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We introduce a simplified method to model the interatomic interactions of high entropy alloys

based on a lookup table of cluster energies. These interactions are employed in replica exchange

Monte Carlo simulations with histogram analysis to obtain thermodynamic properties across a

broad temperature range. Kikuchi’s Cluster Variation Method entropy formalism is applied to di-

rectly calculate entropy from statistics on short- and long-range chemical order, and we discuss

the convergence of the entropy as clusters of differing size are included. A high temperature se-

ries expansion aids in our understanding of the convergence. Computer codes implementing these

methods, and supporting data, are freely available on the internet.

I. INTRODUCTION

High entropy alloys (HEAs) are multicomponent solid
solutions that randomly distribute chemical species
among the sites of a crystal lattice’>2. The high configu-
rational entropy arising from random chemical substitu-
tion may help to stabilize single phases at elevated tem-
peratures. Substitutional disorder increases the possible
composition range of a phase, allowing for the tuning of
mechanical or other properties. The possibility to find
alloys with favorable properties in previously unexplored
compositions has motivated intensive study of equiatomic
high entropy and other concentrated alloy systems, with
strong recent focus on refractory alloys that exhibit high
strength and other useful properties at high tempera-

tures>6.

Many excellent reviews survey the recent de-
velopments” .

Although the distribution is nominally random, pref-
erences in chemical bonding correlate the chemical iden-
tities of nearby atoms, creating short-range chemical or-
der that reduces the entropy below the ideal value of
kpln (Ns) for Ny species. In the case of strong bond-
ing preferences, or in equilibrium at low temperatures,
long-range chemical order and even phase separation may

10-12

arise . The stability of the high entropy solid solu-

tion has been discussed through qualitative models'314

and simulation'®17.

Computer simulation provides powerful techniques to
predict and quantify chemical order for a given model
of interatomic interaction. Models range from accurate
but expensive first principles methods, through reason-
ably accurate though complicated machine learning and
cluster expansion approaches, to simplified empirical for-

mulas such as embedded atom or pair potentials. Here

we introduce a simple but accurate approach based on a
lookup table of precalculated first principles energies. We
then apply replica exchange Monte Carlo simulation'® to
reach equilibrium over a broad range of temperatures.

The resulting data set allows us to calculate thermo-
dynamic quantities, including the entropy, through use
of the multiple histogram method'®2°. We compare our
results with formulas adapted from the Cluster Variation
Method?! 23 (CVM) that express the entropy in terms of
simulated cluster probabilities, and show the convergence
of the CVM entropy with respect to the included clusters.
The pattern of convergence is interpreted through the use
of a high temperature series expansion?#2® that confirms
the sequence of optimal clusters?®. Because we employ
Monte Carlo-simulated cluster probabilities in the CVM
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formulas , we obtain the (approximate) entropy with-

out the need for thermodynamic integration.

Our approach is illustrated through application to the
widely studied body centered cubic (BCC) refractory
MoNbTaW high entropy alloy®. This compound is be-
lieved to exhibit strong short-range chemical order in
equilibrium (although this is difficult to achieve exper-
imentally) due to strong binding of Mo and Ta at near-
est neighbors. Our model exhibits the expected Struk-
turbericht A2 to B2 (Pearson type cI2 to ¢P2) ordering
transition at intermediate temperatures, and phase sep-
aration at low temperatures'»2°-31. Finite size variation
of the specific heat and susceptibility peaks indicate that
the transition is of the 3D Ising type. We compare the
behavior of the 4-component HEA with the binary solid
solution MoTa, which provides a simpler picture of sim-
ilar behavior.



II. METHODS

This section describes our interaction model, the
replica exchange simulation method, histogram analy-
sis of simulation data, the cluster variation method en-
tropy formulas, and the high temperature series expan-
sion. Several of our codes and other data are available
at32.

