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Abstract. The task of modeling and forecasting a dynamical system is one of the oldest problems, and it
remains challenging. Broadly, this task has two subtasks: extracting the full dynamical informa-
tion from a partial observation, and then explicitly learning the dynamics from this information.
We present a mathematical framework in which the dynamical information is represented in the
form of an embedding. The framework combines the two subtasks using the language of spaces,
maps, and commutations. The framework also unifies two of the most common learning paradigms:
delay-coordinates and reservoir computing. We use this framework as a platform for two other
investigations of the reconstructed system, its dynamical stability and the growth of error under
iterations. We show that these questions are deeply tied to more fundamental properties of the
underlying system, i.e., the behavior of matrix cocycles over the base dynamics, its nonuniform
hyperbolic behavior, and its decay of correlations. Thus, our framework bridges the gap between
universally observed behavior of dynamics modeling and the spectral, differential, and ergodic prop-
erties intrinsic to the dynamics.
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1. Introduction. Many investigations of physical systems involve modeling and forecast-
ing a dynamical system, in fields as diverse as climate sciences [71], traffic dynamics [22, 65],
and epidemiology [62]. With the growth of computational power, many new techniques and
paradigms of reconstructing a dynamical system have been proposed; we call this the learning
problem for dynamics. Most of the common techniques seek to recreate a dynamical system
by developing a conjugate or equivalent dynamical system, usually in a higher dimensional
space. We present a theoretical framework which unifies these techniques. The framework,
presented in the form of a commuting diagram (1.3) of maps and operators, helps to identify
and distinguish between different conceptual components of this learning.

Figure 1 presents an outline of the paper. The primary requirement of all learning tech-
niques is an embedding of the dynamics (Assumption 2), which may be explicit or implicit.
Throughout the paper we shall use “embedding” in the topological/set-theoretic sense, rather
than the differential topology sense. Thus by “embedding” we mean an injective map, and we
do not require it to induce an injective map between tangent bundles. We show in section 2
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Figure 1. Outline of results and theory.

that there are two main paradigms of learning dynamics, based on invariant graphs and delay
coordinates, in which the embedding is implicit and explicit, respectively. We unify both these
paradigms in a common abstract mathematical framework (1.3) and show how the unknown
dynamics can be reconstructed as a conjugate dynamical system (1.5) in the embedding space.
We next investigate the stability of these reconstructions. We show that a proper quantita-
tive assessment of the stability is related to the original dynamics, as well as the kind of
interpolation done by the learning technique.

Another important consideration for us is the effectiveness of reconstruction models for
the purpose of forecasting. The forecasting can be of two types: direct or iterative. We
show in Theorem 4.1 that the direct method is limited by the rate of decay of correlations of
the system. On the other hand, the iterative method is deeply connected to the embedding
properties of the data, as well as the learning scheme employed. A key aspect of learning
theory is the choice of a hypothesis space. This functional analytic consideration also fits
seamlessly with our framework. We show how the rate at which the learned dynamics and
the true dynamics diverge is a combination of the intrinsic dynamical properties as well as
the effectiveness of the hypothesis space. We do so using the language of matrix cocycles. See
Figure 2 for a comparative illustration of two computation techniques. We do an extensive
comparison of various learning techniques in Tables 1 and 2.

The framework. We now build our general abstract framework by assigning mathematical
objects and assumptions to various components of the entire prediction scheme. We begin
with the dynamical system itself. A common practice is to assume an unknown dynamical
system satisfying the following assumption.

Assumption 1. There is a C' dynamical system f : Q@ — Q on an m-dimensional C*
manifold €2, with an ergodic measure y with compact support €.

