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G2Retro as a two-step graph generative models for
retrosynthesis prediction
Ziqi Chen1, Oluwatosin R. Ayinde2, James R. Fuchs 2, Huan Sun1,3 & Xia Ning 1,3,4✉

Retrosynthesis is a procedure where a target molecule is transformed into potential reactants

and thus the synthesis routes can be identified. Recently, computational approaches have

been developed to accelerate the design of synthesis routes. In this paper,we develop a

generative framework G2Retro for one-step retrosynthesis prediction. G2Retro imitates the

reversed logic of synthetic reactions. It first predicts the reaction centers in the target

molecules (products), identifies the synthons needed to assemble the products, and trans-

forms these synthons into reactants. G2Retro defines a comprehensive set of reaction center

types, and learns from the molecular graphs of the products to predict potential reaction

centers. To complete synthons into reactants, G2Retro considers all the involved synthon

structures and the product structures to identify the optimal completion paths, and

accordingly attaches small substructures sequentially to the synthons. Here we show that

G2Retro is able to better predict the reactants for given products in the benchmark dataset

than the state-of-the-art methods.
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Retrosynthesis is a procedure where a target molecule is
transformed into potential reactants and thus the synthesis
routes can be identified. One-step retrosynthesis, which

transforms a molecule into the possible direct reactants that can
be used to synthesize the molecule, serves as the foundation of
multi-step synthesis planning1,2 that identifies a full synthesis
route in which the target molecule can be made through a series
of one-step synthesis reactions. In drug discovery, identifying
feasible synthesis routes for drug-like molecules remains a factor
that substantially challenges medicinal chemists in making the
desired molecules experimentally3. An extensive, diverse library
of high-quality synthesis routes for a given molecule has the
potential to enable more feasible reaction solutions starting from
commercially available, chemical building blocks, and to provide
more options for operationally simple, high-yielding transfor-
mations using widely accessible reactants.

Current retrosynthesis planning is primarily conducted by
synthetic and medicinal chemists based on their knowledge and
experience. It has been long known that there exists substantial
disagreement among chemists in assessing synthesisbilty and
designing synthesis routes4–7. In addition, an ever-increasing
number of new chemical reactions makes it highly challenging for
a chemist to keep up to date. Therefore, a data-driven model that
predicts synthetic reactions could provide a useful complement to
chemist evaluations, and could provide a large pool of potential
reactions that the chemists can consider. There exist proprietary
synthesis reaction databases manually curated from the literature,
including Reaxys8 and SciFinder9. Unfortunately, the high prices
of these databases act to limit their accessibility in some academic
and small biotech settings. Open-sourced synthesis reaction
databases such as the Open Reaction Database10 are limited in the
reactions they cover (e.g., majorities are United States Patent and
Trademark Office (USPTO) public reactions11) and their search
functionalities (e.g., via SMILES strings). Even with the aid of
these databases, the development of new reactions and synthetic
pathways for the preparation of challenging molecules remains
non-trivial. In addition, database searches can be time-consuming
with low throughput, particularly when without extensive domain
knowledge to guide the process. Recent in silico retrosynthesis
prediction methods using deep learning12–32 have enabled alter-
native computationally generative processes to accelerate the
conventional paradigm. These deep-learning methods learn from
string-based representations (SMILES) or graph representations
of given molecules, and generate possible reactant structures that
can be used to synthesize these molecules, leveraging the
advancement of natural language processing33, graph neural
networks34, variational auto-encoders35 and other techniques in
deep learning. They have demonstrated strong potential to sub-
stantially accelerate and advance retrosynthesis analysis36. In this
manuscript, we focus on the one-step retrosynthesis prediction,
which predicts the possible direct reactants for the synthesis of
the target molecules, and acts as the foundation of multi-step
retrosynthesis analysis1.

We develop a semi-template-based method via deep learning
for one-step retrosynthesis prediction, denoted as G2Retro.
G2Retro imitates the reversed logic of synthetic reactions: it first
predicts the reaction centers in the target molecules, identifies the
synthons needed to assemble the final products, and transforms
these synthons into reactants. Therefore, G2Retro follows the
semi-template-based frame, as in the previous methods27–30. To
predict reaction centers, G2Retro learns from the molecular
graphs of the products via a customized graph representation
learning37 and embedding approach (in “Molecule Representa-
tion Learning” Section), and uses the graph structures to predict
potential reaction centers. G2Retro defines a comprehensive set
of reaction center types, and for each reaction center type, uses

the graph structures that are most relevant to that reaction center
type (in “Reaction Center Identification” Section). G2Retro-B
integrates information of synthetically accessible fragments in its
molecule graph representation learning (in Supplementary
Note 1).

The predicted reaction centers by G2Retro split the products
into synthons. To complete synthons into reactants, G2Retro
considers all the involved synthon structures and the product
structures to identify the optimal completion paths (in
“Attachment Continuity Prediction (AACP)” Section), and
accordingly attaches small substructures (i.e., bonds or rings)
sequentially to the synthons until the extended synthon struc-
tures are predicted as possible reactants (in “Attachment Type
Prediction (AATP)” Section). All the involved predictions in
G2Retro and G2Retro-B are done via tailored neural networks.
Note that G2Retro and G2Retro-B allow multiple reaction
centers and multiple completion paths for each product to
increase diversity in its predicted reactions. That is, the top
predicted reaction centers (according to predicted likelihoods)
are all tested in synthon completion to produce different reac-
tions. Meanwhile, to avoid the exhaustive generation of all pos-
sible reactions from the top reaction centers, G2Retro prioritizes
the most possible completion paths via a new beam search
strategy (in “Inference” Section). An ensemble of G2Retro was
also developed, denoted as G2Retro-ens, an ensemble of
G2Retro, increases the pool of generated reactions by combining
multiple G2Retro models and their predictions. Figure 1 pre-
sents an overview of G2Retro. A comprehensive review of
existing retrosynthesis prediction methods and related fragment-
based molecular generation methods is available in “Related
Work” Section.

As a summary, G2Retro has the following advantages:

● G2Retro follows a semi-template-based framework, pre-
dicts reaction centers of different types in products first,
and then transforms the resulting synthons into reactants
by adding substructures to the synthons. This process
imitates the reversed logic of synthetic reactions and
enables necessary interpretability as to which reaction
centers are predicted by G2Retro, which reactants are
generated from the reaction centers and the corresponding
step-by-step generation process.

● G2Retro defines a comprehensive set of reaction center
types, covering 97.5% of the test data and conforming to
synthetic chemistry knowledge. New customized neural
networks are developed to predict each type of the reaction
centers as well as their associated atom changes. Multiple
reaction center candidates are considered for each product
to enable diverse reactions generated from different
reaction centers in the predicted reactions.

● G2Retro develops a new fragment-based generation
strategy compared to the previous semi-template-based
methods27–30, to complete synthons into reactants by
sequentially attaching substructures (i.e., bonds and rings)
starting from the predicted reaction centers (in “Synthon
Completion” Section). The prediction of these substructure
attachments utilizes a holistic view of the most updated
structures of the synthon to be completed, and the
structures of the final product and other synthons.

● G2Retro employs a new, effective beam search strategy
compared to the previous semi-template-based
methods27–30, that prioritizes the most possible reactants
and the corresponding completion actions along the
synthon completion paths. The beam search also allows
multiple different reaction centers, enabling diversity in the
completed reactants.
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● G2Retro and G2Retro-B are compared with nineteen
baseline methods and demonstrate the state-of-the-art
performance over the benchmark data (in “Overall
Comparison” Section). Case studies show that G2Retro
could propose diverse and reasonable synthesis routes with
high predicted likelihoods that are not included in the
benchmark data (in “Case Study” Section).

● G2Retro-ens is an ensemble of G2Retro models and
demonstrates strong performance on the benchmark data
compared to two baseline methods with data augmentation
(in “Performance of Ensemble-based Methods” Section).

Results
Overall comparison. Table 1 presents the overall comparison
between G2Retro, G2Retro-B and the baseline methods on one-
step retrosynthesis under two conditions, following the standard
protocol in literature12–14,19,24,26–30: (1) when the reaction type is
given a priori for both model training and inference (i.e.,
“Reaction type known”); and (2) when the reaction type is always
unknown (i.e., “Reaction type unknown”). When the reaction
type is known, G2Retro uses a one-hot encoder as an additional
feature for each atom in product molecules indicating the reac-
tion type. Particularly, for Semi-TB methods, the performance in
Table 1 corresponds to the predictions out of the two steps, that
is, the synthon completion is done according to a reaction center

that is predicted from the reaction center prediction step. Fol-
lowing the prior work12,14,28,29, we used the top-k (k= 1,3,5,10)
accuracy to evaluate the overall performance of all the methods.
Top-k accuracy is the ratio of test products that have their ground
truth correctly predicted among their top-k predictions. Higher
top-k accuracy indicates better performance. Note that ground
truth reactions are those included in the benchmark data. While
there is always one ground-truth reaction for each product in the
benchmark data, there may exist actually numerous feasible
reactions for each product that are not included in the benchmark
data. Therefore, reactants that are considered incorrect based on
the benchmark data might still be plausible and included in other
larger databases. Also, note that the top-k accuracies of all the
baseline methods are the reported results in their original papers
(issues related to the comparison among methods are discussed
later). Details of baseline methods are available in “Baselines”
Section.

Comparison with semi-template-based (Semi-TB) methods. When
the reaction type is known, compared to other Semi-TB methods,
G2Retro achieves the best performance on top-3 (84.2%), top-5
(88.5%) and top-10 (91.7%) accuracies, corresponding to 3.2%,
2.9%, and 3.4% improvement over those from the best baselines
(81.6% for RetroPrime30 on top-3, 86.0% and 88.7% for G2G28

on top-5 and top-10) on these three metrics. In terms of top-1
accuracy, G2Retro-B achieves the third-best performance

Fig. 1 G2Retro retrosynthesis prediction process. a G2Retro reaction center identification. G2Retro uses a graph message passing network (GMPN);
G2Retro predicts three types of reaction centers: newly formed bonds (BF-center), bonds with type changes (BC-center), and atoms with leaving
fragments (A-center); for BF-center, G2Retro also predicts bonds that have type changes induced by the newly formed bonds (BTCP); for all the reaction
center types, G2Retro predicts atoms with charge changes (ACP). b G2Retro synthon completion. G2Retro uses GMPN to represent both the products
and the synthons; G2Retro sequentially predicts whether a new substructure should be attached (AACP) and the type of the attachment (AATP);
G2Retro adds predicted substructures until AACP predicts ‘stop’.
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(63.6%) compared to those of RetroPrime (64.8%) and Graph-
Retro (63.9%) on this metric. While G2Retro underperforms
RetroPrime on one metric, it is substantially better than Ret-
roPrime on all the other metrics: G2Retro outperforms Retro-
Prime on top-3 accuracy at 3.2%, on top-5 accuracy at 4.1%, and
on top-10 accuracy at 5.6%.

