Joint UAV Trajectory Planning, DAG Task
Scheduling, and Service Function Deployment
based on DRL in UAV-empowered Edge Computing

Xianglin Wei!, Lingfeng Cai', Nan Wei?, Peng Zou?, Jin Zhang?, and Suresh Subramaniam

3

!The 63rd Research Institute, National University of Defense Technology, Nanjing 210007, China
2 School of Computer and Software, Nanjing Uni. of Information Science and Technology, Nanjing 210044, China
3ECE Department, George Washington University, Washington DC, 20052, USA

Abstract—Unmanned Aerial Vehicle (UAV)-empowered edge
computing has been widely investigated in obstacle-free scenarios,
where a moving UAV is in charge of handling offloaded singleton
tasks from the ground. However, little attention has been paid
to the scenario, in which the UAV serves a complex area with
multiple obstacles and dependent tasks. A dependent task is
formulated as a Directed Acyclic Graph (DAG) that contains
a number of sub-tasks; and each sub-task can be executed by
a corresponding Service Function (SF) deployed on the UAV.
In this backdrop, the joint UAV trajectory planning, DAG task
scheduling, and SF deployment is formulated as an optimization
problem in this paper. Afterwards, a Deep Reinforcement Learn-
ing (DRL)-based algorithm is presented to tackle the established
NP-hard problem. The state space, action space, and the reward
function of the agent, i.e., the UAV, are defined respectively under
the DRL framework. To evaluate the effectiveness of the proposal,
a series of experiments is conducted with diverse parameter
settings. Results show that DRL-based solution performs much
better than three heuristic algorithms in success rate of trajectory
planning, the number of executed tasks, and the average task
response latency.

Keywords—Unmanned Aerial Vehicle; Deep Reinforcement
Learning; Service Function; Edge Computing

I. INTRODUCTION

Sixth generation (6G) wireless communication networks are
envisioned to provide anything, anytime, anywhere connec-
tivity via fully integrated heterogeneous networks, including
ground, aerial, and satellite networks [1], [2]. In the aerial
segment of 6G networks, the role of Unmanned Aerial Ve-
hicles (UAVs) is of paramount importance since they act
as an intermediate network layer between ground and space
networks [3]. In particular, UAV-empowered edge computing
is a promising computation paradigm for providing Artificial
Intelligence (Al)-enhanced service in infrastructure-less or -
shortage areas [4]. The mobile nature of UAV enables it to
serve a number of scattered mobile devices on the ground.

Xianglin Wei and Lingfeng Cai are with the 63rd Research Institute,
National University of Defense Technology, Nanjing 210007, China. (email:
wei_xianglin@ 163.com).

Nan Wei is with School of Computer and Software, Nanjing University
of Information Science and Technology, Nanjing 210044, China. (email:
weinan @nuist.edu.cn).

Peng Zou, Jin Zhang, and Suresh Subramaniam (Fellow, IEEE) are with
ECE Department, George Washington University, Washington DC, 20052,
USA. (email: {pzou94, zhangjin, suresh} @gwu.edu).

A mobile device may offload its tasks to the UAV as long
as there exists a wireless link between the UAV and the
device. For the UAYV, it has to plan its trajectory as well as
to determine its resource allocation to minimize the response
latency of all offloaded tasks. A few efforts have been made
to help the UAV make scheduling decisions with two basic
assumptions [5]: 1) each task is a singleton that is independent
of other tasks, and its computation and energy consumption
needs are measured by its number of bits; 2) each task can be
executed on any service platform that has enough resources
without any running-time environment (e.g., software and
data) needs. These simplified assumptions are helpful for
deriving a solution for the task scheduling problem; however,
they also make existing solutions far away from practical
application.

To alleviate these problems, a few works adopted a partial-
offloading paradigm, where a task can be divided into several
parts that can be executed in parallel. Recently, practitioners
have abstracted a task as a Directed Acyclic Graph (DAG) [6],
in which each vertex v is a sub-task that uniquely corresponds
to a service function (SF), and a link from sub-task v; to
v; means that v; cannot be started before the completion of
v;. Moreover, a sub-task can only be executed on an edge
server that maintains a container or virtual machine that holds
its corresponding SF [7], including the software components
and data for running the task. In this circumstance, joint
SF deployment and task scheduling can potentially reduce
the average task response latency [8]. However, joint UAV
trajectory planning, DAG task execution, and SF deployment
has not been considered yet. In the following analysis, we will
use sub-task and SF interchangeably.

In this paper, joint SF deployment, DAG task scheduling,
and UAV trajectory planning in UAV-assisted edge computing
is formulated as an optimization problem. As the problem is
NP-hard and cannot be solved using polynomial methods, a
Deep Reinforcement Learning (DRL)-based algorithm is put
forward for the UAV-mounted edge server for decision making.
Under this DRL framework, the UAV is treated as the agent,
and its state space, action space, and reward function are
defined respectively. The main contributions of this paper are
threefold:

e The joint SF deployment, DAG task scheduling, and

UAV trajectory planning problem is formulated as an
optimization problem for the UAV that serves a number
of mobile devices. To our best knowledge, this is the first
paper that jointly optimizes these objectives; and existing
works mainly focus on path planning and singleton-
task execution. (A detailed comparison of this work and
existing ones is presented in Table 1.)

e A DRL-based algorithm is put forward to solve the
formulated optimization problem that is NP-hard. In our
algorithm, the state space, action space, and the reward
function of the UAV are separately defined to help it make
the best decision that can maximize its optimization goal.

o A series of experiments is conducted to make a step-
by-step evaluation of the proposal. Different choices of
the reward function design are investigated with different
parameter settings. Results show that the DRL-based al-
gorithm can effectively optimize the path planning, DAG
task execution, and SF deployment of the UAV. Compared
with three heuristic-based algorithms, our DRL-based
proposal performs much better in the success rate in path
finding, and can execute more DAG tasks with lower
response latency.

The remainder of this paper is organized as follows. Sec-
tion IT summarizes the related work. The system model and
optimization problem are established in Section III. Section
IV presents the DRL-based algorithm. Simulations and results
analysis are illustrated in Section V. Finally, we briefly con-
clude our work in Section VI.

II. RELATED WORK

Tremendous efforts have been made on scheduling inde-
pendent tasks in edge computing scenarios [9]. There are no
precedence constraints and data transfer requirements between
independent tasks; in other words, tasks can be executed in any
order. In considering that computation-intensive applications
or tasks are usually composed of a few inter-connected sub-
tasks or SFs, DAG tasks are increasingly investigated. Sundar
et al. investigated the scheduling of DAG tasks subject to
an application completion deadline [10]. An individual time
allocation with greedy scheduling algorithm was put forward
to schedule tasks in a heuristic manner, subject to their
time allowance. Liu et al. put forward a dependency-aware
scheduling algorithm to execute dependent tasks in a priority-
aware manner in vehicular edge computing [11]. Zhang et al.
formulated the DAG task scheduling problem as a Markov
decision process, and presented a Temporal-Difference (TD)
learning-based algorithm to derive the optimal task allocation
mechanism [12]. Qi et al. utilized DRL for task scheduling
using the latency of task response as the revenue function for
neural network training [13].

