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Given only a finite collection of points sampled from a Riemannian manifold embedded in 
a Euclidean space, in this paper we propose a new method to numerically solve elliptic and 
parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the 
construction of triangulations on unknown manifolds can be both difficult and expensive, both 
in terms of computational and data requirements, our goal is to solve these problems without a 
triangulation. Instead, we rely only on using the sample points to define quadrature formulas on 
the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-
known method in a variational sense for manifolds with boundary. Our main result is that the 
variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the 
manifold. This improves upon previous results and provides a rigorous justification of the well-
known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, 
using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion 
maps kernel integral operator for manifolds with boundary. This expansion relies on a novel 
lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of 
the boundary. We then use a recently developed method of estimating the distance to boundary 
function (notice that the boundary location is assumed to be unknown) to construct a consistent 
estimator for boundary integrals. Finally, by combining these various estimators, we illustrate 
how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. 
Several numerical examples illustrate our theoretical findings.

1. Introduction

The goal of this paper is to analyze the diffusion maps algorithm in a weak (variational) form and to introduce a completely 
rigorous method to solve elliptic and parabolic partial differential equations (PDEs) with boundary conditions. These PDEs are posed 
on an 𝑚-dimensional Riemannian manifold (M, 𝑔) embedded in an ambient Euclidean space via 𝜄 ∶M → ℝ

𝑑 . We assume that the 
Riemannian metric 𝑔 on M is inherited from the ambient space ℝ𝑑 via the embedding.

Motivated by applications to machine learning or emergent structures in high-dimensional problems such as inertial manifolds, 
we will assume that we have no explicit description of the embedded Riemannian manifold. Instead, we assume only that we have 
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a collection of sample points, {𝑥𝑖}𝑁𝑖=1 ⊂ 𝜄(M) ⊂ ℝ
𝑑 which, together with equal weights, form a consistent weighted quadrature rule. 

Namely, for any square integrable function 𝑓 ∈𝐿2(M, 𝑔), we assume that

lim
𝑁→∞

1

𝑁

𝑁∑
𝑖=1

𝑓 (𝑥𝑖) = ∫
M

𝑓 (𝑥)𝑞(𝑥)𝑑vol (1.1)

almost surely. In the statistical context the weight function 𝑞 is called the sampling density. Ultimately our method will be inde-
pendent of 𝑞, meaning that we do not require any specific density and if a grid of samples is used this grid is not required to be 
uniformly spaced. This is critical when the nodes are data points (which are typically not sampled from the density that corresponds 
to the volume form), but is also an advantage for synthetic data sets where creating uniform grids on manifolds can be challenging 
(uniform in this context means that (1.1) holds with a constant 𝑞). There are several situations where this may arise:

• Random data on an unknown manifold, where 𝑞 is the sampling density.
• Attractors and inertial manifolds for dynamical systems, where 𝑞 is the invariant measure.
• Known but complex domains that are difficult to mesh, and difficult to sample uniformly.
• Known but moderate dimensional manifolds if one cannot afford a mesh.

There is a wide literature starting with the Laplacian eigenmaps [3] and the diffusion maps [10] algorithms which give a method 
of approximating the intrinsic Laplacian operator on an unknown manifold. In this manuscript we let Δ be the negative definite 
Laplacian, also known as the Laplace-Beltrami operator. The basic strategy for estimating the Laplacian starts with a kernel function 

𝐾(𝜖, 𝑥, 𝑦) which approximates the heat kernel on a manifold, for example 𝐾(𝜖, 𝑥, 𝑦) = 𝑒−
|𝑥−𝑦|2
4𝜖2 , where we choose 𝜖2 in the denominator 

so that 𝜖 has units of distance. Then for any 𝑓 we can estimate the integral operator

I𝑓 (𝑥) ∶= ∫
𝑦∈M

𝐾(𝜖, 𝑥, 𝑦)𝑓 (𝑦)𝑞(𝑦)𝑑vol (1.2)

by our quadrature formula

K𝑓 (𝑥) ≡ 1

𝑁

𝑁∑
𝑖=1

𝐾(𝜖, 𝑥, 𝑥𝑖)𝑓 (𝑥𝑖) = I𝑓 (𝑥) + ErrorQuad(𝑁,𝑓, 𝑞) (1.3)

where the ErrorQuad term is assumed to go to zero as 𝑁 → ∞. In fact, when the data, 𝑥𝑖, are independent identically distributed 
random variables it can be shown that ErrorQuad = O(𝑁−1∕2) with high probability [29,4]. The qualifier ‘with high probability’ is 
required because the data set is random and there is a finite (but extremely small) probability of all the data points landing in for 
instance, a small ball on the manifold. This would clearly lead to a significant error in the quadrature formula in most cases. However, 
the probability of all such high-error events can be made arbitrarily small as 𝑁−1∕2 approaches zero [4,29]. Finally, notice that if we 
represent 𝑓 by a vector 𝑓𝑖 = 𝑓 (𝑥𝑖) then we can represent K with the matrix with entries 𝐊𝑖𝑗 =𝐾(𝜖, 𝑥𝑖, 𝑥𝑗 ) so that (𝐊𝑓 )𝑖 =K𝑓 (𝑥𝑖).

The intuition behind the kernel function is that the exponential decay localizes the integral to an 𝜖-ball around 𝑥, and in this 
neighborhood the Euclidean distance 𝑑

ℝ𝑑 (𝑥, 𝑦) = ‖𝑥− 𝑦‖
ℝ𝑑 is close to the geodesic distance 𝑑𝑔(𝑥, 𝑦) (under appropriate assumptions 

on the manifold and embedding). Thus, as 𝜖→ 0 the integral I𝑓 (𝑥) can be shown [3] to converge to the semigroup 𝑒𝜖2Δ associated 
to the intrinsic (negative definite) Laplace-Beltrami operator Δ, so that

K𝑓 (𝑥) =𝑚0𝜖
𝑚𝑒𝜖

2Δ(𝑓𝑞)(𝑥) +O(𝜖𝑚+2) + ErrorQuad(𝑁,𝑓, 𝑞).

In fact, a more detailed asymptotic analysis [10,16] reveals that for any kernel function of the form

𝐾(𝜖, 𝑥, 𝑦) = 𝑘

(‖𝑥− 𝑦‖2
ℝ𝑑

𝜖2

)

where 𝑘 ∶ [0, ∞) → [0, ∞) is sufficiently regular and has exponential decay (𝑘(𝑧) ≤ 𝑎−𝑏𝑧 for some 𝑎, 𝑏 > 0), we have

𝜖−𝑚K𝑓 (𝑥) =𝑚0𝑓 (𝑥)𝑞(𝑥) + 𝜖
2 𝑚2

2
(𝜔(𝑥)𝑓 (𝑥)𝑞(𝑥) + Δ(𝑓𝑞)(𝑥))

+O(𝜖4) + 𝜖−𝑚ErrorQuad(𝑁,𝑓, 𝑞), (1.4)

for all 𝑥 with distance greater than 𝜖 from the boundary. The constants 𝑚0 and 𝑚2 are the zeroth and second moments of the chosen 
kernel functions, namely,

𝑚0 ∶= ∫
𝑧∈ℝ𝑚

𝑘(|𝑧|2)𝑑𝑧 and 𝑚2 ∶= ∫
𝑧∈ℝ𝑚

𝑧2𝑖 𝑘(|𝑧|2)𝑑𝑧 (1.5)

where the domain of integration is determined by the intrinsic dimension of the manifold, 𝑚, rather than the extrinsic dimension of 
the embedding space, 𝑑.

The expansion (1.4) is commonly used for estimating the density function [20,23,24] by applying the operator K to the constant 
function 𝑓 ≡ 1 to find,
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𝜖−𝑚

𝑚0

K1(𝑥) = 𝑞(𝑥) +O(𝜖2) +
𝜖−𝑚

𝑚0

ErrorQuad(𝑁,𝑓, 𝑞).

However, it is well-known that for manifolds with boundary this does not hold. This leads to the well known bias of Kernel Density 
Estimators (KDEs) near the boundary [8,17–19,22,25]. In [6], the authors developed a method to estimate the distance to the 
boundary of a manifold from data. They then used this estimate to correct the bias of the KDE near the boundary. A significant 
advance of the method of [6] is that the location of the boundary does not need to be known beforehand, and it is effectively learned 
from the data.

A much more challenging and powerful use of (1.4) is for estimating the Laplace-Beltrami operator, Δ, and this expansion is 
the key component of justifying the diffusion maps algorithm [10]. The Laplace-Beltrami operator is ubiquitous, especially when 
a physical process is modeled using PDEs. For such applications, it is critical that one be able to specify the appropriate boundary 
conditions. Moreover, while it is widely observed that the diffusion maps algorithm produces Neumann eigenfunctions [10], this 
empirical observation has not been adequately explained. In this paper we will show that the estimator defined by the diffusion maps 
algorithm is consistent in the weak sense even for manifolds with boundary, and that Neumann eigenfunctions are observed because 
of the naturality of the Neumann boundary conditions for the eigenproblem. Finally, allowing arbitrary boundary conditions to be 
specified requires us to introduce a new tool, namely a boundary integral estimator, which may have uses beyond these applications, 
and the consistency of this estimator is one of our key results.

In order to solve diffusion type PDEs in the weak-sense and specify boundary conditions we need consistent discrete estimators 
of the following bilinear forms,

G(𝜙,𝑓 ) = ∫
M

𝜙𝑓 𝑑vol , E(𝜙,𝑓 ) = ∫
M

∇𝜙 ⋅∇𝑓 𝑑vol , B(𝜙,𝑓 ) = ∫
𝜕M

𝜙𝑓 𝑑vol𝜕 , (1.6)

where G and E correspond to mass and stiffness matrices respectively. The 𝐿2 inner product on the boundary, B, arises in case of 
Neumann or Robin boundary conditions [27]. The first bilinear form, G, is simply the 𝐿2 inner product on the manifold, which can 
be represented by a diagonal matrix with entries 𝐷𝑖𝑖 = (𝑁𝑞(𝑥𝑖))

−1 since by (1.1) we have,

lim
𝑁→∞

𝜙⊤𝐷𝑓 = lim
𝑁→∞

𝑁∑
𝑖=1

𝐷𝑖𝑖𝜙𝑖𝑓𝑖 = lim
𝑁→∞

1

𝑁

𝑁∑
𝑖=1

𝜙(𝑥𝑖)𝑓 (𝑥𝑖)

𝑞(𝑥𝑖)
= ∫
M

𝜙𝑓 𝑑vol=G(𝜙,𝑓 )

where 𝑞 can be estimated as in [6] (the method is summarized in Appendix B).
In this paper, we show that the graph Laplacian (as constructed by the diffusion maps algorithm [10]) is a consistent estimator 

of the Dirichlet energy, E, even for manifolds with boundary (Theorem 6.2). Moreover, we introduce a novel consistent estimator 
for the boundary integral (Theorem 5.1). These results rely on the first uniform asymptotic expansion of kernel integral operators 
in a neighborhood of the boundary (Theorem 4.6). This in turn requires a subtle new distance comparison (Lemma 4.3) which 
expands the ambient space Euclidean distance between local points near the boundary of an embedded manifold with respect to 
semigeodesic coordinates. This new distance comparison is the direct analog of the expansion of the ambient space distance with 
respect to geodesic normal coordinates [31] which holds in the interior, but Lemma 4.3 carries out this expansion for points near the 
boundary using semigeodesic coordinates.

Recently, the diffusion maps estimate of the Laplacian has been used for solving PDEs such as −Δ𝑢 = 𝑓 [13,15] where 𝑓 is now 
the data and one is solving for 𝑢. We should note that in [13] a more general class of elliptic operators are considered using a more 
general class of kernel functions introduced in [5]. In this paper we restrict our attention to the Laplace-Beltrami operator in order 
to focus on the boundary conditions, however the theory and methods introduced here can also be used to impose new boundary 
conditions on the operators considered in [13]. We should also point out that [13] compared the diffusion maps approach to another 
popular meshless method based on radial-basis function (RBF) interpolation [26]. The RBF method outperforms the diffusion maps 
when an appropriate global coordinate system is available in which to form the basis functions. However, as pointed out in [13], 
extending the RBF method to arbitrary manifolds would require extensive modifications, such as finding local coordinate systems 
and approximating the desired differential operators. The diffusion maps approach provides a large class of operators directly with 
a global representation. Thus, when more information about the manifold structure is known, approaches such as [26] may have 
superior results (just as mesh-based methods may have better results when a mesh is available), so it should be emphasized that our 
focus is on mesh-free methods on an unknown manifold as motivated above.

A key aspect of our approach is that the location of the boundary is also unknown and must be estimated as in [6]. Since the 
boundary is a measure zero subset, we do not expect any data samples to lie exactly on the boundary, so rather than making a 
binary choice (‘on’ or ‘off’ the boundary) we instead locate the boundary implicitly by estimating the distance to the boundary for 
each data point. For completeness, we summarize the method of [6] for finding the distance to the boundary in Appendix B. This 
distance-to-the-boundary function turns out to be the key to building the boundary integral estimator that converges to B. Together 
these results yield a collection of consistent estimators for G,E, and B that can be used to solve the heat equation with various 
boundary conditions given only a set of points lying on the unknown manifold.

The paper is organized as follows: In Section 2 we define the class of manifolds required for our theoretical results and establish 
bounds on the ratios of the intrinsic distance and the distances in coordinates near the boundary that will be required later. In 
Section 3 we use these bounds to show that kernel integral operators of the form (1.2) with kernels having fast decay can be 
localized to a small neighborhood of 𝑥 (up to an error that is small with respect to the bandwidth, 𝜖). In Section 4 we present the 
first asymptotic expansion of the kernel integral operator (1.2) that holds uniformly in a neighborhood of the boundary (meaning 
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𝜖 is independent of 𝑥). In Section 5 we introduce the first boundary integral estimator (making use of the distance to the boundary 
function) which gives a consistent estimator of B. In Section 6 we use the asymptotic expansion from Section 4 together with 
the boundary integral estimator in Section 5 to construct consistent estimators of the operators in (1.6). By analyzing the existing 
Laplacian estimators in light of our new results we show why these standard constructions result in Neumann boundary conditions, 
as observed empirically going back to [10]. Finally in Section 7 we show how to impose standard boundary conditions using these 
operator estimators.

2. Preliminaries

The contents of this section are devoted to establishing some coordinate computations which will be used several times in 
subsequent sections. We begin by setting some notation and recalling some fundamental properties from Riemannian geometry.

In what follows, we let M be a 𝐶3 compact manifold with nonempty boundary smoothly and properly embedded into ℝ𝑑 via the 
map 𝜄 ∶M →ℝ

𝑑 . We endow M with the pullback metric 𝑔 = 𝜄∗𝑔ℝ𝑛 so that 𝜄 is an isometric embedding. We let 𝑑vol be the Riemannian 
volume element defined by this metric and we let 𝑞 ∶M →ℝ denote a 𝐶3 probability density function that is absolutely continuous 
with respect to 𝑑vol.

We also recall that in any local coordinates (𝑠1, ..., 𝑠𝑚) on M, the pullback metric evaluated on vector fields 𝑋 = 𝑥𝑖𝜕𝑖, 𝑌 = 𝑦𝑗𝜕𝑗 is 
given by

⟨
𝑥𝑖𝜕𝑖, 𝑦

𝑗𝜕𝑗
⟩
𝑔
= 𝛿𝛼𝛽

𝜕𝜄𝛼

𝜕𝑠𝑖
𝜕𝜄𝛽

𝜕𝑠𝑗
𝑥𝑖𝑦𝑗

where we are using Einstein notation so that indices appearing in both a superscript and subscript are implied to be summed over a 
common index. For convenience, we let Greek characters such as 𝛼, 𝛽 range from 1 to 𝑑 and Roman characters such as 𝑖, 𝑗 range from 
1 to 𝑚 = dim(M).

We recall that the Riemannian metric on M induces a metric space structure on M with the metric by letting 𝑑𝑔(𝑥, 𝑦) denote 
the infimum of all piecewise smooth regular curves connecting 𝑥 to 𝑦 in M. If 𝑥 and 𝑦 are not in the same component, we define 
𝑑𝑔(𝑥, 𝑦) = +∞.

Recall that the Laplace-Beltrami operator Δ on M is defined by Δ𝑓 = Div(grad 𝑓 ) and has coordinate expression

Δ𝑓 =
1√|det 𝑔|

𝜕𝑖

(√|det 𝑔|𝑔𝑖𝑗𝜕𝑗𝑓
)

in any coordinate system. In particular, when the metric is flat, 𝑔𝑖𝑗 = 𝛿𝑖𝑗 this corresponds to the standard Euclidean Laplacian

Δ
ℝ𝑚 =

𝑚∑
𝑖=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
.

2.1. Kernel regularity

We let 𝑘 ∶ ℝ≥0 → ℝ≥0 be a 𝐶2 real valued function. We furthermore assume for the remainder of the paper that 𝑘, ||𝑘′||, and ||𝑘′′||
have exponential decay and 𝑘(0) = 0. We also assume that 𝑞 ∶M →ℝ is a strictly positive 𝐶3 probability distribution function which 
is absolutely continuous with respect to the Riemannian volume element. These assumptions are identical to those found in [16].

We define a family of kernel averaging operators I𝜖 indexed by parameter 𝜖 ∈ (0, ∞) by:

I𝜖𝑓 = ∫
M

𝑘

(‖𝑥− 𝑦‖2
ℝ𝑛

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol.

