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We introduce a simplified method to model the interatomic interactions of high entropy alloys

based on a lookup table of cluster energies. These interactions are employed in replica exchange

Monte Carlo simulations with histogram analysis to obtain thermodynamic properties across a

broad temperature range. Kikuchi’s Cluster Variation Method entropy formalism is applied to di-

rectly calculate entropy from statistics on short- and long-range chemical order, and we discuss

the convergence of the entropy as clusters of differing size are included. A high temperature se-

ries expansion aids in our understanding of the convergence. Computer codes implementing these

methods, and supporting data, are freely available on the internet.

I. INTRODUCTION

High entropy alloys (HEAs) are multicomponent solid

solutions that randomly distribute chemical species

among the sites of a crystal lattice1,2. The high configu-

rational entropy arising from random chemical substitu-

tion may help to stabilize single phases at elevated tem-

peratures. Substitutional disorder increases the possible

composition range of a phase, allowing for the tuning of

mechanical or other properties. The possibility to find

alloys with favorable properties in previously unexplored

compositions has motivated intensive study of equiatomic

high entropy and other concentrated alloy systems, with

strong recent focus on refractory alloys that exhibit high

strength and other useful properties at high tempera-

tures3–6. Many excellent reviews survey the recent de-

velopments7–9.

Although the distribution is nominally random, pref-

erences in chemical bonding correlate the chemical iden-

tities of nearby atoms, creating short-range chemical or-

der that reduces the entropy below the ideal value of

kB ln (Ns) for Ns species. In the case of strong bond-

ing preferences, or in equilibrium at low temperatures,

long-range chemical order and even phase separation may

arise10–12. The stability of the high entropy solid solu-

tion has been discussed through qualitative models13,14

and simulation15–17.

Computer simulation provides powerful techniques to

predict and quantify chemical order for a given model

of interatomic interaction. Models range from accurate

but expensive first principles methods, through reason-

ably accurate though complicated machine learning and

cluster expansion approaches, to simplified empirical for-

mulas such as embedded atom or pair potentials. Here

we introduce a simple but accurate approach based on a

lookup table of precalculated first principles energies. We

then apply replica exchange Monte Carlo simulation18 to

reach equilibrium over a broad range of temperatures.

The resulting data set allows us to calculate thermo-

dynamic quantities, including the entropy, through use

of the multiple histogram method19,20. We compare our

results with formulas adapted from the Cluster Variation

Method21–23 (CVM) that express the entropy in terms of

simulated cluster probabilities, and show the convergence

of the CVM entropy with respect to the included clusters.

The pattern of convergence is interpreted through the use

of a high temperature series expansion24,25 that confirms

the sequence of optimal clusters26. Because we employ

Monte Carlo-simulated cluster probabilities in the CVM

formulas27,28, we obtain the (approximate) entropy with-

out the need for thermodynamic integration.

Our approach is illustrated through application to the

widely studied body centered cubic (BCC) refractory

MoNbTaW high entropy alloy3. This compound is be-

lieved to exhibit strong short-range chemical order in

equilibrium (although this is difficult to achieve exper-

imentally) due to strong binding of Mo and Ta at near-

est neighbors. Our model exhibits the expected Struk-

turbericht A2 to B2 (Pearson type cI2 to cP2) ordering

transition at intermediate temperatures, and phase sep-

aration at low temperatures11,29–31. Finite size variation

of the specific heat and susceptibility peaks indicate that

the transition is of the 3D Ising type. We compare the

behavior of the 4-component HEA with the binary solid

solution MoTa, which provides a simpler picture of sim-

ilar behavior.
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II. METHODS

This section describes our interaction model, the

replica exchange simulation method, histogram analy-

sis of simulation data, the cluster variation method en-

tropy formulas, and the high temperature series expan-

sion. Several of our codes and other data are available

at32.

