
Journal of Computational and Applied Mathematics 433 (2023) 115298

i
u
b
E

e
t
a

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Least-squares neural network (LSNN)method for scalar
nonlinear hyperbolic conservation laws: Discrete divergence
operator✩

Zhiqiang Cai a,∗, Jingshuang Chen a, Min Liu b

a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States of America
b School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, United States of America

a r t i c l e i n f o

Article history:
Received 14 February 2023
Received in revised form 20 April 2023

Keywords:
Discrete divergence operator
Least-squares method
ReLU neural network
Scalar nonlinear hyperbolic conservation
law

a b s t r a c t

A least-squares neural network (LSNN) method was introduced for solving scalar linear
and nonlinear hyperbolic conservation laws (HCLs) in Cai et al. (2021, 2022). This
method is based on an equivalent least-squares (LS) formulation and uses ReLU neural
network as approximating functions, making it ideal for approximating discontinuous
functions with unknown interface location. In the design of the LSNN method for HCLs,
the numerical approximation of differential operators is a critical factor, and standard
numerical or automatic differentiation along coordinate directions can often lead to a
failed NN-based method. To overcome this challenge, this paper rewrites HCLs in their
divergence form of space and time and introduces a new discrete divergence operator.
As a result, the proposed LSNN method is free of penalization of artificial viscosity.

Theoretically, the accuracy of the discrete divergence operator is estimated even
for discontinuous solutions. Numerically, the LSNN method with the new discrete
divergence operator was tested for several benchmark problems with both convex and
non-convex fluxes, and was able to compute the correct physical solution for problems
with rarefaction, shock or compound waves. The method is capable of capturing the
shock of the underlying problem without oscillation or smearing, even without any
penalization of the entropy condition, total variation, and/or artificial viscosity.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Numerically approximating solutions of nonlinear hyperbolic conservation laws (HCLs) is a computationally challeng-
ng task. This is partly due to the discontinuous nature of HCL solutions at unknown locations, which makes approximation
sing fixed, quasi-uniform meshes very difficult. Over the past five decades, many advanced numerical methods have
een developed to address this issue, including higher order finite volume/difference methods using limiters, filters,
NO/WENO, etc.(e.g., [1–7]) and discontinuous and/or adaptive finite element methods (e.g., [8–14]).
Neural networks (NNs) as a new class of approximating functions have been used recently for solving partial differential

quations (see, e.g., [15–17]) due to their versatile expressive power. One of the unique features of NNs is their ability
o generate moving meshes implicitly by neurons that can automatically adapt to the target function and the solution of
PDE, which helps overcome the limitations of traditional approximation methods that use fixed meshes. For example,

✩ This work was supported in part by the National Science Foundation, USA under grant DMS-2110571.
∗ Corresponding author.

E-mail addresses: caiz@purdue.edu (Z. Cai), chen2042@purdue.edu (J. Chen), liu66@purdue.edu (M. Liu).
https://doi.org/10.1016/j.cam.2023.115298
0377-0427/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2023.115298
https://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2023.115298&domain=pdf
mailto:caiz@purdue.edu
mailto:chen2042@purdue.edu
mailto:liu66@purdue.edu
https://doi.org/10.1016/j.cam.2023.115298


Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298
a ReLU NN generates continuous piece-wise linear functions with irregular and free/moving meshes. This property of
ReLU NNs was used in [18] for solving linear advection–reaction problem with discontinuous solution, without requiring
information about the location of discontinuous interfaces. Specifically, the least-squares NN method studied in [18]
is based on the least-squares formulation in [19,20], and it uses ReLU NNs as the approximating functions while
approximating the differential operator by directional numerical differentiation. Compared to various adaptive mesh
refinement (AMR) methods that locate discontinuous interfaces through an adaptive mesh refinement process, the LSNN
method is significant more efficient in terms of the number of degrees of freedom (DoF) used.

Solutions to nonlinear hyperbolic conservation laws are often discontinuous due to shock formation. It is well-known
that the differential form of a HCL is not valid at shock waves, where the solution is discontinuous. As a result, the
directional numerical differentiation of the differential operator based on the differential form used in [18] cannot be
applied to nonlinear HCLs. To overcome this challenge, the integral form of HCLs (as seen in [7]) must be used, which
is valid for problems with discontinuous solutions, particularly at the discontinuous interfaces. This is why the integral
form forms the basis of many conservative methods such as Roe’s scheme [21], WENO [2,3], etc.

Approximating the divergence operator by making use of the Roe and ENO fluxes, in [22] we tested the resulting LSNN
method for scalar nonlinear HCLs. Numerical results for the inviscid Burgers equation showed that the LSNN method with
conservative numerical differentiation is capable of capturing the shock without smearing and oscillation. Additionally,
the LSNN method has fewer DoF than traditional mesh-based methods. Despite the promising results in [22], limitations
were observed with the LSNN method when using conservative numerical differentiation of the Roe and second-order
ENO fluxes. For example, the resulting LSNN method is not accurate for complicated initial condition, and has problems
with rarefaction waves and non-convex spatial fluxes. To improve accuracy, using ‘‘higher order’’ conservative methods
such as ENO or WENO could be considered. However, these conservative schemes are designed for traditional mesh-based
methods and the ‘‘higher order’’ here is measured at where solutions are smooth.

In this paper, a new discrete divergence operator is proposed to accurately approximate the divergence of a vector field
even in the presence of discontinuities. This operator is defined based on its physical meaning: the rate of net outward
flux per unit volume, and is approximated through surface integrals by the composite mid-point/trapezoidal numerical
integration. Theoretically, the accuracy of the discrete divergence operator can be improved by increasing the number
of surface integration points (as shown in Lemma 4.3 and Remark 4.4). The LSNN method, being a ‘‘mesh/point-free’’
space–time method, allows the use of all points on the boundary surfaces of a control volume for numerical integration.

Theoretically, we show that the residual of the LSNN approximation using the newly developed discrete divergence
operator is bounded by the best approximation of the class of NN functions in some measure as stated in Lemma 3.1
plus the approximation error from numerical integration and differentiation (Lemma 3.3). Numerically, our results show
that the LSNN method with the new discrete divergence operator can accurately solve the inviscid Burgers equation with
various initial conditions, compute the viscosity vanishing solution, capture shock without oscillation or smearing, and
is much more accurate than the LSNN method in [22]. Note that the LSNN method does not use flux limiters. Moreover,
the LSNN method using new discrete divergence operator works well for problems with non-convex flux and accurately
simulates compound waves.

Recently, several NN-based numerical methods have been introduced for solving scalar nonlinear hyperbolic conserva-
tion laws by various researchers [16,18,22–26]. Those methods can be categorized as the physics informed neural network
(PINN) [16,23,25,26] and the least-squares neural network (LSNN) [15,18,22,24] methods. First, both methods are based
on the least-squares principle, but the PINN uses the discrete l2 norm and the LSNN uses the continuous Sobolev norm
depending on the underlying problem. Second, the differential operator of the underlying problem is approximated by
either automatic differentiation or standard finite difference quotient for the PINN and by specially designed discrete
differential operator for the LSNN. For example, the LSNN uses discrete directional differential operator in [18] for linear
advection–reaction problems, and various traditional conservative schemes in [22] or discrete divergence operator in this
paper (see [24] for its first version) for nonlinear scalar hyperbolic conservation laws.

The original PINN has limitations that have been addressed in several studies (see, e.g., [25,26]). For nonlinear scalar
hyperbolic conservation laws, [25] found that the PINN fails to provide reasonable approximate solution of the PDE and
modified the loss function by penalizing the artificial viscosity term. [26] applied the discrete l2 norm to the boundary
integral equations over control volumes instead of the differential equations over points and modified the loss function by
penalizing the entropy, total variation, and/or artificial viscosity. Even though the least-squares principle permits freedom
of various penalizations, choosing proper penalization constants can be challenging in practice and it affects the accuracy,
efficiency, and stability of the method. In contrast, the LSNN does not require any penalization constants.

