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Abstract: We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2.
Our main results include boundedness of associated maximal functions and singular integrals operators, an
almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a
nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on
complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not
available in the noncommutative nilpotent setting. In particular, we present what we call a nilpotent circle
method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.
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1 Introduction

The goal of this article is twofold. We first review some recent results on averages of functions along poly-
nomial sequences in discrete nilpotent Lie groups of step 2, and the main ideas in the proofs. Then we use one
of the main ingredients, a nilpotent Weyl inequality, to prove a new theorem on a nilpotent version of the
Waring problem.

The natural general setting for our analysis consists of a discrete nilpotent group G of step d, which by
definition is assumed to be a discrete, co-compact subgroup of a connected and simply connected nilpotent Lie
group G of step d, and a polynomial sequence A : Z —~ G, which is a map satisfying A(0) = 1 and D%A = 1 for
some ko > 1. Here, DX is the k-fold differencing operator defined recursively by

DPA(n) = A(n), D¥1A(n) = DKA(n)'D¥A(n+1), n€ Z.

We consider a class of operators defined by taking averages along polynomial sequences in discrete nilpotent
groups. As in the continuous case, one can consider discrete maximal operators, which have applications to
pointwise ergodic theorems, and discrete Calderén-Zygmund operators.
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1.1 The main theorem

Our main theorem in this article concerns L? boundedness of maximal averages along polynomial sequences
in discrete nilpotent groups of step 2, L? pointwise ergodic theorems, and L? boundedness of singular integrals.
More precisely:

Theorem 1.1. (Main result) Assume that G is a discrete nilpotent group G of step 2, and A:Z - G is a
polynomial sequence. Then:
() (¢P boundedness of maximal averages) Assume f: G — C is a function, and let

1
M@ =1

Y IfA'(n) - g)l, gEG.

|n|<N
Then, for any p € (1, ],
IMfllerey =p IIfllerce)-

(i)) (LP pointwise ergodic theorems) Assume G acts by measure-preserving transformations on a o-finite
measure space X, f € LP(X), p € (1, »), and let

1
2N +1

Y f(a'(n) -x), x€X. (1)

[n|sN

Anf(x) =

Then the sequence Ay f converges pointwise almost everywhere and in the LP norm as N — .
(itd) (€2 boundedness of singular averages) Assume K : R — R is a Calderén-Zygmund kernel, i.e., a C* function
satisfying

sup[(1 + [tDIK(@)] + (1 + [tDAK (D)1 <1, sup <1 (1.2)

teR Nz0

N
J'K(t)dt
-N

Assume that f: G — C is a (compactly supported) function, and let
Hf(®) = ) Kf(4'(n)-g), g€GC.

nez

Then
15 Nl = Ifllexe)-

The theorem follows by combining the main results in [35] for parts (i) and (ii) and [37] for part (iii). We
discuss now some connections between this theorem and other related results in the literature.

1.1.1 Continuous Radon transforms

The discrete maximal averages and the discrete singular averages defined in Theorem 1.1 can be thought of as
discrete analog of the continuous Radon transforms, which are averages along suitable curves or surfaces. The
theory of continuous Radon transforms has been extensively studied, motivated mainly by problems at the
interface of Fourier analysis and geometry of surfaces in Euclidean spaces or nilpotent groups, and is very well
understood. This includes L7 estimates for the full range of exponents ¢ > 1 and multidimensional averages,
see, e.g., [17,18,51].

1.1.2 The Furstenberg-Bergelson-Leibman conjecture

Discrete averages, both of the maximal and singular type, have been considered motivated mainly by open
problems in ergodic theory. A fundamental problem in the ergodic theory is to establish convergence in norm
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and pointwise almost everywhere for the polynomial ergodic averages as in (1.1) as N — o for functions
fE€ LP(X), 1< p =< . The problem goes back to at least the early 1930s with von Neumann’s mean ergodic
theorem [56] and Birkhoff’s pointwise ergodic theorem [10] and led to profound extensions such as Bourgain’s
polynomial pointwise ergodic theorem [11-13] and Furstenberg’s ergodic proof [25] of Szemerédi’s theorem
[53] in particular. Furstenberg’s proof was also the starting point of ergodic Ramsey theory, which resulted in
many natural generalizations of Szemerédi’s theorem, including a polynomial Szemerédi theorem of Ber-
gelson and Leibman [7].

This motivates the following far reaching conjecture known as the Furstenberg-Bergelson-Leibman con-
jecture [8, Section 5.5, p. 468].

Conjecture 1.2. Assume that d, k 21 are integers, (X, B(X), 1) is a probability space, and assume that
T,..., Ty : X » X is a given family of invertible measure-preserving transformations on the space (X, 8(X), u)
that generates a nilpotent group of step k. Assume that m 2 1 is an integer and Pi3,..., P;j,..., Py : Z — Z are
polynomial maps with integer coefficients such that P;;j(0) = 0. Then for any f,..., f,, € L*(X), the nonconven-
tional multilinear polynomial averages

Pisyo B
AV (s o f)(X) =

m
Y NA@Y 10 13)

1
2N + 1, v ninz j=1

converge for y-almost every x € X as N — o,

Conjecture 1.2 is a major open problem in the ergodic theory that was promoted in person by Furstenberg, see
[1, p. 6662], before being published in [8]. Our main result, Theorem 1.1 (ii), proves this conjecture in the linear case
m =1, provided that the family of transformations Ty, ..., Iy : X — X generates a nilpotent group of step k = 2.

1.1.3 Earlier pointwise ergodic theorems

The basic linear case m = d = k = 1 with P;1(n) = n follows from Birkhoff’s original ergodic theorem [10]. On
the other hand, the commutative case m = d = k =1 with an arbitrary polynomial P = P;; with integer
coefficients was a famous open problem of Bellow [3] and Furstenberg [26], solved by Bourgain in his break-
through papers [11-13].

Some particular examples of averages (1.3) with m = 1 and polynomial mappings with degree at most two
in the step two nilpotent setting were studied in [36,45].

The multilinear theorym > 2, in contrast to the linear theory, is widely open even in the commutative case
k =1. Only a few results in the bilinear m = 2 and commutative d = k = 1 setting are known. Bourgain [14]
proved pointwise convergence when P;;(n) = an and Py12(n) = bn, a, b € Z. More recently, Krause et al. [40]
established pointwise convergence for the polynomial Furstenberg and Weiss averages [27,28] corresponding
to Py1(n) = n and Py 3(n) = P(n), deg P = 2.

1.1.4 Norm convergence

Except for these few cases, there are no other results concerning pointwise convergence for the averages (1.3).
The situation is completely different, however, for the question of norm convergence, which is much better
understood.

A breakthrough article of Walsh [57] (see also [1]) gives a complete picture of L?(X) norm convergence of
the averages (1.3) for any Ty, ..., Iy € G, where G is a nilpotent group of transformations of a probability space.
Prior to this, there was an extensive body of research toward establishing Z?(X) norm convergence, including
groundbreaking works of Host and Kra [31], Ziegler [59], Bergelson [4], and Leibman [42]. See also
[2,19,24,32,54] and the survey articles [5,6,23] for more details and references, including a comprehensive
historical background.
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1.1.5 Additional remarks

Bergelson and Leibman [8] showed that convergence may fail if the transformations T, ..., T; generate a
solvable group, so the nilpotent setting is probably the appropriate setting for Conjecture 1.2. The restriction
p > 11is necessary in the case of nonlinear polynomials as shown in [15,41].