Although task scheduling has been extensively investigated,
SF deployment is still an emerging topic. Li et al. designed and
implemented a genetic algorithm-based service deployment
algorithm for placing SFs in edge computing environment
[14]. Zhao et al. developed a convex programming based
algorithm (CP) to solve the offloading dependent tasks with
service caching problem [15]. Bi et al. formulated a mixed

integer non-linear program (MINLP) to jointly optimize the
service caching placement, computation offloading decisions,
and system resource allocation for edge computing systems
[16]. Sun et al. presented a UAV-assisted edge computing
framework, which jointly optimizes the trajectory and CPU
frequency of a fixed-wing UAYV, and the offloading schedule
to minimize the energy consumption of the UAV [17]. Wei
et al. established an optimization problem for the SF deploy-
ment and DAG task scheduling in multi-UAVFog computing
scenario. A topology-aware SF deployment method and a
heuristic scheduling algorithm were developed to reduce the
task response latency while minimizing the deployment cost
[8]. However, only static UAVs were considered and no
obstacles were considered. Wang et. al. presented a multi-
UAV path planning algorithm based on DRL for promot-
ing the serving fairness while reducing energy consumption
[18]. Awada et al. put forward a multi-task execution time
estimation and a dispatching policy, to select the closest
drone deployment having congruent flight time and resource
availability to execute ready tasks [19]. Peng et al. presented
a constrained decomposition-based multi-objective evolution
algorithm for realizing energy-efficient offloading and safe
path planning [20]. Xu et al. proposed a three-step approach
to jointly optimize multiple UAVs’ trajectories for minimizing
the mission time with constraints of UAV’s maximum speed
and acceleration [21]. Chen et al. presented a distributed
computation offloading and path planning algorithm to jointly
optimize the computation offloading decision and multiple
UAVs’ trajectory [22]. Wu et al. put forward a DRL-based
energy efficiency autonomous deployment strategy, to obtain
the optimal hovering position of UAV at each assigned mission
area [23]. He et al. presented a multi-hop task offloading
with on-the-fly computation scheme to enable a powerful
multi-UAV remote edge computing network [24]. Song et al.
proposed a multi-objective reinforcement learning (MORL)
algorithm to simultaneously minimize the application com-
pletion time, energy consumption of the mobile device, and
usage charge for edge computing [25].

Compared with existing efforts, to the best of our knowl-
edge, this paper is the first paper that aims to jointly opti-
mize UAV trajectory planning, DAG task scheduling, and SF
deployment at the same time. A comprehensive comparison
between this work and existing ones is presented in Table 1.

III. PROBLEM STATEMENT
A. System Model

There is one UAV and N mobile devices spread ina L x L
area. Without loss of generality, the area can be divided into
a number of grids, as shown in Fig. 1. In each grid, there
exists at most one mobile device. The set of mobile devices is
denoted as N' = {ny,na,...,ny}. The i-th device’s position
is denoted as (x;,y;,0), 1 <14 < N, and does not change with
time. Assume the UAV’s position is qu (¢) = (x};,yl,, H) at
time t, where H is the height of the UAV and is assumed to
be a constant. Then, the distance between mobile device 7 and
the UAV at time ¢ is:

div = \JH? + (fy —)% + (g — i) M

TABLE I
A COMPARISON OF THIS WORK AND RELATED EFFORTS.

Reference UAYV involved Trajectory Pl DAG Task Obstacles SF deployment Optimization using RL/DRL Energy limitation
[8] v v v
[10] v v
[11] v 7
[12] ' v v
[13] v v
[26] v v
[14] v
[18] v v v v
[17] v v v
[19] v v
[20] v v v
[21] v v
[22] v v v
[23] v v v v
[24] v v
[25] v v v
this work v v v v v v v

Considering the Line of Sight (LoS) and Non-LoS paths
between the UAV and the ¢-th mobile device, the bandwidth
between them, i.e., rfU, can be derived using the transmission
model in [8], 1 < i < N. The UAV connects to the remote
cloud via a long-range wireless communication module, and
the bandwidth is assumed to be ry ¢, and it does not change
with time. For ease of reference, the main symbols adopted in
this paper are listed in Table II.

TABLE II
SYMBOLS
Symbol Description
N The set of mobile devices
N The number of mobile devices
(%i;¥i,0) The ith device’s position
(z%;,y};, H) The UAV’s position at time ¢

rfU The transmission bandwidth between mobile device ¢ and

the UAV at time ¢

The transmission bandwidth from the cloud to the UAV

F The set of all SFs

G A DAG task

C The processing frequency of the UAV-mounted edge
server

ruc

K The SF instances executed in parallel on the UAV

b(v;) The number of input bits of task v;

d(v;) The downloading time of v; from the cloud to the UAV

e(v;) The energy consumption of executing v; on the UAV

~U The UAV’s processing unit’s effective switched capaci-
tance

Vimaz The maximum speed of the UAV

qo The start point of the UAV

ar The end point of the UAV

qu (t) The position of the UAV at time ¢

e(G) The total energy consumption for processing task G

e(oj) The total energy consumption for the mobility of the UAV
during period o

M The number of SFs

P The number of different DAG task types

B. Decision-making Model

To efficiently serve the area, the UAV needs to carefully
plan its trajectory and SF deployment. To facilitate the prob-
lem statement, we define several decision-making instants. A
decision-making instant is the time that the UAV needs to
make decision to change its flying status, including hovering

or flying. Assume that there are 7 decision-making instants,
denoted as T = {t1,t2,...,tr}. The time period between two
successive instants ¢;1 and t; is denoted as o; = tj41 — t;.
In o, the UAV may fly or hover in a grid, and process the
received DAG task in its serving grid. Therefore, o; contains
both the UAV’s flying/hovering time and serving time. For the
simplicity of problem solving, we assume that the UAV can
move to next grid or hover at its current grid for executing
its received DAG task during the time between two decision-
making instants.

C. Mobility Model

The UAV is initially located at the start point qy =
(2s,9s,0) at time 0. The end point of the UAV is qp =
(Ze,Ye,0). During the serving period T, the UAV needs to
find a trajectory from the start point to the end point. Several
obstacles exist in the area, and collision between the UAV
and these obstacles should be avoided. As shown in Fig. 1,
the area is divided into a number of grids with equal sizes.
A black grid refers to a small area occupied by an obstacle.
A trajectory from the start point to the end point needs to
be determined for the UAV. In each white grid, there may
exist mobile devices that have DAG tasks for offloading. The
maximum flying speed of the UAV is V,,,4,.. The moving speed
of the UAV during period o is:

_ Vllav(tj+1) - QU(tj)”Q'

2

9

Then, we have v, < Viyge.

D. Energy Consumption Model
The flying energy consumption of the UAV during period

o0; is calculated based on its velocity vector [5], i.e.,
e (t) = || vo, |17 - 3)

m

Here, x = 0.5M 6, where ¢ is the duration of the movement,
M is the UAV’s mass including its payload, and v,, is the
velocity vector. For a multi-rotor UAV, the hovering energy

L
/
:
/Il
.
.

(] 5 7\5 3 0 o | 1

° ...

o 2

b . i N N B .. 2 - ? i .

||
L]l
[[|
|l
. Obstacle

u‘/5“)..-‘muow_;wo.
o w
o

0
10
10

3

6

7

o

Ik

8

3

1
™

0

)

BER - - |||~
-
~
N
"
5
”

B start () End

— —» Trajectory

Fig. 1. An example of map and the UAV trajectory planning. The whole area
is divided into grids with equal size. Each black grid represents an obstacle.
The UAV needs to find a trajectory from the start to the end points (e.g., the
dashed line) without collision with obstacles. The number in each grid refers
to a DAG task held by a mobile device on the ground. When flying over a
specific grid, the UAV can choose to execute the task in this grid.

is approximately linearly proportional to its weight, and is
defined as [27]: .
o = X M))
\/2pm3?

where n, is the number of rotors; g is the gravitational
constant, p is the fluid density of the air, and 3 is the rotor
disk radius. Then, the total hovering energy of the UAV is
eg x At, where At is the hovering duration.