This minimal assumption on the underlying system allows it to be applied in many sit-
uations. The assumption of an ergodic invariant measure with compact support is fulfilled
in any system with bounded trajectories. This assumption is, however, only for theoretical
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Figure 2. Results of forecasting attempts on the Lorenz63 system, using the invariant-graph paradigm (sec-
tion 2.1) on the left, and the delay-coordinate-based paradigm (section 2.2) on the right. For both these para-
digms, we compare the performance of direct and iterative modes of forecasting (see (4.1), (4.2) for definitions).
The horizontal axis shows the forecast time m, and the vertical axzis is the root mean square (RMS) error of
forecast as a function of n, for a signal of unit L*(u)-norm. The RMS error is meant to approzimate the
L?(u)-norm of the error as a function of the initial state of the underlying system. The iterative errors are
seen to increase and eventually settle around /2, while the error from the direct mode settles at 1.0. We show
that this is a universal behavior, based on a mathematical framework (1.3) that unifies both these paradigms,
and both modes. Based on this framework, we develop Theorems 4.1 and 4.2, which provide expressions for the
asymptotic behavior of these errors and are consistent with these graphs. Also see section 5 for an extended
analysis.

purposes, as the system in Assumption 1 is usually not presented explicitly. We next provide
an abstract framework which describes how the system is manifested in a data-driven setting.

Assumption 2. There are maps ¢:Q — R% and ®: Q@ — R” such that
(i) ® is an injective map;
(ii) there is a function g:R? x RL — R such that ® o f =go (¢ x ®).

The map ¢ is the measurement through which the dynamical system is observed. So the
codomain of ¢ is often low-dimensional and may only be a partial observation the system.
Since ® is an injective map, it effectively serves as a representation of the dynamics space
Q in R” space. The function g will be known and computable explicitly. Note that ® o f is
the evolution of ® under one iteration of the dynamics of f. Thus g contains and encodes
the evolution law, in terms of the current states of ® and ¢. This is summarized in the left
half of the commutative diagram in (1.3). The function g is usually known explicitly, while ®
could be explicit (such as in delay-coordinate techniques; see section 2.2) or implicit (such as
in invariant-graph-based techniques; see section 2.1). Let dim, denote the box-dimension of
the invariant set supported by the measure u. We typically have

d < dim, < L.

The task now is to reconstruct the dynamics using the maps ¢, ®. This reconstruction will
not be via the phase space € of the dynamics but rather through various function spaces
which try to capture how these maps are transformed under the dynamics. For this reason,
we shall use the operator theoretic language of dynamical systems. This is done using an
operator-theoretic representation of the dynamics known as the Koopman operator.
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Koopman operator. The Koopman operator [39, 19, 20] is a time-shift operator that acts
on observables by composition with the map f. The space L?(€,u) of square-integrable,
complex-valued functions will be called our space of observables. The space L?(£2, 1) can be
unambiguously abbreviated as L?(u). For every n € N, the operator U™ : L?(u) — L?(u) is
defined on every h € L?(u) as

(U™h):ww+ (ho f")(w) for p-a.e. we .

The operator U and all its iterates U™ are unitary maps. The constant function 1q is always
an eigenfunction for U, with eigenvalue 1. A consequence of u being ergodic is that 1 is a
simple eigenvalue. Let D denote the closure in L?(u) of all eigenfunctions of U. Then one has
the orthogonal decomposition

(1.1) L*(u) =D& D*.

The system is said to be mizing if the space D consists of only constant functions. Koopman
operators allow the study of arbitrary nonlinear dynamics as linear dynamics on infinite-
dimensional vector spaces. It has been used not only for forecasting tasks (see, e.g., [62]), but
also in tasks such as harmonic analysis of dynamics generated data (see, e.g., [20]), control
[50], and detection of coherent patterns (see, e.g., [19, 33]).

We are now prepared to present the reconstructed dynamics in terms of the Koopman
operator.

Feedback function. Since @ is an injective map (by Assumption 2), the current state of ®
determines the current and all future states in 2 and therefore of ¢. Therefore for every k € N
there is a function wy, such that

(1.2) wp: RS RY wpo®=Ur¢p=¢o fF

The learning task is to learn this map wy. The following diagram connects all the maps and
spaces we have discussed so far:

We next look at the specific case when k= 1.

The reconstructed system. When k =1, w; will be denoted as w. The following standalone
or reconstructed dynamical system on R% x R is conjugate to the dynamics on the attractor
in Q:

(1.4) T:RYx RE 5 RY x RE, [U”H}ZT[UH]:[ w (Yn) ]
Yn+1 Yn g (Un, yn)
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We explore this conjugation further using the commutation diagram in (1.5). The blue loop
reveals the conjugacy, the green loops are the result of Assumption 2, and the red loop is the
result of (1.2).

