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Abstract
We prove that the non-backtracking random walk on Ramanujan graphs with large
girth exhibits the fastest possible cutoff with a bounded window.
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1 Introduction

Fix d ≥ 3, which we write as p + 1, and consider d-regular graphs X on n vertices
with n → ∞, that do not have self–loops and multiple edges. During the last decade,
there has been a lot of interest in studying the simple randomwalk (SRW) and the non-
backtracking randomwalk (NBRW) on such graphs. The focus has been to understand
mixing times and related cutoff phenomena [1–6]. The non-backtracking randomwalk
was introduced by Hashimoto [7], it mixes faster, has sharper transitions and has been
very useful in multiple cases [8–15]. We focus exclusively on the NBRW on X , which
is defined as follows:

Kt (x, y) = #

{
(x = x0, x1, . . . , xt = y)

∣∣∣∣ xi∈X
xi∼xi+1

xi−1 �=xi+1

}
,
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where xi ∼ xi+1 indicates that (xi , xi+1) is an edge.
Let N (t) := ∑

y Kt (x, y) = (p + 1)pt−1 and let Pt (x, y) = 1
N (t)Kt (x, y) be

the transition matrix of the non-backtracking random walk on X . The total varia-
tion distance of Pt

x = Pt (x, ·) from the uniform measure is defined as dx (t) :=
1
2

∑
y∈X

∣∣∣∣Pt (x, y) − 1
n

∣∣∣∣. We will also consider the total variation distance when start-

ing at the worst possible starting point

d(t) := max
x∈X {dx (t)}.

For 0 < η < 1, the total variation mixing time is defined as

tmix(η) = min{t ≥ 0 : d(t) ≤ η}.

The main focus of this paper is studying the cutoff phenomenon. We say that the
NBRW on X exhibits cutoff at tn with window wn = o(tn) if

lim
c→∞ lim

n→∞ d (tn − cwn) = 1 and lim
c→∞ lim

n→∞ d (tn + cwn) = 0. (1)

If N (t) ≤ n one checks that dx (t) ≥ Ux (t)
n where Ux (t) is the number of vertices

that are not reached by the walk at time t, when starting at x . Hence,

d(t) ≥ 1 − N (t)

n
,

if N (t) ≤ n, which implies that

tmix(1 − η) ≥ logp n − logp η−1 − logp

(
1 + 1

p

)
. (2)

This gives an absolute lower limit in (1) for the cutoff time tn = logp n and bounded
wn and we are interested in graphs X for which this tn is indeed the cutoff time for
the NBRW.

We will search for such X among different types of expanders. For λ < d an
(n, d, λ) graph X is a d regular graph on n nodes for which the eigenvalues {λ j }n−1

j=0
of the adjacency matrix of X satisfy

{
λ0 = d := p + 1 if j = 0

|λ j | ≤ λ if j �= 0.

If λ = 2
√
p then X is called a Ramanujan graph.

The key results in this direction are due to Lubetzky and Sly [16] and Lubetzky and
Peres [3]. In the first, it is shown that w.h.p. the non-backtracking random walk on a
random d-regular graph exhibits cutoff at

tn = logp(dn)with window of constant order. (3)
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In the second one, X is assumed to be Ramanujan, and they show that the NBRWon
any Ramanujan graph exhibits cutoff at logp n, but whether it occurs with a bounded
window is not resolved.

As a corollary of their main results, they also prove a purely combinatorial fact
about the almost diameter. For Ramanujan graphs, for any x we have that

#{y ∈ X : |dist(x, y) − logp n| > 3 logp log n} = o(n). (4)

Our main result shows that the NBRW on a Ramanujan graph with large girth g
exhibits cutoff with a bounded window.

Theorem 1.1 Fix δ > 0. The NBRWon aRamanujan graphwith g ≥ δ logp n satisfies

tmix(ε) ≤ logp n + 2 logp ε−1 + 2 logp(2 + 20δ−1),

for every ε > 0.

Remark 1.2 The girth condition of Theorem 1.1 is satisfied for the Ramanujan graphs
of [17] with δ = 2/3. This shows that the NBRW on these graphs exhibits cutoff with
a bounded window, which was one of our goals in this note.

