A,SN) € I, we may again insert a projector so that
W), in (2.12) becomes (U xr (Hy)Wi')r = xi(HE) Uy, so the sum
over all Eg in (2.12) reduces to the sum over ES(%,‘“-) € I, which is what we obtained
when averaging over /.

Remark 2.6. In this paper we always take Hy with periodic conditions. We believe these
to be the most natural conditions to approximate the infinite model, avoiding boundary
effects from finite truncations. However, it is also interesting to ask if the result remains
true if we consider Hy with Dirichlet conditions instead. In this case our Schrédinger
operater Hy on I'y is the operator on the induced subgraph I'y C T'. This has been
studied e.g. in [9].

In the proof, we use the periodic conditions to diagonalize Hy in Lemma 2.1. This
property no longer holds for Dirichlet conditions if we take the same U. A natural
candidate is to consider a discrete sine transform. For simplicity, consider H = A on

I =281 s\ ) = [T s (), with s¢(r) = (/527 sinw CRED for ¢ =
0,...,N — 1, consider for j € L4,

Sy =My = > sV v k).

ke]Ld

This operator is unitary. Using that (sj.N) ) are eigenfunctions of Ay with eigenvalue
N +1 N N
wi =L 2cos I, we see that (SANY); = (53", Anyr) = 'V Sy,
However, if we use this sine transform S, we need to replace all later occurrences
of efN)(k) by s,(N) (k). This becomes difficult because these sine functions are not as
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well-behaved as the exponentials used in periodic conditions. Namely, s,(,,/\g, is not a

multiple of s,(nN)s,gN). This creates complications, the proof does not carry over directly,

and further work should be done to check whether or not quantum ergodicity holds for
Hy.

3. Special Classes of Graphs

In this section we discuss the validity of assumption (1.3) for various classes of graphs.
We start with graphs having v = 1, proving Theorem 1.1. We then discuss Cartesian
products, proving Proposition 1.4, and conclude with graph decorations, tensor and
strong products, proving Propositions 1.5 and 1.6 along the way.

3.1. Scalar fibers. Step 4 in Sect. 2.4 shows thatif v = 1, then (¥\", Opn(@y¥\")) =
(a). To prove Theorem 1.1, it remains to establish (1.3) in this context. Here of course
w=s.

If v = 1, then the graph is 2 D-regular for some D € N. In fact, Vy = {0} for some
o,and ' = Z‘é + {o}. If u ~ o, then u = |u]4 + 0. By translation invariance we have
U —ng ~ o — ngq. Applying this to ny = |u]4 gives o ~ o — |u]q. We may thus
arrange the neighbors of o into N;f UN,~, where N} = {0 +nq} and N, = {0 — ng},
for some D nonzero integers ng, = Zfl: (nia; with n; € {0, 1, ...} depending on the
adjacency rule (in case of lattices with only nearest-neighbor adjacency like I' = Z¢,
then n; € {0, 1}). Since the rest of the graph is just a periodic copy of the star around o,
we see it is 2D-regular.

If v = 1, then the potential Q must be constant. We assume without loss of generality
that Q0 = 0.

Proof of Theorem 1.1. The v x v matrix H () is now just a scalar given by

D
H(0) =Y e%ltle =23 cos276 - n'?)

u~o p=1

forsome n, ... n®P ¢ {0,1,... }d \ {0}. We only have one eigenvalue here given by
E(0y) = H(6p). So we should show that for any fixed m # 0, the equation

rp +mp rp D (r +m) -n® r-n®
E(—)—E(—):22(005(271—)—005(271 )):O
N N o N N

(3.1)

has o(N?) solutions in r € Lj{,. By the sum to product formula, we are led to consider
the zeroes of

fm (%) = i sin (nm .]:]1(17)> sin (n W) (3.2)

For this, we consider the projection of the surface A,, = {r € ]L‘f\, : fm(%) = 0} onto a
vector ¢ € ]Lj{, to be specified. More precisely, given j € L, we write j = r + y¢, for
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re¢ltandy = H¢H2 Note that y € [0, N — 1]since 0 <Y ¢ ji < (N —1) Y ¢ <
(N—-1) Zd)lz for ¢ € ]L‘fv. We will show that for fixed r € ¢, there are at most M
points y such that fm(ﬁ) = 0, with M independent of N. By varying r € ¢, it follows

that [A,,| < M|~ < MN9~1 = o(N9) as required.
‘We therefore consider the function

g () = S +36) =0

for x € [0, 1). Denote

m .n(p)> Q@r +m) -n®

Bp=n————,  y,=2¢-n".  (33)

ap = S (7‘[ N

Then

D D
1 L L
8m.r(x) = E apsin(B, + wypx) = % E a,(ePrerrt — e=iPpe=imrpxy
i
p:l p:]

Setting z = e this reduces to

D
Gmr(2) = Z(ppzyp + 02
p=1

for some p,,, ,o;, € C. By definition (3.3), y, > 0Ois an integer. We thus seek the solutions

of gm.r(z) on the unit circle. We have g, (z) =0 1ffZ —1(op e +,o 7)) =0,

where y, = max, y,. This is a polynomial in z. By the fundamental theorem of algebra,

if this polynomial is nontrivial, it has at most M = 2max, y,, roots. In turn, we have
at most M solutions x; for g, (x) = 0, and the proof of (2.10) is complete (recall the

discussion after (3.2)).