If (X, B(X), ) is a probability space and the family of measure preserving transformations (T, ..., Ty,) is
totally ergodic, then Theorem 1.1(ii) implies that

tim A5 (00 = [f0)ducy), 1
X

y-almost everywhere on X. We recall that a family of measure preserving transformations (7, ..., Ty) is called
ergodic on X if T]-‘l(B) =Bforall j €{], ...,d;} implies u(B) = 0 or u(B) = 1 and is called totally ergodic if the
family (77, ..., T7) is ergodic for alln € Z..

1.2 The universal step-two group G,

The proof of Theorem 1.1 will follow from our second main result, Theorem 1.3, for averages on universal
nilpotent groups of step two. We start with some definitions. For integers d > 1, we define
Vi={l,b)eEZ xZ :0sh<h<d}
and the “universal” step-two nilpotent Lie groups G4 = G}(d)
Go = {u)wpey, Xy, € R}, 1.5)
with the group multiplication law

Xi0 * Yio if e, .., and bL=0,

o yhy = , (16)
DY =1y s Vi, * X €l .,d} and LE{L .k 1

Alternatively, we can also define the group Gg as the set of elements
£=0@" g9, g9 =(@goheqn..q ERG g9 = (g apey ERY, an
where d’ =d(d - 1)/2 and Y; = {(l, b) € Y3 : L = 1}. Letting
Ry :R4x R?—> R? denote the bilinear form [Ro(x, y)], = Xy (1.8)
we notice that the product rule in the group G} is given by
[g-h® = g + RO, [g-Rh]® = g® + O + Ry(g®, RV) 1.9)
if g = (g™, g¥) and h = (™, ). For any g = (g, g¥) € G}, its inverse is given by
g‘l = (—g(l)’ —g(z) + Ro(g(l)’ g(l)))_

The second variable of g = (g@, g®) € G} is called the central variable. Based on the product structure (1.9) of
the group G, it is not difficult to see that g- h = h - g for any g = (g, g®) € G} and h = (0, h®) € G.
Let Gy = Go(d) denote the discrete subgroup

Gy = G} Nz, (1.10)
Let Ay : R —» G} denote the canonical polynomial map (or the moment curve on G#)

xh if lz =0,

111
0 ifL=+0, 1D

[AoCO)]y, =
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and notice that Ay(Z) € Gy. For x = (x,1,)1,1)ey, € Gj and A € (0, »), we define
Ao x:= (Al“llellz)(ll,lz)EYd = @3. (1.12)

Notice that the dilations A ° are group homomorphisms on the group G, that are compatible with the map A,,
ie, A A()(X) = Ao(AX)

Let y : R — [0, 1] be a smooth function supported on the interval[-2, 2]. Given any real number N > 1 and
a function f: Gy —» C, we can define a smoothed average along the moment curve Ay by the formula

M0 = ) N Y(NTn)f(Ae(m)™ - X),  x € Gy. 1.13)
nez

The main advantage of working on the group G, with the polynomial map A, is the presence of the
compatible dilations A o defined in (1.12), which lead to a natural family of associated balls. This can be
efficiently exploited by noting that My is a convolution operator on Go.

The convolution of functions on the group Gy is defined by the formula

(f*0 = 2 fOT 080 = X f@)gkx-2zM. (114)

ye€Gy 2€Gy
Then it is not difficult to see that M{(f)(x) = f*Gf(x), where

GH0O) = 2 NY(Nlgayey(x), X € Go. (1.15)

nez

We are now ready to state our second main result.

Theorem 1.3. (Boundedness on Gy) Let Gy = Go(d), d = 1, be the discrete nilpotent group defined in (1.10) and Ag
the polynomial sequence defined in (1.11). Then
() (Maximal estimates) If 1 < p < o and f € €P(Gy), then

suplMi(f) <p fllercco): (1.16)
Nzl (Go)
where My is defined as in (1.13).
(i) (Long variational estimates) If 1 < p < » and p > max{p, % ,and 7 € (1, 2], then

IVPME(f) : N € DOl evooy Spopre Ifllerco)s (1.17)

where D, = {t"" : n € N}. See (1.18) for the definition of the p-variation seminorms V*.
(ii}) (Singular integrals) If K : R - R is a Calderdén-Zygmund kernel as in (1.2), f: Gy — C is a (compactly
supported) function, and

Hf(g) = Y Kf4'(n)-g), g€ Gy,

nez

then

1Ho fllexco) S Wfllezco)-

1.3 Remarks and overview of the proof

We discuss now some of the main ideas in the proofs of Theorems 1.1 and 1.3.
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1.3.1 The Calderén transference principle

One can show that Theorem 1.1 is a consequence of Theorem 1.3 upon performing lifting arguments and
adapting the Calderdn transference principle [16]. Indeed, if G* is a connected and simply connected nilpotent
Lie group of step 2, with Lie algebra G, then one can choose the so-called exponential coordinates of the second
kind associated to a Malcev basis of the Lie algebra G (see [20], Sec. 1.2) in such a way that

G* = {(x,y) E Rt x R : (x,y) (x,y) = (x + X',y + Y’ + R(x, X))},

where by, b, € Z, depend on the Lie algebra G and R : RP1 x RP1 » R is a bilinear form.

Moreover, if G < G* is a discrete co-compact subgroup, then one can choose the Malcev basis such that the
discrete subgroup G is identified with the integer lattice Z? = Z% x Z?P2 (see [20], Thm. 5.1.6 and Prop. 5.3.2).
Recall that A : Z — G is a polynomial sequence satisfying A(0) = 1. The main point is that one can choose d
sufficiently large and a group morphism T : Gy - G* such that

A(n) = T(Ap(n)) forany n€ Z.

Then one can use this group morphism to transfer bounds on operators on the universal group Gy to bounds
on operators on the group G. Theorem 1.1 is thus a consequence of Theorem 1.3, and our main goal therefore is
to prove Theorem 1.3.

1.3.2 The variation spaces V?

For any family (a; : t € 1) of elements of C indexed by a totally ordered set ], and any exponent1 < p < o, the
p-variation seminorm is defined by

_ 1/p
J-1
VP(a,: t €1) = sup sup | la(ti) - at)l| (118)
]ez+t0<"'<t] j=0

tj€l

where the supremum is taken over all finite increasing sequences in . It is easy to see that p — V* is
nonincreasing, and for every ¢, € I, one has
sup|ag| < |ag| + VP(a;: t €1) < suplay| + VP(a;: t €1). (1.19)
tel tel
In particular, the maximal estimate (1.16) follows from the variational estimate (1.17). The main point of
proving stronger variational estimates such as (1.17), with general parameters 7 € (1, 2], is that it gives an
elegant path to deriving pointwise ergodic theorems (which would not follow directly just from maximal
estimates such as (1.16)). At the same time, the analysis of variational inequalities has many similarities with
the analysis of maximal inequalities and is not substantially more difficult. This is due in large part to the
Rademacher-Menshov inequality (see [47, Lemma 2.5]): for any 2 < p < « and j,, m € N so that j; < 2™ and
any sequence of complex numbers (ax : k € N), we have

1/2
m
VP(aj:jy<j<2m <2 ) Y lagong = | - (1.20)

i=0| je[jp2L2mi-1]nZ
1.3.3 /P theory

The problem of passing from ¢2 estimates to #? estimates in the context of discrete polynomial averages has
been investigated extensively in recent years (see, for example, [46], and the references therein).
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The full #7(G,) bounds in Theorem 1.3 rely on first proving £%(G,) bounds. In fact, we first establish (1.17)
for p = 2 and p > 2. Then we use the positivity of the operators M{ (i.e., M{(f) = 0 if f= 0) to prove the
maximal operator bounds (1.16) for all p € (1, «]. Finally, we use vector-valued interpolation between the
bounds (1.17) with p = 2 and p > 2 and (1.16) with p € (1, «] to complete the proof of Theorem 1.3.