It is important to note that most of the examples (other than the result of Lubetzky and
Sly [16]) that are known where the cutoff window is bounded are non-local Markov
chains, such as riffle shuffles [18] and random transvections [19].

Next, we discuss what can be said about cutoff if we drop the Ramanujan condition.
Writing the eigenvalues in the form

λ j = 2
√
p cos θ j ,

where for |λ j | ≤ 2
√
p, we have a unique θ j ∈ [0, π ], and otherwise for the "excep-

tional" eigenvalues we choose θ j uniquely in the form

{
θ j = iφ j log p if λ j > 2

√
p

θ j = π + iψ j log p if λ j < −2
√
p,

with φ j , ψ j ∈ (0, 1
2 ).

We use the following notation. We say that two real functions f and g satisfy
f (x) 
ε g(x) if and only if there is a constant C = C(ε) such that f (x) ≤ Cg(x).

Definition 1.3 A sequence of graphs X is said to satisfy the density hypothesis if for
every 0 ≤ α < 1/2 and ε > 0, the number of exceptional eigenvalues M satisfies

M(α, X) := #{ j : φ j ≥ α} + #{ j : ψ j ≥ α} 
ε n1−2α+ε.

For a discussion of this density hypothesis see [20] and [21]. The point is that this
density can often be established in cases where the Ramanujan is not known or even
fails.
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In [22] and [21] it is shown that the density together with the assumption that X
is an expander suffice to show that the SRW on X exhibits cutoff at p+1

p−1 logp n. This
indicates that the density hypothesis can be used as a replacement of the Ramanujan
assumption as far as the shortest possible cutoff for the NBRW is concerned. Given
its importance we give the precise statement and short proof.

Theorem 1.4 Let X be a transitive sequence (that is the automorphisms act transitively
on the vertices) of (n, d, λ) expander graphs which satisfy the density hypothesis. Then
the NBRW on X exhibits cutoff at logp n. That is,

d((1 + η) logp n) → 0,

for every η > 0.

The next results focus on the diameter of (n, d, λ) graphs and strengthens (4). Let
Nx (�) be the number of vertices y ∈ X such that d(x, y) > �.

Theorem 1.5 Let X be an (n, d, λ) graph; then for ξ > 0 we have that

max
x∈X

{
1

n
Nx

(
1

2
logb n + ξ

)}
≤ 4

b2ξ
,

where b = d
λ

+
√( d

λ

)2 − 1.

We note that if we choose ξ (bounded) so that 4b−2ξ < 1/2, then given x, y ∈ X
we can find a common z with d(x, z) < 1

2 logb n + ξ and d(y, z) < 1
2 logb n + ξ .

Therefore, d(x, y) < logb n+2ξ . This shows that the diameter is at most logb n+2ξ .
This matches the bounds for the diameter that were derived in [17] for Ramanujan
graphs and in [23] for (n, d, λ) graphs. As in these papers, a crucial element in the
analysis are the Chebyshev polynomials of the first kind.

Let p = d − 1. For the case where X is Ramanujan, we have that λ = 2
√
p and

b = √
p. Theorem 1.5 gives the following.

Corollary 1.6 Let X be a Ramanujan graph on n vertices, then for ξ > 0 we have that

max
x∈X

{
1

n
Nx (logp n + ξ)

}
≤ 4

pξ
.

Remark 1.7 Corollary 1.6 gives a bounded window strengthening (4) and if it is not
optimal, it is very close to being so. In particular, it allows one to replace the 3 logp log n
term in (4) by any function f (n) which goes to infinity with n.

In the context of d-regular graphs, the almost diameter bound of Corollary 1.6 is
essentially the smallest it could be among all such graphs. On the other hand, the
bound 2 logp n + 4 for the diameter of a Ramanujan graph is probably not optimal.
The random d-regular graph has diameter (1 + o(1)) logp n (see [24]), however the

Ramanujan graphs of [17] can have diameter at least 4
3 logp n, as was shown in [6].

We expect that this 4
3 logp n is an upper bound for the diameter of a Ramanujan graph.
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As is standard in cutoff analysis, our proofs involve the �2 distance ‖Pt
x − U‖22 =

∑
y∈X

∣∣∣∣Pt (x, y) − 1
n

∣∣∣∣
2

and its average over x

d2(t) := 1

n

∑
x

‖Pt
x −U‖22.

