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Abstract:We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2.

Our main results include boundedness of associated maximal functions and singular integrals operators, an

almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a

nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on

complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not

available in the noncommutative nilpotent setting. In particular, we present what we call a nilpotent circle

method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.
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1 Introduction

The goal of this article is twofold. We first review some recent results on averages of functions along poly-

nomial sequences in discrete nilpotent Lie groups of step 2, and the main ideas in the proofs. Then we use one

of the main ingredients, a nilpotent Weyl inequality, to prove a new theorem on a nilpotent version of the

Waring problem.

The natural general setting for our analysis consists of a discrete nilpotent group � of step d, which by

definition is assumed to be a discrete, co-compact subgroup of a connected and simply connected nilpotent Lie

group �# of step d, and a polynomial sequence � �→A : , which is a map satisfying ( ) =A 0 1 and ≡D A 1k0 for

some ≥k 10 . Here, Dk is the k -fold differencing operator defined recursively by

�( ) ( ) ( ) ( ) ( )≔ ≔ + ∈+ −D A n A n D A n D A n D A n n, 1 , .k k k0 1 1

We consider a class of operators defined by taking averages along polynomial sequences in discrete nilpotent

groups. As in the continuous case, one can consider discrete maximal operators, which have applications to

pointwise ergodic theorems, and discrete Calderón-Zygmund operators.
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1.1 The main theorem

Our main theorem in this article concerns Lp boundedness of maximal averages along polynomial sequences

in discrete nilpotent groups of step 2, Lp pointwise ergodic theorems, and L2 boundedness of singular integrals.

More precisely:

Theorem 1.1. (Main result) Assume that � is a discrete nilpotent group � of step 2, and � �→A : is a

polynomial sequence. Then:

(i) (ℓp boundedness of maximal averages) Assume � �→f : is a function, and let

�� ( ) ∣ ( ( ) )∣
∣ ∣

∑≔
+

⋅ ∈
≥ ≤

−f g
N

f A n g gsup
1

2 1
, .
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1

Then, for any ( ]∈ ∞p 1, ,

� ��‖ ‖ ‖ ‖ℓ ( ) ℓ ( )≲f f .pp p

(ii) (Lp pointwise ergodic theorems) Assume � acts by measure-preserving transformations on a σ -finite

measure space X , ( )∈f L Xp , ( )∈ ∞p 1, , and let

( ) ( ( ) )
∣ ∣

∑≔
+

⋅ ∈
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−A f x
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f A n x x X
1

2 1
, .N

n N

1 (1.1)

Then the sequence A fN converges pointwise almost everywhere and in the Lp norm as → ∞N .

(iii) (ℓ2 boundedness of singular averages) Assume � �→K : is a Calderón-Zygmund kernel, i.e., a C1 function

satisfying

�

[( ∣ ∣)∣ ( )∣ ( ∣ ∣) ∣ ( )∣] ( )∫+ + + ′ ≤ ≤
∈ ≥ −

t K t t K t K t tsup 1 1 1, sup d 1.
t N N
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2

0

(1.2)

Assume that � �→f : is a (compactly supported) function, and let

�
�

( ) ( ) ( ( ) )∑≔ ⋅ ∈
∈

−Hf g K n f A n g g, .
n

1

Then

� �‖ ‖ ‖ ‖ℓ ( ) ℓ ( )≲Hf f .2 2

The theorem follows by combining the main results in [35] for parts (i) and (ii) and [37] for part (iii). We

discuss now some connections between this theorem and other related results in the literature.

1.1.1 Continuous Radon transforms

The discrete maximal averages and the discrete singular averages defined in Theorem 1.1 can be thought of as

discrete analog of the continuous Radon transforms, which are averages along suitable curves or surfaces. The

theory of continuous Radon transforms has been extensively studied, motivated mainly by problems at the

interface of Fourier analysis and geometry of surfaces in Euclidean spaces or nilpotent groups, and is very well

understood. This includes Lq estimates for the full range of exponents >q 1 and multidimensional averages,

see, e.g., [17,18,51].

1.1.2 The Furstenberg-Bergelson-Leibman conjecture

Discrete averages, both of the maximal and singular type, have been considered motivated mainly by open

problems in ergodic theory. A fundamental problem in the ergodic theory is to establish convergence in norm
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and pointwise almost everywhere for the polynomial ergodic averages as in (1.1) as → ∞N for functions

( )∈f L Xp , ≤ ≤ ∞p1 . The problem goes back to at least the early 1930s with von Neumann’s mean ergodic

theorem [56] and Birkhoff’s pointwise ergodic theorem [10] and led to profound extensions such as Bourgain’s

polynomial pointwise ergodic theorem [11–13] and Furstenberg’s ergodic proof [25] of Szemerédi’s theorem

[53] in particular. Furstenberg’s proof was also the starting point of ergodic Ramsey theory, which resulted in

many natural generalizations of Szemerédi’s theorem, including a polynomial Szemerédi theorem of Ber-

gelson and Leibman [7].

This motivates the following far reaching conjecture known as the Furstenberg-Bergelson-Leibman con-

jecture [8, Section 5.5, p. 468].

Conjecture 1.2. Assume that ≥d k, 1 are integers, �( ( ) )X X μ, , is a probability space, and assume that

→T T X X,…, :d1 is a given family of invertible measure-preserving transformations on the space �( ( ) )X X μ, ,

that generates a nilpotent group of step k . Assume that ≥m 1 is an integer and � �→P P P,…, ,…, :i j d m1,1 , , are

polynomial maps with integer coefficients such that ( ) =P 0 0i j, . Then for any ( )∈ ∞f f L X,…, m1 , the nonconven-

tional multilinear polynomial averages

�

( )( ) ( )
[ ]

( ) ( )∑ ∏=
+

⋯
∈ − ∩ =

A f f x
N

f T T x, …,
1

2 1
N X T T
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P n
d
P n

; , , … ,
, … ,

1
, 1

1d

d m j d j

1

1,1 , 1, ,
(1.3)

converge for μ-almost every ∈x X as → ∞N .

Conjecture 1.2 is a major open problem in the ergodic theory that was promoted in person by Furstenberg, see

[1, p. 6662], before being published in [8]. Our main result, Theorem 1.1 (ii), proves this conjecture in the linear case

=m 1, provided that the family of transformations →T T X X,…, :d1 generates a nilpotent group of step =k 2.

1.1.3 Earlier pointwise ergodic theorems

The basic linear case = = =m d k 1 with ( ) =P n n1,1 follows from Birkhoff’s original ergodic theorem [10]. On

the other hand, the commutative case = = =m d k 1 with an arbitrary polynomial =P P1,1 with integer

coefficients was a famous open problem of Bellow [3] and Furstenberg [26], solved by Bourgain in his break-

through papers [11–13].

Some particular examples of averages (1.3) with =m 1 and polynomial mappings with degree at most two

in the step two nilpotent setting were studied in [36,45].

The multilinear theory ≥m 2, in contrast to the linear theory, is widely open even in the commutative case

=k 1. Only a few results in the bilinear =m 2 and commutative = =d k 1 setting are known. Bourgain [14]

proved pointwise convergence when ( ) =P n an1,1 and ( ) =P n bn1,2 , �∈a b, . More recently, Krause et al. [40]

established pointwise convergence for the polynomial Furstenberg and Weiss averages [27,28] corresponding

to ( ) =P n n1,1 and ( ) ( )=P n P n1,2 , ≥Pdeg 2.

1.1.4 Norm convergence

Except for these few cases, there are no other results concerning pointwise convergence for the averages (1.3).

The situation is completely different, however, for the question of norm convergence, which is much better

understood.

A breakthrough article of Walsh [57] (see also [1]) gives a complete picture of ( )L X2 norm convergence of

the averages (1.3) for any �∈T T,…, d1 , where � is a nilpotent group of transformations of a probability space.

Prior to this, there was an extensive body of research toward establishing ( )L X2 norm convergence, including

groundbreaking works of Host and Kra [31], Ziegler [59], Bergelson [4], and Leibman [42]. See also

[2,19,24,32,54] and the survey articles [5,6,23] for more details and references, including a comprehensive

historical background.
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1.1.5 Additional remarks

Bergelson and Leibman [8] showed that convergence may fail if the transformations T T,…, d1 generate a

solvable group, so the nilpotent setting is probably the appropriate setting for Conjecture 1.2. The restriction

>p 1 is necessary in the case of nonlinear polynomials as shown in [15,41].

If �( ( ) )X X μ, , is a probability space and the family of measure preserving transformations ( )T T, …, d1 1 is

totally ergodic, then Theorem 1.1(ii) implies that

( )( ) ( ) ( )∫=
→∞

A f x f y μ ylim d ,
N

N X
P P

X

;
, … , d1 1

(1.4)

μ-almost everywhere on X . We recall that a family of measure preserving transformations ( )T T, …, d1 1
is called

ergodic on X if ( ) =−T B Bj
1 for all { }∈j d1, …, 1 implies ( ) =μ B 0 or ( ) =μ B 1 and is called totally ergodic if the

family ( )T T, …,n
d
n

1 1
is ergodic for all �∈ +n .

1.2 The universal step-two group �0

The proof of Theorem 1.1 will follow from our second main result, Theorem 1.3, for averages on universal

nilpotent groups of step two. We start with some definitions. For integers ≥d 1, we define

� �{( ) }≔ ∈ × ≤ < ≤Y l l l l d, : 0d 1 2 2 1

and the “universal” step-two nilpotent Lie groups � � ( )= d0
#

0
#

� �{( ) }( )≔ ∈∈x x: ,l l l l Y l l0
#

, d1 2 1 2 1 2
(1.5)

with the group multiplication law

[ ]
{ }

{ } { }
⋅ ≔

⎧
⎨
⎩

+ ∈ =

+ + ∈ ∈ −
x y

x y l d l

x y x y l d l l

if 1, …, and 0,

if 1, …, and 1, …, 1 .
l l

l l

l l l l l l

0 0 1 2

0 0 1 2 1
1 2

1 1

1 2 1 2 1 2

(1.6)

Alternatively, we can also define the group �0
# as the set of elements

� �( ) ( ) ( )( ) ( ) ( )
{ }

( )
( )= = ∈ = ∈∈ ∈

′
′g g g g g g g, , , ,l l d

d
l l l l Y

d1 2 1
0 1, … ,

2
, d1 1 1 2 1 2

(1.7)

where ( )′ ≔ − ∕d d d 1 2 and {( ) }′ ≔ ∈ ≥Y l l Y l, : 1d d1 2 2 . Letting

� � � [ ( )]× → ≔′R R x y x y: denote the bilinear form , ,d d d
l l l l0 0 0 01 2 1 2

(1.8)

we notice that the product rule in the group �0
# is given by

[ ] [ ] ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⋅ ≔ + ⋅ ≔ + +g h g h g h g h R g h, ,1 1 1 2 2 2
0

1 1 (1.9)

if ( )( ) ( )=g g g,1 2 and ( )( ) ( )=h h h,1 2 . For any �( )( ) ( )= ∈g g g,1 2
0
#, its inverse is given by

( ( ))( ) ( ) ( ) ( )= − − +−g g g R g g, , .1 1 2
0

1 1

The second variable of �( )( ) ( )= ∈g g g,1 2
0
# is called the central variable. Based on the product structure (1.9) of

the group �0
#, it is not difficult to see that ⋅ = ⋅g h h g for any �( )( ) ( )= ∈g g g,1 2

0
# and �( )( )= ∈h h0, 2

0
#.