A. Interaction Model

Each of the four chemical species (Mo, Nb, Ta and

W) individually take the BCC crystal structure. In com-

bination they occupy sites of the BCC lattice to form

a disordered solid solution at high temperatures, but

they order and eventually phase separate at low tem-

peratures, all the while maintaining the underlying BCC

sites. We shall be interested in clusters containing near-

est and next-nearest neighbor pairs, including triangles

and the BCC tetrahedron (see Fig. 1). This four-point

cluster may be considered as the primitive cell of the

quaternary Heusler crystal type33 (Strukturbericht L21,

Pearson cF16), and hence repeated periodically to fill

space.

FIG. 1: BCC unit cell (left) and BCC tetrahedron

(right). Nearest neighbor bonds are in yellow and

next-nearest neighbor bonds are in blue. Tetrahedron

sites α and β are “even” (cube vertex) while γ and δ

are “odd” (body center) sites.

We enumerated the complete set of 44 = 256 arrange-

ments of the four species on the four tetrahedron sites, of

which 55 are symmetry-inequivalent, and calculated the

corresponding Heusler structure energies using density

functional theory (DFT). Specifically, we employ VASP
34

with projector augmented wave potentials35 in the PBE

generalized gradient approximation36. The cubic symme-

tries of the structures prevented atomic relaxation, and

we held the lattice parameters fixed at 3.2305 Å , which

is representative of both the quaternary and the binary;

the precise value has no qualitative impact. Although the

individual elements would relax to different volumes, the

low lattice distortion of the high entropy alloy31,37 shows

that volume and displacement relaxation effects would

be limited, including in its separated low temperature

phases.

The resulting energies provide a lookup table (available

in Ref.32) that can be used to quickly evaluate the energy

of any arrangement of the chemical species on BCC lat-

tice sites. To evaluate the total energy, we decompose the

structure into its constituent tetrahedra {t}. Let α(t),

β(t), γ(t) and δ(t) designate the chemical species at ver-

tices a, b, c and d, respectively, of tetrahedron t. This

tetrahedron contributes energy E(α, β, γ, δ)/24 per atom

to the total energy, where E(α, β, γ, δ) is the energy per

primitive cell of the 4-atom Heusler crystal with species

α, β, γ and δ. An additional factor of 6 arises because

the BCC structure has 6 tetrahedra per atom. The total

energy

E =
1

24

∑

t

E(α(t), β(t), γ(t), δ(t)), (1)

is equivalent in form to the energy model of Refs.22,23. It

can be re-expressed as

E/N =
1

4

∑

α,β,γ,δ

E(α, β, γ, δ)zαβγδ (2)

with N the total number sites, and zαβγδ the frequency

of the four-point cluster with species αβγδ normalized

to sum to 1. Our energies are calculated relative to the

atomic fraction weighted energies of elemental Mo, Nb,

Ta and W, so they represent energy of formation. We

may think of this energy as analogous to a cluster expan-

sion38 containing just a single 4-point cluster.

To test the accuracy of this model we created par-

ity plots of model energy vs. full DFT energy/atom as

shown in Fig. 2(a) for equiatomic binary MoTa and (b)

for equiatomic quaternary MoNbTaW. The model ener-

gies lie close to parity with a mean absolute error of 21

meV/atom for MoTa and 14 meV/atom for MoNbTaW.

Crucially, the lowest energy structures lie very close to

parity, so we accurately capture the low temperature

properties. We observe a systematic skewing of model

energy above the parity line and give a heuristic inter-

pretation of its origin in Appendix A.



3

-0.25 -0.2 -0.15 -0.1

E
DFT

  [eV/atom]

-0.25

-0.2

-0.15

-0.1
E

  
[e

V
/a

to
m

]

-0.16 -0.14 -0.12 -0.1

E
DFT

  [eV/atom]

-0.16

-0.14

-0.12

-0.1

E
  
[e

V
/a

to
m

]
(a)

(b)

MoTa

MoNbTaW

FIG. 2: Parity plot for tetrahedron model energy/atom

vs. full (unrelaxed) DFT energy/atom for (a) MoTa

and (b) MoNbTaW. All structures are equiatomic;

black are random 16-atom, red are random 128-atom,

and green are MC-generated 128-atom structures. See

Appendix A for discussion of the skew.