So it remains to check the polynomial z%+g,, ,(z) = Z[[,):l (ppz?**7r + p;,zy*_”ﬂ) is
nontrivial. For this, we check that

1. Atleast one p, is nonzero.

2. We can choose ¢ such that y,, # 0 for all p and y,, # y,y for p # p’. This way, no
two terms in the sum have the same power, so no cancellation can occur. And since
no ), is zero, no cancellation can occur from p,; = —pp.

Proof of 1. Since m # 0, we have m; # 0 for some j. Note that o + a; € I' by

translation invariance. Since I' is connected, some integer combination o + Zf,): ,,ng” )

of the neighbors of 0 is 0 + a;, where k,, € Z is the number of adjacencies of type n(®
traversed on the geodesic from o to o + a;. It follows that

sin (rr— Zk n(p)) = sm( Zk n(p)> = sin (;n—;’-aj> = sin n]}::j # 0.

(3.4)

If we had sin(w ) = 0 for all p, we would have ”"K,(p) € Z for all p and thus

¥ Z lkpn(P) € Z, contradicting (3.4). Thus, ), # 0 for at least one p. This
completes the proof.

m.n(l))
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Fig. 2. The ladder graph, Z[J P,

Proof of 2. We need ¢ to avoid the subspaces V, = {v : v = O}forallp=1,...,D
andV, ,y ={v:v n®?) =y .0} forall D(D — 1) pairs of p # p’. Each of these is
d — 1 dimensional, since the n‘?) are nonzero and distinct.

It is not difficult to see that such a ¢ exists. However, we give a quite explicit con-
struction below, which in turn gives an explicit bound on M.

Suppose we give a list of £y = (d — 1)D? + 1 vectors in ]L‘I{, such that any d of them
forms a basis. Then each of the subspaces V), or V,, ,» can only contain at mostd — 1 of
our vectors, therefore there must be some vector not contained in any of the subspaces
and we are done.

A possible list is given by the row vectors

1 1 | 1
12 22 ... 24l
13 3% ... 34l
. . 2. ’ d—1
1 €p b -+ )
Indeed, any subset of d of these vectors, say the ones from the xy, ..., x4 rows, forms a

Vandermonde matrix with determinant I—[i< F (x; — xj), which is nonzero, meaning any
set of d vectors is linearly independent. This finishes the proof. O

‘We may obtain an upper bound over M = 2 max, y,,. In fact, the worst case is if the
last vector in the list is the first ¢ that avoids all V), ;. In this case, y, = 2¢ - n? <

ZdE‘glq, where ¢ = max;,, nl@), soM < 4d£?;]q.

3.2. The case of Cartesian products. The Cartesian product ' J G of I" and G is the
graph with vertex set V(I') x V(G), in which (u, v) ~ (&', V') if either

(1) (u=u'"and v ~ ),
(ii) or (u ~ u' and v = v’).

For example, to construct Z [] P>, where P; is the 2-path, replace each vertex of Z
with a 2-path, and connect edges between matching vertices. The result is an infinite
ladder.

Similarly, for Z[C,, where C, is a p-cycle, replace each vertex of Z with a p-
cycle, and connect edges between matching vertices (Fig.6). The graph is 4-regular,
naturally embedded in R?, and is clearly Z-periodic with fundamental cell V; = C),.
We may endow C, with a potential Q and copy it in each layer. Then H (6p) f (1, v) =
2cos2n0f(u,v) + f(u,v+ 1)+ f(u,v—1) + Q, f(u, v). In other words, H(0y) =
Az(0p) ® I+1® Hg .. The eigenvalues are thus {2 cos 26+ j }, where {1 ; }le are the
eigenvalues of the Schrodinger operator of the p-cycle. These observations are general :
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Lemma 3.1. If T is a periodic graph with v = 1 and G is a finite graph endowed a
potential Q, then I' O G is a periodic graph with fundamental cell Vi = G and

HroGz(0p) = Hr(0p) ® I +1 ® Hg,... (3.5)

Proof. Replace each u € I by a copy of G r. The result has vertex set V(I") x V(GF).
According to rules (i)-(ii), we should have Ar g, = I ® Ag, + Ar ® I. This means
that if we arrange the vertices of I' [J G as successive G r-layers, then a given (u, v)
is connected on the one hand to the neighbors (u, v’) in the same layer (rule (i)) and
to the neighbors (#’, v) outside (rule (ii)). This means that the edges are precisely the
old edges of G in each layer, as well as bridges between successive layers between
the matching vertices. Recalling (2.4), we see that the 6-dependence only arises in
the bridges from (u, v) to another layer (the neighbors within Gr have |u], = 0).
The bridges occur precisely at the bridges from u to its neighbors in I'. We conclude
that Arqg,(0s) = Ar(0s) ® I + I ® Ag,.. If we finally endow G ¢ a potential and
copy it across the layers, then (Qf)(u, v) = QO f(u, v), so we obtain (3.5) (note that
Ar(p) = Hr(Bp)asv=1). O

Proof of Proposition 1.4. Since v = 1 for I', Hr(6y) has just one eigenvalue Er(6g).
So the spectrum of Hr g, is the set {Er(6p) + 1}, where 1 are the eigenvalues of
Hg . on the finite graph G r.

Given nonzero m, we should thus control the quantity

rp +mp rp rp +my rp
E(Fy) — () = B (B) = B () + e s

Here, Er(6p) = 2 ZII,):] cos(270 - nP) is precisely the quantity we controlled in
Sect. 3.1. Following the arguments, we see that the same proof continues to hold here. In
fact, g (z) only has an additional term s — j1y,, and the proof continues to hold, as no
¥p is zero so this term cannot induce cancellations in the polynomial z"*g,, ,(z). Thus,
the quantity in (1.3) is < MN -1 5 0as required, with the same M < 4d€‘£_lq of the
case v = 1. This shows that the assumption of Theorem 1.2 is satisfied for ' O G .