The total energy consumption for the UAV mobility in o
will be:

ev(o;) =0; x (b x (Kllve,|I?) + (1 = hy) x ef), (5

where h; indicates whether the UAV flies in period o;; h; =
1 means the UAV keeps flying, while h; = 0 indicates a
hovering status.

E. SF Model

The UAV can run a few SF instances in parallel utilizing
virtualization technique, such as virtual machine (VM) or
docker. The UAV allocates equal amount of resources for each
running SF instances. Assume K instances are executed in
parallel; each instance can occupy % CPU cycles, where C' is
the processing frequency of the UAV-mounted edge server.
Let F be the set of SFs, 7 = {Fi,Fy,...,Fy}, where
M is the number of SFs. A few SFs can compose a DAG
that corresponds to an offloaded DAG task from the mobile
devices.

The energy consumption for deploying SF F; is assumed to
be e(F;), and is proportional to its number of bits. Initially,
the set of SFs deployed at the UAV is denoted as F,, at o,
and the SFs are randomly chosen from F. In o, the set of

SFs deployed on the UAV is denoted as F,; C F. Then, the
energy consumption for deploying this SF set is:

Yo elF). (6)

FreFo;=Fo;—1

ep(oj) =

F. Task Model

Each task is modeled as a DAG, G = (V,£), in which V
refers to the sub-tasks and £ denotes the connections between
them. A link from v; to v; means that the execution of v;
depends on the execution results of v;. To illustrate this data
dependency, a weight w;; is placed on link (v;,v;) to express
the amount of transmitted data, v;,v; € V and (v, v;) € £.
Each sub-task is mapped to an SF that can be executed by
the UAV, which provides all the desired software components
and data for the sub-task. Without loss of generality, the
corresponding SF of sub-task v; is denoted as Fj;. The set
of all SFs is F, and F; € F. We assume that each mobile
device only has one DAG task for offloading. Therefore, for
N mobile devices on the ground, the set of DAG tasks is
G = {G1,Gs,...,GN}. Assume that there are P different
types of DAG tasks. In Fig. 1, each grid is labeled with a
number that denotes the DAG task offloaded by the mobile
device in this grid to the UAV. In this example, P = 10.

G. Task Execution Model

When the UAV is in a grid, the mobile device in this grid
can offload its DAG task to the UAV. The latency experienced
by a DAG task G refers to the time interval from when G
is offloaded to the UAV to the time when its last sub-task is
completed. For sub-task v; € V in task G, its execution time
on the UAV is:

b(v;) x ¢(v;) x K

t(v;) = - (7)

where b(v;) is the number of input bits of v;, and each input
bit requires c¢(v;) CPU cycles for processing. % is the CPU
cycles assigned to the SF instance that executes v;. The total
number of input bits of the task G is b(G) = Z‘Zill b(v;). If the
desired SF instance is not loaded, the UAV has to download
the SF from the cloud. The download time will be:

d(v;) = 2. ©)

Tuc

The total latency experienced by sub-task v; is:
l; = t(v;) + wjy x d(v;). 9)

w’ = 1 indicates the SF instance is downloaded from the
cloud to the UAV; otherwise w}i = 0. The data transmission
time between two sub-tasks is negligible since all the sub-tasks
of a DAG task are executed on the UAV. The total latency
experienced by task G, i.e., [(G), is determined by its critical
path provided that the UAV has enough resources to execute
the desired SFs [28].
The energy consumption of executing v; is [5]:

e(vi) =Y x b(v;) x c(vi)(%)z, (10)

where vV is the UAV processing unit’s effective switched
capacitance. Then, the total energy consumption for executing
task G will be:

(1)

H. Problem Formulation

Initially, the UAV is located at the start point or start grid,
e.g., the red square in Fig. 1. Then, it aims to arrive at the end
point or grid while executing the DAG tasks on its trajectory
with low overhead. To discretize this problem, a number of
decision-making instants are defined. Here, a decision-making
instant refers to the time when the UAV needs to make a
decision, which includes two options: 1) move to a neighbor
grid; 2) hover at its current grid to execute the received DAG
task.

This process iterates if and only if the UAV has enough
energy to arrive its destination. Finally, it arrives at the end
point without exceeding its energy supply limit. Moreover, we
want the UAV to maximize the computation throughput, which
is defined as the number of DAG tasks processed by the UAV
during the flight. The problem can be formulated as:

Objective:

N
rnqi%r)néze w1 X Ry, +wa X Ry + w3 % ;ai x r(Gy)
(12)
subject to wy,wy € {0,1},0 < ws <1, (13)
a; € {0,1}, (14)
qu(0) = qo, (15)
qu(T) = qr, (16)
Vo; < Vinaz, (17)
1<i<N, (18)
T N
]2:31 i=1
(19)
h; €{0,1}, (20)
1<j<T. 21

where E is the total energy budget of the UAV; «; = 1 if task
G, is executed by the UAV; otherwise a; = 0. r(G;) is the
reward for executing task G;; R, is the reward for arriving
at the end point, which is a positive reward; I2,, is the penalty
when the UAV hits an obstacle or the boundary, or runs out
of power, which is a negative reward. w; and ws are both
0-1 variables. This problem is a joint optimization problem
of UAV trajectory, SF deployment, and DAG execution; it
is a complex and significantly challenging multi-objective
optimization problem. On the one hand, multiple objectives in
(12) conflict and interact with each other; on the other hand,
multiple classes of variables couple with each other and many
of them have integer nature. Both these challenges prevent us
from adopting polynomial optimization methods. Therefore,
we adopt deep reinforcement learning (DRL) to model and
analyze the action strategies of the UAV.

IV. DRL-BASED JOINT TRAJECTORY PLANNING AND SF
DEPLOYMENT

The problem formulated in (12) is NP hard since it contains
multiple variables that can only be 0 or 1. To tackle this prob-
lem, this paper adopts the deep reinforcement learning (DRL)
framework. This section presents the design of DRL-based
joint optimization framework, which aims at maximizing the
success rate of path finding and the total number of executed
DAG tasks. To solve the problem with high-dimensional state
and action spaces (due to the large number of DAG tasks,
SFs, and potential moving directions), a framework is built
upon Deep Q-Network (DQN).

A. DRL Framework Design

Here, the UAV is treated as the agent while the deployment
area and all the entities that may impact the trajectory planning
and SF deployment are the environment that interacts with the
UAV. In Fig. 1, the UAV can move at most one grid in each
decision-making instant. Therefore, the size of each grid is
delicately determined to ensure that the move distance of the
UAV during each instant does not exceed its maximum speed,
i.e., Vinaz- Then, according to the typical structure of DQN,
i.e., a value-based DRL framework, we have to first define the
state, the action, and the reward in the following.

State Space: The state of the UAV includes four parts: 1) a
two dimensional vector that contains the number of horizontal
and vertical grids between the UAV’s current grid and the
grid representing the end point. For example, assume that the
UAV is located at grid (1, 1) and the end point is at (15,
15) in Fig. 1; then, the two dimensional vector is (15-1, 15-
1)=(14, 14); 2) the remaining energy of the UAV, E.; 3) the
running SFs on the UAV. In order to eliminate the dimensional
impact between different parts of the state, one-hot encoding
is adopted to encode each deployed SF. So this part of state
is a [log, M]-dimensional vector and each element is 0 or 1;

(ev(oj) +ep(o;)) + Zai x e(G;) < E4) the DAG task request in the grid that the UAV is located,

which is also encoded by one-hot encoding. The length of this
part is [log, P|. In summary, the state of a UAV at o, is a
3 + [logy M + [log, P]-dimensional vector s,, € S, where
S contains all the possible states of the UAV.