The paper is organized as follows. Section 2 describes the hyperbolic conservation law, its least-squares formulation,
and preliminaries. The space–time LSNN method and its block version are presented in Section 3. The discrete divergence
operator and its error bound is introduced and analyzed in Section 4. Finally, numerical results for various benchmark
test problems are given in Section 5.
2



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

w
t

w

I

D

w
t

P
s

P

3

m

w
N

2. Problem formulation

Let Ω̃ be a bounded domain in Rd (d = 1, 2, or 3) with Lipschitz boundary, and I = (0, T ) be the temporal interval.
Consider the scalar nonlinear hyperbolic conservation law⎧⎨⎩ ut (x, t)+∇x · f̃(u) = 0, in Ω̃ × I,

u = g̃, on Γ̃−,

u(x, 0) = u0(x), in Ω̃,

(2.1)

here ut is the partial derivative of u with respect to the temporal variable t; ∇x· is a divergence operator with respect to
he spatial variable x; f̃(u) = (f1(u), . . . , fd(u)) is the spatial flux vector field; Γ̃− is the part of the boundary ∂Ω̃× I where
the characteristic curves enter the domain Ω̃ × I; and the boundary data g̃ and the initial data u0 are given scalar-valued
functions. Without loss of generality, assume that fi(u) is twice differentiable for i = 1, . . . , d.

Problem (2.1) is a hyperbolic partial differential equation defined on a space–time domain Ω = Ω̃× I in Rd+1. Denote
the inflow boundary of the domain Ω and the inflow boundary condition by

Γ− =

{
Γ̃−, t ∈ (0, T ),
Ω, t = 0 and g =

{
g̃, on Γ̃−,

u0(x), on Ω,

respectively. Then (2.1) may be rewritten as the following compact form{
div f(u) = 0, in Ω ∈ Rd+1,

u = g, on Γ−,
(2.2)

where div = (∂x1 , . . . , ∂xd , ∂t ) is a divergence operator with respect to both spatial and temporal variables z = (x, t), and
f(u) = (f1(u), . . . , fd(u), u) = (f̃(u), u) is the spatial and temporal flux vector field. Assume that u ∈ L∞(Ω). Then u is called
a weak solution of (2.2) if and only if

− (f(u),∇ϕ)0,Ω + (n · f(u), ϕ)0,Γ− = 0, ∀ ϕ ∈ C1
Γ+

(ω̄), (2.3)

here Γ+ = ∂Ω \ Γ− is the outflow boundary and C1
Γ+

(ω̄) = {ϕ ∈ C1(ω̄) : ϕ = 0 on Γ+}.
Denote the collection of square integrable vector fields whose divergence is also square integrable by

H(div;Ω) =
{
τ ∈ L2(Ω)d+1

| div τ ∈ L2(Ω)
}
.

t is then easy to see that solutions of (2.2) are in the following subset of L2(Ω)

Vf =
{
v ∈ L2(Ω)| f(v) ∈ H(div;Ω)

}
. (2.4)

efine the least-squares (LS) functional

L(v; g) = ∥div f(v)∥20,Ω + ∥v − g∥20,Γ− , (2.5)

here ∥ · ∥0,S denotes the standard L2(S) norm for S = Ω and Γ−. Now, the corresponding least-squares formulation is
o seek u ∈ Vf such that

L(u; g) = min
v∈Vf

L(v; g). (2.6)

roposition 2.1. Assume that u ∈ L∞(Ω) is a piece-wise C1 function. Then u is a weak solution of (2.2) if and only if u is a
olution of the minimization problem in (2.6).

roof. The proposition is a direct consequence of Theorem 2.5 in [27]. □

. Least-squares neural network method

Based on the least-squares formulation in (2.6), in this section we first describe the least-squares neural network (LSNN)
ethod for the scalar nonlinear hyperbolic conservation law and then estimate upper bound of the LSNN approximation.
To this end, denote a scalar-valued function generated by a l-layer fully connected neural network by

N (z) = ω(l) (N (l−1)
◦ · · · ◦ N (2)

◦ N (1)(z)
)
− b(l) : z = (x, t) ∈ Rd+1

−→ R, (3.1)

here ω(l)
∈ Rnl−1 , b(l) ∈ R, and the symbol ◦ denotes the composition of functions. For k = 1, . . . , l − 1, the

(k)
: Rnk−1 → Rnk is called the kth hidden layer of the network defined as follows:

N (k)(z(k−1)) = τ (ω(k)z(k−1)
− b(k)) for z(k−1)

∈ Rnk−1 , (3.2)
3



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

A

w

N
i

R

m

c
n

b
N
d

where ω(k)
∈ Rnk×nk−1 , b(k)

∈ Rnk , z(0) = z, and τ (s) is the activation function whose application to a vector is defined
component-wisely. In this paper, we will use the rectified linear unit (ReLU) activation function given by

τ (s) = max{0, s} =
{

0, if s ≤ 0,
s, if s > 0. (3.3)

s shown in [18], the ReLU is a desired activation function for approximating discontinuous solution.
Denote the set of neural network functions by

MN = MN (l) =
{
N (z) defined in (3.1) : ω(k)

∈ Rnk×nk−1 , b(k)
∈ Rnk for k = 1, . . . , l

}
,

where the subscript N denotes the total number of parameters θ =
{
ω(k), b(k)

}
given by

N = Md(l) =
l∑

k=1

nk × (nk−1 + 1).

Obviously, the continuity of the activation function τ (s) implies that MN is a subset of C0(Ω). Together with the
smoothness assumption on spatial flux f̃(u), it is easy to see that MN is also a subset of Vf defined in (2.4).

Since MN is not a linear subspace, it is then natural to discretize the HCL using a least-squares minimization
formulation. Before defining the computationally feasible least-squares neural network (LSNN) method, let us first
consider an intermediate least-squares neural network approximation: finding uN (z; θ∗) ∈ MN such that

L
(
uN (·; θ∗); g

)
= min

v∈MN
L
(
v(·; θ); g

)
= min

θ∈RN
L
(
v(·; θ); g

)
. (3.4)

Lemma 3.1. Let u be the solution of (2.2), and let uN ∈ MN be a solution of (3.4). Assume that f is twice differentiable, then
there exists a positive constant C such that

L
(
uN ; g

)
= inf

v∈MN

(
∥v − u∥20,Γ− +

div [f(v)− f(u)]
2
0,Ω

)
≤ C inf

v∈MN

(
∥v − u∥20,Γ− +

div [f′(u)(v − u)
] 2

0,Ω

)
+ h.o.t.,

(3.5)

where h.o.t. means a higher order term comparing to the first term.

Proof. For any v ∈ MN , (2.2) and (3.4) imply that

L
(
uN ; g

)
≤ L

(
v; g

)
= ∥v − u∥20,Γ− +

div [f(v)− f(u)]
2
0,Ω ,

which proves the validity of the equality in (3.5). By the Taylor expansion, there exists {wi}
d
i=1 between u and v such that

f(v)− f(u) = f′(u)(v − u)+
1
2
f′′(w)(v − u)2,

here f′(u) = (f ′1(u), . . . , f
′

d(u), 1)
t and f′′(w) = (f ′′1 (w1), . . . , f ′′d (wd), 0)t . Together with the triangle inequality we havediv [f(v)− f(u)]


0,Ω ≤

div [f′(u)(v − u)
] 

0,Ω +
1
2

div [f′′(w)(v − u)2
]

0,Ω . (3.6)

otice that the second term in the right-hand side of (3.6) is a higher order term comparing to the first term. Now, the
nequality in (3.5) is a direct consequence of the equality in (3.5) and (3.6). This completes the proof of the lemma. □

emark 3.2. When u is sufficiently smooth, the second term

div
[
f′(u)(v − u)

]
= (v − u) div f′(u)+ f′(u)·∇(v − u)

ay be bounded by the sum of the L2 norms of v − u and the directional derivative of v − u along the direction f′(u).

Evaluation of the least-squares functional L
(
v; g

)
defined in (2.5) requires integration and differentiation over the

omputational domain and the inflow boundary. As in [15], we evaluate the integral of the least-squares functional by
umerical integration. To do so, let

T = {K : K is an open subdomain of Ω} and E− = {E = ∂K ∩ Γ− : K ∈ T }

e partitions of the domain Ω and the inflow boundary Γ−, respectively. For each K ∈ T and E ∈ E−, let QK and QE be
ewton–Cotes quadrature of integrals over K and E, respectively. The corresponding discrete least-squares functional is
efined by

LT

(
v; g

)
=

∑
Q2

K

(
divT f(v)

)
+

∑
Q2

E

(
v − g

)
, (3.7)
K∈T E∈E−

4



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

u

where divT denotes a discrete divergence operator. The discrete divergence operators of the Roe and ENO type were
studied in [22]. In the subsequent section, we will introduce new discrete divergence operators tailor to the LSNN method
that are accurate approximations to the divergence operator when applying to discontinuous solution.