B. Replica exchange simulation

Replica exchange simulations18, also known as paral-

lel tempering, aim to accelerate the sampling of config-

uration space by sharing multiple configurations (repli-

cas) among multiple temperatures, in a manner that pre-

serves the properly weighted ensemble at each tempera-

ture. When configurations are swapped between temper-

atures, the diversity of the equilibrium ensemble at each

temperature is enriched by the addition of a new inde-

pendent configuration. From the perspective of a single

configuration, getting swapped to a higher temperature

may facilitate its evolution by raising the likelihood of

escape from a local energy minimum.

The probability for a configuration Ci of energy Ei to

occur in equilibrium at temperature T (inverse temper-

ature β = 1/kBT ) is Pi = exp (−βEi)/Z(Ti), with Z(T )
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FIG. 3: Illustration of quaternary MoNbTaW replica

exchange simulation in an L× L× L supercell with

L = 4. (a) T (t) graph illustrating replica exchange.

Each color represents the time evolution of a single

initial configuration whose temperature is repeatedly

swapped with its neighbors; (b) energy histograms at

selected temperatures.

the partition function for temperature T . The joint prob-

ability for a pair of configurations Ci of energy Ei and

Cj of energy Ej at respective temperatures Ti and Tj is

P (Ci, Cj |Ti, Tj) = e−(βiEi+βjEj)/Z(Ti)Z(Tj) (3)

The joint probability for Ci to occur at temperature Tj ,

and Cj to occur at temperature Ti is given by the same

formula with energies Ei and Ej interchanged. The ratio

of probabilities is

P (Ci, Cj |Ti, Tj)/P (Cj , Ci|Ti, Tj) = e∆β∆E (4)

with ∆β = βi − βj and ∆E = Ei −Ej . Hence, the equi-

librium ensemble probabilities at temperatures Ti and

Tj are preserved if the configurations are swapped with
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the probability given by the ratio in Eq. (4). Note that,

conveniently, the partition functions (which are usually

unknown in computer simulations) cancel in the ratio.

In addition to replica swaps we must evolve the config-

urations at each temperature. We apply a Monte Carlo

process to attempt discrete swaps of chemical species.

Equilibrium at temperature T is maintained if the at-

tempts are accepted with probability exp (−∆E/kBT )

with ∆E the energy change created by the swap. Re-

call that the swapped configurations are appropriately

weighted members of the ensembles at their new tem-

peratures - no minimum period of annealing following a

swap is required, so the duration of conventional Monte

Carlo can be chosen at liberty.

Figure 3a illustrates a portion of the time evolution

of thermostat temperatures. Each configuration is rep-

resented by a different color. Temperatures are spaced

so that potential energy distributions of adjacent tem-

peratures overlap sufficiently (see Fig. 3b) to achieve

temperature swap probabilities of 20% or greater. Data

collection began following lengthy pre-annealing during

which energy and order parameters distributions relaxed

to steady states. By calculating averages and fluctua-

tions of energy at each temperature, we obtain the energy

and specific heat at the simulated temperatures. We also

gather statistics on the frequencies of occurrence, zαβγδ,

for tetrahedra with chemical species αβγδ that we need

for our CVM entropy calculations.

C. Histogram analysis

The probability that any configuration has energy

E in equilibrium at temperature T is P (E) =

Ω(E) exp (−βE)/Z(T ), where Ω(E) is the configura-

tional density of states. If we knew Ω(E), we could eval-

uate the partition function

Z(T ) =

∫

dE Ω(E) e−E/kBT , (5)

and then obtain the free energy as F = −kBT lnZ.

Given F (T ), we may obtain the internal energy U =

−∂(βF )/∂β, entropy S = (U − F )/T , and the specific

heat as c = ∂U/∂T = −T∂2U/∂T 2.