Let � � ( )= d0 0 denote the discrete subgroup

� � �≔ ∩ ∣ ∣.Y
0 0

# d (1.10)

Let � �→A :0 0
# denote the canonical polynomial map (or the moment curve on �0

#)

[ ( )] ≔
⎧
⎨
⎩

=
≠

A x
x l

l

if 0,

0 if 0,
l l

l

0
2

2
1 2

1

(1.11)
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and notice that � �( ) ⊆A0 0. For �( )( )= ∈∈x xl l l l Y, 0
#

d1 2 1 2
and ( )∈ ∞Λ 0, , we define

�( )( )∘ ≔ ∈+
∈x xΛ Λ .l l

l l l l Y, 0
#

d
1 2

1 2 1 2
(1.12)

Notice that the dilations ∘Λ are group homomorphisms on the group�0 that are compatible with the map A0,

i.e., ( ) ( )∘ =A x A xΛ Λ0 0 .

Let � [ ]→χ : 0, 1 be a smooth function supported on the interval [ ]−2, 2 . Given any real number ≥N 1 and

a function � �→f : 0 , we can define a smoothed average along the moment curve A0 by the formula

�
�

( )( ) ( ) ( ( ) )∑≔ ⋅ ∈
∈

− − −M f x N χ N n f A n x x, .N
χ

n

1 1
0

1
0 (1.13)

The main advantage of working on the group �0 with the polynomial map A0 is the presence of the

compatible dilations ∘Λ defined in (1.12), which lead to a natural family of associated balls. This can be

efficiently exploited by noting that MN
χ
is a convolution operator on �0.

The convolution of functions on the group �0 is defined by the formula

� �

( )( ) ( ) ( ) ( ) ( )∑ ∑∗ ≔ ⋅ = ⋅
∈

−

∈

−f g x f y x g y f z g x z .
y z

1 1

0 0

(1.14)

Then it is not difficult to see that ( )( ) ( )=M f x f G x*N
χ

N
χ

, where

� �
�

( ) ( ) ( ){ ( )}∑≔ ∈
∈

− −G x N χ N n x x, .N
χ

n

A n
1 1

00 (1.15)

We are now ready to state our second main result.

Theorem 1.3. (Boundedness on�0) Let� � ( )= d0 0 , ≥d 1, be the discrete nilpotent group defined in (1.10) and A0

the polynomial sequence defined in (1.11). Then

(i) (Maximal estimates) If < ≤ ∞p1 and �ℓ ( )∈f p
0 , then

�

�∣ ( )∣ ‖ ‖

ℓ ( )

ℓ ( )≲
≥

M f fsup ,
N

N
χ

p
1 p

p

0

0 (1.16)

where MN
χ
is defined as in (1.13).

(ii) (Long variational estimates) If < < ∞p1 and >
⎧
⎨
⎩

⎫
⎬
⎭−ρ pmax ,

p

p 1
, and ( ]∈τ 1, 2 , then

� � �∥ ( ( ) )∥ ‖ ‖ℓ ( ) ℓ ( )∈ ≲V M f N f: ,ρ
N
χ

τ p ρ τ, ,p p
0 0

(1.17)

where � �{ }≔ ∈τ n:τ
n . See (1.18) for the definition of the ρ-variation seminorms Vρ.

(iii) (Singular integrals) If � �→K : is a Calderón-Zygmund kernel as in (1.2), � �→f : 0 is a (compactly

supported) function, and

�
�

( ) ( ) ( ( ) )∑≔ ⋅ ∈
∈

−H f g K n f A n g g, ,
n

0 0
1

0

then

� �‖ ‖ ‖ ‖ℓ ( ) ℓ ( )≲H f f .0 2
0

2
0

1.3 Remarks and overview of the proof

We discuss now some of the main ideas in the proofs of Theorems 1.1 and 1.3.
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1.3.1 The Calderón transference principle

One can show that Theorem 1.1 is a consequence of Theorem 1.3 upon performing lifting arguments and

adapting the Calderón transference principle [16]. Indeed, if �# is a connected and simply connected nilpotent

Lie group of step 2, with Lie algebra� , then one can choose the so-called exponential coordinates of the second

kind associated to a Malcev basis of the Lie algebra � (see [20], Sec. 1.2) in such a way that

� � �{( ) ( ) ( ) ( ( ))}≃ ∈ × ⋅ ′ ′ = + ′ + ′ + ′x y x y x y x x y y R x x, : , , , , ,b b# 1 2

where �∈ +b b,1 2 depend on the Lie algebra � and � � �× →R : b b b1 1 2 is a bilinear form.

Moreover, if� �≤ # is a discrete co-compact subgroup, then one can choose the Malcev basis such that the

discrete subgroup � is identified with the integer lattice � � �= ×b b b1 2 (see [20], Thm. 5.1.6 and Prop. 5.3.2).

Recall that � �→A : is a polynomial sequence satisfying ( ) =A 0 1. The main point is that one can choose d

sufficiently large and a group morphism � �→T : 0
# such that

�( ) ( ( ))= ∈A n T A n nfor any .0

Then one can use this group morphism to transfer bounds on operators on the universal group �0 to bounds

on operators on the group�. Theorem 1.1 is thus a consequence of Theorem 1.3, and our main goal therefore is

to prove Theorem 1.3.

1.3.2 The variation spaces Vρ

For any family 	( )∈a t:t of elements of � indexed by a totally ordered set 	, and any exponent ≤ < ∞ρ1 , the

ρ-variation seminorm is defined by

	
�

	

( ) ∣ ( ) ( )∣∑∈ ≔
⎛

⎝
⎜ −

⎞

⎠
⎟

∈ <⋯<
∈

=

−

+

∕

+

V a t a t a t: sup sup ,ρ
t

J t t

t
j

J

j j
ρ

ρ

0

1

1

1

J

j

0

(1.18)

where the supremum is taken over all finite increasing sequences in 	. It is easy to see that ↦ρ Vρ is

nonincreasing, and for every 	∈t0 , one has

	 	
	 	

∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )≤ + ∈ ≤ + ∈
∈ ∈

a a V a t a V a tsup : sup : .
t

t t
ρ

t
t

t
ρ

t0 (1.19)

In particular, the maximal estimate (1.16) follows from the variational estimate (1.17). The main point of

proving stronger variational estimates such as (1.17), with general parameters ( ]∈τ 1, 2 , is that it gives an

elegant path to deriving pointwise ergodic theorems (which would not follow directly just from maximal

estimates such as (1.16)). At the same time, the analysis of variational inequalities has many similarities with

the analysis of maximal inequalities and is not substantially more difficult. This is due in large part to the

Rademacher-Menshov inequality (see [47, Lemma 2.5]): for any ≤ < ∞ρ2 and �∈j m,0 so that <j 2m
0 and

any sequence of complex numbers a �( )∈k:k , we have

a a a

�

( ) ∣ ∣
[ ]

( )∑ ∑≤ ≤ ≤
⎛

⎝
⎜ −

⎞

⎠
⎟

= ∈ − ∩
+

∕

− −
V j j: 2 2 .ρ

j
m

i

m

j j
j j0

0 2 ,2 1
1 2 2

2

1 2

i m i

i i

0

(1.20)

1.3.3  p theory

The problem of passing from ℓ2 estimates to ℓp estimates in the context of discrete polynomial averages has

been investigated extensively in recent years (see, for example, [46], and the references therein).
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The full �ℓ ( )p
0 bounds in Theorem 1.3 rely on first proving �ℓ ( )2

0 bounds. In fact, we first establish (1.17)

for =p 2 and >ρ 2. Then we use the positivity of the operators MN
χ
(i.e., ( ) ≥M f 0N

χ
if ≥f 0) to prove the

maximal operator bounds (1.16) for all ( ]∈ ∞p 1, . Finally, we use vector-valued interpolation between the

bounds (1.17) with =p 2 and >ρ 2 and (1.16) with ( ]∈ ∞p 1, to complete the proof of Theorem 1.3.

1.3.4 Some technical remarks

Theorem 1.3 (i) and (ii) extends the results of [46,48] to the noncommutative, nilpotent setting. Its conclusions

remain true for rough averages, i.e., when �[ ]= −χ 1,1 in (1.13), but it is more convenient to work with smooth

averages.

The restriction >p 1 in Theorem 1.3 (i) and (ii) is sharp due to [15,41]. However, the range of

>
⎧
⎨
⎩

⎫
⎬
⎭−ρ pmax ,

p

p 1
is only sharp when =p 2 due to Lépingle’s inequality [43]. One could hope to improve this

to the full range >ρ 2, but we do not address this here since the limited range >
⎧
⎨
⎩

⎫
⎬
⎭−ρ pmax ,

p

p 1
is already

sufficient for us to establish Theorem 1.1.

The restriction =p 2 in the singular integral bounds in part (ii) is probably not necessary. In the commu-

tative case, one can prove boundedness in the full range ( )∈ ∞p 1, [38], but the proof depends on exploiting

certain Fourier multipliers, and we do not know at this time if a similar definitive result holds in the

nilpotent case.

1.4 The main difficulty and a nilpotent circle method

Bourgain’s seminal articles [11–13] generated a large amount of research and progress in the field. Many other

discrete operators have been analyzed by many authors motivated by problems in analysis and ergodic

theory. See, for example, [15,36,38–41,44–48,49,50,52] for some results of this type and more references. A

common feature of all of these results, which plays a crucial role in the proofs, is that one can use Fourier

analysis techniques, in particular, the powerful framework of the classical circle method, to perform the

analysis.

Our situation in Theorem 1.3 is different. The main conceptual issue is that there is no good Fourier

transform on nilpotent groups, compatible with the structure of the underlying convolution operators and at

the level of analytical precision of the classical circle method. At a more technical level, there is no good

resolution of the delta function compatible with the group multiplication on the group �0. This prevents us

from using a naive implementation of the circle method. The classical delta function resolution

e e�


 


( ) (( ) ) (( ) ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫⋅ = − −−

× ′

x y y x θ y x θ θ θ. . d d0
1 1 1 1 2 2 2 1 2

d d

does not detect the group multiplication correctly. Here, ( )( ) ( ) ( )−y x θ.1 1 1 and ( )( ) ( ) ( )−y x θ.2 2 2 denote the usual

scalar product of vectors in �d and � ′d , respectively.