A. Interaction Model

Each of the four chemical species (Mo, Nb, Ta and
W) individually take the BCC crystal structure. In com-
bination they occupy sites of the BCC lattice to form
a disordered solid solution at high temperatures, but
they order and eventually phase separate at low tem-
peratures, all the while maintaining the underlying BCC
sites. We shall be interested in clusters containing near-
est and next-nearest neighbor pairs, including triangles
and the BCC tetrahedron (see Fig. 1). This four-point
cluster may be considered as the primitive cell of the
quaternary Heusler crystal type33 (Strukturbericht L2,
Pearson cF16), and hence repeated periodically to fill
space.

FIG. 1: BCC unit cell (left) and BCC tetrahedron
(right). Nearest neighbor bonds are in yellow and

next-nearest neighbor bonds are in blue. Tetrahedron
sites « and 3 are “even” (cube vertex) while v and &
are “odd” (body center) sites.

We enumerated the complete set of 4* = 256 arrange-
ments of the four species on the four tetrahedron sites, of
which 55 are symmetry-inequivalent, and calculated the
corresponding Heusler structure energies using density
functional theory (DFT). Specifically, we employ VASP34
with projector augmented wave potentials®® in the PBE
generalized gradient approximation®¢. The cubic symme-
tries of the structures prevented atomic relaxation, and

we held the lattice parameters fixed at 3.2305 A , which
is representative of both the quaternary and the binary;
the precise value has no qualitative impact. Although the
individual elements would relax to different volumes, the

31,37 shows

low lattice distortion of the high entropy alloy
that volume and displacement relaxation effects would
be limited, including in its separated low temperature

phases.

The resulting energies provide a lookup table (available
in Ref.32) that can be used to quickly evaluate the energy
of any arrangement of the chemical species on BCC lat-
tice sites. To evaluate the total energy, we decompose the
structure into its constituent tetrahedra {t}. Let «(¢),
B(t), v(t) and §(t) designate the chemical species at ver-
tices a, b, ¢ and d, respectively, of tetrahedron ¢. This
tetrahedron contributes energy E(«, 3,7, d)/24 per atom
to the total energy, where E(a, §3,7,0) is the energy per
primitive cell of the 4-atom Heusler crystal with species
«, B, v and §. An additional factor of 6 arises because
the BCC structure has 6 tetrahedra per atom. The total
energy

is equivalent in form to the energy model of Refs.?2:23, Tt

can be re-expressed as

E/N =1

= |

Z E(O‘aﬂar)@é)zaﬁ'yé (2)
«,B,7,0

with IV the total number sites, and z,g+s the frequency
of the four-point cluster with species afyd normalized
to sum to 1. Our energies are calculated relative to the
atomic fraction weighted energies of elemental Mo, Nb,
Ta and W, so they represent energy of formation. We
may think of this energy as analogous to a cluster expan-
sion®® containing just a single 4-point cluster.

To test the accuracy of this model we created par-
ity plots of model energy vs. full DFT energy/atom as
shown in Fig. 2(a) for equiatomic binary MoTa and (b)
for equiatomic quaternary MoNbTaW. The model ener-
gies lie close to parity with a mean absolute error of 21
meV /atom for MoTa and 14 meV/atom for MoNbTaW.
Crucially, the lowest energy structures lie very close to
parity, so we accurately capture the low temperature
properties. We observe a systematic skewing of model
energy above the parity line and give a heuristic inter-
pretation of its origin in Appendix A.
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FIG. 2: Parity plot for tetrahedron model energy/atom
vs. full (unrelaxed) DFT energy/atom for (a) MoTa
and (b) MoNbTaW. All structures are equiatomic;

black are random 16-atom, red are random 128-atom,
and green are MC-generated 128-atom structures. See
Appendix A for discussion of the skew.

B. Replica exchange simulation

Replica exchange simulations'®, also known as paral-
lel tempering, aim to accelerate the sampling of config-
uration space by sharing multiple configurations (repli-
cas) among multiple temperatures, in a manner that pre-
serves the properly weighted ensemble at each tempera-
ture. When configurations are swapped between temper-
atures, the diversity of the equilibrium ensemble at each
temperature is enriched by the addition of a new inde-
pendent configuration. From the perspective of a single
configuration, getting swapped to a higher temperature
may facilitate its evolution by raising the likelihood of
escape from a local energy minimum.