With the discrete least-squares functional LT

(
v; g

)
, the least-squares neural network (LSNN) method is to find

N
T
(z, θ∗) ∈ MN such that

LT

(
uN
T
(·, θ∗); g

)
= min

v∈MN
LT

(
v(·; θ); g

)
= min

θ∈RN
LT

(
v(·; θ); g

)
. (3.8)

Lemma 3.3. Let u, uN , and uN
T

be the solutions of problems (2.5), (3.4), and (3.8), respectively. Then we have

L
(
uN
T
; g
)
≤

⏐⏐⏐(L− LT

)(
uN
T
; g
)⏐⏐⏐+ ⏐⏐⏐(L− LT

)(
uN ; g

)⏐⏐⏐+ ⏐⏐⏐L(uN ; g
)⏐⏐⏐. (3.9)

Proof. By the fact that LT (uN
T
; f) ≤ LT (uN ; f), we have

L
(
uN
T
; g
)
=
(
L− LT

)(
uN
T
; g
)
+ LT

(
uN
T
; g
)
≤
(
L− LT

)(
uN
T
; g
)
+ LT

(
uN ; g

)
=
(
L− LT

)(
uN
T
; g
)
+
(
LT − L

)(
uN ; g

)
+ L

(
uN ; g

)
, (3.10)

which, together with the triangle inequality, implies (3.9). □

This lemma indicates that the minimum of the discrete least-squares functional LT over MN is bounded by the mini-
mum of the least-squares functional L over MN plus the approximation error of numerical integration and differentiation
in MN .

In the remainder of this section, we describe the block space–time LSNN method introduced in [22] for dealing with
the training difficulty over a relative large computational domain Ω . The method is based on a partition {Ωk−1,k}

nb
k=1 of

the computational domain Ω . To define Ωk−1,k, let {Ωk}
nb
k=1 be subdomains of Ω satisfying the following inclusion relation

∅ = Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωnb = Ω.

Then set Ωk−1,k = Ωk \Ωk−1 for k = 1, . . . , nb. Assume that Ωk−1,k is in the range of influence of

Γk−1,k = ∂Ωk−1,k ∩ ∂Ωk−1 and Γ k
−
= ∂Ωk−1,k ∩ Γ−.

Denote by uk
= u|Ωk−1,k the restriction of the solution u of (2.2) on Ωk−1,k, then uk is the solution of the following

problem:⎧⎨⎩ divT f(uk) = 0, in Ωk−1,k ∈ Rd+1,

uk
= uk−1, on Γk−1,k,

uk
= g, on Γ k

−
.

(3.11)

Let

Lk(v; uk−1, g
)
= ∥div f(v)∥20,Ωk−1,k

+ ∥v − uk−1
∥
2
0,Γk−1,k

+ ∥v − g∥2
0,Γ k

−

,

and define the corresponding discrete least-squares functional Lk
T

(
v; uk−1, g

)
over the subdomain Ωk−1,k in a similar

fashion as in (3.7). Now, the block space–time LSNN method is to find uk
T
(z, θ∗k) ∈ MN such that

Lk
T

(
uk
T
(·, θ∗k); u

k−1, g
)
= min

v∈MN
Lk

T

(
v(·; θ); uk−1, g

)
= min

θ∈RN
Lk

T

(
v(·; θ); uk−1, g

)
(3.12)

for k = 1, . . . , nb.

4. Discrete divergence operator

As seen in [18,22], numerical approximation of the differential operator is critical for the success of the LSNN method.
Standard numerical or automatic differentiation along coordinate directions generally results in an inaccurate LSNN
method, even for linear problems when solutions are discontinuous. This is because the differential form of the HCL
is invalid at discontinuous interface. To overcome this difficulty, we used the discrete directional differentiation for linear
problems in [18] and the discrete divergence operator of the Roe and ENO type for nonlinear problems in [22].

In this section, we introduce a new discrete divergence operator based on the definition of the divergence operator.
Specifically, for each K ∈ T , let zi

K
= (xi

K
, t i

K
) and ωi for i ∈ J be the quadrature points and weights for the quadrature

QK , where J is the index set. Hence, the discrete least-squares functional becomes

LT

(
v; g

)
=

∑⎛⎝∑ωi divT f
(
v(zi

K
)
)⎞⎠2

+

∑
Q2

E

(
v − g

)
.

K∈T i∈J E∈E−

5



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

s
D
w

w

w

To define the discrete divergence operator divT , we first construct a set of control volumes

V = {V : V is an open subdomain of Ω}

uch that V is a partition of the domain Ω and that each quadrature point is the centroid of a control volume V ∈ V .
enote by V i

K
the control volume corresponding to the quadrature point zi

K
, by the definition of the divergence operator,

e have

div f
(
u(zi

K
)
)
≈ avgV i

K
div f(u) =

1
|V i

K
|

∫
∂V i

K

f(u) · n dS, (4.1)

here the average of a function ϕ over V i
K
is defined by

avgV i
K
ϕ =

1
|V i

K
|

∫
V i
K

ϕ(z) dz.

The average of ϕ with respect to the partition V is denoted by avgVϕ and defined as a piece-wise constant function
through its restriction on each V ∈ V by

avgVϕ
⏐⏐
V = avgVϕ.

Now we may design a discrete divergence operator divT acting on the total flux f(u) by approximating the surface integral
on the right-hand side of (4.1).

All existing conservative schemes of various order such as Roe, ENO, WENO, etc. may be viewed as approximations of
the surface integral using values of f(u) at some mesh points, where most of them are outside of V̄ . These conservative
schemes are nonlinear methods because the procedure determining proper mesh points to be used for approximating the
average of the spatial flux is a nonlinear process due to possible discontinuity.

Because the LSNN method is a ‘‘mesh/point-less’’ space–time method, all points on ∂V ∈ Rd+1 are at our disposal
for approximating the surface integral. Hence, the surface integral can be approximated as accurately as desired by
using only points on ∂V . When u and hence fi(u) are discontinuous on ∂V , the best linear approximation strategy is
to use piece-wise constant/linear functions on a sufficiently fine partition of each face of ∂V , instead of higher order
polynomials on each face. This suggests that a composite lower-order numerical integration such as the composite
mid-point/trapezoidal quadrature would provide accurate approximation to the surface integral in (4.1), and hence the
resulting discrete divergence operator would be accurate approximation to the divergence operator, even if the solution
is discontinuous.

4.1. One dimension

For clarity of presentation, the discrete divergence operator described above will be first introduced in this sec-
tion in one dimension. To this end, to approximate single integral I(ϕ) =

∫ d
c ϕ(s) ds, we will use the composite

midpoint/trapezoidal rule:

Q (ϕ(s); c, d, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d− c
p

p−1∑
i=0

ϕ
(
si+1/2

)
, midpoint,

d− c
2p

(
ϕ(c)+ ϕ(d)+ 2

p−1∑
i=1

ϕ
(
si
))

, trapezoidal,

(4.2)

here {si}
p
i=0 uniformly partitions the interval [c, d] into p sub-intervals.

Let Ω = (a, b) × (0, T ). For simplicity, assume that the integration partition T introduced in Section 3 is a uniform
partition of the domain Ω; i.e.,

T = {K = Kij : i = 0, 1, . . . ,m− 1; j = 0, 1, . . . , n− 1} with Kij = (xi, xi+1)× (tj, tj+1),

where xi = a+ ih and tj = jτ with h = (b−a)/m and δ = T/n. For integration subdomain Kij, the set of quadrature points
is

Mij = {zi+ 1
2 ,j+

1
2
} for the midpoint rule,

Tij = {zi,j, zi+1,j, zi,j+1, zi+1,j+1} for the trapezoidal rule,

and Sij = Mij ∪ Tij ∪ {zi+ 1
2 ,j
, zi,j+ 1

2
, zi+1,j+ 1

2
, zi+ 1

2 ,j+1} for the Simpson rule,

where zi+k,j+l =
(
xi + kh, tj + lδ

)
for k, l = 0, 1/2, or 1. Based on those quadrature points, the sets of control volumes

may be defined accordingly. For example, the control volume Vm for the midpoint rule is T ; the control volume Vt for

the trapezoidal rule is obtained by shifting control volumes in Vm by
1
(h, δ) plus half-size control volumes along the
2
6



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

h

d

T

A
o

f

L
C

R
i
d

boundary; and the control volume Vs for the Simpson rule is obtained in a similar fashion as Vt on the element size of
/2 and δ/2 for space and time, respectively.
For simplicity of presentation, we define the discrete divergence operator only for the midpoint rule for it can be

efined in a similar fashion for other quadrature. Since Vm = T , i.e., the control volume of Vm is the same as the element
of T , for each control volume V = Kij, denote its centroid by

zV = zij = (xi + h/2, tj + δ/2).

