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1. Introduction

In this paper we continue our investigation of asymptotic stability of solutions of the
2-dimensional incompressible Euler equation in a channel. More precisely, we consider
solutions u: [0,00) x T x [0, 1]—R? of the equation

dutu-Vu+Vp=0, divu=0, (1.1)

with the boundary condition u¥|y—o1=0. Letting w:=—dyu”+0,uY be the vorticity field,
the equation (1.1) can be written in vorticity form as

dwtu-Vu=0, u=Vr=(-d,,00), (1.2)
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for (z,y)€Tx[0,1] and ¢>0, where the stream function ¢ is determined through
AY=w on Tx[0,1], ¢(z,0)=0, ¢(z,1)=Cy, (1.3)

where Cj is a constant preserved by the flow. We remark that our domain is a finite,
periodic channel: periodicity in x is a key condition for inviscid damping and stability,
while compactness in y is a physical choice motivated by finite energy considerations.

The 2-dimensional incompressible Euler equation is globally well posed for smooth
initial data, by the classical result of Wolibner [45]. See also [24], [47] for global well-
posedness results with rough initial data, such as L vorticity. The long-time behavior
of general solutions is however very difficult to understand, due to the lack of a global
relaxation mechanism.

A more realistic goal is to study the global non-linear dynamics of solutions that
are close to steady states of the 2D Euler equation. Coherent structures, such as shear
flows and vortices, are particularly important in the study of the 2D Euler equation,
since precise numerical simulations and physical experiments show that they tend to
form dynamically and become the dominant feature of the solution for a long time.

The study of stability properties of these steady states is a classical subject and a
fundamental problem in hydrodynamics. Early investigations were started by Kelvin [25],
Orr [35], Rayleigh [36], Taylor [40], among many others, with a focus on mode stability.
Later, more detailed understanding of the general spectral properties and suitable linear
decay estimates were also obtained; see [17], [38]. In the direction of non-linear results,
Arnold [1] proved a general stability criteria, using the energy Casimir method, but this
method does not give asymptotic information on the global dynamics.

The full non-linear asymptotic stability problem has only been investigated in recent
years, starting with the remarkable work of Bedrossian-Masmoudi [8], who proved invis-
cid damping and non-linear stability in the simplest case of perturbations of the Couette
flow on T xR.

Motivated by this result, the linearized equations around other stationary solutions
were investigated intensely in the last few years, and linear inviscid damping and decay
was proved in many cases of physical interest; see for example [4], [15], [19], [23], [42],
[43], [44], [49], [48]. However, it also became clear that there are major difficulties in
passing from linear to non-linear stability, such as the presence of “resonant times” in
the non-linear problem, which require refined Fourier analysis techniques, and the fact
that the final state of the flow is determined dynamically by the global evolution and
cannot be described in terms of the initial data.

In this paper we close this gap and establish inviscid damping and full non-linear

asymptotic stability for a general class of monotone shear flows, which are not close to
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the Couette flow. We hope that the general framework we develop here can be adapted
to establish non-linear asymptotic stability in other outstanding open problems involving
2D or 3D Euler and Navier-Stokes equations, such as the stability of smooth radially

decreasing vortices in 2D.

1.1. The main theorem

We consider a perturbative regime for the Euler equation (1.1), with velocity field given
by (b(y),0))+u(z,y) and vorticity given by —b'(y)+w.

To state our main theorem we define the Gevrey spaces G**(T xR) as the spaces of
L? functions f on TxR defined by the norm

[ £llgrs (rxry = HeMkvO”f(k,g)H% <oo for s€(0,1] and A>0. (1.4)

In the above, (k,§)€ZxR and f denotes the Fourier transform of f in (z,y). More
generally, for any interval ICR, we define the Gevrey spaces G»*(TxI) by

Il fllgrscrxry == I Efllgrs (rxm)> (1.5)
where
. ), ifxel,
Brw={ 1" |
0, ifx¢l.

We refer to §3.1 below for more details as well as further references on Gevrey spaces.

The use of Gevrey spaces is necessary in the context of inviscid damping, mainly
due to loss of regularity during the flow. In contrast, Sobolev spaces provide control
only on finitely many derivatives, which is not sufficient in our case, while the classical
C spaces do not provide adequate quantitative bounds on the growth of the high-order
derivatives. Analytic functions have also been used in certain cases, but analyticity is a
very rigid condition which is not compatible with the type of localization arguments we
need in our problem (such as the main assumption (1.6) below).

Concerning the background shear flow b€ C°°(R), our main assumptions are the

following;:
(A) For some Y€ (0, 11—0] and (>0,
1
Jo <V (y) < 7 for y€1[0,1], b"(y)=0 for y ¢ [200,1—27y], (1.6)
0
and

1
1Bllzoe 0,1y H 16" llgao 172 < - (L.7)

Jo
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(B) The associated linearized operator L: L2(0,1)— L%(0,1), k€Z\ {0}, given by

Lef=b(y) f=b"(y)pr, where Ojp—k*pp = f and ¢4(0) = ¢x(1) =0, (1.8)

has no discrete eigenvalues and therefore, by the general theory of Fredholm operators,
the spectrum of Ly, is purely continuous spectrum [b(0), b(1)] for all keZ\{0}.
The spectral condition (B) is a qualitative condition, and we need to make it quanti-

tative in order to link it to the perturbation theory. For this we define, for any k€Z\ {0},

I iy o= 1Ll 2y + I 22 ey - (1.9)
The following quantitative bounds were proved in [22, Lemmas 3.1 and 3.2].

LEMMA 1.1. Assume that o€ H'" is supported in [%190,1—%190]. For keZ\{0},
Yo €[0,1], 66[ L 1]\{O}, and any f€L?(0,1), we define the operator

Tk,yo,sf(y):z/R@(y)Gk(y’ Z)b b (2)f(2)

B =blgo) = (1.10)

where Gy, is the Green function associated with the operator —0;+k* on [0,1] (see (4.24)
for explicit formulas). Then, there is k>0 such that, for any f€H}(R),

1 Tk,y0,e f | ) S |k|71/3l|f”H§(R) and || f+Tkyoefllmr @ = 6l fllarw, — (111)

uniformly in yo€[0,1], k€Z\{0}, and e sufficiently small.

In our case, the function ¢ will be a fixed Gevrey cutoff function, ¢(y)=(b(y)),
where U is defined in (2.42). The parameter x>0 in (1.11) will be one of the parameters
that determine the smallness of the perturbation in our main theorem.

For any function H(z,y), let (H)(y) denote the average of H in z. Our main result

in this paper is the following theorem.

THEOREM 1.2. Assume that o, Yo, x>0 are constants as defined in (1.6), (1.7), and
(1.11). Then, there are constants 1 =/1(Bo,J0,k)>0 and £=&(By, o, k)>0 such that
the following statement is true:

Assume that the initial data wo has compact support in T X [209, 1—29¢], and satisfies
||w0\|g30,1/z(TxR) =e<Z and /wo(x7 y)dz=0 for any y€[0,1]. (1.12)
T

Let w:[0,00)xTx[0,1] >R denote the global smooth solution to the Euler equation

B . =
{8tw+b(y)8zw V' (y)Opth+u-Vw=0, (1.13)

u=(u",u) = (=0y¥, 0:0), Adp=w, (t,z,0)=¢(t2,1)=0.
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Then, we have the following conclusions:
(i) For all t=0, suppw(t)CTx [y, 1 —dg].
(ii) There exists Fao(x,y)€GPVY2 with supp Fao CT x [0, 1 =00, such that, for all
t>0,
€
Hw(tv 1‘+tb(y)+¢)(t, y)7 y)_FOO(xv y)||g51v1/2(’]l‘><[0¢1]) 550719075 67 (114)
where

t
B(t, y) ::/ (W) (7, y) dr. (1.15)
0
(iil) We define the smooth functions o, uso: [0, 1] =R by
651/)002<Foo>7 woo(o):woo(l)zla uoc(y) = yd’o@ (1'16)

Then, the velocity field u=(u®,uY) satisfies

5

[[{u") (t, ) —voo ()l gor.1/2 (T [0,1]) SBosd0,n GER (1.17)
T xT E

Hu (tv 3373!)_ <’U, )(t7 y)”LOﬂ(’]I‘x[O,l]) 550-,790#‘& @7 (1'18)
3

[0 (, 2, Y) || oo (1 [0,1]) Shosbo.n [N (1.19)

A similar theorem was proved slightly later and independently by Masmoudi-Zhao
[31].

1.2. Remarks

We discuss now some of the assumptions and the conclusions of Theorem 1.2.
(1) The equation (1.13) for the vorticity deviation is equivalent to the original Euler
equations (1.1)—(1.3). The condition

/Wo(xvy) dz=0
T

can be imposed without loss of generality, because we may replace the shear flow b(y) by

the nearby shear flow b(y)+ (uf)(y). In fact, since
9y (0y¥) = (w),
this condition is equivalent to

(ug)(y)=0 for any y<€0,1]. (1.20)
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These identities only hold for the initial data, and are not propagated by the flow (1.13).

However, as we show in (2.3) below, we have
(u”)(t,y)=0 for y€0,1]\[Jo, 1 -] and ¢ € [0, T7,
as long as the vorticity w is supported in [0, 7] x T x [J¢, 1 —]. In particular,

<UT> (t’ y) —Uco (y)

is compactly supported in [Jg, 1 —1].

(2) The assumption on the compact support of wy is likely necessary to prove scat-
tering in Gevrey spaces. Indeed, Zillinger [48] showed that scattering does not hold in
high Sobolev spaces unless one assumes that the vorticity vanishes at high order at the
boundary. This is due to what is called “boundary effect”, which is not consistent with
inviscid damping. This boundary effect can also be seen clearly in [23] as the main
asymptotic term for the stream function.

Understanding quantitatively the boundary effect in the context of asymptotic sta-
bility of Euler or Navier-Stokes equations is an interesting topic by itself, but we will
not address it here.

The assumption on the support of b is necessary to preserve the compact support
of w(t) in Tx[J,1—1], due to the non-local term b”(y)d,% in (1.13). In principle,
one could hope to remove this strong assumption (and replace it with a milder decay
assumption) by working in the infinite cylinder T xR domain instead of the finite channel
T x [0, 1], but this would be at the expense of considering solutions of infinite energy.

We also assume that b(y) is strictly monotone in y. This assumption is important for
our proof, to ensure a uniform rate of inviscid damping. It is an important question to
investigate what happens to non-monotone shear flows which are linearly stable, such as
Kolmogorov flow on a torus with unequal sides (see e.g. [44] for linear stability results).

(3) There is a large class of shear flows b satisfying our assumptions. For instance,
if b(y) satisfies [b’|>1 and || <1, then the spectrum of the operators Ly, consist entirely
of the continuous spectrum [b(0), b(1)] for k€Z\{0}.

(4) The Gevrey regularity assumption (1.12) on the initial data wq is likely sharp.
See the recent construction of non-linear instability of Deng—Masmoudi [16] for the Cou-
ette flow in slightly larger Gevrey spaces, and the more definitive counter-examples to
inviscid damping in low Sobolev spaces by Lin—Zeng [29].

(5) The most important statement in Theorem 1.2 is (1.14), which provides strong
control on the “profile” of the vorticity and from which the other statements follow

easily. We note that the convergence (1.14) of the profile for vorticity holds in a slightly
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weaker Gevrey space (81<fp). This is connected with the use of energy functionals
with decreasing time-dependent weights to control the profile, and is a reflection of the
phenomenon that “decay costs regularity” in inviscid damping.

We also remark that in (1.18)—(1.19) we used the L norm instead of L2-based
norms, which are used for measuring most other quantities in the paper. In our compact
channel case, the L> norm provides the strongest control on u” and u¥ without sacrificing
the rates of convergence in time in (1.18)—(1.19) (compare with the explicit formulas
(1.22) in the Couette case).

(6) At the qualitative level, our main conclusion (1.14) shows that the vorticity
w converges weakly to the function (F.)(y). This is consistent with a far-reaching
conjecture regarding the long-time behavior of the 2D Euler equation, see [39], which

predicts that for general generic solutions the vorticity field converges, as t— o0, weakly

2

i o to a steady state. Proving such a conjecture for general solutions

but not strongly in L
is, of course, well beyond the current PDE techniques, but the non-linear asymptotic
stability results we have so far in [8], [20], [21] are consistent with this conjecture.

(7) There are several parameters in our proof, and we summarize their roles here.
The parameters Sy, 9o, k>0 (the structural constants of the problem) are assumed fixed,
and implicit constants in inequalities like ASB are allowed to depend on these parame-
ters. We will later fix a constant 69 >0 sufficiently small depending on these parameters,
as part of the construction of our main weights; see (2.36).

The weights will also depend on a small parameter >0, much smaller than dg,
which is needed at many places, such as in commutator estimates using inequalities like
(1.40). We will use the general notation A<s B to indicate inequalities where the implicit
constants may depend on 6. Finally, the parameters ¢ and e;=¢2/3, which bound the

size of the perturbation, are assumed to be much smaller than §.

1.2.1. Linear inviscid damping and the Orr mechanism

One can gain some intuition and explain the conclusions in Theorem 1.2 by examining
a simple explicit case, corresponding to the Couette flow b(y)=y. In this case, b”(y)=0
and the linearization of the main equation (1.13) is
Opw+y0yw =0, (1.21)

which was studied by Orr in a pioneering work [35]. To simplify the discussion, we assume
z€T and y€R (to avoid the boundary issue which is not our main concern here).

By direct calculation, we have w(t, z,y) =wo(x—yt, y). The stream function is given
by

AY(t,z,y) =w(t, z,y)
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for (z,y)€T xR, so in the Fourier space we have the formulas

_ Bolk, E+kt)

@(t,k,é)zﬁo(lﬂ,gﬁ‘kt) and @E(tvkag): k‘2+‘£‘2

(1.22)
We remark that the conclusions in the full non-linear Theorem 1.2 are consistent with
these explicit formulas. Indeed, assume that wp is smooth, so Wy (k,§) decays fast in k
and . Then, the following holds.

(1) The main contribution comes from the frequencies {=—kt+O(1), therefore
(L, k, €) decays like |k|=2(t) 72 if k#£0. Similarly, the relations u®=—08,1 and u¥=0,1
show that u® decays like |k|~1(t)~" and u¥ like |k|~'(t)~2, as claimed in (1.18)—(1.19).

(2) It can be seen from (1.22) that the functions w(t,z,y) and (¢, z,y) are not
uniformly smooth as t—oo, in the original coordinates = and y. To obtain smooth

“profiles” we define
Z:‘(L.itv7 U:y’ F(t’ z’”):w(t7x’y)7 QS(t’ Z7v):w(t7x7y)' (1'23)

Notice that F(t,z,v)=wp(z,v) (independent of ¢), while ¢(¢, z,v) is uniformly smooth
for all t provided that wq is smooth. Taking the Fourier transform in z and v, we have

the formula

7 &o(k,f)

o(t, k7€)=77k2+‘€7kt|2. (1.24)

(3) An important observation by Orr is that for k70 and large £, the normalized
stream function ¢ (as well as the velocity field) may experience a transient growth as t
approaches the “critical time” t.=¢/k before decaying to zero. This can be easily seen
from the formula (1.24). This transient growth on the linearized level turns out to be
crucial for the non-linear analysis as well, and leads to the high-regularity assumptions

(Gevrey spaces) that are required for the non-linear perturbation theory; see [16].

1.3. Previous work and related results

The study of stability properties of shear flows and vortices is one of the most important
problems in hydrodynamics, and has a long history starting with work of Kelvin [25],
Rayleigh [36], and Orr [35]. The problem is well motivated physically, since numerical
simulations and physical experiments, such as those of [2], [3], [11], [12], [13], [32], [33],
show that coherent structures tend to form and become the dominant feature of incom-
pressible 2D Euler evolutions. This indicates a reverse cascade of energy from high to
low frequencies, which is in sharp contrast to the 3D situation, where it is expected that

energy flows from small frequencies to high frequencies until the dissipation scale.
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We refer also to the recent papers [26], [30] for other interesting results concerning

the dynamics of solutions of the 2D Euler equations.

Our main topic in this paper is asymptotic stability. Non-linear asymptotic stability
results are difficult for the 2D incompressible Euler equation, because the rate of stabi-
lization is slow, the convergence of the vorticity field holds only in the weak sense, and
the non-linear effect is strong. In a recent remarkable paper Bedrossian—-Masmoudi [8]
proved the first non-linear asymptotic stability result, showing that small perturbations
of the Couette flow on the infinite cylinder T xR converge weakly to nearby shear flows.
This result was extended by the authors [20] to the finite channel T x [0, 1], in order to be
able to consider solutions with finite energy. In [21] the authors also proved asymptotic
stability of point vortex solutions in R?, showing that small and Gevrey smooth pertur-
bations converge to a smooth radial profile, and the position of the point vortex stabilizes
rapidly and forms the center of the final radial profile. These three results appear to be
the only known results on non-linear asymptotic stability of stationary solutions for the

Euler equations.

A key common feature of these stability results is that the steady states are simple
explicit functions, and, more importantly, the associated linearized flow can be solved

explicitly.

To expand the stability theory to more general steady states, one can first consider
the linearized equation and prove inviscid damping of linear solutions. The linear evolu-
tion problem has been investigated intensely in the last few years, in particular around
general shear flows and vortices; see for example [19], [23], [42], [48], [49]. In particular,
Wei-Zhang-Zhao [42] proved optimal decay rate of the stream function for the linearized
problem near monotone shear flows, and Bedrossian—Coti Zelati—Vicol [4] obtained sharp
decay estimates for general vortices with decreasing profile. We also refer the reader to
important developments for the linear inviscid damping in the case of non-monotone
shear flows [43], [44] and circular flows [4], [15].

There is a large gap, however, between linear and non-linear theory. As we know,
even in the simplest case of the Couette flow, to prove non-linear stability one needs to
bound the contribution of the so-called “resonant times”, which can only be detected
by working in the Fourier space, in a specific coordinate system. This requires refined
Fourier analysis techniques, which are not compatible with the natural spectral theory
of the variable-coefficient linearized problems associated with general shear flows and
vortices. In addition, non-linear decay comes at the expense of loss of regularity, and
one needs a subtle interplay of energy functionals with suitable weights (in the Fourier

space) to successfully close the argument.
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This gap was bridged in part by the second author in [22], who proved a precise linear
result, which combined Fourier analysis and spectral analysis, and provided accurate
estimates that are compatible with non-linear analysis. In this paper, we close this gap
completely in one important case, namely the case of monotone shear flows satisfying a
suitable spectral assumption.