The probability for a configuration C; of energy E; to

occur in equilibrium at temperature T (inverse temper-
ature 8 = 1/kgT) is P; = exp (—BE;)/Z(T;), with Z(T)
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FIG. 3: Tllustration of quaternary MoNbTaW replica
exchange simulation in an L x L x L supercell with
L =4. (a) T(t) graph illustrating replica exchange.
Each color represents the time evolution of a single
initial configuration whose temperature is repeatedly

swapped with its neighbors; (b) energy histograms at

selected temperatures.

the partition function for temperature 7. The joint prob-
ability for a pair of configurations C; of energy F; and
C; of energy E; at respective temperatures 1; and T} is

P(Ci, G| Ty) = e PEARE) (T 2(15) - (3)

The joint probability for C; to occur at temperature T},
and C; to occur at temperature 7; is given by the same
formula with energies F; and E; interchanged. The ratio
of probabilities is

P(Ci, G|T;, Tj) [ P(Cy, Gi|T;, Ty) = €2P2F - (4)

with A8 = 8; — B8; and AE = E; — E;. Hence, the equi-
librium ensemble probabilities at temperatures 7; and
T} are preserved if the configurations are swapped with



the probability given by the ratio in Eq. (4). Note that,
conveniently, the partition functions (which are usually
unknown in computer simulations) cancel in the ratio.

In addition to replica swaps we must evolve the config-
urations at each temperature. We apply a Monte Carlo
process to attempt discrete swaps of chemical species.
Equilibrium at temperature T is maintained if the at-
tempts are accepted with probability exp (—AE/kpT)
with AFE the energy change created by the swap. Re-
call that the swapped configurations are appropriately
weighted members of the ensembles at their new tem-
peratures - no minimum period of annealing following a
swap is required, so the duration of conventional Monte
Carlo can be chosen at liberty.

Figure 3a illustrates a portion of the time evolution
of thermostat temperatures. Each configuration is rep-
resented by a different color. Temperatures are spaced
so that potential energy distributions of adjacent tem-
peratures overlap sufficiently (see Fig. 3b) to achieve
temperature swap probabilities of 20% or greater. Data
collection began following lengthy pre-annealing during
which energy and order parameters distributions relaxed
to steady states. By calculating averages and fluctua-
tions of energy at each temperature, we obtain the energy
and specific heat at the simulated temperatures. We also
gather statistics on the frequencies of occurrence, zagvs,
for tetrahedra with chemical species a3y that we need
for our CVM entropy calculations.

C. Histogram analysis

The probability that any configuration has energy
E in equilibrium at temperature T is P(E) =
Q(E)exp (—BE)/Z(T), where Q(F) is the configura-
tional density of states. If we knew Q(E), we could eval-
uate the partition function

Z(T) = / dE Q(E) e~ E/ksT (5)

and then obtain the free energy as FF = —kgTInZ.
Given F(T), we may obtain the internal energy U =
—0(BF) /0B, entropy S = (U — F)/T, and the specific
heat as ¢ = OU /0T = —TH*U/0T>.

During a simulation at temperature T the frequency
with which energy E occurs is proportional to the
density of states Q(FE) times the Boltzmann factor

exp (—BE)/Z(T). Hence, we may express the density

of states as'®

Or(E) = Hr(E) 77, (6)

where the subscript 7" on the histogram Hp(E) reminds
us that the density of states Qr(E) is an approximation
obtained from a simulation at temperature T, and that
it differs from the true 2 by an unknown constant factor
that is equivalent to setting the zero of entropy. Substi-
tuting 7 into Eq. 5 and taking the logarithm, we can
evaluate the free energy F(T”) as a continuously vary-
ing function of temperature 7”. The unknown constant
factor in Q results in an unknown additive constant in
B'F(T"). This does not impact the internal energy U or
specific heat ¢, but it shifts the entropy S by a uniform
constant. The derivatives to obtain U, S, and ¢, may be
taken analytically (holding  constant), and their values
also become continuously varying functions of T".