During a simulation at temperature T the frequency

with which energy E occurs is proportional to the

density of states Ω(E) times the Boltzmann factor

exp (−βE)/Z(T ). Hence, we may express the density

of states as19

ΩT (E) ≡ HT (E) eβE , (6)

where the subscript T on the histogram HT (E) reminds

us that the density of states ΩT (E) is an approximation

obtained from a simulation at temperature T , and that

it differs from the true Ω by an unknown constant factor

that is equivalent to setting the zero of entropy. Substi-

tuting ΩT into Eq. 5 and taking the logarithm, we can

evaluate the free energy F (T ′) as a continuously vary-

ing function of temperature T ′. The unknown constant

factor in ΩT results in an unknown additive constant in

β′F (T ′). This does not impact the internal energy U or

specific heat c, but it shifts the entropy S by a uniform

constant. The derivatives to obtain U , S, and c, may be

taken analytically (holding Ω constant), and their values

also become continuously varying functions of T ′.

The free energy F (T ′) is most accurate for T ′ in the

vicinity of the simulated temperature T because the his-

togram is best resolved over the range of highly probable

energies. Luckily, the method generalizes to include mul-

tiple histograms accumulated at different temperatures

T , with20,39

Ω(E) =

∑

T HT (E)
∑

T e(F (T )−E)/kBT
. (7)

The free energies F (T ) must be obtained self-consistently

with Ω(E). Starting with an arbitrary F (T ), we obtain

Ω from Eq. (7) and then an improved estimate of F (T )

through Eq. (5). We iterate this procedure until F has

sufficiently converged. In this manner the relative free

energy can be extended across the entire range of simu-

lated temperatures.

D. CVM

We exploit the formalism of Kikuchi’s cluster varia-

tion method to define a hierarchy of approximate entropy

models based on the sequence of single-, two-, three- and

ultimately four-point cluster frequencies. Starting with

the four-point frequencies zαβγδ already introduced in

Eq. (2), we define three-point frequencies uαγδ, uβγδ,

uαβγ , and uαβδ by summing zαβγδ over one of its four

indices. Similarly we introduce pairs for nearest neigh-

bors, yαγ , yαδ, yβγ , and yβδ; next nearest neighbors vαβ
and vγδ; and points xα, xβ , xγ , and xδ.

The entropy associated with a given cluster Γ is Σ(Γ) =

−
∑

Γ lnΓ, where the sum is over the cluster variables.
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For example,

Σ(xα) = −
∑

α

xα lnxα. (8)

We also introduce shorthand notation Σ(X) = (Σ(xα) +

Σ(xβ) + Σ(xγ) + Σ(xδ))/4, Σ(Y ) = (Σ(yαγ) + Σ(yαδ) +

Σ(yβγ)+Σ(yβδ))/4, Σ(V ) = (Σ(vαβ)+Σ(vγδ))/2, Σ(U) =

(Σ(uαγδ)+Σ(uβγδ)+Σ(uαβγ)+Σ(uαβδ))/4, and Σ(Z) =

Σ(zαβγδ). As discussed in17,22,33,40,41, we build up

higher approximations to the entropy through inclusion

of entropy-reducing information contained in successively

larger clusters, while correcting for the overcounting of

subclusters. Specifically, we obtain (in units of kB)

SPoint = Σ(X) (9)

SNN = −7 Σ(X) + 4 Σ(Y )

SNNN = −13 Σ(X) + 4 Σ(Y ) + 3 Σ(V )

STri = 23 Σ(X)− 20 Σ(V )− 9 Σ(Y ) + 12 Σ(U)

STetra = −Σ(X) + 4 Σ(Y ) + 3 Σ(V )− 12 Σ(U) + 6 Σ(Z).

Coefficients of the highest order cluster equal the num-

bers of such clusters per site, while the lower order co-

efficients reflect the systematic exclusion of subclusters.

For example, SPoint is the Bragg-Williams ideal mixing

entropy42, while SNN reduces SPoint by the mutual in-

formation contained in the nearest-neighbor cluster fre-

quencies33.

Usually in the CVM, the cluster frequencies are derived

by minimizing the free energy E − TS. Since we already

have cluster frequencies in-hand from our simulation, we

simply substitute their values into Eq.(9).