1.3.4 Some technical remarks

Theorem 1.3 (i) and (ii) extends the results of [46,48] to the noncommutative, nilpotent setting. Its conclusions
remain true for rough averages, i.e., when y = 1j-1 1) in (1.13), but it is more convenient to work with smooth
averages.

The restriction p >1 in Theorem 1.3 (i) and (i) is sharp due to [15,41]. However, the range of

p

p> max[p, p-1 is only sharp when p = 2 due to Lépingle’s inequality [43]. One could hope to improve this

p

to the full range p > 2, but we do not address this here since the limited range p > maxjp, ﬁ] is already

sufficient for us to establish Theorem 1.1.

The restriction p = 2 in the singular integral bounds in part (ii) is probably not necessary. In the commu-
tative case, one can prove boundedness in the full range p € (1, «) [38], but the proof depends on exploiting
certain Fourier multipliers, and we do not know at this time if a similar definitive result holds in the
nilpotent case.

1.4 The main difficulty and a nilpotent circle method

Bourgain’s seminal articles [11-13] generated a large amount of research and progress in the field. Many other
discrete operators have been analyzed by many authors motivated by problems in analysis and ergodic
theory. See, for example, [15,36,38—41,44-48,49,50,52] for some results of this type and more references. A
common feature of all of these results, which plays a crucial role in the proofs, is that one can use Fourier
analysis techniques, in particular, the powerful framework of the classical circle method, to perform the
analysis.

Our situation in Theorem 1.3 is different. The main conceptual issue is that there is no good Fourier
transform on nilpotent groups, compatible with the structure of the underlying convolution operators and at
the level of analytical precision of the classical circle method. At a more technical level, there is no good
resolution of the delta function compatible with the group multiplication on the group G,. This prevents us
from using a naive implementation of the circle method. The classical delta function resolution

Lo -y) = I (YD - xD), gD)e((y@ - x@). gD)dID YD

TdxT?

does not detect the group multiplication correctly. Here, (y® - x®). 8® and (y® - x@). 6@ denote the usual
scalar product of vectors in R and RY, respectively.

These issues lead to very significant difficulties in the proof and require substantial new ideas. Our main
new construction in [35] is what we call a nilpotent circle method, an iterative procedure, starting from the
center of the group and moving down along its central series. At every stage, we identify “minor arcs,” and
bound their contributions using Weyl’s inequalities (the classical Weyl inequality as well as a nilpotent Weyl
inequality which was proved in [37]). The final stage involves “major arcs” analysis, which relies on a
combination of continuous harmonic analysis on groups G} and arithmetic harmonic analysis over finite
integer rings modulo Q € Z.. We outline this procedure in Section 3.
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At the implementation level, classical Fourier techniques are replaced with almost orthogonality methods
based on exploiting high order T*T arguments for operators defined on the discrete group Go. Investigating
high powers of T*T (i.e., (T*T)" for alarge r € Z,) is consistent with a general heuristic lying behind the proof
of Waring-type problems, which says that the more variables that occur in Waring-type equations, the easier it
is to find solutions, and we are able to make this heuristic rigorous in our problem. Manipulating the para-
meter r, by taking r to be very large, we can always decide how many variables we have at our disposal,
making our operators “smoother and smoother.”

1.5 General discrete nilpotent groups

The primary goal is, of course, to remove the restriction that the discrete nilpotent groups G in Theorem 1.1 are
of step 2 and thus establish the full Conjecture 1.2 in the linear m = 1 case for arbitrary invertible measure-
preserving transformations Ti,..., T that generate a nilpotent group of any step k = 2. The iterative argument
we outline in Section 3 below could, in principle, be extended to higher step groups, at least as long as the
group and the polynomial sequence have suitable “universal”-type structure, as one could try to go down along
the central series of the group and prove minor arcs and transition estimates at every stage.

However, this is only possible if one can prove suitable analog of the nilpotent Weyl’s inequalities in
Proposition 2.1 on general nilpotent groups of step k = 3. The point is to have a small (not necessarily optimal,
but nontrivial) gain for bounds on oscillatory sums over many variables, corresponding to the kernels of high
power (T*T)" operators, whenever frequencies are restricted to the minor arcs. In our case, the formulas are
explicit, see the identities (2.10), and we can use ideas of Birch [9] and Davenport [21] for Diophantine forms in
many variables to control the induced oscillatory sums, but the analysis seems to be more complicated for the
higher step nilpotent groups.

1.6 Waring-type problems

The classical Waring problem, solved by Hilbert [30] in 1909, concerns the possibility of writing any positive
integer as a sum of finitely many p powers: for any integer p > 1, there is r = r(p) such that any integer
Yy € Z, can be written in the form

,
y= Zmi” , for some nonnegative integers my,..., m,. (1.21)
i=1
There is a vast amount of literature on this problem and its many possible extensions. In particular, the
symmetric system of equations

;
M -n)=0 (1<s<d), 1.22)
j=1

first studied by Vinogradov [55] in relation to the Waring problem, have been the focus of intense recent

research, see [58] for some recent results.

We are interested here in understanding the analogs question on our discrete nilpotent Lie group G, and
for our given polynomial sequence Aj: Can one represent elements g € Gy in the form

g =Ao(n)! - Ag(my) -...- Ag(ny )t - Ag(my), (1.23)

for some integers ny, my,..., n,, m;,, provided that r is large enough? We are, in fact, interested in proving a
quantitative statement on the number of such representations, for integers ny, my, ..., n,, m, € [N] = [-N,N] N Z.

We notice that many group elements g cannot be written in the form (1.23), due to local obstructions; for
instance, if g can be represented in the form (1.23) then necessarily g, = g =...= g4 (mod 2),
&0 = & = - (mod 3) etc. We remark also there is a significant difference between the classical Waring
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problem (1.21) and its nilpotent analog (1.23), namely the positivity of the p-powers which imposes size
restrictions on the variables x; in terms of the prescribed output value y.
For integers r, N > 1 and g € G let

Srn(g) = l{(m,n) € [N 1 Ag(m)™ - Ag(my) -...- Ag(ny)™ - Ao(my) = g3l (1.24)

A qualitative variant of the Waring problem on nilpotent groups was recently investigated in [33,34], see also
the references given there. Our main result in this direction is the following quantitative version on the
nilpotent group Gy;:

Theorem 1.4. (i) There is an integer ry(d) > 1 such that if r = ry(d) is sufficiently large and g € Gy, then

I_l N-lul=lE
(L,L)EYy

6(8) _[ D(De(-N © ). AT+ 0,12, (1.25)

d+d’
R

Sr,N(g) = N

uniformly in N € N. Here, the singular series S is defined by
6@ = ) G(a/q)e(-g. alq) (1.26)

a/qerE 4 no,nt¢

and the singular integral ® is defined by

o@) = | 0@ w). Hdzdw, &R 127)
l_L1J2r

In particular, all elements g € Gy cannot be represented in the form (1.23) more than a constant times the
expected number of representations, i.e.,

Sr,N(g) ~<~r NZr

[ N‘”l"”2|] for any g € G,. (1.28)

(,L)EYs

(ii) For ry(d) as earlier, ifr 2 ry(d) and r is even, then there is a sufficiently large integer Q = Q(r) such that

Srn(g) = N¥

|‘| N—|l1|—12|’[cr(g) + 0y g(NV/2)], (1.29)

(L,b)EYy

for any g € Hy (see definition (3.32)), where ¢(g) = 1 uniformly in g.