Action Space: Based on its state, the UAV needs to decide
its next move at 0. To conduct trajectory planning, the actions
that the UAV can take include 9 types: up-left, up, up-right,
left, right, down-left, down, down-right, and hovering. Here,
hovering means that the UAV does not move and processes
the DAG task in its current grid. These 9 actions are recorded
as a set A = {aj,a9,...,a9} respectively.

Reward Function: The basic idea to design the reward for
each action for a specific state is that any action that is helpful
for maximizing the objective shown in (12) should get a
positive feedback while others that reduce the objective should
be punished with a negative reward. The reward for an action
contains 7 parts: 1) the UAV reaches its destination point,
R$, which is a fixed positive reward; 2) the punishment for
a collision with obstacles or flying out of the boundary, RS,
which is a fixed negative reward; 3) the energy consumption
of the task execution. A negative reward, R$ = —e X e(G)),

DQN
r =I Loss function
A

0(s,a:0) | |@Learn0 max, O(s'a’0)

[e e e | i e Sl i i e i |
P e [| @Dual Network !
: Environment [! ! :
I I | :
I . . I | Evaluation Target :
i -\ B B st i ! Q Network Q Network !
I : | Q) i
Iy B Bd | oagmax,(sa0) | 7N\ | B Nsies g |l
I « H SKOSP [Update |
I ' I
! N . Obstacle i ! N\ i
! I
! I ! !
| I
I I
I I
I I

} (s,a,r,s")

Fig. 2. The architecture of Deep Q-Learning. @ Experience Replay: An experience pool is used to store the collected quadruples (i.e., (s,a,, s’): current
state s, action a, reward 7, and next state s’) and provide training samples in the form of random sampling; @ Dual Network: the evaluation Q-network
(expressed as a set of parameters 6) is used to replace the Q table to output the Q-value of each state (Q (s, a;8)). On the other hand, the target Q-network
(expressed as a set of parameters 6’) provides target-value (Q (s’,a’;0")) for training; @ Sample(): Input the current state s into the evaluation Q network to
obtain the best action a (arg max,Q (s, a;6)) and get the reward r and the next state s’. @ Learn(): Draw experience (s, a,r, s’) from the experience pool
and network parameters are updated by calculating the loss between Q-value and target-value.

will be received by the UAV for processing G; consum-
ing energy e(G;); 4) the energy consumption of the UAV’s
movement, including flying and hovering. A negative reward,
R} = —& x ey (o), is received in the decision-making instant
05 5) the reward brought by the number of processed bits.
After processing the DAG task G;, the UAV can receive a
reward of R = R(G;) = 8 x b(G;); 6) the cost brought
by SF deployment of the action. To be specific, a negative
reward is received R§ = —n X e, for deploying Fj; 7) the
reduction of the distance from the UAV to the end point after
the action. A reward, R? = ¢ x Ay will be received if the
distance between the UAV and its destination is reduced by
A g. This reward will be negative if the UAV moves away from
the destination.

To be specific, these 7 types of rewards for an action a
are recorded as R{, RS,..., R respectively. Then, the total
reward for the action a is: 217‘:1 W; x R{. In order to be able
to sense the change of energy and make the UAV have enough
energy to reach the end point, we give additional coefficient for

et E—ey, . . .
Rg and R%, - and R respectively, in which E represents
the total energy of the UAV and e;; represents the remaining
energy of the UAV at time e;,. In this way, the UAV can
obtain higher reward by executing DAG when it has sufficient
energy; and when the energy is insufficient, the UAV can get
higher rewards by moving towards the destination.

Under this DRL framework, the UAV only makes decisions
based on its current state without relying on the state/action
history. In other words, this is a Markov decision process
(MDP) that is suitable for being processed by DRL.

B. Algorithm Description

DQN is adopted as the DRL framework here. Q-learning is
a value-based RL algorithm. In Q-learning, an agent chooses
its action in each step according to a Q-table, which stores
the long-term expected rewards for different state-action pairs.
Q(s,a) is the expectation of the future reward when taking
action a at state s, s € S, and a € {ay,as,...,a9}. Typically,
the Q-table contains |S| rows, and |A| columns. Here, |.| is
the potential of a set. The element in the ¢-row and j-column
is the expected reward for executing the j-th action at the
i-th state. Typically, the Q-table is randomly initiated, and is
updated in an iterative manner. In each step, the agent observes
its own state, e.g., s, and chooses the action a for execution
with the largest Q-value. Then, it gains a reward R(s,a) from
the environment. Then, the value (s, a) is updated according
to Q-function, that is defined as:

Q(57 a) = Q(s,a) +a(R(57 a) +vymax Q/(S/v a/) - Q(S7 a)) (22)

where the (s, a) on the left is the updated Q value, and the
two (s, a)s on the right are the Q value before updating; « is
the learning rate, R(s,a) is the instantaneous reward, v is the
discount rate, max Q’(s’, a’) is the maximum expected future
reward given the new state s’ and all possible actions a’ at
s’. The Q table is updated continuously until the termination
condition is fulfilled.

Due to the limited space of Q-table, Q-learning is unable to
deal with the problem of high-dimensional state space and
action space. To solve this problem, deep neural network
(DNN) is introduced in DQN. The function approximation
property of DNN makes it possible to extract features from

high-dimensional state inputs, so as to deal with the problems
of high-dimensional state space and large-scale action sets.
DQN takes the observed state s as the input of DNN and
outputs the Q-value of each action. In order to train the DNN,
an experience replay mechanism and a dual-network structure
are adopted in our DRL framework. An experience pool is
used to store the collected MDP quadruples, including current
state, action, reward, and next state. The training samples
will be randomly chosen from the experience pool, so as to
eliminate the correlation between samples. Two DNNs are
included in the dual-network. On the one hand, the evaluation
Q-network (expressed as a set of parameters) is used to
replace the Q table to output the Q-value of each state. On
the other hand, the target Q-network (expressed as a set of
parameters 6’) provides labels for training. The evaluation Q-
network is updated iteratively using the Q-function, so that it
can more accurately output the Q-values of different actions in
each state. The parameters of the target network 6’ are updated
with 6 periodically. Fig. 2 shows the architecture of DQN.

In our proposal, the UAV acts as the agent. At each decision-
making instant, the state of the UAV, e.g., s, is input into the
policy network 6; then, the UAV chooses an action a, such
as flying or hovering, according to the output of the policy
network 6. If it chooses to fly, it can move to one of the eight
surrounding grids. If the UAV chooses to hover, it executes
the received DAG task in its current grid. To execute a task,
it needs to load the required SFs and execute each sub-task
in sequence. After finishing the action, the environment feeds
back a reward r to the UAV according to the reward function
defined in Section IV-A. Then, the UAV enters the next state
s'. An MDP quadruple (s, a, r, s’) is thereafter inserted
into the experience pool for later use. After several steps, a
batch of MDP quadruples are sampled from the experience
pool for training the policy network. In order to improve
the efficiency of the experience replay, our proposal adopts
the Priority Experience Replay (PER) mechanism to choose a
batch of quadruples from the experience pool [29]. PER takes
the Temporal-Difference (TD)-error of each experience as its
priority, and the probability of each experience being sampled
is directly proportional to its priority. The training process is
the same as the typical DQN training. For each quadruple, the
evaluation Q-network 6 takes the state s as input, and outputs
the Q-values of each action. Then, Q-function is adopted to
obtain the labels of these Q-values according to the output of
the target Q-network ¢, which takes the next state s’ as input.
Using these labels, the evaluation Q-network is continuously
trained to give the Q-value of each state-action pair more
accurately. The parameters of the target Q-network 6’ are
updated with 6 periodically.