Note that if X is transitive, then d2(t) = ‖Pt
x −U‖22 for all x , as are all of the quantities

defined in terms of the starting point x .
For the case of reversible Markov chains, such as the SRW on X , one can express

d2(t) in terms of the eigenvalues and eigenfunctions of the transition matrix (see
chapter 12 of [25]). Studying the spectrum of the transition has been a powerful tool
for proving cutoff for many well-knownMarkov chains, such as [19, 26, 27].Wemake
judicious use of Chebyshev polynomials and the eigenvalues and eigenfunctions of
the adjacency matrix of X to prove our results, and avoid using the NBRW on the
edges of the graph.

Our analysis leads to the following basic conjecture.

Conjecture 1.8 Fix δ and p. If X is a sequence of Ramanujan graphs and t < (2 −
δ) logp n, then

d2(t)N (t) → 1, (5)

as n → ∞.

This is consistent with the model that in this window the N (t) end points of walks of
length t are placing themselves at random among the n vertices.

Our proofs involve approximations to (5). The source of the gain being that the
Kesten measure on [−2

√
p, 2

√
p] vanishes to second order at −2

√
p and 2

√
p (see

(33)). In [28] it is proven that the probability measure supported on [−2
√
p, 2

√
p]

corresponding to the eigenvalues of a Ramanujan graph, converges to the Kesten mea-
sure as n → ∞. Conjecture 1.8 requires that this convergence holds with polynomials
of degree as large as 4(1−δ) logp n. In a forthcoming paper [29] this convergence and
in particular Conjecture 1.8 is established for various arithmetic Ramanujan graphs.
Our Conjecture 1.8 implies that the NBRW on these Ramanujan graphs exhibit cutoff
with an explicit and tight bounded window, namely

tx (ε) ≤ logp n + 2 logp ε−1,

for almost every starting point x .

2 Preliminaries

Let X be a connected, d regular graph on n vertices, where d is fixed. Let A denote
the adjacency matrix of X . A is a symmetric matrix with real eigenvalues

−d ≤ λn−1 ≤ . . . ≤ λ1 < λ0 = d.
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Denote the corresponding orthonormal basis of real eigenfunctions as fn−1, . . . , f0,
with f0(x) = 1√

n
for every x ∈ X . The fact that the { f j } are orthonormal means that

∑
x∈X

fi (x) f j (x) = δi, j . (6)

The fact that { f j } is an orthonormal basis gives that

δx (y) =
n−1∑
j=0

〈 f j , δx 〉 f j (y),

which translates to

δx (y) =
n−1∑
j=0

f j (x) f j (y). (7)

When considering the t-th power of A, we have that the (x, y) entry At (x, y) is
equal to the number of walks of length t starting at x and ending at y. Let P be a
polynomial of the form

P(x) = a0 + a1x + . . . + a�x
�.

We have that the matrix P(A) can be expressed as

P(A)(x, y) =
n−1∑
j=0

P(λ j ) f j (x) f j (y).

The key quantity that we estimate is the variance W with respect to P, defined as

W (P, x) :=
∑
y

(
P(A)(x, y) − P(λ0)

n

)2

, (8)

which by (6) is equal to the spectral sum

∑
j �=0

|P(λ j )|2 f 2j (x). (9)

3 The Almost Diameter

To estimate the almost diameter of X , we use the following key lemma.
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Lemma 3.1 Let �(P) be the degree of P, then for any x

(
P(λ0)

n

)2

Nx (�(P)) ≤ max
λ�=λ0

{|P(λ)|2},

where Nx (�(P)) is the number of vertices y ∈ X such that d(x, y) > �(P).

Proof First of all, we note that since At (x, y) is equal to the number of walks of length
t starting at x and ending at y, we have that

for every x, y ∈ X , if d(x, y) > �(P) then P(A)(x, y) = 0. (10)

Combining this with (8) and (9) we have that

∑
y:d(x,y)>�(P)

(
P(λ0)

n

)2

≤ W (P, x) ≤ max
λ�=λ0

{|P(λ)|2}
∑
j �=0

| f j (x)|2. (11)

Equation (7) gives that
∑

j �=0 | f j (x)|2 ≤ 1, which finishes the proof. ��

3.1 Chebyshev Polynomials of the First Kind

Let T� be the Chebyshev polynomials of the first kind of degree �, that is T�(x) =
cos(� arccos x) and therefore T�(x) ∈ [−1, 1] for every x ∈ [−1, 1].