The problem of non-linear inviscid damping we consider here is connected to the
well-known Landau damping effect for Vlasov—Poisson equations, and we refer to the
celebrated work of Mouhot—Villani [34] for the physical background and more references.
Inviscid damping is a very subtle mechanism of stability, and has only been proved rig-
orously in 2D for Euler-type equations. It can also be viewed as the limiting case of
the Navier-Stokes equation with small viscosity v>0. In the presence of viscosity, one
can have more robust stability results for initial data that is sufficiently small relative
to v, which exploit the enhanced dissipation due to the mixing of the fluid. See [6], [9],
[10], [41] and references therein. Moreover, in the limit ¥—0 and if there is boundary,
then the boundary layer becomes an important issue, and there are significant addi-
tional difficulties. We refer the interested reader to [7], [14] for more details and further

references.

1.4. Main ideas

We describe now some of the main ideas involved in the proof.

1.4.1. Renormalization and time-dependent energy functionals

These are two key ideas introduced by Bedrossian-Masmoudi [8] in the case of Couette
flow, and which are important in this work as well. We refer to [8], [20] and the recent
excellent survey [5] for longer discussions on this topic and its connection with Landau
damping of Vlasov—Poisson equations.

As in [8] and [20], [21], we make a non-linear change of variable, and define v and z
by

v(t,y)::b(y)-k%/o.(um)(s,y)ds and z(t,y):=z—tv(t,y). (1.25)

The main point is to remove the terms containing the non-decaying components b(y)d,w
and (u®)0yw from the evolution equation satisfied by the renormalized vorticity. We also
remark that the change of variable y—wv is crucial since, roughly speaking, it linearizes

an oscillatory factor of the type e~ #*%W) to e~ which allows us to precisely capture
the main decay factor. Compare e.g. (1.24) for Couette flow and the elliptic equation

(4.27) for general shear flows.
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Denote
F(t,z,v):=w(t,z,y) and ¢t z,0):=9(t, z,y). (1.26)

Under this change of variable, the equation (1.13) becomes
O F—B"9.6—V'9,Psop 0. F+(V+V'0.4) 8, F =0, (1.27)

where Py is projection off the zero mode. The coefficients B”, V", V, and V' are suitable
coordinate functions, connected to the change of variable (1.25), see (2.5)—(2.7) for the
precise definitions.

The main idea is to control the regularity of F' for all £>0, as well as other quantities
such as V', V", B" V, and ¢, using a bootstrap argument involving nine time-dependent

energy functionals and space-time norms. These norms depend on a family of weights

Ak(tv 6)7 ANR(tv 5)7 and AR(tag)v (128)

for k€Z and £€R, which have to be designed carefully to control the non-linearities.

To motivate the choice of weights, assume that F' and ¢ satisfy the simplified system
O F —0y P20 0, F+0,0 0, F =0, 92¢+(9,—10,)*¢=TF, (1.29)

for (z,v,t)€TxRx[0,00). Compared to the original system, we assume that b"”=0 (the
Couette flow) and keep only one non-linear term, the “reaction term” 9,Pq¢-0,F. We

would like to control, uniformly in time, an energy functional of the form

e0=Y [ AtolFeror (1.30)

kEZ

as well as a similar energy functional for the function ¢, for a suitable weight Ag(t,&)

which decreases in t. The main observation is that

i€ F(t,k,¢€)

(8:13;@(75, k7f) = *ﬁm k#0-

(1.31)
When |¢]>>k2, the factor ¢/k? in (1.31) indicates a loss of one full derivative in v, which
occurs in the resonant region {(¢, k, &):|t—£/k|<|¢|/k? and k*+1<|€|}. This is a major
obstruction to proving stability, which cannot be removed by standard symmetrization
techniques.

The key original idea of [8] is to use imbalanced weights Ay(t,€) to absorb this
derivative loss, taking advantage of the favorable structure of the non-linearity that does

not allow for contributions to the resonant region to come from bilinear interactions of
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small frequencies and frequencies in the resonant region (due to the factor 9, F in the

reaction term). More precisely, the weights A satisfy the property

At,n) | m ) 1
~ |1 , 1.32
2.6~ 2| T 32
when k#£0, (£0, E=n+0(1), k=0+0(1), and 1+[t—n/€|<|n|/¢>.
The weights Ay (¢,€) decrease in time, in the quantitative form,
78tAk(t7§) ~ 1 (133)

A(t,6) T (t=¢/k)
if keZ\{0}, k2<|€|, and |t—¢&/k| <|€] /K%, which is needed in order to be able to control

some of the non-linear terms using the Cauchy-Kowalevski terms coming from time
differentiation of the energy functional £ in (1.30). This leads to loss of regularity of the
profile F' during the evolution, which is the price to pay to prove non-linear decay of the
stream function ¢.

Finally, to prove commutator estimates in the context of our problem, we need to

know that the weights vary sufficiently slowly in ¢, ideally something like

|Ak(t, &) — Aw(t,0)| S (k, € T2 [Ar(t, €)+Ax(t,0)]

if (¢—n)<1. This is not possible, however, in the framework of imbalanced weights as
defined above. Our solution to this problem is to allow the weights to depend on another
parameter 6<1, and prove weaker estimates of the form

C()

A=A | o +VE| maxfAu e O, At} (130

if (¢—n)S1<min{(k, &), (k,n)}. Such bounds are still suitable to control the commuta-
tors, due to the gain of v/d for large frequencies.

The resonant and non-resonant weights Ar and Ayxg are used to control quantities
that do not depend on z, like the change-of-coordinates functions V/, V, etc. The special
weights we use here are the same as the weights we used in our earlier work [20], [21],
and we rely on many estimates proved in these papers. Our weights are refinements of
the weights of [8], but depend on an additional small parameter § which gives critical

flexibility at several stages of the argument.

1.4.2. The auxiliary non-linear profile

In the case of general shear flows, an essential new difficulty that is not present in the

Couette case, is the additional linear term B”(¢,v)0,¢ in (1.27). This extra linear term



NON-LINEAR INVISCID DAMPING NEAR MONOTONIC SHEAR FLOWS 333

cannot be treated as a perturbation if ” is not assumed small. On the linearized level, one
can understand the evolution by using spectral analysis, especially the regularity analysis
of generalized eigenfunctions corresponding to the continuous spectrum. However, it is
still a challenge to combine the linear spectral analysis with the more sophisticated
Fourier analysis tools needed for controlling the non-linearity. We deal with this basic

issue in two steps: first we define an auxiliary non-linear profile F*(t) given by
t
F*(t,z,v)=F(t,z, v)f/ B"(0,v)9,¢' (s, z,v) ds. (1.35)
0

Thus F* takes into account the linear effect accumulated up to time ¢ and can be bounded
perturbatively, using the method in [20], [21] (outlined in §1.4.1 above). The function ¢’
(not to be confused with the derivative of ¢) is a small but crucial modification of ¢,
obtained by freezing the coefficients of the elliptic equation defining stream functions
at time t=0, in order to keep these coefficients very smooth. See (2.39)-(2.40) for the
precise definitions.

On a heuristic level, we expect that the full evolution of F' consists of two contribu-
tions: the main, linear evolution that changes the size of the profile most significantly,
and a small but rough (compared with the linear evolution) non-linear correction. We
can view (1.35) as a bounded linear transformation in both space and time from F to
F* which takes into account the bulk linear evolution. Remarkably, the transforma-
tion (1.35) can be chosen independently of the non-linear evolution, once the non-linear
change of coordinates is fixed, and can be studied using just linear analysis. The key
point is that this transformation can be inverted to get bounds on the full profile F' from
bounds on F™*; see §1.4.3 for details.

The modified profile F* now evolves in a perturbative fashion, and can be bounded
using the method in [20], [21]. However, this construction leads to loss of symmetry
in the transport terms V', Pxo¢ 0. F and (V+V'8,¢) 8, F, since the main perturbative
variable is now F™*. This loss of symmetry causes a derivative loss, so we need to prove
stronger bounds on F'—F* than on the variables F' and F™*, as described in (2.44).

1.4.3. Control of the full profile

We still need to recover the bounds on F' and the improved bounds on F'—F*. Since
the bounds on F* are already proved, it suffices to prove the improved bounds (2.50) for
F—F~.

This is a critical step where we need to use our main spectral assumption and the
precise estimates on the linearized flow. To link F'—F™ with the linearized flow, we

define an auxiliary function ¢*, which can be approximately viewed as a stream function
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associated with F*, see (7.7) for the precise definitions. Now, setting g:=F —F* and
p:=¢' —¢*, the functions g and ¢ satisfy the inhomogeneous linear system with trivial
initial data
8,9— By (v)0.p=H, ¢(0,z,v)=0,
B(,)(U)Q(av _taz)290+B(l),(”) (Ov _taz)90+8390 =g(t, 2,v),
where (t, z,v)€[0,00) x T x [b(0), b(1)]. The functions

(1.36)

Bj(v)=B'(0,v) and B{(v)=B"(0,v)

are time-independent, very smooth, and can be expressed in terms of the original shear
flow b. The source term H is given by H=B{(v)d,¢*.

The function ¢* is determined by the auxiliary profile F*. Since we have already
proved quadratic bounds on the profile F*, we can use elliptic estimates to prove qua-
dratic bounds on ¢*, and then on the source term H. Therefore, we can think of (1.36)
as a linear inhomogeneous system with trivial initial data, and attempt to adapt the
linear theory to our situation.

—ikvt

Decomposing in modes, conjugating by e , and using Duhamel’s formula, we can

further reduce to the study of the homogeneous initial-value problem
Ohgr+ikvge —ikBgpr =0, gp(0,v) = Xy (v)e ",
(Bo)* 031+ By (0)dupr —k* 0k =g, @1 (b(0)) = @1 (b(1)) =0.

for (t,v)€[0,00) x [b(0), b(1)], where k€Z\{0} and a€R.

(1.37)

1.4.4. Analysis of the linearized flow

The equation (1.37) was analyzed, at least when a=0, by Wei—Zhang—Zhao in [42] and
by the second author in [22]. We follow the approach in [22]. The main idea is to
use the spectral representation formula and reduce the analysis of the linearized flow
to the analysis of generalized eigenfunctions corresponding to the continuous spectrum.
More precisely, using general spectral theory, we can express the stream function as an
oscillatory integral of the spectral density function (which depends both on the physical
and the spectral variables); see Proposition 8.2. An important new feature in the analysis
of the linearized equation here, in comparison with [22] is that we have to consider initial
data with an oscillatory factor, see (1.37), and the norms we use to measure the spectral
density function are adapted to the oscillatory factor. It is well known that the spectral
density function, see e.g. (8.22), contains singularities. To obtain precise characterization
of these singularities, we make suitable re-normalizations (8.33)—(8.34) and estimate the

resulting functions in Gevrey spaces.
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As a result, given data X, smooth and satisfying supp X C[b(Jo), b(1—10)], we find

a representation formula (see Lemma 8.1 and Proposition 7.1 for the precise formulations)

t
gk(t,g):)?k(§+m+ka)+m//REg(g)ﬁ’k(@rkt—g—kf,§+kt—g,a)dgdr (1.38)
0

for the solution gy, of the linear evolution equation (1.37), where II} (¢, 7, a) can be ex-
pressed in terms of a family of generalized eigenfunctions. As proved in [22], these
eigenfunctions cannot be calculated explicitly, but can be estimated very precisely in the

Fourier space,

(1R + 1D Wi (n+ka)TT (€, m, a) 22 S Wi (m) X e ()2, (1.39)

for any a€R, where Wy is a family of weights satisfying smoothness properties of the
type
c)

|Wk(£)_Wk(n)| 5 6250<5*77>1/2Wk(77) {W+\/S:| for any &, ne R. (140)

The inequality (1.40) holds for standard weights, like polynomial weights
Wi(€) = (L+g)N?,
which correspond to Sobolev spaces, or exponential weights

Wi(6) =Mo" s< i,
which correspond to Gevrey spaces. More importantly, it also holds for our carefully
designed weights Ay (t,&), as we have already seen in [21]. This allows us to adapt and

incorporate the linear theory, and close the argument.

1.5. Organization

The rest of the paper is organized as follows. In §2 we renormalize the variables using a
non-linear change of coordinates and set up the main bootstrap Proposition 2.2. In §3 we
collect some lemmas concerning Gevrey spaces and describe in detail our main weights
Ay, Agr, and Aygr. In §4 we prove several bilinear estimates and, more importantly,
an elliptic estimate that can be applied many times to control stream-like functions. In
§§5—7 we prove the main bootstrap Proposition 2.2. In §8 we prove the main estimates on
the linear flow, by adapting the analysis in [22]. Finally, in §9, we use the main bootstrap

proposition to complete the proof of Theorem 1.2.
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2. The main bootstrap proposition
2.1. Renormalization and the new equations

In this subsection we introduce the non-linear change of variables and define the main
quantities we need to control uniformly over time. As illustrated in §1.2.1, to obtain
uniform control we need to un-wind the transportation in z; see (2.4) for the precise
definitions. Since the coordinate system is time and solution dependent, we need to
derive the equations of not only the profile of vorticity and the renormalized stream
function, but also of the coordinate system itself. The calculations are all summarized
in Proposition 2.1.
Assume that w: [0, 7]xTx [0,1] is a sufficiently smooth solution of the system

Ow+b(y)dpw—b" (y) 00 +u-Vw =0, 2.1)
(U u¥) = (—0,1,000), A=w, G(t,z,1) =t z,0)=0, '

which is supported in T x [, 1—19] at all times t€[0, T, satisfying ||{w)(t)||g10 <1 and
/Tu’”(O7 z,y)dz=0 for any y€|0,1]. (2.2)

Using (2.1) and (2.2), it is easy to show that
/Jruz(t,m,y) dr=0 for any t€[0,7] and y € [0, Jo]U[1 =10, 1]. (2.3)

Indeed, as u®=—0,% and Ap=w, we have 9, (u”)=—(w). We also have J (u”) =(wdy1))
(see the proof of (9.23) below), and the desired identities (2.3) follow using the support
assumption on w.

As in [8], [20], [21], we make the non-linear change of variables

v:b(y)—i—%/o/(uw)(v',y) dr, z=x—tv. (2.4)

The point of this change of variables is to eliminate two of the non-decaying terms in the

evolution equation in (2.1), namely the terms
b(y) Opw and (u”) Oyw.

The change of variable y+—wv is crucial for our analysis, and it allows us to link the
renormalized stream function ¢ to the profile F' using the elliptic equation (2.32). The
point is that this equation has constant coefficients at the linear level, so it is compatible

with Fourier analysis.
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Then, we define the functions

F(t7 z7 v) ::w(t7 x7 y)7 ¢(t7 Z7 U) ::w(t7 x7y)7
V/(t,0):=0y0(t,y),  V"(t,0):=0yo(ty), V(tv):=0d0(t,y),
B'(t,v):=0,b(y), B"(t,v):=0y,b(y).

Using (2.3), we have

ve[b(0),b(1)] and supp F(t) CTx[b(d),b(1—10)] for any ¢t € [0, T].

The evolution equation in (2.1) becomes
O F —B"0,¢—V'0,Protp 0. F+(V+V'0.6) 0,F =0,
where P is projection off the zero mode, i.e., for any function H(t, z,v),
PoH(t,z,v)=H(t,z,v)— (H)(t,v).
Moreover, we have
Dup=0.6 and By =V'(D,¢—10.0) = V' (D, —10.),

and therefore

Opa0=0.2¢ and Oyt = (V')?(9,—10.)*p+V" (0, —10.)¢.
Recalling the equation AYy=w, we see that ¢ satisfies

D2+ (V') (0y—10:)*+ V" (0, —t0:)p = F,

with ¢(t, z,b(0))=¢(t,z,b(1))=0 for any t€[0,7] and z€T.
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(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

We also need to establish equations for the functions V’, V", V, B’, and B” asso-

ciated with the change of variables. Using (2.4) and the observation —9,(u*)=(w), we

have

0,0(t.9) =V (1)~ [ @)(r)

aﬂ)(t, y) = t

g dr ey )
8 |

S e

0y0pv(t,y) = p

3 [rmar—iey)

(2.14)
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Thus,
1

1 | @ar =Vt v,

By the chain rule, it follows that

[t (V! (t,v) = B (t,v)]+tV (t,v) Dy [V'(t, v)— B’ (t,v)] = — (F)(t,v)
1

=—— [ F(t,z,v)dz.

27'("]1*

We notice that

81,(8,51)(15, y)) = 61/ [V(tv U(ta y))} = V/(tv U(ta y)) avv(tv U(tv 7/))

(2.15)

(2.16)

(2.17)

Hence, using the last identity in (2.14) and the identities (2.15) and (2.17), we have

tV' (t,0) 3,V (t,v) = B'(t,v) =V (t,v) — (F)(t, v).

(2.18)

We derive now our main evolution equations. It follows from (2.16) and (2.18) that

(V' =B =V'8,V-Vd,(V'—B).

Set
H:=tV'0,V =B -V'—(F).

Using (2.19) and (2.9), we calculate

OH=—0,(V'—B')—(0,F)

=-V'0,V+VO,(V' =B )=V (0 Ppod 0. F) +{(V+V'D,¢) O, F).

Using again (2.20) and simplifying, we get
H ’ / /
Ot ==~V O, M=V (0, P06 0.F)+ V(0.6 0,F).
Finally, using (2.7), we have

OB/ (t,v)+Vd,B'(t,v) =d;B" (t,v)+Vd,B" (t,v) =0.

We summarize our calculations so far in the following result.