Denote by σ = f (u) the spatial flux, then the total flux is the two-dimensional vector field f(u) = (σ , u). Denote the
first-order finite difference quotients by

σ (xi, xi+1; t) =
σ (xi+1, t)− σ (xi, t)

xi+1 − xi
and u(x; tj, tj+1) =

u(x, tj+1)− u(x, tj)
tj+1 − tj

.

hen the surface integral in (4.1) becomes

1
|Kij|

∫
∂Kij

f(u) · n dS = δ−1
∫ tj+1

tj

σ (xi, xi+1; t) dt + h−1
∫ xi+1

xi

u(x; tj, tj+1) dx. (4.3)

pproximating single integrals by the composite midpoint/trapezoidal rule, we obtain the following discrete divergence
perator

divT f
(
u(zij)

)
= δ−1Q (σ (xi, xi+1; t); tj, tj+1, n̂)+ h−1Q (u(x; tj, tj+1); xi, xi+1, m̂). (4.4)

Remark 4.1. Denote by ui,j as approximation to u(xi, tj). (4.4) with m̂ = n̂ = 1 using the trapezoidal rule leads to the
following implicit conservative scheme for the one-dimensional scalar nonlinear HCL:

ui+1,j+1 + ui,j+1

δ
+

f
(
ui+1,j+1

)
− f

(
ui,j+1

)
h

=
ui+1,j + ui,j

δ
−

f
(
ui+1,j

)
− f

(
ui,j
)

h
(4.5)

or i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.

Below, we state error estimates of the discrete divergence operator defined in (4.4) and postpone their proof to
Appendix.

emma 4.2. For any Kij ∈ T , assume that u is a C2 function on every edge of the rectangle ∂Kij. Then there exists a constant
> 0 such that

∥divT f(u)− avgT div f(u)∥Lp(Kij)

≤ C
(
h1/pδ2

n̂2 ∥σtt (xi+1, xi; ·)∥Lp(tj,tj+1) +
h2δ1/p

m̂2 ∥uxx(·; tj+1, tj)∥Lp(xi,xi+1)

)
. (4.6)

This lemma indicates that m̂ = 1 and n̂ = 1 are sufficient if the solution is smooth on ∂Kij. In this case, we may use
higher order numerical integration, e.g., the Gauss quadrature, to approximate the surface integral in (4.3) for constructing
a higher order discrete divergence operator.

When u is discontinuous on ∂Kij, error estimate on the discrete divergence operator becomes more involved. To this
end, first we consider the case that the discontinuous interface Γij (a straight line) intersects two horizontal boundary
edges of Kij. Denote by uij = u|Kij the restriction of u in Kij and by [[uij]]tl the jump of uij on the horizontal boundary edge
t = tl of Kij, where l = j and l = j+ 1.

Lemma 4.3. Assume that u is a C2 function of t and a piece-wise C2 function of x on two vertical and two horizontal edges
of Kij, respectively. Moreover, u has only one discontinuous point on each horizontal edge. Then there exists a constant C > 0
such that

∥divT f(u)− avgT div f(u)∥Lp(Kij)

≤ C
(
h1/pδ2

n̂2 +
h2δ1/p

m̂2 +
hδ1/p

m̂1+1/q

)
+

(hδ)1/p

m̂

j+1∑
l=j

[[uij]]tl . (4.7)

emark 4.4. Lemma 4.3 implies that the choice of the number of sub-intervals of (xi, xi+1) on the composite numerical
ntegration depends on the size of the jump of the solution and that large m̂ would guarantee accuracy of the discrete
ivergence operator when u is discontinuous on ∂K .
ij

7



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

h

f

4

v
m
f

i

(

D

Remark 4.5. Error bounds similar to (4.7) hold for the other cases: Γij intercepts (i) two vertical edges or (ii) one
orizontal and one vertical edges of Kij. Specifically, we have

∥divT f(u)− avgT div f(u)∥Lp(Kij) ≤ C
(
h1/pδ2

n̂2 +
h2δ1/p

m̂2 +
h1/pδ

n̂1+1/q

)
+

(hδ)1/p

n̂

i+1∑
l=i

[[σij]]xl

for the case (i) and

∥divT f(u)− avgT div f(u)∥Lp(Kij) ≤ C
(
h1/pδ2

n̂2 +
h2δ1/p

m̂2 +
hδ1/p

m̂1+1/q +
h1/pδ

n̂1+1/q

)
+ Eij

or the case (ii), where Eij = (hδ)1/p
(

1
m̂
[[uij]]tl +

1
n̂
[[σij]]xl

)
with xl = xi or xi+1 and tl = tj or tj+1.

.2. Two dimensions

This section describes the discrete divergence operator in two dimensions. As in one dimension, the discrete di-
ergence operator is defined as an approximation to the average of the divergence operator through the composite
id-point/trapezoidal quadrature to approximate the surface integral (4.1). Extension to three dimensions is straight-

orward.
To this end, we first describe the composite mid-point/trapezoidal numerical integration for approximating a double

ntegral over a rectangle region T = (c1, d1)× (c2, d2)

I(ϕ) =
∫
T
ϕ(s1, s2) ds1ds2

≈ Q
(
ϕ(s1, s2); c1, d1, p1; c2, d2, p2

)
≡ Q

(
Q
(
ϕ(s1, ·); c1, d1, p1

)
(s2); c2, d2, p2

)
,

where Q
(
ϕ(s1, ·); c1, d1, p1

)
is the composite quadrature defined in (4.2).

For simplicity, let Ω = Ω̃ × I = (a1, b1)× (a2, b2)× (0, T ), and assume that the integration partition T introduced in
Section 3 is a uniform partition of the domain Ω; i.e.,

T = {K = Kijk : i = 0, 1, . . . ,m1 − 1; j = 0, 1, . . . ,m2 − 1; k = 0, 1, . . . , n− 1}

with Kijk = (xi, xi+1)× (yj, yj+1)× (tk, tk+1), where

xi = a1 + ih1, yj = a2 + jh2, and tk = kδ,

and hl = (bl − al)/ml for l = 1, 2 and δ = T/n are the respective spatial and temporal sizes of the integration mesh.
Again, we define the discrete divergence operator only corresponding to the midpoint rule. Denote the mid-point of Kijk
by

zijk = (xi +
h1

2
, yj +

h2

2
, tk +

δ

2
).

Let σ = (σ1, σ2) = (f1(u), f2(u)), then the space–time flux is the three-dimensional vector field: f(u) = (σ, u) =

σ1, σ2, u). Denote the first-order finite difference quotients by

σ1(y, t; xi, xi+1) =
σ1(xi+1, y, t)− σ1(xi, y, t)

xi+1 − xi
, σ2(x, t; yj, yj+1) =

σ2(x, yj+1, t)− σ1(x,yj, t)
yj+1 − yj

,

and u(x, y; tk, tk+1) =
u(x, y, tk+1)− u(x, y, tk)

tk+1 − tk
.

enote three faces of ∂Kijk by

K xy
ij = (xi, xi+1)× (yj, yj+1), K xt

ik = (xi, xi+1)× (tk, tk+1), and K yt
jk = (yj, yj+1)× (tk, tk+1).