The free energy F(T') is most accurate for 7" in the
vicinity of the simulated temperature 7" because the his-
togram is best resolved over the range of highly probable
energies. Luckily, the method generalizes to include mul-
tiple histograms accumulated at different temperatures
T, with20:39

ZT e(F(T)-E)/ksT "

QE) =

The free energies F/(T') must be obtained self-consistently
with Q(FE). Starting with an arbitrary F(T), we obtain
Q from Eq. (7) and then an improved estimate of F(T)
through Eq. (5). We iterate this procedure until F' has
sufficiently converged. In this manner the relative free
energy can be extended across the entire range of simu-
lated temperatures.

D. CVM

We exploit the formalism of Kikuchi’s cluster varia-
tion method to define a hierarchy of approximate entropy
models based on the sequence of single-, two-, three- and
ultimately four-point cluster frequencies. Starting with
the four-point frequencies z,gys already introduced in
Eq. (2), we define three-point frequencies uays, Ugys,
Uagy, and uqgs by summing z,gy5 over one of its four
indices. Similarly we introduce pairs for nearest neigh-
bors, Yoy, Yas, Ysy, and ygs; next nearest neighbors vag
and v,s; and points z,, 23, T, and ;5.

The entropy associated with a given cluster I" is 3(T") =
— > I'InT, where the sum is over the cluster variables.



For example,

~—

foaln:Ea. (8

We also introduce shorthand notation ¥(X) = (3(z,) +
S(wp) + S(w) + S(@))/4, BY) = (S(tian) + E(yias) +
S )+ S (50))/4, B(V) = (S(0as)+5(019))/2, D(U) =
(S ttars) + E(1t05) + E(ttay) + S(tass)) /4, and £(Z) =
Y (2apys)- 17,22:33,4041 © e build up

higher approximations to the entropy through inclusion

As discussed in

of entropy-reducing information contained in successively
larger clusters, while correcting for the overcounting of
subclusters. Specifically, we obtain (in units of kp)

= X(X) (9)
Sy = —T7TX2(X)+4%(Y)

Snan = —13 B(X) +4 B(Y) +3 (V)
Sty =23 2(X) —20 (V) —9 2(Y) + 12 %(U)

SPoint

STetra =

Coefficients of the highest order cluster equal the num-
bers of such clusters per site, while the lower order co-
efficients reflect the systematic exclusion of subclusters.

J

—N(X)+43(Y)+32(V) - 12 2(U) + 6 3(2).

For example, Spyin is the Bragg-Williams ideal mixing
entropy*?, while Syy reduces Speint by the mutual in-
formation contained in the nearest-neighbor cluster fre-
quencies®3.

Usually in the CVM, the cluster frequencies are derived
by minimizing the free energy E —T'S. Since we already
have cluster frequencies in-hand from our simulation, we

simply substitute their values into Eq.(9).

E. High T expansion

In order to model the convergence of the CVM en-
tropy with respect to maximum cluster size in Eq. (9),
we carry out a high temperature series expansion?*2® of
the cluster frequencies, and apply the CVM formalism to
these series. For our purpose it suffices to consider the
Ising model, H = J 3 _,. 0;0;. Here J is the nearest
neighbor coupling constant, and ¢; = £1 is the spin at
We could

consider this as a model for binary MoTa, in which the

site ¢ = a — d (see Fig. 1b for site labels).

spin value denotes chemical species, and a negative value
of J would favor bonding of unlike species. To evalu-
ate Eq. (9) we need cluster frequencies up to four-point

Zo,op000, €Xpanded up to 4% order in t = tanh (J/kgT),

1
Zaa0v0c00 = 5 cosh*™ (J/kBT)QNf4 (1 + t(040¢c + 0p0c + 0404 + 0p0q) + t2(4(crac7C + 0p04) + 20,000:04)

+t312(0400 + 0v0c + 0a0q + 0p0q) + tH(12N + 56(040p + 000q) + 1204050.04) + - -

Fewer-point cluster frequencies are obtained by sum-
ming over spins, including the partition function itself

E Z Zaaobacad

0a0b0c0d

= cosh™™ (J/kpT)2N =4 (1 + 12Nt +.-.).