These issues lead to very significant difficulties in the proof and require substantial new ideas. Our main

new construction in [35] is what we call a nilpotent circle method, an iterative procedure, starting from the

center of the group and moving down along its central series. At every stage, we identify “minor arcs,” and

bound their contributions using Weyl’s inequalities (the classical Weyl inequality as well as a nilpotent Weyl

inequality which was proved in [37]). The final stage involves “major arcs” analysis, which relies on a

combination of continuous harmonic analysis on groups �0
# and arithmetic harmonic analysis over finite

integer rings modulo �∈ +Q . We outline this procedure in Section 3.
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At the implementation level, classical Fourier techniques are replaced with almost orthogonality methods

based on exploiting high order ∗T T arguments for operators defined on the discrete group �0. Investigating

high powers of ∗T T (i.e., ( )∗T T r for a large �∈ +r ) is consistent with a general heuristic lying behind the proof

of Waring-type problems, which says that the more variables that occur in Waring-type equations, the easier it

is to find solutions, and we are able to make this heuristic rigorous in our problem. Manipulating the para-

meter r , by taking r to be very large, we can always decide how many variables we have at our disposal,

making our operators “smoother and smoother.”

1.5 General discrete nilpotent groups

The primary goal is, of course, to remove the restriction that the discrete nilpotent groups� in Theorem 1.1 are

of step 2 and thus establish the full Conjecture 1.2 in the linear =m 1 case for arbitrary invertible measure-

preserving transformations T T,…, d1 that generate a nilpotent group of any step ≥k 2. The iterative argument

we outline in Section 3 below could, in principle, be extended to higher step groups, at least as long as the

group and the polynomial sequence have suitable “universal”-type structure, as one could try to go down along

the central series of the group and prove minor arcs and transition estimates at every stage.

However, this is only possible if one can prove suitable analog of the nilpotent Weyl’s inequalities in

Proposition 2.1 on general nilpotent groups of step ≥k 3. The point is to have a small (not necessarily optimal,

but nontrivial) gain for bounds on oscillatory sums over many variables, corresponding to the kernels of high

power ( )∗T T r operators, whenever frequencies are restricted to the minor arcs. In our case, the formulas are

explicit, see the identities (2.10), and we can use ideas of Birch [9] and Davenport [21] for Diophantine forms in

many variables to control the induced oscillatory sums, but the analysis seems to be more complicated for the

higher step nilpotent groups.

1.6 Waring-type problems

The classical Waring problem, solved by Hilbert [30] in 1909, concerns the possibility of writing any positive

integer as a sum of finitely many p powers: for any integer ≥p 1, there is ( )=r r p such that any integer

�∈ +y can be written in the form

∑=
=

y m m m, for some nonnegative integers ,…, .
i

r

i
p

r

1

1 (1.21)

There is a vast amount of literature on this problem and its many possible extensions. In particular, the

symmetric system of equations

( ) ( )∑ − = ≤ ≤
=

m n s d0 1 ,
j

r

j
s

j
s

1

(1.22)

first studied by Vinogradov [55] in relation to the Waring problem, have been the focus of intense recent

research, see [58] for some recent results.

We are interested here in understanding the analogs question on our discrete nilpotent Lie group �0, and

for our given polynomial sequence A0: Can one represent elements �∈g 0 in the form

( ) ( ) ( ) ( )= ⋅ ⋅ ⋅ ⋅− −g A n A m A n A m… ,r r0 1
1

0 1 0
1

0 (1.23)

for some integers n m n m, ,…, ,r r1 1 , provided that r is large enough? We are, in fact, interested in proving a

quantitative statement on the number of such representations, for integers �[ ] [ ]∈ ≔ − ∩n m n m N N N, ,…, , ,r r1 1 .

We notice that many group elements g cannot be written in the form (1.23), due to local obstructions; for

instance, if g can be represented in the form (1.23) then necessarily ( )≡ ≡ ≡g g g… mod 2d10 20 0 ,

( )= =g g … mod 310 30 etc. We remark also there is a significant difference between the classical Waring

8  Alexandru D. Ionescu et al.



problem (1.21) and its nilpotent analog (1.23), namely the positivity of the p-powers which imposes size

restrictions on the variables xi in terms of the prescribed output value y.

For integers ≥r N, 1 and �∈g 0 let

( ) ∣{( ) [ ] ( ) ( ) ( ) ( ) }∣≔ ∈ ⋅ ⋅ ⋅ ⋅ =− −S g m n N A n A m A n A m g, : … .r N
r

r r,
2

0 1
1

0 1 0
1

0 (1.24)

A qualitative variant of the Waring problem on nilpotent groups was recently investigated in [33,34], see also

the references given there. Our main result in this direction is the following quantitative version on the

nilpotent group �0:

Theorem 1.4. (i) There is an integer ( ) ≥r d 10 such that if ( )≥r r d0 is sufficiently large and �∈g 0, then

S e

�

( ) ( ) ( ) ( ( ) ) ( )
( )

∫∏=
⎛

⎝
⎜

⎞

⎠
⎟
⎡

⎣
⎢ − ∘ +

⎤

⎦
⎥

∈

−∣ ∣−∣ ∣ − − ∕

+ ′

S g N N g ζ N g ζ ζ O NΦ . d ,r N
r

l l Y

l l
r,

2

,

1 1 2

d d d1 2

1 2 (1.25)

uniformly in �∈N . Here, the singular seriesS is defined by

S e

�

( ) ( ) ( )
[ )

∑≔ ∕ − ∕
∕ ∈ ∩∞

+ ′ + ′
g G a q g a q.

a q 0,1d d d d
(1.26)

and the singular integral Φ is defined by

e �( ) ( ( ) )

[ ]

∫= ∈
−

+ ′ξ D z w ξ z w ξΦ , . d d , .d d

1,1
r2

(1.27)

In particular, all elements �∈g 0 cannot be represented in the form (1.23) more than a constant times the

expected number of representations, i.e.,

�( )
( )

∏≲
⎛

⎝
⎜

⎞

⎠
⎟ ∈

∈

−∣ ∣−∣ ∣S g N N for any g .r N r
r

l l Y

l l
,

2

,

0

d1 2

1 2 (1.28)

(ii) For ( )r d0 as earlier, if ( )≥r r d0 and r is even, then there is a sufficiently large integer ( )=Q Q r such that

( ) [ ( ) ( )]
( )

∏=
⎛

⎝
⎜

⎞

⎠
⎟ +

∈

−∣ ∣−∣ ∣ − ∕S g N N c g O N ,r N
r

l l Y

l l
r r g,

2

,

,
1 2

d1 2

1 2 (1.29)

for any �∈g Q (see definition (3.32)), where ( ) ≈c g 1r r uniformly in g .

We will provide a complete proof of this theorem in Section 4.

1.7 Organization

The rest of this article is organized as follows: in Section 2, we present several nilpotent Weyl estimates proved

in [37], which play a key role in the analysis of minor arcs. In Section 3, we outline our main new method, the

nilpotent circle method, developed in [35] to prove maximal and variational estimates on nilpotent groups. In

Section 4, we prove Theorem 1.4, the main new result in this article.

2 A nilpotent Weyl inequality on the group �0

In this section, we derive explicit formulas used in high order ∗T T arguments and discuss a key ingredient in

our analysis, namely, Weyl inequalities on the group �0.

Polynomial sequences in discrete nilpotent groups of step 2  9



2.1 High-order ∗∗T T arguments and product kernels

Many of our �ℓ ( )2
0 estimates will be based on high-order ∗T T arguments. Assume that

�ℓ ( ) ℓ ( )→S T S T G, ,…, , :r r1 1
2

0
2

0

are convolution operators defined by some �ℓ ( )1
0 kernels � �→L K L K, ,…, , :r r1 1 0 , i.e., = ∗S f f Lj j and

= ∗T f f Kj j for { }∈j r1, …, . Then the adjoint operators ∗ ∗S S,…, r1 are also convolution operators, defined by

the kernels ∗ ∗L L,…, r1 given by

( ) ( )≔∗ −L g L g .j j
1

Moreover, by using (1.14), for any �ℓ ( )∈f 2
0 and �∈x 0, we have

�

( )( ) ( ) ( ) ( )∑ ∏=
⎧
⎨
⎩

⎫
⎬
⎭

⋅ ⋅ ⋅ ⋅ ⋅∗ ∗

∈ =

∗ − − − −S T S T f x L h K g f g h g h x… … .r r

h g h g j

r

j j j j r r1 1

, , … , , 1

1 1
1

1
1

1

r r1 1 0

(2.1)

In other words ( )( ) ( )( )= ∗∗ ∗S T S T f x f A x… r r
r

1 1 , where the kernel Ar is given by

�
�

( ) ( ) ( ) ( ){ }∑ ∏≔
⎧
⎨
⎩

⎫
⎬
⎭

⋅ ⋅ ⋅ ⋅ ⋅
∈ =

− −A y L h K g g h g h y… .r

h g h g j

r

j j j j r r

, , … , , 1

0
1

1
1

1

r r1 1 0

(2.2)

To use these formulas, we decompose ( ) ( )( ) ( ) ( ) ( )= =h h h g g g, , ,j j j j j j

1 2 1 2 as in (1.7). Then

[ ] ( )( ) ( ) ( )∑⋅ ⋅ ⋅ ⋅ = − +− −

≤ ≤
h g h g h g… ,r r

j r
j j1

1
1

1 1

1

1 1
(2.3)

[ ] { ( ) ( )} ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑⋅ ⋅ ⋅ ⋅ = − − + − + − + − +− −

≤ ≤ ≤ < ≤
h g h g h g R h h g R h g h g… , , ,r r

j r
j j j j j

l j r
l l j j1

1
1

1 2

1

2 2
0

1 1 1

1

0
1 1 1 1

(2.4)

as a consequence of applying (1.9) inductively.