Then the surface integral in (4.1) becomes

1
|Kijk|

∫
∂Kijk

f(u) · n dS = (h2δ)−1
∫
Kyt
jk

σ1(y, t; xi+1, xi) dydt

+ (h1δ)−1
∫
K xt
σ2(x, t; yj+1, yj) dxdt + (h1h2)−1

∫
K xy

u(x, y; tk+1, tk) dxdy. (4.8)

ik ij

8



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

4

c
c

p
f
d

w
T

w

F

w

w

w

d

t

a
b
p

T
s

Approximating double integrals by the composite midpoint/trapezoidal rule, we obtain the following discrete divergence
operator

divT f
(
u(zijk)

)
= (h2δ)−1Q

(
σ1(y, t; xi+1, xi); yj, yj+1, m̂2; tk, tk+1, n̂

)
+(h1δ)−1Q

(
σ2(x, t; yj+1, yj); xi, xi+1, m̂1; tk, tk+1, n̂

)
+(h1h2)−1Q

(
u(x, y; tk+1, tk); xi, xi+1, m̂1; yj, yj+1, m̂2

)
. (4.9)

.3. Integration mesh size

The discrete divergence operator defined in (4.4) and (4.9) for the respective one- and two-dimension is based on the
omposite midpoint/trapezoidal rule. As shown in Lemmas 4.2 and 4.3 and Remark 4.5, the discrete divergence operator
an be as accurate as desired for the discontinuous solution provided that the size of integration mesh is sufficiently small.
To reduce computational cost, note that the discontinuous interfaces of the solution u lie on d-dimensional hyper-

lanes. Hence, they only intersect with a small portion of control volumes in T . This observation suggests that sufficiently
ine meshes are only needed for control volumes at where the solution is possibly discontinuous. To realize this idea, we
ivide the set of control volumes into two subsets:

T = Tc ∪ Td,

here the solution u is continuous in each control volume of Kl
c and possibly discontinuous at some control volumes of

d; i.e.,

Tc = {K ∈ T : u ∈ C(K )} and Td = T \ Tc .

Next, we describe how to determine the set of control volumes Td in one dimension by the range of influence. It is
ell-known that characteristic curves are straight lines before their interception and are given by

x = x(Tl)+ (t − Tl) f ′
(
u (x(Tl), Tl)

)
. (4.10)

or i = 0, 1, . . . ,m, let

x̂i = xi + (Tl+1 − Tl) f ′
(
ul
N
(xi, Tl)

)
,

here ul
N
(xi, Tl) is the neural network approximation from the previous time block

Ω × Il−1 = (a, b)× (Tl−1, Tl).

Clearly, the solution u is discontinuous in a control volume Vi × Ikl if either (1) u(x, Tl) is discontinuous at the interval
Vi or (2) there are two characteristic lines intercepting in Vi × Ikl . In the first case, Vi × Ikl is in Kl

d if ul
N
(x, Tl) has a sharp

change in the interval Vi; moreover, either Vi−1 × Ikl ∈ Kl
d if x̂i < xi or Vi+1 × Ikl ∈ Kl

d if x̂i+1 > xi+1. In the second case,
assume that x̂i > x̂i+1, then Vi × Ikl ∈ Kl

d if x̂i < xi+1.

5. Numerical experiments

This section presents numerical results of the block space–time LSNN method for one and two dimensional problems.
Let Ω = Ω̃ × (0, T ). The kth space–time block is defined as

Ωk−1,k = Ωk \Ωk−1 = Ω̃ ×

(
(k− 1)T

nb
,
kT
nb

)
for k = 1, . . . , nb,

here Ωk = Ω̃ × (0, kT/nb). For efficient training, the least-squares functional is modified as follows:

Lk(v; uk−1, g
)
= ∥div f(v)∥20,Ωk−1,k

+ α(∥v − uk−1
∥
2
0,Γk−1,k

+ ∥v − g∥2
0,Γ k

−

), (5.1)

here α is a weight to be chosen empirically.
Unless otherwise stated, the integration mesh Tk is a uniform partition of Ωk−1,k with h = δ = 0.01, and the discrete

ivergence operator defined in (4.4) is based on the composite trapezoidal rule with m̂ = n̂ = 2. Three-layer or four-layer
neural network are employed for all test problems and are denoted by din− n1 − n2(-n3)-1 with n1, n2 and n3 neurons in
he respective first, second and third (for a four-layer NN)layers. The same network structure is used for all time blocks.

The network is trained by using the ADAM [28] (a variant of the method of gradient descent) with either a fixed or an
daptive learning rate to iteratively solve the minimization problem in (3.12). Parameters of the first block is initialized
y an approach introduced in [29], and those for the current block is initialized by using the NN approximation of the
revious block (see Remark 4.1 of [22]).
The solution of the problem in (3.11) and its corresponding NN approximation are denoted by uk and uk

T
, respectively.

heir traces are depicted on a plane of given time and exhibit capability of the numerical approximation in capturing
hock/rarefaction.
9



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

x

S
f

a
l
o
w
a

R
H
c
s
r

Table 1
Relative L2 errors of Riemann problem (shock) for
Burgers’ equation.

Network structure Block
∥uk−ukT ∥0

∥uk∥0

2-10-10-1
Ω0,1 0.048774
Ω1,2 0.046521
Ω2,3 0.044616

Fig. 1. Approximation results of Riemann problem (shock) for Burgers’ equation.

5.1. Inviscid Burgers’ equation

This section reports numerical results of the block space–time LSNN method for the one dimensional inviscid Burgers
equation, where the spatial flux is f̃(u) = f (u) = 1

2u
2.

The first two test problems are the Riemann problem with the initial condition: u0(x) = u(x, 0) = uL if x ≤ 0 or uR if
≥ 0.

hock formation. When uL = 1 > 0 = uR , a shock is formed immediately with the shock speed s =
(
uL + uR

)
/2. The

irst test problem is defined on a computational domain Ω = (−1, 1)× (0, 0.6) with inflow boundary

Γ− = Γ L
−
∪ Γ R

−
≡ {(−1, t) : t ∈ [0, 0.6]} ∪ {(1, t) : t ∈ [0, 0.6]}

nd boundary conditions: g = uL = 1 on Γ L
−

and g = uR = 0 on Γ R
−
. With nb = 3 blocks, weight α = 20, a fixed

earning rate 0.003, and 30 000 iterations for each block, the relative errors in the L2 norm are reported in Table 1. Traces
f the exact solution and numerical approximation on the planes t = kT/nb for k = 1, 2, 3 are depicted in Fig. 1(b)–(d),
hich clearly indicate that the LSNN method is capable of capturing the shock formation and its speed. Moreover, it
pproximates the solution well without oscillations.

arefaction waves. When uL = 0 < 1 = uR , the range of influence of all points in R is a proper subset of R × [0,∞).
ence, the weak solution of the scalar hyperbolic conservation law is not unique. The second test problem is defined on a
omputational domain Ω = (−1, 2)× (0, 0.4) with inflow boundary condition g = 0 on Γ− = {(−1, t) : t ∈ [0, 0.4]}. As
hown in Section 5.1.2 of [22], the LSNN method using Roe’s scheme has a limitation to resolve the rarefaction. Numerical
esults of the LSNN method using the discrete divergence operator (n = 2, α = 10, a fixed learning rate 0.003, and 40 000
b

10



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

i
t
p
f

S
t

T
(
d

b
a
t

w
S
2
u
n

5

u
o

u
m
a
i

n
a

Table 2
Relative L2 errors of Riemann problem (rarefac-
tion) for Burgers’ equation.

Network structure Block
∥uk−ukT ∥0

∥uk∥0

2-10-10-1 Ω0,1 0.013387
Ω1,2 0.010079

Fig. 2. Approximation results of Riemann problem (rarefaction) for Burgers’ equation.

terations) are reported in Table 2. Traces of the exact solution and numerical approximation on the planes t = 0.2 and
= 0.4 are depicted in Fig. 2. This test problem shows that the LSNN method using the divT is able to compute the
hysically relevant vanishing viscosity solution (see, e.g., [7,30]) without special treatment. This is possibly due to the
act that the LSNN approximation is continuous.

inusoidal initial condition. The third test problem has smooth initial condition u0(x) = 0.5+ sin(πx) and is defined on
he computational domain Ω = (0, 2)× (0, 0.8) with inflow boundary

Γ− = Γ L
−
∪ Γ R

−
≡ {(0, t) : t ∈ [0, 0.8]} ∪ {(2, t) : t ∈ [0, 0.8]}.

he shock of the problem appears at t = 1/π ≈ 0.318. This is the same test problem as in Section 5.2 of [22]
see also [31,32]). The goal of this experiment is to compare numerical performances of the LSNN methods using the
ivT introduced in this paper and the ENO scheme in [22].
Since the solution of this problem is implicitly given, to accurately measure the quality of NN approximations, a

enchmark reference solution û is generated using the traditional mesh-based method. In particular, the third-order
ccurate WENO scheme [3] and the fourth-order Runge–Kutta method are employed for the respective spatial and
emporal discretizations with a fine mesh (∆x = 0.001 and ∆t = 0.0002) on the computational domain Ω .