C. Pseudocode of the Algorithm

The pseudocode of the proposed algorithm is illustrated
in Algorithm 1. In Step 2 and Step 3 , both the evaluation
network and the target network are initialized with the same
weights. Steps 5 to 23 are the iterative training process. At
the beginning of each episode, Step 6 initializes the observed
state. In the loop from Step 8 to Step 22, the UAV continuously

interacts with the environment until it reaches the end point,
collides with the obstacles, or runs out of energy. In Step 9
and Step 10, the UAV chooses its action based on e-greedy
principle. In Step 11, the UAV executes the chosen action and
gets a reward, and then jumps to next state. Then, the UAV
collects the transition (sj, aj, 7¢j, Sj4+1) and stores it in the
experience pool in Step 12. In order to improve the efficiency
of experience replay, we adopt the priority experience replay
in Step 13 instead of random sampling. During the learning
process, the target network outputs the target Q value as the
label of training, and the loss is calculated. Then, a gradient
descent is performed to update the weights of the evaluation
network in Step 15. After several rounds of learning, the
weights of the evaluation network are synchronized to the
target network in Step 20.

Algorithm 1: Deep Q-Learning (DQN) algorithm with
priority experience replay
Input

: Iteration episodes X
Size of experience pool E
Learning rate 7
Probability of randomly selected actions e
Update frequency of target network r;tc,
Output: The evaluation (policy) network 6

1 Initialize replay memory D to capacity E;

2 Initialize the evaluation network with random weights
0;

3 Initialize the target network with random weights
0 =6;

4 step = 0;

5 for episode = I to X do

6 Initialize state sgq;

7 t=0;

8 while s; is non-terminal do

9 With probability € select a random action ay;

10 Otherwise select a; = max,Q* (s, a;0);

11 Execute action a; in emulator and observe
reward r; and next state sy41;

12 Set the maximum priority p,,q, for the
transition (s¢,a4,rt,S¢+1) and store it in D;

13 Select a minibatch of transitions (s;,a;,7;,5j+1)
from D with PER method;

14 Yj =

terminal s;;

£
non-terminal s; 1

rj + ymaxq Q(s;41,a’;6"),

15 Perform a gradient descent step on the
evaluation network (y; — Q(s;, a;;0))%;

16 St = St+15

17 t =t+l;

18 step = step+1;

19 if step % 7ier = 0 then

20 ‘ Update target network ¢’ with 6;

21 end if

22 end while

23 end for

24 Return the evaluation network 6

Time complexity analysis. The training process of Al-
gorithm 1 is mainly determined by the number of actions,
states, and the structure of the DNNG, i.e., 6 and ¢’ in Fig. 2
[30]. The computational complexity of the training process is
O(JA|X|S[?x N2, X Niayer), where |.| refers to the potential
of a set, Nigyer is the number of layers of 6; Np,q, is the

maximum number of neurons in hidden layers in 6.

V. SIMULATION AND RESULTS

To evaluate the performance of the proposal, a series of sim-
ulations is conducted. This section first presents the simulation
settings, and then analyzes the results.

A. Simulation Settings

1) Environmental Settings:

In order to reflect the generality of the algorithm, we design
three maps with different obstacles and DAG distribution as
the serving area, as shown in Fig. 3. In these maps, the red
rectangle and golden circle represent the start point and end
point of the UAV. N mobile devices are spread over in the
area. Without loss of generality, in each grid, there is at most
one mobile device, and it has a randomly chosen DAG task
that can be offloaded to the UAV. We assume that the UAV
can only receive the task offloading requests in its current grid.
In each decision-making instant, it can move to one of the 8
neighboring grids or stay in its current grid for executing the
received DAG task. The size of each grid is chosen to ensure
that the moving speed of the UAV does not violate its speed
limit V4. There are 15 types of SFs in the system, expressed
as Fi, Fs,..., Fi5,1i.e., M = 15. The UAV can simultaneously
run 8 SFs. The number of required CPU cycles of each SF
varies from 0.3 GHz to 0.5 GHz. There are 10 different types
of DAG tasks. The number of SFs included in each DAG task
is randomly chosen from 6, 7, and 8. The topology of each
DAG task is also decided randomly.

2) DRL Settings:

DQN is adopted as the DRL method as defined in Section
IV-B for joint trajectory planning and DAG task execution.
The DNNs used in the DQN include an input layer, an output
layer, and three hidden layers. The dimensions of the input
layer and the output layer are equal to the dimension of the
state space and the action space respectively. The number of
neurons in the hidden layer is 128, and the activation function
of each neuron is 'ReLu’. The training phase of the DQN
algorithm adopts the e-greedy exploration policy. In each step,
the agent chooses an action randomly with a probability €. In
our simulation, € is reduced gradually from 90% to 5% as
the training progresses. The parameters adopted by the DQN
algorithm are listed in Table III.

3) Evaluation Settings: To show the effectiveness of the
design, we adopt a step-by-step evaluation principle. We use
Map 1 as the serving area, and adopt three different reward
settings during the training phase. By comparing the influence
of the three different reward settings on the training process
and the final policy network, we verify the effectiveness of
our proposal step-by-step. The three different reward settings
are as follows.

TABLE I
DQN PARAMETERS.

Parameter Meaning Value

€ The random exploration probability 0.05-0.9

n The learning rate of DQN 0.0001

v The discount factor of DQN 0.98

E The size of the experience pool 4000

b Batch size of each training sample 256

Titer The update frequency of target network 100

R$ UAV reaches destination point. +1

R UAV collides with obstacles or flies out -1
of the boundary.

Rg The energy consumption of the task € =0.015
execution. R} = —e x e(Gy)

Ry The energy consumption of the UAV’s £ = 0.01
movement. R = —& X ey (o)

R The reward brought by the number of 3 = 0.0001
processed bits. R = R(G;) = B x
b(Gi)

Rg The cost brought by SF deployment of 7 = 0.0001
the action. R§ = —n X ep,.

RZ The reduction of the distance from the ¢ = 0.0933

UAV to the end. RS = (x Ag

1) DQN-based Path Finding (DPaF): only R{, R, RS,
and R{ are included in the reward function for the
policy network training. The reward brought by DAG
task execution is not considered;

2) DQN-based PF with Task Execution (DPaFTE): R{-
Rg are included in the reward function for the policy
network training. The cost of SF deployment is not
included;

3) DQN-based PFTE with SF Deployment (DPaFTES):
R{-R% are included in the reward function.

In order to verify the effectiveness of the policy network
trained by DQN, we have also implemented three heuristic
algorithms as comparison benchmarks.

To evaluate the effectiveness of DPaF, DPaFTE, and
DPaFTES, we design three groups of experiments. First, to
validate the effectiveness of DPaF, we compare the training
process in the map with and without obstacles. The former
adopts the map in Fig. 3(a) as the serving area and the latter
does not set any obstacles in the whole area. A number of
DAG tasks are distributed randomly in the above two maps.

For evaluating DPaFTE, we adopt a similar setting for
comparative experiments. In this part of the experiment, the
reward for executing DAG tasks is added to the feedback of
action execution.