The system (1.4) evolves in parallel to f:Q — €, while maintaining a conjugacy via the map
¢ x ®. The state vector z, := (un,yy) is interpreted as follows: u,, represents the value ¢(wy,),
which is the unknown state w, observed through ¢. 3, € R is the embedded point ®(w,) in
R%. With this interpretation in mind, (1.4) is to be initialized with the state vector

(1.6) 20 = 20(wo) := (¢(wp), P(wp)) € R x RE

for some wy € Q. The only component of (1.5) that needs to be learned is the feedback
w. A crucial issue in the learning theory for dynamics is the learnability or injectivity of ®.
These have been proved theoretically or empirically in various situations. We have made the
injectivity of @ a part of our ground assumption and shifted the focus to the learning of w.
One of our main focuses is the situation when w cannot be determined exactly but can only
be approximated. In that case, one needs to consider a hypothesis space, and the error built
into the model during learning.

Hypothesis space. In a practical situation, wy, is estimated from a search-set or hypothesis
space H (see, e.g., [1]), which may be a linear subspace or nonlinear collection of functions.
Thus the true function wy can be expressed as

(1.7) wy = Wi + Awg,

where Wy, is the estimated function, and Awy, is the error. Thus (1.3) can be rewritten as

Rd#RdeL%RL Rd

% bx qﬂ e wg

]Rd Wy X Awy, Rd

R4 QP AR o —
¢ »
\ d)\ }) o

proj;
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Similarly to (1.4), the dynamics under the approximated feedback function becomes

(1.8) T:R?x RE - RY x RE, [U”H]:T[“n]:[ W (yn) ]
Yn+1 Yn g(umyn)

The difference between (1.4) and (1.8) is the basis for evaluating the error of forecasts. We
show in section 4 that the asymptotic rate at which these two systems diverge could depend
on both the spectral properties of the dynamics and its Lyapunov exponents. This completes
the description of our framework.

Outline. The rest of the paper is organized as follow. In section 2 we explore how the
two main paradigms of learning dynamical systems fall under our framework. In section 3
we use (1.3) to derive stability results for the reconstructed system. In section 4, we again
use (1.3) to obtain the rate of growth of errors when performing forecasts with the recon-
structed system. We illustrate our results with some simple numerical examples in section 5.
Sections 6, 7, 8, 9, 10, and 11 contain the proofs of our theorems.

2. Two paradigms of learning. We now examine the two most important paradigms for
realizing the scheme in (1.3): delay-coordinates and invariant-graph/echo-state network based
techniques. We show that they follow the framework described in Assumptions 1 and 2, and
how their implementations are special cases of (1.7), (1.4), and (1.6). Table 1 summarizes
some features of these two techniques. Note that the questions of producing, constructing,
or computing ® and g are separate from the question of constructing wy and wg. Table 2
gives an overview of various techniques used. We should note that connections between the
delay-coordinates paradigm and invariant-graph paradigm have been explored recently from
the viewpoint of generalized synchronization in [36, 44, 45]. Our investigation is motivated by
the invariant-graph approach of Stark [73], and connections to generalized synchronization is
a direction of future research.

2.1. Paradigm I: Invariant graphs. Let g:R?% x R be a smooth map for which there is
constant A € (0,1) such that

(2.1) IVyg(u, )| <X VueRY yeRE.

Using this g, one can build a reservoir system, which is a skew-product system on € x RE
defined as

2 ()= B (5 ) = (o)

Table 1
The two learning paradigms satisfying Assumptions 1 and 2 and the scheme in (1.3).

Name P Basis for convergence of ® g

Invariant graphs Implicitly obtained (2.3) (2.4) Explicit: (2.1)

Delay-coordinates = Explicitly obtained as basis  Ergodic convergence Explicit: (2.7)
functions
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Table 2

Various learning techniques, applicable to learning wy (1.2).

Technique

Hypothesis space

Advantages

Disadvantages

Linear reg.