Lemma 3.2 For λ ≤ λ0, the Chebyshev polynomials of the first kind satisfy

T�

(
λ0

λ

)
≥ b�

2
,

where b =
(

λ0
λ

+
√(

λ0
λ

)2 − 1

)
.

Proof Using the fact that cos θ = eiθ+e−iθ

2 , we can write λ0 = λ cos θ0, where θ0 =
i log

(
λ0
λ

+
√(

λ0
λ

)2 − 1

)
. This gives that

T�

(
λ0

λ

)
= T� (cos θ0) = 1

2
(b� + b−�) ≥ b�

2
.

��
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3.2 The Almost Diameter for Expanders

In this section, we present the proof of Theorem 1.5 concerning the almost diameter
of (n, d, λ) graphs.

Proof of Theorem 1.5 Let T� be the Chebyshev polynomial of the first kind of degree
�. We apply Lemma 3.1 to the polynomial

P(x) = T�

( x
λ

)
,

where � will be determined later. The right hand side of the equation in Lemma 3.1
satisfies that

max
λi �=λ0

{|P(λi )|2} ≤ 1, (12)

since all λi �= λ0 satisfy that |λi | ≤ λ and T�(x) = cos(� arccos x) for x ∈ [−1, 1].
At the same time, Lemma 3.2 gives that

(P(λ0))
2 =

(
T�

(
λ0

λ

))2

≥ b2�

4
. (13)

Lemma 3.1 and equations (12) and (13) give that

1

n
Nx (�) ≤ 4n

b2�
. (14)

Let ξ > 0 and set � = 1
2 logb n + ξ . Then equation 14 gives the desired result. ��

4 TheMixing Time for the Non-backtracking RandomWalk

In this section, we present our results concerning the mixing time of the NBRW on X .

4.1 Chebyshev Polynomials of the Second Kind

The NBRW can be expressed in terms of the Chebyshev polynomials of the second
kind. In this section, we explain this connection and we prove some useful properties
for the Chebyshev polynomials of the second kind.

Let U� be the Chebyshev polynomials of the second kind of degree �, defined as

U�(cos θ) = sin ((� + 1)θ)

sin θ
.
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The Chebyshev polynomials of the second kind satisfy the following recurrence rela-
tion:

⎧⎪⎨
⎪⎩
U0(x) = 1

U1(x) = 2x

U�+1(x) = 2xU�(x) −U�−1(x).

Set

P�(x) = p�/2U�

(
x

2
√
p

)
. (15)

Lemma 4.1 Let A be the adjacency matrix of a regular graph. We have that

P�(A)(x, y) =
∑

0≤ j≤�/2

K�−2 j (x, y),

where Kt (x, y) is the number of non-backtracking random walks of length t from x to
y.

Proof The two sides have the following generating function

∞∑
�=0

P�t
� = 1

1 − At + pt2
,

and therefore they are equal. For more details, we refer to Lemma 1.4.3 of [30]. ��
Westartwith the following lemma. Setλ j = 2

√
p cos θ j . Notice that θ0 = i log

√
p

and therefore

P�(λ0) = p�+1 − 1

p − 1
. (16)

Lemma 4.2 Let g be the girth of X and let � ≤ g/5. For n large enough, we have that

n−1∑
j=1

(
U�(cos θ j )

)2
f 2j (x) ≤ 2,

for every x ∈ X.

Proof Since � < g, the � first steps of the NBRW on X are the same as the � first steps
on a d regular tree. Therefore,

∑
1≤ j≤�/2

K�−2 j (x, y) =
{
1 d(x, y) ≤ � and d(x, y) ≡ � mod 2,

0 otherwise.
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Combined with (8), (16) and Lemma 4.1, this gives that

W (P�, x) =
∑

d(x,y)>� or
d(x,y)≡�+1 mod 2

(
p�+1 − 1

n(p − 1)

)2

+
∑

d(x,y)≤�
d(x,y)≡� mod 2

(
1 − p�+1 − 1

n(p − 1)

)2

≤ 1

n

(
p�+1 − 1

p − 1

)2

+
∑

d(x,y)≤�
d(x,y)≡� mod 2

1

≤ 1

n

(
p�+1 − 1

p − 1

)2

+
(
p�+1 − 1

p − 1

)
.