In many of our applications, the operators S T S T, ,…, ,r r1 1 are equal and, more importantly, are defined by

a kernel K that has product structure, i.e.,

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

= = = = = ∗
= =

S f T f S f T f f K

K g K g g K g K g

… ,

, .

r r1 1

1 2 1 1 2 2
(2.5)

In this case, we can derive an additional formula for the kernel Ar . We use the identity

e e�


 


( ) (( ) ) (( ) ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫⋅ = − −−

× ′

x y y x θ y x θ θ θ. . d d ,0
1 1 1 1 2 2 2 1 2

d d

where e( ) ≔z e πiz2 . The formula (2.2) shows that

e e


 


( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫=
× ′

A y y θ y θ θ θ θ θ. . Σ , d d ,r r1 1 2 2 1 2 1 2

d d

(2.6)

where

e

�

( ) ( ) ( ) ( [ ] )( ) ( ) ( ) ( )∑ ∏ ∏≔
⎧
⎨
⎩

⎫
⎬
⎭

− ⋅ ⋅ ⋅ ⋅
∈ = =

− −θ θ K h K g h g h g θΣ , … . .r

h g j

r

j j
i

r r
i i1 2

, 1 1

2

1
1

1
1

j j 0

Recalling the product formula (2.5), we can write

( ) ( ) ( )( ) ( ) ( ) ( ) ( )=θ θ θ θ θΣ , Π , Ω ,r r r1 2 1 2 2 (2.7)

for any 
 
( )( ) ( ) ∈ × ′θ θ, d d1 2 , where
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e

e

�

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∑ ∏ ∑

∑ ∑

≔
⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜ −

⎞

⎠
⎟

×
⎛

⎝
⎜−

⎧
⎨
⎩

− + − + − +
⎫
⎬
⎭

⎞

⎠
⎟

∈ = ≤ ≤

≤ ≤ ≤ < ≤

θ θ K h K g θ h g

θ R h h g R h g h g

Π , .

. , ,

r

h g j

r

j j
j r

j j

j r
j j j

l j r
l l j j

1 2

, 1

1 1 1 1 1

1

1 1

2

1

0
1 1 1

1

0
1 1 1 1

j j
d1 1

(2.8)

and

e

e

�

�

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

∑ ∏ ∑

∑

≔
⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜ −

⎞

⎠
⎟

= −

∈ = ≤ ≤

∈

′

′

θ K h K g θ h g

K g θ g

Ω .

. .

r

h g j

r

j j
j r

j j

g

r

2

, 1

2 2 2 2 2

1

2 2

2 2 2 2

2

j j
d

d

2 2

2

(2.9)

2.2 Weyl estimates

After applying high-order ∗T T arguments, we often need to estimate exponential sums and oscillatory integrals

involving polynomial phases. With the notation in Section 1.2, for ≥r 1, let � � �͠ × →D D, : r r
0
# be defined by

(( ) ( )) ( ) ( ) ( ) ( )

(( ) ( )) ( ) ( ) ( ) ( )͠

≔ ⋅ ⋅ ⋅ ⋅
≔ ⋅ ⋅ ⋅ ⋅

− −

− −

D n n m m A n A m A n A m

D n n m m A n A m A n A m

, …, , , …, … ,

, …, , , …, … .

r r r r

r r r r

1 1 0 1
1

0 1 0
1

0

1 1 0 1 0 1
1

0 0
1

(2.10)

By definition, we have

[ ( )] [ ( ) ]=
⎧
⎨
⎩

=
≥

=
⎧
⎨
⎩
− =

≥
−

+A n
n l

l
A n

n l

n l

if 0,

0 if 1,

if 0,

if 1.
l l

l

l l

l

l l0
2

2
0

1 2

2
1 2

1

1 2

1

1 2

Thus, by using (2.3) and (2.4), for �( )= ∈x x x, …, r
r

1 and �( )= ∈y y y, …, r
r

1 , one has

[ ( )]

( )

( )( ) ( )

∑

∑ ∑
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

− =

− − + − ≥

=

≤ < ≤ =

+
D x y

y x l

y x y x x x y l

,

if 0,

if 1,

l l

j

r

j
l

j
l

j j r
j
l

j
l

j
l

j
l

j

r

j
l l

j
l

j
l

1

2

1 1

2

1 2

1 1

1 2
1

1

1

1

2

2

2

2 1 2 1 2

(2.11)

and

[ ( )]

( )

( )( ) (

͠

)

∑

∑ ∑
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

− =

− − + − ≥

=

≤ < ≤ =

+
D x y

x y l

x y x y y x y l

,

if 0,

if 1.

l l

j

r

j
l

j
l

j j r
j
l

j
l

j
l

j
l

j

r

j
l l

j
l

j
l

1

2

1 1

2

1 2

1 1

1 2

1

1

1

1

2

2

2

2 1 2 1 2

(2.12)

For �∈ +P assume � �( ) ( ) →ϕ ψ, :
P

j
P

j , { }∈j r1, …, , are �( )C1 functions with the properties

�

�

[∣ ∣ ∣ ∣] ∣[ ] ( )∣ ∣[ ] ( )∣( ) ( )
[ ]

( ) ( )∫+ ≤ ′ + ′ ≤
≤ ≤

−
≤ ≤

ϕ ψ ϕ x ψ x xsup , sup d 1.
j r

P
j

P
j

P P
j r

P
j

P
j

1
,

1
(2.13)

For �( )( )= ∈∈
∣ ∣θ θl l l l Y
Y

, d
d

1 2 1 2
, �∈ +r , and �∈ +P let

e

�

( ) ( ( ) ) ( ) ( )( ) ( )∑ ∏= −
⎧
⎨
⎩

⎫
⎬
⎭∈ =

S θ D n m θ ϕ n ψ m, .P r

n m j

r

P
j

j P
j

j,

, 1r
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and

e

�

( ) ( ( ) ) ( ) ( )͠ ͠ ( ) ( )∑ ∏= −
⎧
⎨
⎩

⎫
⎬
⎭∈ =

S θ D n m θ ϕ n ψ m, . ,P r

n m j

r

P
j

j P
j

j,

, 1r

where D and D͠ are defined as in (2.11)–(2.12).

The following key estimates are proved in [37, Proposition 5.1 and Lemma 3.1]:

Proposition 2.1. (i) (Nilpotent Weyl estimate) For any >ε 0, there is �( )= ∈ +r r ε d, sufficiently large such that

for all �∈ +P we have

∣ ( )∣ ∣ ( )∣͠+ ≲ − ∕S θ S θ P P ,P r P r ε
r ε

, ,
2 1 (2.14)

provided that there is ( ) ∈l l Y, d1 2 and an irreducible fraction �∕ ∈a q , �∈ +q , such that

∣ ∣ [ ]− ∕ ≤ ∕ ∈ + −θ a q q and q P P1 , .l l
ε l l ε2

1 2
1 2 (2.15)

(ii) (Nilpotent Gauss sums) For any irreducible fraction �∕ ∈ ∣ ∣a q Yd , �( )( )= ∈∈
∣ ∣a al l l l Y
Y

, d
d

1 2 1 2
, �∈ +q , we

define the arithmetic coefficients

e e

� �

( ) ( ( ) ( )) ( ) ( ( ) ( ))͠ ͠∑ ∑∕ ≔ − ∕ ∕ ≔ − ∕−

∈

−

∈
G a q q D v w a q G a q q D v w a q, . , , . .r

v w

r

v w

2

,

2

,q
r

q
r

(2.16)

Then for any >ε 0, there is �( )= ∈ +r r ε d, sufficiently large such that

∣ ( )∣ ∣ ( )∣͠∕ + ∕ ≲ − ∕G a q G a q q .ε
ε1 (2.17)

We also need a related integral estimate, see Lemma 5.4 in [37]:

Proposition 2.2. Given >ε 0 there is ( )=r r ε d, sufficiently large as in Proposition 2.1, such that

e

e

� �

� �

( ) ( ) ( ( ) ) ⟨ ⟩

( ) ( ) ( ( ) ) ⟨ ⟩͠

∫

∫

∏

∏

⎧
⎨
⎩

⎫
⎬
⎭

− ≲

⎧
⎨
⎩

⎫
⎬
⎭

− ≲

× =

− ∕

× =

− ∕

ϕ x ψ y D x y β x y β

ϕ x ψ y D x y β x y β

, . d d ,

, . d d ,

j

r

j j j j
ε

j

r

j j j j
ε

1

1

1

1

r r

r r

(2.18)

for any �∈ ∣ ∣β Yd (here and later on, we use the Japanese bracket notation ⟨ ⟩ ( ∣ ∣ )≔ + ∕β β1 2 1 2) and for any �( )C1

functions � �→ϕ ψ ϕ ψ, ,…, , :r r1 1 satisfying, for any { }∈j r1, …, , the bounds

�

�

∣ ∣ ∣ ∣ ( ) [∣ ( )∣ ∣ ( )∣][ ] ∫+ ≤ ∂ + ∂ ≤−ϕ ψ x ϕ x ψ x x, d 1.j j x j x j1,1

These statements should be compared with classical Weyl-type estimates, which are proved, for example,

in [52, Proposition 1]:

Proposition 2.3. (i) Assume that ≥P 1 is an integer and � �→ϕ :P is a �( )C1 function satisfying

�

�

∣ ∣ ∣ ( )∣[ ] ∫≤ ′ ≤−ϕ ϕ x x, d 1.P P P P, (2.19)

Assume that >ε 0 and �( )= ∈θ θ θ, …, d
d

1 has the property that there is { }∈l d1, …, and an irreducible fraction

�∕ ∈a q with �∈ +q , such that

∣ ∣ [ ]− ∕ ≤ ∕ ∈ −θ a q q and q P P1 , .l
ε l ε2 (2.20)

Then there is a constant = ≥C C 1d such that
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e

�

( ) ( ( ))∑ − + + ≲
∈

− ∕ϕ n θ n θ n P… .
n

P d
d

ε
ε C

1
1 (2.21)

(ii) For any irreducible fraction �( )= ∕ ∈ ∕θ a q q d, �( )= ∈a a a, …, d
d

1 , �∈ +q , we have

e

�

( ( ))∑ − + + ≲−

∈

− ∕q θ n θ n q… .
n

d
d C1

1
1

q

(2.22)

Notice a formal similarity between Propositions 2.1 and 2.3. They both involve a small but nontrivial gain

of a power of P as soon as one of the coefficients of the relevant polynomials is far from rational numbers with

small denominators. These estimates can therefore be used efficiently to estimate minor arcs contributions.

We note, however, that the proof of the nilpotent Weyl estimates in Proposition 2.1 is much more involved

than the proof of Proposition 2.3. It relies on some classical ideas of Birch [9] and Davenport [21,22] on treating

polynomials in many variables, but one has to identify and exploit suitable nondegeneracy properties of the

explicit (but complicated) polynomials D and D͠ in (2.11)–(2.12) to make the proof work. All the details of the

proof are provided in [37, Section 5].