(11)
(12)

Setting the free energy F' = —kgT In Z and expanding in
powers of 1/T we obtain entropy per site

J\? J\*
—1n2-2 _ -
S/I{JB n (kBT> 5 (k’BT) +

The cluster frequencies and the entropy are exact up to
43,44

(13)

4t order in J/kgT and consistent with prior results

Inserting the cluster frequencies obtained from the ex-
pansion Eq. (10) into the CVM formulae we obtain the

9. (10)

(

following expansions for the entropy (in units of kg)

Sy =1In2 — 2(kB‘]T)247(kBJT>4+~- (14)
Sxnn = In2 — 2<k;’T)2—79(kBJT>4+--- (15)
STri:1n2—2<kBJT>2— 9(kB‘]T>4+-~- (16)
S'Tetra = In2 — 2<kBJT)2 35(kBJT>4+-~- (17)

Notice that we obtain the correct quadratic term al-
ready using simply the nearest-neighbor frequencies ¥~ .
However the quartic term is too large in magnitude, so
that the NN approximation underestimates the entropy
as temperature drops. This overcorrection is due to the
presence of closed loops of NN bonds causing the same



45,46 For ex-

information to be counted multiple times
ample, the correlation propagated from a to d passing
through ¢ and b augments the direct correlation of a
with d (see Fig. 1b). Including the NNN term makes
the problem worse, because we are subtracting the mu-
tual information between a and b yet again. Inclusion of
the Tri term overcompensates and consequently overes-
timates the entropy, while, finally, inclusion of the Tetra
term restores the proper quartic coefficient. In summary,
NN pairs yields entropies that are exact up to second or-
der in the inverse temperature, while Tetra clusters are

required to achieve improved accuracy.

III. RESULTS

A. MoTa

Figure 4a plots the temperature-dependent a-site oc-
cupation z, over the range from 800K up to the approx-
imate melting temperature of 3000K. We adopt a con-
vention where we shift the simulated structure so that
the maximum Mo occupation occurs on the “even” sub-
lattice (site classes a and b). Evidently a transition to
long-range order occurs in the vicinity of 7. =~ 2020K,
with z, converging towards the global mean concentra-
tion Z, = 1/2 above T, but diverging away below. Even
above T, the NN pair frequencies y,, deviate from the
independent expectation x4, as shown in Fig. 4b, with
an enhanced frequency of MoTa pairs. The discrepancy
grows rapidly below T..

Notice that a slight bias of order 1/y/N artificially
raises xy, relative to xT,, even above T., due to fluc-
tuations for finite system sizes N. The bias grows in the
vicinity of T, due to diverging fluctuations at the phase
transition. The same bias causes ynora to differ slightly
from yTamo above T.. The identity yarono = YTaTa 1S
forced by the equality of z, = Z,.

CVM cluster-based estimates of entropy and our his-
togram values are shown in Fig. 4c. Because of the un-
known partition function discussed in Sec. ITC, the his-
togram method yields only relative entropy, so we adjust
it to match the CVM tetrahedron value at 3000K. The
fact that it vanishes at low temperature indicates the his-
togram values should be accurate across the full tempera-
ture range. Even above T,, where sublattice occupations
remain equal, the deviations of cluster frequencies from
independence cause the entropy to fall below its ideal
mixing value of kg In2. The entropy loss accelerates be-
low T, and the net entropy tends towards zero for all of
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FIG. 4: Binary MoTa of size L = 8 (1024 atoms). (a)
Occupation x,, of even sites a and b (dots, short, and
long dashes are sizes 2, 4, and 6, respectively); (b) ac
site pair frequencies y,~ normalized by global mean
concentrations Z, and Z.; (c¢) Simulated histogram and
CVM-predicted entropies (inset: residuals with respect
to histogram). Dashed line shows S/kp = In 2.

our CVM estimates.