We remark that this choice of kernel operator differs from the one originally used in [10] in that we choose to use squared 
distance over 𝜖2. This is simply to avoid issues of smoothness when 𝑥 = 𝑦. For simplicity of exposition, we will state the results of the 
following section assuming that 𝑞 ≡ 1. This presents no loss of generality, since one may make the substitution 𝑓 ↦ 𝑓𝑞 and obtain 
the needed results.

2.2. Normal coordinates

Normal coordinates are a set of coordinates which are used extensively in the asymptotic analysis of manifold learning algorithms 
on Riemannian manifolds. In this section, we review several of the important properties used later in the paper.

Recall that the exponential map based at a point 𝑥 is a mapping exp𝑥 ∶ 𝑈 ⊆ 𝑇𝑥M →M which maps a tangent vector 𝑣 to the 
endpoint of the geodesic based at 𝑥 with initial velocity 𝑣. On a small star-shaped neighborhood of 𝑇𝑥M, exp𝑥 is a diffeomorphism 
onto its image. The smallest value inj(𝑥) > 0 such that 𝐵inj(𝑥)(0) ⊆ 𝑇𝑥M is a diffeomorphism is called the injectivity radius of M at 𝑥. 
The infimum of injectivity radii over all 𝑥 ∈M is called the injectivity radius of M and it can be shown that for a compact manifold 
without boundary, inj(M) is positive.

By identifying 𝑇𝑥M with ℝ𝑚 using an orthonormal basis, one can use the exponential map to construct Riemannian normal 
coordinate charts centered at 𝑥 ∈M, which are a system of coordinates (𝑠1, ..., 𝑠𝑚) with the following nice properties:
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Proposition 2.1. Let 𝑥 ∈M and let (𝑠1, .., 𝑠𝑚) denote a system of normal coordinates centered about 𝑥. Then

(a) The coordinates of 𝑥 are (0, .., 0).
(b) The components of the metric at 𝑥 are 𝑔𝑖𝑗 (𝑥) = 𝛿𝑖𝑗 .
(c) For every vector 𝑣 = 𝑣𝑖𝜕𝑖 at 𝑥, the radial geodesic with initial velocity 𝑣 is represented in coordinates by:

𝛾𝑣(𝑡) = 𝑡(𝑣
1, ..., 𝑣𝑚).

(d) The Christoffel symbols and first partial derivatives of 𝑔𝑖𝑗 vanish at 𝑥.

In particular, the geodesic distance between 𝑥 and a point 𝑦 in normal coordinates corresponds to the 2-norm of the coordinate 
representative 𝑠 of 𝑦 in normal coordinates:

𝑑𝑔(𝑥, 𝑦) = ‖𝑠‖
ℝ𝑚 .

This expression for the intrinsic distance is the foundation of the asymptotic expansion (4.4) in [10] as well as many related papers 
[4,6,16,32,30,12].

In the case of manifolds with boundary, we remark that the exponential map may be less well-behaved near the boundary than 
in the non boundary case. Since geodesics may intersect the boundary, there is no longer a nice one-one relationship between initial 
velocity vectors and geodesics through a given point.

As an illustrative example of this behavior, consider the closed two dimensional annulus 𝐴 ⊆ℝ
2 and let 𝑥 be an interior point of 

𝐴, 𝑦 be a boundary point for which the straight line segment 𝑥𝑦 in ℝ2 is not contained in 𝐴.

2.3. The normal collar and semigeodesic coordinates

We instead use semigeodesic coordinates, which will be more amenable to calculations for points near the boundary. We outline 
the needed results here, for more details on semigeodesic coordinates see [21]. Since M is compact, it admits a normal collar [21], 
which is a mapping 𝜙 ∶ 𝜕M × [0, 𝑟𝐶 ) →M defined by:

𝜙(𝑥, 𝑡) = exp𝑥(−𝑡𝜂𝑥)

where 𝑟𝐶 > 0, and −𝜂𝑥 is the inward-facing unit normal vector field at 𝑥. Such a mapping is a diffeomorphism onto its image, which 
we will denote as N . For each 𝑡 ∈ [0, 𝑟𝐶 ), we note that the set 𝜕M𝑡 ∶= 𝜙

−1(𝜕M × {𝑡}) is the hypersurface of points distance 𝑡 from the 
boundary. Such 𝜕M𝑡 are embedded submanifolds of M for each 𝑡 ∈ [0, 𝑟𝐶 ).

Inside of the normal collar, we can now construct semigeodesic coordinates centered at 𝑥. To do so, one first fixes a point 𝑥 in the 
normal collar, and constructs normal coordinates (𝑢1, ..., 𝑢𝑚−1) in the (𝑚 −1)-dimensional hypersurface parallel to 𝜕𝑀 which intersects 
𝑥. We shall refer to such a hypersurface as 𝜕M(𝑥). One then uses the 𝑚-th coordinate 𝑢𝑚 to parameterize the geodesic distance in M
from 𝜕M(𝑥). Thus semigeodesic coordinates are formed through a composition of the exponential map of 𝜕M and the inward-facing 
exponential map exp𝑥(−𝑢𝑚𝜂) of M. We now list a few of their properties in contrast to the previous section.

Proposition 2.2. Let 𝑥 ∈M and let (𝑢1, .., 𝑢𝑚) denote a system of semigeodesic coordinates centered at 𝑥. Then

(a) The coordinates of 𝑥 are (0, .., 0).
(b) The components of the metric at 𝑥 are 𝑔𝑖𝑗 (𝑥) = 𝛿𝑖𝑗 .
(c) For every vector 𝑣 = 𝑣𝑖𝜕𝑖 at 𝑥, the radial geodesic in 𝜕M𝑡 with initial velocity 

∑𝑚−1
𝑖=1 𝑣

𝑖 is represented in coordinates by:

𝛾(𝑡) = 𝑡(𝑣1, ..., 𝑣𝑚−1,0).

The geodesic starting at 𝑥 which intersects each 𝜕M𝑡 orthogonally is represented in coordinates as:

𝛾(𝑡) = 𝑡(0, ...,0, 𝑣𝑚).

We remark that in contrast to the case in normal coordinates, the norm in semigeodesic coordinates no longer measures a well-
defined distance. The first 𝑚 − 1 coordinates parameterize geodesic distance in the parallel hypersurface, while the last coordinate 
entry parameterizes geodesic distance in M in the direction orthogonal to the hypersurface. Moreover, whereas the geodesic ball 
is a sphere, a semigeodesic chart may be viewed as a hypercylinder which intersects the boundary orthogonally. The cylinder is 
symmetric in the coordinates 𝑢1, ..., 𝑢𝑚−1 with respect to any (𝑚 − 1)-dimensional rotation but the symmetry does not extend the 𝑢𝑚

which is the ‘height’ of the cylinder. Moreover, since 𝑢𝑚 parametrizes the geodesic toward the boundary, the cylinder is truncated to 
𝑢𝑚 ≥ 𝑏𝑥 = −𝑑(𝑥, 𝜕M). Finally, we note that following [21], 𝑢𝑚 is oriented along an inward-facing pointing normal, so for any vector 𝑣
we have 𝑣𝑚 = −𝑣 ⋅ 𝜂𝑥 since 𝜂𝑥 is outward-pointing.

5
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2.4. Coordinate estimates

Although the Euclidean norm in semigeodesic coordinates no longer corresponds to geodesic distance from 𝑥, the goal of this 
section is to relate the norm in such coordinates to the geodesic distance in M.

We first note that compactness of M implies an upper and lower bound on the sectional curvature of the interior of M as well 
as bounds on the inward-facing sectional curvature of 𝜕M. From the Gauss equation, it also follows that each parallel hypersurface 
𝜕M𝑡 for 𝑡 ∈ [0, 1

2
𝑟𝐶 ] has inward-facing sectional curvature bounded above and below. We let 𝐾 be an upper bound on the sectional 

curvature and inward facing sectional curvatures of such parallel hypersurfaces such that −𝐾 is also a lower bound on such curva-
tures. By the results of [11], one also obtains a single lower bound 𝑟𝜕 > 0 on the injectivity radius of each parallel hypersurface 𝜕M𝑡

for all 𝑡 ∈ [0, 1
2
𝑟𝐶 ].

The following lemma may be proven by an application of the Rauch comparison theorem (for normal coordinates) and Warner’s 
generalization of the Rauch comparison theorem [33] (for semigeodesic coordinates. Such an argument was done in Proposition 2.6 
of [28] and needs only slight modification for semigeodesic coordinates.

Lemma 2.3. [28] Suppose M is a compact Riemannian manifold, then there exist constants 𝐶̃0 > 0, 𝐶̃1 > 0 such that in any geodesic chart 
in M,

|𝑔𝑖𝑗 | ≤ 𝐶̃0 and |𝑔𝑖𝑗 | ≤ 𝐶̃1

Using Lemma 2.3, we can now show that the norm in geodesic coordinates approximates the extrinsic distance induced by 
𝜄 ∶M →ℝ

𝑑 .

Proposition 2.4. There exists a 𝐶0, 𝐶1 > 0 such that in any geodesic chart centered at 𝑥, and any point 𝑦 in that chart,

𝐶0|𝑢|2 ≤ 𝑑2ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦)) ≤ 𝐶1|𝑢|2
where 𝑢 is the coordinate representative of 𝑦 in either normal or semigeodesic coordinates.

Proof. From Lemma 2.4, there exist positive constants 𝐶̃0 and 𝐶̃1 such that

|𝑔𝑖𝑗 | ≤ 𝐶̃0 and |𝑔𝑖𝑗 | ≤ 𝐶̃1

for any geodesic coordinate chart. Since the matrices with entrees 𝑔𝑖𝑗 and 𝑔𝑖𝑗 are symmetric and positive definite, this implies that 
there exist positive bounds 𝐶1 and 𝐶0 on the largest eigenvalue of (𝑔𝑖𝑗 ) and (𝑔𝑖𝑗 ) in any geodesic coordinate chart.

We now let 𝑥 be a point in M, and choose either normal or semigeodesic coordinate charts for M centered at 𝑥, depending on 
whether 𝑥 is in the normal collar. We then choose a normal coordinate chart for 𝜄(𝑥) in ℝ𝑑 , which is simply centering 𝜄(𝑥) at zero. In 
these coordinates, we have that

𝑑
ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦)) = 𝑔

ℝ
𝑑

𝛼𝛽
(0)𝜄𝛼(𝑢)𝜄𝛽 (𝑢),

where 𝑢 is the coordinate representative of 𝑦 in these coordinates. We then perform a Taylor expansion of 𝜄(𝑢), recalling that in these 
coordinates 𝜄(0) = 0. Therefore there exists a point 𝑢̃ in the domain such that:

𝑔ℝ
𝑑

𝛼𝛽
(0)𝜄𝛼(𝑢)𝜄𝛽 (𝑢) = 𝑔ℝ

𝑑

𝛼𝛽
(0)

(
𝜄𝛼(0) +

𝜕𝜄𝛼

𝜕𝑢𝑖

||||𝑠̃𝑢
𝑖

)(
𝜄𝛽 (0) +

𝜕𝜄𝛽

𝜕𝑢𝑗

||||𝑢̃𝑢
𝑗

)

= 𝑔ℝ
𝑑

𝛼𝛽
(0)
𝜕𝜄𝛼

𝜕𝑢𝑖

||||𝑢̃
𝜕𝜄𝛽

𝜕𝑢𝑗

||||𝑢̃𝑢
𝑖𝑢𝑗 .

Since 𝑔ℝ𝑑
𝛼𝛽

(0) = 𝑔ℝ𝑑
𝛼𝛽

(𝜄(𝑢̃)) = 𝛿𝛼𝛽 , we have:

𝑔ℝ
𝑑

𝛼𝛽
(0)𝜄𝛼(𝑢)𝜄𝛽 (𝑢) = 𝑔ℝ

𝑑

𝛼𝛽
(𝜄(𝑢̃))

𝜕𝜄𝛼

𝜕𝑢𝑖

||||𝑢̃
𝜕𝜄𝛽

𝜕𝑢𝑗

||||𝑢̃𝑢
𝑖𝑢𝑗

= 𝑔M
𝑖𝑗
(𝑢̃)𝑢𝑖𝑢𝑗 .

We now note that the expression 𝑔M
𝑖𝑗
(𝑢̃)𝑢𝑖𝑢𝑗 is maximized by the maximum eigenvalue of the matrix 𝑔M

𝑖𝑗
(𝑢̃) and minimized by the 

maximum eigenvalue of (𝑔M)𝑖𝑗 (𝑢̃). Since we have previously show that these are bounded by 𝐶1 and 𝐶0 regardless of choice of 
geodesic chart, we have that

𝐶0|𝑢|2 ≤ 𝑔ℝ𝑑𝛼𝛽 (0)𝜄𝛼(𝑠)𝜄𝛽 (𝑠) ≤ 𝐶1|𝑢|2
and therefore

𝐶0|𝑢|2 ≤ 𝑑2ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦)) ≤ 𝐶1|𝑢|2. □
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Thus, we have established a relationship between the norm in semigeodesic coordinates and the extrinsic distance defined by the 
embedding 𝜄 ∶M →ℝ

𝑑 .

3. Localization of asymptotic expansions for manifolds with boundary

We begin by rigorously defining two regions of M which are “close” and “far” from the boundary respectively. For each 𝜖 > 0, we 
let M𝜖 be the set of all points 𝑥 ∈𝑀 such that 𝑑(𝑥, 𝜕M) > 𝜖. We then define N𝜖 to be the points such that 𝑑(𝑥, 𝜕𝑀) ≤ 𝜖. We refer to 
M𝜖 as the interior region and N𝜖 as the closed collar region. Due to the generalized Gauss lemma [21], one has that if 𝜖 is less than the 
normal collar width 𝑟𝐶 , the topological boundary 𝜕M𝜖 of M𝜖 is a hypersurface in M parallel to 𝜕M.

We first show that for each sufficiently small 𝜖, the manifold M admits an atlas of charts which are each “large enough” to contain 
a metric ball of radius 𝜖. This will be proven in Proposition 3.2, which we list here.

Proposition 3.2. There exists a 𝐶M > 0 such that for all 0 < 𝜖 < 𝐶M, the preimage of an extrinsic ball 𝜄−1(𝐵ℝ
𝑑

𝜖 (𝜄(𝑥))) centered at a point 
𝑥 ∈M is contained in a normal coordinate chart if 𝑥 ∈M𝜖 or in a semigeodesic coordinate chart if 𝑥 ∈ℕ𝜖 .

We let 𝜕M𝑡 refer to the hypersurface of points distance 𝑡 from the boundary. Such hypersurfaces are parallel to 𝜕M in the sense 
that geodesics with initial velocity normal to 𝜕M intersect the surfaces 𝜕M𝑡 orthogonally. Using this fact, each tangent space 𝑇𝑥N
for 𝑥 ∈N𝜖 admits a decomposition:

𝑇𝑥N𝜖 = 𝑇
⊤
𝑥 N𝜖 ⊕𝑇

⟂
𝑥 N𝜖 ,

where 𝑇 ⊤𝑥 N = 𝑇𝑥𝜕M𝑑(𝑥,𝜕M) is the tangent space of the parallel hypersurface intersecting 𝑥 and 𝑇 ⟂
𝑥 N𝜖 is the space spanned by the unit 

vector normal to the hypersurface in M.
For each 𝑥 ∈M and each 𝜖 > 0, we define the semigeodesic hypercylinder 𝐵̃𝜖(𝑥) of radius and height 𝜖 as the set of all vectors 

𝑣 ∈ 𝑇𝑥N such that:

(a) ‖‖𝑣⊤‖‖𝑔 < 𝜖
(b) ‖‖𝑣⟂‖‖𝑔 < 𝜖 if 𝑣⟂ is inward-facing
(c) ‖‖𝑣⟂‖‖𝑔 < 𝑑𝑔(𝑥, 𝜕M) if 𝑣⟂ is outward-facing.

By this construction, we have that if 𝜖 is less than the injectivity radius of the parallel hypersurface 𝜕M(𝑥) = 𝜕M𝑑𝑔 (𝑥,𝜕M
) through 

𝑥, then 𝑒𝑥𝑝𝜕M(𝑥)
𝑥 (𝑣⊤) is well-defined for all 𝑣 ∈ 𝐵̃𝜖(𝑥). Similarly, if 𝜖 <

𝑟𝐶
2
then exp𝑞(𝑇

𝜕M(𝑥)
𝑝𝑞 𝑣⟂) is well-defined for any 𝑞 in a normal 

neighborhood of 𝑥 in 𝜕M(𝑥), where here 𝑇 𝜕M(𝑥)
𝑝𝑞 𝑣⟂ denotes the parallel translate of 𝑣⟂ in 𝜕M(𝑥) to the point 𝑞 ∈ 𝜕M(𝑥) and 𝑟𝐶 is the 

normal collar width. Thus we see that if 𝜖 is sufficiently small, the semigeodesic cylinder of radius and height 𝜖 may be identified 
with hypercylinder which is a submanifold of M through the exponential map of 𝜕M(𝑥).

The next proposition shows that there is a constant 𝑟sem > 0 such that if one chooses a radius smaller than some constant 𝐶M > 0, 
then a metric ball of radius 𝐶M in M is small enough to fit inside any semigeodesic cylinder of radius and height 𝑟sem . This is an 
essential step to show that one can uniformly localize the operator I𝜖 to semigeodesic charts in the same way as normal coordinate 
charts.