We will provide a complete proof of this theorem in Section 4.

1.7 Organization

The rest of this article is organized as follows: in Section 2, we present several nilpotent Weyl estimates proved
in [37], which play a key role in the analysis of minor arcs. In Section 3, we outline our main new method, the
nilpotent circle method, developed in [35] to prove maximal and variational estimates on nilpotent groups. In
Section 4, we prove Theorem 1.4, the main new result in this article.

2 A nilpotent Weyl inequality on the group G,

In this section, we derive explicit formulas used in high order T*T arguments and discuss a key ingredient in
our analysis, namely, Weyl inequalities on the group Gy.
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2.1 High-order T*T arguments and product kernels

Many of our £%(G,) estimates will be based on high-order T*T arguments. Assume that
Sl! Tl,---; Sr) T;' . 62(00) - €2(GO)

are convolution operators defined by some ¢4(Go) kernels Ly, K;,..., Ly, K, : Go — C, ie., Sjf=f*L; and
Tif=f=K; for j € {1, ...,r}. Then the adjoint operators Sj,..., S; are also convolution operators, defined by
the kernels L{,..., L} given by

Li© =L@

Moreover, by using (1.14), for any f € ¢%(Go) and x € Gy, we have

Sih..STHX) = Y

h1,g1, P hr:gre(ﬁo

|'|L (h; )K(g)}/(g R gt Rt ). 2.1)

j=1

In other words (§;T ... ST, f)(x) = (f * A")(x), where the kernel A" is given by

Ly(g ™" hr oo gt B y). (2.2)

A= ) [lfIL(

ha,gy, .., hr.8.€Go

K (g)

To use these formulas, we decompose h; = Y, h@), g = (g.(l), g]@) as in (1.7). Then

(g B g1V = Y (Y + g™, @3

1<j<r

(At g B g1 = T (- - @) + Ryh®, i - g+ 3 Ro(-h" + g0, -h" + gD), (04

1sj<r 1<l<jsr

as a consequence of applying (1.9) inductively.
In many of our applications, the operators Sy, Ty,..., Sy, T are equal and, more importantly, are defined by
a kernel K that has product structure, i.e.,

Sif=hf=.=8f=Tf=f*K,

K(g) = K(g®W, g@) = KO(gW)K@(g®), 23)
In this case, we can derive an additional formula for the kernel A". We use the identity
Lot -y) = I (YO = xD), gD)e((y@ - x@). §@)deDdD,
TxT?
where ¢(z) = ¥z, The formula (2.2) shows that
AY) = I e(yD. OD)e(y®@ . 92)Lr (6D, 9@)deMde?, 2.6)
TxTY '
where
;
20,602 = 3 ([1KR)K(G) H g e g 10, 00),
h]g]edjo j=1
Recalling the product formula (2.5), we can write
(W, 9@ = IIM(eW, HHQr (@), 2.7

for any (69, 0®@) € T4 x T, where
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re®,e@= 5 1] K(l)(h(l))K(l)(g(l))’ [9(1) > (h]@ - g]gl))’

h(l)g<l)EZd j=1 1gjsr
(2.8)
x o =6@.1 3 Rh", 0V - g™+ 3 Ro(-h + g, -k + g)
1<j<r 1<l<j<r
and
- PO 10N 2 2 2
e 3 KD >)’ 19@ > 0P - g >)]
h g(2>EZd j=1 1gjsr
2.9)

Z K®(g@)e(-0®. g®)

g®ez?®

2.2 Weyl estimates

After applying high-order T*T arguments, we often need to estimate exponential sums and oscillatory integrals
involving polynomial phases. With the notation in Section 1.2, for r = 1,let D, D : R" x R" - G} be defined by

D((ny, ...,ny), (My, ...,mp)) = Ag(m) ™ - Ag(my) -...- Aog(n,) ™ - Ag(my),

~ (2.10)
D((ny, ...,ny), (My, ...,my)) = Ag(ny) - Ag(my)™ -...- Ag(ny) - Ag(m,)™.
By definition, we have
nh ifb=0 -nh if L=0
A = " [Ao(m) Yy, =
[Ao ()i, 0 i, [Ao(n) ™ i, At i 21
Thus, by using (2.3) and (2.4), for x = (X, ...,x,) €R" and y = (y;, ...,§,) € R", one has
Z(yl1 - x) ifL,=0
j=1
(DO Y) ], = 211)
>k -k -+ Z(x’l”z Xy k2,
1gjy<jp<r !
and
r
2 06 =y if =0
- =
[D O, = 2.12)
1<]Z/ <r(X]1 _yll )(X]z _ylz) + Z(yll+lz Xfllyjlz) if lz 2 1.
172
For P € Z. assume ¢, 9 : R - R, j € {1, ...,r}, are C\(R) functions with the properties
sup [[¢5] + [Y$P]] < Nppp,  sup _[l P1o) + [[Y 1 00ldx < 1. (2.13)

1<j<r 1sjsr g

For 0 = (0u,) 1. 1pey, ERY, r € Z,, and P € Z, let

|_| (1)(711) (])(m].)

j=1

Spr(0) = Y e(-D(n,m). 0)

n,mez"
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and

$:0)= 2 «(-D(n,m).6)

n,mez"

3

[1o )y (my)
j=1

where D and D are defined as in (2.11)—(2.12).
The following key estimates are proved in [37, Proposition 5.1 and Lemma 3.1]:

Proposition 2.1. (i) (Nilpotent Weyl estimate) For any € > 0, there isr = r(¢e, d) € Z. sufficiently large such that
for all P € 7, we have
1Sp,+(0)] + |Sp,r(0)] ¢ PZPVE, 2.14)
provided that there is (L, ) € Y; and an irreducible fraction a/q € Q, q € Z., such that
|61, — alql < 1/¢*> and q € [PE, Pitte], (2.15)

(i) (Nilpotent Gauss sums) For any irreducible fraction a/q € Q'", a = (a,)q ey, € 2", q € Z.., we
define the arithmetic coefficients

Galg) = q¥ ) e(-D(v,w).(alg)), G(alg)=q™ ) e(-D(v,w). (alq)). ©.16)

V,WEZ} V,WEZ}
Then for any € > 0, there isr = r(g, d) € Z . sufficiently large such that
G(a/q)| + |G (alq)| = V% (217)

We also need a related integral estimate, see Lemma 5.4 in [37]:

Proposition 2.2. Given € > 0 there isr = r(¢, d) sufficiently large as in Proposition 2.1, such that

J Ngeomop

[R’X[Rr‘j:l

J

R"™xR"

e(-D(x,y). B)dxdy | < (By/e,

(2.18)

e(-D(x,y). Pdxdy | s (B¢,

{ﬂ 6,(5)%,00,)

j=1

for any B € R (here and later on, we use the Japanese bracket notation (8) = (1 + |B[*)/?) and for any C'(R)
functions ¢, Y,,..., 9., Y. : R = C satisfying, for any j € {1, ...,r}, the bounds

161 + 191 < 10000, JB001 + 19 00lNdx < 1

R

These statements should be compared with classical Weyl-type estimates, which are proved, for example,
in [52, Proposition 1]:

Proposition 2.3. (i) Assume that P > 1 is an integer and ¢, : R — R is a C(R) function satisfying

el < Iepp  [I600I0x <1 219)
R
Assume thate > 0 and 6 = (64, ...,6;) € RY has the property that there isl € {1, ...,d} and an irreducible fraction
alq € Q with q € Z., such that
|6; - a/q) <1/q>* and q € [Pt P-e). (2.20)

Then there is a constant C = C; = 1 such that
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Y dp(n)e(=(O1n + ...+ D) =, PIEIC, (2.21)

nez

(ii) For any irreducible fraction 0 = a/q € (Z/q)%, a = (@, ...,ag) € Z¢, q € Z., we have

qt ) e(-(Omn + ...+ond)| s gV, (2.22)

nez,

Notice a formal similarity between Propositions 2.1 and 2.3. They both involve a small but nontrivial gain
of a power of P as soon as one of the coefficients of the relevant polynomials is far from rational numbers with
small denominators. These estimates can therefore be used efficiently to estimate minor arcs contributions.