By (3.5), the eigenvectors of Hr ¢, (6p) are simply the eigenvectors of Hg, (re-
call that Hr(fp) is just a scalar 1 x 1 matrix). They are thus independent of 6p, and
so are the eigenprojectors Pg(0p). This makes (2.12) a bit simpler here. If moreover

we choose ¥ = 1&,5 ) to consist of a tensor basis 1//;N) = ¢n ® wj, where (¢,) is an
orthonormal eigenbasis of Hr on I' and (w;) is an orthonormal eigenbasis of Hg,,
then the expression simplifies further. In fact, recalling (2.2), we have (Uv),(vy) =
ﬁ Zk e_z”i"k/Nqﬁn (ka)w;j(vg) = ¢n(r)w;(vy), where ¢,(r) is the Fourier coeffi-
cient of ¢, in the basis e’ of £2(L4). Hence, (Py(U¥),)(vg) = $u(r)(Psw;)(vy).
Thus, (2.12) simplifies to

D aC+v)) Y Y g PIPEw) W) =D {al-+v)) D [(Pe,w ;) (vg) %,
q=1 roos=1 q=1 s=1

where we used that ||¢;, ||2 = 1. But w; is an eigenvector, so Pg,w; = w; if £y = E;
and Pg,w; = 0 otherwise. This completes the proof. O
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0

Fig. 3. Decorating Z with triangles. The values of an eigenfunction are shown (it is then extended by zero)

3.3. Graphdecorations. Another way to create anew graph from given infinite and finite
graphs I' and G F is to simply attach a copy of G r at each vertex of I'. More precisely,
we identify a special vertex or € Gp to each v € I'. This process is called graph
decoration. A very simple example is given in Fig. 3. The resulting graph is sometimes
denoted by I' <« G (which reflects the procedure).

In contrast to Cartesian products, this process can be problematic for delocalization.
For example, as shown in Fig. 3, this can create compactly supported eigenfunctions.
The corresponding eigenvalue is a flat band, i.e. an infinitely degenerate eigenvalue. The
1, 2cos2n9+1id4cos22n9 —4cos2m0+9)

example in Fig. 3 has the Floquet eigenvalues {—
This generates the spectrum of H = A consisting of two bands Wthh do not intersect.
This spectrum is not Very nice as the eigenvalue —1 is embedded in the left band, as can
be seen by taking 6 =

It may be 1nterest1ng to observe that in general, if I" is a periodic graph having v = 1,
then ', ' 0 G and I" <« G are all “loop graphs” in the sense of Korotyaev and Saburova
[15]. This class of graphs was singled out in [15] for being more amenable to spectral
analysis. We see that not all graphs in this class are quantum ergodic.

Proof of Proposition 1.5. For the graph in Fig. 3, we have |[I'y| = 3N, and on 'y, we
may construct N localized eigenfunctions f;, one on each triangle, each supported on
only two vertices. Let N be even and take the locally constant observable a which is iden-
tically 1 on triangles attached to even vertices, and identically zero on triangles attached
to odd vertices. Then (a) = % On the other hand, if we normalize the eigenfunctions f;

sothattheirvaluesare(%fz, —7;,0, 0,...,0),then (faj,afr;) =3, aw)|fr;)*> =1,
while (f241, af2j+1) = 0 for each j. Hence,

N
—Zw(“ Ay ™) — @F = = S f5,af) — (@)

| N uel'y

Il
Z|
—
| — RN
N =
I/
=
|
N =
=)
|
N =
(3]
N——"
| I—
Il
—_
Nl'_

3.4. More product operations. Further operations to construct new graphs from old are
the tensor product and the strong product of graphs.

3.4.1. Strong products The strong product G X H has vertex set V(G) x V(H), with
u,v) ~ @, v)iff (u =u' andv ~v)or(u ~u' andv =v")or (u ~u' and v ~ v').
We thus add more edges to the Cartesian product.

This operation is not as well behaved as the Cartesian one. For example, consider
Z ™ P, where P, is a 2-path. The result (Fig.4) is an infinite sequence of boxes X.
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-1

Fig. 4. Z X P,. An eigenfunction localized on two vertices is shown

Unlike the ladder, this graph has some point spectrum. In fact, the Floquet matrix here is
H(0) = 2cos2mf 1+2cos2m6
2cos2m60+1 2cos2mb
tum ergodicity is violated (use the eigenfunction shown in Fig. 4 and argue as in Sect. 3.3).
See Sect. 4.6 for a further analysis when we add a potential.
Still, this product sometimes behaves well. For example, ZXZ gives the king’s graph,
which is quantum ergodic since it is periodic with v = 1.

), with eigenvalues {—1, 1 +4 cos 27 6}. Quan-

3.4.2. Tensor products Next, the tensor product G x H has vertex set V(G) x V(H),
with (u, v) ~ (', V") iff (u ~ u’ and v ~ v'). Equivalently, Agxy = Ac ® Ay. The
edges of this product are precisely the ones we added to the Cartesian product when
discussing strong products.