Proposition 3.1. Let 𝑟𝐶 > 0 denote the normal collar width and let 𝑟𝜕 > 0 be a lower bound on the injectivity radii of all parallel hypersurfaces 
𝜕M𝜖 with 𝜖 <

1

2
𝑟𝐶 . Let 𝐾 ∈ ℝ be an upper bound on the sectional curvature of M and the inward-facing sectional curvature of 𝜕M. Let 

𝑟sem =min{
1

2
𝑟𝐶 , 𝑟𝜕 , 

𝜋

2
√
𝐾
} where 

√
𝐾

−1
is defined to be infinite if 𝐾 ≤ 0 Then there exists a 𝐶̃M > 0 such that for all 𝑥 ∈N𝑟sem ,

𝐵M
𝐶̃M

(𝑥) ⊆ 𝐵̃𝑟sem (𝑥).

Proof. We first let 𝑋 denote

𝑋 =
∐

𝑥∈N𝑟sem

𝜕𝐵̃𝑟sem (𝑥).

In other words, consider the disjoint union of the boundary of all semigeodesic hypercylinders centered about all points in 𝑥 ∈N𝑟sem . 
It can be shown that such a set is a fiber bundle over N𝑟sem with model fiber diffeomorphic to a hypercylinder with the interior of the 
“bottom” face removed. Such a model fiber is compact and since N𝑟sem is also compact, it follows that the fiber bundle 𝑋 is compact. 
Note that proof of existence of this fiber bundle follows in analogy to the construction of the unit tangent bundle on a Riemannian 
manifold without boundary.

We now consider the function 𝑑𝜕 ∶𝑋→ℝ which assigns to each (𝑥, 𝑣) the distance from 𝑥 to the geometric realization of 𝑣 in M. 
Such a map is clearly continuous on 𝑥, and thus obtains a minimum value 𝐶M on 𝑋 by compactness. It can be easily argued using 
properties of the exponential map that for each 𝑥 ∈N𝑟sem , we have that 𝑥 ∉ 𝜕𝐵𝑟sem (𝑥) and thus 𝑑(𝑥, 𝑣) > 0 for all (𝑥, 𝑣) ∈ 𝑋. Hence 
𝐶̃M > 0.

7
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Since we assume 𝑟sem <
𝜋

4
√
𝐾
, we have that ‖𝑣‖𝑔 < 𝜋

4
√
𝐾
for each (𝑥, 𝑣) ∈𝑋. It follows that the distance from 𝑥 to the geometric 

realization of 𝑣 is less than 𝜋

2
√
𝐾
. From Corollary 2 of [2], it follows that every pair of points (𝑥, 𝑦) in a metric ball of radius 𝜋

2
√
𝐾
has 

a length-minimizing curve 𝛾 connecting 𝑥 and 𝑦 in M.
Now, fix 𝑥 ∈N𝑟sem and suppose that 𝑦 ∈𝐵𝐶̃M (𝑥) but 𝑦 ∉ 𝐵̃𝑟sem (𝑥). Denote the length-minimizing curve connecting 𝑥 and 𝑦 by 𝛾𝑥𝑦(𝑡). 

A simple topological argument can be used to show that 𝛾𝑥𝑦 eventually intersects the boundary of 𝐵̃𝑟sem (𝑝). Namely, there exists a 
𝑡0 such that 𝛾𝑥𝑦(𝑡0) ∈ 𝜕𝐵̃𝑟sem (𝑝). It follows that 𝑑𝑔(𝑝, 𝛾𝑥𝑦(𝑡0)) ≥ 𝐶̃M and hence the length of 𝛾𝑥𝑦 > 𝐶M. This contradicts the fact that 
𝑦 ∈ 𝐵𝐶̃M (𝑥) and implies the result. □

Since in general the kernel function 𝑘𝜖(𝑥, 𝑦) is defined using extrinsic distance in ℝ𝑑 instead of distance in M, we need to improve 
the result in Proposition 3.1 to account for extrinsic distance. We also wish to improve the result to hold for both semigeodesic and 
normal coordinates and hold for all 𝜖 sufficiently small. Most of this can be done by simply observing that the embedding map 𝜄 has 
a uniformly continuous inverse. The main remaining obstacle is that the region M𝜖 grows as 𝜖 approaches zero. We therefore need 
to show that the injectivity radius of the region M𝜖 does not shrink too fast as 𝜖 approaches zero.

Proposition 3.2. There exists a 𝐶M > 0 such that for all 0 < 𝜖 < 𝐶M, the preimage of an extrinsic ball 𝜄−1(𝐵ℝ
𝑑

𝜖 (𝜄(𝑥))) centered at a point 
𝑥 ∈M is contained in a normal coordinate chart if 𝑥 ∈M𝜖 or in a semigeodesic coordinate chart if 𝑥 ∈N𝜖 .

Proof. First we consider the value

inj(M𝜖) ∶= inf
𝑥∈M𝜖

inj(𝑥).

We first show that for sufficiently small 𝜖, the value of inj(M𝜖) ≥ 𝜖. Consider the double 𝐷(M) of M formed by gluing identical 
copies of M along the boundary of M. It follows that 𝐷(M) is compact and one may extend the metric on M arbitrarily to a metric 
on 𝐷(M). In such a case, geodesic balls of radius 𝜖 or less on M𝜖 coincide with geodesic balls of radius 𝜖 or less on 𝐷(M). Since 𝐷(M)

is compact, it has positive injectivity radius and thus if 𝜖 < inj(𝐷(M)), then 𝑒𝑥𝑝𝑥 is bijective on 𝐵𝜖(𝑥) in M𝜖 . Hence, if 𝜖 < inj(𝐷(M)), 
M𝜖 may be covered by normal coordinate charts which contain a metric ball of radius 𝜖. By Proposition 3.2 if 𝜖 < 𝐶̃M, then N𝜖 may 
be covered in semigeodesic charts each of which contain a metric ball in M of radius 𝜖.

We now let 𝐶 ′
M

=min{𝐶̃M, inj(𝐷(M))}. Since the embedding 𝜄 ∶M →ℝ
𝑑 is continuous on a compact set, its inverse 𝜄−1 is uniformly 

continuous on its domain. Thus, there exists a 𝐶M > 0 which does not depend on 𝑥 ∈M for which 𝜄−1(𝐵ℝ
𝑑

𝐶M
(𝜄(𝑥)) ⊆ 𝐵𝐶′

M
(𝑥) for all 

𝑥 ∈M. Therefore for all 0 < 𝜖 < 𝐶M and all 𝑥 ∈M, we have 𝜄−1(𝐵ℝ
𝑑

𝜖 (𝜄(𝑥)) is contained in a normal coordinate chart if 𝑥 ∈M𝜖 and a 
semigeodesic chart if 𝑥 ∈N𝜖 . □

We now put together Proposition 3.2 and Proposition 2.4 to show that for sufficiently small 𝜖, one may localize the kernel integral 
operator to a geodesic coordinate chart up to order 𝜖𝑧 for arbitrarily large 𝑧 ∈ ℕ.

Lemma 3.3 (Localization to a Geodesic Neighborhood). Let 0 < 𝛾 < 1. For any 𝜖 > 0 such that 𝜖𝛾 <min{
𝑟M
𝐶1
, 𝐶M},

|||||||||
∫

M⧵𝐵̃M
𝜖𝛾

(𝑥)

𝑘

(
𝑑2
ℝ𝑑

(𝜄(𝑥), 𝜄(𝑦))

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol

|||||||||
∈O(𝜖𝑧)

where 𝑧 may be chosen arbitrarily large in ℕ.

Proof. If 𝜖𝛾 < 𝐶M, we have that the preimage of an 𝜖𝛾 ball in ℝ𝑑 centered about 𝜄(𝑥) is contained in a geodesic coordinate chart 

centered at 𝑥. If 𝜖𝛾 <
𝐶′
M

𝐶1
, then by Proposition 2.4, 𝐵̃M

𝐶1𝜖
𝛾 (𝑥) contains this preimage, and is also contained in the geodesic chart. Hence, 

any point in M outside of 𝐵̃M
𝐶1𝜖

𝛾 (𝑥) has extrinsic distance no less than 𝜖𝛾 from 𝑥.
Using exponential decay of the kernel, this implies that

∫
𝐵̃M
𝐶1𝜖

𝛾 (𝑥)

𝑘

(
𝑑
ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦))

𝜖2

)
𝑞 𝑑vol≤ ∫

𝐵̃M
𝐶1𝜖

𝛾 (𝑥)

𝛼𝑒
−𝛽

𝑑2

ℝ𝑑
(𝜄(𝑥),𝜄(𝑦))

𝜖2 𝑞 𝑑vol

≤ 𝛼𝑒−𝛽 𝜖
2𝛾

𝜖2

= 𝛼𝑒−𝛽𝑒
2(𝛾−1)

We then apply Cauchy-Schwarz inequality in 𝑞-weighted 𝐿2(M):

8
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⟨
𝑘

(
𝑑
ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦))

𝜖2

)
, 𝑓

⟩2

≤
⟨
𝑘

(
𝑑
ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦))

𝜖2

)
, 𝑘

(
𝑑
ℝ𝑑 (𝜄(𝑥), 𝜄(𝑦))

𝜖2

)⟩2

⟨𝑓,𝑓 ⟩

≤ ⟨𝑓,𝑓 ⟩𝛼𝑒−2𝛽𝜖2(𝛾−1) ∫
M⧵𝐵̃M

𝐶1𝜖
𝛾 (𝑥)

𝑞 𝑑vol

≤ ⟨𝑓,𝑓 ⟩𝛼𝑒−2𝛽𝜖2(𝛾−1)

We see that the term ⟨𝑓, 𝑓 ⟩𝛼𝑒−2𝛽𝜖2(𝛾−1) is asymptotically bounded by any polynomial 𝜖𝑧 with 𝑧 ≥ 1. □

We have now shown that the value of I𝜖𝑓 (𝑥) depends only on the behavior of 𝑓 inside a single chart for small enough values 
of the parameter 𝜖. If 𝑥 is in the closed collar region N𝜖 for small enough 𝜖, this chart must be taken as a semigeodesic coordinate 
chart, while if 𝑥 contained in the interior region M𝜖 one may use a normal coordinate chart.

4. Uniform asymptotic expansion for manifolds with boundary

The results of the previous section show that the asymptotic analysis of I𝜖𝑓 (𝑥) can be subdivided into two cases depending 
on whether 𝑥 is in the interior region M𝜖 or closed collar region N𝜖 . In this section, we derive new asymptotic expansions of 
I𝜖𝑓 in semigeodesic coordinates. When taken together with existing expansions in normal coordinates from [10,16], this yields an 
asymptotic expansion of I𝜖 that is uniform in 𝜖, meaning that for sufficiently small 𝜖, the expansion holds for each 𝑥 ∈𝑀 . This 
uniformity is necessary for our later proof of convergence.

We begin by deriving asymptotic expansions of I𝜖𝑓 in semigeodesic coordinates. The following lemmas are used to show that 
the value of the constant in the leading order error term is related to the mean curvature of the boundary of M. They are largely 
technical, but this specific value will give us some cancellation in the final expansion and is thus important.

We begin by observing coordinate expressions for the Levi-Civita connection on M.

Lemma 4.1. Let 𝑈 be the vector field such that

(a) 𝑈𝑥 ∈ 𝑇𝑥M maps to the point 𝑢 in semigeodesic coordinates centered at 𝑥.
(b) The coordinate representation 𝑈 = 𝑢𝑖𝜕𝑖 has constant component functions 𝑢𝑖.

Then at the point p:

2 ⟨∇𝑈𝑈,𝑈⟩𝑔 = 𝛿𝛼𝛽
(
𝜕2𝜄𝛼

𝜕𝑢𝑎𝜕𝑢𝑐
𝜕𝜄𝛽

𝜕𝑢𝑏
+
𝜕𝜄𝛽

𝜕𝑢𝑎
𝜕2𝜄𝛼

𝜕𝑢𝑏𝜕𝑢𝑐

)
.

Proof. Since 𝜄 ∶M →ℝ
𝑑 is an isometric embedding, we may relate the components of the metric in M to those in ℝ𝑑 via:

𝑔M
𝑎𝑏
(𝑢) = 𝑔ℝ

𝑑

𝛼𝛽
(𝑠̃)
𝜕𝜄𝛼

𝜕𝑢𝑎
𝜕𝜄𝛽

𝜕𝑢𝑏
= 𝛿𝛼𝛽

𝜕𝜄𝛼

𝜕𝑢𝑎
𝜕𝜄𝛽

𝜕𝑢𝑏

We then take the partial derivative of both sides, noting that we are in normal coordinates in ℝ𝑑 and therefore all partial derivatives 
of the metric components vanish at 0. This yields:

𝜕𝑔M
𝑎𝑏
(0)

𝜕𝑢𝑐
=
𝜕𝑔ℝ

𝑑

𝛼𝛽
(0)

𝜕𝑢𝑐
𝜕𝜄𝛼

𝜕𝑢𝜌
𝜕𝜄𝜌

𝜕𝑢𝑐
𝜕𝜄𝛼

𝜕𝑢𝑎
𝜕𝜄𝛽

𝜕𝑢𝑏
+ 𝑔ℝ

𝑑

𝛼𝛽
(0)

𝜕

𝜕𝑢𝑐

(
𝜕𝜄𝛼

𝜕𝑢𝑎
𝜕𝜄𝛼

𝜕𝑢𝑏

)
= 𝛿𝛼𝛽

(
𝜕2𝜄𝛼

𝜕𝑢𝑎𝜕𝑢𝑐
𝜕𝜄𝛽

𝜕𝑢𝑏
+
𝜕𝜄𝛽

𝜕𝑢𝑎
𝜕2𝜄𝛼

𝜕𝑢𝑏𝜕𝑢𝑐

)
.

Given any 𝑢 ∈ 𝑇𝑥M, we can extend 𝑢 to the vector field 𝑈 = 𝑢𝑖𝜕𝑖 on the coordinate chart where 𝑢𝑖 are constant functions and 𝜕𝑖 are 
the coordinate vector fields. Using that the Levi-Civita connection is compatible with the metric, we obtain:

𝜕𝑔M
𝑎𝑏
(0)

𝜕𝑢𝑐
𝑢𝑎𝑢𝑏𝑢𝑐 =𝑈 ⟨𝑈,𝑈⟩𝑔 = 2 ⟨∇𝑈𝑈,𝑈⟩𝑔

as desired. □

Next we relate the Levi-Civita connection to the second fundamental form Π𝜕M𝑡
of the hypersurfaces 𝜕M𝑡 as a submanifolds ofM.

Lemma 4.2. With 𝑢 and 𝑈 having the same conditions as above, decompose 𝑈 into the vector field 𝑈⊤ =
∑𝑚−1
𝑖=1 𝑢

𝑖𝜕𝑖 tangential to the 
hypersurface 𝜕M𝑡 and the normal vector field 𝑈⟂ = 𝑢𝑚𝜕𝑚 = −𝑢𝑚𝜂𝑥. Then we have:

⟨∇𝑈𝑈,𝑈⟩𝑔 = −
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
.

Proof. We decompose ⟨∇𝑈 ,𝑈⟩𝑔 into

⟨∇𝑈𝑈,𝑈⟩𝑔 =
⟨
∇(𝑈⊤+𝑈⟂)(𝑈

⊤ +𝑈⟂), (𝑈⊤ +𝑈⟂)
⟩
𝑔
.

9
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Since the connection is linear in both components over ℝ, and the component functions of 𝑈 are constant, we may simply bilinearly 
expand the above term. We also note that

∇𝑢𝑗𝜕𝑗 𝑢
𝑖𝜕𝑖 = 𝑢

𝑖𝑢𝑗∇𝜕𝑗 𝜕𝑖 = 𝑢
𝑖𝑢𝑗Γ𝑘𝑖𝑗𝜕𝑘.

Since many of the Christoffel symbols in semigeodesic coordinates are zero, we are left with:

⟨∇𝑈𝑈,𝑈⟩𝑔 =
⟨
∇𝑈⊤𝑈

⊤,𝑈⊤
⟩
𝑔
+
⟨
∇𝑈⊤𝑈

⊤,𝑈⟂
⟩
𝑔
+
⟨
∇𝑈⊤𝑈

⟂,𝑈⊤
⟩
𝑔
+
⟨
∇𝑈⟂𝑈⊤,𝑈⊤

⟩
𝑔

Using the Gauss equation for the hypersurface embedded in M, we get that ∇𝑈⊤𝑈⊤ = Π(𝑈⊤, 𝑈⊤). This implies that the first term 

is zero and the second term is 
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
.

For the next two terms, we first note that since ∇ is a symmetric connection,

∇𝑢𝑗𝜕𝑗 𝑢
𝑖𝜕𝑖 = 𝑢

𝑖𝑢𝑗Γ𝑘𝑖𝑗𝜕𝑘 = 𝑢
𝑖𝑢𝑗Γ𝑘𝑗𝑖𝜕𝑘 =∇𝑢𝑖𝜕𝑖𝑢

𝑗𝜕𝑗

and so ∇ is a symmetric tensor over ℝ. Thus, both of the remaining terms are equal. The Weingarten equation implies that:

⟨
∇𝑈⊤𝑈

⟂,𝑈⊤
⟩
𝑔
= −

⟨
Π(𝑈⊤,𝑈⊤),𝑈⟂

⟩
𝑔
.