When the reaction type is unknown, a similar trend is
observed: G2Retro-B outperforms all the Semi-TB baseline
methods on all the top accuracy metrics, with 0.7% improvement
over the best baseline GraphRetro on top-1 accuracy, and 4.7%,
9.7% and 13.9% improvement over those from the best baseline
RetroPrime on top-3, top-5 and top-10 accuracies. G2Retro has
a performance similar to that of G2Retro-B, with an even better
top-3 performance 74.6% that is 5.4% improvement from that of
RetroPrime.

Compared with the performance with known reaction types, all
the methods including G2Retro and G2Retro-B have worse
performance when the reaction types are unknown. It is well-
known in synthetic chemistry that there are several well-
characterized reaction types. These types have distinct patterns
in their reactions and reaction centers. For example, acylation
reactions are very common approaches to creating amide and
sulfonamide linkages. They are known for their efficiency and
high yields, especially when they involve acyl/sulfonyl halides38.
The improved performance with known reaction types integrated
into retrosynthesis model training demonstrates that leveraging a
priori reaction type information could benefit retrosynthesis
prediction in general. However, in real applications, reaction
types are typically not available in retrosynthesis when only the
target molecule is presented. The superior performance of
G2Retro and G2Retro-B in “reaction type unknown” condition
demonstrates their great utility in real applications.

As Table 1 shows, G2Retro and G2Retro-B can cover (i.e., can
be applied to) 97.5% of the test reactions, which determines the
upper bound of accuracy values, due to the definition of reaction
centers (the rest 2.5% correspond to reactions with multiple

newly formed or changed bonds). Among other Semi-TB
methods, G2G and GraphRetro29 also have limited coverage
on test set (97.9% for G2G and 95.0% for GraphRetro).
RetroXpert27 has 100% coverage because its reactant SMILES
generation from synthons recovers all possible reaction centers.
RetroPrime30 also has 100% coverage due to its very compre-
hensive set of reaction centers. Although G2Retro and G2Retro-
B cannot cover all possible cases in the test set, they still
outperform other Semi-TB methods, measured over the entire
test set. More discussion on the coverage of the two steps in Semi-
TB methods is available in the Section “Individual Module
Performance”.

GraphRetro and RetroPrime are two strong baselines.
GraphRetro has good top-1 accuracies but much worse results
on other top accuracy metrics. According to its authors29,
GraphRetro tends to bias its beam search to the most possible
reaction center. Thus, it may prioritize the most possible reactants
from the most possible reaction center at the very top of its
predictions. However, if the most possible reaction centers are not
the ground truth, GraphRetro would totally miss the ground
truth in its beam search, resulting in poor performance on other
top accuracy metrics. In addition, such focused beam search
limits the diversity of identified synthons, and thus the completed
reactants. RetroPrime achieves the best top-1 accuracy with
reaction type known. It uses augmented SMILES strings (i.e., each
product has multiple, equivalent, non-canonical SMILES strings)
in training the two sequence-to-sequence transformers. It is likely
that top results in RetroPrime correspond to the ground truth
but in different, augmented SMILES strings, and thus high top-1
accuracy but low and similar other top accuracies. These three
Semi-TB baseline methods only perform well on one certain
metric (in one certain condition), but do not show consistent
optimality across many metrics or across the two conditions.

Compared to these baselines, G2Retro always achieves the best
performance on all the top accuracy metrics (except on top-1
accuracy when reaction types are known). High top-k accuracies

Table 1 Overall comparison on retrosynthesis prediction in top-k accuracy (%).

Method type Method Coverage(%) Reaction type known Reaction type unknown

1 3 5 10 1 3 5 10

TB Retrosim12 100.0 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1
Neuralsym13 100.0 55.3 76.0 81.4 85.1 44.4 65.3 72.4 78.9
GLN14 93.3 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7
MHNreact15 100.0 - - - - 50.5 73.9 81.0 87.9
LocalRetro16 98.1 63.9 86.8 92.4 96.3 53.4 77.5 85.9 92.4

TF SCROP17 100.0 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7
LV-Trans18 100.0 - - - - 40.5 65.1 72.8 79.4
GET19 100.0 57.4 71.3 74.8 77.4 44.9 58.8 62.4 65.9
Chemformer20 100.0 - - - - 54.3 - 62.3 63.0
Graph2SMILES21 100.0 - - - - 51.2 66.3 70.4 73.9
TiedTransformer22 100.0 - - - - 47.1 67.1 73.1 76.3
GTA23 100.0 - - - - 51.1 67.6 74.8 81.6
Dual24 100.0 65.7 81.9 84.7 85.9 53.6 70.7 74.6 77.0
Retroformer25 100.0 64.0 82.5 86.7 90.2 53.2 71.1 76.6 82.1
MEGAN26 100.0 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1

Semi-TB RetroXpert27 100.0 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4
G2G28 97.9 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5
GraphRetro29 95.0 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5
RetroPrime30 100.0 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1
G2Retro 97.5 63.1 84.2 88.5 91.7 53.9 74.6 80.7 86.6
G2Retro-B 97.5 63.6 83.6 88.4 91.5 54.1 74.1 81.2 86.7

Columns with 1, 3, 5 and 10 present top-1, top-3, top-5 and top-10 accuracies, respectively. Column “Coverage(%)” represents the percentage of test reactions that the methods can be applied to. Best
top-k accuracy values among the methods of each type are in bold. Top-k accuracy values of G2Retro and G2Retro-B are underlined if they are not the best but still better than all the baselines of the
respective type. All the baseline results are reported in their original papers, where “-” represents that the corresponding results are not reported.
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at all different k are desired as they indicate the holistically high
ranking positions of the ground truth in the predicted reactions,
and thus the capability of models in recovering knowledge from
data. High top-k accuracies with k > 1 may signify plausible
reactions not included in the dataset, as will be examined later in
Section “Case Study”. This is because high top-k (k > 1) accuracy
implies that there might be a few reactions different from the
ground truth but are very possible and thus are ranked on top.
Such results may enable the exploration of multiple synthesis
routes and may be of synthetic value if specific coupling methods
fail or if specific starting materials are unavailable. From the
above two aspects, over all the metrics, G2Retro and G2Retro-B
achieve the overall best performance compared to the three
strong Semi-TB methods.

G2Retro-B performs slightly better than G2Retro when the
reaction types are unknown, but worse than G2Retro when the
reaction types are known. G2Retro-B integrates synthetically
accessible fragments in atom embeddings (Eq. S3 in Supplemen-
tary Note 1). When the reaction types are unknown, the fragment
information provides additional local contexts to atoms, which
could facilitate better decisions on reaction center prediction and
synthon completion. When the reaction types are known, atom
embeddings directly integrate the reaction type information in
G2Retro, which may outweigh the contextual information
provided by the fragments, and thus G2Retro-B does not achieve
additional performance improvement from G2Retro.

Comparison with template-free (TF) methods. G2Retro and
G2Retro-B also demonstrate superior or competitive perfor-
mance compared to TF methods on all the top accuracies. With
reaction types known, G2Retro is the best on top-3, top-5 top-10
accuracies compared to all the template-free methods; with
reaction types unknown, G2Retro-B is the best on top-3, top-5
and top-10 accuracies, and is the second best one on top-1
accuracy. For example, G2Retro is 4.9% better than the best TF
method on top-3 accuracy (i.e., Retroformer25) with the reaction
types unknown. Most TF methods such as Dual24 and
Chemformer20 have the competitive performance on top-1
accuracy but relatively worse results on other top accuracy
metrics. This could be due to that these TF methods with SMILES
representations may fail to generate diverse or even many valid
reactants with beam search39, leading to limited variation in their
predicted results, and thus low and similar top-3, top-5 and top-
10 accuracies. This lack of diversity and richness in the predic-
tions, in addition to the lack of interpretability during the che-
mical sequence transformation process, could hinder the
application of TF methods in retrosynthesis prediction. However,
the prediction diversity and richness in G2Retro is enabled by the
multiple possible reaction centers predicted by G2Retro and the
corresponding completed reactants.

In terms of the coverage on the test set, all the SMILES-based
TF methods can cover the entire test set, because all the reactions
can be represented as SMILES string transformation. The graph-
based TF method MEGAN26 also covers the entire test set due to
its comprehensive set of graph edit actions. Compared to these TF
methods, though without the full coverage on the test set,
G2Retro and G2Retro-B model reactions through a two-step
process of reaction center identification and synthon completion,
allowing for the interpretability of reaction centers in the
predicted reactants. Overall, G2Retro and G2Retro-B achieve
even better performance than the methods with full coverage,
measured on the entire test set.

Comparison with template-based (TB) methods. G2Retro and
G2Retro-B achieve competitive performance with that from the
TB methods. With reaction types known, G2Retro achieves

either the second or the third on all the top accuracies; with
reaction types unknown, G2Retro-B achieves the best perfor-
mance on top-1 (54.1%), and either the second or the third on all
the other top accuracies. For example, with reaction types
unknown, G2Retro-B is the second best on top-3 accuracy, with
3.8% difference from the best performance of LocalRetro16;
G2Retro-B slightly underperforms the second-best baseline
MHNreact15 on top-10 (86.7% compared to 87.9% from
MHNreact), but outperformsMHNreact on all the other metrics.
LocalRetro is a very strong TB method. It extracted 731 tem-
plates from the benchmark training data, whereas other TB
methods have much more templates (11,647 for GLN and 9162
for MHNreact). Therefore, LocalRetro could achieve better
template selection over a small template set compared to others
over much larger template sets. However, LocalRetro may suffer
from scalability issues on large datasets because it scores all the
reaction templates on all the potential reaction centers (i.e., all
atoms and all bonds) in the product molecules. In general, all TB
methods may not generalize well to reactions that are not covered
by the templates29. In terms of coverage on the test set, Table 1
shows that the templates used in Retrosim, Neuralsym and
MHNreact can cover the entire test set, while the templates used
in GLN14 and LocalRetro cannot (93.3% for GLN and 98.1% for
LocalRetro). Unlike TB methods, G2Retro does not use reaction
templates, and only scores all the bonds and atoms once for
reaction center identification, and thus is much more scalable in
inference. It learns the patterns from training data and thus has a
better chance to discover new patterns from the training data that
are not covered by templates.

Individual module performance. Following the typical evalua-
tion for Semi-TB methods as in literature29, Table 2 presents the
individual performance of the two modules—reaction center
identification and synthon completion in Semi-TB methods. In
Table 2, for the reaction center identification module, the top-k
accuracy measures the ratio of test products that have the
ground-truth reaction center correctly predicted among the top-k
predictions. In the synthon completion module, the synthon
completion is done according to the ground-truth reaction center,
not the predicted reaction center; the top-k accuracy measures the
ratio of test products that have the ground-truth reactants cor-
rectly predicted among the top-k predictions. Please note that
here “ground-truth” reaction center means the reaction center as
appears in the benchmark data per our reaction center definition.