The product of two connected graphs is not necessarily connected. For example, the
tensor product of two path graphs of length 2 {a, b} and {v, w} gives the union of the
two paths {(a, v), (b, w)} and {(a, w), (b, v)}. To consider a product graph of the form
I' x GF for quantum ergodicity, where I" is a quantum ergodic graph and G r is some
finite graph, we first need I' x G r to be connected. It turns out this is satisfied if and
only if either I or G r contains an odd cycle, see [21].

Assume now that we are given a periodic I' with v = 1, for simplicity. Just like
Cartesian products, the tensor structure of the adjacency matrix translates well into the
Floquet fibers. To see this, it is best to first picture the product operation. Geometrically,
we simply consider the G p-layers structure of Cartesian products, but then we remove
all edges and add instead the following ones : a given (u, v) in a G r layer is connected
to all vertices (u’, v), where ' is in a different G r layer and v' ~ v in G f. Note that
V¢ = G contains no edges. Instead, if we “project” the edges going from a neighboring
G r layer to the starting one, we obtain the finite graph G ¢ that we started with. We may
also endow G r with some potential Q which is copied across the layers.

By definition (2.4), we have H(0p) f (1, V) = Yy yrop €% 10 fu,0') + Oy f
(u,v) = Hr(6p) ® Hg, f (u,v), where we used here that {(u/, v")}q = (u, ) and
L', v")]a = lu']a by construction. This shows that Hrxg(0s) = Hr(0p) ® Hg,.
Consequently,

o (HrxGp©p) = {1; Er(0p)}j_;. (3.6)

where 1 ; are the eigenvalues of Hg . Note that if u; = 0 for some j, then this creates
a flat band {0} for Hry ¢, i.e. an infinitely degenerate eigenvalue.
We now consider the special case of Z x Gr. So Er(6p) = 2cos 276.

Proof of Proposition 1.6. To construct a counterexample, we take G r such that

(1) GF is not bipartite,
(i) 0 ¢ o(Agp),
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(%1 v (2
U2 E :IU5

Fig. 5. The butterfly graph G r (left) and part of the tensor product Z x G (right). A fundamental set is
colored in red

(iii) there exists s such that s and —pu, belong to o (Ag).

Point (i) is necessary to make Z x G connected, (ii) is necessary to avoid a point
spectrum {0}, and (iii) is what will contradict (1.3).

We take G r as the butterfly graph, Fig.5.

Since Ag, is a 5 x 5 matrix, we can compute its eigenvalues and eigenvectors
explicitly and find the following:

1++/17 1 —17
m=—a =g mz=-1, wa=-1, pus=1
—1+4/17 —1 — /17
wi =C1(19 17 71191)» w2=C2(1»1a Tslvl)v

<
/2

for normalization constants cy, c;. We actually only need wy, ws for the following ar-
gument, it is immediate to check that they are eigenvectors for 4, 15, respectively.

We see properties (i)—(iii) are satisfied, take e.g. s = 1.

By (3.6), 0 (AzxGr(6p)) is just {214 cos 20}, where p ; runs over the above list of
eigenvalues. It follows that o (Azx ) is purely absolutely continuous (as each Floquet
eigenvalue is analytic and nonconstant, see [17, Th. XIII.86]). The graph Z x G F is also
connected, since [[—n, n]] x G is connected for any n by [21].

If uy = 1 and pyy = —1, we find that

1 1
= 0,0,0,—1,1), = —(-1,1,0,0,0), =—-(-1,-1,0,1,1
w3 ( ), w4 ﬁ( ). ws = ( )

E;(Op +ap) — Eypy(0p) = s (2cos2m (0 + ) + 2 cos 2m6)

= s cosm(20 + o) cos mo.
This is zeroif « = %, for all 8. This suffices to contradict (1.3). In fact, taking m = %
L assuming N is even, the fraction in (1.3) is equal to 1 and does not vanish.

We now show the tensor product Z x G is not quantum ergodic. The hint for
the choice of the observable comes from Remark 2.4. Namely, consider a(k + v,) =
e?™mk/N s, (v,). Then (a(- +vy)) = 0 for all vy, so (¥, Opn (@) = 0 by (2.12). We
choose the problematic value of m, namely m = %, sowe take a(k+vy) = e”‘k&,l (vg).

S
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Now, choose ¢, (k) = Jﬁ e?7ink/N 4 an eigenbasis for A py With periodic conditions
and consider the orthonormal sequence

Pn ®Wa+ ¢, x ®Ws
8n = \/E
mI'y=Pyv®Gp,forn=0,... N — 1, with eigenvalue —An, = —2cos =&

Since (, Opn(@)¥) = 0, it sufﬁces to show that =— |r | M
converge to zero. We have

271n
N

Wm ay,)|? does not

uel'y

N-1 5
(gnragn) = Y Y alk+vy)|gk +vy)l*
k=0 g=1
N—-1
= 23 gy (o k ?
=3 n 4 U1)+¢n+g( Jws (v1)]
k=0
1 Nl ik 2mink/N eZni(n+%)k/N 2
= 2— € \/_ + >
k=0 2
N-1 -
1 ) eJrlk 2
_ Z emk 1+ —
4 k=0 V2
R mk(3 e”ik+e’”ik> 1
= — c f— p—
4N & 2 V2 272
Thus, by completing the orthonormal family (g,) to an o.n.b. (), we get
N
— 3 It ana) >12 lgn, agnP = 222 1
u, AYy)|” = 5N 8n,a8n)l = 5N 8 80
uel‘N n=0

This completes the proof. O

4. Concrete Examples

4.1. Graphs with scalar fibers. For the adjacency matrix H = A on Z¢ or the triangular
lattice (sometimes called hexagonal, see [15, Fig. 3]) where each vertex has 6 neighbors,
or the king’s graph (sometimes called EHM lattice), we have v = 1 so Theorem 1.1
applies.