For n large, we use the fact that 2� + 2 ≤ 2
5g + 2 ≤ 4

5 logp n + 2 to get that

W (P�, x) ≤ p�+1

p − 1
. (17)

Equations (9) and (15) give that

n−1∑
j=1

(
U�(cos θ j )

)2
f 2j (x) ≤ p

p − 1
≤ 2,

as desired. ��

4.2 The Non-backtracking RandomWalk

The first lemma gives Kt as an explicit polynomial in A (see also [31] and [8]).

Lemma 4.3 Set Qt (x) = pt/2
(
p−1
p Ut

(
x

2
√
p

)
+ 2

p Tt
(

x
2
√
p

))
. For t ≥ 1, we have

Qt (A)(x, y) = Kt (x, y),

for every x, y ∈ X.

Proof Using Lemma 4.1, we can write that

Kt (x, y) = Pt (A)(x, y) − Pt−2(A)(x, y). (18)

Using the following relationship between Chebyshev polynomials of the two types

Ut = Ut−2 + 2Tt
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and (15), we can rewrite (18) as

Kt (x, y) = pt/2
(
p − 1

p
Ut

(
A

2
√
p

)
+ 2

p
Tt

(
A

2
√
p

))
. (19)

In other words,

Qt (A)(x, y) = Kt (x, y). (20)

��

Recall that λ j = 2
√
p cos θ j . The fact that X is Ramanujan gives that θ j is real. We

now use Lemma 4.3, the facts that | sin θ j | ≤ 1 and | sin((t +1)θ j )| ≤ |t +1|| sin(θ j )|
to write the following expression for the variance.

W (Qt (A), x) = pt
∑
j �=0

(
p − 1

p

sin((t + 1)θ j )

sin θ j
+ 2

p
cos(tθ j )

)2

f 2j (x)

≤ pt (t + 1)2 , (21)

which is the bound given in Lubetzky and Peres [3]. As they note in Remark 3.7 of
[3], in order to get rid of the factor (t + 1)2 in (21), one needs some control on the
distribution of the θ j .To do so, we assume a lower bound on the girth g of X .

Lemma 4.4 Fix δ > 0 and assume that X has girth g ≥ δ logp n and is Ramanujan,
then

W (Qt (A), x) ≤ 12

(
10

δ
+ 1

)2

pt ,

for logp n ≤ t ≤ 2 logp n and n large enough.

Proof Set k = � 10
δ

� + 1. For t ∈ [logp n, 2 logp n], write t + 1 as mk + r with

0 ≤ r < k. Notice that then m ≤ 2
k logp n ≤ g/5 and so we can apply Lemma 4.2

with this m. According to Lemma 4.3 with λ j = 2
√
p cos θ j , we have that

W (Qt (A), x) = pt
∑
j �=0

(
p − 1

p

sin((t + 1)θ j )

sin θ j
+ 2

p
cos(tθ j )

)2

f 2j (x)

≤ 2pt
∑
j �=0

((
sin((mk + r)θ j )

sin θ j

)2

+ 4

p2
cos2(tθ j )

)
f 2j (x) (22)
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Using standard trigonometric identities we have that

(22) ≤ 2pt
∑
j �=0

(
sin(mkθ j ) cos rθ j + cos(mkθ j ) sin(rθ j )

sin θ j

)2

f 2j (x) + 8pt−2

≤ 4pt
∑
j �=0

((
sin(mkθ j )

sin θ j

)2

+
(
sin(rθ j )

sin θ j

)2
)

f 2j (x) + 8pt−2

≤ 4pt
∑
j �=0

((
sin(mkθ j )

sin θ j

)2

+ r2
)

f 2j (x) + 8pt−2

≤ 4pt
∑
j �=0

((
sin(mkθ j )

sin θ j

)2
)

f 2j (x) + 4r2 pt + 8pt−2 (23)

We use the fact that

∣∣∣∣ sin(mkθ j )

sin θ j

∣∣∣∣ =
∣∣∣∣ sin(mkθ j )

sin(mθ j )

sin(mθ j )

sin θ j

∣∣∣∣ ≤ k

∣∣∣∣ sin(mθ j )

sin θ j

∣∣∣∣

and Lemma 4.2 to get

4pt
∑
j

(
sin(mkθ j )

sin θ j

)2

f 2j (x) ≤ 8k2 pt .