3 A nilpotent circle method

To illustrate our main method, we focus on a particular case of Theorem 1.3, namely, on proving boundedness

of the maximal function MN
χ
on �ℓ ( )2

0 . For simplicity of notation, for �∈k and �∈x 0, let

�

�

�

� ( ) ( ) ( ) ( ( ) ) ( )( )

( ) ( ) ( ) ( ){ ( )}

∑

∑

≔ = ⋅ = ∗

≔ =
∈

− − −

∈

− −

f x M f x χ n f A n x f K x

K x G x χ n x

2 2 ,

2 2 ,

k
χ

n

k k
k

k
χ

n

k k
A n

2 0
1

2

k

k 0

(3.1)

see (1.13) and (1.15) for the definitions MN
χ
and GN

χ
, respectively. With this new notation, our main goal is to

prove the following:

Theorem 3.1. For any �ℓ ( )∈f 2
0 , we have

�

��∣ ∣ ‖ ‖

ℓ ( )

ℓ ( )≲
≥

f fsup .
k

k
0 2

0

2
0 (3.2)

In the rest of this section, we outline the proof of this theorem. Our main new construction is an iterative

procedure, starting from the center of the group and moving down along its central series, which allows us to

use some of the ideas of the classical circle method recursively at every stage. In our case of nilpotent groups of

step two, the procedure consists of two basic stages and one additional step corresponding to “major arcs.”

Notice that the kernels Kk have a product structure

� �
�

( ) ( ) ( ) ( ) ( ) ( ( ))( )
{ }

( ) ( )
{ }

( ) ( )∑≔ ≔ −
∈

− −K g L g g L g χ n g A n, 2 2 ,k k k

n

k k1
0

2 1
0

1
0

1
(3.3)

where �( ) ( )( ) ≔ ∈A n n n, …, d d
0

1
and �( )( ) ( )= ∈g g g,1 2

0 as in (1.7).

3.1 First stage reduction

We first decompose the singular kernel � ( ){ }
( )g0
2 in the central variable ( )g 2 into smoother kernels. For any

�∈s and �∈ +m , we define the set of rational fractions

� �� { ( ) [ ) ( ) }≔ ∕ = ∈ ∈ ∩ =+a q a a a q a a q: , …, , 2 , 2 , gcd , …, , 1 .s
m

m
m s s

m1
1

1 (3.4)
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We define also � �≔ ⋃≤ ≤ ≤a
m

s a s
m

0 . For �( ) ( )
{ }( )= ∈∈x xl l d

d1
0
1

1, … ,1 1
, �( ) ( )

( )( )= ∈∈
′

′x xl l l l Y
d2 2

, d1 2 1 2
and ( )∈ ∞Λ 0, , we

define the partial dilations:

� �( ) ( )( ) ( )
{ }

( ) ( )
( )∘ = ∈ ∘ = ∈∈

+
∈

′
′x x x xΛ Λ , Λ Λ ,l

l l d
d l l

l l l l Y
d1

0
1

1, … ,
2 2

, d
1

1 1
1 2

1 2 1 2
(3.5)

which are induced by the group-dilations defined in (1.12).

We fix � [ ]→η : 0, 10 a smooth even function such that � �[ ] [ ]≤ ≤− −η1,1 0 2,2 . For �∈t and integers ≥j 1, we

define

( ) ( ) ( ) ∑≔ − =− − +

=

∞

η t η t η t η2 2 , 1 .j
j j

j
j0 0

1

0

(3.6)

For any [ )∈ ∞A 0, , we define

�[ ]

∑≔≤
∈ ∩

η η .A
j A

j
0,

(3.7)

By a slight abuse of notation, we also let ηj and ≤η A denote the smooth radial functions on �m, ≥m 1, defined

by ( ) (∣ ∣)=η x η xj j and ( ) (∣ ∣)=≤ ≤η x η xA A . We fix also two small constants ( ) ( )= ≪ ′ = ′δ δ d δ δ d such that

( ( ) ]′ ∈ −δ d0, 10 10 and ( ( ) ]∈ ′δ δ0, 4 , and a large constant ( )= ≫ −D D d δ 8, which depend on arithmetic properties

of the polynomial sequence A0 (more precisely on the structural constants in Propositions 2.1–2.2) such that

( )≪ ∕ ′ ≪ ∕ ≪ = ′ ≪δ δ r r δ δ d D1 1 1 , , . (3.8)

For ≥k D2, we fix two cutoff functions � [ ]( ) →ϕ : 0, 1
k

d1 , � [ ]( ) →′ϕ : 0, 1
k

d2 , such that

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )≔ ∘ ≔ ∘≤
−

≤
−ϕ g η g ϕ g η g2 , 2 .

k δk
k

k δk
k1 1 1 2 2 2 (3.9)

For �∈k so that ≥k D2 and for any 1-periodic sets of rationals �� ⊆ d, �� ⊆ ′d , we define the periodic

Fourier multipliers by







�

�

�

�

( ) ( ( ))

( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( )

∑

∑

≔ ∘ − ∕ ∈

≔ ∘ − ∕ ∈

∕ ∈
≤ ′

∕ ∈
≤

′

ξ η ξ a q ξ

ξ η ξ b q ξ

Ψ 2 , ,

Ξ 2 , .

k

a q
δ k

k d

k

b q
δk

k d

,
1 1 1

,
2 2 2

(3.10)

For ≥k D2 and �[ ]∈ ∩s δk0, , we define the periodic Fourier multipliers � [ ]→′Ξ : 0, 1k s
d

, ,

�
�

( ) ( ) ( ( ))( ) ( ) ( )∑≔ = ∘ − ∕
∕ ∈

≤′
′

ξ ξ η ξ a qΞ Ξ 2 .k s k
a q

δk
k

,
2

,
2 2

s
d

s
d

(3.11)

For ≥k D2, we write

e

e e

�




�

 


( ) ( )

( ) ( ) ( ) ( )

{ }
( ) ( ) ( ) ( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

∫

∫ ∫∑

=

= +
∈ ∩

′

′ ′

g g ξ ξ

g ξ ξ ξ g ξ ξ ξ

. d

. Ξ d . Ξ d ,
s δk

k s k
c

0
2 2 2 2

0,

2 2
,

2 2 2 2 2 2

d

d d

(3.12)

where

�[ ]

∑≔ −
∈ ∩

Ξ 1 Ξ .k
c

s δk

k s

0,

, (3.13)

Then we decompose �[ ]= + ∑ ∈ ∩K K Kk k
c

s δk k s0, , , where, with the notation in (3.3), we have

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )≔ ≔K g L g N g K g L g N g, ,k s k k s k
c

k k
c

,
1

,
2 1 2 (3.14)

and

e

e







( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

∫

∫

≔

≔

′

′

N g ϕ g g ξ ξ ξ

N g ϕ g g ξ ξ ξ

. Ξ d ,

. Ξ d .

k s k k s

k
c

k k
c

,
2 2 2 2 2

,
2 2

2 2 2 2 2 2 2

d

d

(3.15)
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We first show that we can bound the contributions of the minor arcs in the central variables.

Lemma 3.2. For any integer ≥k D2 and �ℓ ( )∈f 2
0 , we have

� �‖ ‖ ‖ ‖ℓ ( ) ℓ ( )∗ ≲ − ∕f K f2 .k
c k D2

0

2
2

0
(3.16)

Then we prove our first transition estimate, i.e., we show that we can bound the contributions of the

kernels Kk s, corresponding to scales ≥k 0 not very large. More precisely, for any ≥s 0, we define

( )≔ +κ 2 .s
D s2 1 2

(3.17)

Lemma 3.3. For any integer ≥s 0 and �ℓ ( )∈f 2
0 , we have

�

�∣ ∣ ‖ ‖
( )

ℓ ( )

ℓ ( )∗ ≲
∕ ≤ <

− ∕f K fsup 2 .
D s δ k κ

k s
s D

max , 2
,

s
2

2
0

2
2

0 (3.18)

In the commutative setting, minor arcs estimates such as (3.16) follow using Weyl estimates and the

Plancherel theorem. As we do not have a useful Fourier transform on the group �0, our main tool to prove

the bounds (3.16) is a high-order ∗T T argument. More precisely, we analyze the kernel of the convolution

operator � �{( ) }∗
k
c

k
c r, where � ≔ ∗f f Kk

c
k
c and r is sufficiently large, and show that its �ℓ ( )1

0 norm is ≲ −2 k . The

main ingredient in this proof is the noncommutative Weyl estimate in Proposition 2.1 (i).

To prove the transition estimates (3.18), we use the Rademacher-Menshov inequality and Khintchine’s

inequality (leading to logarithmic losses) to reduce to proving the bounds

�

�( ) ∥ ∥
[ ] ℓ ( )

ℓ ( )∑ ∗ ≲
∈

− ∕f H fϰ 2
k J J

k k s
s D

,2

,
4

2
0

2
2

0
(3.19)

for any ( )≥ ∕J D s δmax ,2 and any coefficients [ ]∈ −ϰ 1, 1k , where ≔ −+H K Kk s k s k s, 1, , . For this, we use a high

order version of the Cotlar-Stein lemma, which relies again on precise analysis of the kernel of the convolution

operator � �{( ) }∗
k s k s

r
, , , where� ≔ ∗f f Hk s k s, , and r is sufficiently large. The key exponential gain of − ∕2 s D4 2

in

(3.19) is due to the noncommutative Gauss sums estimate, see Proposition 2.1 (ii).

3.2 Second stage reduction

In view of Lemmas 3.2–3.3, it remains to prove that

�

�∣ ∣ ‖ ‖

ℓ ( )

ℓ ( )∗ ≲
≥

− ∕f K fsup 2
k κ

k s
s D

,

s 2
0

2
2

0 (3.20)

for any fixed integer ≥s 0. The kernels Kk s, are now reasonably well adapted to a natural family of noniso-

tropic balls in the central variables, at least when ≈2 1s , and we need to start decomposing in the noncentral

variables.