We note, however, that the proof of the nilpotent Weyl estimates in Proposition 2.1 is much more involved
than the proof of Proposition 2.3. It relies on some classical ideas of Birch [9] and Davenport [21,22] on treating
polynomials in many variables, but one has to identify and exploit suitable nondegeneracy properties of the
explicit (but complicated) polynomials D and D in (2.11)~(2.12) to make the proof work. All the details of the
proof are provided in [37, Section 5].

3 A nilpotent circle method

To illustrate our main method, we focus on a particular case of Theorem 1.3, namely, on proving boundedness
of the maximal function M{ on ¢%(G,). For simplicity of notation, for kK € N and x € Gy, let

Micf (0= MJf00) = 3 28 @ mf (Ao - x) = (f * Kix),
nez
P o (3D
K() =G0 = Y 27 (@)l p(0),
nez
see (1.13) and (1.15) for the definitions M and Gf, respectively. With this new notation, our main goal is to
prove the following:

Theorem 3.1. For any f € ¢%(G,), we have

sup| M f]

= [ Iflle2o) -
k20 £00) (32

£%(Go)

In the rest of this section, we outline the proof of this theorem. Our main new construction is an iterative
procedure, starting from the center of the group and moving down along its central series, which allows us to
use some of the ideas of the classical circle method recursively at every stage. In our case of nilpotent groups of
step two, the procedure consists of two basic stages and one additional step corresponding to “major arcs.”

Notice that the kernels Kj have a product structure

K@) = Liglg@®), Lg® = ¥ 275 mlpg® - AL M), 3.3)

nez

where A"(n) = (n, ...,n%) € Z% and g = (g®, g®) € G, as in (1.7).

3.1 First stage reduction

We first decompose the singular kernel 1y,(g®) in the central variable g into smoother kernels. For any
s €N and m € Z,, we define the set of rational fractions

RM=A{alq: a=(a, ..,ay) € Z™, q € [2525) N Z, ged(ay, ...,an, q) = 1} (3.4)
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We define also RY, = Upss<aR™. For xD = (XI%))IIE{L 4 ERY x® = (xlgi))(ll‘lz)eyé eR? and A € (0, »), we
define the partial dilations:

1 2 ’
Ao x® = (Allxlgo))lle{l,..‘,d} ERY Ao x®= (Al1+lle§lz))(11,lz)eY,§ eRY, 3.5

which are induced by the group-dilations defined in (1.12).
We fixn, : R — [0, 1] a smooth even function such that 1; 1 < i, < I3 Fort € R and integers j = 1, we
define

() = 7 = ny@7*), 1= Y. 3.6)
j=0
For any A € [0, »), we define
Nea= 2 3.7
JjE[0,A]lNZ

By a slight abuse of notation, we also let 7j; and 1., denote the smooth radial functions on R™, m 2 1, defined
by r]j(x) = nj(lxl) and n.,(x) = n.,(Ix]). We fix also two small constants & = §(d) < §" = §’(d) such that
& € (0,(10d)™] and § € (0, (6")*], and a large constant D = D(d) > §78, which depend on arithmetic properties
of the polynomial sequence A, (more precisely on the structural constants in Propositions 2.1-2.2) such that

1«<1/8<1/6§<r=r(,6,d) <D. (3.8)
For k = D we fix two cutoff functions ¢V : R? - [0,1], $? : R* — [0, 1], such that

¢l£1)(g(1)) = ak(z—k o g(l)), ¢1§2)(g(2)) = 1 Sk(z—k ° g(z))_ (3.9

For k € N so that k > D? and for any 1-periodic sets of rationals A € Q¢, 8 C Q?, we define the periodic
Fourier multipliers by

WA= Y N2 o6V -alg), EVeTY
a/qEA

p (3.10)
EsE@)= ) g o (6@ -blq), P eT?
b/qeB
For k =2 D? and s € [0, §k] N Z, we define the periodic Fourier multipliers Zy s : RY - [0, 1],
i s(E@) = gk’Rg,(g(Z)) = Z Negi (2K ° (E® - a/q)). 310)
alqer¥®
For k > D?, we write
Lio(g®) = _[e(g(z). FONHE)
.
! (3.12)
= Y [eg® EDE DD + [e(g®. ED)EED)AED,
se[O,Jk]ﬂZWa' el
where
Ei =1 - z Ek,s. (313)
s€[0,6k|nzZ
Then we decompose Ki = Ki + X se(0,sk)nzKk,s» Where, with the notation in (3.3), we have
Kis(g) = Li(§V)Nis(g?®),  Ki(g) = Li(gV)Ng(g®), (3.14)
and
Nes(8®) = 3 2(8®) [ e(g®. £z, (EO)AE,
.
B (3.15)

Ni(g®) = 9P(g®) [ e(g®. EO)E5(ED)dE®.
I
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We first show that we can bound the contributions of the minor arcs in the central variables.

Lemma 3.2. For any integer k =2 D? and f € ¢%(G,), we have
_1n?
If * K¢ll ey = 277 I1flleay)- (3.16)

Then we prove our first transition estimate, i.e., we show that we can bound the contributions of the
kernels K s corresponding to scales k > 0 not very large. More precisely, for any s > 0, we define

K = 22DG+D?, (317

Lemma 3.3. For any integer s 2 0 and f € ¢%(Gy), we have

sup  |f * Kl

s 2717 ) 2
(Go)*
max(D?%s/8)<k<2ks 0 (3.18)

£%(Go)

In the commutative setting, minor arcs estimates such as (3.16) follow using Weyl estimates and the
Plancherel theorem. As we do not have a useful Fourier transform on the group G, our main tool to prove
the bounds (3.16) is a high-order T*T argument. More precisely, we analyze the kernel of the convolution
operator {(K§)"K§}, where K§f = f * Kf and r is sufficiently large, and show that its £/(G,) norm is s2°%. The
main ingredient in this proof is the noncommutative Weyl estimate in Proposition 2.1 (i).

To prove the transition estimates (3.18), we use the Rademacher-Menshov inequality and Khintchine’s
inequality (leading to logarithmic losses) to reduce to proving the bounds

= 2757 || ey (3.19)
£%(Go)

Y wl(f* Hi)
kel ]

for any J = max(D? s/8) and any coefficients n, € [-1, 1], where Hy s = Kx+1s — K s. For this, we use a high
order version of the Cotlar-Stein lemma, which relies again on precise analysis of the kernel of the convolution
operator {(Hx, ) Hy.s}", where Hy sf = f * Hy s and r is sufficiently large. The key exponential gain of 2745/0% i
(3.19) is due to the noncommutative Gauss sums estimate, see Proposition 2.1 (ii).