(2.19)

(2.20)

(2.21)
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PROPOSITION 2.1. Let w:[0,T]xTx[0,1]—=R be a sufficiently smooth solution of
the system (2.1)—~(2.2) on some time interval [0,T]. Assume that w(t) is supported in
T x [90,1—0] and that ||{w)(t)|| g0 for all t€[0,T]. Then,

(W) (t,y)=0 for any t€[0,T] and y € [0, 9]U[1—1, 1]. (2.22)

We define the change-of-coordinates functions (z,v): Tx[0,1]—=Tx [b(0),b(1)] by

t
v:=b(y)+%/(u“>(7,y)d7’ and z:=zx—tv, (2.23)
0

and the new variables
F,¢$:[0, T|xTx[b(0),b(1)] — R

and
V' V" . V,B' B" H:[0,T]x[b(0),b(1)] — R
by
Ft,z,v):=w(t,z,y), ot z,0):=0(tz,y), (2.24)
V'(t,0):=8yv(t,y), V'(t,v)=0dy,0(t,y), V(t,v)=0dw(ty), (2.25)
B'(t,v) :=9,b(y), B"(t,v):=0dy,b(y), (2.26)
H(t,v) =tV (t,0) B,V (t,v) = B'(t,v) = V' (t,v)— (F)(t,v). (2.27)

Then, V’(t,v))%ﬁo. Moreover, the new variables F, V'—B', V, and H are supported
in [0, T|XTx[b(9),b(1—100)] and satisfy the evolution equations

O F—B"0,6=V'0,P4000,F—(V+V'8,¢) d,F, (2.28)
A B'(t,v)+V8,B'(t,v) =8 B" (t,v)+V 8,B" (t,v) =0, (2.29)
O (V'—=BY+V 8,(V'—B') = % (2.30)
OHAV O, H = —% — V{3, Ppop 8. F)+V' (0,09, F). (2.31)
The variables ¢, V", and V satisfy the elliptic-type identities
D2+ (V') (9, —10,)2 0+ V" (8, —1D,)p=F, (2.32)
d,V = :% V(t,b(0))=V(t,b(1))=0, V"'=V'8,V". (2.33)

We remark that the main variable we need to control is F', which is the profile for the
vorticity w. The variable H=tV'8,V is constructed from V (t,v)=d;v(t,y), and encodes
the convergence of the coordinate system. In addition, H satisfies a more favorable
equation than V. We refer to §2.3 for further discussion on these variables, as well as

the other variables.
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2.2. Energy functionals and the bootstrap proposition

The main idea of the proof is to estimate the increment of suitable energy functionals,
which are defined using special weights. For simplicity, we use exactly the same weights
ANR, Ar, and Ay, as in our earlier papers [20] and [21], so we can use some of their

properties proved there. These weights are defined by

YOI Va2 YOI 12
A t €)= — Vo) Ap(t, €)= V3O 2.34
NR( 7€) bNR(tag)e ’ R( 75) bR(t,é) € ) ( )
and
V()2
1/2 [ e 1/2
Ag(t, €)= O8O (?(t 5 +eVoIH ) (2.35)

where k€Z, t€]0,00), and £€R. The function A: [0, c0)— {60, %50} is defined by

Sood
<t> 1400’

/\(O):géo and N ()= (2.36)

where dp>0 is a fixed parameter and 0¢=0.01. In particular, A is decreasing on [0, 00),
and the functions Axg, Ag, and Ay, are also decreasing in t. The parameter § >0, which
appears also in the weights bg, by g, and by, is to be taken sufficiently small, depending
only on the structural parameters &g, Jg, and k.

The precise definitions of the weights by g, br, and by are very important; all the
technical details are provided in §3.2 (see also §1.4.1 for some motivation). For now, we

note that these functions are essentially increasing in ¢ and satisfy
e VI b (t, €) <by(t, €) <byr(t,€) <1 for any t, &, and k. (2.37)

In other words, the weights 1/by g, 1/bg, and 1/by, are small when compared to the main
factors X(M©* and AOKkO?

are important as they are used to distinguish between resonant and non-resonant times.

in (2.34)—(2.35). However, their relative contributions

Assume that w: [0, 7] xTx[0,1]—R is as in Proposition 2.1 and define the functions
F, ¢, V', V" .V,B' B" and H asin (2.24)—(2.27). To construct useful energy functionals
we need to modify the functions V’, B’, and B” which are not “small”, so we define the
new variables
By(v):=B'(0,v) = (8,0)(b™*(v)), B (v):=B"(0,v)=(9;b)(b” " (v)), (2.38)
V!:=V'-B), B..=B'-B), B'=B"-Bl. '

Our main goal is to control the functions F' and ¢. For this, we need to consider

two auxiliary functions F* and ¢’. We define first the function

&' (t,2,0): [0, T] x T x [b(0),b(1)] — R
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as the unique solution to the equation (see Lemma 4.5 for existence and uniqueness)
92¢'+(By)* (8, —t0.)*¢' + By (9, —10.)¢' = F,  ¢/(t,b(0)) =¢'(£,b(1)) =0,  (2.39)
on Tx[b(0),b(1)]. Then, we define the modified profile
F*(t,z,v):=F(t,z,v)—Bj (v) /Ot 8.9/ (7, z,v) dr, (2.40)

and the renormalized elliptic profiles

O(t, z,v) := (02 +(0y—10.)?) (¥ (v) p(t, 2,v)),

(2.41)
@*(t, 2 ’U) = (a§+(av _taz)Z) (\I!(’U) (¢(t7 2, U) _¢/(ta 2, ’U))) )
where U: R—[0,1] is a Gevrey class cut-off function, satisfying
3/4
9™ W (E) = <
supp ¥ C [b(iﬁo),b(lfiﬂo)], (2.42)

T=1 in [b(100).b(1—190)].

Our bootstrap argument is based on controlling simultaneously energy functionals
and space-time integrals. Let Ay (t,€):=(8,Ay)(t,£)<0 for Y€{NR, R, k}, and define,
for any t€(0, T,

n=Y [ Buolftkor e ferF,

keZ
(2.43)
/ / Ax(5,6)] Au(s,€) |F (s, k. )2 de ds,
1 rez
err-)= Y [ (149 )Ai(t N FF)(t,k,©) de,
rer (2.44)
Br_p-( | Ar(s, €)| An(s, &) |(F—F*)(s, k, €)|” d€ ds,
/1k€Z /< ) ' '
) B2(1)? ) .
gzj*/Akus Sty <>2|<1><t kOPds vefe.e),
e ) (2.45)
- / A3t )l(t. )P e, ge (VB B,
N (2.46)

:[A‘AR(<9,£)|AR(S7£) ‘5(975”2 de ds,
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3/2
entt)=K* [ A%Rw,s)(%) (At ) d,
(s)

By (t):=K? /j/RANR(37§)|ANR(Suf)(<£>>3/2|ﬁ(sv§)|2dfdsv

where Z*:=Z\{0} and K>1 is a large constant that depends only on 4.

(2.47)

Our main bootstrap proposition is the following.

PROPOSITION 2.2. Assume that T>1 and let weC([0,T]:G%Y/2) be a sufficiently
smooth solution of the system (2.1)—(2.2), with the property that w(t) is supported in
T x [0, 1—Do] and that |[(w)(t)||g10 <1 for all t€[0,T]. Define F, F*, ©, ©* B., B",
V., H as above. Assume that €1 is sufficiently small (depending on §),

Z E,(t) < for any t€0,1], (2.48)
ge{F . F* . F-F~*,0,0*,V],B| ,B/!/H}

and

> [E,()+By (1) <&l for any te[1,T). (2.49)
ge{F,F*,F—F* ©,0*,V! B/ B/ H}

Then, for any t€[1,T], we have the improved bounds

2
€
> [£9(1)+By ()] < 5 (2.50)
ge{F,F* F—F*,0,0*,V/,B,,B" H}
Moreover, for t€[1,T], we also have the stronger bounds
D &) +By(1)]) St (2.51)

ge{F.0}

The proof of Proposition 2.2 is the main part of this paper, and covers §§3-8. In §9
we then show how to use this proposition to prove the main theorem.

The use of bootstrap arguments in perturbation analysis is, of course, well estab-
lished. The key point is an improvement in the bounds over the ones assumed at the
beginning (in our case from €3 to 3, compare (2.49) and (2.50)), using the evolution
equations. This allows us to use continuity in time of the various quantities to increase
the time interval from [1,77] to [1,T'], T'>T, so that we still have the weaker bounds
(2.49) on the longer time interval [1,7”]. Then, we apply the bootstrap proposition on
the longer time interval [1,7”] again to get the improved bounds (2.50). This allows us
to extend the time on which we have control of the solution indefinitely. We refer to §9

for details.
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We also remark that our main bootstrap bounds (2.49) are assumed on [1, T rather
than the more often used [0, T']. This is only for convenience of arguments in later sections.
Since the main task is to control large time behavior of our solutions, the removal of the
time interval [0, 1] saves us from having to distinguish the cases t€0, 1] and t€[1, 0o), for
example when treating equations (2.4) or (2.31), which contain a 1/t factor. The desired
bounds on the time interval [0,1] are consequences of local well-posedness theory; see

Lemma 9.1.

2.3. The variables of the bootstrap argument

Our argument outlined in Proposition 2.2 involves control of nine quantities. We explain
now the roles of these quantities:

(1) The main variables are the vorticity profile F' and the renormalized elliptic
profile ©. Our primary goal is to prove global bounds on these quantities.

(2) The functions F* and ©* are auxiliary variables, and we analyze them as an
intermediate step to controlling the main variables F' and ©. The function F* satisfies a
better transport equation than F', without any other linear terms, while the function ©*
satisfies a better elliptic equation than ©, again without linear terms in the right-hand
side.

(3) A significant component of the proof is to control the function F—F™*, which
allows us to pass from the modified profile F** to the true profile F'. This is based on the
theory of the linearized equation in Gevrey spaces, as developed by the second author
in [22], and requires the spectral assumption (B) on the shear flow. We remark that the
bootstrap control on the variable F'— F* is slightly stronger than on the variables F' and
F* separately, which is needed to compensate for the lack of symmetry in some of the
transport terms.

(4) The functions V/, B., and B! are connected to the change of variables yr—uv.
These functions appear in many of the non-linear terms in the equations, so it is important
to control their smoothness precisely, as part of a combined bootstrap argument, in a
way that is consistent with the smoothness of the functions F' and O.

(5) Finally, the function H, which decays in time, encodes the convergence of the
—3/4

system as t—oo. This function decays at a rate of (t) , in a weaker topology, which

—7/4

shows that the function 8,V decays fast at an integrable rate of (t) , again in a weaker

topology.
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2.4. Compact support and localization
We note that the variables F', F*, V! B, BY, and H are all supported in
T x [b(lgo), b(l*’ﬁo)]

This compact support property allows us to freely insert a Gevrey regular cutoff function
which equals 1 on [b(dg), b(1—13)] (such as ¥(y) from (2.42)), in front of these variables.
For example, in some cases we need to bound V' F, where we note that V' is not compactly
supported inside T x (b(0), b(1)). By the support property of F, it then suffices to bound
(¥V')F, which can be treated by using the bootstrap bounds (2.49). This localization

argument plays an important role at various stages of the proof.

3. Gevrey spaces and the weights Ay, Ar, and Ang

In this section we collect some results on Gevrey spaces and on the weights Ay, Agr, and

Anr, that are useful below. Most of the results were proved in [20] and [21].

3.1. Gevrey spaces

We summarize here some general properties of the Gevrey spaces of functions. See [37],
[46] for more discussion and further references on Gevrey spaces.

To perform certain algebraic operations, it is very useful to have a related definition
in the physical space. For any domain DCT xR (or DCR) and parameters s€(0,1) and
M >1, we define the spaces

Gy(D):={f:D—C:|f|

Gs,(D) < oo}, (3.1)
where
1l oy = sup D7 F(a) M (m-+1) 7"/,
xeD

m=0
|a|<m

We start with a lemma connecting the spaces G#*** and 5;,

LEMMA 3.1. ([20, §A.1]) (i) Suppose that s€(0,1), K>1, and feC>(TxR), with
supp fCTx[—L, L], satisfies the bounds ||f]| )<L Then, there is p=p(K,s)>0

g3, (TxR
such that
|f(k, )| Skos Le R4 for all k€ Z and € €R. (3.2)
(ii) Conversely, if p>0 and s€(0,1), then there is K=K(s,p)>1 such that
£, oy S 1 gy (33)
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Using this lemma one can construct cutoff functions in Gevrey spaces: for any points
a’'<a<b<l/ €R and any s€(0, 1), there are functions ¥ supported in [a’, V'], equal to 1 in
[a, b], and satisfying \\Tl(ﬁ)\ge_@s for any £€R. See [20, §A.1] for an explicit construction
of such functions, as well as an elementary proof of Lemma 3.1. We use several functions
of this type in the proof of our main theorem.

The physical space characterization of Gevrey functions is useful when studying

compositions and algebraic operations of functions.

LEMMA 3.2. (i) Assume s€(0,1), M>1, and fi, f2€G5,(D). Then, f1f2€G3, (D)

and
Hflf2| gjjw(D) 5 Hf1| gN;\/I(D)”f2”g~fVI(D)
for some M'=M'(s, M)>=M. Similarly, if f1=1in D, then
’ L <1.
fillgs,, o)

(ii) Suppose s€(0,1), M>1, I; CR is an interval, and g: T x [ =T x I satisfies
|DY(x)] < M™(m+1)™*  for any x€TxI;, m>1, and |a|€[1,m)]. (3.4)
If K>1 and feG5(TxIy), then fegeGs(TxI,) for some L=L(s, K, M)>1 and

[l fogl

G5 (Tx 1) Ss KM Hf”é;(('[sz) . (3.5)

(iii) Assume s€(0,1), L€[1,00), I, JCR are open intervals, and g: I—.J is a smooth

bijective map satisfying, for any m=>1,
|DYg(x)| < L™(m~+1)"™*  for any x €1 and |a| €[1,m]. (3.6)
If |g'(z)|=p>0 for any x€1, then the inverse function g~1: JJ—1 satisfies the bounds
|DY(g~ ) ()| < M™(m~+1)"*  for any z€J and |o|€[1,m], (3.7

for some constant M=M (s, L, p)>L.

Lemma 3.2 can be proved by elementary means using just the definition (3.1). See

also [46, Theorems 6.1 and 3.2] for more general estimates on functions in Gevrey spaces.

3.2. The weights Angr, Agr, and Ay

We summarize here the construction of our main imbalanced weights Ag, Aygr, and Ay
in [20]. We start by defining the functions wy g, wg: [0, 00) xR— [0, 1], which model the
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non-resonant and resonant growth. The main point of these definitions is to distinguish

between resonant and non-resonant regions, which plays a key role in the analysis. Res-

onance is measured in terms of the size of the denominators (t—¢/k), which appear in

the formula (1.31) expressing the normalized stream function in terms of the vorticity

profile. The intervals I, ,, defined below, where this factor is small are called “resonant”

intervals. Notice the imbalance in (3.12) between the weights wr(t,n) and wyr(t,n), es-

pecially around the center of the resonant intervals, consistent with the loss of derivative

discussed in §1.4.1.
Assume that §>0 is small, §<Jg. For |n| <610 we simply define

wyr(t,n):=1 and wg(t,n):=1.
For 7>6710 we define kq(n):=|/03n]. For 1€{1,...,ko(n)}, we define

Ifm . m
tl,n::§<m j)7 tO,n:: 27]7 Il,n:: [tl,777tl—1,n]~

Notice that |I; ,|~n/I* and

5_3/2
2

13

gtko(n),'q<~~<tl,n< gtl—l,n<~-~<t0,n:2n'
We define
wygr(t,n):=1 and wg(t,n):=1 ift>te,=2n.

Then we define, for ke{1,...,ko(n)},

14+82)t—n/k|  \° . 1
— th— fte |- ti
(1+62‘tk71,n_n/k| WNR(to—14,m), iftE o = |

1 o n n
— - ifte |t —=1.
(1+52\t—77/k\> wNR(k’”)’ 1 e{’“ k}

We define also the weight wg by the formula

wNR(t,n) =

1+6%|t—n/k| £ ’tiﬁ’< n

wNR(G M) T 5 e <L,
14-6%n/(8k2 k| 8k2
wnlt.m) e 0/ (8K%) .
wnr(t,1), if t € I,y and ’t—E’>@7
for any ke{1,...,ko(n)}, and notice that, for t€ I ,,
dwnr(t,n) _ dwr(t,n) 52

wyr(t,n)  wr(tn) — 1+62 [t—n/k]

(3-8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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It is easy to see that, for n>3§~10,

wNR(tko(n),n: 77) = wR(tko(n),m 77) € [X5 (77)47 X5 (77)1/4]7 (314)

where
Xs(n):= e~/ (6™,

For small values of t=(1—8)tx, (), BE[0, 1], we define wyr and wg by the formulas
wnr(t,n) =wr(t,n) = (e~ wn r(teom).nm)' " (3.15)

If n<—0719, then we define

wr(t,n) =wr(t, |nl), wyr(t,n):=wnr(t,n), and Ip,:=I_k .

To summarize, the resonant intervals Iy ,, are defined for (k, ) €Z x R satisfying |n|>&10,

1<|k|<+/83|n|, and n/k>0.
Finally, we define the weights wy(¢,n) by the formula

wk(t 7]) ::{ wNR(t777)7 ift¢[k,n7 (316)
’ wr(t,n), iftely,.

In particular, wy(t, n)=wnr(t,n) unless |n|>510, 1<|k|<\/m, n/k>0, and t€l} ,.
The functions wyg, wr, and wy have the right size but lack optimal smoothness

in the frequency parameter 7, mainly due to the jump discontinuities of the function

ko(n). This smoothness is important in symmetrization arguments (energy control of

the transport terms) and in commutator arguments. To correct this problem, we fix

¢:R—10,1], an even smooth function supported in [f%, %] and equal to 1 in [f%, %},
and let do:= [, o(x) dz. For k€Z and Y €{NR, R, k}, let
§—p ) 1
b t, ::/'LU t, ( d )
Y( 5) R Y( p)w L&’(t7€) dOLé’(t7 &) P (3 17)
'(€) '
Ls(t,€) =1+——22—, & €]0,1].
5(75) +<§>1/2+(5lt7 E[ ’ }

The length L (¢,€) in (3.17) is chosen to optimize the smoothness in £ of the functions
by (¢, -), while not changing significantly the size of the weights. The parameter §’ is
fixed sufficiently small, depending only on 6.
We can now finally define our main weights Aygr, Ar, and Ay. We define first the
decreasing function A: [0, co) — [50, %(50] by
(500’ g

/\(0):%50 and (1) =~ (3.18)
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for small positive constant oy (say 09=0.01). Then, we define

A2 A2

Ag(t, = " VRO and A t, 7\[@1/2, 3.19
and, for any k€Z,
5 [ eVAE?? 3
Ax(t, ::ex<z><k,s>”z(eiﬂﬁwk\l“), 3.20

We record the simple inequalities

A <ANR(t €) < Ap(t, €) < XOEO 232

3.21
AW < A (1, €) < 2eMO B2 2V3(k,E)2 (3.21)

for any k€Z, t>0, and {€R.

3.2.1. Properties of the weights

We collect now several bounds on these weights, which are proved either in [20] or in [21].
In these papers we prove many more properties of the weights, but we summarize here
only the ones that we need explicitly in this paper.