Kernel reg. [9, 8]

RKHS [1, 20, 21]

Nonlinear reg. [30]

Deep NNs [52]

LSTM [43, 59, 61]

Radial basis functions
[72]

Local approximation
techniques, such as
simplex methods [48],
and local linear
regression [51]

Linear combination of
fixed basis functions or
coordinates

C™ (M) or L*(u) Spaces
spanned by kernel
sections or eigenvectors

Span of eigenfunctions
of kernel integral
operators
Parameterized space of
functions

Functions parameterized
by network activation
and coupling parameters

Same as Deep NNs but
with additional memory
cells

Similar to kernel
techniques

Nearest-neighbor based
approximation of a
neighborhood of the
predictee point

Availability of
techniques for linear
cases

Allows smooth
interpolations and
connections with
underlying geometry
Completely data-driven,
allows out of sample
extension

Dependence on
parameters allow
application of manifold
techniques such as
gradient descent
Simplicity of
implementation;
scalability; explicit
dependence on
parameters known

Good for approximating
functions which have
sparse dependence over
a long interval of time
Provides a global
representation of the
map

Good approximation for
low-curvature
attractors, i.e., less
oscillatory functions

Poor fit for nonlinear
functions

Localized nature of basis
functions require large
number of basis
functions

Inexplicit, unspecified
nature of basis functions

Explicit knowledge of
parameters as well as
dependence on
parameters required

Little a priori knowledge
known about dimension
of layers or number of
layers; little knowledge
about convergence rate
of learning; huge
number of variables to
optimize

Same as Deep NNs;
more parameters to tune

Lack of normalization
lead to nonuniformity in
predictability

Predictee point needs to
be close to data cloud,
feedback function
unbounded.
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The paradigm of invariant graphs was first investigated in [60, 47] and was studied eventually
in greater detail as echo-state networks (see, e.g., [38, 36, 58, 34]) and reservoir computers
[37, 57]. It is popular due to the simplicity of its construction and ease of use in learning
problems. They are known for their robust performance in prediction [31, 12] but also for
recovering other properties such as Lyapunov exponents [63]. A particular instance of g above
introduced in [57] is

g(u, y) = tanh (Wznu + WYy + Ubias) )

where W;,, Wy are random matrices of dimensions L x d, L x L, respectively, vp;qs is a random
vector of dimension L, and [|[Wy| <A< 1.
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Although (2.2) involves the underlying dynamical map f, the actual knowledge of f is not
needed. Note that the dynamics in the y-coordinate is linked to the w-coordinate through the
measurement ¢. In the training phase, one provides as input the measurements {¢(wy,)}2_,.
Thus (2, f) remains unknown but continues to drive the reservoir variable y. The variable y

settles down into a representation of the attractor, in a manner which we make precise below.

Proposition 2.1. Let Assumption 1 hold, let ¢ : Q& — R? be a continuous map, and let
g:RYIx RY 5 RE be a C' map satisfying (2.1). Then the following hold:

(i) There is a map ®: Q — RE such that Assumption 2 (ii) is satisfied.

(ii) The graph of ® is invariant, i.e.,

(2.3) (U"®) (w) := @ (f"(w)) = Projy Tieservoir (@, ®(w))  VneN, Vwel.
(iii) The graph of ® is globally attracting, i.e.,
(2.4) lim (U"®) (w) = li_>m projyT™ (z,y) VzeQ,yeY.

—00
(iv) If H%gH <1, then Assumption 3 is also satisfied.

Assumption 3 is an additional assumption requiring that g be a nonexpansive map in
each of its variables. It is described in section 3 and is used to establish stability properties.
Proposition 2.1 is proved in section 8. Parts (i)—(iii) are immediate consequences of results by
Stark [73] or by Grigoryeva, Hart, and Ortega [36, Thm. III.1]. We have put Stark’s results
along with the other paradigms in the common, general framework of (1.2).

The invariant graph property leads to a fulfillment of the identity in Assumption 2 (ii).
However, the injectivity condition of Assumption 2 (i) remains to be proven rigorously. It has
been generally observed that for L large enough, ® is also injective. Ground Assumption 1
is assumed while running the system. Note that the embedding @ is not obtained explicitly
but implicitly through the state variables of the network. Given any arbitrary initialization

0 (2.2), by (2.4), the internal states of the reservoir converge to an invariant graph over .
The function @ is precisely the function whose graph is invariant. Although it will remain
indeterminate, its values over a dynamic trajectory, i.e., the values ¢(f"wy), will be obtained
for some unknown initial point wy.