3.2 Second stage reduction

In view of Lemmas 3.2-3.3, it remains to prove that

suplf * K|

k2ks

Can?
s 278D “f”é’z(Go) (3.20)
(G

for any fixed integer s > 0. The kernels Ky ; are now reasonably well adapted to a natural family of noniso-
tropic balls in the central variables, at least when 2° = 1, and we need to start decomposing in the noncentral
variables.

We examine the kernels Li(g®) defined in (3.3) and rewrite them in the form

Lk(g(l)) - Z Z_kX(Z_kn)ﬂ{o}(—Aél)(n) + g(l))

e (3.21)
=0 151)(g(1>)'|'e(g<1>‘ ED)S, (ED)AED,
-lrd
where g®. £ denotes the usual scalar product of vectors in R¢, and
SKED) = ¥ 2Ry R ne(-A5 (). §D). (3.22)

nez

For any integers Q € Z, and m € Z ., we define the set of fractions
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Ro =1{alQ: a=(a ...am) € Z™}. (3.23)
For any integer s > 0, we fix a large denominator

Q, = (12261 =1 -2 -, [ 2D6*D], (3.29)
and using (3.10) define the periodic multipliers

WD) = Wzt €)= 3 negy(@ 2 (ED - alq)),

a/qEP‘ﬁOs
s, i(ED) = ‘I’kﬁg\ﬁg ED) = Y @ 2D - alq), (3.25)
s a/qE‘R;i\ﬁdQs
PEED) =1 - WREED) - Y W (ED) == Y gy (TF (Y - alg)).
te[0,6’kINZ alqeR sk

Since k 2 Kk, = 2206*D’ we see that Q, < 25, Therefore, the supports of the cutoff functions g, (2¢ < (€® - a/q))
are all disjoint, and the multipliers ‘P}f?’ Wy 5.1, P, take values in the interval [0, 1]. Notice also that ¥ ;. = 0 unless
t 2 D(s + 1) and that the cutoffs used in these definitions depend on §’k not on 8k as in the case of the central
variables.

We examine formula (3.21) and define the kernels L\%', L s, L§ : Z% - C by

L.(g®) = 9™ [ e(g®. EM)SUEDNEED)AED, (326)
Hd

where (L., %) € {(L%, $)), (Lis 1, s,0), (LE, Wb For any k > ks, we obtain Kis = Gi% +Y<s4Grs.c + Gf.s»
where the kernels G.%', Gy s, G : Z'"d > C are defined by
Gy (©) = Ly (§D)Nis(8P),
Gk,s,t(g) = Lk,s,t(g(l))Nk,s(g(z))a (3.27)
G s(8) = LE(E )Ny, s(g@).

Our next step is to show that the contributions of the minor arcs corresponding to the kernels G ; can be
suitably bounded:

Lemma 3.4. For any integers s = 0 and k = ks, and for any f € ¢*(Go), we have

i
IIf * Gk sllezay) = 2 kID flle2co)- (3.28)

Then we prove our second transition estimate, bounding the contributions of the operators defined by the
kernels Gy s for intermediate values of k.

Lemma 3.5. For any integers s 2 0, and t =2 D(s + 1), and f € ¢%(G,), we have

sup lf * Gk,s,tl

max(ks,t/6)<k<2k;

N2
< 2°t/D “f“é,z(ﬁo), (329)
£%(Go)

where K, = 222D g in (3.17).

The proofs of these estimates are similar to the proofs of the corresponding first stage estimates (3.16) and (3.18),
using high-order T*T arguments. However, instead of using the nilpotent oscillatory sums estimates in Proposition
2.1, we use the classical estimates from Proposition 2.3 here. We emphasize, however, that the underlying nilpotent
structure is very important and that these estimates are only possible after performing the two reductions in the first
stage, namely, the restriction to major arcs corresponding to denominators =25 and the restriction to parameters
k > k. We finally remark that the circle method could not have been applied simultaneously to both central and
noncentral variables, as we would not have been able to control efficiently the phase functions arising in the
corresponding exponential sums and oscillatory integrals, especially on major arcs.
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3.3 Final stage: major arcs contributions

After these reductions, it remains to bound the contributions of the “major arcs” in both the central and the
noncentral variables. More precisely, we prove the following bounds:

Lemma 3.6. (i) For any integer s = 0 and f € ¢%G,), we have

suplf * G|

k=K

o2
= 275 fll o2y - (3.30)
e4(Go)

(i) For any integers s = 0,t 2 D(s + 1), and f € ¢%(G,), we have

Sup|f * Gi,s,l

k=K,

n2
Sl “f||€2(00)- (3.31)
£%(Go)

The main idea here is different: we write the kernels G,}";” and Gy s as tensor products of two components

up to acceptable errors. One of these components is essentially a maximal average operator on a continuous
group, which can be analyzed using the classical method of Christ [17]. The other component is an arithmetic

operator-valued analog of the classical Gauss sums, which leads to the key factors 275/0" and 272" in (3.30)
and (3.31).
More precisely, for any integer Q > 1, we define the subgroup

Ho = {h = Qi) wpyey; € Go : My, € Z}. 3.32)
Clearly, Hy € G is a normal subgroup. Let J, denote the coset
Jo =1{b = (b))t yey, € Go @ by, € Z N [0,0Q - 1]}, (3.33)
with the natural induced group structure. Notice that
the map (b, h) — b - hdefines a bijection fromJ, x HgtoGy. (3.34)

Assume that Q = 1 and 2X = Q. For any a € Z¢ and & € RY, let

J(® = 27 [x@ el -A8 (o). Eldx = [x(el-AP ). @« O)lay,
R R (3.35)
$@Q)=Q1 ¥ el-As"(m). a/Ql.

n€zZ,

The point is that the kernels G,l";” and Gy s, can be decomposed as tensor products. Indeed, to decompose
Gy s, (the harder case), we set Q = Q, = (L2°(*D])! as in (3.24). Then we show that if k > k; (so 2k > Qt“), h € Hy,
and by, b, € Gy satisfy |by| + |by| < Q% then

Gis, (D1~ b~ b2) = Wi o (WVigarze gzt (b1 D2), (3.36)
up to acceptable summable errors. Here,

Weo(h) = QU0 () [ Mg (@ © Oy 2k © O)e(h. (£, 0)) (£)dlEd,

RIxRY

2 eb®. (@]

a@esn[o,)

Vaso®) =Q 4% Y S(aW)e[b®. (aD)]

o®WeAn[o,1)4

and ¢ (h) = 9P P (h®), h = (A, k) € Hy, is defined in (3.9), b = (b®, b®) € Gy, and the functions J
and S are defined in (3.35).

Finally, we show that the kernels V; ; = szd\ (which can be interpreted as an operator-valued Gauss
t

7 g
RooRE.Q;

sums) define bounded operators on €Z(Jth),
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1 *sq, Va.tllez (34,) = Z_I/D”fHez(ﬂQt)-
Moreover, the kernels W, are close to classical maximal operators and one can show that

suplf*y o Wiol

k2K

= Iflle(mg,)-
ez(HQt)

The desired bounds (3.31) follow using the approximation formula (3.36).