We start with some bounds on wy and by, see [20, Lemmas 7.1 and 7.2] for the

proof.

LEMMA 3.3. ([20, Lemmas 7.1 and 7.2]) For t>0, §,n€R, k€Z, and Y €{NR, R, k},

we have

wy (t,§) Va|n—g|1/?
) S 522
by (1. €) Ry (6. 106y (4.0] Sobr (1) s (323)

We recall several bounds on the main weights Ay g, Ag, and Ay; see [20, Lemma 7.3].
LEMMA 3.4. ([20, Lemma 7.3]) (i) Assume t€[0,00), k€Z, and Ye{NR, R, k}. If

&, nER satisfy |77|>Z|§| (or |(k,n)|= i|( 8| if Y=k), then
Ay (t,
Ay (t,

(i) Assume te[0,00), and let k,(€Z and &, neR satisfy |(€,n)|=5|(k, &)|. If t&Ixe
or tely ¢NIy,, then

0.9X(t)[§— 77\1/2 (3.24)

s
\*)J‘r»

Av(tO)
)~

Ak(t f) ey 1/2
05) < Q09D (R=£E—m)| 7 3.95
Ae(t777) ~ ( )
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If telye and t¢l,,, then

Ag(t,6) < 1€l 1 QO-ND|(h—t.E—n)|'/? (3.26)
Ag(t,m) ™7 k2 1+ [t=¢ /K|
In some commutator estimates we need an additional property of the weights Ay.
LEMMA 3.5. ([21, Lemma 7.5]) There is a constant constant Co(0)>1 such that, if
€ nER, 120, kEZ, and (§—n)<3((k,€)+(k,n)), then

Co(9)
(k,&)1/8

| Ak (t,€) = Ak (t, 1) S Ar(t, € —n) Ag(t,n)e” AO/10 =M [ +\/5} . (327

To control the space-time integrals defined in (2.43)—(2.47) we also need estimates

on the time derivatives of the weights Ay.

LEMMA 3.6. (i) For allt>0, peR, and Y €{NR, R}, we have

—Ay(t,p) N <p>1/2 ath(tvp)
Ay (t, p) N§[<t>1+”0 wy (t, p) } (3:25)

and, for any k€Z,

7Ak(t7p) ~s <k7p>1/2 6twk(t7p) 1 (3 29)
Ag(t, p) O)1ree  wi(t,p) 14+eVE IR0y (t, p) | '

In particular, if k€Z*, t>0 and pER, then

] (j—’;) (0|25 <t-g>‘”". (3:30)

(ii) For all t>0, &, n€R, and Y €{NR, R}, we have

(8)eels] e

Moreover, if k,{€Z, then
Ay
(4) e

(E)esls

Finally, if p€R and k€Z satisfy |k|<(p)+10, then

‘(%)(t,p)'za (ﬁ—ﬁ)(m)]za

eAValEnl'?, (3.31)

64\/3\’€—f,£—n|1/2. (3.32)

(%)(t,p)‘. (3.33)
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Proof. All the estimates except for (3.30) are proved in [20, Lemma 7.4]. To prove
(3.30), we use first (3.29), thus
Ay i
(4500 2,
k

and the bounds (3.30) follow unless

'%’2(5712 and ‘t—p‘<ﬂ

k| S 10[k
In this case, we use the second term in (3.29), thus

’(ﬂ) t, )‘ > Orwi(, p) > Orwnr(t, P).
Ak Wk(t, P) UJNR(t, p)

In view of (3.13) and (3.15), this suffices to prove (3.30) in the remaining range. O
To control commutators in the space-time integrals, we need to also regularize the
weights |Ay /Ay |. We start by defining
0, if |€] <6710 or if €] > 6710 and t > 2|¢],

p#(t, ) =4 % if |€]>6710 and ¢ <ty )., (3.34)

52 ; —10
W, if |§‘>(5 andte]k,g, k€{1727...7]€0(£)}7

for t>0 and £>0. Compare with the formulas (3.13). Then, we define u# (¢, £):=pu# (¢, |£])
if £<0 and regularize the weight, as in (3.17),

. _ 1 §-p _ 86
wr(t,6) = /]R /1,# (t, p) doLy (L.6) @<L§/(t, £)> dp, Lg(t,§):= 1+7<§>1/2+5’t. (3.35)

Finally, we define, motivated by the formulas (3.28) and (3.29),

_ (ke ULy
/Jk(tvg) T <t>1+00 1+e\/3(‘k‘1/2—<5>1/2>bk(t7 5)7

(3.36)
@,
pr(t, €)= W+M (t,€).
We record below the main properties of the weights pr and p.
LEMMA 3.7. ([21, Lemmas 7.6 and 7.7]) (i) For t>0, £€R, k€Z, we have
A A

et~ | 1 ) (18)] and pr(t.&)=s || ) (18- (3:37)

Ak AR
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(i1) Assume that £, n€R, k€Z, and t=0. Then,
i (t,€) s e, m)eSVE e, (3.38)

Moreover, if (€—n)<&((k,&)+(k,n)), then there is C1(6)>1 such that

e (1, €) = pui ()| S (=g (2, et VO 1612 {%+x/§} . (3.39)

In other words, the weights py are proportional to the weights |Ay /Ay |, but have
better smoothness properties. See [21, Lemmas 7.6 and 7.7] for the proofs.

3.3. Bilinear estimates

To bound non-linear terms we need bilinear estimates involving the weights. Many such
estimates are proved in [20, §8]. We use all of these bilinear estimates in this paper as
well, since our proof here contains all the difficulties of the proof for the Couette flow
treated in [20]. In addition, we need four more bilinear estimates to deal with the new
terms in the equation (2.28) for F', which we prove in this section.

We start with a lemma that is used many times in this paper. See [20, Lemmas 8.2
and 8.3] for the proofs.

LEMMA 3.8. ([20, Lemmas 8.2 and 8.3]) (i) For any t€[0,00), a€[0,4], £,n€R, and
Ye{NR, R}, we have

(€)™ Ay (£,€) Ss (E=m) ™ Ay (1, E=n) (n) ™ Ay (t, m)e™ (/20 minCe=n- ()™= (3.40)
and
(sl (el ()l
(i) For any t€[0,00), £, nER, and k€Z, we have
Ap(t,€) S5 An(t, €—n) Ag(t, m)e Go/20) min(e=m.(ha)'/2 (3.42)

and

‘ <%) (t, 5)' s { ‘ (%) (t,&=n) ‘ + ’ (j—i) (t,m) ’ }612\/3mi“((§*77>7<k,n))”2‘ (3.43)
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To state our new estimates, we let §):= 5500 and define the sets

Ro:={((k,€), (¢, m) € (ZxR)?:

: (3.44)
min((k, &), (¢,n), (k—£,E=n)) > 55((k, )+ m) +(k—L,E—m) },
Ry:={((k,&), (£,m) € (ZxR)*: (k—£,&=n) < 15 ((k, )+ (L) +(k—L,6=n)) },  (3.45)
Ry :={((k, &), (£,m) € (ZxR)*: (£, ) < 5 ((k, &)+ (€, m) +{k—£, =) }, (3.46)
Ry:={((k,£), (£,m) € (ZxR)?: (k, &) < 75 ((k, )+ (€, m)+(k—€,E—m)) }. (3.47)

LEMMA 3.9. Assume that t>=1, k,L€Z, £, nER, let (m, p):=(k—{,£—n), and assume
that m+#0.
(1) If ((k7£)7(f777))€R0UR17 then
(p/m[+{){P) |, 42 2
5 AR (L, &) — kA (8,
<t>m2<t—p/m>2| i (t,6) 7(t,n)] (3.48)
<5 V1AL (4 1 I(AAD (1) An(t, p)e= om0

and

(Io/ml+(®)(p) [EAL(t, )| +[EAZ(E, )|
(Oym2(t—p/m)>  (1+(k, €)/({t)"/? (3.49)

<o VI(AkAR) () (A Aot )| Apa(t, p)e S5m0,
(ii) If ((k7§)7(£777))6327 then

p/ml+E)@) 1, o ,
e o AR O A ) 550

sV IARAD (4. 1A i) (2. p)] Aclt m)etoen 2,

Proof. The bounds (3.48) and (3.50) are proved in [20, Lemma 8.4]. The statement
of (3.50) is slightly weaker in [20, Lemma 8.4], in the sense that the quantity

|CAR(t, &)+ kA7 (¢, )

in the left-hand side is replaced by the smaller quantity [(A%(¢,£)—kAZ2(t,n)|, but the
proof itself does not use the symmetrization and applies to the larger quantity as well.
We now prove the new bounds (3.49). Notice that

(2 (p/ml+{t)lp) | 1+(Em)/(E) | 1+(k §)/(E) <y edma’?
({Oym?(t—p/m)?> ~ 1+(k,§)/(t) ~ 1+(£:n)/(t)
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By symmetry, for (3.49) it suffices to prove that

[CAZ(t, )| S ( <Iz> )1/2 \/| ARAR)(t, 5)\\/\(AgAe) (t,n)l

y1/2

X A (t, p)e~B%/2)mp

This is equivalent to proving that

a5 (145 1/2 \/' A Jwo \/' )t

< Adt, )A( oo,

(3.51)

In view of (3.32) we may replace |(Ag/A)(t,n)| with |(Ag/AL)(t, €)| at the expense of an
acceptable factor. The desired bounds (3.51) follow from the lemma below. O

LEMMA 3.10. Assume that t>1, k,(€Z, £, n€R, let (m, p):=(k—L,&—n), and as-
sume that m=0. Then,

A(t,6) _ (k,6)\/?
o s (145 @

provided that ((k,€), (¢,n))€RoURy and t>1.

(ik)(t 5)’ m(t, p)e2000me (352)

Proof. For this, we first use the following elementary observation: if a,b€R? and
€10, 1], then

(B)=Ba) = (a+b)2 <O+ (1-5V/B)(a)"/*. (3.53)

Notice that 20(1,7)>(m, p) (since ((k, &), (£,n))€ RoURy), and |(Ax/AL)(t, )| (t)~1—o0
(see (3.29)). Using also (3.21) and (3.53), the bounds (3.52) follow if (k,&)<100(m, p).
On the other hand, if (k,£)>100(m, p), then we consider two cases. If t¢ 1} ¢, then
we simply use (3.29) to bound |(Ay/Ak)(t, €)|>s(k, €)1/2(t)"1=70. The desired bounds
(3.52) follow using also (3.25). If t€l} ¢ (in particular 1<|k|<d|¢| and t~=&/k), then

A2, f) l€I° /K2 Q09N (m,p) /2 < {t)? —(80/20)(m,p)'/?
W Rt ¥ e > Gemy im0

using (3.26). The bounds (3.52) follow since

1 () \Ak(t £)|
{t—&/Rk) > wi(t,8) ~

as a consequence of (3.13) and (3.29). O
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LEMMA 3.11. Assume that t>1, k,L€Z, &, nER, let (m,p):=(k—L,E—n), and as-
sume that m#0.
(1) If ((ka§)7(€an))€R0UR17 then
lp/m|*+(t)? 2 2
e o AR §) —EAL(E
. . 5 tm. )12
S5 V1A & 1| (Ac A (E )] A, p)e50m)

and

lo/mP+{t)>  InAR(t, ©)|+IAF (¢, )|
Im| ()2 (t—p/m)>  (1+(k,&)/(t)*/? (3.55)

<o VI(AAD) & O V1A & )] At ple=0mo .

(i) If ((k,&),(¢,n))ERy, then

lp/m|*+(t)? 2 2
|m|(7‘>2<t—p/m>2 {MAk(tv £)|+ |£AZ (t7 7])'} (356)

SV 1ARAR) (8 O1 V1 (A A (1 )] Aot )50t 2,

Proof. The bounds (3.54) and (3.56) are proved in [20, Lemma 8.5], with the same
remark as before that the inequality (3.56) is slightly weaker in [20, Lemma 8.5], but its

proof does not use the symmetrization. To prove (3.55), we notice again that

(1?2 lp/m[*+(t)* L/ | 14k 6/ <, Smn)'
(m|{)2(t—p/m)? " 1+(k, E)/(t) 1+l /(E) ™ '

Therefore, for (3.55), it suffices to prove that, if ((k,£), (¢,n))€RyUR;, then

In|AZ(t,€) Ss <1+ <’z;>£>

X A (t7 p)e_(g‘%/z)(myﬂ)

1/2 . .
) i ol i e
1/2
As in the proof of Lemma 3.9, this follows from (3.52). O

LEMMA 3.12. Define the sets

R:z = {((kvg)a (Ev 77)) ER,: k= l}

Assume that t>=1, k€Z, £, nER, and let p:=&—n.
(1) If ((k,€), (k,m)€RGURT, then

Az (6, &) —€AR @)
(PY )+ () /274~

VIARADE OV 1A A & )| Awr(t, ple @ (3.57)
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and

[nAR(t, )| +ISA7 (t,n)|
(o) () +(p) 1/ 4()7/4) (14 (K, €) /()12
1/2

<5 V1(AeAn) (& €)1 /1A Ax) E )| An e, p)e= 500,
(ii) If ((k:f)v(k‘:n))ER? then

(AR (t, 6|+ AR (E )]
(o) (8)+(p) /4(t)7/4

<5 V1(AeAL) (4.)] 1/ |(AwrAn )t )| Aw(t, m)e=0tkm" ",

355

(3.58)

(3.59)

Proof. The bounds (3.57) and (3.59) are proved in [20, Lemma 8.6], with the same
remark as before that the inequality (3.59) is slightly weaker in [20, Lemma 8.6], but its

proof does not use the symmetrization. For the bound (3.58), it suffices to prove that, if

((k, &), (k,n)) € R§URS, then

In A% (t,€)
(k, &)\

/2 1/2
> (” ® ) 1A (0O (A (6 m)| An (e, p)e G320,

As in the proof of Lemma 3.9, using (3.32) it suffices to prove that

Au(t,€) kN, 74

Ay

Since

‘ (il,: ) (t, 5)‘ >5 (k, €)V/2 (1)1

(see (3.29)), for (3.60) it suffices to prove that
Ak(t7 é-) 55 Ak(t, n)ANR(t7 p)ei261/)<%7>1/2.

This follows from (3.24) if ((k,&), (k,n))€R;, or from the bounds (3.53),

)1/2

)

Ax(t,n) > O (kn
Anr(t,p)> A2
Ap(t,6) < Qek(t)<k»5>1/2€2¢3(k«§>1/2

(see (3.21)), if ((k,&), (k,n))€R;.

(7) (t7 g) ’ANR(t7 p)€*256<p)1/2‘
Ag

(3.60)

(3.61)
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LEMMA 3.13. Assume that t>1, k€Z, £,n€R, and let p:=&—n.
() If ((k,€), (k) ERSURF and k40, then

43(0.0) 55 /A ¢ 91w I 4, pre-sin .

(i) If ((k,€),(k,n))€R5 and k0, then

430, 50\ A0 (. IR P A e 80 a63)

(itl) If ((k,8),(k,n))€RS and k#0, then

A0, 5oV Aot iran(e I A ge 0 @

Proof. (i) Using (3.32), it suffices to prove that

Ay [E|(t) ¢t —n/k)* —(38,/2) ()11
Ap(t,6) S5 Aw(t ZE ) ()| o A (t, p)e B/
(e %5 anteon)| (5 ) [P e e
This follows from (3.42) and (3.29)—(3.30).

(ii) Since 4(k,n)<min((k, &), (p)), we can apply (3.32)—(3.33). Notice also that

For (3.63), it suffices to prove that

A ’ 1/2
A(t,6) S (A—:)u@)\@VAR(t, P) Au(t, )5/

o | (j—’;) (.6 251077

this follows from (3.42).
(iii) Since 4(k, &) <min({k,n), (p)), the desired bounds (3.64) follow easily from (3.21)
and (3.28)~(3.29). O

4. Non-linear bounds and the main elliptic estimate

We prove now estimates on some of the functions defined in Proposition 2.1. In most cases
we apply the definitions, the bootstrap assumptions (2.49), and the following general
lemma (see [20, Lemma 8.1] for the proof).
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LeMMA 4.1. ([20, Lemma 8.1]) (i) Assume that m,mq,me:R—C are symbols sat-
isfying
m(&)] < [ma (E=m)| [ma(n)[{(§=n) ">+ (n) 7%} (4.1)
for any &, meR. If M, M, and My are the operators defined by these symbols, then
M (gh)l2®) S 1 Magllaey | Mahl| L2 ) (4.2)
(ii) Similarly, if m,ma: ZxR—C and m1:R—C are symbols satisfying
Im(k, )] <[mi(€—n)| [ma(k, ) {{€—n) ">+ (k,m) "} (4.3)

for any £, neR, k€Z, and M, My, and My are the operators defined by these symbols,
then

(1M (gh)ll 2 (rxry S I Mgl L2y || Mahl| L2 (rxr)- (4.4)
(iii) Finally, assume that m, my,ma: ZxR—C are symbols satisfying
Im(k, &) < |ma(k—£,E=n)| [ma(€,n)[{(k—€,E—n)"2+{,n) "%} (4.5)

for any &, neR, k., leZ. If M, My, and Msy are the operators defined by these symbols,
then
1M (gh)||z2(rxr) S [ Magllpzrxr) | M2h]| L2 rxr)- (4.6)
For simplicity of notation, we introduce the following definitions.
Definition 4.2. For feC([0,T]:H*(R)), geC([0,T]:H*(TxR)), Y€{R, NR}, and
t1,t2€[0,T], we define

1= sup / A2(8,0)|F(1.€)? de
teftat

(4.7)
# [ v 1A .01/, P e s,
P A p— {Z / A2(,) 3t k £)\2d§}
teftita] Loy
(4.8)
/ /l(AkAw 5.6\ (s, k. ) de ds,
1 pez
o8, = 0 {Z [0t iUk |g<tkf>\2ds}
Wits,ta] Et1,t2] keZ* |£|2+k2< )2 (4 9)
k2(s)2 . ’
/t1 kEZ*/| (ApAy)(s, f)\w@(&hé)ﬁdfd&

For simplicity of notation, let Y:=Y[1,T], W:=W|1,T], and W::W[I,T].
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The resonant weights Ar are our strongest weights. We first show that R is an
algebra, and, in fact, multiplication by functions in R preserves the norms W and W.

More precisely, we have the following.