We examine the kernels ( )( )L gk
1 defined in (3.3) and rewrite them in the form

e

�
�




( ) ( ) ( ( ) )

( ) ( ) ( )

( )
{ }

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )∫

∑= − +

=

∈

− −L g χ n A n g

ϕ g g ξ S ξ ξ

2 2

. d ,

k

n

k k

k k

1
0 0

1 1

1 1 1 1 1 1

d

(3.21)

where ( ) ( )g ξ.1 1 denotes the usual scalar product of vectors in �d, and

e

�

( ) ( ) ( ( ) )( ) ( ) ( )∑≔ −
∈

− −S ξ χ n A n ξ2 2 . .k

n

k k1
0

1 1
(3.22)

For any integers �∈ +Q and �∈ +m , we define the set of fractions
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�� { ( ) }͠ ≔ ∕ = ∈a Q a a a: , …, .Q
m

m
m

1 (3.23)

For any integer ≥s 0, we fix a large denominator

( )( ) ( )≔ ⌊ ⌋ = ⋅ ⋅ ⋅⌊ ⌋+ +Q 2 ! 1 2 … 2 ,s
D s D s1 1 (3.24)

and using (3.10) define the periodic multipliers

�

�
�

� �
� �

�

( ) ( ) ( ( ))

( ) ( ) ( ( ))

( ) ( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

[ ]

( ) ( )

͠
͠

͠
͠

∑

∑

∑ ∑

≔ = ∘ − ∕

≔ = ∘ − ∕

≔ − − = − ∘ − ∕

∕ ∈
≤ ′

⧹
∕ ∈ ⧹

≤ ′

∈ ′ ∩ ∕ ∈
≤ ′

≤ ′

ξ ξ η ξ a q

ξ ξ η ξ a q

ξ ξ ξ η τ ξ a q

Ψ Ψ 2 ,

Ψ Ψ 2 ,

Ψ 1 Ψ Ψ 1 .

k s k
a q

δ k
k

k s t k
a q

δ k
k

k
c

k s
t δ k

k s t

a q
δ k

k

,
low 1

,
1 1

, ,
1

,
1 1

1
,

low 1

0,

, ,
1 1

Qs

d

Qs

d

t
d

Qs

d

t
d

Qs

d

δ k
d

(3.25)

Since ( )≥ = +k κ 2s
D s2 1 2

, we see that ≤Q 2s
δ k2

. Therefore, the supports of the cutoff functions ( ( ))( )∘ − ∕≤ ′η ξ a q2δ k
k 1

are all disjoint, and the multipliersΨ , Ψ , Ψk s k s t k
c

,
low

, , take values in the interval[ ]0, 1 . Notice also that ≡Ψ 0k s t, , unless

( )≥ +t D s 1 and that the cutoffs used in these definitions depend on ′δ k not on δk as in the case of the central

variables.

We examine formula (3.21) and define the kernels � �→L L L, , :k s k s t k
c d

,
low

, , by

e




( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫=∗ ∗L g ϕ g g ξ S ξ ξ ξ. Ψ d ,
k k

1 1 1 1 1 1 1 1

d

(3.26)

where ( ) {( ) ( ) ( )}∈∗ ∗L L L L, Ψ , Ψ , , Ψ , , Ψk s k s k s t k s t k
c

k
c

,
low

,
low

, , , , . For any ≥k κs, we obtain = +K Gk s k s, ,
low ∑ +≤ ′ G Gt δ k k s t k s

c
, , , ,

where the kernels � �→∣ ∣G G G, , :k s k s t k s
c Y

,
low

, , ,
d are defined by

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

≔

≔

≔

G g L g N g

G g L g N g

G g L g N g

,

,

.

k s k s k s

k s t k s t k s

k s
c

k
c

k s

,
low

,
low 1

,
2

, , , ,
1

,
2

,
1

,
2

(3.27)

Our next step is to show that the contributions of the minor arcs corresponding to the kernels Gk s
c
, can be

suitably bounded:

Lemma 3.4. For any integers ≥s 0 and ≥k κs, and for any �ℓ ( )∈f 2
0 , we have

� �‖ ‖ ‖ ‖ℓ ( ) ℓ ( )∗ ≲ − ∕f G f2 .k s
c k D
, 2

0

2
2

0
(3.28)

Then we prove our second transition estimate, bounding the contributions of the operators defined by the

kernels Gk s t, , for intermediate values of k .

Lemma 3.5. For any integers ≥s 0, and ( )≥ +t D s 1 , and �ℓ ( )∈f 2
0 , we have

�

�∣ ∣ ‖ ‖
( )

ℓ ( )

ℓ ( )∗ ≲
∕ ′ ≤ <

− ∕f G fsup 2 ,
κ t δ k κ

k s t
t D

max , 2
, ,

s t 2
0

2
2

0 (3.29)

where ( )= +κ 2t
D t2 1 2

as in (3.17).

The proofs of these estimates are similar to the proofs of the corresponding first stage estimates (3.16) and (3.18),

using high-order ∗T T arguments. However, instead of using the nilpotent oscillatory sums estimates in Proposition

2.1, we use the classical estimates from Proposition 2.3 here. We emphasize, however, that the underlying nilpotent

structure is very important and that these estimates are only possible after performing the two reductions in the first

stage, namely, the restriction to major arcs corresponding to denominators ≈2s and the restriction to parameters

≥k κs. We finally remark that the circle method could not have been applied simultaneously to both central and

noncentral variables, as we would not have been able to control efficiently the phase functions arising in the

corresponding exponential sums and oscillatory integrals, especially on major arcs.
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3.3 Final stage: major arcs contributions

After these reductions, it remains to bound the contributions of the “major arcs” in both the central and the

noncentral variables. More precisely, we prove the following bounds:

Lemma 3.6. (i) For any integer ≥s 0 and �ℓ ( )∈f 2
0 , we have

�

�∣ ∣ ‖ ‖

ℓ ( )

ℓ ( )∗ ≲
≥

− ∕f G fsup 2 .
k κ

k s
s D

,
low

s 2
0

2
2

0 (3.30)

(ii) For any integers ≥s 0, ( )≥ +t D s 1 , and �ℓ ( )∈f 2
0 , we have

�

�∣ ∣ ‖ ‖

ℓ ( )

ℓ ( )∗ ≲
≥

− ∕f G fsup 2 .
k κ

k s t
t D

, ,

t 2
0

2
2

0 (3.31)

The main idea here is different: we write the kernelsGk s,
low andGk s t, , as tensor products of two components

up to acceptable errors. One of these components is essentially a maximal average operator on a continuous

group, which can be analyzed using the classical method of Christ [17]. The other component is an arithmetic

operator-valued analog of the classical Gauss sums, which leads to the key factors − ∕2 s D2

and − ∕2 t D2

in (3.30)

and (3.31).

More precisely, for any integer ≥Q 1, we define the subgroup

� � �{ ( ) }( )≔ = ∈ ∈∈h Qh h: .Q l l l l Y l l, 0 ,d1 2 1 2 1 2 (3.32)

Clearly, � �⊆Q 0 is a normal subgroup. Let 
Q denote the coset


 � �{ ( ) [ ]}( )≔ = ∈ ∈ ∩ −∈b b b Q: 0, 1 ,Q l l l l Y l l, 0 ,d1 2 1 2 1 2 (3.33)

with the natural induced group structure. Notice that


 � �( ) ↦ ⋅ ×b h b hthe map , defines a bijection from to .Q Q 0 (3.34)

Assume that ≥Q 1 and ≥ Q2k . For any �∈a d and �∈ξ d, let

e e

e

� �

�

( ) ( ) [ ( ) ] ( ) [ ( ) ( )]

( ) [ ( ) ]

( ) ( )

( )

∫ ∫
∑

≔ − = − ∘

∕ ≔ − ∕

− −

−

∈

J ξ χ x A x ξ x χ y A y ξ y

S a Q Q A n a Q

2 2 . d . 2 d ,

. .

k
k k k

n

0
1

0
1

1
0

1

Q

(3.35)

The point is that the kernels Gk s,
low and Gk s t, , can be decomposed as tensor products. Indeed, to decompose

Gk s t, , (the harder case), we set ( )( )≔ = ⌊ ⌋+Q Q 2 !t
D t 1 as in (3.24). Then we show that if ≥k κt (so ≫ Q2k

t
4), �∈h Qt

and �∈b b,1 2 0 satisfy ∣ ∣ ∣ ∣+ ≤b b Q1 2
4, then

� � �
( ) ( ) ( )͠⋅ ⋅ ≈ ⋅⧹ ′G b h b W h V b b ,k s t k Q Q, , 1 2 , , , 1 2t t

d
Qs

d
s
d

t
(3.36)

up to acceptable summable errors. Here,

e

� �

( ) ( ) ( ) ( ) ( ( )) ( )∫≔ ∘ ∘+ ′

×
≤ ′ ≤

′

W h Q ϕ h η ξ η θ h ξ θ J ξ ξ θ2 2 . , d d ,k Q
d d

k δ k
k

δk
k

k,

d d

e e� �

� �

( ) ( ) [ ( )] [ ( )]
[ )

( ) ( ) ( )

[ )

( ) ( )

( ) ( )

∑ ∑≔
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

− − ′

∈ ∩ ∈ ∩ ′
V b Q S σ b σ b σ. . ,Q

d d

σ σ

, ,

0,1

1 1 1

0,1

2 2

d d1 2

and ( ) ( ) ( )( ) ( ) ( ) ( )≔ϕ h ϕ h ϕ hk k k
1 1 2 2 , �( )( ) ( )= ∈h h h, Q

1 2 , is defined in (3.9), �( )( ) ( )= ∈b b b,1 2
0, and the functions Jk

and S are defined in (3.35).

Finally, we show that the kernels
� � �͠≔ ⧹ ′V Vs t Q, , ,t

d
Qs

d
s
d

t
(which can be interpreted as an operator-valued Gauss

sums) define bounded operators on 
ℓ ( )Q
2

t
,

Polynomial sequences in discrete nilpotent groups of step 2  17




 
 
‖ ‖ ‖ ‖ℓ ℓ( ) ( )∗ ≲ − ∕f V f2 .s t
t D

,Qt Qt Qt
2 2

Moreover, the kernels Wk Q, t
are close to classical maximal operators and one can show that

�

�

�∣ ∣ ‖ ‖

ℓ

ℓ

( )
( )∗ ≲

≥
f W fsup .

k κ
k Q,

t

Qt t

Qt

Qt

2

2

The desired bounds (3.31) follow using the approximation formula (3.36).