The family of periodic graphs having v = 1 is quite rich. For example, one can
consider Z and add edges up to some fixed distance k from each vertex. More precisely,

A Ym)=fn—k)+fn—k+D)+---+ fn+k—1+ f(n+k).

Then Vi = {0}, a; = ¢; and H(0p) = 2cos2mw0 +2cos4md +--- +2cos2mwkd. See
Fig. 1 (left) for k = 2. Similar variations can be performed on Z<.

We remark that the connectedness of I" is important. For example, if we consider Z
with (Af)(n) = f(n —2) + f(n +2), then the graph is disconnected (there are two
copies of Z, for the even and odd vertices, respectively). Here, Vy = {0}, a; = ¢; and
H (6p) = 2 cos4m 0, which does not obey (1.3), since for o = %, we have E(0p +ap) =
E (6p) for all 6.
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4.2. Honeycomb lattice. Consider the honeycomb lattice ([15, Fig. 7], a.k.a graphene
or hexagonal lattice) where each vertex has 3 neighbors. Here v = 2, H(0y) =

(% é(gb)>, where £(0p) = 1 +e7 %1 4 ¢~1%92 for the crystal basis a; = a(1, 0),
b
a = 3, V3), a > 0. This gives the eigenvalues =+|(fp)] = =+

V3 +2co82m0; +2cos2mbr +2cos 2 (0 — 6>). Assumption (1.3) is clearly satisfied
if w # s as the bands only meet at O (for (61, 62) = (%, %)). On the other hand, we can
control the event that |£(0y + ap)| = |£(0p)| by squaring, deducing as a special conse-
quence of the arguments in Sect. 3.1 that (1.3) is satisfied. This shows that Theorem 1.2
holds true. Let us investigate (2.12).

The eigenvectors are wi (fp) = \%(1, +e71?@))T where ¢ (0p) is the argument of
¢ (6p) i (0) .
£(0). S0 Py () f (v))=LUEE 2T p, (gy) f (vy) = LUVEC 2T (=19 O,
i (6 2 ig (6 2
It follows that [Py f(u))[? + | P— f(op)|> = L0 @Rl /w0 fiun)

- 2 2 "2
[RACI] er\f(vz)l — @ — |P+f(1)2)|2 + |P_f(1)2)|2.
We showed that for the honeycomb lattice, (2.12) reduces to

2
U r v . i
>y WOV gy = LEHUD 0D o

LreLq,

which is the uniform average.

4.3. Ladder graph. Consider the ladder graph Z [J P> in Fig.2. As a Cartesian product,
we already know that Proposition 1.4 holds true, but we show here that we always get
the uniform average in this example.

We have H(0p) f(v1) = ¢ f(v1) +e 277 f (1) + f(v2) and H(0p) f(v2) =
27 f (u) +e=2 f (vg) + f (v1). Thus, H() = (2070 L
values are E4(0p) = 2cos2m0 % 1. Clearly (1, 1) and (1, —1) are eigenvectors. So the
eigenprojectors are P (0p) f = (w4, flws, with wy = %(1, +1), independently of

6. Thus, Py f(v1) = w and Py f (1) = —M. As in the honeycomb
(a(““vl))‘;(a(“"UZ)) ”w ”2

. The eigen-

lattice, we deduce that (2.12) reduces to

If we endow P> with a potential Q,, Q., then we get a ladder with a potential coming
in two parallel sheets, the upper sheet only containing Q,, the lower only Q.. The
construction can be generalized to Z [J Py to create an infinite k-strip. Proposition 1.4
continues to apply, but the average may be non-uniform.

4.4. Periodic potentials on the integer lattice. Consider Z endowed with a perlodlc
potential taking v values Q;. We have Vy = {1,...,v},a; = ve; and by = —21

Now H(0p) f(1) = Q1 fi + fr +e 9 f(v), H(eb)fo) = Qi fi + fi—1 + fis for
1 <i<vand HOp) f(v) = Oy fo + foo1 +e2™ ¢ f. We thus have
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H(0y) =

eZniG 0 1 0,

Let z = ¢?1?, Expanding the determinant of the characteristic polynomial p(z; 1)
in detail, we see that [13, Lemma 3.1]

PR =A0) —z—z7" .1

for some polynomial A (A, Q). This splitting into pure A and z parts is specific to one
dimension. A

Now fix a # 0, let { = e and suppose that Es(fp + op) = Ey(0p) for some
s, w. Then A = E;(fp + ap) solves (4.1). On the other hand, A = E(0p + «p) is also a
root of the characteristic polynomial of H (6p + o), which is

Pz A) =AM — 28 — (207

For this choice of A we thus have p(i; z) = p(x; z¢£) = 0. So z+z7 = &+ (z{)_l.
This yields a quadratic expression for z. Hence, for any fixed o # 0, there are at most
two 0 such that Es (0 + ap) = Ey(6p). This implies (1.3).