LeEmMA 4.3. (i) If f,g€C([1,T):H*R)) and HeC([1,T]:H*(TxR)), then

If9llr Ss lf I rllgllz (4.10)

and
1fEw Ss I ARIE W, I H I So L ITRIH |- (4.11)

(ii) As a consequence, if ¥y is a Gevrey cutoff function supported in
[b(5570),b(1=25500)]
and satisfying ||e<§>3/4@1(§)HL30517 and
he{U (V) (B, (0,)'V" B" :ac[-2,2]NZ}, (4.12)

then
17l R <6 1. (4.13)

Moreover, the functions B{, and B{/ do not depend on t and satisfy the stronger bounds

+||B(/),Hg450,1/2 51. (4.14)

G480.1/2

1
”\IIIBSHQ‘MO'I/Q +H\Ill (?)
0

(i) With K as in (2.47) and h satisfying ||h||r+]0uh||r<1, for any t€[1,T] we

have

/ AR g(t, Q)22 +K2(E)2(8) /) | (V) (1, )2 de S5 22,
* (4.15)

/1 / A (s, )| Ann(s,€)((€)2(3)2+K2(E) Y2 ()7/2)| (WV') (5, ) dE ds <5 2.

The implicit constants in (4.15) may depend on 6, and K is assumed large enough com-

pared to these constants.

Proof. (i) The bounds (4.10) follow using Lemma 4.1 (i) and the bilinear estimates
(3.40)—(3.41) with Y=R and a=0 (see [21, Lemma 4.2] for complete details). To prove
the bounds (4.11), we use the bilinear estimates (3.42)—(3.43). Moreover, if k#0, it is
easy to see that

K LRI sminge—n), (k)72
Se e N , 4.16
IR < D (4.16)
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and the desired bounds (4.11) follow using also Lemma 4.1 (ii).
(ii) To prove the bounds (4.13), we write

B'(t,v) = Bi(t,v)+ By (v),

V'(t,v) =V, (t,v)+ By (v), (4.17)

B"(t,v) = BI(t,v)+Bg (v),
and recall also that V""=210,(V’)?%; see (2.33). The functions B, 1/B}, and B{ do not
depend on t and satisfy the bounds (4.14), as a consequence of Lemmas 3.1 and 3.2 and
the assumptions (1.7)—(1.8). The desired bounds (4.13) follow using the algebra property
(4.10), the bootstrap assumptions (2.49) on V/, B, and B/, and the identities (4.17), as
long as e is sufficiently small depending on § (see [21, Lemma 4.2] for complete details).

(iii) To prove (4.15), we use the formula 9,V =H/(tV") (see (2.33)) and the bootstrap
assumptions (2.49). Since V and # are supported in [b(Jy), b(1—1)], we have

tV'9,V = VUH =V (B, -V —(F)),
see (2.27), where ¥ is as in (2.42). The bootstrap assumptions (2.49) show that
IVAR+IBllr+I{F) Nk Ser (4.18)

The desired bounds (4.15) follow using (2.49), the bilinear estimates (3.40)—(3.41) with
Y=NR, and the bounds ||¥(V")7!||g<1 (see also [21, Lemma 4.5]). O

We record now bounds on some of the functions that apear in the right-hand sides
of the equations (2.28) and (2.31).

LEMMA 4.4. (i) For any t€[1,T]| and hie{(V')*0.(¥¢):a€[—-2,2]}, we have

ke%o}/A (6:8) Wif@lhﬂt kP de S5,
/1 / | A (s, €)| Axs, QMW(S b6 deds <y 2 (4.19)
keZ\{0}
(ii) For any t€[1,T] and ho€{(V')*0,P1o(¥¢):a€[~2,2]}, we have
kezz\{o}/ Ax(t) %‘52“7’%@\2%5563
/ > /IAk(s )| Ax(s, QMIM( kO deds <52 (4.20)

kez\ {0}
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(iii) If ge{ (V)00 F), (V") (0uP0d0. F):a€[—2,2]NZL} then, for any te[1,T),
/R\ANR(L§)|‘2A%R(t,f)(<t>3/2<€>‘3/2)|§(t,5)\2deaEi‘,

Y (4.21)
/1 / A (s, €)1AY (s, €)(5)/2(6)5/2)| (s, €)[2 dé ds S 1.

Proof. See [21, Lemma 4.3] for statements (i) and (ii), and [21, Lemma 4.6] for the
proof of (iii). O

4.1. Green’s functions and elliptic estimates
Assume that ¢, f/:Tx[0,1]—C are C? functions satisfying
(@2+00)¢' = ' and  ¢'(2,0)=¢'(2,1)=0. (4.22)
Then, ¢’ can be determined explicitly through an integral operator. Indeed, we can write
1
) == [ FGu(w ) (123
0

where Gi(y, z), defined by

1 sinh(k(1—2z))sinh(ky), ify<z,
G = T | by e Y (1.21)
ksinhk | sinh(kz)sinh(k(1-y)), ify>z,
for keZ\{0} and
1—2)y, ify<z,
Go(y,Z)::{( v Y (4.25)
2(1-y), ify>z,
is the Green function associated with the equation (4.22), and
/ 1 / —ikx
Cely) =5 | Pz y)e ™ dz
T Jr
(4.26)

)= 5= [ Flepe

denote the kth Fourier coefficient of the functions ¢’ and f’, respectively.
We prove now an important lemma concerning elliptic estimates adapted to our

situation.
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LEMMA 4.5. Assume that f€C([0,T): H*(T x [b(0),b(1)])) is supported in
T x [b(do), b(1—19)].
Then, there is a unique solution p€C([0,T]: H*(T x[b(0),b(1)])) of the problem
02 p+(Bg)* (00 —10:)* 0+ By (9y —t0:)p = f(t, 2,v), (4.27)
with Dirichlet boundary conditions
o(t, z,b(0)) = p(t, z,b(1)) =0.
Moreover, if t1,t2€[0,T] then, recalling the definitions (4.7)-(4.9),

1P0[02 + (90— t0:)*) (¥ lwies 2] o If I wper ]

) ) (4.28)
P02+ (@~ 102 (W)t .0y S 1 i,
Proof. We reverse the change of variables (2.4), so we define
¢'(t 2, y) = (t, x—tb(y), b(y)), (429)

fi(t 2, y) = f(t, x—tb(y), b(y))-

The functions ¢’ and f’ satisfy equation (4.22) for any t€[0,T], therefore, using (4.29),

1
or(t, b(y))Z*/ Fu(t.b(y))Gr(y, y ) W=D gy
0

Thus, letting Gy (b(y), b(y")):=Gr(y,y’), we have

b(1)

_ ikt(v—w) 1
ot v)= o) Fr(t,w)Gr (v, w)e™ (B(’)(w)) dw, (4.30)

Recall that f(t) is supported in T x [b(dg), b(1—"p)]. We multiply (4.30) by ¥(v)¥(w),

and take the Fourier transform in v and w. Thus,

(W) (t,k.6) = C /R F(t k) K (€Kt kit —n) dn, (4.31)
where )
K(u,v):= /}Rz U (v)¥(w)Gk (v, w) (Bé(w)>e_i””e_“”” dv dw.

The kernel K satisfies the bounds, for k0,

67450 (p4v)t/?

T (4.32)

K (p, )| <
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This is proved in [22, Lemma A3], using the explicit formula (4.24). Thus, using (4.31),

y1/2

(K2 +€—Kt2)(T9) (1, ,6)| < / |t k) e 190t g

(4.33)
=/ |F(t b, g—m)le= 000
R
for k0. It follows from (3.42) that, for any &, n€R, k€Z\{0}, and t>0,
Ar(t,€) s Ar(t, E—m)e2otn”, (4.34)

The inequalities in (4.28) follow from (4.33)—(4.34) and the definitions (4.8)—(4.9), using
also (3.32) (for the space-time bound). To illustrate the idea, we sketch the proof for the
second inequality in (4.28). Using (3.24) and (3.32), we obtain that, for k€Z\ {0}, £, nER,

|| (£) k| (t) 350 (n) /2
A (4,6) S e A (£, £ =)
GERRIG e+ W)
|k|(t) i 1/2 k() i 1/2 360 (n)/? .
AR AR (8, M2 S5 e [AR A (t, € — ) |23
R R ek
Therefore, using (4.33), (4.35), and Minkowski inequality, we can bound
_ 1/2
1P20[02 4 (00 —0:)*1(¥0) iy, 4y S /]R 1F g, e d, (4.36)
from which the second inequality in (4.28) follows. O

5. Improved control on the coordinate functions V/, B., B!, and H

In this subsection, we prove the following bounds.
PROPOSITION 5.1. With the definitions and assumptions in Proposition 2.2, we have

2

1

3 [Sg(t)+Bg(t)]<% for any te[1,T). (5.1)
ge{V/,BL,B/!,\H}

The rest of the subsection is concerned with the proof of this proposition. The

arguments are similar to the arguments in [20, §6], and we will be somewhat brief.
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Using definitions (2.46) and (2.47), we calculate

- > 59(t):2K2/RANR(tvg)ANR(tv5)(<t>3/2<§>_3/2)|ﬁ(t7f)‘Qdf

9e{H,V},B,,B'}

363

+K22Re / At € (0/2(€) /)0, (1, €)FL (1, €) de

LK /R (6, €) 3 (118) () AN ) e

2 ) Ar(t,€) Ar(t,)|U(t,€)[ de

ve{v,.B,.Br} R
+2 > Re / AL (AU (1, €)U(t,€) de.
ve{v:B,.Br}y 'R
Therefore, since 9;Ar<0 and 9, Anr<0, for any t€[1,T] we have

Y [E)+By(1)]

9e{H,V},B,,B'}

- ¥ s.qu[ >y Bg<t>}+c1<t>+£2<t>7

ge{M,V/,B,,B!'} ge{M,V!,B,,B!'}

where
> [ Aae0050.00
Li(t):=2Re A% (s,8) 0:U(s,)U (s, €) d ds,
1 ve{v!,B,Bry 1 /R "
t ~ =
Lalt)=K*2Re [ [ Ain(s,((5)°72(6) /%) 0.5, (s, de s
1JR
t
3 ~
+’C2/1/RA?VR(&5)5(S<8>’1/2(&)’3/2)|H(5-,£)\2dﬁd&
Since

Z 89(1)515?7

9€{M,V!,B,,B\'}
for (5.1) it suffices to prove that, for any t€[1,T],
&2
_{ 3 Bg(t)} +Li(0)+Lat) < L
9e{#,V/,B,,B/'}
To prove (5.5), we rewrite equations (2.29) and (2.30) in the form

& B.=-V8,B.-V,B},

B! =-Vd,B'-Vd,BY,
H

atvj:—VaUV*'—VauBng?

(5.2)

(5-4)

(5.6)
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We extract the quadratic components of £; and L2 (corresponding to the linear
terms in the right-hand sides of (5.6) and (2.31), so we define

L12(t):=2Re /;/R A% (s,€)

ﬁ(é o = (5.7)
U ’ !
x{[ . Vl(sf)}V(s > V (s,6)Ua(s, )}dgds,
ac{l1,2}
where
V] :=Va,B,, Vi:=Vd,Bj, U :=B. Uy:=B/, (5.8)
and
3s/2 ~
Lot KZ//A%VR(S f){ 2 ;3/2|H( 5)‘2 W|H(57@|2}d5d5 (59)
) ) 2+52/2 ) ‘
_x //ANR ey s O deds.
We examine the identities (5.6) and (2.31) and let
fui==Vo,B., fa=-V,Bl!, f3:=-Vo,V,,
. (5.10)
g1:= 7‘/811%7 g2:= Vl[<az¢a71F>7<81)P750¢62F>]
Notice that
£1(t)= L1 t)+2Re//A2 5){ ST a5 a5, €)+ il V(s é)}déds
ac{1,2}
Lo =Laa(+ 3 K2R [ [ Ao, 20 0, O, 0) s,
ac{1,2}
(5.11)
The desired bounds (5.5) follow from Lemmas 5.2 and 5.3 below.
LEMMA 5.2. For any t€[1,T| we have
&2
- { > Bg(t):| +Li12(t)+La2(t) < §1 (5.12)
9€{H,V},B,,B/'}
Proof. Since L5 2(t)<0, it suffices to prove that, for any te[1,77],
et
L12(t) < > By(t)| +5- (5.13)

g€{M,V/,B,,B!'}
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Using Cauchy—Schwarz and the definitions, we have

1 CroAR(s, ) |H(s, O
L12(t) < BV);(t)+32//|AR GOl o d¢ ds

[ |A§’*(S ) (s, )2 de ds

+§BB/<t>+8//‘ (j:g [V/(s.)? de ds

+;33~<f>+8//‘ Ejé;'\vz(s,@nzdws.

A

The functions V!, a€{1,2}, satisfy the bounds (4.15). Notice also that, for any
Cs>1, there is K(§) large enough such that

A% (s, €)

$2|Ap(s,6)| < Anr(s, )| Anr(s,€)1(C5 1 HK(8)2(s)>/2(€) /).

This inequality is proved in [20, Lemma 6.2]. The desired bounds (5.13) follow by letting
IC large enough, using also the estimates (4.15). O
We now prove estimates on the cubic terms.

LEMMA 5.3. For any t€[1,T] and a€{1,2}, we have

‘QRe/t/ A%(5,€) fals L E)Ua (s, €) de ds| <5 &2, (5.14)
‘QRe//AZ LEV!(s,€) de ds| <s 3, (5.15)
]me / t [ Al O (5 OFs,  deds| Soct (510)

Proof. Step 1. We start with (5.14) and (5.15). The two bounds are similar, so we
only provide all the details for the estimate (5.15). See also [20, Lemma 6.5] for a similar
argument.

We write the left-hand side of (5.15) in the form

C'zRe // [ AR OV s 6= V25, V25, €) s s

—C'///[nA? 5,€)— AR (s, M)V (5, € )V (s, )V (5, €) d dn s,
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using symmetrization and the fact that V is real-valued. We define the sets

So = {(§,m) € R :min((€). (n). (€=m)) > 55 (&) +(m) +{E—m))}.
S1i={(&n) €R*: (§—m) < F5((O+m)+(E—m)},

Sa:={(&,m) €R®: (n) < 5 () +(m+(E—m)},

Syi={(Em) €R?:{6) < L () +m) +E—n) ),

(5.17)

and the corresponding integrals

In::/lt/R/Rlsn(f,n) (5.18)

X1 AT (5,€) —EAR (5, )| [V (s, E=m)| [V (s, m)| [V (5,€) | dE dn ds.
For (5.15), it suffices to prove that
T, <s;e3 forne{0,1,2,3}. (5.19)

We use the following bilinear estimates for the weights, proved in [20, Lemma 8.9].
Letting 5(’]:%50, we have
o If (§,m)€SoUSy, p=E€—n, s=1, a€l0,4], and Y €{NR, R}, then

InAY (s, €)(€) ™% —EAT (s,m) ()~
16 \/I(Ay/ly)(s,éﬂ \/|(AYAY)(37 )l . (5.20)

-Anr(s, p)eiéé(ﬁ)l/ .

b8 GRE T

o If (£,m)€S2, p=E—n, and s>1, then

(m)AR(s.€)

- - D e (5.21)
5502 1ArAR) (5, OV [(Ax AN ) (5 )] An(s e 67"

and

(AR R(s,€)
Sost! <§>_0‘4\/\(ANRANR)(S> f)\\/|(ANRANR)(S> p)-Anr(s,m)e %

(5.22)

1/2

We remark that there is some room in the choice of exponents of s and (£) in (5.20)—
(5.22). For instance, in (5.20) we can choose the exponent to be any number between
1400 and g, where the range is determined by the requirement that the inequality holds

and that the resulting weight can be absorbed by V.
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For n€{0,1}, we can now estimate, using (5.20),

£ |V k.01 706

Y 1/2 %
x|ls"C Anr(s, p)(p) eV (s, p) L r2,

[(ArAR) (s,m)] V(s,m)|

L2L2 LILY

and the bounds (5.19) follow for n€{0,1} from (2.49) and (4.15). Similarly, for n=2, we

use (5.21) and (3.22) to estimate

T s | VIARAR 5. 01 V2(5,9) |, 571400V [(Axrdnr)(5.0) | V(s,)
ste

L?QLfla

L2L2

_ s 1/2 ~
x| Ar(s,n)(n)e 20V (s, )|

and the desired bounds follow from (2.49) and (4.15). The case n=3 is similar, by changes
of variables, which completes the proof of (5.15).

Step 2. The bounds (5.16) for a=1 are similar, using symmetrization, the bounds
(5.20) with Y=NR, and the bounds (5.22). See also [20, Lemma 6.6] for a similar
argument. Finally, the bounds (5.16) for a=2 follow from (4.21), (2.49), and the Cauchy

inequality (see also [20, Lemma 6.4] for a similar proof). O

6. Improved control on the auxiliary variables ®* and F*
In this section we prove the main bootstrap bounds (2.50) for the functions ©* and F*.

PROPOSITION 6.1. With the definitions and assumptions in Proposition 2.2, we have
Eo-(t)+Box(t) Ssel  for any t€[1,T). (6.1)
Proof. We use the equations (2.32) and (2.39), and thus
06— &)+ (Bo)* (0u—10:)* (6= )+ By (0, —10:) (9= ¢) = G1+G2,  (62)
where
G :=[(B))?—(V')*](8y—10.)¢ and  Go:= (B —V")(d, 1. ).
In view of Lemma 4.5, it suffices to prove that
161l + Gl S <2 (6.3
Since V/ is supported in [b(d), b(1—10)], we can write

Gr = =V U(By+ V") (00 —10.)* (V).
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where W is the Gevrey cut-off function in (2.42). Using Lemma 4.3 (i) and (ii), and the
bootstrap assumptions (2.49) for V,; and ©, we can estimate

G111y <6 1V N 12 (B + V) | R 11(90 —10:)*(29) |3 S €3

as claimed in (6.3).

Similarly, since V"=V"'9, V' and B{=B(, 0, B}, we can write
Go= =30, [V, - W(By+V")]-(9, —t9.)(¥9). (6.4)

Moreover,
|k|(t) < (n=tk) 1K) s min((e—n). k)
|E1+1k[(E) ~ (€=n) Inl+]kI(t) 7
if keZ*, t>1, and &, n€R, as one can check easily by considering the cases |{ —n|<10|k, 7|
and |§—n|>10|k, n|. Therefore, using also (3.42)—(3.43),

(6.5)

At ORI _ Ar(t,E=n) AL | /30) min((e—n) (5.
R > e kg e

and

|(ApAr) (£, €)M k[ (t) < s ¢ (80/30) min((g—n). (k) /2
€[4k () ~

[ (ArAn)(t )2 AutlHa),

{ e IR

Ar(t, E=) [(AxAr)(E )2 K[
€ Tk

We examine the formula (6.4) and notice that

+

(nftk>}.
IV (By+V') [k Ss 21
(due to Lemma 4.3 (i) and (ii)) and

[1{0 _tazxav_taZ)(\IJ(b)”W Ss€1

(due to the bootstrap assumption (2.49)). The desired conclusion |Gz || Sse? in (6.3)
follows using Lemma 4.1 (ii) and the two weighted estimates above. O

We prove now bootstrap bounds on the function F*.