Long short-term memory (LSTM). Long short-term memory (LSTM) networks [46, 61]
are networks of units in which each unit is a skew-product system, usually much smaller in
size than a reservoir network, and without the contraction requirement of a reservoir net-
work. FEach unit has internal states y, = (hn,c,), which is updated with the help of an
additional input x,, which could originate from an external dynamical system. The functional
equation is

(2.5) Yn = (hn,cn) =G (Tn, hn—1,n-1) =G (Tn,yn—1), n=0,1,2,....

The variables h,,c, denote, respectively, a hidden state vector and a cell input activation
vector to the LSTM unit. The units in the LSTM network can also be cascaded to each other

Suppose there are () LSTM units. Let us denote their internal states at time n as y7(11), ... ,yy(LQ).
Due to the cascaded structure, we have
(26) yq(mq) :G("En+q717y£;f11)> ’ TLEN(], qE{17aQ}

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Here y,(LO) is the constant sequence equal to zero. LSTMs implement delay-coordinates due to
their full dependence on a delay-coordinate set (zp,...,2,+0—1) for each n € Ng. In addition,
this delay-coordinated input is fed into a skew-product system whose internal structure is
block diagonal. Note that LSTM networks require tuning and do not automatically satisfy
the contraction property in Assumption 3. It is an interesting question whether the tuning
procedure with data from an ergodic trajectory leads to this criterion being met. Alternatively,
optimization methods in learning dynamics could be modified to enforce additional constraints
to satisfy Assumption 3. These are interesting directions of future work.

2.2. Paradigm ll: Delay coordinates. An effective and numerically inexpensive means of
obtaining an embedding of a dynamical system is using delay-coordinates [7, 9]. To relate to
our framework, fix a number of delays @) € N and set

¢ (w)
(2.7) L=Qd, ®:Q—R' &:w— : ,
¢ (f9'w)
y () u
Y@ y ()
g:RIxRF 5 RE gux . —

Using this paradigm, the reconstructed dynamics (1.4) becomes

S
Toul L RIXIQ _y RAxdQ y@ | Yy
eay—COOr . T
@ | y @y

Note that in this case, g is a linear map. We have the following.

Proposition 2.2. Let Assumption 1 hold. Then for a typical map ¢ : Q —R?, if Q € N is
large enough, then ® defined through (2.7) is an injective, and thus Assumption 2 is satisfied.
Moreover, Assumption 3 is also satisfied.

The proof is a direct consequence of the delay-coordinate embedding theorem [68].

Thus the most common techniques for reconstruction and forecasting fall into the frame-
work we introduced in (1.3). See Figures 2 and 3 for an illustration of application of these two
techniques. In section 5.2, we also briefly review some techniques which do not fall under the
schemes of Assumption 2 and (1.3). In the next two sections, we shall analyze two important
features of our scheme, their stability, and the accuracy of their predictions.

3. Stability of reconstructed system. One could ask whether the reconstructed system
could attain conjugacy or near-conjugacy with the original dynamics (see, e.g., [14, 70, 69]).
In our case, the conjugacy map ¢ x ® exists by virtue of Assumptions 1 and 2, as shown
in (1.5). So instead of learning or discovering the conjugacy, our focus is on the stability

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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of the conjugate dynamics (1.4). The image of h := ¢ x ® is a bijective image of Q and
is invariant under the dynamics of 7 (1.4). But 7 acts in the higher-dimensional ambient
space RET? and one needs to calculate the rate of deviation perturbations from X := h(Q).
We track these using Lyapunov exponents. Let the distinct Lyapunov exponents of (€2, f, u)
be A1 > Ag--+ > A, with corresponding Oseledets splitting T2 = E1 & --- & E,. Since the
dimension of 2 is m, the multiplicities of the ; sum to m. The E;’s corresponding to negative
valued \; constitute the stable directions, whereas the E; corresponding to positive-valued \;
constitute the unstable directions. Moreover,

1
ILm Eln |Df"(w)vil| = Ni,  prae. weQ Vo € Ej(w)\{0}.

In general, the map 7 will have L+d Lyapunov exponents (counting multiplicities), whereas f
has m of them. We shall show in Theorem 3.1 (i) that m of the d+ L Lyapunov exponents of T
coincide with the original d coefficients. We are interested in these other d + L —m Lyapunov
exponents of the reconstructed systems, and their positions relative to A1(f),...,Aq(f). These
additional Lyapunov exponents have been labeled as spurious Lyapunov exponents (see, e.g.,
[67, 25]). They pose significant challenges in data-driven identification of true Lyapunov
exponents.