The case of A+ Q on Z4, d > 1, with Q(n + pjej) = Q(n), is more delicate.
The criterion has been established in [23] using the point of view of Bloch varieties;
see Sect. 5.3 for some background. Here we simply mention that for this model, it is
equivalent to study

H(6) = Dy + By,

on Kz(Vf), where Dy is a diagonal operator and By is a convolution given by

d
(Do f)(w) = (choszn(”" +9j)>f(u),
j=1

Pj
U —V
BoHw) = Y 0(=—2) 1wy,
v €Vy p
. = 1 _27ic vy .
with 0(0) = § 3, cy, Qe 7 and 4= (.. 44).
Note that V¢ = X;Ll[[(), pj — 11, so that v = ]_[‘;:1 pj. It is not difficult to show

that our operator H (0y) is unitarily equivalent to H (0), with
H(6y) = F, ' H)Fo,

where Fp : €2(Vy) — €2(Vy) is given by

1 —2mi(%).y
Fpw=—7 3 &7 C% £ (vg).

v €Vy

This equivalence is used in the proof of [23].
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Back to d = 1, let us examine (2.12) for Z with a 2-periodic potential Q,, Q.

Q 1+ e—271i9
Here H(0y) = (1 . egnie 0 > The eigenvalues solve (Qq — A)(Q0o — A) —
: Qe+Qo%c
2

2+ 2cos2m0) = 0, so EL(6p) =

V(Q4 — 00)2 + 16cos2 6.
After some tedious calculations, we conclude that (2.12) takes the form

, with wy = (%, 1) and ¢ =

2 N-—1
(V. OpN @) = Y (aC+v) Y [1P(30) W ()
qg=1 r=0

+P- (T ) U, )P ]

N— 3 271r . .2
BRI sk (Tl 5

2
g 16cos? Z + (Qo — Q4)? [(U¥)r(0)]

8 cos? Zr U e
16C()S2 nr +(Q _ Q )2|( I/f)r( )|
2(Qo - Q,) i L
16 cos? I+ (Qo — 0.)2 Re(l+e” ¥ )(UI//)r(())(Ul//),(l)]
N-1 2 mr

8 cos N

+a(-+1)) — [(UY),(0)]?
2(:) [16c0s2—+(Q 0.)?

8 cos? % +(06 — Qs )2
+16C052%+(Q0 0. )2|(U¢’)r(1)|

2(Q. — Qo)
16cos? I + (Qo — Q.)?

Re(1 + e_T)(Ulﬂ)r(O)(Ulﬂ)r(l)]-

(4.2)
Note that if (a(-)) = (a(- + 1)), this indeed reduces to (a(-))||y¥]>.
Let us study the expression in the limit |Q, — Q4| — 00. We obtain
N—1 N—1
o dim W OpN@y) = (@()) D 1T OF +(a+1) 31U, M.
ol r=0 r=0
Here, (UY),(0) = <= Y000 e =50 (2k) and (U ), (1) = T e TRy (2k+

1). It follows that

N-1

N-—1
lim (Y, Opn@ V) = (a(-) Y W@+ (aC-+ 1) Y |92k + D
k=0

‘Qo_Qol_)OO k=0
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P Py Py Py
' ' ' '
' ' ' '
' ' ' 1
A A A A
7 7 7 7
’ ’ ’ ’
’ ’ ’ ’
, , . ,

Fig. 6. The cylinder, Z [ Cy

4.5. Cylinders. Consider the Cartesian product I' = Z [ C4, where Cjy is the 4-cycle.
Given any o.n.b. (¢,) for A on the N-path, consider the bases

1 1
w1 25(1517_1’_1)7 w2=_(051705_1)7

NG
1
_(1705_170)7 w4=(1517171)

V2

w3 =
and

Vg2 3

Kj:z(l,a),a) ,w)

for Ac,, where v = e™i/2 and Jj = 0,...,3. By Proposition 1.4, we know that the
orthonormal eigenbases of I" approach some weighted averages.

If we choose the eigenbasis v, j = ¢, ® w;, then by (1.9),

IS aC+vy) ifj=1.4
(Yn,j» OPN @)Y, ) = { lalrvatlaCion) e ;o
w if j = 3.

On the other hand, iflzn,j =¢, Q«j,thenfor j =1,...,4,

4
~ ~ 1
(Yn,j» OpN(@) Y, j) = 1 Z(a(~ +0g)).

g=1

This example shows that (wﬁN), Opn (E)w,fN)) in general depends on the choice of
the basis, even for simple regular graphs, and it may or may not be the uniform average.
In fact, this gives the uniform average for the basis v, ;, but not for v, ;, take for
example the observable

a(i+vy) =al+v3) =—1, a(i+v) =a(i+vg) =1,

where we parametrized the vertices of the cylinder Z[JC4 by u = i + vy, where i € Z
is the layer’s level and v, € C4 = (v1, v, v3, v4) are the vertices within it.

The problem with v, ; is that it is concentrated on half the cylinder for j = 2, 3,
while &n,j is spread on the whole. The semi-delocalization of v, ; is not detected by
locally constant observables.
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4.6. Boxes again. Back to Fig.4, let us show that the graph becomes quantum ergodic
once we add a potential (Q1, Q») which is copied across the layers, for any Q1 # Q».

First assume (Q1, 02) = (Q, —0), Q > 0. In this case we get the Floquet eigen-
values

E+(0p) = 208270 £ /(1 + 2 cos 2776)2 + Q2.

We now use the idea in Sect. 4.4: if for some s, w we have E(0p +ap) = E(6p), then
A = E5(6p + ap) solves both the characteristic polynomial of H(0y) and H (6 + ap).
Denote ¢y := 2 cos 270. It follows that for such A,

22— 2ci0h — (1 + Q% + 2¢019) = A2 — 2coh — (1 + Q% +2¢p)
In turn, this implies
(co+a —co)(L +1) = 0.