Equation (23) gives that

W (Qt (A), x) ≤ 12k2 pt ≤ 12

(
10

δ
+ 1

)2

pt ,

since 0 ≤ r < k. This completes the proof of Lemma 4.4. ��

4.3 The BoundedWindow

In this section, we present the proof of Theorem 1.1. Let P be the transition matrix
of the non-backtracking random walk on X . For t ≥ 0, we have that Pt (x, y) =

1
(p+1)pt−1 Kt (x, y). Therefore, applying Cauchy-Schwartz we get that

4d2x (t) ≤ n
∑
y

∣∣∣∣ 1

(p + 1)pt−1 Kt (x, y) − 1

n

∣∣∣∣
2

.
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Since Qt (d) = (p + 1)pt−1, equation (8) gives that

W (Qt (A), x) =
∑
y

(
Kt (x, y) − (p + 1)pt−1

n

)2

.

Therefore,

4d2x (t) ≤ n

(p + 1)2 p2t−2W (Qt (A), x). (24)

Using Lemma 4.4, we get that for logp n ≤ t ≤ 2 logp n,

dx (t) ≤ n1/2

2(p + 1)pt−1 (W (Qt (A), x))1/2

≤ 2

(
1 + 10

δ

)(
n

pt

)1/2

. (25)

By taking t = logp n + 2 logp ε−1 + 2 logp
(
2(1 + 10

δ
)
)
, we get that

dx (t) ≤ ε,

and this holds uniformly for x ∈ X .

5 The Density Hypothesis

Let X be an (n, d, λ) graph satisfying the density property, as defined in 1.3. The goal
of this section is to prove that the mixing time of the non-backtracking random walk
on X is at most (1 + η) logp n for every η > 0.

The following Lemma is key to proving Theorem 1.4.

Lemma 5.1 Let X be an (n, d, λ) expander sequence, that satisfies the density hypoth-

esis. We set In = t2
∑n−1

j=1

(
p−[ 12−φ j ]2t + p−[ 12−ψ j ]2t

)
. Then for η > 0 fixed,

lim
n→∞ In = 0,

if t ≥ (1 + η) logp n.

Proof Since X is an expander, we have that there is δ1 > 0 such that 0 ≤ φ j ≤ 1
2 −δ1.

We express the sums in In in terms of the function M in Definition 1.3;

n−1∑
j=1

p−[ 12−φ j ]2t = −
∫ 1

2−δ1

0
p−[ 12−α]2t dM(α).
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Integrating by parts, we get that

n−1∑
j=1

p−[ 12−φ j ]2t =M(0)p−t−M

(
1

2
−δ1

)
p−2tδ1 +2t log p

∫ 1
2−δ1

0
p−[ 12−α]2t M(α)dα.

The density hypothesis asserts that M(α) 
ε n1−2α+ε for 0 ≤ α ≤ 1/2. Therefore,

n−1∑
j=1

p−[ 12−φ j ]2t 
ε n1+ε p−t + 2t
∫ 1

2−δ1

0
p−[ 12−α]2t n1−2α+εdα

= n1+ε p−t

(
1 + 2t

∫ 1
2−δ1

0

(
p2t

n2

)α

dα

)
.

Since t > logp n, we have that

n−1∑
j=1

p−[ 12−φ j ]2t 
ε n1+ε p−t

(
1 + 2t

(
pt

n

)1−2δ1
)


ε n1+ε p−t + 2tnε

(
n

pt

)2δ1
.

We can get a similar bound for
∑n−1

j=1 p
−[ 12−ψ j ]2t . Since ε > 0 is arbitrarily small and

δ1 > 0 is fixed, it follows that limn→∞ In = 0 if t ≥ (1 + η) logp n. ��
We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 We only consider the eigenvalues that satisfy |λ| > 2
√
p, since

the rest of them can be studied just as in the Ramanujan case. We recall that when
λ j > 2

√
p, we have that θ j = iφ j log p for φ j ∈ (0, 1/2]. Then,

| cos(tθ j )| =
∣∣∣∣12

(
ptφ j + p−tφ j

) ∣∣∣∣ ≤ ptφ j (26)

and

∣∣∣∣Ut

(
λ j

2
√
p

) ∣∣∣∣ =
∣∣∣∣ p

(t+1)φ j − p−(t+1)φ j

pφ j − p−φ j

∣∣∣∣ ≤ tp(t+2)φ j . (27)

We can get similar bounds in terms of the ψ j for the case λ < −2
√
p.