By the very definition of Lyapunov exponents, the A\;(7) depend not only on the invariant
set X but also on its neighborhood. This leads to a problem of ambiguity. An essential part
of T is the feedback function w. The function w : R — R? is defined uniquely only on X.
The conjugacy in (1.5) will be preserved on (2 irrespective of the nature of the extension of w
to a neighborhood of X. We define a collection

&= {wecl (RL;Rd> L x zw\x},

equipped with the C'-topology. Every w € & is a C! function satisfying o ®(w) = (U¢)(w)
for every w € Q. Any choice of W € & leads to a different dynamics in RE*9 as in (1.4), with
X as an invariant ergodic set. Therefore the top Lyapunov exponent A; of (1.4) will be a
function of w. Thus we can define a function

MG SR, (@) =\ (T).

Our goal will be to study how close A;(7) can be made to Ai(f,u).

Stability gap. As pointed out in [25, 24], the top Lyapunov exponent of the reconstructed
system may exceed that of the original system. Moreover, some of the additional Lyapunov
exponents may be positive. All these contribute to additional instabilities being introduced
into the system. The stability gap in the reconstruction of a dynamical system (Q,p, f) is
defined to be

stability gap := inf A\j(w) — A1 (f, p).
WES
The stability gap is always nonnegative, as will be shown in Theorem 3.1. We shall study

ways to obtain a bound on the stability gap in our next theorem. We shall need two additional
assumptions.
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Assumption 3. The function g from Assumption 2 further satisfies
sup 1019l (¢(w). @) <1, sup 1029l (p(w)pw)) < 1-
wes

Our next assumption requires a retraction to the range of ®. Let U be a neighborhood of
ran ®. Recall that a continuous map ret : i/ — ran ® is said to be a retract if ret|;an ¢ = Idyan -

Assumption 4. There is a continuous retraction ret : «f — ran ® for some open neighbor-
hood U of ran ® in R-.

For a retraction map such as ret, we shall be interested in the Lipschitz norm of the
retraction

/
(3.1) Kret = sup limsup d (ret(y), r(jt(y )
yeran & Yy —y d (y, Y )

Finally, we also need the following function Cy ¢ that depends on the (fixed) functions ¢, ®
and a point w € ():

Coa:Q—=RY, Cyo(w):=sup { "“g‘?’(( )Uv’ vE TwQ\{O}} .

We shall use Cy o to bound the gap between A;(7) and A(f).

Theorem 3.1 (stability of reconstruction). Let Assumptions 1 and 2 hold. Then the following
hold:
(i) The d+ L Lyapunov exponents of T contains as a subset the m Lyapunov exponents
of f.
(ii) A\ (w) is upper semicontinuous with respect to w. In other words, for every € >0, there
is a C' neighborhood U of w such that

)\1(’(;/) < )\1(’(1)) +e€ Yw' €U.

(iii) Suppose Assumptions 3 and 4 also hold. Then the stability gap is bounded by

(3.2) i (@) = M) < [ 1+ (L4 o) o] i)
Claims (i) and (ii) of Theorem 3.1 are immediate consequences of results from [24, 11, 76].
We review these and prove claim (iii) in section 9.

Remark 3.2 (instability of the reconstructed system). Claims (ii) and (iii) imply that,
at least in theory, given any bound ¢, there is a robust (i.e., open) set of w for which the
instability is no more than C + € of the original dynamics, for some constant C' depending on
the dynamics, ¢ and ® alone. In practice, w is obtained from some hypothesis space which is
determined by the application domain. In such situations there is no guarantee of the stability
being preserved up to an € error.

Remark 3.3 (continuity of Lyapunov exponents). Theorem 3.1 is related to the important
question of continuity of Lyapunov exponents. In our case, we show that the growth of
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error in the system is related to a GL(2L)-valued matrix cocycle over the base dynamics
(f,p,w), described in detail in (4.8). These cocycles are dependent (in a Cl-sense) on w.
Thus a relevant question for us is the continuity of A for these cocycles as a function of w.
There has been various results in this direction, such as for i.i.d. matrix cocycles [29, 28], in
terms of large deviation—type parameters [26, Thm. 1.6], and in terms of dominated splittings
[11, Thm. 5]. See [76] for a broad overview of this extensive field of investigation. However,
none of these various sets of assumptions applies to our situation, in which the cocycle family
is parameterized by a set of functions &.