Putting this all together, we are left with:

⟨∇𝑈𝑈,𝑈⟩𝑔 =
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
− 2

⟨
Π(𝑈⊤,𝑈⊤),𝑈⟂

⟩
𝑔
= −

⟨
Π(𝑈⊤,𝑈⊤),𝑈⟂

⟩
𝑔

□

Putting the above three lemmas together, we now asymptotically compare the extrinsic distance in ℝ𝑑 of two nearby points 
𝜄(𝑥), 𝜄(𝑦) to the norm of the coordinate expression of 𝑦 in semigeodesic coordinates centered at 𝑥. This result is analogous to Proposition 
6 of [31] which makes a similar comparison, except in their case the comparison was between extrinsic and intrinsic distance instead 
of semigeodesic norm.

Lemma 4.3. Let 𝑥 ∈M and let 𝑦 ∈M be such that ‖𝜄(𝑥) − 𝜄(𝑦)‖
ℝ𝑑 < 𝐶M. Let 𝑢 denote the coordinate representative of 𝑦 in semigeodesic 

coordinates and let ‖𝑢‖ denote the norm of 𝑢 in semigeodesic coordinates. Then

lim
|𝑢|3→0

‖𝜄(𝑥) − 𝜄(𝑦)‖2
ℝ𝑑

− ‖𝑢‖2
‖𝑢‖3 = −

⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔

Proof. Since ‖𝜄(𝑥) − 𝜄(𝑦)‖
ℝ𝑑 < 𝐶M, it follows from 3.2 that 𝑦 has a coordinate representative 𝑢 in semigeodesic coordinates centered 

at 𝑥. We thus choose such a coordinate system and apply Taylor’s theorem and apply Lemmas 4.1 and 4.2.

‖𝜄(𝑢)‖2
ℝ𝑑

= 𝑔𝛼𝛽 (0)
𝜕𝜄𝛼

𝜕𝑢𝑎
𝜕𝜄𝛽

𝜕𝑢𝑏
𝑢𝑎𝑢𝑏 +

1

2
𝑔𝛼𝛽 (0)

𝜕2𝜄𝛼

𝜕𝑢𝑎𝑢𝑐
𝜕𝜄𝛽

𝜕𝑢𝑏
𝑢𝑎𝑢𝑏𝑢𝑐 +

1

2
𝑔𝛼𝛽 (0)

𝜕𝜄𝛽

𝜕𝑢𝑏
𝜕2𝜄𝛼

𝜕𝑢𝑏𝑢𝑐
𝑢𝑎𝑢𝑏𝑢𝑐 +O(|𝑢|4)

= ‖𝑢‖2
M

+
1

2

𝜕𝑔M
𝑎𝑏
(0)

𝜕𝑢𝑐
𝑢𝑎𝑢𝑏𝑢𝑐 +O(‖𝑢‖4)

= ‖𝑢‖2
M

+ ⟨∇𝑈𝑈,𝑈⟩𝑔 +O(‖𝑢‖4)
= ‖𝑢‖2

M
−
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
+O(‖𝑢‖4)

where the final equations follow from the previous two lemmas. □

We note that the analogous expansion done in Proposition 6 of [31] has order 𝑑M(𝑥, 𝑦)4 instead of ‖𝑢‖3 and depends on the second 
fundamental form of the embedding of M into the ambient space. Thus, one of the tradeoffs for using semigeodesic coordinate charts 
is a lower order error term.

Next, we expand the volume form 𝑑vol in semigeodesic coordinates. In contrast, we first note that in normal coordinates the 
volume form has the expansion

𝑑vol = 1 +𝑅𝑖𝑗𝑠
𝑖𝑠𝑗 +O(|𝑠|3)

where 𝑅𝑖𝑗 are the components of the Ricci curvature tensor [21]. In semigeodesic coordinates, an analogous result follows from the 
first variation formula for the area of hypersurfaces.

Theorem 4.4 (First variation of area, [9,14]). Let 𝜕M𝑡 be a hypersurface in M with 𝑥 ∈ 𝜕M and outward facing normal 𝜂𝑥. Let 𝜎(𝑡) ∶
(−𝜖, 𝜖) →M be a geodesic with initial velocity 𝜎̇(0) = −𝜂𝑥 Then for 𝑦 = 𝜎(𝑡) we have

𝑑vol(𝑦) = 1 − (𝑚− 1)𝐻(𝑥)𝑡+O(𝑡2)

where 𝐻 is the mean curvature of 𝜕M𝑡.

10
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We note that [9] defines the mean curvature as simply the summation, whereas we follow [21] in including the factor 1

𝑚−1
. For 

points 𝑦 that are not along the geodesic 𝜎 the first order term will be the same since semigeodesic coordinates are the same as normal 
coordinates on the submanifold 𝜕M𝑡 which contains no first order term. Thus for 𝑦 not along the geodesic we have,

𝑑vol(𝑦) = 1 − (𝑚− 1)𝐻(𝑥)𝑢𝑚 +𝜔3(𝑥)𝑖𝑗𝑢
𝑖𝑢𝑗 +O(|𝑢|3)

for some smooth tensor 𝜔3. The next result will be required to simplify some expressions in the theorem which involve the derivative 
of the kernel.

Lemma 4.5. Integrating over a cylinder 𝐵 = {𝑢 | ∑𝑚−1
𝑖=1 (𝑢𝑖)2 < 𝜖2, 𝑢𝑚 ∈ [−𝑏𝑥∕𝜖, 𝜖]} which is symmetric in coordinates 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑚 − 1 we 

have

∫
𝐵

𝑘′(|𝑢|2)
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
𝑑𝑢 = −

(𝑚− 1)

2
𝐻(𝑥)∫

𝐵

𝑘(|𝑢|2)𝑢𝑚 𝑑𝑢

=
(𝑚− 1)

2
𝑚𝜕
1
(𝑥)𝐻(𝑥) +O(𝜖𝑧) (4.1)

for any 𝑧 ≥ 1, where 𝐻(𝑥) is the mean curvature.

Proof. Linear expansion of 
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
in terms of the coordinate basis at 𝑥 yields:

⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
=
⟨
Π𝜕M(𝜕𝑖, 𝜕𝑗 ), 𝜕𝑚

⟩
𝑔
𝑢𝑖𝑢𝑗𝑢𝑚,

since the domain 𝐵 is symmetric in the coordinates 𝑢𝑖 for 1 ≤ 𝑖 ≤𝑚 −1, all of the terms 𝑢𝑖𝑢𝑗 with 𝑖 ≠ 𝑗 will integrate to zero. Thus, we 
have

∫
𝐵

𝑘′(|𝑢|2)
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
𝑑𝑢 =

⟨
Π𝜕M(𝜕𝑖, 𝜕𝑖), 𝜕𝑚

⟩
𝑔 ∫
𝐵

𝑘′(|𝑢|2)𝑢𝑖𝑢𝑖𝑢𝑚𝑑𝑢

and by the symmetry of the kernel, the integrals are equal for all 1 ≤ 𝑖 ≤𝑚 − 1, so we only need to compute

∫
𝐵

𝑘′(|𝑢|2)𝑢1𝑢1𝑢𝑚𝑑𝑠 = ∫
𝐵

1

2

(
𝜕

𝜕𝑢1
𝑘(|𝑢|2)

)
𝑢1𝑢𝑚𝑑𝑢1𝑑𝑢2⋯𝑑𝑢𝑚 = −

1

2 ∫
𝐵

𝑘(|𝑢|2)𝑢𝑚𝑑𝑢

where the last equality follows from integration by parts with respect to 𝑢1 . Finally, pulling the integral out of the sum, we have,

∫
𝐵

𝑘′(|𝑢|2)
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
𝑑𝑢 = −

1

2 ∫
𝐵

𝑘(|𝑢|2)𝑢𝑚𝑑𝑢
𝑚−1∑
𝑖=1

⟨
Π𝜕M(𝜕𝑖, 𝜕𝑖), 𝜕𝑚

⟩
𝑔

and since the mean curvature is defined as 𝐻(𝑥) = 1

𝑚−1

∑𝑚−1
𝑖=1

⟨
Π𝜕M(𝜕𝑖, 𝜕𝑖), 𝜕𝑚

⟩
𝑔
the first equality in (4.1) follows. Finally, substituting 

𝑢𝑚 = −𝑢 ⋅ 𝜂𝑥 and extending the integral to all of {𝑢 | 𝑢𝑚 > −𝑏𝑥} = {𝑢 | 𝑢 ⋅ 𝜂𝑥 < 𝑏𝑥} by Lemma 3.3 we obtain the second equality of 
(4.1). □

We now compute the asymptotic expansion for points inside of N𝜖 . We introduce the following definition from [6] for the 
moments of a kernel function near the boundary,

𝑚𝜕
𝓁
(𝑥) = ∫

{𝑧∈ℝ𝑚 |𝑧⋅𝜂𝑥<𝑏𝑥∕𝜖}
(𝑧 ⋅ 𝜂𝑥)

𝓁𝑘(|𝑧|2)𝑑𝑧 = ∫
ℝ𝑚−1

𝑏𝑥∕𝜖

∫
−∞

𝑧𝓁𝑚𝑘
(|𝑧|2) 𝑑𝑧𝑚𝑑𝑧1⋯𝑑𝑧𝑚−1 (4.2)

where 𝜂𝑥 is a smooth extension of the boundary normal vector field into the normal collar of the boundary. For more information on 
these moments, see Appendix B. We can now state and prove the following theorem which includes a uniform asymptotic expansion 
for points near the boundary.

Theorem 4.6 (Expansion near the boundary). Let M ⊂ℝ
𝑛 be a compact 𝑚-dimensional 𝐶3 Riemannian manifold with a 𝐶3 boundary. Let 

𝑘 ∶ℝ →ℝ have exponential decay. Suppose that for fixed 𝛾 ∈ (0, 1), that 𝜖𝛾 <min{
𝑟M
𝐶1
, 𝐶M} Then for all 𝑥 ∈N𝜖 ∶= {𝑥 ∈M ∶ 𝑑(𝑥, 𝜕M) ≤ 𝜖}, 

we have

𝜖−𝑚 ∫
𝑦∈M

𝑘

(|𝑥− 𝑦|2
𝜖2

)
𝑓 (𝑦) 𝑑vol=𝑚𝜕

0
(𝑥)𝑓 (𝑥) + 𝜖𝑚𝜕

1
(𝑥)

(
𝜂𝑥 ⋅∇𝑓 (𝑥) +

𝑚− 1

2
𝐻(𝑥)𝑓 (𝑥)

)
+O(𝜖2) (4.3)

where the moments 𝑚𝜕
𝓁
(𝑥) are defined in (4.2) and 𝐻(𝑥) is the mean curvature of the hypersurface parallel to 𝜕M intersecting 𝑥 (which 

depends on the second fundamental form of 𝜕M ⊂M).

11
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Proof. First, by Lemma 3.3 we localize the integral to a semigeodesic 𝜖-ball, 𝐵 making an error of higher order than O(𝜖2). Note that 
𝐵 is exactly the domain of the integral defining the coefficients 𝑚𝜕

𝓁
(𝑥) in (4.2). We then multiply three expansion. First, the kernel 

expansion,

𝑘

(||𝑥− 𝑦||2
ℝ𝑑

𝜖2

)
= 𝑘

⎛
⎜⎜⎜⎝

||𝑢||2
M

−
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
+𝜔1(𝑥, 𝑢) +O(|𝑢|5)

𝜖2

⎞
⎟⎟⎟⎠

= 𝑘

(||𝑢||2
M

𝜖2

)
− 𝑘′

(||𝑢||2
M

𝜖2

)
1

𝜖2

⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
+O(𝜖−2|𝑢|4)

which follows from Lemma 4.3. Second, the Taylor expansion of 𝑓 ,

𝑓 (𝑦) = 𝑓 (𝑥) +
𝜕𝑓

𝜕𝑢𝑖
𝑢𝑖 +O(|𝑢|2)

and finally, by Theorem 4.4 we have the following expansion of the volume form

𝑑vol(𝑦) = 1 − (𝑚− 1)𝐻(𝑥)𝑢𝑚 +O(|𝑢|2).
The product of these three terms appears inside the integral, so multiplying the three expansions and making the change of variables 
𝑢 ↦ 𝜖𝑢, we find the order-𝜖0 term is 𝑘 

(|𝑢|2)𝑓 (𝑥) which integrates to 𝑚𝜕
0
(𝑥)𝑓 (𝑥). The order-𝜖1 term is,

𝜖 ∫
𝐵

𝑘
(|𝑢|2)

(
𝜕𝑓

𝜕𝑢𝑖
𝑢𝑖 − 𝑓 (𝑥)(𝑚− 1)𝐻(𝑥)𝑢𝑚

)
− 𝑘′

(|𝑢|2)
⟨
Π𝜕M𝑡

(𝑈⊤,𝑈⊤),𝑈⟂
⟩
𝑔
𝑓 (𝑥)𝑑𝑢

= 𝜖𝑚𝜕
1
(𝑥)∇𝑓 (𝑥) ⋅ 𝜂𝑥 + 𝜖𝑚

𝜕
1
(𝑥)(𝑚− 1)𝐻(𝑥)𝑓 (𝑥) − 𝜖𝑚𝜕

1
(𝑥)
𝑚− 1

2
𝐻(𝑥)𝑓 (𝑥)

= 𝜖𝑚𝜕
1
(𝑥)

(
∇𝑓 (𝑥) ⋅ 𝜂𝑥 +

𝑚− 1

2
𝐻(𝑥)𝑓 (𝑥)

)

where the first equality comes from noting that 𝑢𝑖 integrates to zero by symmetry for 1 ≤ 𝑖 ≤𝑚 −1 and then applying Lemma 4.5. □

Having proven an asymptotic expansion for the points in the boundary region N𝜖 , we now turn our attention to the interior region 
M𝜖 . The expansion in this region was computed previously in [10,16]. Combining these previous results together with the bounds 
on 𝜖 proven in Lemma 3.3 yields the following uniform expansion.

Theorem 4.7 (Expansion in the interior due to [10,16]). Let M ⊂ ℝ
𝑛 be a compact 𝑚-dimensional 𝐶3 Riemannian manifold with a 𝐶3

boundary. Let 𝑘 ∶ℝ →ℝ have exponential decay. Suppose that for fixed 𝛾 ∈ (0, 1), that 𝜖𝛾 <min{
𝑟M
𝐶1
, 𝐶M} Then for all 𝑥 ∈M𝜖 ∶= {𝑥 ∈M ∶

𝑑(𝑥, 𝜕M) > 𝜖, we have

𝜖−𝑚 ∫
𝑦∈M

𝑘

(|𝑥− 𝑦|2
𝜖2

)
𝑓 (𝑦) 𝑑vol =𝑚0𝑓 (𝑥) +

𝑚2

2
𝜖2 (𝑆(𝑥)𝑓 (𝑥) + Δ𝑓 (𝑥)) +O(𝜖3) (4.4)

where 𝑚0 = ∫
ℝ𝑚
𝑘(|𝑢|) 𝑑𝑢 and 𝑚2 = ∫

ℝ𝑚
𝑢2
1
𝑘(|𝑢|) 𝑑𝑢 are the zeroth and second moments of the kernel and 𝑆(𝑥) = 1

2
(−𝑅(𝑥) + 1

2
|| ∑𝑎Π(𝜕𝑎, 𝜕𝑎)||2)

depends on the scalar curvature 𝑅 and the second fundamental form Π at 𝑥.

The results of Theorems 4.6 and 4.7, when taken together, provide a uniform asymptotic treatment of the operator I𝜖 . That is, 
show that for 𝜖 sufficiently small, the asymptotic behavior of I𝜖𝑓 (𝑥) can be computed for all points 𝑥 ∈M. This subtle but important 
notion of uniformity comes from Lemma 3.3.

We remark that for small enough values of 𝜖, the both expansions (4.4) and (4.3) hold in normal collar N𝑟𝐶 but outside of N𝜖 . To 
reconcile these two expansions, notice that for 𝑏𝑥≫ 𝜖 we have 𝑚𝜕0 =𝑚0 and 𝑚𝜕1 = 0 up to higher order terms in 𝜖. Thus, outside of the 
𝜖 neighborhood of the boundary (4.3) reduces to 𝑚0𝑓 (𝑥) +O(𝜖2) which is consistent with (4.4).

4.1. Uniformity and compactness

Before presenting numerical experiments supporting the expansions of the previous section, we will briefly comment on the 
role of compactness of M and uniformity of the expansions in the variable 𝜖. The authors of this paper speculate that the uniform 
expansions of this section should be obtainable in the noncompact case assuming some mild conditions such as sectional curvature 
bounds on M, uniform normal collar, and positive injectivity radius lower bounds.

The expansion (4.4) in Theorem 4.7 was proven in [16] for noncompact manifolds with boundary assuming bounds on the 
sectional curvature. However, the expansions hold nonuniformly, that is, for every 𝑥 ∈M ⧵ 𝜕M, there exists an 𝜖𝑥 > 0 depending on 
𝑥 such that for all 𝜖 < 𝜖𝑥 the expansion holds. The only other requirement in their proof is that the embedding map 𝜄 has uniformly
continuous inverse. This condition is equivalent to assuming a lower bound on minimum radius of curvature, which is the condition 
that appears in [16].

12
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Fig. 1. Verifying (4.3) by extracting the Laplacian on the interval [−1, 1] applied to the function 𝑓 (𝑥) = 𝑥4 . Top, left: We show the estimate of 𝑏𝑥 and 𝜂𝑥 from the 
previous section, the 𝑏𝑥 estimate saturates when 𝑏𝑥 ≫ℎ and the 𝜂𝑥 estimate is very noisy far from the boundary. Top, right: Error rates for various estimators of Δ𝑓
extracted from K𝑓 , for very small 𝜖 the quadrature error dominates. Bottom: True Δ𝑓 = 12𝑥2 compared to various estimates for 𝜖 = 0.4 (left) and 𝜖 = 0.1 (right). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The fact that expansion (4.4) is uniform in the variable 𝜖 is a consequence of Lemma 3.3 in this paper, which requires compactness 
of M in two different parts, both of which could potentially be generalized to the noncompact case. First, one requires a universal 
lower bound on the injectivity radii of M𝜖 for all 𝜖 as shown in the proof of Proposition 3.2. A sufficient condition for this to occur 
in the noncompact case is to assume that the double 𝐷(M) admits a Riemannian metric which smoothly extends the metric on M
and has a positive injectivity radius. This is manifestly true in the compact case.