E. High T expansion

In order to model the convergence of the CVM en-

tropy with respect to maximum cluster size in Eq. (9),

we carry out a high temperature series expansion24,25 of

the cluster frequencies, and apply the CVM formalism to

these series. For our purpose it suffices to consider the

Ising model, H = J
∑

<ij> σiσj . Here J is the nearest

neighbor coupling constant, and σi = ±1 is the spin at

site i = a − d (see Fig. 1b for site labels). We could

consider this as a model for binary MoTa, in which the

spin value denotes chemical species, and a negative value

of J would favor bonding of unlike species. To evalu-

ate Eq. (9) we need cluster frequencies up to four-point

zσaσbσcσd
expanded up to 4th order in t ≡ tanh (J/kBT ),

zσaσbσcσd
=

1

Z
cosh4N (J/kBT )2

N−4
(

1 + t(σaσc + σbσc + σaσd + σbσd) + t2(4(σaσc + σbσd) + 2σaσbσcσd)

+t312(σaσc + σbσc + σaσd + σbσd) + t4(12N + 56(σaσb + σcσd) + 12σaσbσcσd) + · · ·
)

. (10)

Fewer-point cluster frequencies are obtained by sum-

ming over spins, including the partition function itself

Z =
∑

σaσbσcσd

Z zσaσbσcσd
(11)

= cosh4N (J/kBT )2
N−4

(

1 + 12Nt4 + · · ·
)

. (12)

Setting the free energy F = −kBT lnZ and expanding in

powers of 1/T we obtain entropy per site

S/kB = ln 2− 2

(

J

kBT

)2

− 35

(

J

kBT

)4

+ · · · . (13)

The cluster frequencies and the entropy are exact up to

4th order in J/kBT and consistent with prior results43,44.

Inserting the cluster frequencies obtained from the ex-

pansion Eq. (10) into the CVM formulae we obtain the

following expansions for the entropy (in units of kB)

SNN = ln 2− 2

(

J

kBT

)2

− 47

(

J

kBT

)4

+ · · · (14)

SNNN = ln 2− 2

(

J

kBT

)2

− 79

(

J

kBT

)4

+ · · · (15)

STri = ln 2− 2

(

J

kBT

)2

− 29

(

J

kBT

)4

+ · · · (16)

STetra = ln 2− 2

(

J

kBT

)2

− 35

(

J

kBT

)4

+ · · · . (17)

Notice that we obtain the correct quadratic term al-

ready using simply the nearest-neighbor frequencies yαγ .

However the quartic term is too large in magnitude, so

that the NN approximation underestimates the entropy

as temperature drops. This overcorrection is due to the

presence of closed loops of NN bonds causing the same
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information to be counted multiple times45,46. For ex-

ample, the correlation propagated from a to d passing

through c and b augments the direct correlation of a

with d (see Fig. 1b). Including the NNN term makes

the problem worse, because we are subtracting the mu-

tual information between a and b yet again. Inclusion of

the Tri term overcompensates and consequently overes-

timates the entropy, while, finally, inclusion of the Tetra

term restores the proper quartic coefficient. In summary,

NN pairs yields entropies that are exact up to second or-

der in the inverse temperature, while Tetra clusters are

required to achieve improved accuracy.

III. RESULTS

A. MoTa

Figure 4a plots the temperature-dependent a-site oc-

cupation xα over the range from 800K up to the approx-

imate melting temperature of 3000K. We adopt a con-

vention where we shift the simulated structure so that

the maximum Mo occupation occurs on the “even” sub-

lattice (site classes a and b). Evidently a transition to

long-range order occurs in the vicinity of Tc ≈ 2020K,

with xα converging towards the global mean concentra-

tion x̄α = 1/2 above Tc but diverging away below. Even

above Tc the NN pair frequencies yαγ deviate from the

independent expectation xαxγ , as shown in Fig. 4b, with

an enhanced frequency of MoTa pairs. The discrepancy

grows rapidly below Tc.