Comparison on reaction center identification. Among all the Semi-
TB methods, the definitions of reaction centers vary. In G2G,
reaction centers are referred to as the only one newly formed
bond during the reaction, and reaction center identification
predicts whether there is such a new bond (and its location) or
not in the products as in a classification problem. This reaction
center definition and classification can cover 97.9% of the test
data (the rest 2.1% correspond to multiple newly formed bonds).
GraphRetro defines the reaction center as the newly formed
bond (BF-center as defined in Section “Reaction Centers with
New Bond Formation” but without induced bond changes), the
changed bond (BC-center as in “Reaction Centers with Bond
Type Change”) and the single atom with changed hydrogen count
(A-center as in “Reaction Centers with Single Atoms”), which in
total covers 95.0% of the reactions in the test set. RetroPrime
aims to identify all the atoms involved in the reactions as reaction
centers, which covers all the reactions in the test set. G2Retro
extends the definition of the reaction center in GraphRetro with
induced bond type change and atom charge changes, covering
97.5% of the test set.
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Due to the data leakage issue as revealed by Yan et al.27 (i.e.,
reaction center is given in both the training and test data), the
reported G2G reaction center identification performance as cited
in Table 2 is overestimated, but the updated results have not been
provided in their Github. GraphRetro uses two functions, one
for bonds and one for atoms, to predict reaction centers. While
these functions are able to predict well when such bonds and
atoms are truly reaction centers (i.e., performance in parentheses
in Table 2), GraphRetro’s reaction center definition covers the
least (95%) of the test set compared to the other methods,
resulting in still low accuracies (i.e., performance outside
parentheses) over the test set. RetroPrime has a very generic
definition of reaction centers—any atoms involved in the
reactions, and uses one unified model to predict these atoms.
However, as these atoms may experience different changes (e.g.,
connected to or disconnected from other atoms), a unified model
not customized to specific changes may not suffice, leading to
overall relatively low accuracies compared to other methods,
particularly when reaction types are unknown. G2Retro and
G2Retro-B have the most comprehensive definition of reaction
centers (Section “Reaction Center Identification”) with high
coverage (97.5%) on the test set. In addition, G2Retro and
G2Retro-B use a specific predictor for each of the reaction center
types. Therefore, they achieve the best overall accuracy among the
entire test set, as well as good performance over the reactions
covered by its reaction center definition.

Comparison on synthon completion. To compare synthon com-
pletion performance, all the ground-truth reaction centers defined
by different methods are given and used to start the completion
processes. G2G predicts only bond establishment in its reaction
center identification and thus has to deal with any associated
changes such as bond type change in its synthon completion
process, which complicates the synthon completion prediction.
Therefore, its performance on synthon completion is the worst
among all the methods.

GraphRetro formulates the synthon completion as a classifi-
cation problem over all the subgraphs that can realize the
difference between the synthons and reactants. Therefore, its
synthon completion is not guaranteed to work for all possible
products (e.g., 99.7% coverage over the test set), particularly if the
needed subgraph is not included in the pre-defined vocabulary.
Among all the products that GraphRetro can handle, its synthon
completion performance is the best, due to that classification can
be much easier than generation as all the other methods do.
However, since GraphRetro does not do well in reaction center
identification, overall, it does not outperform other methods in
retrosynthesis prediction as Table 1 demonstrates. In addition,
the synthon completion module of GraphRetro may fail to
accurately estimate the likelihoods of leaving groups, due to the
ignorance of overall structures of predicted reactants. Such
inaccurate likelihood estimation may aggravate the bias of beam
search and reduce the diversity of predicted reactants as discussed
in GraphRetro29.

RetroPrime transforms the synthons to reactants using a
Transformer, but similarly to G2G, also needs to deal with
additional predictions such as bond type change. RetroPrime’s
synthon completion performs reasonably well on top-1 accura-
cies. Together with its good top-1 accuracy on reaction center
identification, RetroPrime achieves the best top-1 accuracy
with reaction type known as demonstrated in Table 1. Retro-
Prime uses a rule to enumerate predicted reactants from the
top-3 reaction centers, limiting the potential diversity of
predicted reactants. On average, RetroPrime underperforms
G2Retro, particularly on top-3 and top-5 accuracies in synthon
completion.T
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G2Retro does not use BRICS fragments in synthon completion
because the fragment information is not available for the
substructures that will be attached to synthons. Compared to
GraphRetro, G2Retro leverages a generative process to add
substructures to synthons in synthon completion, which is
inherently more difficult than classification as in GraphRetro
but could be generalizable to new products and reactants.
Meanwhile, G2Retro does not limit the number of reaction
centers within the top-10 predicted reactants, and thus increases
the diversity of predicted reactants.

Although G2Retro does not outperform GraphRetro in the
synthon completion module alone, its generative process allows
G2Retro to consider all the intermediate molecular structures
and more accurately estimate the likelihood of each completion
action, conditioned on the reaction centers and the corresponding
synthons from its reaction center identification module (i.e., not
the ground-truth reaction centers). Consequently, despite
employing a beam search strategy similar to that of GraphRetro,
the generative process of G2Retro could alleviate the bias of beam
search on most possible reaction centers by accurately estimating
the likelihood of the completed reactants. In contrast, GraphRe-
tro may not generalize well, particularly given that GraphRetro’s
reaction center identification does not perform well with respect
to the ground-truth reaction centers (i.e., in the top panel of
Table 2), but its synthon completion module is trained using the
ground-truth reaction centers (i.e., in the bottom panel of
Table 2).

Performance on different reaction types. Table 3 presents the
top-k accuracy (k= 1,3,5,10) of the reactions of different types.
This method appears to predict certain reaction types more
accurately than others as shown in Table 3. This is likely due to
the relative structural diversity among potential reactants, parti-
cularly for substrates that can all provide the same products. For
example, in the case of oxidations, only a very limited set of
substrates can be utilized to generate a ketone, most commonly
the oxidation of an alcohol, although ketones can certainly be
accessed through other types of reactions as well. This leads to the
relatively higher accuracies of G2Retro on the reactions of oxi-
dations (e.g., 62.2% top-1 accuracy with reaction type unknown).
In terms of reductions, however, numerous substrates could be
utilized to generate an amine, including reductions of amides,
nitro groups, and nitriles to name a few. In addition, there are
numerous methods to access the same amines through various
structurally unique deprotection reactions. The number of
methods available to access a specific functional group, therefore,

may make it more difficult to accurately predict which method
has been used for a specific molecule, leading to the lower
accuracies on reactions of deprotections (e.g., 58.3% top-1 accu-
racy with reaction type known). This would certainly be the case
in carbon-carbon bond forming reactions as well, which can be
assembled in a number of ways from various substrates, poten-
tially leading to a somewhat lower prediction success rate (e.g.,
37.2% top-1 accuracy with reaction type unknown). In addition,
as shown in our case studies, in molecules containing more than
one functional group, there are often multiple ways in which that
molecule can be assembled by targeting each individual func-
tional group as the reaction center. This means that there are
multiple valid reaction pathways which could be considered by
synthetic chemists in order to most efficiently construct a mole-
cule. Please note that G2Retro is designed to predict reactions
that involve three types of reaction centers: (1) a single newly
formed bond with induced changes in bond types; (2) a single
changed bond; (3) a single atom with a fragment removed. As a
result, G2Retro could not fully cover reaction types such as
rearrangement, isomerization, cyclization and click reactions,
which involve multiple changes in bond formation or atom
detachment. This illustrates G2Retro’s limitation in handling all
possible reaction types. It is worth noting that other semi-
template-based methods such as G2G and GraphRetro, also
share this limitation. Therefore, developing an effective semi-
template-based method that overcomes this limitation could be
an interesting future research direction.

Performance of ensemble-based methods. We also compared
the performance of an ensemble of G2Retro, referred to as
G2Retro-ens, with AT31 and R− SMILES32, both of which test
each target product multiple times and are strong baselines. AT
and R− SMILES represent each target molecule using multiple
non-canonical but equivalent SMILES strings, and use the mul-
tiple SMILES strings during model training and testing. By
combining the predictions from the multiple SMILES strings of
the same target product, these methods have the choice to explore
a larger reaction subspace seeded by the SMILES strings, and thus
achieve better prediction performance. Compared to the SMILES
strings, G2Retro uses molecular graph representations, and thus
each molecule can only have a unique representation. Instead of
augmenting molecule representations but still being able to
explore a larger reaction subspace as AT and R− SMILES do,
G2Retro-ens tests each molecule multiple times using multiple
G2Retro models. Details of G2Retro-ens are available in the
supplementary Note 2.

Table 3 G2Retro performance on different reaction types.

Type name Percentage (%) Reaction type known Reaction type unknown

1 3 5 10 1 3 5 10

Heteroatom alkylation and
arylation

30.3 62.3 84.1 90.2 94.4 56.1 77.2 84.4 91.3

Acylation and related processes 23.8 76.1 93.9 96.7 97.6 67.0 87.3 92.3 95.4
Deprotections 16.5 58.3 87.2 91.5 93.9 51.8 76.5 82.7 87.9
C-C bond formation 11.3 48.1 68.1 75.7 82.4 37.2 56.6 67.9 75.7
Reductions 9.2 72.5 87.9 91.8 95.0 52.7 69.8 78.1 84.6
Functional group interconversion 3.7 50.5 69.0 75.5 81.0 42.4 52.7 60.9 67.9
Heterocycle formation 1.8 - - - - - - - -
Oxidations 1.6 86.6 91.5 92.7 95.1 62.2 80.5 85.4 91.5
Protections 1.4 85.3 89.7 89.7 89.7 48.5 67.6 85.3 86.8
Functional group addition 0.5 95.7 95.7 95.7 95.7 78.3 82.6 87.0 87.0

Columns with 1, 3, 5 and 10 present top-1, top-3, top-5 and top-10 accuracies, respectively. Column “Percentage(%)” represents the percentage of reactions in the test set belonging to the specific
reaction type. “-” represents that the corresponding results are not available due to the lack of coverage.
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Table 4 presents the comparison among G2Retro-ens, AT and
R−SMILES on top-k accuracy (k= 1,3,5,10) over all the
reactions and the reactions covered by G2Retro, both with the
reaction type unknown. Please note that the performance of AT
and R− SMILES on reactions with known types is not available
in the respective papers31,32, and the methods also cannot be
easily extended to handle known reaction types. In Table 4, all the
methods test each molecule 20 times, that is, AT and R−
SMILES augment each target molecule with 20 SMILES strings,
and G2Retro-ens uses an ensemble of 20 models to test each
molecule. The results of AT and R−SMILES are calculated
using the source code and data available from the respective
papers. Table 4 shows that G2Retro-ens achieves competitive
performance with the best baseline R− SMILES. Over all the
reactions, G2Retro-ens achieves almost the best performance on
top-1 (56.4%, compared to 56.5% for R− SMILES), and only
slightly underperforms the best baseline R− SMILES on top-3,
top-5 and top 10 (78.8% vs 79.2% on top-3; 85.2% vs 86.2% on
top-5; 90.5% vs 91.0% on top-10). Over the reactions covered by
G2Retro, G2Retro-ens outperforms the baseline R−SMILES
on top-1 accuracy at 1.76%, on top-3 accuracy at 1.25%, on top-5
accuracy at 1.28%, and on top-10 accuracy at 1.53%. Compared to
R−SMILES, which is an end-to-end black-box that directly
transfers product SMILES string to reactant SMILES strings,
G2Retro provides certain interpretability of the predicted
reaction centers, and what reactants are generated from them.
More details about the comparison on different reaction types
and on reactions covered by G2Retro-ens are available in the
supplementary Note 2.