Second, the argument in the proof of Proposition 3.1 computing a positive lower bound on the 𝑑𝜕 function uses compactness of 
the closed collar region N𝑟sem . However, the authors conjecture that through using a triangle comparison argument using techniques 
from geometry of CAT(𝜅) spaces [2,1], one may be able to derive such a positive lower bound using only bounds on the curvature of 
M and inward-facing sectional curvature of 𝜕M.

4.2. Examples

We now provide some simple numerical examples which verify the new boundary expansion in (4.3). We start with the interval, 
which is a flat manifold with a zero dimensional boundary, so the mean curvature 𝐻(𝑥) = 0. We then consider a filled ellipse, so that 
the boundary has nontrivial curvature, but the manifold is still flat in the Riemannian sense.

Example 4.8 (Interval). In Fig. 1 we verify (4.3) using a uniform grid of 𝑁 = 5000 data points on the interval [−1, 1] and the function 
𝑓 (𝑥) = 𝑥4. Since the grid is uniform, the density is 𝑞(𝑥) = 1∕vol(M) = 1∕2 so in this simple example we can correct for the density by 
multiplying K by 2. After computing 2K𝑓 we subtract the analytical value of 𝑚𝜕

0
(𝑥)𝑓 (𝑥) and divide by 𝜖2𝑚𝜕

2
(𝑥)∕2, which will agree 

with Δ𝑓 in the interior of the manifold, but blows up like 𝜖−1 near the boundary as shown by the solid black curves in Fig. 1. In 
order to obtain a consistent estimator we must also subtract the normal derivative term 𝑚𝜕

1
𝜂𝑥 ⋅∇𝑓 (𝑥) as shown by the dashed blue 

curves.

In the next example, in order to eliminate the variance of a single random sample, we generated a uniform grid {𝑥𝑖} on M and 

then a very large set of uniform sampled random data points {𝑦𝑗} and computed the kernel 𝑘 
(

|𝑥𝑖−𝑦𝑗 |2
𝜖2

)
and the function 𝑓 (𝑦𝑗 ) and 

then estimated the expected value by

13
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Fig. 2. Left: Verifying the mean curvature 𝐻(𝑥) in the order-𝜖 term of (4.3) on the ellipse. Right: Verifying the derivative terms in the expansion (4.3).

∫
M

𝑘

(|𝑥𝑖 − 𝑦|2
𝜖2

)
𝑓 (𝑦)𝑑𝑉 (𝑦) = 𝔼

[
𝑘

(|𝑥𝑖 − 𝑦|2
𝜖2

)
𝑓 (𝑦)

]
=

1

𝑁

𝑁∑
𝑗=1

𝑘

(|𝑥𝑖 − 𝑦𝑗 |2
𝜖2

)
𝑓 (𝑦𝑗 ) +O(𝑁

−1∕2).

Since the average can be computed iteratively, this strategy allows us to compute the average over 𝑁 = 5 × 107 points and eliminate 
any variance (quadrature) error.

Example 4.9 (Ellipse). In this example we consider M = {(𝑥̃, ̃𝑦) | ̃𝑥2∕𝑎2 + 𝑦̃2∕𝑏2 ≤ 1} with 𝑎 = 1, 𝑏 = 2∕3 where we use 𝑥̃, ̃𝑦 to denote 
the coordinates since 𝑥, 𝑦 ∈ ℝ

𝑑 denote vectors. We note that this example is easy to sample uniformly by simply sampling points 
uniformly in [0, 1]2 and then selecting only the points that satisfy the inequality. We start by extracting the mean curvature term 
using the function 𝑓 ≡ 1 so that ∇𝑓 ≡ 0 ≡Δ𝑓 and (4.3) becomes,

𝜖−𝑚 ∫
𝑦∈M

𝑘

(|𝑥− 𝑦|2
𝜖2

)
𝑑𝑉 =𝑚𝜕

0
(𝑥) + 𝜖𝑚𝜕

1
(𝑥)
𝑚− 1

2
𝐻(𝑥) +

𝜖2

2
𝑚2𝜔̃(𝑥) +O(𝜖

3) (4.5)

Using 𝜖 = 0.1 (results were robust for 𝜖 ∈ [0.5, 0.15]) we estimated the integral as described above and extracted the mean cur-
vature term by subtracting 𝑚𝜕

0
and dividing by 𝜖𝑚𝜕

1
(𝑚 − 1)∕2. In Fig. 2(left) we compare the extracted mean curvature with the 

following analytic derivation. Note that the boundary of the ellipse can be parameterized as 𝜄(𝜃) = (𝑎 cos𝜃, 𝑏 sin𝜃) with first deriva-
tive (and tangent vector) 𝑉 ⊤ = 𝐷𝜄(𝜃) = (−𝑎 sin𝜃, 𝑏 cos𝜃) so that the normal vector is 𝑉 ⟂ = (𝑏 cos𝜃, 𝑎 sin𝜃) and second derivative 
𝐷2𝜄(𝜃) = (−𝑎 cos𝜃, −𝑏 sin𝜃). Thus, the projection of the second derivative onto the normal direction is 𝜄′′(𝜃) ⋅ 𝑉 ⟂

||𝑉 ⟂|| =
−𝑎𝑏√

𝑏2 cos2 𝜃+𝑎2 sin2 𝜃
. 

However since we did not use a unit tangent vector we also need to divide by the norm-squared of the tangent vector which yields a 
mean curvature of

(𝑚− 1)𝐻(𝑥) = trace
(⟨

Π(𝑈⊤,𝑈⊤),𝑈⟂
⟩)

= trace

(⟨
Π

(
𝑉 ⊤

||𝑉 ⊤|| ,
𝑉 ⊤

||𝑉 ⊤||
)
,
𝑉 ⟂

||𝑉 ⟂||
⟩)

=
trace

(⟨
Π(𝑉 ⊤, 𝑉 ⊤), 𝑉 ⟂

⟩)

||𝑉 ⊤||2||𝑉 ⟂|| =
𝐷2𝜄 ⋅

𝑉 ⟂

||𝑉 ⟂||
||𝑉 ⊤||2 =

𝑎𝑏

(𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃)3∕2
(4.6)

which is simply the standard (extrinsic) curvature of the parameterized curve. This function is shown as the solid grey curve in 
Fig. 2(left) and compared to the empirically extracted curvature shown as red dots. This comparison is only valid for points near the 
boundary, and in Fig. 2(left) we only show points with distance to the boundary less than 𝜖∕4.

Next we verify the derivative terms in (4.3) by defining a function on the ellipse by 𝑓 (𝑥̃, ̃𝑦) = 𝑅3 where 𝑅 ≡√
𝑥̃2∕𝑎2 + 𝑦̃2∕𝑏2 so 

that (𝑥̃, ̃𝑦) = (𝑎𝑅 cos𝜃, 𝑏𝑅 sin𝜃). The gradient ∇𝑓 = (
𝜕𝑓

𝜕𝑥̃
, 𝜕𝑓
𝜕𝑦̃
) in the normal direction is

∇𝑓 ⋅ 𝜂𝑥 = 3𝑅2(cos(𝜃)∕𝑎, sin(𝜃)∕𝑏) ⋅
𝑉 ⟂

||𝑉 ⟂|| = 3𝑅2 (𝑏∕𝑎) cos
2 𝜃 + (𝑎∕𝑏) sin2 𝜃√

𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃

and the Laplacian is

Δ𝑓 =
𝜕2𝑓

𝜕𝑥̃2
+
𝜕2𝑓

𝜕𝑦̃2
= 3𝑅((cos2(𝜃) + 1)∕𝑎2 + (sin2(𝜃) + 1)∕𝑏2).

In order to eliminate the curvature terms, we note that multiplying (4.5) by 𝑓 (𝑥)matches many of the terms from (4.3), so subtracting 
this from (4.3) we isolate the terms

14
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(
𝐊𝑓

)
𝑖
− 𝑓 (𝑥𝑖)

(
𝐊1⃗

)
𝑖
→ 𝜖−𝑚 ∫

𝑦∈M

𝑘

(|𝑥− 𝑦|2
𝜖2

)
𝑓 (𝑦)𝑑𝑉 − 𝑓 (𝑥)𝜖−𝑚 ∫

𝑦∈M

𝑘

(|𝑥− 𝑦|2
𝜖2

)
𝑑𝑉

= 𝜖𝑚𝜕
1
(𝑥)∇𝑓 (𝑥) ⋅ 𝜂𝑥 + 𝜖

2
𝑚𝜕
2
(𝑥)

2
Δ𝑓 (𝑥) (4.7)

where the convergence is as the number of data points, 𝑁 →∞. Using the averaging strategy described above to reduce variance, 
we estimate 

(
𝐊𝑓

)
𝑖
− 𝑓 (𝑥𝑖) 

(
𝐊1⃗

)
𝑖
and compare the analytic expressions derived above in Fig. 2(right). This validates the derivative 

terms in (4.3).

5. Estimating boundary integrals

The purpose of this section is to use the distance to the boundary to construct a consistent estimator of the boundary integral 
B(𝜙, 𝑓 ) = ∫

𝜕M
𝜙(𝑥)𝑓 (𝑥) 𝑑vol𝜕 introduced in equation (1.6) as one of the key bilinear forms required for solving boundary value 

problems. It will turn out that the key result of this section will also be required in the next section to prove consistency of the graph 
Laplacian as an estimator of the Dirichlet energy, E, in the weak sense.

We saw in the previous subsection that the standard graph Laplacian estimate of the Laplacian on a manifold is not consistent 
near the boundary. We now consider the weak form of the operators that the kernel matrix and graph Laplacian are estimating which 
requires a new result connecting the normal derivative term 𝑚𝜕

1
𝜂𝑥 ⋅ ∇𝑓 to a boundary integral. We first define a boundary integral 

estimator by

J(𝑓 ) =
1

𝜖𝑁

𝑁∑
𝑖=1

𝑘

(
𝑏2𝑥𝑖

𝜖2

)
𝑓 (𝑥𝑖) 𝔼[J(𝑓 )] =

1

𝜖 ∫
𝑥∈M

𝑘

(
𝑏2𝑥

𝜖2

)
𝑓 (𝑥)𝑞(𝑥)𝑑vol

where 𝐾 is a kernel with exponential decay as above, for instance 𝐾(𝑧) = 𝑒−𝑧2 is the prototypical example. The expectation of the J
functional is the integral over the entire manifold since we assume that the samples 𝑥𝑖 yield a weighted quadrature on the manifold. 
However, the functional J uses the distance to the boundary 𝑏𝑥 to weight the data points, so that only points near the boundary 
contribute significantly to the integral. In practice, in order to compute J , we use the method described in Section Appendix B to 
estimate the distance to the boundary. We first show that J is a consistent estimator of a boundary integral.

For this result, it will now be convenient to use boundary normal coordinates, which are the special case of semigeodesic coordinates 
constructed on 𝜕M. In this special case, we also will only need to parameterize the “height” of such charts, and so we will let 𝜖
parameterize only the 𝑛-th coordinate 𝑢𝑛 in these charts.

Theorem 5.1. In the same context as Theorem 4.6, let 𝑑vol𝜕 be the natural volume element on the boundary inherited from 𝑑vol, then we 
have

𝔼[J(𝑓 )] =𝑚0 ∫
𝑦∈𝜕M

𝑓 (𝑦)𝑞(𝑦)𝑑vol𝜕 + 𝜖𝑚1 ∫
𝑦∈𝜕M

𝑓 (𝑦)𝑞(𝑦)𝐻(𝑦) − 𝜂𝑥 ⋅∇(𝑓𝑞)(𝑦)𝑑vol𝜕 +O(𝜖
2) (5.1)

where 𝑚0 = ∫ ∞

0
𝑘(𝑢) 𝑑𝑢 and 𝑚1 = ∫ ∞

0
𝑢𝑘(𝑢) 𝑑𝑢 and 𝐻(𝑦) is the mean curvature of 𝜕M at 𝑦 ∈ 𝜕M.

Proof. Let 0 < 𝛾 < 1 and 𝜖 > 0 be such that 𝜖𝛾 is less than the normal collar width 𝑅𝐶 . In addition, let N𝜖𝛾 = {𝑦 ∈M ∶ 𝑏𝑦 < 𝜖𝛾} denote 
the normal collar of width 𝜖𝛾 . By using an identical argument as Lemma 3.3, one can localize the integral over N𝜖𝛾 so that

1

𝜖 ∫
M

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol =

1

𝜖 ∫
N𝜖

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol+O(𝜖𝑧)

for any choice of 𝑧 ∈ ℕ.
Now let U = {𝑈𝑖}𝑖∈𝐼 be a covering of 𝜕M in boundary normal coordinate charts. By taking intersections and complements, we 

can then generate a covering of M by measurable sets {𝑉𝑗}𝑗∈𝐽 of 𝜕M such that 𝑉𝑗 are disjoint, and each contained in a single 𝑈𝑖. We 
then extend each 𝑉𝑗 to a measurable subset of M by letting 𝑉𝑗 = 𝜙(𝑉𝑗 × [0, 𝜖𝛾 )). Therefore each 𝑉𝑗 can be extended to a measurable 
set 𝑉𝑗 of M which is contained in a boundary normal coordinate chart map 𝜙𝑈𝑖 . The integral over the normal collar can then be 
parameterized as:

∫
N𝜖𝛾

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol=

∑
𝑗∈𝐽

∫̃
𝑉𝑗

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol. (5.2)

In each of these charts, the coordinate representation of 𝑏𝑦 is 𝑢𝑛. We then perform an order 1 Taylor expansion about 𝑢𝑛 = 0 of 𝑓𝑞
as well as a Taylor expansion of 𝑑vol about 𝑢𝑛 = 0 using the first variation of area:

1

𝜖 ∫̃
𝑉𝑗

𝐾

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol =

1

𝜖 ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝑓 (𝑢⊤, 𝑢𝑛)𝑞(𝑢⊤, 𝑢𝑛) 𝑑vol(𝑢⊤, 𝑢𝑛)
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=
1

𝜖

(
∫

𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝑓 (𝑢⊤,0)𝑞(𝑢⊤,0) 𝑑vol(𝑢⊤,0)

+ ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝑓𝑞(𝑢⊤,0)𝐻(𝑢⊤,0)𝑢𝑛 𝑑vol(𝑢⊤,0)

+ ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝜕𝑓𝑞

𝜕𝑢𝑛
(𝑢⊤,0)𝑢𝑛 𝑑vol(𝑢⊤,0)

+ ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝜕𝑓𝑞

𝜕𝑢𝑛
(𝑢⊤,0)𝐻(𝑢⊤,0)(𝑢𝑛)2 𝑑vol(𝑢⊤,0)

+ ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑘

(
(𝑢𝑛)2

𝜖2

)
𝜔(𝑢⊤, 𝑢̃𝑛))(𝑢𝑛)2 𝑑vol(𝑢⊤, 𝑢̃𝑛)

)

where 𝜔(𝑢⊤, ̃𝑢𝑛) is the sum of the second-order terms in both expansions with 0 ≤ 𝑢̃𝑛 < 𝜖𝛾 . Since 𝑑vol =√|𝑔| in coordinates, and the 
𝑛-th coordinate vector field 𝜕𝑛 = −𝜂𝑦 is orthogonal to each of the other coordinate vector fields, cofactor expansion of 

√|𝑔| implies 
that 𝑑vol(𝑢⊤, 0) = 𝑑vol𝜕(𝑢

⊤). We can then separate terms involving 𝑢𝑛 to obtain:

1

𝜖 ∫̃
𝑉𝑗

𝐾

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol =

1

𝜖

𝑢𝑛=𝜖𝛾

∫
𝑢𝑛=0

𝑘
(
𝑢𝑛

𝜖

)
𝑑𝑢𝑛 ∫

𝑦∈𝑉𝑗

𝑓 (𝑦)𝑞(𝑦) 𝑑vol𝜕

+
1

𝜖

𝑢𝑛=𝜖𝛾

∫
𝑢𝑛=0

𝑘
(
𝑢𝑛

𝜖

)
𝑢𝑛𝑑𝑢𝑛 ∫

𝑉𝑗

𝑓 (𝑦)𝑞(𝑦)𝐻(𝑦) 𝑑vol𝜕

+
1

𝜖

𝑢𝑛=𝜖𝛾

∫
𝑢𝑛=0

𝑘
(
𝑢𝑛

𝜖

)
𝑢𝑛𝑑𝑢𝑛 ∫

𝑉𝑗

−𝜂𝑦 ⋅∇𝑓𝑞(𝑦) 𝑑vol𝜕

+
1

𝜖

𝑢𝑛=𝜖𝛾

∫
𝑢𝑛=0

𝑘

(
(𝑢𝑛)2

𝜖2

)
(𝑢𝑛)2𝑑𝑢𝑛 ∫

𝑦∈𝑉𝑗

−𝜂𝑦 ⋅∇𝑓𝑞(𝑦)𝐻(𝑦) 𝑑vol𝜕

+
1

𝜖

𝑢𝑛=𝜖𝛾

∫
𝑢𝑛=0

𝑘

(
(𝑢𝑛)2

𝜖2

)
(𝑢𝑛)2𝑑𝑢𝑛 ∫

𝑦∈𝑊𝑗

𝜔(𝑢⊤, 𝑢̃𝑛) 𝑑vol𝜕M𝑢̃𝑛

Where 𝑊𝑗 is the coordinate image of 𝜕M𝑢̃𝑛 in these coordinates (recall that 𝜕M𝑡 indicates the hypersurface of points distance 𝑡 away 
from 𝜕M.)