W (Qt (A), x) = pt
∑
j �=0

(
p − 1

p

sin((t + 1)θ j )

sin θ j
+ 2

p
cos(tθ j )

)2

f 2j (x)
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Summing over x and using the fact that X is transitive, we have that

W (Qt (A), x) ≤ pt

n

n−1∑
j=1

(
p − 1

p

sin((t + 1)θ j )

sin θ j
+ 2

p
cos(tθ j )

)2

. (28)

We set

φ′
j =

{
φ j if λ j > 2

√
p,

ψ j if λ j < −2
√
p.

Considering the terms corresponding to all |λ j | ≤ 2
√
p and using equations (26) and

(27), we have

W (Qt (A), x) ≤ pt (t + 1)2 + pt

n

n−1∑
j=1

(
p − 1

p

∣∣∣∣ sin(t + 1)θ j

sin θ j

∣∣∣∣ + 2

p
| cos(θ j t)|

)2

.

Using (26) and (27) yields

W (Qt (A), x) ≤ pt (t + 1)2 + 3p2
pt

n
t2

n−1∑
j=1

p2tφ
′
j . (29)

Plugging this into the �2 bound, we have that

dx (t) ≤ n1/2

2(p + 1)pt−1 (W (Qt (A), x))1/2

≤ 1

2

⎛
⎝np−t (t + 1)2 + 3p2t2

n−1∑
j=1

p−[ 12−φ′
j ]2t

⎞
⎠

1/2

, (30)

for every x ∈ X . Lemma 5.1 finishes the proof of Theorem 1.4. ��

Remark 5.2 In Theorem 1.4, if X is not transitive then in as much as we summed over
all x ∈ X in the proof, the result remains true for almost all x in place of all x .
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6 Conjecture 1.8

We end with some comments about our conjectured asymptotics of the variance for
Ramanujan graphs. The spectral expansion (9) gives that

W2(t) : = 1

n

∑
x∈X

W (Qt , x)

=
∑
j �=0

Q2
t (2

√
p cos θ j )

= pt

n

∑
j �=0

R2
t (θ j ), (31)

where Rt = p−1
p Ut + 2

p Tt . We write (31) as

W2(t) = ptμX (R2
t ), (32)

where μX is the density of the eigenvalues on [0, π ] :

μX = 1

n

∑
j �=0

δθ j .

For any sequence of Ramanujan graphs X , μX is known to converge to the Plancherel
measure νp, as n → ∞ [28]. That is for a fixed polynomial R

μX (R) →
∫ π

0
R(θ)dνp(θ)

as n → ∞. Here the Plancherel, or Kesten measure, νp is;

dνp = 2(p + 1) sin2 θ

π [(p1/2 + p−1/2)2 − 4 cos2 θ ]dθ. (33)

For X ’s whose girth is at least δ logp n, the calculation in Sect. 4.3, which was used
to establish the bounded window for these, yields that for t < g/5,

W2(t) ∼ (p + 1)pt−1,

as n → ∞. Hence for these X ’s and in this range of t’s

μX (R2
t ) ∼ p + 1

p
, (34)
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as n → ∞. One can check that the Rt ’s are orthogonal polynomials for the measure
νp on [0, π ] (see [31] for example) and that for t ≥ 1

∫ π

0
R2
t (θ)dνp(θ) = p + 1

p
(35)

Thus (34) reads that the large girth X ’s and in the range t < g/5

μX (R2
t ) ∼ νp(R

2
t ) = p + 1

p
, (36)

as n → ∞. Our conjecture is that (36) holds in general for any sequence of Ramanujan
graphs and in the larger range t < 2 logp n. By (32), Conjecture 1.8 is equivalent to

W2(t) ∼ N (t),

for t < 2 logp n as n → ∞. In the forthcoming paper [29], Conjecture 1.8 is proven
for various families of arithmetical Ramanujan graphs, such as the ones discussed in
[32].
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