4 A nilpotent Waring theorem on the group G,: proof of
Theorem 1.4

We prove now Theorem 1.4. Observe that D(n,m) = Ag(ny)™" - Ag(my) -...- Ag(ny)™! - Ag(m,). By using the
classical delta function, we can write

Sw@ = Y [ D m). e(-g. E)dE. )

m,nE[N]’FdJra'

Step 1. We start by decomposing the integration in ¢ into major and minor arcs. For any integer m = 1 and
any positive number M > 0, we define the set of rational fractions
R%y ={alq: a=(a,...an) €Z™, q € [LM]NZ, ged(@, ...,anm q) = 1}. 42

Notice that we use a bit different definition of RZ), than in (3.4). We fix a small constant § = 6(d) <1
and a smooth radial function n,: R — [0,1] such that Iy < y(x) < Iy<y, x € R%L For A >0, let
Nea(X) = Ny(Ax), x € R here, we use a bit different definition of 5., than in (3.7). Then, we introduce
the projections

BN = Y NN e@E-alg), §€TM, NeN, 3)

d+d’
a/qERSN§

and decompose the integration in (4.1) into major and minor arcs, i.e., we define

Sumai® = Y| e m). He(-g. HENEE, @4

m,nE[N]’"Fd)fd’

Samin®) = Y | D, m). Ee(-g. H)(A - Ex()AE. 45)

m,ne[N]’va»fd’

Notice that Sy x(g) = Sy n,min(€) *+ Sr.¥ maj(g). Moreover,

|_| N-lul=lkl

(L,h)EYy

|Sr,N,min(g)| Sr NZr—l 5 Ne N: g € GO, (4-6)

provided that r is sufficiently large, as a consequence of Proposition 2.1 (i) and the Dirichlet principle; in fact,
we use Proposition 2.1(1) with ¢1§,j) = Iflf) = 1in3, 1 < j < r, which is still valid as can be seen by a careful reading
of the proof of this result contained in [37]. Therefore, the contribution of the minor arcs S; y min(g) can be
absorbed by the error term in (1.25).

Step 2. Next, we deal with the major arcs contributions. Notice that

Sr,N,maj(g) = Z e(-g. alq) _[ ’75N5(N ° E)Ir,N,a/q(f)e(_g- $)dg, .7
a/qeﬂg;;gn[o,l)d*d’ R
where
Lva@ = Y oD m). (a/g)ed(n, m). &). 48)

m,nE[NT|"
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Observe that for a/q € R%4 N [0, D and |N » & < N, we have

bnag®= Y Y oD, w). (a/q))e(D(qn, qm). &) + O(GNZ~1+6)

m,ne[N/q]’u,vEZg
= N7G(a/q)®(N ° &) + O(qNZ~1*9),
where G(a/q) is defined in (2.16) and @ is defined in (1.27).
Therefore, if § < (10d)™, then we have

Sr,N,maj(g) =N% |_| Nhl-1L

(LL)EYy
4.9)
x 2 G(a/q)e(=g. alq) _[ Nens(©)B(Oe(=g. (N1 = §)dS + O,(N ).
a/qevzi;v‘gn[o,nd*d’ R
It follows from Proposition 2.1(ii) and Proposition 2.2 that
6@/l = V%, (@, =1, (4.10)
and
)] 5 (Y1, (eR™Y, 411)
provided that r is sufficiently large. Therefore, recalling the definition (1.26),
16l = 1,
— /82 (4.12)
&) - Y Gaget-g alg| s Y q@ T s, NV,
a/qevzgvﬂgn[o,l)d*d’ q=N*¢
Moreover, we have
[ nw@()e(-g. (N1 > ) | = 1,
d+d’
K 4.13)
[ news®@@e-g. &t e g - [ @@e(-g. (V1 o ) | 5, NV,
[Rd+d’ [Rdﬂi’
It follows from (4.9), (4.12), and (4.13) that
Sramai(®) = N [ N0 |&(g) [ @@)e(-g. (N1 o £)E + 0,112, (4.14)
(h,b)EY,; IRdHi’

The desired conclusion (1.25) follows using also (4.6). This completes the proof of part (i) of the theorem.
Step 3. We analyze now the singular series & defined in (1.26). Observe that

&(h) = YA(q.h), Al h)= ) Glalge(-h.alq), (4.15)

q21 (a,q)=1

for any h € G. Notice that the sequence A(q, h) is multiplicative in the sense that A(q,q,, h) = A(q;, MHA(q,, h)
provided that (q;, ¢,) =1 and h € G,. Therefore, letting P denote the set of primes,

&(h) = [1B(p,h), B(p,h)=1+ Y A(p", h). (4.16)

PEP nx1
For h € Gy and q > 1, let
M(q, h) = |{(m,n) € Zé’ : D(n,m) = h (mod q)}|. 417
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We prove that for any h € Gy, p € P and integer n > 1, we have

n M(p", h
1+ Y AP, h) = %. (4.18)

v=1

Indeed, for any integer g = 1, we have

M@ h=q¢"" Y Y oD@ m)-h). (/)

d+d’ r
tez, mnez,

Sty 5> Y e(D(n,m) - h). (wq,/q)
ql|qwezg/+gl’, (w,q/q)=1m,n€Zg

Sy 3 > e((D(n,m) = h). (wlqy))

qzlqwezzz*d', (w,q))=1m,n€Z}

Sty )3 q7G(w/q,)e(=h. (W/q,))

wlawezl?, (w,g)=1

- q2r—d—d’ ZA(QZ, h)
alq

The identity (4.18) follows by applying this with q = p", p € P. In particular, S(h) and B(p, h) are real
nonnegative numbers,

&(h), B(p,h) € [0,») forany h € Gy, p € P. (4.19)
Moreover, by using formulas (4.16) and (4.18), we obtain

M(p", h) -
B(p, h) = W + 0,(2 n/¢5)

foranyn = 1,h € Gypand p € P. We would like to show now that &(h) =, 1 for all elementsh € Hy, in order to
be able to exploit the expansion (1.25); Q will be defined below. We notice first that for any integer r sufficiently
large, there is p,(r) € P such that

1/2 < [1 B h <32, (4.20)
PEP, pzpy(r)

for any h € Gy, due to the rapid decay of the coefficients G(a/q) in (4.10).

By Lemma 4.1, (and a comment after its statement) if r is even, then there is a point ay = (2¢, wy) such that
D(ap) = 0, and there is a (d + d’) x (d + d’) minor J,(ag) # 0. By re-indexing the variables, we may assume
N
%(ao) ,writing N = 2r, K = 2r — d - d’. In other words, we may assume

/ ij=K+1
that the minor corresponding to the lastd + d’ columns of the Jacobian matrix of D is nonsingular. For a given
prime p < py(r), lety, € N be such that J, (ao) = phu withu € Z, and ptu. Define Q = Q(r) = I'Ipe[,),pspo(r)pZVp”.

that this minor is Jj,(ap) = det

For h € Hg, we have D(ag) = h (mod p?*1) , but J,(ao) # 0 (mod p%*1); thus, we are in the position to
apply Hensel’s lemma (Theorem 4.2) with N = 2r and K = 2r — d - d’. Then by Corollary 4.3, we have that
M(p", h) = p2~K for all n > 2y, and hence by (4.18) we have B(p, h) = p~@*PK~1, This proves that

S(h) 2,1 uniformly for h € Hy. (4.21)
Step 4. Finally, we analyze the contribution of the singular integral. Since

[ e@e-ait e 9. 0dc= [ @@)ac+ 0, ),
R

d+d’ d+d’
R

due to (4.11), to prove the approximate identity (1.29), it suffices to prove that

[ e@dcz 1 4.22)

d+d’
[R+
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We fix a smooth function y : R“Y - 10, 1], satisfying y(x) = 1if|x] < 1/2, y(x) = 0if|x| = 2, and JR4+49((X)dX =1.
For ¢ < g(r) sufficiently small, we write

[ e@pEndc= [ @y, wyedzdw, (423)

[Rd+d’ [_1’1]2r

using the definition (1.27). In particular, by letting & - 0, |, .« ®(¢{)d{ is a real nonnegative number. Moreover,
the lower bound (4.22) follows from (4.23) provided that we can show that there is a point (zo, wy) € [-1, 1]¥
such that

D(zp,wp) =0 and rank[V,,D(zo, wp)] =d + d". 4.24)

We notice that this with even r follows easily from Lemma 4.1.