Since the integral over 𝑉𝑗 does not depend on 𝜖, we may use exponential decay of the kernel to extend the integral over 𝑢𝑛 to 
infinity. By then making a substitution 𝑢𝑛↦ 𝜖𝑢, and letting 𝑚0 = ∫ ∞

0
𝑘(𝑢) 𝑑𝑢 and 𝑚1 = ∫ ∞

0
𝑘(𝑢)𝑢 𝑑𝑢 we are left with:

1

𝜖 ∫̃
𝑉𝑗

𝑘

(
𝑏𝑦

𝜖

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol =𝑚0 ∫

𝜙𝑈𝑖 (𝑉𝑗 )

𝑓 (𝑦)𝑞(𝑦) 𝑑vol𝜕

+ 𝜖𝑚1 ∫
𝜙𝑈𝑖 (𝑉𝑗 )

𝑓 (𝑦)𝑞(𝑦)𝐻(𝑦) − 𝜂𝑦 ⋅∇𝑓𝑞(𝑦) 𝑑vol𝜕

+O(𝜖2)

We remark that To compute the integral over the entire normal collar, we return to the parameterization of the integral in (5.2):

∫
N𝜖𝛾

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol=

∑
𝑗∈𝐽

∫̃
𝑉𝑗

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦) 𝑑vol.
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Fig. 3. Verifying (5.1) by extracting the boundary integral on the interval [−1, 1] applied to the function 𝑓 (𝑥) = 𝑥4 . Left: We show the estimate of the boundary integral 
compared to the true value, 2. Right: Error vs. bandwidth for various estimators of the boundary integral.

Summation over all 𝑉𝑗 in the manner above, we are left with:

1

𝜖 ∫
𝑁𝜖𝛾

𝑘

(
𝑏2𝑦

𝜖2

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol =𝑚0 ∫

𝜕M

𝑓 (𝑦)𝑞(𝑦) 𝑑vol𝜕

+ 𝜖𝑚1 ∫
𝜕M

𝑓 (𝑦)𝑞(𝑦)𝐻(𝑦) − 𝜂𝑦 ⋅∇𝑓𝑞(𝑦) 𝑑vol𝜕 +O(𝜖
2)

from which the result follows. □

Theorem 5.1 allows us to reinterpret integrals weighted by functions such as 𝑚𝜕
1
∝ 𝑒−𝑏

2
𝑥∕𝜖

2
(for which 𝑚0 =

√
𝜋∕2 and 𝑚1 = 1∕2) as 

boundary integrals up to higher order terms. As in the previous section, this estimator is influenced by the sampling density 𝑞 and 
we will correct this in the next section.

Returning to our example of the function 𝑓 (𝑥) = 𝑥4 on the interval [−1, 1], in this case the boundary is the set {−1, 1} so the 
boundary integral is simply ∫

𝜕M
𝑥4 𝑑vol𝜕 = 14 + (−1)4 = 2. Using the estimator from Theorem 5.1 we can estimate this boundary 

integral as vol(M)

𝜖𝑚0
J(𝑓 ) which will have error of order-𝜖 as shown in Fig. 3. The next order term in the expansion (5.1) is −𝜖𝑚1 ∫𝑥∈𝜕M 𝜂𝑥 ⋅

∇(𝑓𝑞)(𝑥)𝑑vol𝜕 = −4𝜖 so the error in vol(M)

𝜖𝑚0
J(𝑓 ) + 4𝜖 should be order-𝜖2 as shown in Fig. 3. Again, we emphasize that this example is 

purely for verification of Theorem 5.1, we will return to practical computation methods in Section 7.

6. Estimating the weak Laplacian

The standard method of estimating the Laplace operator is with a graph Laplacian,

𝐋 = 𝑐(𝐃−𝐊)

where 𝑐 = 𝜖−(𝑚+2)𝑁−1 and 𝐊𝑖𝑗 = 𝐾(𝜖, 𝑥𝑖, 𝑥𝑗 ) is the kernel matrix so that (𝐊𝑓 )𝑖 ∝K𝑓 (𝑥𝑖) where 𝑓𝑗 = 𝑓 (𝑥𝑗 ). The matrix 𝐃 is diagonal 
with 𝐃𝑖𝑖 = (𝐊1⃗)𝑖 ∝K1(𝑥𝑖). By Theorem 4.6, for 𝑥 near the boundary we have

𝜖−𝑚𝔼[K(𝑓 )(𝑥)] = I(𝑓 )(𝑥) =𝑚𝜕
0
(𝑥)𝑓 (𝑥)𝑞(𝑥) +𝑚𝜕

1
(𝑥)𝜂𝑥 ⋅∇(𝑓𝑞)(𝑥) +O(𝜖

2)

and the expected value of 𝐋𝑓 near the boundary is,

𝔼

[
(𝐋𝑓 )𝑖

]
=
𝜖−𝑚𝔼[𝐃𝑓 ] − 𝜖−𝑚𝔼[𝐊𝑓 ]

𝑁𝜖2

=
𝜖−𝑚𝔼[𝑓 (𝑥𝑖)K(1)(𝑥𝑖)] − 𝜖

−𝑚
𝔼[K(𝑓 )(𝑥𝑖)]

𝑁𝜖2

= −𝜖−1𝑚𝜕
1
(𝑥𝑖)𝑞(𝑥𝑖)𝜂𝑥𝑖 ⋅∇𝑓 (𝑥𝑖) +O(1).

Notice that the estimator blows up like 𝜖−1 near the boundary. This was first pointed out in [10] who derived the first two terms of 
(4.3). They argued that the graph Laplacian is a consistent estimator for Neumann functions (where 𝜂𝑥𝑖 ⋅∇𝑓 (𝑥𝑖) = 0), which is true but 
does not explain the empirically observed fact that the eigenvectors of 𝐋 approximate the Neumann eigenfunctions of the Laplacian. 
While this pointwise blow-up seems discouraging, notice that it is blowing up with rate 𝜖−1 in a neighborhood of the boundary that 
has volume of order 𝜖. In this section we show that in fact, considered in the weak sense, the graph Laplacian 𝐋 does have a well 
defined limit, namely the Dirichlet energy or weak Laplacian.
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We now use (4.4) and (4.3) together with (5.1) to understand the weak form of the kernel operator and the graph Laplacian. In 
order to make this connection, we will require the following surprising result connecting the integral of the first moment near the 
boundary to the second moment in the interior.

Lemma 6.1. For any 𝑧 ∈ ℕ,

∞

∫
0

𝑚𝜕
1
(𝑏𝑥) 𝑑𝑏𝑥 =

𝑚2

2
+O(𝜖𝑧)

The proof of Lemma 6.1 is included in Appendix A.
When we apply the kernel operator to a function 𝑓 and evaluate at all the data points we obtain a vector 𝜖

−𝑚

𝑁
(𝐊𝑓 )𝑖 = K𝑓 (𝑥𝑖)

which is simply the kernel matrix multiplied by the vector representation of the function 𝑓𝑖 = 𝑓 (𝑥𝑖). If we then take another function 
𝜙𝑖 = 𝜙(𝑥𝑖) and compute the inner product, the expectation will be a second integral,

𝜖−𝑚

𝑁2
𝔼

[
𝜙⊤𝐊𝑓

]
= 𝜖−𝑚 ∫

𝑥∈M

∫
𝑦∈M

𝜙(𝑥)𝑞(𝑥)𝐾

(|𝑥− 𝑦|
𝜖

)
𝑓 (𝑦)𝑞(𝑦)𝑑vol𝑑vol. (6.1)

By expanding the inner integral using (4.3) and applying Theorem 5.1 we derive the following result.

Theorem 6.2. In the same context as Theorem 4.6 for all 𝜙, 𝑓 ∈ 𝐶3(M) we have,

2

𝑚2𝑁
𝔼

[
𝜙⊤𝐋𝑓

]
= ∫
M

(∇𝜙 ⋅∇𝑓 )𝑞2𝑑vol+O(𝜖). (6.2)

Proof. Recall that 𝐋 = 𝜖−(𝑚+2)𝑁−1(𝐃 −𝐊) and 𝐃𝑖𝑖 =
∑𝑁
𝑗=1𝐊𝑖𝑗 so that,

1

𝑁
𝔼

[
𝜙⊤𝐋𝑓

]
= 𝔼

[
𝜖−𝑚−2

𝑁2

𝑁∑
𝑖,𝑗=1

𝜙(𝑥𝑖)𝐾(𝜖, 𝑥𝑖, 𝑥𝑗 )(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗 ))

]

= 𝜖−𝑚−2 ∫
𝑥∈M

∫
𝑦∈M

𝑞(𝑥)𝜙(𝑥)𝐾(𝜖, 𝑥, 𝑦)(𝑓 (𝑥) − 𝑓 (𝑦))𝑞(𝑦) 𝑑vol 𝑑vol

= 𝜖−𝑚−2 ∫
𝑥∈M

𝑞(𝑥)𝜙(𝑥)(𝑓 (𝑥)K(1)(𝑥) −K(𝑓 )(𝑥)) 𝑑vol

We now segment the manifold into the disjoint union M =𝑀𝜖𝛾 ∪N𝜖𝛾 where 𝑁𝜖𝛾 = 𝐵𝜖𝛾 (𝜕M) is a neighborhood of the boundary and 
𝑀𝜖𝛾 =M∖N𝜖𝛾 is the interior region. By Theorem 4.4, we see that the integral over the interior region is:

𝜖−𝑚−2 ∫
𝑥∈M𝜖𝛾

𝜙(𝑥)𝑞(𝑥)
(
𝑓 (𝑥)I𝜖(1)(𝑥) −I𝜖(𝑓 )(𝑥)

)
𝑑vol

= 𝜖−2 ∫
𝑥∈M𝜖𝛾

𝜙(𝑥)𝑞(𝑥)𝑓 (𝑥)

(
𝑚0𝑞(𝑥) +

𝜖2𝑚2

2
(𝑆(𝑥)𝑞(𝑥) + Δ𝑞(𝑥)) +O(𝜖3)

)

−𝜙(𝑥)𝑞(𝑥)

(
𝑚0𝑓 (𝑥)𝑞(𝑥) +

𝜖2𝑚2

2

(
𝑓 (𝑥)𝑞(𝑥)𝑆(𝑥) + Δ(𝑓𝑞)(𝑥)

)
+O(𝜖3)

)
𝑑vol

= −
𝑚2

2 ∫
𝑥∈M𝜖𝛾

𝑞(𝑥)2𝜙(𝑥)Δ𝑓 (𝑥) 𝑑vol−
𝑚2

2 ∫
𝑥∈M𝜖𝛾

2𝑞(𝑥)𝜙(𝑥)∇𝑓 ⋅∇𝑞 𝑑vol+O(𝜖).

Moreover, applying the divergence theorem (for the negative definite Laplacian Δ = div◦∇, so that ∫
𝜕
ℎ𝜂 ⋅∇𝑓 = ∫ div(ℎ∇𝑓 ) = ∫ ℎΔ𝑓 +

∇ℎ ⋅∇𝑓 𝑑vol) we have,

− ∫
M𝜖𝛾

𝑞2𝜙Δ𝑓 𝑑vol = ∫
M𝜖𝛾

∇(𝑞2𝜙) ⋅∇𝑓 𝑑vol− ∫
𝜕M𝜖𝛾

𝑞2𝜙𝜂 ⋅∇𝑓 𝑑vol𝜕

= ∫
M𝜖𝛾

𝑞2∇𝜙 ⋅∇𝑓 + 2𝑞𝜙∇𝑞 ⋅∇𝑓 𝑑vol− ∫
𝜕M𝜖𝛾

𝑞2𝜙𝜂 ⋅∇𝑓 𝑑vol𝜕

and combining this with the previous equation we have,
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𝜖−𝑚−2 ∫
𝑥∈M𝜖𝛾

𝜙(𝑥)𝑞(𝑥)
(
𝑓 (𝑥)I𝜖(1)(𝑥) −I𝜖(𝑓 )(𝑥)

)
𝑑vol

=
𝑚2

2 ∫
M𝜖𝛾

𝑞2∇𝜙 ⋅∇𝑓 𝑑vol−
𝑚2

2 ∫
𝜕M𝜖𝛾

𝑞2𝜙𝜂 ⋅∇𝑓 𝑑vol𝜕 +O(𝜖) (6.3)

By Theorem 4.3, the integral over the boundary region is:

𝜖−𝑚−2 ∫
𝑥∈N𝜖𝛾

𝜙(𝑥)𝑞(𝑥)
(
𝑓 (𝑥)I𝜖(1)(𝑥) −I𝜖(𝑓 )(𝑥)

)
𝑑vol

= 𝜖−2 ∫
𝑥∈N𝜖𝛾

𝑞(𝑥)𝜙(𝑥)
(
𝑚𝜕
0
(𝑥)𝑞(𝑥)𝑓 (𝑥) + 𝜖𝑚𝜕

1
(𝑥)𝑓 (𝑥)𝜂𝑥 ⋅∇𝑞(𝑥) −

𝑚− 1

2
𝐻(𝑥)𝑓 (𝑥)𝑞(𝑥)

−𝑚𝜕
0
(𝑥)𝑞(𝑥)𝑓 (𝑥) − 𝜖𝑚𝜕

1
(𝑥)𝜂𝑥 ⋅∇(𝑓𝑞)(𝑥) +

𝑚− 1

2
𝐻(𝑥)𝑓 (𝑥)𝑞(𝑥) +O(𝜖2)

)
𝑑vol

= −𝜖−1 ∫
N𝜖𝛾

𝑚𝜕
1
(𝑥)𝑞(𝑥)2𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥) +O(𝜖) 𝑑vol.

We now notice that the function 𝑚𝜕
1
(𝑥) is purely a function of the distance to the boundary 𝑏𝑥 and that it decays to zero exponentially 

as 𝑏𝑥→∞. Hence, we may apply the result of Theorem 5.1. We then have that,

𝜖−𝑚−2 ∫
𝑥∈N𝜖𝛾

𝜙(𝑥)𝑞(𝑥)
(
𝑓 (𝑥)I𝜖(1)(𝑥) −I𝜖(𝑓 )(𝑥)

)
𝑑vol

= −𝜖−1 ∫
N𝜖𝛾

𝑚𝜕
1
(𝑥)𝑞(𝑥)2𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥) +O(𝜖) 𝑑vol

= −
𝑚2

2 ∫
𝜕M

𝑞(𝑥)2𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥) 𝑑vol𝜕 +O(𝜖), (6.4)

where the integral of 𝑚𝜕
1
(𝑥) is exactly 𝑚2

2
by Lemma 6.1. Adding (6.3) and (6.4) we have,

1

𝑁
𝔼

[
𝜙⊤𝐋𝑓

]
=
𝑚2

2 ∫
M𝜖𝛾

𝑞2∇𝜙 ⋅∇𝑓 𝑑vol−
𝑚2

2 ∫
𝜕N𝜖𝛾

𝑞2𝜙𝜂 ⋅∇𝑓 𝑑vol𝜕 +O(𝜖) (6.5)

where N𝜖𝛾 is the closure of the boundary region, and its boundary is the union of the boundary of the interior region with the 
boundary of the manifold, 𝜕N𝜖𝛾 = 𝜕M𝜖𝛾 ∪ 𝜕M. We then apply the Divergence theorem on the closure of the boundary region N𝜖𝛾 .

∫
𝜕N𝜖𝛾

𝑞2𝜙𝜂 ⋅∇𝑓 𝑑vol𝜕 = ∫
N𝜖𝛾

div(𝑞2𝜙∇𝑓 ) 𝑑vol𝜕

= ∫
𝑥∈M

1𝐵𝜖𝛾 (𝜕M)(𝑥)div(𝑞
2𝜙∇𝑓 ) 𝑑vol𝜕

=O(𝜖)

by Theorem 5.1, since the indicator function 1𝐵𝜖𝛾 (𝜕M)(𝑥) has exponential decay in the distance to the boundary as required by 
Theorem 5.1. Gathering the order-𝜖 terms and dividing by 𝑚2

2
we have,

2

𝑚2𝑁
𝔼

[
𝜙⊤𝐋𝑓

]
= ∫
M𝜖𝛾

𝑞2∇𝜙 ⋅∇𝑓 𝑑vol+O(𝜖)

Similarly, we can add and subtract the integral of the same integrand over the boundary region (since this is order-𝜖) and we obtain,

2

𝑚2𝑁
𝔼

[
𝜙⊤𝐋𝑓

]
= ∫
M

𝑞2∇𝜙 ⋅∇𝑓 𝑑vol+O(𝜖)

as desired. □

Returning to our simple example of the uniform grid on the interval [−1, 1] with 𝑓 (𝑥) = 𝑥4, we verify (6.2) by estimating 
∫
M
|∇𝑓 |2 𝑑vol = 32∕7 using the graph Laplacian 𝐋. Notice that the optimal bandwidth for the weak sense estimator is much smaller 

than the optimal bandwidth for the pointwise estimator which results from the double summation being a lower variance estimator 
as shown in [7] (Fig. 4).
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Fig. 4. Verifying (6.2) computing the exact integral and the graph Laplacian estimator on the interval [−1, 1] applied to the function 𝜙(𝑥) = 𝑓 (𝑥) = 𝑥4 . Left: We compare 
the estimate to the true integral value as a function of the bandwidth parameter, 𝜖. Right: Error vs. bandwidth for the graph Laplacian as a weak-sense estimator.