To test the performance of DPaFTES, we design a special
map with symmetrically distributed obstacles as the service
area. All types of DAG tasks are divided into two categories,
one of which contains the same set of SFs. That is to say, when
UAV flies among those grids with these DAG requests, no
running SFs will be replaced, so that there is no SF deployment
overhead. Another kind of DAG tasks contains random SFs,
which will incur SF deployment overhead when UAV flies
among these grids.

All the above obstacles and DAGs distribution settings are
shown in the following experimental results.

4) Comparison Benchmarks:

Besides the above step-by-step evaluation experiments, in

. 10 2 . 5 6 2 9 2 7 0 10 9 7 3 1 8 8 . 4 3 6 1 10 0 1 10 9 7 3 0
9 0 5 8 8 5 9 5 5 [0 o 6 1 10 7 7 4 4 7 2 o 0 0 4 7 0 6 1 10 1
6 7 4 4 5 7] 4 8 [9 10 1 0 10 7 . . 2 6 5 9 0 10 0 13 0 1 . 10 2
1 1 1 o 3] . . 7 10 5 o 4] 1 8 4 8 6 . . 4 0 a8 . . 0 1 3 . 8 . 10
8 0 3 1 8 2 4 7 7 10 2 5 0 0 2 7 10 6) 3 5] 3 7 7 9 5 3 3 7 . . . 0

. 10 8 8 1 1 6 1 3 1 10 1 2 10 (] 8 7 5 3 7 8 1 7 (] 5 10 9 6 0 7 o 8 0

. . 10 0 5 9 4 o 1 3 1 0 o . 3 8 0 9 9 0 1 o 2 1 1 9 8 0 4 6 7
7 4 8 1 2 8 2 3 5 9 7 0 5 5 6 3 10 1 5 0 .i] 10 7 0
0 10 6 7 10 4 4 1 0 1 6 7 . . . 3 5 6 10 8 0 9 9 . 5 8 3 .
0 8 7 7 4 5 0 o 4 6 0 3 0 3 0 3 6 8 8 7 9 3 0 3 7 [2 3 6 8 .
5 6 3 6 8 7 8 6 o 7 0 . . 3 8 o 4 4 8] 2 6 0 0 5 1 1 0 4 4 .
3 4 i‘ 0 7 9 9 8 5 0 8 0 . 6 2 2 2 0 5 2 9 3 6 7 7 8 1 0 2 10 2 2 0 8
0 . .‘. 3 3 1 o 6 8 1 1 9 9 1 1 5 1 2 1 0 1 8 4 L] 1 3 0 . . 1 5 1 2
2 .‘.‘. 3 6 3 8 (] 3 5 3 7 9 10 10 4 8 10 9 4 9 0 o 8 5 10 2 .i 10 4 8 1
1 |.‘.‘.‘ 0 9 1 3 9 1 3 10 5 0 Q (] 1 0 4 Q 1 5 8 5 3 3 5 . . . 0 1 0 10

(a) Map 1. (b) Map 2. (c) Map 3.

Fig. 3. Three maps with different obstacle and DAG distributions.

order to verify the effectiveness of the policy network trained
by our proposed DQN algorithm, we have implemented three
heuristic algorithms as comparison benchmarks. These heuris-
tic algorithms are as follows.

1) Location-aware Greedy (LaG) algorithm. In this algo-
rithm, the UAV always knows its moving direction and
its distance to the end point, but it has no knowledge
about the distribution of the obstacles. In each decision-
making instant, the UAV moves to the next grid that is
located on its shortest path to the end point. Whenever
a collision happens, the UAV records the location of the
obstacle, and tries the grids around the obstacle greedily
in the next iteration. Moreover, the UAV handles every
DAG task it receives in the grids on its trajectory in a
first-come-first-serve manner until its energy runs out.
Location and Power aware (LPa) algorithm. The settings
about the UAV’s knowledge and path finding behavior in
LPa algorithm are the same as those in LaG algorithm.
However, the UAV will not execute the offloaded DAG
task as long as its remaining energy budget is lower
than a threshold, which is determined dynamically based
on the UAV’s distance to its end point. This design
discourages the UAV from spending too much energy
on task execution rather than path finding.

Location, Power, and Obstacle aware (LPOa) algorithm.
In LPoa algorithm, the UAV has full knowledge about
the obstacles, boundaries, and its moving direction and
distance to the end point. This setting gives the UAV
an additional advantage in avoiding collision during
trajectory planning.

2)

3)

In order to increase the UAV’s exploration of the environ-
ment, the three heuristics adopt the e-greedy method. In each
action selection phase, the UAV will select a random action
with probability e. To compare these designs, three metrics are
evaluated:

o Success Ratio of Path finding (SuRaP): it is defined as
the number of times that the UAV successfully reaches
the destination in all its attempts;

o Path Length (PL): the distances of the flight path of the
UAV between the start and end points;

o Executed DAG Tasks (EDT): the number of executed
DAG tasks during the flight;

o Average Latency (AL): the average latency experienced
by the executed DAG tasks.

B. Step-wise Evaluation Results

1) Path Planning Capability: 10,000 episodes are con-
ducted in the policy network training process. Fig. 4 and Fig.
5 show the results of the training process conducted on the
map without and with obstacles respectively.

From both Fig. 4 and Fig. 5, we can see a convergence trend
in the reward, loss, and the length of the found trajectory. From
Fig. 4(d), where red squares indicate the trajectory of the UAV,
we can see that DPaF helps the UAV find the shortest path
between its start and end points. The number of grids on the
trajectory converges to 15 as shown in Fig. 4(c) and Fig. 4(d).

As shown in Fig. 5(d), the length of the UAV’s trajectory
converges to 17, which is a bit longer than that shown in Fig.
4(d). This is due to the impact of the obstacles on the map.

2) DPaFTE Capability: The training results of DPaFTE on
the map without obstacles are shown in Fig. 6. From Fig. 6,
we can again see a convergence trend in the reward, loss,
and the length of the found trajectory. From Fig. 6(d), where
red squares indicate the trajectory of the UAV, we can see
that DPaFTE helps the UAV to execute a number of DAG
tasks on the trajectory (denoted by green grids) rather than
concentrating only on finding the shortest path.

The training results of DPaFTE on the map shown in Fig.
1 are shown in Fig. 7. From Fig. 7, we can see a convergence
trend in both the reward, loss, and the length of the found
trajectory. Compared with the trajectory shown in Fig. 7(d),
the UAV chooses a longer path and executes a number of
DAG tasks on the path due to the introduction of the positive
rewards brought by task execution.

3) DPaFTES Capability: In order to show the influence
of the SF deployment overhead on the training process, we

Average reward in every 50 episodes Loss value varying with learning rounds

0.0200{ ",

05 00175
00 00150
55 00125

-1.0

Loss value

0.01001 .

000751 ¢
-15

0.0050
-20

000251 !
-25 .

00000{ *

0 1000 2000 3000 4000 5000 6000 7000
Learning rounds

Average reward

Training iteration

(a) Average Reward for every 50
continuous episodes. Each iteration
contains 50 training episodes.

(b) Training loss in different learn-
ing rounds or epochs.

Fig. 4. Training results of DPaF on the map without obstacles.

Average reward in every 50 episodes Loss value varying with learning rounds

0,035
05 0.030
00
o 0025
1 =
g]
£ -05 5 0020
2 2 "
9 :
% -1.0 S oosy
g -1s 0010{ }
2
Z
-20 0.005
-25 0.000{ *u%

°
@
8
-
5
s
G
3
S
s

0 1000 2000 3000 4000 5000 6000 7000

Training iteration Learning rounds

(a) Average Reward for every 50
continuous episodes.