Case study. G2Retro can predict multiple reactions for each
product due to multiple predicted reaction centers. This varia-
bility could be useful for chemical synthesis in order to consider
all possible reaction strategies. In order to illustrate the predictive
power of G2Retro, we have highlighted the top-10 predicted
reactants by G2Retro with reaction types unknown for four
newly approved drug molecules in 2022, including Mitapivat,
Tapinorf, Mavacamten, and Oteseconazole40. Among them, the
predicted reactants for Mitapivat and Tapinorf are presented in
Fig. 2aa and ba which will be discussed later; the results and the
discussions for Mavacamten and Oteseconazole are available in
Supplementary Figure 1, Supplementary Figure 2 and Supple-
mentary Note 3. Note that these drugs are not included in our
training, validation, or testing data. Therefore, how G2Retro
works on these drugs truly indicates its predictive power for new
molecules.

Mitapivat as in Fig. 2aa is a drug approved for hereditary
hemolytic anemias in 202241. The synthetic route within the
patent42 reporting the discovery of Mitapivat utilizes an amide
coupling reaction to form the C2-N23 bond (Fig. 2ab). This is

correctly predicted by G2Retro as the top-1 reaction (Fig. 2ac).
As indicated by the top-5 reaction (Fig. 2ag), G2Retro also
predicts that the amide coupling reaction could be performed
with the carboxylate salt of one of the reactants, a useful reactant
under the right pH conditions. G2Retro also predicts that the
acyl chloride as the substrate in this transformation would also
react with the amine group and produce the desired molecule
(Fig. 2aj), In addition, G2Retro identifies the N7-S8 bond of
sulfonamide linkage as the reaction center (e.g., Fig. 2ad, ae, af,
ak, al). Most impressively, G2Retro predicts various S8 sulfonyl
groups reacting with the N7 amine group, such as sulfonyl
chloride (Fig. 2ad), sulfonyl fluoride (Fig. 2ae) and sulfonic acid
(Fig. 2af), which are theoretically feasible for the formation of the
N7-S8 bond. G2Retro also predicts that the N26-C27 bond could
be the reaction center and formed by the N26 amine group
reacting through a reductive amination with ketone in Fig. 2ah or
through a nucleophilic substitution with the chloride in Fig. 2ai.

Tapinarof as in Fig. 2ba is a drug approved for plaque psoriasis
and atopic dermatits43. The reported synthesis in patent44

constructs this drug by removing the protecting groups on O5
and O10 (Fig. 2bb). G2Retro correctly predicts the deprotection
of the methyl groups on O5 (Fig. 2bc) or O10 (Fig. 2bd), which
would work to produce the desired molecule, although the
ground truth failed to be predicted due to the limitation of
reaction centers. Similarly, G2Retro generates possible reactants
that contain different types of protected alcohols, as seen with the
methoxymethyl groups on O5 and O10 in Fig. 2bf and bi and the
benzyl-protected O5 in Fig. 2bj. Most impressively, G2Retro also
identifies the alkene linkage between C11 and C12 (Fig. 2be and
bl) and the C-C bond between C7 and C11 (Fig. 2bg, bh, ad bk) as
reaction centers with various coupling reactions. These coupling
reactions include McMurry coupling45 (Fig. 2be), Wittig
coupling46 (Fig. 2bl) and Suzuki coupling47 (Fig. 2bg and bh).

In addition, we also highlighted two molecules in the test set
and their predicted reactions by G2Retro with reaction types
unknown in Fig. 3a and b, respectively. The product in Fig. 3aa
contains amide linkages and was assembled in the patent
literature utilizing amide coupling reactions (ground truth in
Fig. 3ab). G2Retro correctly predicted this coupling as the top-1
reaction for the construction of this molecule (Fig. 3ac). The other
reactions predicted, however, are also very instructive into the
strengths and limitations of G2Retro. In Fig. 3aa, the product has
two amide groups in the side chain of the molecule. G2Retro
identified both of these linkages as potential reaction centers (e.g.,
in Fig. 3ac between N5 and C6; in Fig. 3ag between N1 and C2).
Typically, chemists would disconnect the molecule at the C6
amide carbonyl rather than C2 so that a fully elaborated side
chain can be introduced to complete the molecule. This approach
would generally be considered more efficient since its reaction
introduces more complexity into the molecule in a single step and
would therefore be predicted to limit the total number of steps

Table 4 Overall comparison on retrosynthesis prediction between G2Retro-ens and baselineswith test set augmentation in top-k
accuracy (%).

Dataset Method type Method Reaction type unknown

1 3 5 10

All reactions TF AT31 52.7 73.4 79.1 83.7
R−SMILES32 56.5 79.4 86.0 91.0

Semi-TB G2Retro-ens 56.4 78.8 85.2 90.5
Reactions covered by G2Retro TF AT31 54.1 75.5 81.4 85.8

R−SMILES32 56.8 79.7 86.2 91.3
Semi-TB G2Retro-ens 57.8 80.7 87.3 92.7

Columns with 1, 3, 5 and 10 present top-1, top-3, top-5 and top-10 accuracies, respectively. Best top-k accuracy values among the methods of each type are in bold.
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necessary to construct the molecule. In some limited cases,
however, it may be necessary to introduce the nitrogen at N1 last
(e.g., in Fig. 3af–ah), so this should also be considered a feasible
reaction. In addition to the typical amide coupling strategy, which
takes place between an amine and a carboxylic acid, G2Retro also
correctly identifies the reaction of the amine with an acid chloride
to make the same bond (Fig. 3ad). Although this was not the
strategy utilized in the ground-truth study, this strategy would

certainly be expected to work in this case for construction of this
molecule. The other common reaction that was predicted for this
example was the nucleophilic addition of the N5 (or N1) amine
into the C6 (or C2) carbonyl of an ester (N5-C6 - Fig. 3ae, ai, aj,
ak, al and N1-C2 - Fig. 3ag and ah). This type of reaction, which
is essentially a transamidation reaction, should also work to
provide the product. Interestingly, however, G2Retro predicts
several different esters as substrates for this transformation

Fig. 2 Predicted reactions by G2Retro for two newly approved drug molecules. a Predicted reactions by G2Retro for Mitapivat; b Predicted reactions by
G2Retro for Tapinorf. Numbers next to each atom are the indices of the atoms. Atoms with same indices in different subfigures are corresponding to each
other. Atoms and bonds colored in red are leaving groups for synthon completion. Molecules with labels ending in (a) are product/target molecules;
molecules with labels ending in (b) are the reactants reported in patents; molecules with labels ending in (c–l) are the top predicted reactants.
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(Fig. 3ac, ae, ai, aj, ak and al). While these are different substrates,
the variation of the ester side chain in these cases would not
typically be considered as greatly different by a synthetic chemist
unless steric or electronic contributions affect the reactivity/
electrophilicity of the ester carbonyl.

Retrosynthesis of the product in Fig. 3b involves a C-C bond
forming reaction between C9 and C10 (Fig. 3ba). The
disconnection of the carbon-carbon bond between the two
aromatic rings, a heteroaromatic thiophene and a benzene ring in
this case, represents the most obvious disconnection in the
molecule. In this case, the top-1 reaction (Fig. 3bc) predicted by
G2Retro for this transformation is a Suzuki coupling47, a
common metal-mediated coupling between a boronic acid
reactant and a corresponding aryl halide. This common
transformation is the same reaction observed in the ground
truth (Fig. 3bb). Interestingly, G2Retro also identifies additional
permutations of this Suzuki reaction through changing the nature
of the aryl halide (Fig. 3bk and bl). Traditionally, aryl chlorides
(Fig. 3bk) are less reactive than aryl bromides or iodides (Fig. 3bc
and bl) for coupling reactions and in the past were considered
unreactive in these reactions. Newer methods48 using specially
designed ligands, however, have made the use of such chlorides
possible. The other difference observed in the predicted Suzuki
couplings is the use of a boronic ester (Fig. 3bg) vs a boronic acid
(Fig. 3bc). Both boronic acids and boronic esters are common

reagents for these transformations, with many being readily
available from commercial sources. G2Retro also predicts that an
esterification reaction at the C4 carboxylic acid would also work
to produce the desired molecule (Fig. 3bd). While this is
potentially not as synthetically useful for building the molecule,
it is a reasonable transformation. Most impressively, G2Retro
also predicts other coupling reactions49 for the biaryl coupling
reaction. These other methods include an Ullmann-type
coupling50 (Fig. 3be and bi) a Stille coupling51 (Fig. 3bf), and a
Kumada coupling48,52 (Fig. 3bj). This versatility predicted in the
top-10 reactions may be of synthetic value for substrates if
specific coupling methods fail or if the functionality necessary for
one type of coupling reaction is not able to be easily prepared.

The above examples indicate that the predicted reactions from
G2Retro rather than the ground truth could be still possible and
synthetically useful. Therefore, a more comprehensive evaluation
strategy is needed not to miss those possible and potentially novel
synthesis reactions.

Diversity on predicted reactions. Diversity in predicted reactions
is always desired, as it has the potential to enable the exploration
of multiple synthesis routes. G2Retro has the mechanisms to
facilitate diverse predictions: The beam search strategy in
G2Retro allows multiple reaction centers and multiple different

Fig. 3 Predicted reactions by G2Retro for two test molecules in USPTO-50K. a Predicted reactions by G2Retro for product “NC(=O)CNC(=O)
C1CC12CCCCC2''; b Predicted reactions by G2Retro for product “CCOC(=O)c1csc(-c2ccc(F)cc2)c1''. Numbers next to each atom are the indices of the
atoms. Atoms with same indices in different subfigures are corresponding to each other. Atoms and bonds colored in red are leaving groups for synthon
completion. Molecules with labels ending in (a) are product/target molecules; molecules with labels ending in (b) are the ground-truth reactants in
USPTO-50K; molecules with labels ending in (c–l) are the top predicted reactants.
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attachments, and therefore potentially different scaffolds and
structures in the predicted reactants.

To analyze the diversity of G2Retro results, we analyzed the
reaction centers among the top-predicted reactions. We identified
a set of products such that their third or fifth predicted reactions
are the ground truth, referred to as having a hit at 3 or 5,
respectively. Please note each predicted reaction was scored using
the sum of the log-likelihoods of all the predictions along the
transformation paths from the product to its reactants (please
refer to Section “Inference”), and then ranked based on the score.
Thus, the predicted reactions ranked above the ground truth have
a higher likelihood than the ground truth. Given that G2Retro
has demonstrated strong performance as in Table 1 in scoring
and prioritizing the ground-truth reactions, we assume that its
likelihood calculation is reliable and therefore, the reactions
ranked above the ground truth might also be likely to occur.

Figure 4a and b presents the distribution of products with hits
at 3 or 5 over the number of reaction centers among predicted
reactions ranked above the ground truth. Figure 4a shows that
more than 50% of the products with a hit at 3 have their top-3
reactions from two different reaction centers; about 20% of the
products have their top-3 reactions from three different reaction
centers. Figure 4b shows that for products with a hit at 5, almost
40% have two reaction centers, and another 40% have three
reaction centers, among their top-5 predicted reactions; more
than 10% have four reaction centers. Thus, Fig. 4a and b clearly
demonstrate that the top predicted reactions were diverse,
demonstrated by the different reaction centers they were derived
from. Meanwhile, we acknowledge that the diverse, top predic-
tions may still be errors and thus, more reliable wet-lab
experimental validation is needed.