The perhaps surprising conclusion of this section is that, even though the graph Laplacian is not a consistent pointwise estimator 
of the Laplacian for manifolds with boundary, it is a consistent weak-sense estimator. We should note that, if one simply removes the 
boundary and considers the interior, the graph Laplacian will be consistent pointwise at each point of the interior, however the rates 
of convergence will not be uniform, and the bandwidth required for pointwise consistency will decrease to zero as you approach the 
boundary.

6.1. Correcting for the sampling density

In (4.4), (4.3) and (6.2) all the terms are influenced by the density 𝑞, so to remove this influence we apply the ‘right-normalization’ 
introduced by [10]. The idea is to apply (4.3) to the function 𝑓 ≡ 1 in order to extract a density estimate. Computationally this means 
multiplying the kernel matrix by a vector ⃗1 of all ones, or equivalently summing the rows of the kernel matrix, which are the diagonal 
entries of the diagonal matrix 𝐃𝑖𝑖 = (𝐊1⃗)𝑖. We then normalize the kernel matrix 𝐊 to form the matrices 𝐊̂, 𝐃̂, 𝐋̂ given by,

𝐊̂ =𝐃−𝟏𝐊𝐃−𝟏 and 𝐃̂𝑖𝑖 = (𝐊̂1⃗)𝑖 and 𝐋̂ = 𝜖𝑚−2𝑁−1(𝐃̂− 𝐊̂).

Notice that since 𝐃𝑖𝑖 is proportional to 𝑞(𝑥𝑖) we are essentially pre-dividing by a consistent estimator of 𝑞(𝑥)2. The next theorem 
shows that this normalization, introduced by [10], produces a consistent estimator of the Dirichlet energy that is independent of the 
sampling density of the points 𝑥𝑖.

Theorem 6.3. In the same context as Theorem 4.6 for all 𝜙, 𝑓 ∈ 𝐶3(M) we have,

2𝑚2
0

𝑚2𝑁
𝔼

[
𝜙⊤ 𝐋̂𝑓

]
= ∫
M

∇𝜙 ⋅∇𝑓 𝑑vol+O(𝜖). (6.6)

Proof. Set 𝑞(𝑥) = 𝜖−𝑚K(1)(𝑥) = 𝜖−𝑚
∑𝑁
𝑗=1𝐾(𝜖, 𝑥, 𝑥𝑗 ) so that 𝑞(𝑥𝑖) = 𝜖−𝑚𝐃𝑖𝑖 and we have

1

𝑁
𝔼

[
𝜙⊤ 𝐋̂𝑓

]
= 𝔼

[
𝜖−𝑚−2

𝑁2

𝑁∑
𝑖,𝑗=1

𝜙(𝑥𝑖)
𝐾(𝜖, 𝑥𝑖, 𝑥𝑗 )

𝑞(𝑥𝑖)𝑞(𝑥𝑗 )
(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗 ))

]

= 𝜖−𝑚−2 ∫
𝑥∈M

∫
𝑦∈M

𝑞(𝑥)

𝑞(𝑥)
𝜙(𝑥)𝐾(𝜖, 𝑥, 𝑦)(𝑓 (𝑥) − 𝑓 (𝑦))

𝑞(𝑦)

𝑞(𝑦)
𝑑vol 𝑑vol

= 𝜖−𝑚−2 ∫
𝑥∈M

𝑞(𝑥)

𝑞(𝑥)
𝜙(𝑥)(𝑓 (𝑥)K(1∕𝑞)(𝑥) −K(𝑓∕𝑞)(𝑥)) 𝑑vol

Note that by Theorems 4.4 and B.1, on the interior of the manifold we have 𝑞(𝑥) = 𝑚0𝑞(𝑥) + O(𝜖) and on the boundary we have 
𝑞(𝑥) =𝑚𝜕

0
(𝑥)𝑞(𝑥) +O(𝜖). So for 𝑥 in the interior region, the above reduces to

𝜖−𝑚−2 ∫
𝑥∈M

𝜙(𝑥)(𝑓 (𝑥)K(1∕𝑞)(𝑥) −K(𝑓∕𝑞)(𝑥)) 𝑑vol= −
𝑚2

2𝑚2
0

∫
𝑥∈M𝜖𝛾

𝜙(𝑥)Δ𝑓 (𝑥) 𝑑vol

and for 𝑥 in the boundary region we have,
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Fig. 5. Verifying (6.6) computing the exact integral and the graph Laplacian estimator on the interval [−1, 1] applied to the function 𝜙(𝑥) = 𝑓 (𝑥) = 𝑥4 . Left: We compare 
the estimate to the true integral value as a function of the bandwidth parameter, 𝜖. Right: Error vs. bandwidth for the graph Laplacian as a weak-sense estimator.

𝜖−𝑚−2

𝑚2
0

∫
𝑥∈M

𝜙(𝑥)(𝑓 (𝑥)K(1∕𝑞)(𝑥) −K(𝑓∕𝑞)(𝑥)) 𝑑vol= −𝜖−1 ∫
N𝜖𝛾

𝑚𝜕
1
(𝑥)

𝑚𝜕
0
(𝑥)
𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥) +O(𝜖) 𝑑vol

and since 
𝑚𝜕
1

𝑚𝜕
0

has the necessary decay away from the boundary, it satisfies the hypotheses if Theorem 5.1 so that,

∫
N𝜖𝛾

𝑚𝜕
1
(𝑥)

𝑚𝜕
0
(𝑥)
𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥) +O(𝜖) 𝑑vol =

𝑚2

2𝑚2
0
∫
𝜕M

𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥)𝑑vol𝜕

since the integral of 𝑚𝜕
1
is 𝑚2

2
by Lemma 6.1. Recombining the integral over the interior region and the integral of the boundary 

region we have,

2𝑚2
0

𝑁𝑚2

𝔼

[
𝜙⊤ 𝐋̂𝑓

]
= − ∫

𝑥∈M𝜖𝛾

𝜙(𝑥)Δ𝑓 (𝑥) 𝑑vol+ ∫
𝜕M

𝜙(𝑥)𝜂𝑥 ⋅∇𝑓 (𝑥)𝑑vol𝜕 +O(𝜖)

= ∫
M𝜖𝛾

∇𝜙 ⋅∇𝑓 𝑑vol+ ∫
𝜕M𝜖𝛾 ∪𝜕M

𝜙𝜂𝑥 ⋅∇𝑓 𝑑vol𝜕 +O(𝜖)

and as in the proof of Theorem 6.2, the boundary integral term above can be converted into an integral of the boundary region N𝜖𝛾
by the divergence theorem, and this integral is order-𝜖 by Theorem 5.1. Similarly, extending the integral ∫

M𝜖𝛾
∇𝜙 ⋅∇𝑓 𝑑vol to all of 

M also creates an error of order-𝜖 so we obtain (6.6). □

To verify (6.6) in our simple example on [−1, 1] we started with a uniform grid of 𝑁 = 5000 points and then applied the nonlinear 
transformation (𝑥 + .05)1.2 to each point and then shift and scale the resulting grid back to [−1, 1]. The result is a nonuniform grid 
with higher density near −1 and lower density near 1. In Fig. 5 we show that the normalized graph Laplacian 𝐋̂ constructed in this 
section recovers the weak-sense Laplacian for the same example as in the previous section on this nonuniform grid.

7. Applications to elliptic and parabolic PDEs

Now that we have shown consistency of the estimator of the weak Laplacian, we provide numerical experiments to demonstrate 
the validity of this method. For simplicity of presentation, we shall write our formulation for problems with Dirichlet and Neumann 
boundary conditions. However, the approach could be applied to problems with Robin or mixed boundary conditions.

It should be noted that while the previous results of this paper prove consistency of the method, they make no mention of explicit 
error bounds in terms of the number of data points used in the estimator. In order to provide such bounds, an analysis of the variance 
of the estimator. Similar variance analyses have been done in the non boundary case in for instance [16,29,30] as well as many 
others. Although such a variance analysis likely would rely on the results of this paper, it would require a different set of techniques 
and thus will be explored in a future work.

7.1. Continuous PDEs

Let Ω ⊂ℝ
𝑛 be an open bounded set with Lipschitz boundary 𝜕Ω. If 𝐿2(Ω) denotes the set of square integrable functions then we 

define the Sobolev space 𝐻1(Ω) ∶= {𝑣 ∈𝐿2(Ω) ∶ ∇𝑣 ∈𝐿2(Ω)} where ∇𝑣 = (𝜕𝑥𝑖𝑣)
𝑛
𝑖=1

denotes the weak gradient. We also define a closed 
subspace of 𝐻1(Ω) as 𝐻1

0
(Ω) which is the set functions in 𝐻1(Ω) which are zero on 𝜕Ω in the trace sense. We shall denote the dual 
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space of 𝐻1(Ω) and 𝐻1
0
(Ω) by 𝐻1(Ω)∗ and 𝐻−1(Ω), respectively and the duality pairing between these spaces as ⟨⋅, ⋅⟩. Finally 𝐻 1

2 (𝜕Ω)

denotes the standard fractional order space.

We start with the elliptic Dirichlet problem: Given 𝑓 ∈𝐻−1(Ω), 𝑔 ∈𝐻
1
2 (𝜕Ω) we are interested in solving

{
−Δ𝑢 = 𝑓 in Ω

𝑢 = 𝑔 on 𝜕Ω.
(7.1)

We impose the nonzero boundary condition using the classical lifting argument: Let 𝑔̃ ∈𝐻1(Ω) denote an extension of 𝑔 to Ω. Notice 
that due to trace theorem, such an extension exists. We then write 𝑢 =𝑤 + 𝑔̃ where 𝑤|𝜕Ω = 0 in the trace sense. Then by Lax-Milgram 
Theorem, under the stated assumptions on the data 𝑓, 𝑔, there exists a unique weak solution 𝑤 ∈𝐻1

0
(Ω) to (7.1) in the following 

sense

∫
Ω

∇𝑤 ⋅∇𝑣𝑑𝑥 = ⟨𝑓, 𝑣⟩− ∫
Ω

∇𝑔̃ ⋅∇𝑣𝑑𝑥 ∀𝑣 ∈𝐻1
0
(Ω). (7.2)

Next we turn to the Neumann boundary value problem. Given 𝑓 ∈𝐻1(Ω)∗, 𝑔 ∈𝐿2(𝜕Ω), we consider
{

−Δ𝑢+ 𝑢 = 𝑓 in Ω

∇𝑢 ⋅ 𝜂 = 𝑔 on 𝜕Ω
(7.3)

where 𝜂 denotes the outward unit normal to 𝜕Ω. Again by Lax-Milgram Theorem it is not difficult to see that under the stated 
assumptions on the data 𝑓, 𝑔 there exists a unique weak solution 𝑢 ∈𝐻1(Ω) to (7.3) in the following sense:

∫
Ω

∇𝑢 ⋅∇𝑣+ 𝑢𝑣𝑑𝑥 = ⟨𝑓, 𝑣⟩+ ∫
𝜕Ω

𝑔𝑣𝑑𝑠 ∀𝑣 ∈𝐻1(Ω). (7.4)

We also state the parabolic homogeneous Dirichlet problem, the Neumann problem is similar and is omitted for brevity: Given 
𝑓 ∈𝐿2(0, 𝑇 ; 𝐻−1(Ω)) and 𝑢0 ∈𝐿2(Ω), we consider

⎧
⎪⎨⎪⎩

𝜕𝑡𝑢−Δ𝑢+ 𝑢 = 𝑓 in Ω× (0, 𝑇 )

𝑢 = 0 on 𝜕Ω× (0, 𝑇 )

𝑢 = 𝑢0 in Ω .

(7.5)

The notion of weak solution to (7.5) is: find 𝑢 ∈𝐿2(0, 𝑇 ; 𝐻1
0
(Ω)) ∩𝐻1(0, 𝑇 ; 𝐻−1(Ω)) solving

⟨𝜕𝑡𝑢, 𝑣⟩+ ∫
Ω

∇𝑢 ⋅∇𝑣𝑑𝑥 = ⟨𝑓, 𝑣⟩ ∀𝑣 ∈𝐻1
0
(Ω) (7.6)

and almost every 𝑡 ∈ (0, 𝑇 ).

7.2. Discrete system

Next we describe the linear algebraic systems we obtain after discretization of (7.2), (7.4), and (7.6). Assume that we have 𝑁
nodes sampled on the manifold, and recall that the 𝑁 -by-𝑁 matrix 𝐋̂ and diagonal 𝑁 -by-𝑁 matrix 𝐃 denote the discrete form of the 
Laplacian (in weak form) and the discretization of the integral over the entire manifold M, respectively. Namely,

∫
M

∇𝑢 ⋅∇𝑣 ≈ 𝐯⊤𝐋̂𝐮 and ∫
M

𝑓𝑣 ≈ 𝐯⊤𝐃𝐟 .

We indicate the discrete boundary integral ∫
𝜕M

as

∫
𝜕M

𝑔𝑣 = 𝐯⊤𝐁𝐠

where 𝐁 is a diagonal 𝑁 -by-𝑁 matrix, whose diagonal entries are very close to zero for nodes that are far from the boundary, and 𝐯, 𝐠
specify the values of functions on all the nodes in the data set, but can be set to zero on interior nodes for the purposes of estimating 
the boundary integral since the corresponding diagonal entries of 𝐵 will be very close to zero. Let 𝑁int denote the number of interior 
degrees of freedom. We note that the interior degrees of freedom can be identified using the estimated distance to boundary function 
as the nodes, 𝑥𝑖, such that 𝑏𝑥𝑖 > 𝜖∕2. Choosing 𝜖∕2 means that the boundary layer will be half the width of the 𝜖 tube around the 
boundary, which we found empirically to be an effective width. The discrete form of (7.2) is given by

𝐋̂(fdof , fdof )𝐰 =𝐃(fdof ,∶)𝐟 − 𝐋̂(fdof ,∶)𝐠̃

where 𝑓dof indicates the interior degrees of freedom. Then the discrete solution on the interior nodes is 𝐮(fdof ) =𝐰. We note that fdof
refers to the indices of the interior nodes and the colon denotes the inclusion of all the nodes. So the 𝐋̂(fdof , fdof ) matrix on the left 
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Fig. 6. Left: Solution computed using our approach. Right: Exact solution.

Fig. 7. Left: Solution computed using our approach. Right: Exact solution.

hand side of the above equation is 𝑁int -by-𝑁int , whereas the matrices on the right hand side are 𝑁int -by-𝑁 . Note that while these 
matrices can be quite large (depending on the number of nodes used to sample the domain) both 𝐃 and 𝐁 are diagonal, and 𝐋̂ is well 
approximated by a sparse matrix due to the fast decay of the kernel function used to construct it.

The discrete form of the system (7.4) is

(𝐋̂+𝐃)𝐮 =𝐃𝐟 +𝐁𝐠

in this case, since we are solving the Neumann problem and 𝐿̂ is consistent on the whole domain, we do not have to restrict to the 
interior nodes, so here all the matrices are 𝑁 -by-𝑁 .

Finally, we describe the discretization of (7.6). In addition to the spatial discretization, we use Backward Euler to discretize in 
time. Let the number of time sub-intervals be 𝐾 and the time step size is 𝜏 = 𝑇 ∕𝐾 . Then given 𝐮0 = 𝐮0, for 𝑘 = 1, … , 𝐾 , we solve

(
𝐃(fdof , fdof ) + 𝜏𝐋̂(fdof , fdof )

)
𝐮𝑘 = 𝜏𝐃(fdof ,∶)𝐟

𝑘 +𝐃(fdof , fdof )𝐮
𝑘−1

where this last equation is again restricted to interior nodes so that all the matrices are 𝑁int -by-𝑁int except for 𝐃(fdof , ∶) which is 
𝑁int -by-𝑁 .

7.3. Numerical examples

With the help of several examples, next we show that the approach introduced in this paper, can help solve the boundary value 
problems (7.2), (7.4), and (7.6). In the first 5 examples, we let Ω = (0, 1)2. We first consider elliptic problems with both Dirichlet and 
Neumann boundary conditions. Afterwards, we illustrate the applicability of our approach on time-dependent PDE with Dirichlet 
boundary conditions. For numerical approximation in these 5 examples, we partition Ω into 100 uniform cells in each direction. Our 
final example is a semi-sphere with Dirichlet boundary conditions.

Example 7.1 (Elliptic homogeneous Dirichlet). In (7.1) we set 𝑔 ≡ 0, therefore 𝑔̃ ≡ 0 (cf. (7.2)). Consider the exact solution 𝑢(𝑥, 𝑦) =
sin(2𝜋𝑥) sin(2𝜋𝑦), then 𝑓 (𝑥, 𝑦) = 8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦). The error between the exact solution 𝑢 and it’s approximation 𝑢ℎ using our 
proposed method in 𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = 1.541989e-02. Fig. 6 shows a visual comparison between the computed and the exact 
solution.

Example 7.2 (Elliptic nonhomogeneous Dirichlet). Let the exact solution 𝑢 = 𝑥2 + 𝑦2. We set 𝑔 = 𝑢|𝜕Ω. The error between the exact 
solution 𝑢 and it’s approximation 𝑢ℎ using our proposed method in 𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = 6.378652e-03. Fig. 7 shows a visual 
comparison between the computed and the exact solution.
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Fig. 8. Left: Solution computed using our approach. Right: Exact solution.