(b) Training loss in different train-
ing rounds or epochs.

Fig. 5. Training results of DPaF on the map shown in Fig. 1.

Average reward in every 50 episodes Loss value varying with learning rounds

0.0401 *
WW 0,035

0.030

3

0.025

0.020

H
0015
-1
0010
= 0.0051
bt aoa i

0.000
50 100 150 200 0 2000 4000 6000 8000

Training iteration

Average reward
o
Loss value

o

Learning rounds

(a) Average Reward for every 50
continuous episodes.

(b) Training loss in different train-
ing rounds or epochs.

Fig. 6. Training results of DPaFTE on the map without obstacles.

design two special maps and some special DAG tasks. Among
the DAG tasks numbered 1 to 10, DAGs 1 to 5 contain the
same set of SFs, while the remaining DAGs 6 to 10 contain
random SFs. In the first map without obstacles, the two kinds
of DAGs are symmetrically distributed with the connecting
line from the starting point to the end point. DAGs 1 to 5 are
randomly distributed in the upper half and 6 to 10 are in the
lower half. In the other map, the DAGs distribution is similar,
and some obstacles are also symmetrically distributed. The
specific details of the two maps can be seen in Fig. 8(d) and
Fig. 9(d).

The training results of DPaFTES on the map without
obstacles are shown in Fig. 8. From Fig. 8, we can also see
a convergence trend in the reward, loss, and the length of the
found trajectory. From Fig. 8(d), where red squares indicate
the trajectory of the UAV, we can see that DPaFTES helps the

(c) The length of the path for each
iteration; and each iteration contains
50 continuous episodes.

(c) The length of the path for every
50 continuous episodes.

(c) The length of the path for every
50 continuous episodes.

Average path length in every 50 episodes

Average path length

o

50 100 150 200

Training iteration

(d) An example of the found path.

Average path length in every 50 episodes

25

20

Average path length
5

) 50 100 150 200
Training iteration

(d) An example of the found path.

Average path length in every 50 episodes

Average path length

Training iteration

(d) An example of the found path.

UAV select the trajectory in the upper half of the map where
DAG tasks 1 to 5 are located. While executing these DAG
tasks will not incur SF deployment overhead, the UAV can
get higher rewards when acting with this trajectory.

The training results of DPaFTES on the map with symmet-
rically distributed obstacles are shown in Fig. 9. From Fig. 9,
a convergence trend can also be seen in the reward, loss, and
the length of the found trajectory. From Fig. 9(d), we can also
see that DPaFTES also helps the UAV find a trajectory in the
upper half of the map, in which no SF deployment overhead
will be incurred.

C. Comparison Results with Heuristic Algorithms

This section compares our proposal with LaG, LPa, and
LPOa algorithms using four different metrics, i.e., SuRaP, PL,
EDT, and AL. To facilitate the comparison, when the UAV

Average reward in every 50 episodes Loss value varying with learning rounds

2 00141 &
00121 }
00101 +
00081 3

0.006

Average reward
Loss value

=2 0.004

0.002

0.000
0 50 100 150 200 e

10000 20000 30000 40000

Training iteration Learning rounds

(a) Average Reward for every 50
continuous episodes.

(b) Training loss in different train-
ing rounds or epochs.

Fig. 7. Training results of DPaFTE on the map shown in Fig. 1.

Average reward in every 50 episodes Loss value varying with learning rounds

6
0.030

4 0.025
00201 *

0.015

i

H

L e
0.000

[50 100 150 200 0 2000 4000 6000 8000
Training iteration Learning rounds

Average reward
Loss value

0.010

2 0.005

(a) Average Reward for every 50
continuous episodes.

(b) Training loss in different train-
ing rounds or epochs.

Fig. 8. Training results of DPaFTES on the map without obstacles.

Average reward in every 50 episodes Loss value varying with learning rounds

o
Loss value

2 001 ‘

-3

0 50 100 150 200 [2000 4000 6000 8000
Training iteration Learning rounds

Average reward

(a) Average Reward for every 50
continuous episodes.

(b) Training loss in different train-
ing rounds or epochs.

(c) The length of the path for every
50 continuous episodes.

(c) The length of the path for every
50 continuous episodes.

(c) The length of the path for every
50 continuous episodes.

Average path length in every 50 episodes

Average path length
w
8

Training iteration

(d) An example of the found path.

Average path length in every 50 episodes

Average path length
%

.A "

0 50 100 150 200 250 300 350

Training iteration

(d) An example of the found path.

Average path length in every 50 episodes

30

25

20

Average path length

Training iteration

(d) An example of the found path.

Fig. 9. Training results of DPaFTES on the map with symmetrically distributed obstacles.

moves 1 grid to the left, right, up and down, it consumes 1
unit of energy. When it needs to move a grid along the diagonal
or back-diagonal, it consumes 1.4 units of energy. When the
UAV chooses to hover to respond to a DAG request, its energy
consumption is directly proportional to the latency of the DAG
task, calculated as 0.1*{(G;). We consider two scenarios in
which the energy budget of the UAV is 30 units and 100 units
respectively. All experiments are conducted on Map 1, Map
2, and Map 3.

Fig. 10 shows the experimental results when the total energy
budget of the UAV is 30 units. From Fig. 10(a), one can see
that DPaFTES achieves 100% SuRaP on all three maps. LaG
always performs the worst among the four, and its SuRaP
values are lower than 10%, and it cannot find any path on Map
1 as the energy budget is low. The SuRaP values of LPOa and
LPa on Map 1 and Map 3 are around 40%, but their SuRaP
values on Map 2 are both lower than 5%. In summary, finding

paths on different maps have different search complexity. It is
clear that DPaFTES is very good at trajectory planning. From
Fig. 10(b), one can see that the disparity of the PL values
among the four algorithms is insignificant. From Fig. 10(c),
we see that the differences between different algorithms’ EDT
values are less than 1. This is due to the fact that the very tight
energy budget at the UAV severely limits the number of DAG
tasks that it can execute. On Map 2, DPaFTES executes the
most DAG tasks; this is consistent with the fact that it has
the longest trajectory in Fig. 10(b). No significant differences
between different algorithms’ AL values can be observed from
Fig. 10(d), since they execute almost the same number of
DAGs on their respective trajectories.

Fig. 11 shows the experimental results when the total energy
budget of the UAV is 100 units. In other words, the UAV has
much more energy that can be used for DAG execution this
time. From Fig. 11(a), one can draw similar conclusions as

DPaFTES LPOa LPa LaG DPaFTES LPOa LPa LaG

SuRaP(%)
PL

o o

Map-1 Map-2 Map-3 Map-1 Map-2 Map-3

(a) SuRaP of four different algo-
rithms.

(b) PL of four different algorithms.

(c) EDT of four different algo-
rithms.

DPaFTES LPOa LPa LaG DPaFTES LPOa LPa LaG

0

Map-1 Map-2 Map-3 Map-1 Map-2 Map-3

(d) AL of four different algorithms.

Fig. 10. Performance comparison between four different algorithm when the total energy budget of the UAV is 30 units.

DPaFTES M LPOa LPa LaG | [DPaFTES I LPOa LPa LaG

SuRaP(%)

Map-1 Map-2 Map-3 Map-1 Map-2 Map-3

(a) SuRaP of four different algo-
rithms.

(b) PL of four different algorithms.

(c) EDT of four different algo-
rithms.

‘ DPaFTES LPOa LPa LaG ‘ DPaFTES! LPOa LPa LaG

o

Map-1 Map-2 Map-3 Map-1 Map-2 Map-3

(d) AL of four different algorithms.