So either A = —1 or cg1q — cg = 0. The case A = —1 never happens. In fact, if
A = c++/(1+¢)? + Q2 then one can easily show that there is an M such that A >
-1+ % > —1. Similarly, if A = ¢ — /(1 +¢)% + Q2, then we can find M such that
A<-—-1-— % < -1
Thus, the only way the Floquet assumption can be violated is if cg1q — cp = 0.
Clearly, for a given nonzero «, only 6 = 1%“ is possible. In particular, (1.3) is satisfied.
Renumbering v; <> vz in V, the previous discussion also applies if Q < 0. Finally,

any (Q1, 02) = (Q, —Q) +cold for 0 = 25% and ¢ = 2222 If Q) # Q, then
Ar + (0, — Q) satisfies (1.3), hence so does Ar + (01, Q).

5. Complementary Results

5.1. QUE and eigenvector correlators.

5.1.1. Quantum unique ergodicity We first investigate QUE for Az and A>.

For I' = Z, taking L with periodic conditions amounts to considering N-cycles.
0111 C4n, consider the observable ay = (1,0, 1,0, ..., 1, 0) and the eigenvector v) =
ﬁ(o, 1,0,—1,...,0,1,0,—1) with eigenvalue 0, where the string (0, 1,0, —1) is
repeated N times. Then (v, anyv™) = 0 while (ay) = %, so (1.10) is violated.

On 72, the whole sequence may converge to a nonzero limit. If eéN) k) = %62” ik-b/N

1 N 1 N .
take P,.0) = eqey,e;) and ¢y 0y) = 756551?22) +sgn({; — 52)%6562?61) if £1 # £5.

This gives an orthonormal eigenbasis with |¢((Z) 112)(”)|2 = 1fcos2n [(ZITVZZZ)("I_"Z)/ ull

if €1 # £2. S0 (Pt 00, aNPie1.0) = {an) £ 15 Y, an (n) cos 2 L=2lm=m) "y
ay((n) = f(n/N), we thus get

(000 andiy, o)) — lan) — £ / f @ y)eos2m (4 — €2)(x — y) dxdy.
[0,1]

This is nonzero for f(x,y) = cos2m ({1 — £2)(x — y).



Quantum Ergodicity for Periodic Graphs 1505

5.1.2. No correlator universality We next consider the question of matrix observables.
2 ; : (N) : (N) :
Qn 7+, consider stand?rd basis (e, ') te1?, and the basis (¢, ") te12, defined in the
previous paragraph. Consider

1 ifn—m=(£1,0),
Kn(n,m) = .
0 otherwise.

Then (e, (N) Ke(N)) —2C0S(2nel) SO &7 > Y. |(e (N) Ke(N) — f 40052(271x)
ZGILZ
dx =2.
On the other hand, (q)éN) Kq)(N)) = 005(271(1) + cos(zﬂlz) $O0 =5 Y. |{ q&(N),
zE]LZ

K(j)(N))l2 — f[0,1]2 0052(271x1) + cosz(anz) +2cos(2mxy) cos(Rmxy)dx = 1.
This implies there can be no quantity (Ky), ) independent of the basis such that
J

N N
o 2 1w Ky = (), 0 2 = 0.
J

5.1.3. Matrix generalization We finally sketch how to generalize quantum ergodicity to
matrix observables K. For simplicity we only discuss the case v = 1. We may assume
V¢ = {0} up to translating coordinates. Here, H (0p) = E(0p).

For Step 1, we note that

(ei[HNKe_itHNw)(ka) — Z ei[E(er)(UKC_iIHN1//)r€,(.N)(k).

d
relly

Here, (UKe ™ ""Vy), = i 3, 14 =N e (Ke "N ) (ng). IF R is the band width,
then (Ke ¥ y)(nq) = 3| <g K (14, na+7a) (€ ¥ ) (nq+14). Denote K (nq) 1=

K (ng, ng + 7). Next, expand K% (nq) = ﬁ Zmem K;le%, where K7, = (el
KT('a»eZ(]Lg{,)‘ Then we obtain

s 1 _i(r —mp)ng .
WKe My = 3T 3 e KL ) (g + 1)

n, me]Ld [TI<R

1(rb mb) a .
= Nd/2 Z Z Ue V), .

mE]Ld |T|<R

From here, we proceed as before, replacing a,(,,N) (vg) by er <r K e "5 There are
of course many simplifications because v = 1. In the end, @ is replaced by

K=Y K5 et = Y (khe™™,
[T|<R [T|<R
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where (K7) = # Znem K(n,n + 7). Hence,

W, Opn(Eyp) = Y ke Y (W), 3 (Ke e

keLd, reld, ItI<R
= D (KDY Y)Y ka+Ta) = Y (K )Y, ¥(+Ta) .
IT|<R ke, IT|<R

This is the same expression we stated in Sect. 1.2.2. Interestingly, by examining the

proof, we see that R can be taken to increase with N, like R < N § with § < %

5.2. Bloch’s theorem. We prove here a version of the Bloch theorem for discrete periodic
operators. This result is well-known in the continuum, but doesn’t seem to have been
explored in our setting. We also comment on the corresponding eigenfunction average.

Theorem 5.1. Let H be a periodic Schrodinger operator over the infinite periodic graph
I, and suppose A € o(H). Then we may find WV, on T" such that HV, = AV, and
W; (kg + vy) = e%*ka £ (v,), for some 6 € [0, )¢ and f on V.