Fig. 9. Left: Solution computed using our approach. Right: Exact solution.

Example 7.3 (Elliptic homogeneous Neumann). In (7.4) we set 𝑔 ≡ 0. Consider the exact solution 𝑢(𝑥, 𝑦) = cos(2𝜋𝑥) cos(2𝜋𝑦), then 
𝑓 (𝑥, 𝑦) = (8𝜋2 + 1) cos(2𝜋𝑥) cos(2𝜋𝑦). The error between the exact solution 𝑢 and it’s approximation 𝑢ℎ using our proposed method in 
𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = 2.125979e-02. Fig. 8 shows a visual comparison between the computed and the exact solution.

Example 7.4 (Elliptic nonhomogeneous Neumann). Let the exact solution 𝑢 = 𝑥2 + 𝑦2. We set 𝑔 = ∇𝑢 ⋅ 𝜂. The error between the exact 
solution 𝑢 and it’s approximation 𝑢ℎ using our proposed method in 𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = 8.303406e-02. Fig. 9 shows a visual 
comparison between the computed and the exact solution.

Example 7.5 (Parabolic homogeneous Dirichlet). In (7.6) we set 𝑇 = 1. Consider the exact solution 𝑢(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦)𝑒−𝑡, then 
𝑓 (𝑥, 𝑦) = (8𝜋2 − 1)𝑢(𝑥, 𝑦). We apply Backward-Euler scheme to do the time discretization with number of time steps equal to 50. 
The error between the exact solution 𝑢 and it’s approximation 𝑢ℎ using our proposed method in 𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(0,𝑇 ;𝐿2(Ω)) =
9.902258e-03.

Example 7.6 (Dirichlet on the hemisphere). We now consider (7.1) on the hemisphere M = {(𝑥, 𝑦, 𝑧) ∈ ℝ
3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0}. 

This two dimensional manifold with boundary can be seen as the image of (𝜃, 𝜙) ∈ [0, 𝜋∕2] × [0, 2𝜋] under the embedding function, 
𝜄 ∶ [0, 𝜋] × [0, 2𝜋] →ℝ

3 defined by

𝜄(𝜃,𝜙) =

⎡⎢⎢⎣

sin𝜃 cos𝜙

sin𝜃 sin𝜙

cos𝜃

⎤⎥⎥⎦
where 𝜃 is the colatitude and 𝜙 is the azimuthal angle. The pullback metric in these coordinates is

𝑔(𝑥) =𝐷𝜄𝑇𝐷𝜄 =

[
cos2 𝜃 cos2 𝜙+ cos2 𝜃 sin2 𝜙+ sin2 𝜃 0

0 sin2 𝜃

]
=

[
1 0

0 sin2 𝜃

]
.

The Laplacian, Δ, on M in these coordinates is given by

Δ𝑓 =
1√|𝑔|

[
𝜕

𝜕𝜃

𝜕

𝜕𝜙

](√|𝑔| 𝑔−1
[
𝜕𝑓

𝜕𝜃
𝜕𝑓

𝜕𝜙

])
= cot 𝜃

𝜕𝑓

𝜕𝜃
+
𝜕2𝑓

𝜕𝜃2
+ csc2 𝜃

𝜕2𝑓

𝜕𝜙2
.

We can avoid blowup at 𝜃 = 0 by assuming a solution of the form 𝑢(𝜃, 𝜙) = sin2(𝜃)𝑢̃(𝜃, 𝜙), and in this case we consider 𝑢(𝜃, 𝜙) =
sin2(𝜃) sin(3𝜙)∕2 which leads to

𝑓 = −Δ𝑢 = (5∕2 + 3sin2(𝜃)) sin(3𝜙).
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Fig. 10. Left: Solution computed using our approach. Right: Exact solution.

Using this 𝑓 as the right-hand-side and using the true value of 𝑢 on the boundary as a Dirichlet boundary condition, 𝑔 = 𝑢 on 𝜕M, we 
then solve (7.1) using the estimator of the Laplacian 𝐋̂. The resulting solution estimate 𝑢ℎ is compared in Fig. 10. The error between 
the exact solution 𝑢 and it’s approximation 𝑢ℎ using our proposed method in 𝐿2-norm is: ‖𝑢 − 𝑢ℎ‖𝐿2(M) = 5.067884e-03.

In all the above examples, we observe that the solutions computed using our approach are highly accurate. We emphasize that 
the exact same code was used to solve the problem on the hemisphere as was used on the unit square. This is the advantage of the 
these diffusion maps based approaches, all that is needed is points sampled on the manifold.

8. Discussion

In this work, we have provided an analysis of the bias of the kernel averaging operator associated to the diffusion maps graph 
Laplacian. One of the main contributions of this work is the use of semigeodesic coordinates for making the bias analysis for points 
near the boundary. Using these coordinates, we are able to obtain new asymptotic estimates of the kernel averaging operator as well 
as prove consistency of a boundary integral estimator. It should be noted that our convergence results only address the bias of the 
estimator, that is, as 𝜖 → 0. In order to discuss a full treatment of error rates involving the number of data points, a treatment of 
variance must also be done.
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Appendix A. Proof of Lemma 6.1

In this section we prove Lemma 6.1 connecting the integral of the first moment of a kernel near the boundary to the second 
moment of the kernel in the interior.

Proof of Lemma 6.1. Since 𝑚𝜕
1
has fast decay, we can localize the integral to an 𝜖𝛾 region for any 𝛾 ∈ (0, 1) by the same argument 

as in the proof of Lemma 3.3. Thus, we have

∞

∫
0

𝑚𝜕
1
(𝑏𝑥) 𝑑𝑏𝑥 =

𝜖𝛾

∫
0

𝑚𝜕
1
(𝑏𝑥)𝑑𝑏𝑥 +O(𝜖

𝑧)

=

𝜖𝛾

∫
0

𝜖𝛾

∫
−𝑏𝑥

∫
ℝ𝑚−1

𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑢𝑚𝑑𝑏𝑥

We notice that there is considerable symmetry in the domain of integration between the 𝑏𝑥 and 𝑢𝑚 variables. Since 𝑢𝑚𝑘(‖𝑢‖2sem) is 
an odd function with respect to 𝑢𝑚, we obtain cancellation of the domain in the area indicated in red in Fig. A.11. This leads to the 
following simplification:

25



R. Vaughn, T. Berry and H. Antil Applied and Computational Harmonic Analysis 68 (2024) 101593

Fig. A.11. The domain of integration for 𝑏𝑥 and 𝑢
𝑚 . The red region indicates the domain which cancels due to symmetry. The remaining blue region is evaluated.

𝜖𝛾

∫
0

𝜖𝛾

∫
−𝑏𝑥

∫
ℝ𝑚−1

𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑢𝑚𝑑𝑏𝑥 =
𝜖𝛾

∫
0

𝜖𝛾

∫
𝑏𝑥

∫
ℝ𝑚−1

𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑢𝑚𝑑𝑏𝑥

We then apply Fubini’s theorem to obtain,

=

𝜖𝛾

∫
0

𝑢𝑚

∫
0

∫
ℝ𝑚−1

𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑏𝑥𝑑𝑢𝑚

=

𝜖𝛾

∫
0

∫
ℝ𝑚−1

𝑢𝑚

∫
0

𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑏𝑥𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑢𝑚

=

𝜖𝛾

∫
0

∫
ℝ𝑚−1

(𝑢𝑚 − 0)𝑢𝑚𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚−1𝑑𝑢𝑚

=

𝜖𝛾

∫
0

∫
ℝ𝑚−1

(𝑢𝑚)2𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚

=
1

2

𝜖𝛾

∫
−𝜖𝛾

∫
ℝ𝑚−1

(𝑢𝑚)2𝑘(‖𝑢‖2sem)𝑑𝑢1...𝑑𝑢𝑚 +O(𝜖𝑧)

=
𝑚2

2
+O(𝜖𝑧),

where in the last line we expand the integral to all of ℝ𝑚 and recover the second moment 𝑚2 = ∫
ℝ𝑚

(𝑢𝑖)2𝑘(||𝑢||2) 𝑑𝑢 which is the same 
for any choice of 𝑖 due to the radial symmetry of the kernel. □

Appendix B. Estimating the normal vector field and distance to the boundary

In [6], following the results of [10], the authors extended the expansion (4.4) to manifolds with boundary as,

𝜖−𝑚K𝑓 (𝑥) =𝑚𝜕
0
(𝑥)𝑞(𝑥)𝑓 (𝑥) +O(𝜖) + 𝜖−𝑚ErrorQuad(𝑁,𝑓, 𝑞), (B.1)

where the coefficient 𝑚𝜕
0
is no longer constant but depends on the distance 𝑏𝑥 from 𝑥 to the boundary (defined as the infimum over 

smooth curves). As shown in [6], the coefficients 𝑚𝜕
𝓁
(𝑥) appearing in (B.1) for manifolds with boundary are given in (4.2) (repeated 

here for clarity)

𝑚𝜕
𝓁
(𝑥) = ∫

{𝑧∈ℝ𝑚 |𝑧⋅𝜂𝑥<𝑏𝑥∕𝜖}
(𝑧 ⋅ 𝜂𝑥)

𝓁𝑘(|𝑧|2)𝑑𝑧 = ∫
ℝ𝑚−1

𝑏𝑥∕𝜖

∫
−∞

𝑧𝓁𝑚𝑘
(|𝑧|2) 𝑑𝑧𝑚𝑑𝑧1⋯𝑑𝑧𝑚−1 .
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The vector field 𝜂𝑥 is equal to the outward pointing normal when 𝑥 ∈ 𝜕M. We can smoothly extend the vector field 𝜂𝑥 to a tubular 
neighborhood of the boundary called a normal collar as discussed in Section 2. It can easily be seen that when 𝑏𝑥 > 𝜖 (meaning that 
𝑥 is further from the boundary than 𝜖) these reduce to the formulas (1.5) up to higher order terms in 𝜖.

For the exponential kernel,

𝑘(𝑧) = exp (−𝑧) (B.2)

we can explicitly compute

𝑚𝜕
0
(𝑥) =

𝜋𝑚∕2

2
(1 + erf(𝑏𝑥∕𝜖)), 𝑚𝜕

1
(𝑥) = −

𝜋(𝑚−1)∕2

2
exp

(
−
𝑏2𝑥

𝜖2

)
.

These moments are used in the Section 4 to extend the expansion (B.1) to higher order terms.
The motivation for the expansion (B.1) in [6] was to analyze the standard Kernel Density Estimator (KDE) for manifolds with 

boundary. The standard KDE is (up to a constant) given by,

𝑞𝜖,𝑁 (𝑥) ≡ 𝜖−𝑚K1(𝑥) =
1

𝑁𝜖𝑚

𝑁∑
𝑖=1

𝑘

(|𝑥−𝑋𝑖|2
𝜖2

)

and (B.1) implies that

𝔼[𝑞𝜖,𝑁 (𝑥)] =𝑚
𝜕
0
(𝑥)𝑞(𝑥) +O(𝜖). (B.3)

For manifolds without boundary, 𝑞𝜖,𝑁 (𝑥) can be made consistent after dividing by the normalization constant 𝑚0 from (1.5). For 
manifolds with boundary, as a consequence of (B.1) we see that 𝑞𝜖,𝑁 (𝑥) is not consistent at the boundary. In [6] it has been shown 
how to fix this estimator by estimating the distance to the boundary 𝑏𝑥 . We briefly summarize this method since it will be a key tool 
in constructing boundary integral estimators as defined in Section 5.

Since the standard estimator mixes information about the density and distance to the boundary, additional information is needed 
in order to estimate the density. Thus, in [6] the Boundary Direction Estimator (BDE) was introduced, which is defined as,

𝜇𝜖,𝑁 (𝑥) ≡ 1

𝑁𝜖𝑚

𝑁∑
𝑖=1

𝑘

(|𝑥−𝑋𝑖|2
𝜖2

)
(𝑋𝑖 − 𝑥)

𝜖
.

Notice that the BDE is a kernel weighted average of the vectors pointing from the specified point 𝑥 to all the other data points {𝑋𝑖}. 
The kernel weighting ensures that only the nearest neighbors of the point 𝑥 contribute significantly to the summation. Moreover, for 
data points in the interior of the manifold, and for sufficiently small bandwidth parameter 𝜖, we expect the nearest neighbors to be 
evenly distributed in all the directions tangent to the manifold. The resulting cancellations imply that the summation should result 
in a relatively small value (it is shown to be order-𝜖 in [6] for points further than 𝜖 from the boundary). On the other hand, when 𝑥
is on the boundary, if we look in the direction normal to the boundary we expect all the data points to be on one side of 𝑥, and thus 
the BDE will have a significant component in exactly the normal direction (inward pointing since we are averaging vectors pointing 
into the manifold). For points near the boundary (relative to the size of the bandwidth 𝜖) this effect will be diminished smoothly 
until the distance to the boundary becomes greater than the bandwidth and we return to the case of an interior point. This intuitive 
description of the behavior of the BDE was made rigorous in [6] by showing that

𝔼[𝜇𝜖,𝑁 (𝑥)] = 𝜂𝑥𝑞(𝑥)𝑚
𝜕
1
(𝑥) +O(𝜖∇𝑞(𝑥), 𝜖𝑞(𝑥)) (B.4)

where 𝜂𝑥 ∈ 𝑇𝑥M is a unit vector pointing towards the closest boundary point (for 𝑥 ∈ 𝜕M, 𝜂𝑥 is the outward pointing normal). 
Moreover, 𝔼[⋅] denotes the expected value. Notice that since 𝑚𝜕

1
(𝑥) < 0 and 𝜂𝑥 is outward pointing, (B.4) implies that 𝜇𝜖,𝑁 (𝑥) points 

into the interior as expected from the above discussion.
In [6] the authors combined the BDE with the classical density estimator. Indeed by dividing 𝜇𝜖,𝑁 by 𝑞𝜖,𝑁 , the dependence on the 

true density 𝑞(𝑥) cancels and the result depends only on the distance to the boundary 𝑏𝑥, namely (dividing (B.4) by (B.3)),

𝔼
[
𝜇𝜖,𝑁 (𝑥)

]

𝔼
[
𝑞𝜖,𝑁 (𝑥)

] =
𝜂𝑥𝑚

𝜕
1
(𝑥) +O(𝜖)

𝑚𝜕
0
(𝑥) +O(𝜖)

= −𝜂𝑥
𝜋−1∕2𝑒−𝑏

2
𝑥∕𝜖

2

(
1 + erf

(
𝑏𝑥∕𝜖

)) +𝑂(𝜖). (B.5)

A significant feature of this approach is that (B.5) can be easily estimated without any explicit dependence on the dimension 𝑚 of 
the manifold. By combining the definitions of 𝜇𝜖,𝑁 and 𝑞𝜖,𝑁 above we find,

𝜇𝜖,𝑁 (𝑥)

𝑞𝜖,𝑁 (𝑥)
=

∑𝑁
𝑖=1 𝑘

( |𝑥−𝑋𝑖|2
𝜖2

)
(𝑋𝑖−𝑥)

𝜖

∑𝑁
𝑖=1 𝑘

( |𝑥−𝑋𝑖|2
𝜖2

) .

In order to compute the distance to the boundary, we compute the norm of the vector of the previous equation, and applying 
(B.5) we have
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Fig. B.12. Estimating the distance to the boundary (top row) and the normal vector field (bottom) for bandwidth parameters 𝜖 ∈ {0.5, 0.1, 0.05} (left to right). The 
estimator is accurate up to a distance of approximately 1.5𝜖 from the boundary.

𝔼

[|||||
√
𝜋
𝜇𝜖,𝑁 (𝑥)

𝑞𝜖,𝑁 (𝑥)

|||||

]
=

𝑒−𝑏
2
𝑥∕𝜖

2

(
1 + erf

(
𝑏𝑥∕𝜖

)) +O(𝜖). (B.6)

This is now a scalar equation with a known quantity on the left-hand-side, so it remains only to invert the function on the right-
hand-side in order to estimate the distance to the boundary 𝑏𝑥. We note that this computation must be performed at each data point 
since we require an estimate of the distance to the boundary for each of our data points.

While [6] used a Newton’s method to solve (B.6) for 𝑏𝑥, we note that the right-hand-side is very well approximated by the 
following piecewise function

𝑒−𝑏
2
𝑥∕𝜖

2

(
1 + erf

(
𝑏𝑥∕𝜖

)) ≈

⎧
⎪⎨⎪⎩

1 − 1.15
𝑏𝑥
𝜖
+ 0.35

(
𝑏𝑥
𝜖

)2

𝑏𝑥 < 1.4𝜖

1

2
exp

((
𝑏𝑥
𝜖

)2
)

𝑏𝑥 ≥ 1.4𝜖

(The above quadratic approximation was derived by interpolating the function at 𝑏𝑥
𝜖
∈ {0, 1∕2, 1} and for 𝑏𝑥 ≥ 1.4𝜖 the denominator 

of (B.6) is very close to 2.) Since the quadratic and the exponential are both explicitly invertible, this approximation avoids requiring 
a numerical inversion of the right-hand-side of (B.6) (Fig. B.12).

We now have consistent estimators for both the direction of the boundary, 𝜂𝑥, and the distance to the boundary, 𝑏𝑥, and these 
will be essential in imposing the desired boundary conditions for our grid free solvers.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .acha .2023 .101593.
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