Figure 4c presents an example of very diverse reactions with
diverse reaction centers predicted by G2Retro. For the product in
Fig. 4ca, G2Retro predicts three different reaction centers: an
amide bond (between C12 and N11), a nitrogen-carbon bond
(between N7 and C6) and ester (between O3 and C2). The patent
reported that the target molecule was synthesized from a
carboxylic acid derivative and an amine using amide coupling
with a widely-used coupling reagent, EDC (Fig. 4cb). G2Retro
predicted an acyl chloride-amine reactant pair as the top-1 result
(Fig. 4cc), a potentially viable and even high yielding synthetic
approach. It also predicts three reactant pairs from the other two
reaction centers as possible routes within the top 4 (Fig. 4cd and
cf at which involve alkylation reactions to form the C6-N7 bond;
Fig. 4ce at which forms the ester linkage between O3 and C2).

We also analyzed the reaction diversity by comparing the
number of reaction centers in products with high reaction
diversity and low reaction diversity. For each product, the
diversity of its predicted reactions is represented by the
distribution of all pairwise similarities of its predicted reactions,
that is, lower reaction similarities indicate higher reaction
diversity. Please note that the reaction similarity is only applicable
to two reactions that share the same product. Therefore, the
product is not considered in the similarity calculation. Formally,
for reaction R1: M1+M2→Mp and reaction R2: M3+M4→Mp,
the similarity between R1 and R2 was calculated as follows,

simðR1;R2Þ ¼
1
2
maxðsimmðM1;M3Þ þ simmðM2;M4Þ;

simmðM1;M4Þ þ simmðM2;M3ÞÞ;
ð1Þ

where simm() is a similarity function over molecules, calculated
using Tanimoto coefficient over 2,048-bit Morgan fingerprints of the

Fig. 4 Reaction center analysis in predicted reactions and a representative example. a Percentage of products (Product (%)) with the different number
of predicted reaction centers and the third predicted reaction as the ground-truth reaction (i.e., hits at 3); b Percentage of products (Product (%)) with the
different number of predicted reaction centers and the fifth predicted reaction as the ground-truth reaction (i.e., hits at 5); c Predicted reactions by G2Retro
for product “CCOC(=O)Cn1ccc(NC(=O)c2ccc(Cl)s2)n”. Numbers next to each atom are the indices of the atoms. Atoms with the same indices in
different subfigures correspond to each other. Different reaction centers are highlighted in different colors (blue, red and olive). Atoms and bonds colored
in red are leaving groups for synthon completion. Molecules with labels ending in (a) are product/target molecules; molecules with labels ending in (b) are
the ground-truth reactants in USPTO-50K; molecules with labels ending in (c–h) are the top predicted reactants.
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molecules. For reaction R1: M1→Mp and reaction R2: M2+M3→
Mp, the similarity between them was calculated as follows,

simðR1;R2Þ ¼ simmðM1;M2 þM3Þ; ð2Þ
where M2+M3 denotes the composite molecule consisting of two
disconnected components M2 and M3. For reaction R1: M1→Mp

and reaction R2: M2→Mp, the similarity between them was
calculated as follows,

simðR1;R2Þ ¼ simmðM1;M2Þ: ð3Þ
We clustered the products according to their reaction similarity

distributions using the K-means clustering algorithm in Euclidean
distances. The clustering algorithm is presented in Supplementary

Algorithm 1 in Supplementary Note 4. Figure 5a presents the
clustering results for products that have their ground-truth reaction
correctly predicted among the top-10 predictions. In Fig. 5a, the first
four clusters have on average lower reaction similarities (on average
0.46 among the four clusters; 0.41, 0.45, 0.45, 0.49 in each of the
clusters, respectively), and thus are referred to as high-reaction-
diversity clusters (HRD); the other six clusters, referred to as low-
reaction-diversity clusters (LRD), have relatively higher reaction
similarities (on average 0.58 for among the six clusters; 0.52, 0.53,
0.58, 0.62, 0.67, 0.67 in each of the clusters, respectively).

Figure 5b and c present the distributions of the number of
reaction centers in the products of these two clusters. Comparing
Fig. 5b and c, HRD products tend to have more reaction centers

Fig. 5 Cluster analysis on test products based on similarities of their predicted reactions. a Clustering on test products based on similarities of their
predicted reactions. The x-axis indicates the range of reaction similarities (e.g., the column between 0.1 and 0.2 indicates the range (0.1, 0.2]); the y-axis
shows the cluster ID and the cluster size. Each row in the heatmap corresponds to the reaction similarity distribution of a product belonging to a specific
cluster; each block in the row corresponds to the frequency of reaction similarities within each similarity range, and the block color represents the scale of
the frequency (e.g., a darker color indicates a higher frequency value). The clusters are labeled as 'HRD' for high-reaction-diversity clusters with average
low reaction similarities, and 'LRD' for low-reaction-diversity clusters with average high reaction similarities. b Test product distributions over the number
of reaction centers of HRD products. c Test product distributions over the number of reaction centers of LRD products.
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in their predicted reactions than those in LRD products, and the
number of reaction centers correlates well with reaction diversity
(-0.8486 between the average reaction similarities and the number
of reaction centers). Particularly, the first cluster (in HRD), which
has the highest reaction diversity (lowest reaction similarity), has
on average 4.41 reaction centers in the top-10 predicted reactions
of each product, compared to the average 3.92 reaction centers in
the top-10 predicted reactions of each product in LRD clusters.
The ninth and tenth clusters, which have the lowest reaction
diversity, have on average 2.57 reaction centers. These results
clearly show the diversity of G2Retro predictions.

Discussion
Comparison among template-based, template-free and semi-
template-based methods. Template-based methods were first
developed for retrosynthesis prediction. They match products
into pre-defined templates that are extracted from training data
or hand-crafted based on knowledge. A notable advantage of
templates is that they can enable strong interpretability (e.g., each
template may correspond to a certain reaction type, a chemical
scaffold, or a reactivity pattern) and thus result in reactions that
better conform to domain knowledge. They can also well fit the
data if the templates are extracted from the data. However, they
suffer from a lack of strong learning capabilities and a lack of
generalizability, if the templates do not cover and cannot auto-
matically discover novel reaction patterns.

Template-free methods largely leverage the technological
advancement in Natural Language Processing (NLP), including
large-scale language models such as Transformer and BART53,
and also many pre-training techniques. Most of them formulate a
reaction as a SMILES string translation problem. Rather than
enumerating pre-defined patterns (i.e., templates) as template-
based methods do, template-free methods are equipped with
much stronger learning capabilities from SMILES strings and can
represent latent reaction transformation patterns in an operable
manner. However, template-free methods sacrifice their inter-
pretability as it is non-retrieval to decipher why an atom
(analogous to a token in NLP) is generated next along the
SMILES strings, or what chemical knowledge the actions
correspond to. In addition, as SMILES strings are a ‘flattened’
representation of molecular graphs according to the atom
orderings from a graph traversal, template-free methods using
SMILES strings only cannot fully leverage molecular structures,
which ultimately determine molecule synthesizability and reac-
tion types. To mitigate this issue, some template-free methods
either enrich the product SMILES representation with molecular
graph information19,23,25 or decode reactant SMILES strings from
product molecular graphs21, which, however, require additional
learning of the mapping from molecular graphs to SMILES and
thus increase the learning complexity.

Semi-template-based methods, typically over molecular graphs,
represent the most recent and also in general the best performing
retrosynthesis prediction methods. They utilize the powerful
graph representation learning paradigm to better capture
molecule structures. They also take advantage of graph (varia-
tional) auto-encoder frameworks or sequential predictions to
empower the models with generative ability. More importantly,
semi-template-based methods have the mechanism to enable
diversity among predicted reactions, by allowing multiple
samplings from the latent space. Meanwhile, semi-template-
based methods have two steps: (1) reaction center identification,
and (2) synthon completion, better complying with how chemical
reactions are understood and enabling certain interpretability of
predicted reaction centers and derived reactants. G2Retro is a
semi-template-based method and achieves superior performance

to other methods, demonstrating it as a state-of-the-art method
for retrosynthesis prediction.

Comparison issues among existing methods. In our study of the
baseline methods, several issues were identified among existing
methods that make comparison across different methods hard. In
Table 1, RetroXpert’s results are from its updated GitHub54, as
their results originally reported in their manuscript had a data
leakage issue (all the reaction centers were implicitly given) and
thus were overestimated27. G2G may also suffer from the data
leakage issue as discussed in its github55, but G2G’s results were
only available from its original paper, though likely over-
estimated. In addition, there have been some reproducibility
issues with G2G56, as we also observed in our study. All the
methods except Neuralsym, LV-Trans, Dual and Retroformer
published their code and datasets. Among these methods, most
template-free methods including SCROP, GET, Chemformer,
TiedTransformer, GTA and AT used the same data split, which
is, however, different from the benchmark data split used in the
other methods. For example, the training set of these template-
free methods has 40,029 reactions, while the training set of the
other methods including G2Retro has 40,008 reactions. Even
though all the methods adopted the same ratio (i.e., 80%/10%/
10% for training/validation/test set) to split the benchmark
dataset, their splits, particularly their test sets, are not identical,
making it hard to compare these methods. In this manuscript, we
adopted the data split used by the previous semi-template-based
methods; for the template-free methods with different data splits,
we still used the results reported by their authors. We believe
reproducibility and unbiased comparison (e.g., on the same
benchmark data and same splits, generating the same amount of
results to compare) among all the retrosynthesis prediction
methods are critical to moving this research forward. They
require dedicated research, implementation and regulatory effort
from the entire research community, for example, by following
the Open Science Policy from the European Union57 and the
Data Sharing Policy from the United States National Institute of
Health58. Unfortunately, it is out of the scope of this manuscript.

Conclusions. G2Retro predicts reactions of given target mole-
cules by predicting their reaction centers, and then completing
the resulting synthons by attaching small substructures. Based on
a comparison against twenty baseline methods over a benchmark
dataset, G2Retro achieves the state-of-the-art performance under
most metrics. The case studies show that G2Retro also enables
diverse predictions. However, G2Retro still has several limita-
tions. First, the three types of reaction centers in G2Retro still
cannot cover all possible reaction center types (e.g., the reactions
with multiple newly formed bonds). Therefore, a more compre-
hensive definition of reaction center types is still needed. G2Retro
cannot cover bonds or rings that are attached at the reaction
centers but do not appear in the training data either, as the
substructures that G2Retro employs to complete synthons are
extracted only from training data. In addition, the atom-mapping
between products and reactants that is required by G2Retro (and
required by many existing methods) to complete synthons is not
always available or of high quality (it is available in USPTO-50K).
To identify such mappings, it requires to calculate graph iso-
morphism, which is an NP-hard problem. Moreover, the sum of
log-likelihoods of all the involved predictions (i.e., reaction center
prediction, attached atom type prediction) that G2Retro uses to
prioritize reactions, is not necessarily the same as the likelihood of
the reactions, which could affect the quality of the prioritized
reactions. We are also investigating a systemic evaluation and
in vitro validation protocol, in addition to using top-k accuracy,

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00897-3 ARTICLE

COMMUNICATIONS CHEMISTRY |           (2023) 6:102 | https://doi.org/10.1038/s42004-023-00897-3 | www.nature.com/commschem 13

www.nature.com/commschem
www.nature.com/commschem


as we discussed earlier. Multiple-step retrosynthesis could be
possible by applying G2Retro multiple times iteratively, each
time on a reactant as the target molecule. Connected after the
deep generative models that have been developed to optimize
small molecule structures and properties59,60 for lead optimiza-
tion, G2Retro has a great potential to generate synthetic reactions
for these in silico generated drug-like molecules, and thus sub-
stantially speed up the drug development process.