Notice that a slight bias of order 1/
√
N artificially

raises xMo relative to xTa, even above Tc, due to fluc-

tuations for finite system sizes N . The bias grows in the

vicinity of Tc due to diverging fluctuations at the phase

transition. The same bias causes yMoTa to differ slightly

from yTaMo above Tc. The identity yMoMo = yTaTa is

forced by the equality of x̄α = x̄γ .

CVM cluster-based estimates of entropy and our his-

togram values are shown in Fig. 4c. Because of the un-

known partition function discussed in Sec. II C, the his-

togram method yields only relative entropy, so we adjust

it to match the CVM tetrahedron value at 3000K. The

fact that it vanishes at low temperature indicates the his-

togram values should be accurate across the full tempera-

ture range. Even above Tc, where sublattice occupations

remain equal, the deviations of cluster frequencies from

independence cause the entropy to fall below its ideal

mixing value of kB ln 2. The entropy loss accelerates be-

low Tc, and the net entropy tends towards zero for all of

0
0.2
0.4
0.6
0.8

1

x
α

α = Mo
α = Ta

0

1

2

3

y
α

γ
 /

 x
α

x
γ

αγ = MoMo

αγ = MoTa

αγ = TaMo

αγ = TaTa

0 500 1000 1500 2000 2500 3000
T  [K]

0

0.2

0.4

0.6

0.8

S
  
[k

B
]

Point
NN
NN+NNN
Triangle

Tetrahedron
Histogram

1500 2000

0

0.1

a)

b)

c)

FIG. 4: Binary MoTa of size L = 8 (1024 atoms). (a)

Occupation xα of even sites a and b (dots, short, and

long dashes are sizes 2, 4, and 6, respectively); (b) ac

site pair frequencies yαγ normalized by global mean

concentrations x̄α and x̄γ ; (c) Simulated histogram and

CVM-predicted entropies (inset: residuals with respect

to histogram). Dashed line shows S/kB = ln 2.

our CVM estimates.

The inset shows entropy residuals relative to the his-

togram method. Note that the point values under-correct

the ideal mixing, while the pair value over-corrects and

the two-pair strongly over-corrects. As seen in our discus-

sion of the high temperature series (Sect. II E), this can

be attributed to the cumulative effect of correlations ex-

tending around closed loops. The deviations are maximal

around Tc, supporting the role of longer-range correla-

tions. The triangle approximation under-corrects, while

the tetrahedron values lie close to the multiple histogram

at all temperatures. Our high temperature series expan-

sions reproduces each of those details of convergence of

approximations at temperatures above Tc, notably the

qualitative improvement upon including the Tetra term.

As the CVM is a generalized mean field theory46, the

errors are maximal around Tc then fall off again as tem-

perature drops.

Owing to the finite sizes of our simulated systems, all
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FIG. 5: Binary MoTa. (a) Specific heat c(T ), and (b)

Susceptibility χ(T ) vs. temperature T for system sizes

L = 2 (black), 4 (red), 6 (green) and 8 (blue). Insets are

scaling functions as defined in text.

thermodynamic functions vary smoothly. To confirm the

presence of a genuine thermodynamic phase transition,

we must examine their system-size dependence. We plot

the specific heat and generalized susceptibility in Fig. 5.

The generalized susceptibility is defined as

χ =
N

kBT

(

〈M2〉 − 〈M〉2
)

(18)

where we define M = xMo − xTa on the even sites. Di-

vergences in c and χ reveal thermodynamic singularities.

In order to determine the character of the phase transi-

tion, we apply standard methods of finite size scaling47

and plot the scaled specific heat c/Lα/ν and the scaled

susceptibility χ/Lγ/ν as functions of the scaled reduced

temperature t = L1/ν(T − Tc)/Tc in the insets. We set

Tc as the peak susceptibility temperature for L = 8, and

we take the established 3D Ising values of the critical

exponents48, α = 0.110, γ = 1.2372, and ν = 0.6301.

The convergence towards common scaled functions indi-

cates the transition is in the Ising class, as expected for

a binary alloy.