4 A nilpotent Waring theorem on the group �0: proof of
Theorem 1.4

We prove now Theorem 1.4. Observe that ( ) ( ) ( ) ( ) ( )= ⋅ ⋅ ⋅ ⋅− −D n m A n A m A n A m, … r r0 1
1

0 1 0
1

0 . By using the

classical delta function, we can write

e e




( ) ( ( ) ) ( )
[ ]

∫∑= −
∈ + ′

S g D n m ξ g ξ ξ, . . d .r N

m n N

,

, r d d
(4.1)

Step 1.We start by decomposing the integration in ξ into major and minor arcs. For any integer ≥m 1 and

any positive number >M 0, we define the set of rational fractions

� �� { ( ) [ ] ( ) }≔ ∕ = ∈ ∈ ∩ =≤ a q a a a q M a a q: , …, , 1, , gcd , …, , 1 .M
m

m
m

m1 1 (4.2)

Notice that we use a bit different definition of �≤M
m than in (3.4). We fix a small constant ( )= ≪δ δ d 1

and a smooth radial function � [ ]→∣ ∣η : 0, 1Y
0

d such that � �( )≤ ≤∣ ∣≤ ∣ ∣≤η xx x1 0 2, �∈ ∣ ∣x Yd . For >A 0, let

( ) ( )≔≤
−η x η A xA 0

1 , �∈ ∣ ∣x Yd ; here, we use a bit different definition of ≤η A than in (3.7). Then, we introduce

the projections


 �
�

( ) ( ( ))∑≔ ∘ − ∕ ∈ ∈
∕ ∈

≤
+ ′

≤
+ ′

ξ η N ξ a q ξ NΞ , , ,N

a q
N

d d

Nδ
d d

δ
(4.3)

and decompose the integration in (4.1) into major and minor arcs, i.e., we define

e e




( ) ( ( ) ) ( ) ( )
[ ]

∫∑≔ −
∈ + ′

S g D n m ξ g ξ ξ ξ, . . Ξ d ,r N

m n N

N, ,maj

, r d d
(4.4)

e e




( ) ( ( ) ) ( )( ( ))
[ ]

∫∑≔ − −
∈ + ′

S g D n m ξ g ξ ξ ξ, . . 1 Ξ d .r N

m n N

N, ,min

, r d d
(4.5)

Notice that ( ) ( ) ( )= +S g S g S gr N r N r N, , ,min , ,maj . Moreover,

� �∣ ( )∣
( )

∏≲
⎛

⎝
⎜

⎞

⎠
⎟ ∈ ∈−

∈

−∣ ∣−∣ ∣S g N N N g, , ,r N r
r

l l Y

l l
, ,min

2 1

,

0

d1 2

1 2 (4.6)

provided that r is sufficiently large, as a consequence of Proposition 2.1 (i) and the Dirichlet principle; in fact,

we use Proposition 2.1(i) with �( ) ( )
[ ]= =ϕ ψ

N
j

N
j

N , ≤ ≤j r1 , which is still valid as can be seen by a careful reading

of the proof of this result contained in [37]. Therefore, the contribution of the minor arcs ( )S gr N, ,min can be

absorbed by the error term in (1.25).

Step 2. Next, we deal with the major arcs contributions. Notice that

e e

�
�

( ) ( ) ( ) ( ) ( )
[ )

∫∑= − ∕ ∘ −
∕ ∈ ∩

≤ ∕

≤
+ ′ + ′ + ′

S g g a q η N ξ I ξ g ξ ξ. . d ,r N

a q
N r N a q, ,maj

0,1

, ,

Nδ
d d d d d d

δ (4.7)

where

e e( ) ( ( ) ( )) ( ( ) )
[ ]

∑= ∕∕
∈

I ξ D n m a q D n m ξ, . , . .r N a q

m n N

, ,

, r
(4.8)
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Observe that for � [ )∕ ∈ ∩≤
+ ′ + ′a q 0, 1
N

d d d d
δ and ∣ ∣∘ ≲N ξ Nδ, we have

e e

�

( ) ( ( ) ( )) ( ( ) ) ( )

( ) ( ) ( )

[ ]

∑ ∑= ∕ +

= ∕ ∘ +

∕
∈ ∕ ∈

− +

− +

I ξ D v w a q D qn qm ξ O qN

N G a q N ξ O qN

, . , .

Φ ,

r N a q

m n N q u v

r δ

r r δ

, ,

, ,

2 1

2 2 1

r
q
r

where ( )∕G a q is defined in (2.16) and Φ is defined in (1.27).

Therefore, if ( )≤ −δ d10 4, then we have

e e

�
�

( )

( ) ( ) ( ) ( ) ( ( )) ( )

( )

[ )

∫

∏

∑

=
⎛

⎝
⎜

⎞

⎠
⎟

×
⎡

⎣
⎢
⎢

∕ − ∕ − ∘ +
⎤

⎦
⎥
⎥

∈

−∣ ∣−∣ ∣

∕ ∈ ∩
≤

− − ∕

≤
+ ′ + ′ + ′

S g N N

G a q g a q η ξ ξ g N ξ ξ O N. Φ . d .

r N
r

l l Y

l l

a q
N r

, ,maj
2

,

0,1

1 1 2

d

Nδ
d d d d d d

δ

1 2

1 2

(4.9)

It follows from Proposition 2.1(ii) and Proposition 2.2 that

∣ ( )∣ ( )∕ ≲ =− ∕G a q q a q, , 1,r
δ1 2

(4.10)

and

�∣ ( )∣ ⟨ ⟩≲ ∈− ∕ + ′ζ ζ ζΦ , ,r
δ d d1 2

(4.11)

provided that r is sufficiently large. Therefore, recalling the definition (1.26),

S

S e

�

∣ ( )∣

( ) ( ) ( )
[ )

( )∑ ∑

≲

− ∕ − ∕ ≲ ≲
∕ ∈ ∩ ≥

+ ′− ∕ − ∕

≤
+ ′ + ′

g

g G a q g a q q N

1,

. .

r

a q

r

q N

d d δ
r

δ

0,1

1 1 2

Nδ
d d d d δ

2 (4.12)

Moreover, we have

e

e e

�

� �

( ) ( ) ( ( ))

( ) ( ) ( ( )) ( ) ( ( )) ( )

∫

∫ ∫

− ∘ ≲

− ∘ − − ∘ ≲

≤
−

≤
− − − ∕

+ ′

+ ′ + ′

η ξ ξ g N ξ ξ

η ξ ξ g N ξ ξ ξ g N ξ ξ N

Φ . d 1,

Φ . d Φ . d .

N r

N r
δ

1

1 1 1 2

d d

δ

d d

δ

d d

(4.13)

It follows from (4.9), (4.12), and (4.13) that

S e

�

( ) ( ) ( ) ( ( )) ( )
( )

∫∏=
⎛

⎝
⎜

⎞

⎠
⎟ ×

⎡

⎣
⎢ − ∘ +

⎤

⎦
⎥

∈

−∣ ∣−∣ ∣ − − ∕

+ ′

S g N N g ξ g N ξ ξ O NΦ . d .r N
r

l l Y

l l
r, ,maj

2

,

1 1 2

d d d1 2

1 2 (4.14)

The desired conclusion (1.25) follows using also (4.6). This completes the proof of part (i) of the theorem.

Step 3. We analyze now the singular seriesS defined in (1.26). Observe that

S e( ) ( ) ( ) ( ) ( )
( )

∑ ∑= ≔ ∕ − ∕
≥ =

h A q h A q h G a q h a q, , , . ,
q a q1 , 1

(4.15)

for any �∈h 0. Notice that the sequence ( )A q h, is multiplicative in the sense that ( ) ( ) ( )=A q q h A q h A q h, , ,1 2 1 2

provided that ( ) =q q, 11 2 and �∈h 0. Therefore, letting � denote the set of primes,

S

�

( ) ( ) ( ) ( )∏ ∑= ≔ +
∈ ≥

h B p h B p h A p h, , , 1 , .
p n

n

1
(4.16)

For �∈h 0 and ≥q 1, let

�( ) ∣{( ) ( ) ( )}∣≔ ∈ =M q h m n D n m h q, , : , mod .q
r2 (4.17)
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We prove that for any �∈h 0, �∈p and integer ≥n 1, we have

( )
( )
( )

∑+ =
=

− − ′A p h
M p h

p
1 ,

,
.

v

n

v
n

n r d d
1

2
(4.18)

Indeed, for any integer ≥q 1, we have

e

e

e

e

� �

� �

� �

�

( ) (( ( ) ) ( ))

(( ( ) ) ( ))

(( ( ) ) ( ))

( ) ( ( ))

( )

∣ ( )

∣ ( )

∣ ( )

∣

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑

= − ∕

= − ∕

= − ∕

= ∕ − ∕

=

− − ′

∈ ∈

− − ′

∈ ∕ = ∈

− − ′

∈ = ∈

− − ′

∈ =

− − ′

+ ′

∕
+ ′

+ ′

+ ′

M q h q D n m h t q

q D n m h wq q

q D n m h w q

q q G w q h w q

q A q h

, , .

, .

, .

.

, .

d d

t m n

d d

q q w w q q m n

d d

q q w w q m n

d d

q q w w q

r

r d d

q q

,

, , 1 ,
1

, , 1 ,
2

, , 1

2
2 2

2
2

q
d d

q
r

q q
d d

q
r

q
d d

q
r

q
d d

1 1 1

2 2 2

2 2 2

2

The identity (4.18) follows by applying this with =q pn, �∈p . In particular, S( )h and ( )B p h, are real

nonnegative numbers,

S � �( ) ( ) [ )∈ ∞ ∈ ∈h B p h h p, , 0, for any , .0 (4.19)

Moreover, by using formulas (4.16) and (4.18), we obtain

( )
( )

( )
( )

= +− − ′
− ∕B p h

M p h

p
O,

,
2

n

n r d d r
n δ

2

for any ≥n 1, �∈h 0 and �∈p . We would like to show now thatS( ) ≳h 1r for all elements �∈h Q, in order to

be able to exploit the expansion (1.25);Q will be defined below. We notice first that for any integer r sufficiently

large, there is �( ) ∈p r0 such that

�

( )
( )

∏∕ ≤ ≤ ∕
∈ ≥

B p h1 2 , 3 2,
p p p r, 0

(4.20)

for any �∈h 0, due to the rapid decay of the coefficients ( )∕G a q in (4.10).

By Lemma 4.1, (and a comment after its statement) if r is even, then there is a point ( )=a z w,0 0 0 such that

( ) =D a 00 , and there is a ( ) ( )+ ′ × + ′d d d d minor ( ) ≠J a 0D 0 . By re-indexing the variables, we may assume

that this minor is ( ) ( )= ⎛
⎝

⎞
⎠

∂
∂

= +
J a adetD

D

x
i j K

N

0 0
, 1

i

j
, writing =N r2 , = − − ′K r d d2 . In other words, we may assume

that the minor corresponding to the last + ′d d columns of the Jacobian matrix of D is nonsingular. For a given

prime ( )≤p p r0 , let �∈γp be such that ( ) =J a p uD
γ

0 p with �∈ +u and ∤p u. Define �( ) ( )= ≔ ∏ ∈ ≤
+Q Q r pp p p r

γ
,

2 1p
0

.