Similarly, lf)n e a(HN) we may find V) on 'y such that HyWV, = AWV, and

W, (kg +v,) = €' N f(vn) for some j € ]L and f on Vy.

Proof. H is unitarily equivalent to f[o,l)d H(0p)db, so o (H) = U)_,0,, where 0, =
Ran E, (0y) = [E, , E}], see [7,15]. Hence, A € o (H) implies & = E,(6p) for some r
and 0 € [0, 1)9. Let wrg ® be the corresponding eigenvector on V; and define W, (kq +
vp) 1= elfkay% ) Then

HWY, (ko +vyp) = Z Wy () + Q) Wa (ko + vp)

u~kq+vy,
= Y W(w+ke) + Qa) Wy (ko +,)
= Y Wika+ lwla+{wla) + Q) Wi (ke +v,)
= k(37 ety (wla) + Q) (un))

= PR (H @)Y ) () = %5 E, (0p) YL (vn) = AW, (ka +vn) -
The case of 'y is the same since Hy =@ ;4 H(jﬁb). m|
JEly
Note that on Iy, we have ||, || = Y et S 1ol = NI T =

o o then (W, aWi) = S Yarg Yo £ o) Patka +vn) = 3 (aC-+

Un)) ‘ﬁc J(‘ll)lnz)l . This average is in general not uniform unless a is locally constant. This is
(Cl)

in accord with Theorem 1.2.
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Remark 5.2. Note that these Bloch functions exist even in case of flat bands. For example,

in Fig.4, instead of considering the localized functions (..., 0,0, (_11), 0,0,...), one

can consider the Bloch function e27ik¢ (_]1), where k € Z is the position. We see that

this delocalized function is also an eigenvector with the same eigenvalue —1.

This shows the limitations of this theorem; while there always exist an eigenfunction
with periodic modulus (hence well distributed over the crystal and delocalized), there can
also exist a lot of localized eigenfunctions for the same energy, which is the phenomenon
that quantum ergodicity investigates.

5.3. Bloch varieties and assumption (1.3). Let p(0; A) be the characteristic polynomial
of H(fp).Letz; = e?71%) By definition (2.4), we see that p(z; 1) is a Laurent polynomial
in z and polynomial in A.

We say that p is irreducible if the only way to write it as a product of two Laurent
polynomials p(z; A) = f(z;A)g(z; 1) is to take f or g to be a Laurent monomial
Cz‘f1 cee z[ald, for some a; € Z, which are the units of the ring C|z, 7Ll

The important point in the previous definition is that the factors f, g should be Laurent
polynomials of (z; A). For example, as we saw in (4.1), for Schrédinger operators with
a periodic potential on Z, we have p(z; 1) = A(L) — z — z~ L. In this case, studying
irreducibility is equivalent to considering the polynomial

22— zZAQ) +1. (5.1)

In principle one can always write this as a product (z — g1(1))(z — g2(1)). However,
(5.1) is actually regarded as irreducible here because g; (1) are not polynomials of A,
cf. [13, p.19].

Ifaflatband E, (fy) = c exists, then the characteristic polynomial is reducible, since
we then have p(z; 1) = (A — ¢)g(z; A) for some Laurent polynomial g(z; A). Thus,
irreducibility implies pure ac spectrum.

Irreducibility entails that the Bloch variety of H,

By = {6, € C™*: p(z;2) =0}

cannot be written as the union of two proper analytic subsets, except for periodicity. That
is, if €21 and 2, are two components of By, then Q2 = Q1 + (k, 0) for some k € 74.
Now, let us write

K
P =D ] P n)

m=1

for some irreducible Laurent polynomials p,,(z; 1). It is proved in [23] that if for all
nonzero « € [0, l)d and all m, ma,

Pm, (25 A) # Pm, (£ Z; A) (5.2)

as Laurent polynomials, where ¢ = (e*™11, ..., e*%) and ¢z = ({121, . . ., CdZd),
then (1.3) is satisfied. In particular, if p(z; A) is irreducible and for any ¢ # 1 with
|¢] = 1, we have p(z; L) # p(z¢; A) as polynomials, then (1.3) is satisfied. This is a
remarkable simplification as we now only need to study the condition for the character-
istic polynomial, instead of the eigenvalues which may be difficult to compute or may
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have complicated root expressions. This is in fact how (1.3) is established in [23], using
[22].

For comparison, to establish the criterion in general, we can always argue as in
Sect. 4.4, namely try to show that for fixed X, there are not too many z such that p(z, A) =
p(z¢, A). In case of irreducibility however, we just need to show that p(z, A) # p(z¢, A)
as polynomials. This can be done for example by comparing the coefficients of A¥ or z*
for some k and showing they can only be equal on a set of zero measure.

In particular, the Bloch variety for periodic Schrodinger operators on the triangular
lattice and the EHM lattice is also irreducible [11], so one only needs to verify p(z; A) #
p(z¢; A). The argument used in [23] applies to Schrodinger operators with a periodic
potential on the triangular lattice, so they are quantum ergodic as well.

It should be noted that irreducibility is not necessary for (1.3) to hold. For example,
the infinite ladder Sect. 4.3 has characteristic polynomial (z +z7! — 1) — 1 = (z +
2z '+1—=2)(z+z"1 = 1—2), hence reducible. Still, (1.3) is satisfied.

Even when the characteristic polynomial is reducible, criterion (5.2) applies, and it
can be much simpler to check than (1.3) directly.”
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