Fig. 11. Performance comparison between four different algorithm when the total energy budget of the UAV is 100 units.

those from Fig. 10(a). DPaFTES performs the best among the
four; its SuRaP value is always 100% on all three maps. In
contrast, LPOa, LPa, and LaG perform better than they do
in Fig. 10(a) when the energy budget of the UAV is tight.
This is due to the fact that the larger energy budget allows
the UAV to explore many more grids on its path; this will
greatly increase the probability that it can successfully find a
path. Similarly, three heuristic algorithms perform the worst
on Map 2 due to the complexity of the distribution of the
obstacles on the map. Compared with the PL values in Fig.
10(b), all four algorithms choose a longer path in Fig. 11(b)
to fully utilize the increased energy budget. On Map 1 and
Map 3, DPaFTES has the largest PL value; in contrast, its
PL value is the smallest among the four on Map 2 thanks to
its strong path finding capability in complex scenarios. From
Fig. 11(c), one can see that DPaFTES can execute many more
DAG tasks that the other three algorithms, in particular on
Map 1, where DPaFTES’ EDT value is almost twice that of
the other three. Although DPaFTES executes many more DAG
tasks than the other three, it does not incur a higher AL value
that the others, as shown in Fig. 11(d). This is in consistent
with the observation drawn from Fig. 10(d). Combining Fig.
10 and Fig. 11, one can see that with the increase of the
energy budget, all the four algorithms perform better in path
finding and task execution. Moreover, different metrics vary
remarkably on different maps due to the different distribution
of the obstacles.

VI. CONCLUSION

This paper formulates the joint optimization of UAV tra-
jectory planning, DAG task execution, and service function

deployment as an optimization problem. To solve the es-
tablished NP-hard problem, a Deep Reinforcement Learning
(DRL) framework is built. Under this framework, the UAV
acts as the agent, and its state space, action space, and reward
function are defined separately. To evaluate the effectiveness of
the proposal, a series of experiments is conducted, and three
heuristic algorithms are chosen as comparison benchmarks.
Experimental results have validated that our proposal outper-
forms heuristic algorithms in success rate in path finding in
diverse geographical areas, and can execute many more DAG
tasks with lower response latency.

REFERENCES

[11 X. You, C. Wang, J. Huang, and et. al., “Towards 6G wireless com-
munication networks: vision, enabling technologies, and new paradigm
shifts,” Science China Information Sciences, vol. 64, no. 1, pp. 1-74,
2021.

[2] R. Liu, A. Liu, Z. Qu, and N. N. Xiong, “An uav-enabled intelligent
connected transportation system with 6g communications for internet of
vehicles,” IEEE Transactions on Intelligent Transportation Systems, pp.
1-15, 2021.

[3] Z. Jia, M. Sheng, J. Li, and Z. Han, “Towards data collection and
transmission in 6g space-air-ground integrated networks: Cooperative
hap and leo satellite schemes,” IEEE Internet of Things Journal, pp.
1-14, 2021.

[4] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762,
2019.

[5] X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint optimization
of energy consumption and delay in cloud-to-thing continuum,” /EEE
Internet of Things Journal, vol. 6, no. 2, pp. 2325-2337, 2019.

[6] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proceedings of the International Symposium
on Quality of Service, ser. IWQoS ’'19. New York, NY, USA:

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3326285.3329055

L. Cai, X. Wei, C. Xing, X. Zou, G. Zhang, and X. Wang,
“Failure-resilient dag task scheduling in edge computing,” Computer
Networks, vol. 198, p. 108361, 2021. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1389128621003480

X. Wei, L. Li, L. Cai, C. Tang, and S. Subramaniam, “Joint service-
function deployment and task scheduling in uavfog-assisted data-driven
disaster response architecture,” World Wide Web Journal, 2021.

Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge
computing: A survey,” IEEE Communications Surveys Tutorials, vol. 23,
no. 4, pp. 2131-2165, 2021.

S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in /[EEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 37-45.

Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang,
“Dependency-aware task scheduling in vehicular edge computing,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 49614971, 2020.

Y. Zhang, Z. Zhou, Z. Shi, L. Meng, and Z. Zhang, “Online scheduling
optimization for dag-based requests through reinforcement learning in
collaboration edge networks,” IEEE Access, vol. 8, pp. 72985-72 996,
2020.

Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao,
“Knowledge-driven service offloading decision for vehicular edge com-
puting: A deep reinforcement learning approach,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 5, pp. 41924203, 2019.

D. C. Li, B.-H. C. Chen, C.-W. Tseng, and L.-D. Chou, “A novel genetic
service function deployment management platform for edge computing,”
Mobile Information Systems, pp. 1-22, 2020.

G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading dependent
tasks in mobile edge computing with service caching,” in IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications, 2020,
pp. 1997-2006.

S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge comput-
ing systems,” IEEE Transactions on Wireless Communications, vol. 19,
no. 7, pp. 4947-4963, 2020.

C. Sun, W. Ni, and X. Wang, “Joint computation offloading and
trajectory planning for uav-assisted edge computing,” IEEE Transactions
on Wireless Communications, vol. 20, no. 8, pp. 5343-5358, 2021.

L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo, “Multi-
agent deep reinforcement learning-based trajectory planning for multi-
uav assisted mobile edge computing,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 1, pp. 73-84, 2021.

U. Awada, J. Zhang, S. Chen, and S. Li, “Airedge: A dependency-
aware multi-task orchestration in federated aerial computing,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 1, pp. 805-819, 2022.
C. Peng, X. Huang, Y. Wu, and J. Kang, “Constrained multi-objective
optimization for uav-enabled mobile edge computing: Offloading opti-
mization and path planning,” IEEE Wireless Communications Letters,
vol. 11, no. 4, pp. 861-865, 2022.

S. Xu, X. Zhang, C. Li, D. Wang, and L. Yang, “Deep reinforcement
learning approach for joint trajectory design in multi-uav iot networks,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 3389—
3394, 2022.

X. Chen, Y. Bi, G. Han, D. Zhang, M. Liu, H. Shi, H. Zhao, and F. Li,
“Distributed computation offloading and trajectory optimization in multi-
uav-enabled edge computing,” IEEE Internet of Things Journal, pp. 1-1,
2022.

Z. Wu, Z. Yang, C. Yang, J. Lin, Y. Liu, and X. Chen, “Joint deployment
and trajectory optimization in uav-assisted vehicular edge computing
networks,” Journal of Communications and Networks, vol. 24, no. 1,
pp. 47-58, 2022.

X. He, R. Jin, and H. Dai, “Multi-hop task offloading with on-the-fly
computation for multi-uav remote edge computing,” IEEE Transactions
on Communications, vol. 70, no. 2, pp. 1332-1344, 2022.

F. Song, H. Xing, X. Wang, S. Luo, P. Dai, and K. Li,
“Offloading dependent tasks in multi-access edge computing: A
multi-objective reinforcement learning approach,” Future Generation
Computer Systems, vol. 128, pp. 333-348, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X21004039
L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio—temporal edge service
placement: A bandit learning approach,” IEEE Transactions on Wireless
Communications, vol. 17, no. 12, pp. 8388-8401, 2018.

K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70-85, 2017.

(28]

[29]

[30]

Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 7, no. 5, pp.
506-521, 1996.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

J. Li, L. Yao, X. Xu, B. Cheng, and J. Ren, “Deep reinforcement
learning for pedestrian collision avoidance and human-machine
cooperative driving,” Information Sciences, vol. 532, pp. 110-
124, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0020025520302851