The LSNN using divT is implemented with the same set of hyper parameters as in Section 5.2 of [22], i.e., training
eight α = 5 and an adaptive learning rate which starts with 0.005 and reduces by half for every 25000 iterations.
etting nb = 16 and on each time block, the total number of iterations is set as 50000 and the size of the NN model is
-30-30-1. Although we observe some error accumulation when the block evolves for both the LSNN methods, the one
sing divT performs better than that using ENO (see Table 3 for the relative L2 norm error and Fig. 3(a)–(h) for graphs
ear the left side of the interface).

.2. Riemann problem with f (u) = 1
4u

4

The goals of this set of numerical experiments are twofold. First, we compare the performance of the LSNN method
sing the composite trapezoidal/mid-point rule in (4.2). Second, we investigate the impact of the number of sub-intervals
f the composite quadrature rule on the accuracy of the LSNN method.
The test problem is the Riemann problem with a convex flux f(u) = (f (u), u) = ( 14u

4, u) and the initial condition
L = 1 > 0 = uR . The computational domain is chosen to be Ω = (−1, 1) × (0, 0.4). Relative L2 errors of the LSNN
ethod using the divT (2-10-10-1 NN model, nb = 2, α = 20, a fixed learning rate 0.003 for the first 30 000 iterations
nd 0.001 for the remaining) are reported in Tables 4 and 5; and traces of the exact and numerical solutions are depicted
n Fig. 4.

Clearly, Tables 4 and 5 indicate that the accuracy of the LSNN method depends on the number of sub-intervals (m̂ and
ˆ) for the composite quadrature rule; i.e., the larger m̂ and n̂ are, the more accurate the LSNN method is. Moreover, the
ccuracy using the composite trapezoidal and mid-point rules in the LSNN method is comparable.
11



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298
Fig. 3. Approximation results of Burgers’ equation with a sinusoidal initial condition.

Fig. 4. Numerical results of the problem with f (u) = 1
4 u

4 using the composite trapezoidal and mid-point rules.
12



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

c
i
α

t
i
e

Table 3
Relative L2 errors of Burgers’ equation with a sinusoidal initial condition.
Network structure Block LSNN using divT

∥uk−ukT ∥0

∥uk∥0

LSNN using ENO

[22]
∥uk−ukT ∥0

∥uk∥0

2-30-30-1

Ω0,1 0.010641 0.010461
Ω1,2 0.011385 0.012517
Ω2,3 0.012541 0.019772
Ω3,4 0.014351 0.022574
Ω4,5 0.016446 0.029011
Ω5,6 0.018634 0.038852
Ω6,7 0.031103 0.075888
Ω7,8 0.053114 0.078581
Ω8,9 0.053562 –
Ω9,10 0.064933 –
Ω10,11 0.061354 –
Ω11,12 0.077982 –
Ω12,13 0.061145 –
Ω13,14 0.070554 –
Ω14,15 0.068539 –
Ω15,16 0.065816 –

Table 4
Relative L2 errors of the problem with f (u) = 1

4 u
4 using the composite

trapezoidal rule (4.2).
Time block Number of sub-intervals

m̂ = n̂ = 2 m̂ = n̂ = 4 m̂ = n̂ = 6

Ω0,1 0.067712 0.010446 0.004543
Ω1,2 0.108611 0.008275 0.009613

Table 5
Relative L2 errors of the problem with f (u) = 1

4 u
4 using the composite

mid-point rule (4.2).
Time block Number of sub-intervals

m̂ = n̂ = 2 m̂ = n̂ = 4 m̂ = n̂ = 6

Ω0,1 0.096238 0.007917 0.003381
Ω1,2 0.159651 0.007169 0.005028

Table 6
Relative L2 errors of Riemann problem with a
non-convex flux f (u) = 1

3 u
3 .

Network structure Block
∥uk−ukT ∥0

∥uk∥0

2-64-64-64-1

Ω0,1 0.03277
Ω1,2 0.03370
Ω2,3 0.03450
Ω3,4 0.03578

5.3. Riemann problem with non-convex fluxes

The test problem for a non-convex flux is a modification of the test problem in Section 5.2 by replacing the flux with
f (u) = 1

3u
3 and the initial condition with uL = 1 > −1 = uR. The Riemann solution consists partly of a rarefaction wave

together with a shock wave which brings a new level of challenge with a compound wave. The exact solution is obtained
through Osher’s formulation [33] which has a shock speed s=0.25 and a shock jump from 1 to −0.5 when t > 0.

The block space–time LSNN method using the divT with m̂ = n̂ = 4 is utilized for this problem. Four time blocks are
omputed on the temporal domain (0, 0.4) and a relative larger network structure (2-64-64-64-1) is tested with a smaller
ntegration mesh size h = δ = 0.005 to compute the compound wave more precisely. We tune the hyper parameter
= 200, and all time blocks are computed with a total of 60000 iterations (learning rate starts with 1e-3 and decay

o 20% every 20000 iterations). Due to the random initial guess for the second hidden layer parameters, the experiment
s replicated several times. Similar results are obtained as the best result reported in Table 6 and Fig. 5(a)–(e). These
xperiments demonstrate that the LSNN method can capture the compound wave for non-convex flux problems as well.
13



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

p

t

a
i
t
o
L
d

6

f
t

s
T

t
a

Fig. 5. Numerical results of Riemann problem with a non-convex flux f (u) = 1
3 u

3 .

5.4. Two-dimensional problem

Consider a two-dimensional inviscid Burgers equation, where the spatial flux vector field is f̃(u) = 1
2 (u

2, u2). Given a
iece-wise constant initial data

u0(x, y) =

⎧⎪⎨⎪⎩
−0.2, if x < 0.5 and y > 0.5,
−1.0, if x > 0.5 and y > 0.5,
0.5, if x < 0.5 and y < 0.5,
0.8, if x > 0.5 and y < 0.5,

(5.2)

his problem has an exact solution given in [34].
The test problem is set on computational domain Ω = (0, 1)2 × (0, 0.5) with inflow boundary conditions prescribed

by using the exact solution. Our numerical result using a 4-layer LSNN (3-48-48-48-1) with 3D divT (m̂ = n̂ = k̂ = 2)
re reported in Table 7. The corresponding hyper parameters setting is as follows: nb = 5, α = 20, the first time block
s trained with 30 000 iteration where the first 10 000 iterations are using learning rate 0.003 and the rest iterations are
rained using learning rate of 0.001; all remaining time blocks are trained with 20 000 iterations using fixed learning rate
f 0.001. Fig. 6 presents the graphical results at time t = 0.1, 0.3, and 0.5. This experiment shows that the proposed
SNN method can be extended to two dimensional problems and can capture the shock and rarefaction waves in two
imensions.

. Discussion and conclusion

The ReLU neural network provides a new class of approximating functions that is ideal for approximating discontinuous
unctions with unknown interface location [18]. Making use of this unique feature of neural networks, this paper studied
he least-squares ReLU neural network (LSNN) method for solving scalar nonlinear hyperbolic conservation laws.

In the design of the LSNN method for HCLs, the numerical approximation of differential operators is a critical factor, and
tandard numerical or automatic differentiation along coordinate directions can often lead to a failed NN-based method.
o overcome this challenge, this paper introduced a new discrete divergence operator divT based on its physical meaning.
Numerical results for several test problems show that the LSNN method using the divT does overcome limitations of

he LSNN method with conservative flux in [22]. Moreover, for the one dimensional test problems with fluxes f (u) = 1
4u

4

nd 1
3u

3, the accuracy of the method may be improved greatly by using enough number of sub-intervals in the composite
trapezoidal/mid-point quadrature.
14



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

r

P
t

Fig. 6. Numerical results of 2D Burgers’ equation.

Table 7
Relative L2 errors of Riemann problem (shock) for
2D Burgers’ equation.

Network structure Block
∥uk−ukT ∥0

∥uk∥0

3-48-48-48-1
Ω0,1 0.093679
Ω1,2 0.121375
Ω2,3 0.163755
Ω3,4 0.190460
Ω4,5 0.213013

Compared to other NN-based methods like the PINN and its variants, the LSNN method introduced in this paper free of
any penalization such as the entropy, total variation, and/or artificial viscosity, etc. Usually, choosing proper penalization
constants can be challenging in practice and it affects the accuracy, efficiency, and stability of the method.