The inset shows entropy residuals relative to the his-
togram method. Note that the point values under-correct
the ideal mixing, while the pair value over-corrects and
the two-pair strongly over-corrects. As seen in our discus-
sion of the high temperature series (Sect. ITE), this can
be attributed to the cumulative effect of correlations ex-
tending around closed loops. The deviations are maximal
around T, supporting the role of longer-range correla-
tions. The triangle approximation under-corrects, while
the tetrahedron values lie close to the multiple histogram
at all temperatures. Our high temperature series expan-
sions reproduces each of those details of convergence of
approximations at temperatures above T., notably the
qualitative improvement upon including the Tetra term.
As the CVM is a generalized mean field theory“®, the
errors are maximal around T, then fall off again as tem-
perature drops.

Owing to the finite sizes of our simulated systems, all
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FIG. 5: Binary MoTa. (a) Specific heat ¢(T'), and (b)
Susceptibility x(T) vs. temperature T for system sizes
L =2 (black), 4 (red), 6 (green) and 8 (blue). Insets are
scaling functions as defined in text.

thermodynamic functions vary smoothly. To confirm the
presence of a genuine thermodynamic phase transition,
we must examine their system-size dependence. We plot
the specific heat and generalized susceptibility in Fig. 5.
The generalized susceptibility is defined as

N 2 2

x= o () — (%) (18)
where we define M = xy, — 2T, On the even sites. Di-
vergences in ¢ and x reveal thermodynamic singularities.
In order to determine the character of the phase transi-
tion, we apply standard methods of finite size scaling®”
and plot the scaled specific heat ¢/ LV and the scaled
susceptibility x/ L7V as functions of the scaled reduced
temperature t = L'/*(T — T,)/T. in the insets. We set
T, as the peak susceptibility temperature for L = 8, and
we take the established 3D Ising values of the critical
exponents*®, o = 0.110, v = 1.2372, and v = 0.6301.
The convergence towards common scaled functions indi-
cates the transition is in the Ising class, as expected for
a binary alloy.

The low temperature phase takes the CsCl structure
(Strukturbericht type B2, Pearson cP2). The actual
ground state according to full first principles calcula-
tions!! is Pearson type 0C12, which is locally B2 with pe-
riodic antiphase faults; the B2 phase lies above 0C12 by
just 1 meV/atom. A total of 10 distinct ordered phases
are predicted at varying compositions, all based on an
underlying BCC lattice. Experimentally, only a solid so-

lution is reported, with no ordered phases.

B. MoNbTaW

The MoNbTaW quaternary behaves similarly to the
MoTa binary. As seen in Fig. 6, the dominant order-
ing occurs between Mo and Ta, on the even and odd
sites, respectively. The Nb occupation and correlations
generally follow Ta, and W generally follows Mo, as pre-
1 Likewise, the accuracy of the CVM en-
The

specific heat and susceptibility also show an Ising-like

viously seen
tropy estimates closely resemble the binary case.

transition (Fig. 7), though at a lower critical tempera-
ture of T, ~ 1110K compared with the binary case. The
lower critical temperature can be attributed to dilution of
the strongly interacting MoTa pairs by the more weakly
interacting Nb and W. Dilution is known to reduce 7,
for Ising models*®, and a related frustration effect has
been reported in high entropy alloys of varying numbers
of components?3.