Assumption 4 is of a topological nature and would depend on the topological or geo-
metrical properties of X. The following corollary applies to the use of a large number of
delay-coordinates.

Corollary 3.4. Let W' : Q — Q be a smooth flow and f be the time-At map f = UA'. Let
all the conditions in Assumptions 1 and 2 be met and the delay-coordinate paradigm (2.7) be
implemented. Suppose further that there is a retraction map as in Assumption 4 for which the
Lipschitz constant ket = 1. Then there is a constant Cy depending only on the flow such that
Cya(w) < é + 0.5C2QAtL for every w € ). In particular,

0< inf A\j(w) —Ai(f,p) <Iln [2+ 2 + CQQAt:| :
weS Q
The criterion that k..t = 1 is attained, for example, when X = ran ® is a manifold, and
ret is a tubular neighborhood retract. Corollary 3.4 is proved in section 9.4.
Next, we analyze the divergence of the dynamics of T (1.8) from that of the perfect
reconstruction 7 (1.4).

4. Forecasts with reconstructed system. We shall now analyze the effectiveness of fore-
casts made using the scheme in (1.3), and its approximation as (1.8). As suggested by Casdagli
[15], given a reconstruction paradigm, there are two ways of estimating the value ¢(f"w) after
n iterations of the base dynamics: We can iterate (1.8) n times, and the first coordinate of z
will serve as an approximation of ¢(f"w) = (U"¢)(w). We call this the iterative method, and
its accuracy can be estimated via

)

(4.1) €ITOTjter (N, W) 1= HU”QZ)(w) —proji o T™ o (¢, @)(w)‘

Rd
1/2
eITOTjter (1) := [/ erroriter(n,w)Qdu(w)] .
Q

Or we can directly approximate w,, via (1.7) and obtain a direct estimate. The corresponding
eITors are

(4.2) EITOX direct (1, w) = || U™ p(w) — Wy, 0 B(w) ||z
1/2
erT0Tdirect (1) 1= [|[U" ¢ — W © @|| 12,y = [/ errorﬁirect(n,w)du(w)] .

To aid the discussion, we will make further assumptions on the nature of the hypothesis
space H.
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Linear hypothesis space. Usually the hypothesis space H will be a finite-dimensional space,
spanned by a basis hi,...,h;,. In that case

(4.3) W:=span {hjo®; : 1<i<m,<I<L}
is a finite subspace of L?(y), and
(4.4) Wy, 0 ® = projywU”é.

For example, if the hypothesis space is restricted to E(RL;Rd), then W =span ®. In the rest
of this paper, we shall focus on this scenario where the hypothesis space is linear. We state
this formally in the following assumption.

Assumption 5. The hypothesis space W is a finite-dimensional subspace of L?(u) and
contains the constant function 1ge.

In most learning techniques, a bias or offset constant is calculated separately, thus satis-
fying the criterion that W contains constant functions.

Let m denote the projection projyy, and set A := Id — 7. For ease of notation, we will
denote w; simply by w in the rest of this section. Define the projection error to be the quantity

(4.5) 5=8(H) = |AU 2(, -

This is the component of the measurement ¢ not recoverable using our choice of hypothesis
space. Note that as the size of the hypothesis space increases, § converges to 0.

We shall first examine the performance of the direct forecast method. For this purpose,
we shall utilize a natural splitting of the space L?(t) induced by the Koopman operator. Let
D be the closure of the span of the eigenfunctions of the Koopman operator U, and let D+
be its orthogonal complement. Thus we have the orthogonal splitting

L*(y) =D& D .

The space D always contain the constant functions. For mixing systems such as the Lorenz63
attractor, D contains only the constant functions. For quasiperiodic dynamics such as the
dynamics on Hamiltonian tori, D+ = {0}. These two components D, D not only have different
ergodic properties [39, 23], but also respond differently to data-analytic and harmonic analytic
tools [19, 20]. This splitting is also natural in the sense that it is invariant under the action
of the Koopman operator. We now provide an estimate on the rate of growth of the direct
error.