Even though the number of degrees of freedom for the LSNN method is several order of magnitude less than those of
traditional mesh-based numerical methods, training NN is computationally intensive and complicated. For a network with
more than one hidden layer, random initialization of the parameters in layers beyond the first hidden layer would cause
some uncertainty in training NN (iteratively solving the resulting non-convex optimization) as observed in Section 5.2.
This issue plus designation of a proper architecture of NN would be addressed in a forthcoming paper using the adaptive
network enhancement (ANE) method developed in [29,35,36].

Data availability

No data was used for the research described in the article.

Appendix

In the appendix, we provide the proofs of Lemmas 4.2 and 4.3. First, denote the integral and the mid-point/trapezoidal
ule of a function ϕ over an interval [0, ρ] by

I(ϕ) =
∫ ρ

0
ϕ(s) ds and Q (ϕ; 0, ρ, 1) =

{
ρ ϕ(ρ/2), midpoint,
ρ

2

(
ϕ(0)+ ϕ(ρ)

)
, trapezoidal,

respectively. Let p, q ∈ (1,∞] such that 1/p+ 1/q = 1. It is easy to show the following error bounds:⏐⏐I(ϕ)− Q (ϕ; 0, ρ, 1)
⏐⏐ ≤ {

Cρ2+1/q
∥ϕ′′

∥Lp(0,ρ), if ϕ ∈ C2(0, ρ),
Cρ1+1/q

∥ϕ′
∥Lp(0,ρ), if ϕ ∈ C1(0, ρ). (A.1)

roof of Lemma 4.2. We prove Lemma 4.2 only for the mid-point rule because it may be proved in a similar fashion for
he trapezoidal rule. To this end, denote uniform partitions of the intervals [xi, xi+1] and [tj, tj+1] by

x = x0 < x1 < · · · < xm̂ = x , and t = t0 < t1 < · · · < t n̂ = t ,
i i i i i+1 j j j j j+1

15



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

(

f
s

I

respectively, where xki = xi + kĥ and tkj = tj + kδ̂; and ĥ = h/m̂ and δ̂ = δ/n̂ are the numerical integration mesh sizes. By
A.1), we have⏐⏐⏐⏐⏐

∫ tk+1
j

tkj

σ (xi, xi+1; t) dt − δ̂σ (xi, xi+1; t
k+1/2
j )

⏐⏐⏐⏐⏐ ≤ C δ̂2+1/q
∥σtt (xi, xi+1; ·)∥Lp(tkj ,tk+1

j ),

and

⏐⏐⏐⏐⏐
∫ xk+1

i

xki

u(x; tj, tj+1) dx− ĥu(xk+1/2
i ; tj, tj+1)

⏐⏐⏐⏐⏐ ≤ C ĥ2+1/q
∥uxx(·; tj, tj+1)∥Lp(xki ,xk+1

i ),

which, together with (4.3), (4.4), and the triangle and the Hölder inequalities, implies

|Kij|
1/q
divT f(u)− avgT div f(u)


Lp(Kij)

= |Kij|

⏐⏐⏐avgKijdiv f(u)− divT f
(
u(mij)

)⏐⏐⏐
≤ C

{
hδ̂2+1/q

n̂−1∑
k=0

∥σtt (xi, xi+1; ·)∥Lp(tkj ,tk+1
j ) + δĥ2+1/q

m̂−1∑
k=0

∥uxx(·; tj, tj+1)∥Lp(xki ,xk+1
i )

}
≤ C

{
hδ̂2+1/qn̂1/q

∥σtt (xi, xi+1; ·)∥Lp(tj,tj+1) + δĥ2+1/qm̂1/q
∥uxx(·; tj, tj+1)∥Lp(xi,xi+1)

}
.

This completes the proof of Lemma 4.2. □

To prove Lemma 4.3, we need to estimate an error bound of numerical integration for piece-wise smooth and
discontinuous integrant over interval [0, ρ].

Lemma A.1. For any 0 < ρ̂ < ρ/2, assume that ϕ ∈ C1
(
(0, ρ̂)

)
∩ C1

(
(ρ̂, ρ)

)
is a piece-wise C1 function. Denote by

jϕ = |ϕ(ρ̂+)− ϕ(ρ̂−)| the jump of ϕ(s) at s = ρ̂. Then there exists a positive constant C such that⏐⏐I(ϕ)− Q (ϕ; 0, ρ, 1)
⏐⏐ ≤ Cρ1+1/q

∥ϕ′
∥
Lp
(
(0,ρ)\{ρ̂}

) + { ρ̂ jϕ, mid-point,⏐⏐⏐ρ
2
− ρ̂

⏐⏐⏐ jϕ, trapezoidal

≤ Cρ1+1/q
∥ϕ′

∥
Lp
(
(0,ρ)\{ρ̂}

) + ρ

2
jϕ . (A.2)

Proof. Denote the linear interpolant of ϕ on the interval [0, ρ] by ϕ1(s) = ϕ(0)
ρ − s
ρ

+ϕ(ρ)
s
ρ
. For any s ∈ (0, ρ̂), by the

act that ϕ(0) − ϕ1(0) = 0, a standard argument on the error bound of interpolant yields that there exists a ξ− ∈ (0, ρ̂)
uch that

ϕ(s)− ϕ1(s) = ϕ′(ξ−)s−
s
ρ
(ϕ(ρ)− ϕ(0)),

which implies∫ ρ̂

0
(ϕ(s)− ϕ1(s)) ds =

∫ ρ̂

0
ϕ′(ξ−)s ds−

ρ̂2

2ρ
(ϕ(ρ)− ϕ(0)) .

n a similar fashion, there exists a ξ− ∈ (ρ̂, ρ) such that∫ ρ

ρ̂

(ϕ(s)− ϕ1(s)) ds =
∫ ρ

ρ̂

ϕ′(ξ+)(s− ρ) ds+
(ρ − ρ̂)2

2ρ
(ϕ(ρ)− ϕ(0)) .

Combining the above inequalities and using the triangle and the Hölder inequalities give⏐⏐I(ϕ)− Qt (ϕ)
⏐⏐ = ⏐⏐⏐⏐⏐

∫ ρ̂

0
ϕ′(ξ−)sds+

∫ ρ

ρ̂

ϕ′(ξ+)(s− ρ)ds+
ρ − 2ρ̂

2
(ϕ(ρ)− ϕ(0))

⏐⏐⏐⏐⏐
≤

1
(1+ q)1/q

ρ1+1/q (
∥ϕ′

∥Lp(0,ρ̂) + ∥ϕ′
∥Lp(ρ̂,ρ)

)
+

⏐⏐⏐ρ
2
− ρ̂

⏐⏐⏐ |ϕ(ρ)− ϕ(0)|

≤
21/q

(1+ q)1/q
ρ1+1/q

∥ϕ′
∥
Lp
(
(0,ρ)\{ρ̂}

) + ⏐⏐⏐ρ
2
− ρ̂

⏐⏐⏐ |ϕ(ρ)− ϕ(0)| .

It follows from the triangle and the Hölder inequalities that

|ϕ(ρ)− ϕ(0)| ≤
⏐⏐⏐⏐∫ ρ

ρ̂

ϕ′(s) ds
⏐⏐⏐⏐+

⏐⏐⏐⏐⏐
∫ ρ̂

0
ϕ′(s) ds

⏐⏐⏐⏐⏐+ jϕ

≤ ρ1/q (
∥ϕ′

∥Lp(0,ρ̂) + ∥ϕ′
∥Lp(ρ̂,ρ)

)
+ jϕ ≤ (2ρ)1/q ∥ϕ′

∥Lp((0,ρ)\{ρ̂}) + jϕ .

Now, the above two inequalities and the fact that
⏐⏐⏐ρ − ρ̂

⏐⏐⏐ ≤ ρ
imply (A.2) for the trapezoidal rule.
2 2
16



Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298

N
p

P
l

{

N

R

To prove the validity of (A.2) for the mid-point rule, note that for any s ∈ (0, ρ̂) we have

ϕ(s)− ϕ(ρ/2) =
∫ s

ρ̂

ϕ′(s) ds+
∫ ρ̂

ρ/2
ϕ′(s) ds+ ϕ(ρ̂−)− ϕ(ρ̂+)

≤ (ρ̂ − s)1/q∥ϕ′
∥Lp(s,ρ̂) + (ρ/2− ρ̂)1/q∥ϕ′

∥Lp(ρ̂,ρ/2) + ϕ(ρ̂−)− ϕ(ρ̂+),

which, together with the triangle inequality, implies⏐⏐⏐⏐⏐
∫ ρ̂

0

(
ϕ(s)− ϕ(ρ/2)

)
ds

⏐⏐⏐⏐⏐ ≤ (ρ
2

)1+1/q (
∥ϕ′

∥Lp(0,ρ̂) + ∥ϕ′
∥Lp(ρ̂,ρ/2)

)
+ ρ̂jϕ .