The low temperature phase takes the CsCl structure

(Strukturbericht type B2, Pearson cP2). The actual

ground state according to full first principles calcula-

tions11 is Pearson type oC12, which is locally B2 with pe-

riodic antiphase faults; the B2 phase lies above oC12 by

just 1 meV/atom. A total of 10 distinct ordered phases

are predicted at varying compositions, all based on an

underlying BCC lattice. Experimentally, only a solid so-

lution is reported, with no ordered phases.

B. MoNbTaW

The MoNbTaW quaternary behaves similarly to the

MoTa binary. As seen in Fig. 6, the dominant order-

ing occurs between Mo and Ta, on the even and odd

sites, respectively. The Nb occupation and correlations

generally follow Ta, and W generally follows Mo, as pre-

viously seen11. Likewise, the accuracy of the CVM en-

tropy estimates closely resemble the binary case. The

specific heat and susceptibility also show an Ising-like

transition (Fig. 7), though at a lower critical tempera-

ture of Tc ≈ 1110K compared with the binary case. The

lower critical temperature can be attributed to dilution of

the strongly interacting MoTa pairs by the more weakly

interacting Nb and W. Dilution is known to reduce Tc

for Ising models49, and a related frustration effect has

been reported in high entropy alloys of varying numbers

of components23.

The strength of the Mo-Ta interaction may be due

to the relatively strong variation in the electronegativ-

ity and atomic volume as compared with Nb and W -

electronegativity (χe): Ta (1.5) . Nb (1.6) ≪ Mo (2.16)

. W (2.36) in Pauling units; atomic volume: Ta (18.00)

& Nb (17.97) ≫ W (15.85) & Mo (15.55) in Å3/atom.

Electronegativity differences create net charge transfer

from group V elements (Nb and Ta) to group VI elements

(Mo and W). See appendix A for further discussion of the

impact of electronegativity. Interaction strengths of ele-

ments of group V with elements of group VI range from

2- through 10-times stronger than among elements of the

same group12, with Mo-Ta being the strongest by nearly

a factor of 2.

At temperatures below 300K the quaternary undergoes

a second transition30, to a two-phase mixture of B2-type

MoTa and B32-type NbW (see Fig. 8). Because the sep-

arated structure we obtain is no longer single phase, so

the CVM formulas do not apply. The specific heat and

histogram entropy remain above zero, suggesting incom-

plete ordering at the lowest temperatures. The interface

between the B2 and B32 phases is not sharp in Fig. 7b,

reflecting the high residual entropy, and possibly indi-

cating a lack of complete equilibration. Full first princi-

ples calculations predict a more complex low temperature

structure consisting elemental Nb coexisting with a qua-

ternary phase Mo2NbTa2W2 Pearson type hR712. Our

simple model does not capture this behavior accurately.
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FIG. 6: Quaternary MoNbTaW of size L = 8 (1024

atoms). (a) Occupation xα of a site; (b) ac site pair

frequencies yαγ normalized by global mean

concentrations x̄α and x̄γ ; (c) Simulated histogram and

CVM-predicted entropies (inset: residuals with respect

to histogram). Dashed line shows S/kB = ln 4.
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FIG. 7: Quaternary MoNbTaW. (a) specific heat c(T ),

and (b) Susceptibility χ(T ) vs. temperature T for

system sizes L = 2 (black), 4 (red), 6 (green) and 8

(blue). Insets are scaling functions as defined in text.

FIG. 8: L = 8 quaternary MoNbTaW at T = 390K

(top) showing the B2 phase, and at T = 100K (bottom)

showing phase separation. The color scheme is chosen

so that purple (Mo) and magenta (W) alternate with

cyan (Nb) and blue (Ta) in the B2 phase. Lighter colors

(NbW in B32 structure) segregate from dark colors

(MoTa in B2 structure) at low T .

IV. CONCLUSIONS

This work introduces an approach to modeling inter-

atomic interactions based on a lookup table of precalcu-

lated cluster motifs. The interaction is quick to create

from high throughput first principles total energy calcu-

lations. It can be readily generalized to a wide variety of

high entropy alloys, and it scales as the factorial of the

number of species employed, but remains quite tractable

up to five or six chemical species because the initial cal-

culations are so fast and no subsequent fitting is required.