The strength of the Mo-Ta interaction may be due
to the relatively strong variation in the electronegativ-
ity and atomic volume as compared with Nb and W -
electronegativity (x.): Ta (1.5) < Nb (1.6) < Mo (2.16)
< W (2.36) in Pauling units; atomic volume: Ta (18.00)
> Nb (17.97) > W (15.85) = Mo (15.55) in A3/atom.
Electronegativity differences create net charge transfer
from group V elements (Nb and Ta) to group VI elements
(Mo and W). See appendix A for further discussion of the
impact of electronegativity. Interaction strengths of ele-
ments of group V with elements of group VI range from
2- through 10-times stronger than among elements of the
same group'?, with Mo-Ta being the strongest by nearly
a factor of 2.

At temperatures below 300K the quaternary undergoes
a second transition®’, to a two-phase mixture of B2-type
MoTa and B32-type NbW (see Fig. 8). Because the sep-
arated structure we obtain is no longer single phase, so
the CVM formulas do not apply. The specific heat and
histogram entropy remain above zero, suggesting incom-
plete ordering at the lowest temperatures. The interface
between the B2 and B32 phases is not sharp in Fig. 7b,
reflecting the high residual entropy, and possibly indi-
cating a lack of complete equilibration. Full first princi-
ples calculations predict a more complex low temperature
structure consisting elemental Nb coexisting with a qua-
ternary phase Mo,NbTay W, Pearson type hR7'2. Our
simple model does not capture this behavior accurately.



O.S_Iaill UL LN L LA LN
8-‘;_‘ — oin||= ecw] 1
RV el g —
< 0.2F -
0.1F E
= PRI N I AN T BT A TN U N O M A
|><>‘3;"by" — VioMo| [ Nbta| 3
- — MoNb NbW -
SoE — MoTa | |— TaTa| J
N Mo | |— T | 3
S~ - NI — -]
gk_\//’ﬁ — _3
- C
0
1.6__IIIIIIIIIIIIIIIIIIIIIIIIIIIII__
1.4F .
— 1.2 .
2 1F ]
-~ u N
— 0.8 -
N 06'_ riangle i 1
04._ — ietrakidron I I I Ry
0.2F Histogram 1000 1500 —
0-| vl ey v s Ty v s Ty g bea s by a7

0 500 1000 1500 2000 2500 3000

T [K]

FIG. 6: Quaternary MoNbTaW of size L = 8 (1024
atoms). (a) Occupation z, of a site; (b) ac site pair
frequencies y.~ normalized by global mean
concentrations Z, and Z.; (c¢) Simulated histogram and
CVM-predicted entropies (inset: residuals with respect
to histogram). Dashed line shows S/kg = In4.

[
A

[

onllenll el wnl

0N BN

=)
~

L1
il
I nn
o) )

6
4
2
0

-10 0 10
t

1500 2000

500 1000

2500 3000

OO

FIG. 7: Quaternary MoNbTaW. (a) specific heat ¢(T),
and (b) Susceptibility x(T') vs. temperature T for
system sizes L = 2 (black), 4 (red), 6 (green) and 8

(blue). Insets are scaling functions as defined in text.

FIG. 8: L = 8 quaternary MoNbTaW at T' = 390K
(top) showing the B2 phase, and at T' = 100K (bottom)
showing phase separation. The color scheme is chosen
so that purple (Mo) and magenta (W) alternate with
cyan (Nb) and blue (Ta) in the B2 phase. Lighter colors
(NbW in B32 structure) segregate from dark colors
(MoTa in B2 structure) at low 7.

IV. CONCLUSIONS

This work introduces an approach to modeling inter-
atomic interactions based on a lookup table of precalcu-
lated cluster motifs. The interaction is quick to create
from high throughput first principles total energy calcu-
lations. It can be readily generalized to a wide variety of
high entropy alloys, and it scales as the factorial of the
number of species employed, but remains quite tractable
up to five or six chemical species because the initial cal-
culations are so fast and no subsequent fitting is required.