Methods
G2Retro is developed for the one-step retrosynthesis prediction problem, that is,
given the target molecule (i.e., product), G2Retro identifies a set of reactants that
can be used to synthesize the molecule through one synthetic reaction. Following
the prior semi-template-based methods28,29, G2Retro generates reactants from
products in two steps. In the first step, G2Retro identifies the reaction center from
the target molecule using the center identification module. G2Retro defines the
reaction centers as the single bond that is either newly formed or has the bond type
changed, or the single atom with changed hydrogen count during the reaction.
G2Retro also incorporates into the reaction center the bonds neighboring the
reaction centers that have type changes induced by the newly formed bond, and the
atoms with charge changes within the target molecule (more details in “Reaction
Center Identification” Section). Given the reaction center, G2Retro converts the
target molecule into a set of intermediate molecular structures referred to as
synthons, which are incomplete molecules and will be completed into reactants. In
the second step, G2Retro completes synthons into reactants by sequentially
attaching bonds or rings in the synthon completion module. The intermediate
molecular structures before being completed to reactants are referred to as updated
synthons. Figure 1 presents the overall model architecture of G2Retro. All the
algorithms are presented in Supplementary Note 5.

Molecule representations and notations. Supplementary Table 3 in Supple-
mentary Note 6 presents the key notations used in this manuscript. A synthetic
reaction involves a set of reactants {Mr} and a product molecule Mp that is syn-
thesized from the reactants. Please note that we do not consider reagents or cat-
alysts in this study. Each reactantMr has a corresponding synthon Ms, representing
the substructures of Mr that appear in Mp. We represent the product molecule Mp

using a molecular graph GM
p , denoted as GM

p ¼ ðA;BÞ, where A is the set of atoms
{ai} inMp, and B is the set of corresponding bonds {bij}, where bij connects atoms ai
and aj. We also represent the set of the reactants {Mr} or the set of synthons {Ms} of
Mp using only one molecular graph GM

r or GM
s , respectively. Here, GM

r and GM
s could

be disconnected with each connected component representing one reactant or one
synthon.

For synthon completion, we define a substructure z as a bond (i.e., z= bij) or a
ring structure (i.e., z= {bij∣ai, aj∈ a single or polycyclic ring}) that is used to
complete synthons into reactants. We construct a substructure vocabulary Z ¼ fzg
by comparing Gr ’s and their corresponding Gs ’s in the training data, and extracting
all the possible substructures from their differences. In total, G2Retro extracted
83 substructures, covering all the reactions in the test data. Details about these
substructures are available in Supplementary Fig. 3 and Supplementary Fig. 4 in
Supplementary Note 7. Note that different from templates used in TB methods, the
substructures G2Retro used are only bonds and rings, and multiple bonds and
rings can be attached to complete a synthon. For simplicity, when no ambiguity
arises, we omit the super/sub-scripts and use G to represent GM .

Molecule representation learning. G2Retro learns the atom representations over
the molecular graph G using the same message passing networks (MPN) as in Chen
et al.59 (Supplementary Algorithm 4 in Supplementary Note 5).

G2Retro first learns atom embeddings to capture the atom types and their local
neighborhood structures by passing the messages along the bonds in the molecular
graphs. Each bond bij is associated with two message vectors mij and mji. The
message mðtÞ

ij at t-th iteration encodes the messages passing from ai to aj, and is
updated as follows,

mðtÞ
ij ¼ Wa

1 ReLU Wa
2xi þWa

3xij þWa
4 ∑
ak2N ðaiÞnfajg

mðt�1Þ
ki

 !
; ð4Þ

where xi is the atom feature vector, including the atom type, valence, charge, the
number of hydrogens, whether the atom is included in a ring and whether the
ring is aromatic; xij is the bond feature vector, including the bond type, whether
the bond is conjugated or aromatic, and whether the bond is in a ring; Wa

i ’s

(i= 1,2,3,4) are the learnable parameter matrices; mð0Þ
ij is initialized with the zero

vector; N ðaiÞ is the set with all the neighbors of ai (i.e., atoms connected with ai);
and ReLU is the activation function. The message mðtÞ

ij captures the structure of
t-hop neighbors passing through the bond bij to aj, by iteratively aggregating the
neighborhood messages mðt�1Þ

ki . With the maximum ta iterations, G2Retro derives

the atom embedding ai as follows,

ai ¼ Ua
1 ReLU Ua

2xi þ Ua
3 ∑
ak2N ðaiÞ

mð1���ta Þ
ki

 !
; ð5Þ

where mð1���taÞ
ki denotes the concatenation of fmðtÞ

ki jt 2 ½1 : ta�g; Ua
i ’s (i= 1,2,3) are

the learnable parameter matrices. The embedding of the molecular graph G is
calculated by summing over all the atom embeddings as follows,

h ¼ ∑
ai2G

ai: ð6Þ

For Mp and Ms, their embeddings calculated from their moleculear graphs as above
are denoted as hp and hs, respectively.

Reaction center identification. Given a product Mp, G2Retro defines three types
of reaction centers in Mp (Supplementary Algorithm 3 in Supplementary Note 5).

1. a new bond bij, referred to as bond formation center (BF-center), that is
formed across the reactants during the reaction but does not exist in any of
the reactants;

2. an existing bond bij in a reactant, referred to as bond type change center
(BC-center), whose type changes during the reaction due to the gain or
loss of hydrogens, while no other changes (e.g., new bond formation)
happen; and

3. an atom in a reactant, referred to as atom reaction center (A-center), from
which a fragment is removed during the reaction, without new bond
formation or bond type changes.

The above three types of reaction centers cover 97.7% of the training set. The
remaining 2.3% of the reactions in the training data involve multiple new bond
formations or bond type changes, and will be left for future research. Note that
with a single atom as the reaction center, the synthon is the product itself. We refer
to all the transformations needed to change a product to synthons as product-
synthon transformations, denoted as p2s-T (Supplementary Algorithm 5 in
Supplementary Note 5).

Reaction centers with new bond formation (BF-center). Following Somnath et al.29,
G2Retro derives the bond representations as follows,

bij ¼ Ub
1 ReLU ðUb

2xij þ Ub
3ðai þ ajÞ þ Ub

4Abs ðai � ajÞÞ; ð7Þ

where Abs( ⋅ ) represents the absolute difference; Ub
i ’s (i= 1,2,3,4) are the learnable

parameter matrices. G2Retro uses the sum and the absolute difference of
embeddings of the connected atoms to capture the local neighborhood structure of
bond bij. Meanwhile, the two terms are both permutation-invariant to the order of
ai and aj, and together can differentiate the information in ai and aj. With the bond
representation, G2Retro calculates a score for each bond bij as follows,

sbðbijÞ ¼ qb ReLU ðQb
1bij þ Qb

2hpÞ; ð8Þ

where hp is the representation of the product graph Gp calculated as in Eq. (6); qb is

a learnable parameter vector and Qb
1 and Qb

2 are the learnable parameter matrices.
G2Retromeasures how likely bond bij is a BF-center using sb(bij) by looking at the
bond itself (i.e., bij) and the structure of the entire product graph (i.e., hp). G2Retro
scores each bond in Mp and selects the most possible BF-center candidates {bij}
with the highest scores. G2Retro breaks each product at each possible BF-center
into synthons, and thus can generate multiple possible reactions.

In synthetic reactions, the formation of new bonds could induce the changes of
neighbor bonds. Therefore, G2Retro also predicts whether the types of bonds
neighboring the BF-center are changed during the reaction, referred to as the BF-
center induced bond type change prediction (BTCP). Given the BF-centerbij, the
set of the bonds neighboring bij is referred to as the BF-center neighbor bonds,
denoted as CBF , that is:

CBFðbijÞ ¼ fbikjak 2 N ðaiÞnfajgg∪ fbjkjak 2 N ðajÞnfaigg: ð9Þ

Thus, G2Retro predicts a probability distribution fb 2 R1´ 4 for each neighboring
bond in CBF , denoted as bi=jk 2 CBF , as follows,

fbðbi=jkÞ ¼ softmax ðVb
1bi=jk þ Vb

2bij þ Vb
3hpÞ; ð10Þ

where Vb
i ’s (i= 1,2,3) are the learnable parameter matrices. The first element fb1 in

fb represents how likely the bi/jk type is changed during the reaction (It is
determined as type change if fb1 is not the maximum in fb), and the other three
represent how likely the original bi/jk in the reactant is single, double or triple bond,
respectively (these three elements are reset to 0 if bi/jk type is predicted unchanged).
Here, G2Retro measures neighbor bond type change by looking at the neighbor
bond itself (i.e., bi/jk), the BF-center (i.e., bij) and the overall product (i.e., hp).
G2Retro updates the synthons Gs by changing the neighboring bonds of the BF-
center to their predicted original types. The predicted changed neighbor bonds are
denoted as CBF 0 .
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Reaction centers with bond type change (BC-center). If a reaction center is due to a
bond type change without new bond formations, G2Retro calculates a score vector
sc 2 R1´ 3 for each bond bij in Mp as follows,

scðbijÞ ¼ Qc
1 ReLU ðQc

2bij þ Qc
3hpÞ; ð11Þ

where Qc
i ’s (i= 1,2,3) are the learnable parameter matrices. Each element in sc(bij),

denoted as sckðbijÞ (k= 1, 2, 3), represents, if bij is the BC-center, the score of bij’s
original type in Gr being single, double, and triple bond, respectively. The element
in sc corresponding to bij’s type in Gp is reset to 0 (i.e., bij’s type has to be different
in Gr compared to that in Gp). Thus, the most possible BC-center candidates {bij}
and their possible original bond types scored by sc( ⋅ ) are selected. G2Retro then
changes the corresponding bond type to construct the synthons.

Reaction centers with single atoms (A-center). If a reaction center is only at a single
atom with a fragment removed, G2Retro predicts a center score for each atom ai in
Mp as follows,

saðaiÞ ¼ qa ReLU ðQa
1ai þ Qa

2hpÞ; ð12Þ
where qa is a learnable parameter vector and Qa

1 and Qa
2 are the learnable para-

meter matrices. G2Retro selects the atoms {ai} in Mp with the highest scores as
potential A-center’s. In synthon completion, new fragments will be attached at the
atom reaction centers.