We apply the model to replica exchange Monte Carlo

simulations that efficiently sample the equilibrium en-

sembles across a broad range of temperatures. The
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data accumulated during the simulation is analyzed by

the multiple histogram method that reveals thermody-

namic properties as continuous functions of tempera-

ture. We also take simulated cluster frequencies as in-

put to directly evaluate the entropy within the approx-

imations of Kikuchi’s Cluster Variation Method. If a

Monte Carlo simulation has been performed, the CVM

formalism yields entropy with almost no additional com-

putational cost. In addition, thermodynamic integration

is not required, so a simulation at a single temperature

will directly reveal the entropy at that temperature. Our

computational tools are available in the public domain32.

Our use of the CVM entropy formulas differs from the

usual application, where the energy and entropy models

are combined to create a free energy functional whose

minima yield cluster frequencies and other thermody-

namic information. Although we could have done the

same using our energy lookup table, the approach we

take generalizes readily to full ab-initio Monte Carlo and

hybrid Monte Carlo/molecular dynamics, in which an en-

ergy model is not available. The usual CVM approach

has been applied to MoNbTaW23, using an energy model

with more precise values, and our results are largely con-

sistent with theirs. Directly incorporating simulated clus-

ter frequencies into the CVM entropy formulas has been

previously studied for simple model systems27,28.

We carried out a high temperature series expansion for

the BCC Ising model in order to analytically model the

convergence of the CVM entropy formulas. We find that

the tetrahedron approximation is exact through fourth

order in inverse temperature, while pair and triangle ap-

proximations are exact only through second order con-

firms the recommended site:NN:Tetrahedron sequence of

maximal clusters26. Lengthy simulations are required to

obtain sufficient accuracy in the tetrahedron frequencies,

so we suggest that stopping at the pair level (also known

as the Bethe Approximation10,40,46) should provide suf-

ficient accuracy for most purposes.

The results of our simulation confirm that the A2 to

B2 transition lies in the Ising universality class, both for

the binary MoTa and also for the quaternary MoNbTaW.

Our results for the temperature-dependent entropy show

that despite the presence of short-range order above Tc,

as revealed by the pair frequencies yαγ , the entropy loss

is less than 20%, around 0.1kB for MoTa and 0.2kB
for MoNbTaW. Below Tc, with the onset of symmetry-

breaking in the single-site occupation, the entropy drops

rapidly.
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Appendix A: Polarization correction

The skewing of tetrahedron model energies above par-

ity with DFT requires discussion. Because our lookup ta-

ble is based on primitive cells of the cubic Heusler struc-

ture, every atom is in an environment of perfect cubic

symmetry, while in a random structure most atoms are

in environments of low symmetry. Anisotropic charge
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FIG. A.1: Parity plot for tetrahedron plus polarization

model energy/atom vs. full DFT energy/atom for (a)

MoTa and (b) MoNbTaW. All structures are

equiatomic; black are random 16-atom, red are random

128-atom, and green are MC-generated 128-atom

structures.
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transfer can create local electric fields that will polarize

the atoms. Hence, we propose a heuristic correction to

the energy of the form

∆E = −|P|2
2χP

, (A1)

applied to each atom, where χp is an adjustable param-

eter that mimics dielectric susceptibility and the “polar-

ization”

P =
∑

r

rχe(r) (A2)

is a measure of the anisotropy of Pauling’s electronegativ-

ity χe. Here, r is taken relative to the atom in question,

and the sum extends over nearest neighbors (|r| = 1/
√
2).

This one-parameter correction results in improved agree-

ment with a mean absolute error of 1 meV/atom relative

to the full DFT energies for MoTa (setting χP = 125)

and 3 meV/atom for MoNbTaW (setting χP = 250).

Our success in removing the skew (see Fig. A.1) suggests

our explanation may possess some validity.
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