We apply the model to replica exchange Monte Carlo
simulations that efficiently sample the equilibrium en-

sembles across a broad range of temperatures. The



data accumulated during the simulation is analyzed by
the multiple histogram method that reveals thermody-
namic properties as continuous functions of tempera-
ture. We also take simulated cluster frequencies as in-
put to directly evaluate the entropy within the approx-
imations of Kikuchi’s Cluster Variation Method. If a
Monte Carlo simulation has been performed, the CVM
formalism yields entropy with almost no additional com-
putational cost. In addition, thermodynamic integration
is not required, so a simulation at a single temperature
will directly reveal the entropy at that temperature. Our

computational tools are available in the public domain?2.

Our use of the CVM entropy formulas differs from the
usual application, where the energy and entropy models
are combined to create a free energy functional whose
minima yield cluster frequencies and other thermody-
namic information. Although we could have done the
same using our energy lookup table, the approach we
take generalizes readily to full ab-initio Monte Carlo and
hybrid Monte Carlo/molecular dynamics, in which an en-
ergy model is not available. The usual CVM approach
has been applied to MoNbTaW?23, using an energy model
with more precise values, and our results are largely con-
sistent with theirs. Directly incorporating simulated clus-
ter frequencies into the CVM entropy formulas has been
previously studied for simple model systems?”28.

We carried out a high temperature series expansion for
the BCC Ising model in order to analytically model the
convergence of the CVM entropy formulas. We find that
the tetrahedron approximation is exact through fourth
order in inverse temperature, while pair and triangle ap-
proximations are exact only through second order con-
firms the recommended site:NN:Tetrahedron sequence of
maximal clusters®®. Lengthy simulations are required to
obtain sufficient accuracy in the tetrahedron frequencies,
so we suggest that stopping at the pair level (also known

10,40,46)

as the Bethe Approximation should provide suf-

ficient accuracy for most purposes.

The results of our simulation confirm that the A2 to
B2 transition lies in the Ising universality class, both for
the binary MoTa and also for the quaternary MoNbTaW.
Our results for the temperature-dependent entropy show
that despite the presence of short-range order above T,
as revealed by the pair frequencies .-, the entropy loss
is less than 20%, around 0.1kg for MoTa and 0.2kp
for MoNbTaW. Below T, with the onset of symmetry-
breaking in the single-site occupation, the entropy drops
rapidly.
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Appendix A: Polarization correction

The skewing of tetrahedron model energies above par-
ity with DFT requires discussion. Because our lookup ta-
ble is based on primitive cells of the cubic Heusler struc-
ture, every atom is in an environment of perfect cubic
symmetry, while in a random structure most atoms are
in environments of low symmetry. Anisotropic charge

—0.1 | T | T | T
@ -
£ -0.15| , -
@) s
5 L \j)' -
2 02} -
m - -

025+ MOTa —
| . | . | .
-0.25 -0.2 -0.15 -0.1
EDFT [eV/atom]
L L L
— -0.1F (b) -
g i ]
< -0.12F iy —
s | 2 -
2 0.14F G -
m B > i
016 MoNbTaW |
I R R R
-0.16 -0.14 -0.12 -0.1
EDFT [eV/atom]

FIG. A.1: Parity plot for tetrahedron plus polarization
model energy/atom wvs. full DFT energy/atom for (a)
MoTa and (b) MoNbTaW. All structures are
equiatomic; black are random 16-atom, red are random
128-atom, and green are MC-generated 128-atom
structures.



transfer can create local electric fields that will polarize
the atoms. Hence, we propose a heuristic correction to
the energy of the form

P
2xp

AFE =

applied to each atom, where x, is an adjustable param-

3

eter that mimics dielectric susceptibility and the “polar-

10
ization”

P=> rx.r) (A2)
r

is a measure of the anisotropy of Pauling’s electronegativ-
ity x.. Here, r is taken relative to the atom in question,
and the sum extends over nearest neighbors (|r| = 1/v/2).
This one-parameter correction results in improved agree-
ment with a mean absolute error of 1 meV/atom relative
to the full DFT energies for MoTa (setting xp = 125)
and 3 meV/atom for MoNbTaW (setting xp = 250).
Our success in removing the skew (see Fig. A.1) suggests
our explanation may possess some validity.
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