For �∈h Q, we have ( ) ( )= +D a h pmod γ
0

2 1p , but ( ) ( )≠ +J a p0 modD
γ

0
1p ; thus, we are in the position to

apply Hensel’s lemma (Theorem 4.2) with =N r2 and = − − ′K r d d2 . Then by Corollary 4.3, we have that

( ) ( )≥ − −M p h p,n n γ K2 1p for all >n γ2 p and hence by (4.18) we have ( ) ( )≥ − + −B p h p, γ K2 1 1p . This proves that

S �( ) ≳ ∈h h1 uniformly for .r Q (4.21)

Step 4. Finally, we analyze the contribution of the singular integral. Since

e

� �

( ) ( ( ) ) ( ) ( )∫ ∫− ∘ = +− −

+ ′ + ′

ζ N g ζ ζ ζ ζ O NΦ . d Φ d ,r g
1

,
1

d d d d

due to (4.11), to prove the approximate identity (1.29), it suffices to prove that

�

( )∫ ≳
+ ′

ζ ζΦ d 1.r
d d

(4.22)
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We fix a smooth function � [ ]→+ ′χ : 0, 1d d , satisfying ( ) =χ x 1 if ∣ ∣ ≤ ∕x 1 2, ( ) =χ x 0 if ∣ ∣ ≥x 2, and
�

( )∫ =+ ′χ x xd 1d d .

For ( )≤ε ε r sufficiently small, we write


�

( ) ( ) ( ( ) )

[ ]

( )∫ ∫= ∕
−

− + ′

+ ′

ζ χ εζ ζ ε χ D z w ε zdwΦ d , d ,d d

1,1d d r2
(4.23)

using the definition (1.27). In particular, by letting →ε 0,
�

( )∫ + ′ ζ ζΦ dd d is a real nonnegative number. Moreover,

the lower bound (4.22) follows from (4.23) provided that we can show that there is a point ( ) [ ]∈ −z w, 1, 1 r
0 0

2

such that

( ) [ ( )]= ∇ = + ′D z w D z w d d, 0 and rank , .z w0 0 , 0 0 (4.24)

We notice that this with even r follows easily from Lemma 4.1.

Lemma 4.1. Let ( )≥r r d0 . Then there exists �( ) ∈n m, r2 such that

[ ( )]∇ = + ′D n m d drank , .x y, (4.25)

Indeed, writing � �( ) ( )= →D x y D x y, , :r
r2

0
#, we have that ( ) ( ) (( ) ( ))⋅ = ′ ′−D x y D n m D x m y n, , , , ,r r r

1
2 with

( ) ( )′ = ′ =n n n m m m, …, , , …,r r1 1 . Assuming (4.25), it is clear that the map (( ) ( )) (( ) ( ))′ ′ ↦ ′ ′x m y n D x m y n, , , , , ,r2

has maximal rank at ( ) ( )= ′ = ′z n m w m n, , ,0 0 and (4.24) follows.

The proof of Lemma 4.1 is based on counting points ( ) [ ]∈n m N, r2 at which the rank of the map ∇ Dx y,

drops. This was also crucial in obtaining the nilpotent Weyl estimate (2.14).

Proof of Lemma 4.1. Let N be sufficiently large with respect to r d, . It is enough to show that there is a constant

>C 0d ( ( )= + ′C d d d2d
2 works here) such that

∣{ [ ] [ ( )] }∣ ( )∈ ∇ < + ′ ≲ + ∕ +n N D n m d d N: rank , ,r
x d r

r C
,

1 2 d (4.26)

holds uniformly for [ ]∈m N r. Fix [ ]∈m N r. If [ ( )]∇ < + ′D n m d drank ,x , then by Cramer’s rule, there exists

�∈bl l1 2
, ∣ ∣ ( )( )≲ − + ′b Nl l

d d d2 1
1 2

with ≠b 0l l1 2
for at least one ≤ < ≤l l d0 2 1 , such that

[ ( )]∑ ∂ = ≤ ≤
≤ < ≤

b D n m j r, 0 for all 1 .
l l d

l l j l l

0 2 1

1 2 1 2 (4.27)

From (2.11), we have that [ ( )]∂ = − −D n m l n,j l j
l

0 1
1

1

1 , and for ≤ l1 2,

[ ( )] ( ) ( ) ( )∑ ∑∂ = − + − − + +−

>

−

<

− + −D n m l n n m l n n m l n m l l n, .j l l j
l

k j
k
l

k
l

j
l

k j
k
l

k
l

j
l

j
l

j
l l

1
1

2
1

1
1

1 2
1

1 2

1 2 2 2 1 1 1 2 1 2

(4.28)

We want to only include terms ≤k j and to achieve that we introduce the parameters

( ) ( )∑= = − ≤ <
=

T T n m n m l d, , for 1 .l l

k

r

k
l

k
l

1

Note that [ ]∈ − − −T rN rN2 , 2l
d d1 1 . For fixed ( )= ≤ <T Tl l d1 , write

( ) ( ) ( )∑ ∑− = − −
> ≤

n m T n m n m, ,
k j

k
l

k
l

l

k j
k
l

k
l2 2

2

2 2

Substituting into (4.28), we obtain, up to lower degree terms in the variables ( )=n n n, …, r1 ,

[ ( )] ( )∑ ∑∂ = − + + +
≤

−

<

− + −D n m l n n l n n l l n, ,j l l

k j
j
l

k
l

k j
j
l

k
l

j
l l

1
1

2
1

1 2
1

1 2

1 2 2 1 1 2

(4.29)

for ≤ <l d1 2 . Thus, the system in (4.27) takes the form

( )∑ = ≤ ≤
≤ < ≤

b P n n j r, …, 0, 1 .
l l d

l l l l
j T m

j

0

, ,
1

2 1

1 2 1 2 (4.30)

Notice that for fixed −n n,…, j1 2 2 with ≤ ∕j r 2, the left-hand side of (4.30) with j replaced by j2 contains the

monomials − −b l nl j
l

0 1 2
1

1

1 and
−

−b l n nl l j
l

j
l

2 2
1

2 11 2

2 1 and hence is nonvanishing in the variables −n n,j j2 1 2 . This, thanks to [37,

Lemma 5.3], implies that number of solutions to (4.30) is at most ( )( )+ ′ +d d N2 1 in the variables −n n,j j2 1 2 .
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As the number of choices for parameters ( )= ≤ < ≤b bl l l l d01 2 2 1
and ( )= ≤ <T Tl l d1 is ≲ Nr d

C
,

d (with, say

( )= + ′C d d d2d
2), (4.25) follows. □

We remark that (4.25) together with the argument proving (4.24) also implies that the map � �→D :r
r

2
4

0
#

is surjective. Indeed, the image of the map Dr must contain an open ball ( )B g δ, ; thus, the image of D r2 must

contain an open ball ( ) ( ) ( )′ ⊆ −B δ B g δ B g δ0, , , 1 centered at the origin, then by homogeneity the whole

space �0
#.

Lemma 4.1 together with Hensel’s lemma is also crucial to show the nonvanishing of the singular series

S( )h for �∈h Q. Recall that, given a prime p, the ring of p-adic integers �p is defined as the completion of �

with respect to the p-adic metric ∣ ∣ = −m ep
k , if =m p uk with �∈ ∤u p u, . Then �p is a so-called complete

valuation ring with a unique maximal ideal �≔I pp p and we will write ( )=x p0 mod k if �∈x pk
p. We have

∣ ∣ {∣ ∣ ∣ ∣ }− ≤ − −x y x z y zmax ,p p p , and hence, a sequence �( ) ∈xj j is Cauchy if ∣ ∣− →+x x 0j j p1 as → ∞j .

It follows that any formal power series ( )g x converges at x whenever ( )=x p0 mod . For a vector

�( )= ∈x x x, …, N p

N
1 , we say that ( )=x p0 mod k if ( )=x p0 modj

k , for all ≤ ≤j N1 . Then any power series

( ) ( )=g x g x x, …, N1 in N variables also converges whenever ( )=x p0 mod . Moreover, one has the inverse and

implicit function theorems for power series maps  � �( ) ( ( ) ( ))= →g x g x g x, …, :N p

N

p

N

1 without constant

terms. Namely, if the Jacobian of the system at origin ( ) ∉J I0g P, i.e., is a unit, then g has an inverse

power series map ( ) ( ( ) ( ))=h x h x h x, …, N1 , in the sense that ( ( )) ( ( ))= =h g x g h x x , see [29, Proposition

5.19]. One also has a corresponding version of the implicit function theorem; for a map

 � �( ) ( ( ) ( ))= →+
−

g x g x g x, …, :K N p

N

p

N K

1 such that ( ))( ∉
∂
∂

= +
Idet 0

g

x
i j K

N

p
, 1

i

j
, the inverse image ( )≔ −V g 0g

1 can

be parameterized as ( ( ) ( ))= +V t t h t h t, …, , , …,g K K N1 1 with ( )=t t t, …, K1 , which can be seen from the inverse

function theorem by extending the map with ( ) =g x xi i for =i K1,…, . The following extension of the implicit

function is often used to show the nonvanishing of the singular series associated to diophantine systems.

Theorem 4.2. (Hensel’s lemma) Let  � �( )= →+
−

f f f, …, :K N p

N

p

N K

1 be a family of polynomials. Assume there

exists an �∈a p

N
and an integer >γ 0, such that

( ) ( )= +f a p0 mod ,γ2 1 (4.31)

moreover

( ) ( )= ≠J a p u u p, 0 mod ,f
γ (4.32)

where ( )J af is the Jacobian,

( ) ( )⎟⎜=
⎛
⎝

∂
∂

⎞
⎠ = +

J a
f

x
adet .f

i

j
i j K

N

, 1

(4.33)

Then there exist power series ( )= +h h h, …,K N1 such that for all ( ) ( )= =t t t p, …, 0 modK1 , one has that

( ( ( )))+ =f a p t p h t, 0.γ γ2 (4.34)

This means that for each = +j K N1,…, , one has

( ( ) ( ))+ + + + =+ +f a p t a p t a p h t a p h t, …, , , …, 0.j
γ

K
γ

K K
γ

K N
γ

N1
2

1
2

1 1

This is proved in [29, Lemma 5.21 and Note 5.22]. In fact, it is shown that all �∈b p

N
such that ( )= +b a pmod γ 1

and ( ) =f b 0 can be parameterized this way. We will use it to obtain the following lower bound, assuming

conditions (4.31)–(4.32) hold.
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Corollary 4.3. Let >n γ2 . Then

�∣{ ( ) ( )}∣ ( )∈ = ≥ − −b f b p p: 0 mod .p
N n n γ K2 1

n (4.35)

Proof. Notice that if ( )≠ −t t pmod n γ
1 2

2 , then ( )≠c c pmod n
1 2 , where ( ( ))= +c a p t p h t,i

γ
i

γ
i

2 for =i 1, 2. There

are ( )− −p n γ K2 1 values of �∈t K such that ( )=t p0 mod , which fall into different residue classes mod −pn γ2 , thus

by (4.34), we have at least this many solutions to ( ) =f c 0 in � p

N
, which fall into different residue classes mod

pn. For each such c, let �∈b N such that ( )=b c pmod n , Then clearly ( ) ( )=f b p0 mod n , and all such b’s are

distinct mod pn. □
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