Atom charge prediction (ACP). For all the atoms ai involved in the reaction center
or BF-center changed neighbor bonds CBF 0 , G2Retro also predicts whether the
charge of ai remains unchanged in reactants. G2Retro uses an embedding c to
represent all the involved bond formations and changes in p2s-T. If the reaction
center is predicted as a BF-center at bij, G2Retro calculates the embedding c as
follows,

c ¼ ∑
bkl2CBF 0 ðbijÞ∪ fbijg

Wc
1 ReLU ðWc

2x
0
kl þWc

3bklÞ; ð13Þ

where CBF 0 is a subset of CBF with all the bonds that changed types; x0kl is a 1 × 4
one-hot vector, in which x0klð0Þ ¼ 1 if bond bkl is the bond formation center (i.e.,
bkl= bij), or x0klðiÞ ¼ 1 (i= 1, 2, 3) if bkl type is changed from single, double or
triple bond in reactants, respectively, during the reaction (i.e., bkl is in CBF 0ðbijÞ);
Wc

i ’s (i= 1, 2, 3) are the learnable parameter matrices.
If the reaction center is predicted as a BC-center at bij, c is calculated as

follows,

c ¼ Wc
1 ReLU ðWc

2x
0
ij þWc

3bijÞ; ð14Þ
where x0ijð0Þ ¼ 0 and x0ijðiÞ ¼ 1 (i= 1, 2, 3) if bkl type is changed from single, double
or triple bond in reactants, respectively, during the reaction. If the reaction center is
an A-center, no p2s-T are needed and thus c= 0.

With the embedding c for p2s-T, G2Retro calculates the probabilities that ai
will have charge changes during the reaction as follows,

f cðaiÞ ¼ softmax ðVc
1ai þ Vc

2cÞ; ð15Þ
where Vc

1 and Vc
2 are the learnable parameter matrices; f c 2 R1´ 3 is a vector

representing the probabilities of accepting one electron, donating one electron or
no electron change during the reaction. The option corresponding to the maximum
value in fc is selected and will be applied to update synthon charges accordingly.
G2Retro considers at most one electron change since this is the case for all the
reactions in the benchmark data.

Reaction center identification module training. With the scores for three types of
reaction centers, G2Retro minimizes the following cross entropy loss to learn the
above scoring functions (i.e., Eqs. (8), (11) and (12)),

Ls ¼ � ∑
bij2B

ybijl
bðbijÞ þ ∑

3

k¼1
IkðycijÞlckðbijÞ

� �
� ∑

ai2A
yai l

aðaiÞ; ð16Þ

where y* (x= a, b, c) is the label indicating whether the corresponding candidate is
the ground-truth reaction center of type * (y*= 1) or not (y*= 0); IkðxÞ is an
indicator function (IkðxÞ ¼ 1 if x= k, 0 otherwise), and thus IkðycijÞ indicates
whether the ground-truth bond type of bij is k or not (k= 1, 2, 3 indicating single,
double or triple bond); and l*( ⋅ ) (*= a, b)/ðlckð�ÞÞ is the probability calculated
by normalizing the score s*( ⋅ )/sck , that is, l

�ðxÞ ¼ expðs�ðxÞÞ=Δ, where Δ ¼
∑bij2BðexpðsbðbijÞÞ þ∑3

k¼1 expðsckðbijÞÞÞ þ∑ai2A expðsaðaiÞÞ (lckðxÞ ¼ expðsckðxÞÞ=Δ).
Similarly, G2Retro also learns the predictor fb( ⋅ ) for neighbor bond changes
(Eq. (10)) and fc( ⋅ ) for atom charge changes (Eq. (15)) by minimizing their
respective cross entropy loss Lb and Lc. Therefore, the center identification module
learns the predictors by solving the following optimization problem:

min
Θ

Ls þ Lb þ Lc; ð17Þ

where Θ is the set of all the parameters in the prediction functions. We used Adam

algorithm to solve the optimization problem and do the same for the other training
objectives.

Synthon completion. Once the reaction centers are identified and all the product-
synthon transformations (p2s-T) are conducted to generate synthons from pro-
ducts, G2Retro completes the synthons into the reactants by sequentially attaching
substructures (Supplementary Algorithm 6 in Supplementary Note 5). All the
actions involved in this process are referred to as synthon-reactant transformations.
During the completion process, any intermediate molecules {M*} are represented
as molecular graph fG�g. At step t, we denote the atom in the intermediate
molecular graph G�ðtÞ (G�ð0Þ ¼ Gs) that new substructures will be attached to as a(t),
and denote the substructure attached to a(t) as z(t), resulting in G�ðtþ1Þ.

Atom attachment prediction. The algorithm for atom attachment prediction is
presented in Supplementary Algorithm 8 in Supplementary Note 5. G2Retro first
predicts whether further attachment should be added to a(t) or should stop at a(t),
referred to as the atom attachment continuity prediction (AACP), with the
probability calculated as follows,

f oðaðtÞÞ ¼ σðVo
1a

ðtÞ þ Vo
2hs þ Vo

3hpÞ; ð18Þ
where

hs ¼ ∑
ai2Gs

ai: ð19Þ

In Eq. (18), a(t) is the embedding of a(t) calculated over the graph G�ðtÞ (Eq. (5)); hs
is the representation for all the synthons as in Eq. (19); Vo

i ’s (i= 1,2,3) are the
learnable parameter matrices; σ is the sigmoid function. In Eq. (19), G2Retro
calculates the representations by applying MPN over the graph Gs that could be
disconnected, and the resulted representation is equivalent to applying MPN over
each Gs ’s connected component independently and then summing over their
representations. G2Retro intuitively measures “how likely” the atom has a new
substructure attached to it by looking at the atom itself (i.e., a(t)), all the synthons
(i.e., hs), and the product (i.e., hp). Note that in Eq. (18), BRICS fragment infor-
mation (i.e., a0 as in Eq. S3 in Supplementary Note 1) is not used because the
fragments for the substructures that will be attached to a(t) will not be available
until the substructures are determined.

If a(t) is predicted to attach with a new substructure, G2Retro predicts the type
of the new substructure, referred to as the atom attachment type prediction
(AATP), with the probabilities of all the substructure types in the vocabulary Z,
calculated as follows,

fzðaðtÞÞ ¼ softmax ðVz
1a

ðtÞ þ Vz
2hs þ Vz

3hpÞ; ð20Þ
where Vz

i ’s (i= 1,2,3) are the learnable parameter matrices. Higher probability for
a substructure type z indicates that z is more likely to be selected as z(t). The atoms
a∈ z(t) in the attached substructure are stored for further attachment, that is, they,
together with any newly added atoms along the iterative process, will become a(T)

(T= t+ 1, t+ 2,⋯ ) in a depth-first order in the retrospective reactant graphs.
G2Retro stops the entire synthon completion process after all the atoms in the
reaction centers and the newly added atoms are predicted to have no more
substructures to be attached.

Synthon completion model training. G2Retro trains the synthon completion
module using the teacher forcing strategy, and attaches the ground-truth fragments
instead of the prediction results to the intermediate molecules during training.
G2Retro learns the predictors fo( ⋅ ) (Eq. (18)) and fz( ⋅ ) (Eq. (20)) by minimizing
their cross entropy losses Lo and Lz as follows:

min
Φ

Lo þ Lz ; ð21Þ
where Φ is the set of parameters.

Inference. The algorithm for G2Retro inference is presented in Supplementary
Algorithm 2 in Supplementary Note 5.

Top-K reaction center selection. During the inference, G2Retro generates a ranked
list of candidate reactant graphs fGrg (note that each reactant graph can be dis-
connected with multiple connected components each representing a reactant).
With a beam size K, for each product, G2Retro first selects the top-K most possible
reaction centers from each reaction center type (BF-center, BC-center and A-
center), and then selects the top-K most possible reaction centers from all the 3K
candidates based on their corresponding scores (i.e., sb as in Eq. (8) for BF-center,
sc as in Eq. (11) for BC-center, and sa as in Equation (12) for A-center). Then
G2Retro converts the product graph Gp into the top-K synthon graphs fGs;igKi¼1
accordingly. Different reaction centers lead to diverse synthons. For these synthon
graphs, neighbor bond type change is predicted when necessary; atom charge
change is predicted for all the atoms involved in reaction centers and their
neighboring bonds CBF for BF-center’s. All the bond type changes and atom
charge changes are predicted as those with the highest probabilities as in Eq. (10)
and Eq. (15), respectively.
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Top-N reactant graph generation. Once the top-K reaction centers for each product
are selected and their synthon graphs are generated, G2Retro completes the syn-
thon graphs fGs;igKi¼1

into reactant graphs. During the completion, G2Retro scores
each possible reactant graph and uses their final scores to select the top-N reactant
graphs, and thus top-N most possible synthetic reactions, for each product. Since
during synthon completion, the attachment substructure type prediction (Eq. (20))
gives a distribution of all possible attachment substructures; by using top possible
substructures, each synthon and its intermediate graphs can be extended to mul-
tiple different intermediate graphs, leading to exponentially many reactant graphs
and diversity in the predicted reactions. The intermediate graphs are denoted as

fG�ðtÞ
ij g

K

i¼1
, where G�ðtÞ

ij is for the j-th possible intermediate graph of the i-th synthon
graph Gs;i at step t. However, to fully generate all the possible completed reactant
graphs, excessive computation is demanded. Instead, G2Retro applies a greedy
beam search strategy (Supplementary Algorithm 7 in Supplementary Note 5) to
only explore the most possible top reactant graph completion paths.

In the beam search strategy, G2Retro scores each intermediate graph G�ðtÞ
ij using

a score sðtÞij , which is calculated as the sum over all the log-likelihoods of all the

predictions along the completion path from Gs up to G�ðtÞ
ij ; s

ð0Þ
ij is initialized as the

sum of the log-likelihoods of all the predictions from Gp to Gs . At each step t (t≤30),

each intermediate graph G�ðtÞ
ij is extended to at most N+1 intermediate graph

candidates. These N+1 candidates include the one that is predicted to stop at the
atom that new substructures could be attached to (i.e., as a(t) in Eq. (18); this
intermediate graph could be further completed at other atoms) in this step, and at
most N candidates with the top-N predicted substructures attached (Eq. (20)).
Among all the candidates generated from all the intermediate graphs at step t, the
top-N scored ones will be further forwarded into the next completion step t+1. In
case some of the top-N graphs are fully completed, the remaining will go through
the next steps. This process will be ended until the number of all the completed
reactant graphs at different steps reaches or goes above N. Then, among all the
incomplete graphs at the last step, the intermediate graphs with log-likelihood
values higher than the N-th largest score in all the completed ones will continue to
complete as above. The entire process will end until no more intermediate graphs
are qualified to further completion. Among all the completed graphs, the top-N
graphs are selected as the generated reactants.

Related work. Deep-learning-based retrosynthesis prediction methods are typi-
cally categorized into three classes: template based (TB), template free (TF) and
semi-template based (Semi-TB).