Similarly, we have⏐⏐⏐⏐∫ ρ

ρ̂

(
ϕ(s)− ϕ(ρ/2)

)
ds
⏐⏐⏐⏐ ≤ 2q

1+ q

(ρ
2

)1+1/q
∥ϕ′

∥Lp(ρ̂,ρ).

ow, (A.2) for the mid-point rule follows from the triangle inequality and the above two inequalities. This completes the
roof of the lemma. □

Now, we are ready to prove the validity of Lemma 4.3.

roof of Lemma 4.3. By the assumption, the discontinuous interface Γij intercepts two horizontal edges at (x̂li, tl) for
= j, j + 1. Without loss of generality, assume that x̂ji ∈

(
x
kj
i , x

kj+1
i

)
and x̂j+1

i ∈

(
x
kj+1
i , x

kj+1+1
i

)
for some kj and kj+1 in

0, 1, . . . , m̂}. Let Îij =
(
x
kj
i , x

kj+1
i

)
∪

(
x
kj
i , x

kj+1
i

)
. The same proof of Lemma 4.2 leads todivT f(u)− avgT div f(u)


Lp(Kij)

≤ C
{
h1/pδ2

n̂2 ∥σtt (xi, xi+1; ·)∥Lp(tj,tj+1) +
h2δ1/p

m̂2 ∥uxx(·; tj, tj+1)∥Lp
(
(xi,xi+1)\Îij

)}

+
δ

(hδ)1/q

j+1∑
l=j

⏐⏐⏐⏐⏐⏐
∫ x

kl+1
i

x
kl
i

u(x; tj, tj+1) dx− ĥu(x
kl+

1
2

i ; tj, tj+1)

⏐⏐⏐⏐⏐⏐ ,
which, together with Lemma A.1, impliesdivT f(u)− avgT div f(u)


Lp(Kij)

≤ C
(
h1/pδ2

n̂2 +
h2δ1/p

m̂2

)
+

ĥδ
(hδ)1/q

j+1∑
l=j

{
Cĥ1/q

∥ux(·; tj, tj+1)∥Lp
(
(xi,xi+1)\{x̂li}

) + [[u(x̂li, tl)]]
}
.

ow, (4.7) follows from ĥ = h/m̂. This completes the proof of Lemma 4.3. □

eferences

[1] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (2) (1981) 357–372.
[2] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (2) (1988) 439–471.
[3] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: Advanced

Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, 1998, pp. 325–432.
[4] D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (4) (1997) 644–668.
[5] J.S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms, SIAM, 2017.
[6] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Science & Business Media,

2007.
[7] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Boston, 1992.
[8] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, Math. Comp.

52 (1989) 411–435.
[9] F. Brezzi, L.D. Marini, E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (12)

(2004) 1893–1903.
[10] W. Dahmen, C. Huang, C. Schwab, G. Welper, Adaptive Petrov–Galerkin methods for first order transport equations, SIAM J. Numer. Anal. 50

(5) (2012) 2420–2445.
[11] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl.

Mech. Engrg. 199 (23–24) (2010) 1558–1572.
[12] E. Burman, A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation, SIAM J. Numer.

Anal. 47 (5) (2009) 3584–3607.
[13] P. Houston, J.A. Mackenzie, E. Süli, G. Warnecke, A posteriori error analysis for numerical approximations of friedrichs systems, Numer. Math.

82 (3) (1999) 433–470.
[14] P. Houston, R. Rannacher, E. Süli, A posteriori error analysis for stabilised finite element approximations of transport problems, Comput. Methods

Appl. Mech. Engrg. 190 (11–12) (2000) 1483–1508.
17

http://refhub.elsevier.com/S0377-0427(23)00242-X/sb1
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb2
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb3
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb3
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb3
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb4
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb5
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb6
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb6
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb6
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb7
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb8
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb8
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb8
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb9
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb9
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb9
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb10
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb10
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb10
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb11
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb11
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb11
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb12
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb12
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb12
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb13
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb13
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb13
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb14
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb14
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb14


Z. Cai, J. Chen and M. Liu Journal of Computational and Applied Mathematics 433 (2023) 115298
[15] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic PDEs, J.
Comput. Phys. 420 (2020) 109707.

[16] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[17] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1139–1364.
[18] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys. 443 (2021)

110514.
[19] P. Bochev, J. Choi, Improved least-squares error estimates for scalar hyperbolic problems, Comput. Methods Appl. Math. 1 (2) (2001) 115–124.
[20] H. De Sterck, T.A. Manteuffel, S.F. McCormick, L. Olson, Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic

PDEs, SIAM J. Sci. Comput. 26 (1) (2004) 31–54.
[21] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, in: Upwind and

High-Resolution Schemes, Springer, 1987, pp. 218–290.
[22] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law, Appl. Numer. Math.

174 (2022) 163–176.
[23] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, PNAS 116 (31) (2019)

15344–15349.
[24] Z. Cai, J. Chen, M. Liu, Finite volume least-squares neural network (FV-LSNN) method for scalar nonlinear hyperbolic conservation laws, 2021,

arXiv:2110.10895, [math.NA].
[25] O. Fuks, H. Tchelepi, Limitations of physics informed machine learning for nonlinear two-phase transport porous media, J. Mach. Learn. Model.

Comput. 1 (1) (2020) 19–37.
[26] R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, E.C. Cyr, Thermodynamically consistent physics-informed neural networks for

hyperbolic systems, J. Comput. Phys. 449 (2022).
[27] H. De Sterck, T.A. Manteuffel, S.F. McCormick, L. Olson, Numerical conservation properties of H(div)-conforming least-squares finite element

methods for the Burgers equation, SIAM J. Sci. Comput. 26 (5) (2005) 1573–1597.
[28] D.P. Kingma, J. Ba, ADAM: A method for stochastic optimization, in: International Conference on Representation Learning, San Diego, 2015,

arXiv preprint arXiv:1412.6980.
[29] M. Liu, Z. Cai, J. Chen, Adaptive two-layer ReLU neural network: I. best least-squares approximation, Comput. Math. Appl. 113 (2022) 34–44.
[30] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Vol. 22, Springer Science & Business Media, 2013.
[31] D.I. Ketcheson, R.J. LeVeque, M.J. del Razo, Riemann Problems and Jupyter Solutions, SIAM, Philadelphia, 2020.
[32] Z. Zhao, Y. Chen, J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation laws, J. Comput. Phys. 405 (2020) 109175.
[33] S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21 (1984) 217–235.
[34] J.-L. Guermond, M. Nazarov, A maximum-principle preserving C0 finite element method for scalar conservation equations, Comput. Methods

Appl. Mech. Engrg. 272 (2014) 198–213.
[35] M. Liu, Z. Cai, Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic PDEs, Comput. Math. Appl. 113 (2022) 103–116.
[36] Z. Cai, J. Chen, M. Liu, Self-adaptive deep neural network: Numerical approximation to functions and PDEs, J. Comput. Phys. 455 (2022) 111021.
18

http://refhub.elsevier.com/S0377-0427(23)00242-X/sb15
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb15
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb15
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb16
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb16
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb16
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb17
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb18
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb18
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb18
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb19
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb20
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb20
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb20
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb21
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb21
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb21
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb22
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb22
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb22
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb23
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb23
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb23
http://arxiv.org/abs/2110.10895
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb25
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb25
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb25
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb26
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb26
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb26
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb27
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb27
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb27
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb29
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb30
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb31
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb32
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb33
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb34
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb34
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb34
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb35
http://refhub.elsevier.com/S0377-0427(23)00242-X/sb36

	Least-squares neural network (LSNN) method for scalar nonlinear hyperbolic conservation laws: Discrete divergence operator
	Introduction
	Problem Formulation
	Least-Squares Neural Network Method
	Discrete Divergence Operator
	One Dimension
	Two Dimensions
	Integration mesh size

	Numerical Experiments
	Inviscid Burgers' equation
	Riemann problem with f(u)=14 u4
	Riemann problem with non-convex fluxes
	Two-dimensional problem

	Discussion and Conclusion
	Data availability
	Appendix
	References