PROPOSITION 6.2. With the definitions and assumptions in Proposition 2.2, we have

Ep-(t)+Bp+(t) s €3 for any t € [1,T). (6.6)
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Proof. The function F* satisfies the evolution equation
O F*=V'0,Ps0p0.F —(V+V'0,¢) 0y F+(B"0.¢— BY 9.4'), (6.7)
which follows from (2.28) and (2.40). Recalling the definition (2.43), we calculate

G (0= [ 2409 ALOIF (1. h. O de

keZ

+2Re 3 /R AR (t,€) P (t, b, €) F (8, K, €) d.

kEZ

(6.8)

Therefore, since 9; A, <0, for any ¢€[1,T] we have

e+ [ X [ 21An(s.8) A €)1 F* (s k) s
keZ

:€f(1)+/1t{2ReZ/H{A%(sﬁ)&f*(&k,f)F*(s,Iaf) dg} ds.

kez
We examine the equation (6.7) and decompose the non-linearity in the right-hand
side. Let

Ny i=V'0,Prop 0. F*, Noi=—V'0.60,F*, Ny:=—V,F*,
Ni:=V'0,Pud0.(F—F*), Ns:=—-V'0.00,(F—F"), (6.9)
Ng:=-Vd,(F-F*), Nr:=B"8,6—Bld.¢'.
Since €7(1)<e? (see (2.48)), for (6.6) it suffices to prove that, for any te[1,T],

t
‘QRe/ Z/Ai(s,g)/\/a(s,k,g)—F*(s,k,g) deds| <s e, (6.10)

L gez’/R
for ae{1,...,7}. We prove these bounds in Lemmas 6.3-6.5 below. O

LEMMA 6.3. The bounds (6.10) hold for ac{1,2,3}.

Proof. This is similar to the proofs of [20, Lemmas 4.4, 4.6, and 4.8|, and we will
be somewhat brief. The common point is that one can symmetrize the integrals to avoid

loss of derivatives.

Step 1. We consider first the non-linearity A;. Letting Hy:=V'0,Pxo(¥¢), we write

t . -
’2Re/l Z/}RAi(s,f)./\/l(s,k,f)F*(s,k,g) de ds
keZ
t . . P —
5 [ AR - it s, P (s b s
k€T

ZC‘QRO{

t

=c|| > / (A2 (5,€)— kA2 (s, )| H (s, k— €, =) F*(s,£,7) F* (5, k, &) d€ dn ds
L oprez/R?

)
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where the second identity uses symmetrization based on the fact that H; is real-valued.
The cutoff function ¥ can be inserted in the definition of Hj, because F' and F™* are
supported in [0,T]xTx[b(dy),b(1—13)]. With R, as in equations (3.44)-(3.47), we
define the integrals

up = / 1a, (5, €), (6,)[€A2 (5, )~ kA2 (s, 0)| | Fy (5, k— 0, € )|

L keez (6.11)

X |F*(5,,m)| |F* (s, k, €)| d€ dn ds.
We use Lemma 3.9, and remark that Hy(¢,0, p)=0 for p€R, due to the definition
Hy=V"0,P(V8).

Denote (m, p)=(k—{,£—n). Using (3.48), (4.20), and (2.49), for n€{0, 1} we can bound

u's / [(ARAR) (5, 1= (5. k. )1\ [(AeAe) (s, m)| | F* (s, €.)|

L k€L

(m (s)(s—p/m)*m? s o (s.m. p)le—%(mpy™? s
x 1z ( ) (\P/m|+( >)</)> Am( ,p)|H1( ) 7/))' dfdﬂd

<s H (ApAR) (s, ) F*(s, k, g)” I(A¢Ae)(s,)

iz VI

I i
X |z mAn(o ) e e il p)

L L2

m,p

3
<§€1.

Similarly, for n=2, we use (3.50), (4.20), and (2.49) to bound

(s)(s—p/m)*m? ~

w55 [ 30 [ e i) o) SEE LR s )

1 keez

(AR Ar) (s, ) | F* (s, k. &) Ae(s,m)e™568m " | F= (s, £, )| dé dny ds
<5H\/ [(ARAr) (s, €) |F*(3 k&) HL a2 ’

|12 m) |<AmAm><s,p>|%ﬁ1(&m”’>

Sl (6.12)

(s,n)e”(%/2) (et F*

LeLi,

The case n=3 is identical to the case n=2, by symmetry, so Uy Sse$ for all n€{0, 1,2, 3}.
The desired bounds (6.10) follow for a=1.
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Step 2. The bounds for the non-linearity N> follow in the same way, using the
estimates (3.54)—(3.56) and (4.19) (see [20, Lemma 4.6] for complete details). The bounds
for the non-linearity N3 also follow in the same way, using the estimates (3.57)—(3.59)
and (4.15) (see [20, Lemma 4.8] for complete details). O

LEMMA 6.4. The bounds (6.10) hold for ac{4,5,6}.
Proof. Step 1. We first consider the non-linearity Ny, and estimate

t N [
‘2Re/l ZAA%(S,g)N4(s7k7§)F*(s7k,g) d¢ ds

kEZ

t o -
S|S0 [ A O (s b 6 FF) s ) P (5.0 d s
keez” 1 /R
S D> up
ne{0,1,2,3}

where

Hy=V'0,P.o(T¢),
as in the proof of Lemma 6.3, and, recall the definitions (3.44)—(3.47),
t ~
i [ 50 [ 10 (0, CnIeAR s, Ol (s, k=€)

k,LEZ o ~

Recall that H,(t,0, p)=0 for peR. Letting (m, p)=(k—¢,£—n) and using (3.49), (4.20),
and (2.49), for n€{0,1} we can bound

t - 6\ —~— -
s 3, (e s (152 ) IE=F) s o [(Ac ) )
(55— p/m)m
o/l + )0

S [V 104K AR (5, O 2 (5,1, )|

X |ﬁ*(s, k,&)|-1z-(m) A (s, p)\ﬁl(s, m, p)|ef‘5<3<’"’p>1/2 d¢ dnds

L%szg

\/ e sl 1+ ) P o)

L (1) 5, ) LS P 020000 5, )

X

272
LiLg ,

X

LELE,,

3
Ss el
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Moreover, we can also estimate UZ Sse3, using (3.50), (4.20), and (2.49) as in (6.12).
Then, we can estimate U3 Sse3 by symmetry. The desired bounds (6.10) follow for a=4.

Step 2. We consider now the non-linearity Ay, and estimate

'2Re /A2 ONs(s, kO F*(s,k, &) dsds| S > Uz,
L kez ne{0,1,2,3}
where H2:=V’82(\Il<z5)7 and
up = / 1, ((,€), (6 m)InAZ (s, )| | Ha(s, k—£,€ )

=
X |(F—F*)(5,e, )| |F*(s, k,&)| d€ dn ds.

Notice that Hy(t,0,p)=0 for peR. Letting (m, p)=(k—¢, & —n) and using (3.55), (4.19),
and (2.49), for n€{0,1} we can bound, as before,

Uy Ss / m(

1 keez

12 :
) (F—F*)(s. £,m)] /(A i) (5. €)]

x|ﬁ*(s,k7£>\-12*(m>w Aa(s, )| a5, p) e~ 500" de iy ds

/P (s)?
s [V ICARAR) (s, €)1 P
x \/|<AZA¢><s,n>|(1+<f’;>7>)<ﬁ‘f*><s,&n>

[ml(s)?(s—p/m)*
|p/m?+(s)?

272
L2L7 ,

Ap(s, p)e Ol iy (5,m, p)

X ||1z=(m)

L¥Ly, ,
3
Ss ey

The term U2 can be bounded in the same way, using (3.56), (4.19), and (2.49), while the
term U3 can be bounded by symmetry. The desired bounds (6.10) follow for a=5.

Step 3. Similarly, for a=6, we estimate

)

where R :={((k,§), (€, n))ER,:k=I} and

> ug,

ne{0,1,2,3}

/Ak 5, )Ny (s, k, ) F*(s,k, &) dE ds| <

kEZ

= [ X [ i (k) () nA . OV (5.
! kez
x| (F—F*)(s, k.n)| | F* (s, k,€)| d€ diy ds.



NON-LINEAR INVISCID DAMPING NEAR MONOTONIC SHEAR FLOWS 373

Letting p=¢—n and using (3.58), (4.15), and (2.49), for n€{0,1} we can bound

s 5 [ Ve

kEZ

12 :
) (F_T) (s, )| (Ardhi) (5. )]

X B (5,5, )] () () + (o) /4(5)/4) A m(s, p) |V (5, p)] e~ dig dy s

o |V (AR AL (5, O 7 (s, k. 9)|

LILF ¢

\/ (e s (145 )T s ko)

X[ ({p)(s)+ () /1)) A (s, p)e™ O/DO V(5 )| o 12

X

L2LE

3
Ss ey

The term U2 can be bounded in the same way, using (3.59), (4.15), and (2.49), while the
term UZ can be bounded by symmetry. The desired bounds (6.10) follow for a=6. [

LEMMA 6.5. The bounds (6.10) hold for a=T7.

Proof. Since B" and By are supported in [0, 7] x T x [b(dg), b(1—9p)], we can write
Ny= B;/az(ql¢)+3(/)/ z(ql(¢_¢/))
In view of (4.13), (2.49), and (6.1), and recalling the definitions (4.7)—(4.9), we have

1B rSs €1, 10240y —10:)*) (¥9) || 7 Ss €1

IBgllrSs 1, [1(02+(0—10:)*) (¥ (¢—¢')) |y S et

(6.13)

Therefore, to prove (6.10) for a=7, it suffices to show that

t
S [ [ kAR O emnFs k) P (kO dednds| Soer, (614)

kEZ

for any functions h and ¢ satisfying [|h]|g<1 and ||(82+(8,—18:)?)¢|l\; <1. With R},
defined as before, for n€{0,1,2,3} we let

= [ 3 [ Ly (060, G b1 435 €) (s, =) 35, k) | (5, ) dE s,

kezZ
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Letting p=¢—n and using (3.62), for n€{0, 1} we can estimate

t . 2(s)(s— 2
s [ 5 [ Voo e

<\ 1(ARAR) (5, ) |1F* (5. k, €)|- Ar(s. p) (s, p)|e= )" dg dn ds

N ~ Y 1/2~
S5 V1A 6. F s,k ) I1AR(sp)e 29 s, )11z
sthe

i k|*(s) (s —n/k)?
1z- (k)\/ [(ArAr) (s, n)\W

X @(s,k,m)

L2L ,
Ss €1

~

Similarly, we can use (3.63) to estimate U2 <sey, and then use (3.64) to estimate U$ Sse1.

This completes the proof of the lemma. O

7. Improved control on F—F* and the main variables F' and ©
In this section we improve the remaining bootstrap bounds.

PROPOSITION 7.1. With the definitions and assumptions in Proposition 2.2, we have

Z [E,)+B, ()] Sse3 for any t€[1,T). (7.1)
ge{F—F*,F,0}

The key issue is to prove the bounds (7.1) for the variable F—F*, from which
the other bounds follow easily. Our main tool is the following precise estimates on the

linearized flow.

PROPOSITION 7.2. Given k€Z*, assume that fi is a smooth solution to the equation

O fre—ikByr, = X (t,v), (7.2)
(B})? (0 —itk)*r+ By (0 —ith)Yx — k> = fi, Yr(b(0)) =vx(b(1)) =0,  (7.3)

for t€[0,T] and ve[b(0),b(1)], with vanishing initial data fi(0,v)=0. Assume that X
is supported in [0, T]x [b(9o), b(1—1g)]. Then,

t t oot
Ao = [ R odstin [ [ [ BiQfus.-c-kne-Odcdrds, (1)
0 0JsJR
for some functions My: [0, T]xR2—C. Moreover, the functions Iy satisfy the bounds

]+ €D W ()T, € m)ll 2, S W (€)X (8, )l 2, (7.5)
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for any t€[0,T) and § sufficiently small. Here Wy, =1 is a family of weights which depend
on a small parameter §€(0,1], and satisfy, for any k€Z* and &, nER,

W) =) S W) | 283 7o)
where C(86)>1 is a large constant, and the implied constant in (7.6) does not depend on
k and 0.

The weights W), we use for our application are connected to the main weights Ay;
see (7.15) and (7.17). They are allowed to depend on ¢ as well, as long as the bounds
(7.6) hold uniformly.

We remark that the condition (7.6) on the rate of change of the weights Wy () is
crucial for the commutator arguments below. Such a property clearly holds in a strong
sense for standard Sobolev weights and Gevrey weights, with derivative gains at large
frequencies, but only holds in the weak sense stated in (7.6) for our special weights Ay
(compare with Lemma 3.5)

Roughly speaking, Proposition 7.2 allows us to invert the linear transformation
defined in (2.40) taking the full profile F' to the auxilliary profile F*  with the right
bounds.

The proof of Proposition 7.2 is based on the ideas introduced in [22]. For our
purposes here, we need to consider the linearized flow with an inhomogeneous term and
to obtain more precise estimates. We provide the detailed proof of this proposition in

the next section.

7.1. Proof of Proposition 7.1

In the rest of this section, we assume Proposition 7.2 and prove Proposition 7.1. For
keZ*, we define the function ¢j(¢,v) as the solution to

(Bo)? (9o —itk)? 65+ By (9, —itk) ¢, —k* ¢k = Fyy for v € (b(0),b(1)), (7.7)

with boundary value ¢} (t,b(0))=¢; (t,b(1))=0. Notice that

sup {3 [ 4200,k +le- ko2 ful0, O d  Saet

te[0,T] Ly ez

Z//lAkAk (k[ —ksf2)? [ (s, €) 2 d ds S 2,

keZx

(7.8)

where hy=¥¢) or hp=DBj¢;. Indeed, since ||F™*|lywo,1 551/2 (see (6.6)), the bounds
(7.8) follow from the elliptic bounds in Lemma 4.5 if hy=VU¢;. The bounds for B{¢;=
By ¥¢; then follow using Lemma 3.8 (ii) and the bounds (4.14) on the function Bf.
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We now write

Fk(t,v)—FE(t,v)—ik/o B{ (v) (¢}, — 3 (T,v) dT:ik/O B{ (v)¢i(T,v) dr. (7.9)

Setting
gt v) = Fi(t,v) = Fi(t,v) and Pt v) =i (t,v) =i (t, v), (7.10)

then gj satisfies the equation
Duge—ik By (v)bx = th(BLOT)(t,0), (7.11)
with initial data gx(0,v)=0, while 1, solves the elliptic equation
(BY)? (0 —itk)*r+ By (O —ith) Vs — k> Yk = gr,  ti(t, b(0)) = (t,b(1)) =0, (7.12)
in [0, 7] x[b(0),b(1)]. Using Proposition 7.2, we obtain that
t topt oo _
ot =ik | By dsvik [ [ [ ByQ) Muts,e-¢-bre-Q dcdrds. (713)
0 0JsJR

This is the main formula we need to estimate the functions gp=Fy—F;. To use it

effectively, we need bounds on the functions Ilx, which we prove below.

LEMMA 7.3. The functions I, satisfy the bounds

€
sup E / (1+ ‘ -
te[oﬁT]{kez* R2 k

T
3
C 2 L0+

Proof. We would like to use the bounds (7.5) and (7.8), but we need to be careful

because our weights have to satisfy condition (7.6). We first use the weights

2
) (Ik\2+l77*kt\2)214i(t,n)\Hk(t,&n)lzdﬁdn} <,

, (7.14)
) (IR + ks ?)? A A (s, m)] [T (5, €, m)|? d dy ds 5 5.

Wi () := Ax(t, n) (K[> +0[n—kt[?). (7.15)
We verify now the estimates (7.6). If (k, &)+ (k,n) <8(£—n) then, in view of (3.21),
Ap(t, €) <2Ax(t, )N O VRO (7.16)
which gives (7.6) in the stronger form

Wi (€)+Wi(n) S5 €2 ED Wi () (k) /5.
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On the other hand, if (¢—n)<3((k,&)+(k,n)), then we write |[Wy(&)—W;(n)|<I+II,

where
L= Ay (8, €)= Ap(t, )| (K [*+6%|n—kt[?),
I:=0°Ax(t, &)||€—kt|> —[n—Kt[?|.

The desired estimates (7.6) easily follow using (3.27).
We can therefore use (7.5) to estimate, for any t€[0, 77,

[ EI+IED R + 82—kt 2 AR 1 1) . ) d
S | AR KR+ 86—kt KB ) 1. €) e,

and the desired bounds in the first line of (7.14) follow from (7.8), after dividing by k>
and summing over k€Z*.

The bounds in the second line of (7.14) are similar, using (7.5) with the different
weights

Wie(n) == /e (t,m) Aw (t, ) (k> + 6 |n—kt|?), (7.17)

where the functions uy, are defined in equations (3.36). These weights satisfy the bounds
(7.6) as well, using (7.16) and (3.38) if (k,&)+(k,n)<8(—mn), or (3.27) and (3.39) if
(€=n)<E((k, &)+ (k,n)). We can therefore use (7.5) to estimate, for any t€[0, 7],

€02 QR4 0% ke P, ) A, T, 6 )
S [ (b AR K+ 16—kt 2I(BT0) (1, )

and the desired bounds in the second line of (7.14) follow from (7.8) and (3.37), after
dividing by k2, summing over k€Z* and integrating in t€[0, 7. O
We are now ready to bound the functions gy.