Template-based methods. Template-based methods formulate the retrosynthesis
problem as a selection problem over a set of reaction templates. These templates
can be either hand-crafted by experts61 or automatically extracted from known
reactions in databases12–16. Szymkuc et al.61 provided a review on using reaction
templates coded by human experts for synthetic planning. However, these rules
may not cover a large set of reactions due to the limitation of human annotation
capacity. Recent template-based methods extract reaction templates automatically
from databases. With the reaction templates available, Coley et al.12 (Retrosim)
selected the reaction templates that the corresponding reactions in the database
have the products most similar with the target molecules, in order to synthesize the
target molecules. Dai et al.14 learned the joint probabilities of templates matched in
the product molecules and all its possible reactants using two energy functions, one
for reaction template scoring and the other for reactant scoring conditioned on
templates. Seidl et al.15 (MHNreact) learned to associate the target molecule with
the relevant reaction templates using a modern Hopfield network. Chen et al.16

(LocalRetro) scored the suitability of all the reaction templates at all the potential
reaction centers (atoms and bonds) in the target molecule. The use of templates
provides interpretability toward the reasoning behind the generated reactions.
However, these templates also limit the template-based methods to the reactions
only covered by the templates.

Template-free methods. Template-free methods directly learn to transform the
product into the reactants without using the reaction templates17–22,24,25,31. Most
template-free methods utilize the sequence representations of molecules (SMILES)
and formulate the transformation between the product and its corresponding
reactants as a sequence-to-sequence problem. Many SMILES-based methods use
Transformer33, a language model with attention mechanisms to model the rela-
tionship across tokens. Transformer follows the encoder-decoder architecture,
which encodes the product SMILES string into a latent vector and then
decodes the vector into the reactant SMILES strings. For example, Kim et al.22

(TiedTransformer) learned the transformation from a product to its reactants
using two coupled Transformers with shared parameters, one for the forward
product prediction (synthesis) and the other for the backward reactant prediction
(retrosynthesis). During the inference, they leveraged both the forward and
backward models to find the best reactions. Sun et al.24 (Dual) transformed a
product to its reactants using an energy-based framework. They also leveraged the
duality of the forward and backward models by training them together and selected
the best reactions with the highest energy value from the two models. Tetko et al.31

(AT) learned to transform a product into its reactants using a Transformer trained
on a dataset augmented with various non-canonical SMILES representations of
each molecule. In AT, each target molecule was tested multiple times using different
SMILES string representations. Zhong et al.32 (R− SMILES) aligned the product
and reactant SMILES strings to minimize their edit distance, and trained a
transformer to decode the reactant SMILES strings from the products. They also
augmented the training dataset and tested each target molecule multiple times as in
AT. In addition to SMILES-based template-free methods, Sacha et al.26 (MEGAN)
formulated retrosynthesis as a graph editing process from a product to its reactants.
These graph edits include the change in the atom properties or the bond types, or
the addition of the new atoms or the benzene rings into the synthons. These
template-free methods are independent of reaction templates, and thus they may
have better generalizability to unknown reactions compared to template-based
methods. However, template-free methods lack interpretability toward the rea-
soning behind their end-to-end predictions. SMILES-based template-free methods
also suffer from the validity issue that the generated sequences may fail to follow
the grammar of SMILES strings or violate chemical rules17.

Semi-template-based methods. Semi-template-based methods26–30 do not use
reaction templates, or they do not directly transform a product into its reactants.
Instead, semi-template-based methods follow a two-step workflow utilizing atom-
mappings: (1) they first identify the reaction centers and transform the product
into synthons (intermediate molecules) using the reaction centers; and then (2)
they complete the synthons into the reactants. Shi et al.28 (G2G) first predicted
reaction centers as bonds that can be used to split the product into the synthons,
and then utilized a variational autoencoder35 to complete synthons into reactants
by sequentially adding new bonds or new atoms. Somnath et al.29 (GraphRetro)
predicted the bonds with changed bond types or the atoms with changed hydrogen
count as the reaction centers, and then completed the synthons by selecting the
pre-extracted subgraphs that realize the difference between synthons and reactants.
Wang et al.30 (RetroPrime) formulated the reaction center identification and
synthon completion problems as two sequence-to-sequence problems (i.e., product
to synthon, and synthon to reactant), and trained two Transformers for these
problems, respectively. The prediction of reaction centers first in the above
methods allows better interpretability toward the reasoning behind the generation
process. The two-step workflow also empowers these methods to diversify their
generated reactants by allowing multiple different reaction center predictions
forwarded into their synthon completion step.

G2Retro also identifies the reaction centers and then completes the synthons
into the reactants in a sequential way as G2G does. However, G2Retro is different
from G2G. G2Retro can cover multiple types of reaction centers while G2G
takes only the newly formed bonds as the reaction center, which leads to lower
coverage of G2G on the dataset. During synthon completion, G2Retro attaches
substructures (e.g., rings and bonds) instead of single atoms as in G2G, into
synthons to simplify the completion process. In addition and more importantly,
G2Retro uses other synthons of the same reaction and also the product to
complete a synthon, and thus the synthon completion is more contextualized for
the product, while G2G does not consider other synthons.

Fragment-based molecule generation. Following the idea of fragment-based drug
design62,63, fragment-based molecule generation methods have been developed.
For example, Jin et al.64 first decomposed a molecular graph into a junction tree of
chemical substructures, and then used a variational autoencoder over the junction
trees and its chemical substructures to generate and assemble new molecules
(JT-VAE). Podda et al.65 encoded and decoded a sequence of fragments via a
variational autoencoder, and generated new molecules by connecting fragments
generated from the autoencoder. Chen et al.59 optimized a molecule by removing
and attaching substructures in a starting molecule. G2Retro generates reactants
from synthons also by attaching new substructures. However, the generation
strategy in G2Retro is fundamentally different from that in the previous fragment-
based molecule generation methods. During synthon completion, G2Retro does
not encode the synthons using their substructures as what JT-VAE and Modof do.
It does not either encode or decode the substructures that are to be attached to the
synthons. Instead, G2Retro attaches the substructures to a specific, identified atom
in the molecular graph of the synthons. Therefore, G2Retro can directly attach a
substructure to the predicted reaction centers.

Data preprocessing and experimental settings. We used the benchmark dataset
provided by Yan et al.27. This dataset, also referred to as USPTO-50K, contains 50K
chemical reactions that are randomly sampled from a large dataset collected by
Lowe11 from US patents published between 1976 and September 2016. Each
reaction in the large dataset is atom-mapped so that each atom in the product is
uniquely mapped to an atom in the reactants. The 50K reactions in USPTO-50K
are classified into 10 reaction types by Schneider et al.66. To avoid the information
leakage issue27 (e.g., reaction center is given in both the training and test data), all
the product SMILES strings in USPTO-50K are canonicalized. We used exactly the
same training/validation/test data splits of USPTO-50K as in the previous
methods12,27, which contain 40K/5K/5K reactions, respectively. Table 5 presents
the data statistics. We trained G2Retro models on the 40K training data, with
parameters tuned on the 5K validation data, and tested on the 5K test data. For
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reproducibility purposes, details about model training and parameter tuning are
provided in Supplementary Note 8.

Baselines. We compared G2Retro with the state-of-the-art baseline methods for
the one-step retrosynthesis problem, including five template-based (TB) methods,
ten template-free (TF) methods and five semi-template-based (Semi-TB) methods.
Inspired by the recent success of using fragments in other tasks67, we further
extended G2Retro into G2Retro-B by incorporating the fragments generated from
the breaking retrosynthetically interesting chemical substructures (BRICS) frag-
mentation algorithm68. Details of G2Retro-B are available in Supplementary
Note 1. The experimental setting for G2Retro-B is identical to that of G2Retro.

Template-based baseline methods The five TB baseline methods include
Retrosim, Neuralsym, GLN, MHNreact and LocalRetro. These methods first
mine reaction templates from training data and apply only these templates to
construct reactants from the target molecule.

● Retrosim12 selects the templates of reactions that produce molecules most
similar to the target molecule.

● Neuralsym13 predicts suitable templates using product fingerprints
through a multi-layer perceptron.

● GLN14 predicts reactions using two energy functions, one for template
scoring and the other for reactant scoring conditioned on templates.

● MHNreact15 learns the associations between molecules and reaction
templates using modern Hopfield networks, and selects templates based on
the associations.

● LocalRetro16 selects templates against each atom and each bond using
classifiers.

Template-free baseline methods The ten TF baseline methods all use
Transformer over SMILES string representations of products and/or reactants.

● SCROP17 maps the SMILES strings of products to the SMILES strings of
reactants using a Transformer, and then corrects syntax errors (e.g.,
mismatch of parentheses in SMILES strings) to ensure valid reactant
SMILES strings.

● LV-Trans18 pre-trains a vanilla Transformer using reactions generated
from templates, and then fine-tunes the Transformer with a multinomial
latent variable representing reaction types.

● GET19 trains standard Transformer encoders and decoders using the
combined atom representations learned from molecular graphs and from
SMILES strings.

● Chemformer20 translates product SMILES strings into reactant SMILES
strings using Transformer, which is pre-trained on an independent dataset
to recover masked SMILES strings (i.e., with some atoms masked out) or to
normalize augmented SMILES strings (i.e., multiple, equivalent non-
canonical SMILES strings for each SMILES string).

● Graph2SMILES21 encodes molecular graphs using graph neural networks
with attention mechanisms, and decodes the reactant SMILES strings from
the graph representations using a Transformer decoder.

● TiedTransformer22 uses two Transformers with shared parameters to
learn the transformation from products to reactants and vice versa,
respectively, and selects the best reactions using the likelihood values from
these two Transformers.

● GTA23 enhances a Transformer with truncated attention connections
regulated by molecular graph structures.

● Dual24 uses an energy-based model with two Transformers to learn the
transformation from product SMILES strings to reactants’ SMILES strings
and vice versa, and selects the best reactions using the energy.

● Retroformer25 predicts the reaction center region using a reaction center
detection module, and uses the embedding of predicted centers as a
condition to transform via Transformer the product into the reactants in
SMILES. Although Retroformer predicts the reaction center, it does not
split products into synthons using the reaction center, and thus does not
follow a two-step, semi-template-based framework.

● MEGAN26 transforms the product molecular graphs into the correspond-
ing reactant graphs using a sequence of graph edits (e.g., change atom
charges, add a new bond) that are learned from products and their
reactants in the training set.

Semi-template-based methods
The five Semi-TB baseline methods all use molecular graph representations.

Most of them explicitly predict reaction centers first.

● RetroPrime30 trains two Transformers independently to predict the
transformation from the product to its synthons and from the synthons to
the reactants, respectively.

● RetroXpert27 predicts reaction centers on molecular graphs via a graph
attention network, and transforms resulting synthons to reactants using a
Transformer.

● G2G28 predicts reaction centers on molecular graphs via a graph neural
network, and completes synthons into reactants through sequential
additions of new atoms or bonds using the latent variables sampled from
the latent space of a variational graph autoencoder.

● GraphRetro29 predicts reaction centers via a message passing neural network
over molecular graphs, and completes synthons by selecting the subgraphs in
a vocabulary that realize the difference between the synthons and reactants.

Data availability
The data used in this paper are available publicly69 at the link https://doi.org/10.5281/
zenodo.7839013 and the link https://github.com/ninglab/G2Retro.

Code availability
The code for G2Retro, G2Retro-B and G2Retro-ens is available publicly69 at the link
https://doi.org/10.5281/zenodo.7839013 and the link https://github.com/ninglab/
G2Retro. A web portal for G2Retro is available at the link http://go.osu.edu/G2Retro.
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