Lemma 4.1. Let r = rp(d). Then there exists (n, m) € Z¥ such that

rank[Vy,D(n,m)] =d + d'. (4.25)

Indeed, writing D-(x, y) = D(x,y) : R¥ - G}, we have that D.(x, y) - D.(n, m)™ = Dy,((x, m"), (y, n’)) with
n’ =y, ..,n), m’ = (my, ...,my). Assuming (4.25), it is clear that the map ((x, m"), (y, n")) = D((x, m’), (y, n"))
has maximal rank at zy = (n, m’), wy = (m, n’) and (4.24) follows.

The proof of Lemma 4.1 is based on counting points (n, m) € [N]*" at which the rank of the map V ,D
drops. This was also crucial in obtaining the nilpotent Weyl estimate (2.14).

Proof of Lemma 4.1. Let N be sufficiently large with respect tor, d. It is enough to show that there is a constant
Cq > 0 (C; = 2d(d + d")? works here) such that

[{n € [NT : rank[V,D(n, m)] < d + d’}| sq, NT*D/2*Ca, (4.26)

holds uniformly for m € [N]". Fix m € [N]". If rank[V,D(n, m)] < d + d’, then by Cramer’s rule, there exists
by, € Z, |by,| s N®D@ ) with by, # 0 for at least one 0 < [, < I, < d, such that

Z by, [0;D(n, M)]yy, =0 forall1<j<r. 4.27)
0<h<h<d

From (2.11), we have that [0;D(n, m)],o = —lln]l-l'l, and for1 <,
(@D Yy, = b~ 3 (= me) + by 3 (g = mi) = i m+ (+ bn 4.28)
>j <

We want to only include terms k < j and to achieve that we introduce the parameters
r

Ti=Tnm) =Y N -m}), for1<l<d.
k=1

Note that T; € [-2rN¢-1, 2rN9-1. For fixed T = (T})1<i<q, Write

Z(nlz—m T,(n,m) - Z(n

k>j k<j

Substituting into (4.28), we obtain, up to lower degree terms in the variables n = (n, ...,n;),

[6]D(n m)y, = —l1kz<]nll ! 12 + lzkzqnlz ! ll + (L + lz)nll+12 (4.29)
for 1 < [; < d. Thus, the system in (4.27) takes the form
Z bl1lzpllily2T’m(n1y ...,nj) =0, 1<j<r. (4.30)
0<h<h<d

Notice that for fixed ny,..., nyj-, with j < r/2, the left-hand side of (4.30) with j replaced by 2j contains the
monomials —bllollnzl}-_l and blllzlznzl}'lnzl}_l and hence is nonvanishing in the variables ny;-4, ny;. This, thanks to [37,
Lemma 5.3], implies that number of solutions to (4.30) is at most 2(d + d)(N + 1) in the variables ny;-4, ny;.
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As the number of choices for parameters b = (b1112)0512<115d and T = (T)i<i<q is <,¢N% (with, say
Cq = 2d(d + d"?), (4.25) follows. O

We remark that (4.25) together with the argument proving (4.24) also implies that the map Dy, : R* — G
is surjective. Indeed, the image of the map D, must contain an open ball B(g, §); thus, the image of D, must
contain an open ball B(0, ") € B(g, §)B(g, §)™ centered at the origin, then by homogeneity the whole
space G§.

Lemma 4.1 together with Hensel’s lemma is also crucial to show the nonvanishing of the singular series
S(h) for h € Hy. Recall that, given a prime p, the ring of p-adic integers z p is defined as the completion of Z
with respect to the p-adic metric |m|, = ™%, if m = pku with u € Z, ptu. Then 2,, is a so-called complete
valuation ring with a unique maximal ideal I, = p Z, and we will write x = 0 (mod p¥) if x € p* Z,. We have
|x — ylp < max{|x - z|p, |y - z|p}, and hence, a sequence (X;);en is Cauchy if |xj+1 — Xj|, = 0 as j - .

It follows that any formal power series g(x) converges at x whenever x = 0 (mod p). For a vector
X = (X, ...Xy) € 25, we say that x = 0 (mod p¥) if x; = 0 (mod pk), for all 1 < j < N. Then any power series
g(x) = g(%, ...,xy) in N variables also converges whenever x = 0 (mod p). Moreover, one has the inverse and
implicit function theorems for power series maps g(x) = (g,(X), ....gy(x)) : ’Z\g - ’Z\g without constant
terms. Namely, if the Jacobian of the system at origin ]g(O) € Ip, ie, is a unit, then g has an inverse
power series map h(x) = (hi(x), ...,hx(x)), in the sense that h(g(x)) = g(h(x)) = x, see [29, Proposition
5.19]. One also has a corresponding version of the implicit function theorem; for a map
200 = (§ey (0, 800 : Zy ~ Z " such that det(Z—i(O))i . &1, the inverse image 7 = £71(0) can

ij=K+
be parameterized as V, = (&, ..., tx, hg+1(0), ..., hn(t)) with ¢ = (;1, ...,tx), which can be seen from the inverse
function theorem by extending the map with gi(x) = x; fori = 1,..., K. The following extension of the implicit

function is often used to show the nonvanishing of the singular series associated to diophantine systems.

Theorem 4.2. (Hensel’s lemma) Let f= (fi,q, ... fy) : Zg - 2g_K be a family of polynomials. Assume there

exists ana € Z;,V and an integer y > 0, such that
f(@) = 0 (mod p?*), (4.31)
moreover
Jp(@ = p'u, u# 0 (mod p), (4.32)

where I (a) is the Jacobian,

Jp(a) = det a—fi(a) N (4.33)
/ ) ‘
ij=K+1
Then there exist power series h = (hg.q, ...,hy) such that for all t = (8, ...,tx) = 0 (mod p), one has that
f(a+ (p¥t, p’h(1))) = 0. (4.34)

This means that for each j = K + 1,..., N, one has

fila + PP, ...,ax + pPty, Age1 + PYhiaa(t), ....ay + p’hy(D)) = 0.

This is proved in [29, Lemma 5.21 and Note 5.22]. In fact, it is shown that all b € VA g such that b = a (mod p’*1)
and f(b) = 0 can be parameterized this way. We will use it to obtain the following lower bound, assuming
conditions (4.31)-(4.32) hold.
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Corollary 4.3. Let n > 2y. Then
l{b € Zgn : f(b) = 0 (mod p")}| = p--DK, (4.35)

Proof. Notice that if t; # &, (mod p" %), then ¢ # ¢ (mod p"), where ¢; = a + (p?t;, p’h(t;)) for i = 1, 2. There
are p%~VK yalues of t € ZX such thatt = 0 (mod p), which fall into different residue classes mod p™ %, thus

by (4.34), we have at least this many solutions to f(c) = 0 in 22], which fall into different residue classes mod

p". For each such ¢, let b € ZV such that b = ¢ (mod p"), Then clearly f(b) = 0 (mod p"), and all such b’s are
distinct mod p". O
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