LEMMA 7.4. For any t€[1,T], we have

> /R(1+<]z;>§>)Ai(tyf)‘gk(tf)PngaE? (7.18)
kezx
> /1/R<1+<]Z;>§>>|Ak/1k(s,£)lIﬁk(s7£)\2d£ds§55§, (7.19)
kezx

Proof. Using the identity (7.13), we have

|9k (£, )] < K|y (8 €) + |kl vk 2(E, €),
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where

e (t,6): /\Bgm &)|ds,

(7.20)
ea(t.6): ///\B ()] ik (s, 6~ C—kr, £~ )| dC dr ds.
To simplify the notation we define, for any k€Z*, t>0, and £, n€R,
an(t,€) = (K + |6kt ) |(B o) (8. ),
¢ , (7.21)
ult. = (1 ' Duk\ Ha—t?) [ 1B 1u(t.6-G.n—)l e
Using (7.8), we have
sup {Z /A? (t, €)ad(t, £>d5}
tel0, T\ o7
(7.22)

+Z//|AkAk(3,f)| (s, &) deds Ss b

Also, using (7.14), the strong smoothness bounds (4.14) on B{/, and the bilinear estimates
(3.42)—(3.43), we have

) A2 2 ,E,m)déd
tifé%]{k%*/w 2 ()2t 1) de n}

|z

Step 1. We first prove the bounds (7.18). Using the definitions (7.20)—(7.21), we
estimate, for any k€Z* and t€[1, T,

I

(7.23)

/ | A Ay (5,m)|82 (5. €, m) dE d ds <s 3.
keZ*

1/2
) Ak(t7£)\/€|’yk,1(t7§)

_ >)”2A o (s.€)
‘|PT‘j§<1// IPE) ( ) Ak s e

1 .
S gilon(s. 14 ) (5 O 21

(14(k, &) /(s)'/? P(§)A(s,€)
LH[E/ k=52 |(ApAg)(s,6)[V2 I,

(&)
t)

(7.24)

X
HPHLgSl

k]
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using also the fact that Ag(t,&)<Ak(s,§) if s€[0,¢]. Using (3.30), we have

(+(k, &) /()2 Ar(s,€)
LHle/k=s? |(AcAr)(s, )12

1
|k|1/2

P(¢)

55 1Pl (7.25)

Therefore,

2
S ”ak(87£)|(Ak14.k)(5,§)‘1/2HiQE. (7.26)
L2 2.

3

H( Uztf))1/2‘4’““’5)"“%1(167é)

Similarly, to bound the contribution of 7y 2, we write

H ( ¥ f : )l/zAk(t’f)’fmz(m £)

1/2 o e—kr
Hpumq/// P(€) ( >>) |k‘f<‘;/(zf)s>2f'ﬁ£fkf|/é)| dr ds d¢

su 1 t (k,&) 1/2 Ar(s,&) Br(s,n, ) < (7.27)
SR WALCICE -3 B e e

< B A AR s 1 s

(14K, €) /() P(&)Ak(5,€)
(&/k=s)2(n/k) |(AA)(s,€)/2],

X
HPHL3<1

We can use again (7.25), and note that bounding the L? norm in 7 requires an additional
factor |k|'/2. Tt follows that

(5%

The bounds (7.18) follow from (7.26)—(7.28) and (7.22)—(7.23), by summation over k€Z*.

2

SollBe(sn O A AR) . OG- (728)

L

1/2
) Ax(t ke a(t, €)

Step 2. We now prove the bounds (7.19). Using the definitions (7.20)—(7.21), we
estimate, for any k€Z* and te[l,T],

H( il >£> )1/2(Akf4k)(s,€)1/2 k|yia (5, €)

Lie

<k f) 1/2 . 1/2 ‘k|(1k(7'7§)
Ciels <1/// 1P(5:8) (” ) ) Ak i) (5, )2 g dr ds e

< {|P(s, )1 |(AxAg)(s,£)'/*}
s L

% <k7€> !/ ak(Tvg) sdr
(1455 gy oar e
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The integral in s€[r,t] can be estimated using the Cauchy inequality and the observation

/ A Ay (s, )| ds = A2 (7€)~ A2 (1,€) < A2(7,€), (7.29)

since the functions A are decreasing in s. Therefore, the right-hand side of the expression

above is bounded by

[ [ 1Pe1ao (1 E8) Tl

1Pl <1 /e Jo ) (€/k—T1)

This is similar to the expression in the second line of (7.24), so it can be estimated in

the same way to give

kL) 1/2 ) 2
H( - ) (Akdn) s 12 Kl (5, 6) | s lon(o, D1 Ax e, 1
2,
) (7.30)
Similarly, to bound the contribution of ;o2 we write
(k, 1/2 '
H( ) |<AkAk><s,s>|1/2\kwk,z(svs)H
(s) L2,
Lk, >)”2
i //// P8 ( o)
y |(ARAR) (s, &2 Bi(u, E—kT, ) dr du ds d¢

k[(&/k—u)?  1+[E—kT|/|K|

npuLz a k? /R// |P(s 5)‘< UZ >£>)1/2

y |(AcAr) (5,912 Br(u,m,€)
(€/k—w)2  1+[n|/|k|

We use (7.29) and the Cauchy inequality to estimate first the integral in s€[u, t], so the

ds du d€ dn.

right-hand side of the expression above is bounded by

/ (K, €) 1/2 Ap(u, &) Brlu,m, &)
|\P'\|L2<1k /R/ P( 5)(1+ ) ) E/h—w? 1t/ H] dudg dn.

This is similar to the expression in the third line of (7.27), therefore

S Bt m. Ol (Ardn) (s O3

(7.31)
The bounds (7.19) follow from inequalities (7.30)—(7.31) and (7.22)—(7.23), by summation
over keZ*. O

H<l+ f>>l/2l(AkAk)(s,£)1/2|k|7k,2( ,

2
LZ.
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We can now complete the proof of Proposition 7.1. The bounds for the function
F—F* follow from Lemma 7.4, once we recall that g,=Fj,—F} (compare with the defi-
nitions in (2.44)). The bounds for the main variable F' then follow using also Proposition
6.2. Finally, to prove the bounds for © we start from the main elliptic equation (2.32),

and rewrite it in the form
2¢+(B))?(0s —10-)* ¢+ B( (0, —t-)p = F+G1+Ga,

where
G =(B))>=(V')?](0s—t0.)*¢ and Go=[Bf—V"](0,—td.)¢

are as in (6.2). In view of (6.3), we have ”ngVT/[LT]+Hg2”VT/[1,T] <se?, while the bounds

Erp+BrSset we have just proved show that ||[F|lwp,m <55§/2. The desired bounds

19117y <55f/2 follow from Lemma 4.5. This completes the proof of Proposition 7.1.

~

8. Analysis of the linearized operator: proof of Proposition 7.2

In this section, we provide the proof of the key Proposition 7.2, which is the only place
where the spectral assumption on the linearized operator Ly is used. As we have seen
before, the linear estimates we prove here are essential to link the non-linear profile F™,
which evolves perturbatively, with the full profile F'. The proof of Proposition 7.2 relies
on the following homogeneous bounds on the linearized flow.

LEMMA 8.1. Assume k€Z* and a€R, and consider the initial value problem
Orgr+ikvgy, —ik By o =0, g1 (0,v) = X (v)e ™, (8.1)

for (v,t)€b(0),b(1)] x [0, 00), where ¢y, is determined through the elliptic equation
(By)?0or+ By (0)8upr =k i =gr, @1 (b(0)) = pr(b(1)) = 0. (8.2)

Assume that X, € L2[b(0),b(1)] and supp X C[b(Po),b(1—10)]. Then, there is a unique
global solution g €C([0,00):L2[b(0),b(1)]) of the initial-value problem (8.1) with

supp gi (t) € [b(Po), b(1 )]
for any t=0. Moreover, there is a function I}, =II} (£, n,a) such that
t
anlt, 5):Xk(§+k:t+k:a)+z‘k:// BU(OT (6 +kt—C—kr, e+ ki—C,a)dCdr.  (83)
0Jr
Finally, if the weights Wy, satisfy the bounds (7.6), then

H(|M+|£|)Wk(77+ka)ﬁ;c(§vW:a)HLgm So W (m) X () 23 (8.4)
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The equation (8.1) is of the form
0,G—iT(G)=0, Ti(G):=—-kvG+kBy®, G(0)=Go, (8.5)
where ® is the solution of the elliptic equation
(B})?02®+ By (v)9,2—k*® =G

with Dirichlet boundary conditions ®(b(0))=®(b(1))=0. This elliptic equation can be
solved explicitly using the change of variables v=>b(y) (see (8.18) below), thus T} is a
bounded operator on L2[b(0),b(1)]. Therefore, equation (8.5) can be solved explicitly

G(t)=e"TrGo=") LT’;L)! GO, (8.6)

n=0

and the solution G(t) is unique, by energy estimates. The main point of the lemma is to
derive the representation formula (8.3) and the strong bounds (8.4).

We first show that Lemma 8.1 implies Proposition 7.2.

Proof of Proposition 7.2. With f; and vy as in Proposition 7.2 let
9k (t7 U) = fk (ta ’U)eiikvt and ka(m U) =k (ta ’U)eiikvt' (87)
The functions g, and ¢y, satisfy, for (¢,v)€[0,T]x[b(0),b(1)],

Argn+ikvgy —ik By (v)or = Xp(t, v)e *t, (8.8)
(B0)* 0% or+ By dupr— k> or = g, (8.9)

with initial data g (0, v)=0. By Duhamel’s formula, we obtain the representation formula

¢
gr(t,v) ::/ {e T [ X(a, )™ [} (v) da, (8.10)
0
where eT* is the evolution operator defined in (8.6). Notice that
h(t—a,v) =T X (a, e | (v)

is the solution to (8.1)-(8.2) at time t—a with initial data Xy(a,v)e”**%. In view of

formula (8.3), we have
i (t=a,€) = Xi(a, E+kt)

t—a - -
vt [ BOG6+h(t—a)=¢—hr, 4 h(t—a)~C.a) d dr
0 R
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where the functions IIj satisfy the bounds

H(|k\+|£|)Wk(n+ka)ﬁ§€(§,n,a)HL,éW <S5 “Wk(g))?k(%g)”Lg‘ (8.11)
Therefore,
t!\,
gk(t,g):/ Ki(a, é4+kt) da
0
t pt—a

+zk/0/0 /RE({(C)ﬁ;@-(@rk(tfa)7§7k7,5+k(t7a)ff,a)deTda.

(8.12)

Define, for £,n€R and a€[0,T],
ﬁk(a7£777) = ﬁ;e(fvn_kav a)7 (813)

The desired bounds (7.5) follow from (8.11). Using (8.7), (8.12), and (8.13), we also have

. t t pt—a 0 ~
Fult &)= /0 Xi(a,€) datik /0 /0 / BY(¢) Ty (a, & —ka—C—kr,6~¢)dC dr da o

t topt oo _
:/O Xk(a,f)dm—ik/o/a/RB(’J’(C)Hk(a,f—C—kT,g—C)dCdea.

The proposition is now proved. O

In the rest of this section, we provide the proof of Lemma 8.1. The main idea
is the same as in [22]. However, we need to consider more general initial data with

—ikav

the additional modulation factor e , in order to analyze the inhomogeneous linear

evolution, and we need to prove stronger estimates. We divide the proof into several

steps, organized in subsections.

8.1. The representation formula and limiting absorption principle

In this subsection, we recall some important properties of the linear evolution operator

from [22]. Throughout this section, we use the change of variables
v=>b(y) foryel0,1]. (8.15)
The change of variable (8.15) is just the non-linear change of variable (2.4) at t=0. Define

gt y) =it 0), @t y) = ex(t,v),  Xi(y):=Xi(v), (8.16)



384 A. D. IONESCU AND H. JIA

where v=0b(y) for y€[0,1]. Then, g} and ¢}, satisfy

Dugi (t, y)+ikb(y)gi (t, y) —ikd" (y) i (t, y) =0, (8.17)
—k ot y)+ 00k (ty) = gi(ty),  @k(t,0)=¢*(t,1)=0, (8.18)

for (y,t)€[0,1]x [0, 00), with initial data
94(0,y) = X (y)e~ ).

For each k€Z\ {0}, we set, for any feL?[0,1],

Lif () =) £ (4) 11" (3) / Gily, 2)f(2) dz, (8.19)

where GJ, is the Green function for the operator k*—97 on [0,1] with zero Dirichlet
boundary condition defined in (4.24). Then the system (8.17)—(8.18) can be reformulated
as

Ogi(t, y)+ikLigi(t,y) =0. (8.20)
We first record an important representation formula, see [22, Proposition 2.1].

PROPOSITION 8.2. For k€Z*, we have the following representation formula for ¢j:

I v .
erlty)=—-— hm/ e RO (yo) [ty o (1, yo) =1 o (4, )] Ao, (8.21)
0

274 e—0+

where ¢y, .:[0,1]*—C are defined, for ve{+,~} and e€[—%, 1]\{0}, by

w/f,s(%yo)::/o Gy, 2)[(=b(yo) + LiEie) 7 (X5 (- )e™ )] (2) dz, (8.22)

where Gy, are the Green functions defined in (4.24). Also, the generalized eigenfunctions

1/),?5 are solutions of the equation

d2 b”(y)

_X*(y)e—ikab(y)
*k2 L L . k
wk,e(y,yondwak,E(y,yo) b0y) —blyo) Tire

W) by T )

wch,e (yv yO) =

Remark 8.3. The existence of the functions 1y, . for e€[—%, §]\{0} follows from
our spectral assumptions. These functions depend on the parameter a as well, but we

suppress this dependence for simplicity of notation.

We transfer now the results of Lemma 1.1 to the new variables.
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LEMMA 8.4. For any feH}(R), e€[—%, 1]\ {0}, k€Z*, and we[b(0),b(1)], let

Skw,ef(v) ::/]R\Il(v)gk(v,v/)(ﬁ /By (v )#dv (8.24)

—w—+1e

where G(v,v")=Gr (b1 (v),b"1(v")) are the renormalized Green functions defined in the
proof of Lemma 4.5. Then, for all k€Z*, we[b(0),b(1)], fEH}(R), and sufficiently small
e#0,

Sk w,e f ey my S |k‘71/3||f”H;(JR) and || fllgr @ S +Skwef o w)- (8.25)
Define also
/ / ! / f(v,) /
Skwef (V) ::/ U (v+w)Gi(v+w, v +w) (0 Bj) (v +w)v/+i5 dv'. (8.26)
R

Then, for all k€Z*, we[b(0),b(1)], fEH}(R), and sufficiently small 0,

1Sk w,e fllEr @) S || ~1/® Il and [ fllar@) SIF+Skweflm@)- (8.27)
Proof. The bounds (8.25) follow from Lemma 1.1, using the change of variable
formula (8.15). The bounds (8.27) follow by a shift of variables vi—v—w. O

8.2. Gevrey bounds for generalized eigenfunctions

In this section we study the regularity of the generalized eigenfunctions ¢y (Y, y0), with
¥, Y0 €[0,1] and c€{+,-}. The starting point is equation (8.23), which can be reformu-

lated as
1 bN(Z)'l/)k 2, yO X* Z)efzkab(z)
s s [ Gl . / Gy, d=. (8.28
Ve (v 30) /0 ik (Z) b?/o)+u€ K 2D bl rive b(z)—blyo) Tise (52
Denote, for y, yo€[0, 1],
1 X*(z)e_“mb(z)
n — a RN g 8.29
(¥ 30) /0 k(y’z)b(z)fb(yo)+u5 : (8.29)

We can now prove bounds on the low frequencies of the generalized eigenfunctions.

LEMMA 8.5. (i) We have

1R (y,yo)llzz , + 1k~ 10yh(y, yo) | 2

)

(i) For 1e{+,-}, k€Z*, and c€ [, 1]\{0} sufficiently small, we have

SIRIHIX s (8.30)

b)) - (9, 90) 22+ 19, () ) (w90 lz, S I Xellzee (8:3D)
Moreover,
lim [¢, s(y Yo)— q/zzyg(y, y0)] =0  for yo € [0, %190} U [1—%190, 1}. (8.32)

e—0+
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Proof. (i) Using L? boundedness of the Hilbert transform, we estimate

e—ikab(z)

X (z
/ P(y,%0)Gr(y, 2) i(2)
0,177 b(z)—b

lA(y,vo)llrz , = sup dz dy dyg

Y,y
0P e <t

< sup / P/ (. 2)G(y, 2) X7 (=) d= dy
[Pl 2<1/[0,1]2

(2) =b(yo) +ite

SIET 21X g,

where in the last inequality we used the bounds |G (y, z)HLiﬁ\krs/z for any z€[0,1]
(compare with (4.24)). The estimate on the second term in the left-hand side of (8.30)
is similar, since ||(0,Gx)(y, z)||L3§|k\_1/2.

(i) The bounds (8.31) follow from (1.11) and equations (8.28)—(8.29) (the functions
U(b(-))¥i (-5 90) are in Hi(R), due to (8.22)). The identities (8.32) were proved in [22,
Lemma 4.1]. O

We now turn to the main case when yo € [%1907 1— %190} . Recall the change of variables
(8.15), and set, for keZ\{0}, te{+, -}, and sufficiently small 0,

P (v, w) =1 (y,50), with v=>b(y) and w=>b(yo). (8.33)
The following lemma contains the main estimates for the generalized eigenfunctions.

LEMMA 8.6. Define, for ve{+,-}, k€Z\{0}, and sufficiently small €>0,
ke w) == V(v+w)dy (viw, w)¥(w) for v,weR. (8.34)

If Wy, are weights satisfying (7.6) then, for §,e>0 sufficiently small,

CFL+EDWi -+ ko) (€m) 2 o IWe(n) Xz - (8.35)
Proof. Using (8.31) and the definitions (8.34), we have the bounds
(IR0 DT | 2 | S 1Kz, (8.36)

which are useful to control the low-frequency components of IIj, ..

For the commutator argument below, to begin with, we need the qualitative bounds
K+ WL < 0. (337

We can arrange this by working first with the weights
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which still satisfy the main bounds (7.6) uniformly in p. The qualitative bounds (8.37)
are satisfied for these weights, due to (8.36). We prove the bounds (8.35) for the weights
Wy, uniformly in p, and then let p—0. We will therefore assume (8.37) in the rest of
the proof.

We divide the rest of the proof into several steps.

Step 1. We first derive the main equations for ITj _(v,w). Using the definitions

(8.33), we can reformulate equation (8.28) as

(), (v, w)
,7’,(11)
v —w-te

(o) (v,) + /R B(0)Gi (v, ') By BY) ()

1 Xk(v/)e—ikav/
— N, o dv'
/R (©)Gk (v, )B(’)(v’) v —w+ite v

for veR and web(0),b(1)], since ¥=1 on the support of 9,B). Recall also that ¥=1
on the support of Xy, and let

(8.38)

Gi (v, w) =¥ (v)Gr (v, w) ¥ (w).
It follows that the function ITj _(v,w) satisfies the more regular (in w) equation

1, (v w)+/ Gr.(v+w, v +w)(0 B’)(v'+w)Mdv’
k,e\% " k ) v’ Do V' +ite
\Il(w) Xk(v/+w)e—ika(v/+w)

(8.39)
o / ’
—/ng(v—}—w,v +w) B (v +w) v/ +ite

dv’.

Step 2. We now study the regularity of the functions ITj _ using equation (8.39).
Define the operator W} by the Fourier multiplier

(WL)(H) :=Wi(n+ka)h(n) for any he L(R). (8.40)

The basic idea is to use the limiting absorption principle in Lemma 8.4 to bound IIj, ..
We note that IIj _ is very smooth in w, but not so smooth in v, due to the presence of
the singular factor 1/(v’+ic¢). In order to prove Gevrey regularity of 1T}, _ in w, we apply

the operator W%, which acts on the variable w, to equation (8.39) and obtain
W (v, w)
v’ +ie
B()  Xy(v'+)em o)
Bj(v'+-) v/ +ite

/

Wity (v, w)+/ Gr.(v+w, v +w) (8 BY) (v +w)
R

=Wi {/R%whv#-) v’ | (w)+Cp . (v,w)  (841)

=: Flé,s(vv w)+CILc,s(Uv 'w),
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for v, weR, where the commutator term Cj, _(v,w) is defined as
W,?H;C’E(v’,w) ,
—_— dv
v te
1-[;,6’8(1)/7 )

v'+ie

C,Lcys(v,w)::/Rg,’c(v—i—w,v'+w)(8v/Bé)(v'+w)
(8.42)

Wy [/Rg;;m.,U'+-><av/Ba><v’+~> dv'| (w).

We now fix a cutoff function ¥y supported in [b(é’&o),b(l—é’ﬂo)], equal to 1 in
[b(iﬁo)w(lf%ﬁo)]? and satisfying ||e<5>3/4@0(§)HLoo§1, Applying (8.27) for each w,
and taking L? in w, we obtain from (8.41)

%o () (F+ANWETTE S (ORI ELNe -+ (K+10CE s - (8:43)

Step 3. We now bound the terms in the right-hand side of (8.43). We first show
that

JQEIHOD Lz S5 1) K3 (8.44)

Using (8.41) and taking Fourier transform in v and w, we obtain that

Fiolem) =CWilrka) [ Gie, e wmrientice sy u)
R4

X (U/ +w)efika(v’+w)
Bh(v+w)

= CWili+ka) [ Gl OFE(~C=rm=E=C)e™ 1 () dC .

ei(”/“Le)'YL. (1y) dv’ dw d¢ dry (8.45)

for some constant C', where 1, denotes the characteristic function of the interval [0, 0o)

and _
_ U(w) Xy (v+w)e~thalvtw)

hi(v,w):= Bl(v+w)

for v,weR. (8.46)

We have also used the fact that the Fourier transform of (v/+ite)™1 in v is €771, (1)
(up to a constant), with v being the Fourier variable.

Since W=1 on the support of X}, we can write

()W (o+w)

R (v, w) = T (v, w) Xp(v+w)e HFWT) - where T(v, w) := Bl (0tw)
O (v+w

(8.47)

Using general properties of Gevrey spaces (Lemmas 3.1 and 3.2), and the regularity of b,
see (1.6)~(1.7), we obtain that |Y(¢, 77)‘567450(5’7”1/2 for any &, n€R. Therefore,

b€, m)| S /R e~ tote=an=a)'| ¥, (ot ha)| do. (.48)
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As in (4.32), in view of [22, Lemma A3], we have
~ _ 1/2 _
Gi(& O e O (k1)
Using now (8.45), it follows that

(k> +€%)|F. . (€,m)]

5/ Wk(n+ka)e_4‘s°<5+c>l/2e‘450<_(_”_a*"_5_<_°‘>]/2\)}k(a+ka)|dgdﬂyda
R3
S/ Wk(n+ka)e_3‘5“<”_“>l/2|)A(:k(a+ka)|da.

R

The desired bounds (8.44) then follow, since

1/2

Wi(n+ka) Ss Wy (a—|—ka)625° (n—c)

Step 4. We now show that the term Cj _ satisfies the bounds
(k1100 )Ch el 2 <02 (ARIHODWETL o +Csll (Rl +0DT e - (8:49)

Indeed, using the definition (8.42) and expanding as in (8.45), we have

Ciclen) =C [ Gu(&. 00 By) )V (=€ ~C—0) =W )

XM (—C 7=, n—6=C—a)1,(19)e "7 dad( dy.
Since
Gk (&, Ol S e O 2 4 je?) 7,
and using also (7.6), we can estimate
Cs
Fatn—&—C-a)
xWi(katn—¢—C=a)[Il (~¢—y—a,n—E—(—a)|dad( dy

< —260¢a,O)? | /s Cs
N/Rs ‘ {‘“ (katn—C—ay/s

X Wi(ka+n—C—a)|y, (v, n—C—a)| dadC dv,

(K2 +E)|C o (€,m)] S / e~ 20EFOM 200 () (9, Br) (@) [ﬁ+
RB

from which (8.49) follows.
Step 5. We now show that
(R R WETT ]y < (o (w) (K2 WETT ],

+Cs | (1kl+ 10 DI [ -
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Indeed, for v, weR, let

H(v,w) := ([k[+[0, )W o (v, w) = ([E|48]) Co (w) WETT, . (v, w)

(8.51)
= (Il +10u )W (Woll}, ) (v, w) = ([k|+10u[) Wo (w) WETTE, (v, w).

For simplicity of notation, we suppressed the dependence of H on ¢, £, and k in the above

definition. By the support property of ¥ and the bounds (7.6), we have

\fl(&n)IZ(lkHlél)' / Bo(OTI o (€, 71— ) [Wi(n+ka) — Wi (n+ka—C)] dC

< /Re’“"“”” [V3-+Cs (katn—C) = /5] ([k|+€)) Wi (ka+n — O)|TTL . (€, n—C)] d.

Therefore,

HH(&n)HLgnS\/SH(Vfl |6v|)[[lgll;%,a(vvw)HL2 ( )
v 8.52
05 ||(|k| |6v|)II;c,s(va)HL12]vw .

It follows from (8.51) that
(R0 WL || SIHHE g, +[[Po(w) (kI +0)WETT . (8.53)

The bounds (8.50) then follow from (8.52)—(8.53), provided that 6>0 is sufficiently small.

Step 6. We now complete the proof of (8.35). Using the bounds (8.50), (8.43),
(8.44), and (8.49), we have

[[CERR AN S P

S1wo(w) (kI +10.)WE TG e || o +Cl| (%1410 DT el o
SIAr+0uDFecll s IR +100Ck 2 +Coll(R+O DT 2 (8.54)
S CollWi(m) X (0) 2 +8"2 | (K+10.)WETT |

+Cs || (IkI+10, )0 |5 -

We can absorb the term
6Y2 | (Kl 12 YW TL L

into the left-hand side, and use (8.36) to conclude the proof of the lemma. O
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8.3. Proof of Lemma 8.1

We can now complete the proof of Lemma 8.1. We define

) T _
Hk (U7 w, CL) = m 5,}5%* [Hk,sn (U7 w) _Hz,s” (Ua ’LU)}, (855)
as a weak limit along along a subsequence (in fact, the limit above exists in the strong
sense, see [23, Lemma 4.3], but this is not needed here). The desired bounds (8.4) follow
from (8.35). To prove the representation formula (8.3), we start from the identities (8.21).
We make the change of variables v=>b(y) and w=>b(yy), and use (8.32) and (8.34) to get

1 ik
W(o)prltr) =~ T [ W06, (0, 0) =07, (0 0) ¥ (w) du

. (8.56)
=2 /. e~k (_4in )T (v—w, w, a) dw.
Hence,
(Wipr) (£, €) = 2n 1T} (6, €+t a). (8.57)
In view of equation (8.1) and definition (8.55), we obtain that
D: e gi(t,v)] = ik By (v) i (t,v)e*  for v e [b(0),b(1)]. (8.58)
We notice that =1 on the support of Bj. Therefore,
et g (t,v) — gr(0,v) :ik/ Bl (v)¥ (v)pr (1, v)e*V7 dr. (8.59)
0
Using (8.57), we obtain
~ 't " ~ ~
Gi(t, = kt) = Xp(E+ak) :ik/ / By (O (§—¢—kT,—(, a) dC dT, (8.60)
0JR

which gives (8.3). This completes the proof of Lemma 8.1.

9. Proof of the main theorem

In this section, we complete the proof of Theorem 1.2. We start with a local regularity
lemma (see [20, Lemma 3.1] for a simple proof adapted to our situation, or more general
results on the Gevrey regularity of Euler flows in [18], [27], and [28]).
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LEMMA 9.1. Assume that s€ E, %], M0€(0,1), and suppwoCT x [299, 1—210]. As-

sume also that
A= H<v>3w0Hg>\0.s <oo and / wo(z,y) dx dy=0. (9.1)
Tx[0,1]

Let weC(]0,00): H'®) denote the unique smooth solution of the system (2.1). Assume
that, for some T>0 and all t€[0,T],

suppw(t) €T x [¥g, 1—1]. (9.2)

Then, for any smooth cutoff function YT €G3/* with supp TC [21—0790, 1—%190}, and any
te[0,T], we have

(V) (TP) (Bl gacor.s + (V) w(t)]|gac.s

¢ X (9.3)
<exp |C. [ ()l 1) 19l
0
if we choose, for some large constant C,=C\(0¢)>1,
t
A0 =oexp {~Caresp|C. [ (wlo) e+ 1)as] ~Ct). (9.0
0

We note that an important aspect of the regularity theory for Euler equations in
Gevrey spaces is the shrinking in time, at a fast rate, of the radius of convergence (the
function A(¢) in Lemma 9.1). In our case, the support assumption (9.2) on w(t) is satisfied
if T=2, as a consequence of the smallness and the support assumptions on wg, and the
standard local well-posedness theory in Sobolev spaces of the Euler equation (2.1). In
fact, as we show below, it is satisfied as part of the bootstrap argument for all ¢€[0, c0).

Lemma 9.1 is used in our problem in two ways. First, the local Gevrey regularity
estimates (9.3) applied for T=2 allow us to assume that our solutions satisfy (2.48), thus
we can avoid dealing with the apparent singularities at t=0 in some of our definitions.
Second, the Gevrey regularity (9.3) ensures the continuity in time of various variables,

which is required for the bootstrap argument.

9.1. Proof of Theorem 1.2

For the purpose of proving continuity in time of the energy functionals £, and By, we
make the a-priori assumption that woeG2/3. The argument is similar to the argument

in [20, §3], and we will be somewhat brief. We divide the proof in several steps.



NON-LINEAR INVISCID DAMPING NEAR MONOTONIC SHEAR FLOWS 393

Step 1. Given small data wy satisfying (1.12), we first apply Lemma 9.1. Therefore,
weC([0,2]:G*+%/3), with A; >0, satisfies the quantitative estimates

sup [|e®®0 G (1, k, €)1z Se, 9.5)
te[0,2] :

for some 8= 084 (8o, P0)>0. In addition, letting ¥ €GH3/* denote a cutoff function sup-
ported in [éﬁo, 1—%190} and equal to 1 in [%7907 1—%190}, the localized stream function

W'y satisfies similar bounds:

’ 1/2 , =
sup |[(k, €)2P W (W) (8, k, €)1z, Se- (9.6)

t€(0,2]

Recalling definition (3.1), and using formula (2.14) and Lemmas 3.1-3.2, it follows
that there is a constant K7 =K, (8o, 9p) such that

HU(L ’)”@}{/12[071] 51 and ”y(tv ')H@%f[b(o),b(l)] 51 (9'7)

for any t€(0, 2], where Y(¢,v) denotes the inverse of the function y—uv(t,y).
We would like to show now that

sup [[e20®9  g(tk, €)1, Se, (9.8)
ge{F,F* ,F—F~0,0%,B.,B,v!H} €10:2]

for some constant do=0d¢ (8o, Jp)>0 sufficiently small. Indeed, this follows using again
Lemma 3.2 and Lemma 3.1 (i) if g€{F, 0, B., B/, V/,H#}. To bound F*, F—F*, and ©*,
we use Green’s functions. Indeed, it follows from (2.39) and identity (4.30) that

Fkt’l}) zkt(
(v')

where G; (v, w)=¥(v)Gi (v, w)¥(w) as before. Using (4.31)—(4.32), we obtain

(o)t v) = - /gk =) gy, 9.9)

e—400(6-0)1/?

mlﬂc(t ,O)ld¢. (9.10)

). =0| [ Ke-kt b= Rt 0|5 |
for any t€[0,2]. This gives (9.8) for g=0©*, and then for g=F*, using (2.40). This
completes the proof of the desired bounds (9.8). In particular, the bounds (2.48) follow
from (9.8) if dy is e17e2/3; see (2.34)—(2.37).

Step 2. Assume now that the solution w satisfies the bounds in the hypothesis of
Proposition 2.2 on a given interval [0,7], T>1. We would like to show that the support
of w(t) is contained in Tx [30y,1— 3] for any t€[0,T]. Indeed, for this, we notice
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that only transportation in the y direction, given by the term u¥ Oyw, could enlarge the
support of w in y outside [b(2d), b(1—29)]. Notice that, on T x [¢g, 1 -],

u?(t,x,y) = (0:0)(t, 2, y) = 0, Pro(Po)(t, z—tu(t,y), v(t,y))- (9.11)
Using the bound on &g from (2.49), we can bound, for all ¢€[0, 7],

sup |t (t,2,y)| Sea(t) 2 (9.12)
(2,9) €T X [90,1~ 0]

Since the support of w(0) is contained in T x [20), 1 —2¢], we can conclude that
suppw(t) CTx [%190, 1— %190]

for any t€[0,T7], as long as e; is sufficiently small.
We can now use Proposition 2.2 and a simple continuity argument to show that, if
wo€GH?/3 has compact support in T x [20, 1 — 28] and satisfies the assumptions (1.12),

then the solution w is in C([0, 00):G3/%), has compact support in [y, 1 —], and satisfies
(@) (@) || g0 S for all € [0, 00).

Moreover, the variables F', F*, F—F* O, ©* B!, B! V! and H satisfy the improved
bounds (2.50)—(2.51). In particular, since

Ar(t,€) >61A160<k,£>1/2 and  Ap(t,€)> Anr(t,€) 261.160@)1/27
for any t€[0,00) we have
e O (e, b, €)lp + )2 ()1 kOl Soed? (9.13)
and

IV (@)l gso1r2+IBL(#)llgso a2 +IBL ()| gaonra+ (&) HIH(E) | gronr2 Ser- (9.14)

Step 3. We now show that, for any t€[0, 00),
OIHOlgsrar+ OV (D)l gorar Sex, (9.15)
where 61 =01(d0)>0. We use equation (2.31), thus

N (tH) = —tVO,H+tV'{—(0y Prod0.F)+ (0.0, F)}

: (9.16)
= 7tva1)7'l+tv/8'u <8Z¢F> .
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Since V/'=V/+B{ and V"=19,(V")?, it follows from (9.14) and Lemma 3.1 that
IV ®llgsz2u0).000 1V Ollgizz0) 000

/ . _ (9.17)
+||B (t)|‘§}</2[b(0),b(l)]+HB (t)ll(j}!z[b(o),b(l)] <1

for any t€(0, c0), for some K=K (dy)>0. Using also (2.32), we have
(0:0F) = (V')*(0:0+ (05— 2t0,0:0)) + V" (02 (9up—10:6)).- (9.18)
In particular, using the bounds on ¢ in (9.13),
(00 F) ()llgsorz/e SeT(t)°.
Using also (9.13)-(9.14) and the identity H=tV'd,V, it follows from (9.14) that
10:(EH) (D) gio 212 Sea (t) /2

for any t€[0,00), and the desired bounds (9.15) follow.

As a consequence, we also have the bounds
10(0)lg320+ 21 @10) gy S1 (9.19)

for any t€[0,00), for some Ko=K5(dp)>0. Indeed, the bounds on v follow from the
identity dyv(t,y)=V"(t,v(t,y)), the bounds (9.17), and Lemma 3.2. The bounds on v

then follow using the identity d;v(t,y)=V (¢, v(t,y)), the bounds (9.15), and Lemma 3.2.
Step 4. We now prove the conclusions of the theorem. Notice that
OF—B"0,(V¢)—V'0, P (V) 0. F+V 8,F+V'9,(¥¢)8,F =0, (9.20)

using (2.28) and supp F'(t) C[b(d), b(1—1)]. Using the bounds (9.13)—(9.15), and (9.17),
it follows that
10 F llgsar2 S/ (6)

for some d2>0. Moreover, the definitions (2.4)—(2.5) show that
w(t, z+tb(y) +@(t,y), y) = w(t, z+to(t,y), y) = F(t, 2, v(t, y))-

Using also (9.19), we have

Sein

963,1/2

H % [w(t, z+tb(y)+P(t,y), )]
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for some d3=03(d9) >0, and the bounds (1.14) follow.

Moreover, we notice that

7/1(757 T, y) = ¢(t7 x_tv(tv Z/), U(tv y))

(9.21)

Since u¥=0,1 and u*=—0,%, the bounds (1.18)-(1.19) follow from the bounds on ¢ in

(9.13) and the fact that ¥(¢) is harmonic in T x {[0, 9o]U[1 -y, 1]}.

Finally, in order to prove (1.17), we start from the formula (u®)=—(dy%), thus

Oy (u®)=—(w). Therefore, using the evolution equation (1.13),

0,0y (u”) = (—Ow) = (u® Opw~+uY Oyw) = (—0yYOpw—+ 0 YOyw) = Oy (WO Y).

Moreover, since (¢, z,0)=1(t, z,1)=0, for any t€[0, c0) we have
| wena=— [ o,wimdi=o.
[0,1] [0,1]

Moreover,

(w8a1)) = (Dy1u1p) = 0, (B YD)

These identities show that
O (u”) = (wdyp) in [0,00)x][0,1].
Using the definitions (2.5), we have
1
@uu)t) = o [ w(t.0.9) 2u0(t,2,0) de
TJT
1
— o [Pt st 0) 0.0t 2 0(0,0)
2 T
Using now (9.18), (9.19), and the bounds on ¢ in (9.13), it follows that
1(0e(u™)) ()l gosarz SeT(t)™°
for some 84=04(dp)>0. Moreover, using (1.14),
. x 2 1 o _
Tim {0, (u)(0)+ 0205} = lim {— () () +(F) } =0.

The desired conclusion (1.17) follows using also (9.22).

(9.22)

(9.23)
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