Theorem 4.1 (error from direct forecast). Let Assumptions 1 and 2 hold, and assume the
notation in (1.7), (1.4), and (1.6). Let ¢ be as in (4.5). Then the error from direct iteration
s given by

eTTOTdirect(n) = || (Id - 7'[') Und)HL2 () -

Now assume that Assumption 5 holds. Then there is a subset N' C N with density 1 such that
the following hold:
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(i) For every e >0, if the hypothesis space W is chosen large enough, then

nEI\}/i,gl—}oo errorgirect(n) = || — projp@|| .- (w TE

(ii) If f is weakly mixing, then for every choice of W

pem€rmoTdinect(n) = vary = [|¢ = ()| L2y -

(iii) If f 4s strongly mizing, the set N’ can be taken to be the entire set N.
(iv) If f has purely a discrete spectrum, then for every e >0, if the hypothesis space W is
chosen large enough, then

error girect(n) < e Vn €N.

Theorem 4.1 is proved in section 10. An important basis for claims (i), (ii) is the decay of
correlations seen in (weakly) mixing systems. See Remark 4.4 for further discussions on this
topic. We next study the performance of the iterative method. It will be stated in terms of a
construct called matriz cocycles.

Associated matrix cocycle. Matrix cocycles over the dynamics (€2, 1, f) will be defined in
more generality later in section 6.1. For the moment, we focus on the matrix-valued functions

(4.6) W:Q =R W(w):=Dwod(w),
W:Q—= R W (w) = Dib|g(,) = Db o ®(w),
GRS GO
G@ QR GO

and their combination

(4.7) M : Q— RUEFDXTAD) = pp(y) =

Next consider the vector-valued functions
c: Q= RE o(w) = GV (w) (UT'AQ) (w).

We shall use this to build a nonautonomous dynamical system on R%. Fix an w € Q and
define

nt1 n, | @n 0 d L
T e vy £ Y I s
We call such a system a perturbed matriz cocycle (see section 7). Note that as the size of
the hypothesis space is increased, the function ¢ converges to 0 in the L?(x)-norm, and the
dynamics of (an,b,) gets closer to that of the matrix cocycle generated by M. We shall
examine this closely in Theorem 7.1. Note that (4.8) depends on the initial state w. If w is
allowed to vary, then a,, b, become functions of w. We shall overuse notation and also denote
these functions as a,,, by,.
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Growth of the iterative error. In Theorem 4.2 below, we shall establish a rate at which the
iterative error grows. Let (uy,y,) be iterates of the system (1.4). We are interested in the
growth of the deviation quantities Au,,, Ay, defined as

w [am] L[ e6) ] e,

Note that when defining the deviation terms, we are using as reference the functions U™~ '7U
and U™®, both of which reflect the true state of the dynamics (€2, f). See Remark 4.3 for
further discussions on their significance. We now have the following theorem.

Theorem 4.2 (error from iterative forecast). Let Assumptions 1 and 2 hold, and assume the
notation in (1.7), (1.4), and (1.6). Fiz an initial state w € Q, and let (up,y,) be successive
iterations of the system (1.4), and let (an,by) be iterations of the dynamics in (4.8).

(i) Let § be as in (4.5). The deviations (4.9) have the following relations with the states

of the associated perturbed cocycle:

[ Aun|
4.1 Auy, = ap, no1)?, 1 |Auall _
(4.10) Un =an + 0 (an-1)", lim T

(i1) Let Ay = A1 (M) the mazimal Lyapunov exponent of the cocycle generated by M. Then
for every € >0, there is a constant ijlz such that

(4.11) erroriser(n, w) = || Aty (w)||g: = 6CHO <e"()‘1+€)> as n — oo.

)

(iii) If (0, p, f) has the additional property of L? Pesin sets, then for every e >0,

(4.12) erroTiter(n) = || Aup|| 2,y = 5C20 <e"()‘1+€)> as n— 0o

for a constant 05(2) that depends only on €.

Pesin sets are subsets of 2 on which the nonuniformly hyperbolic map f has some degree
of regularity. While Pesin sets always exist and cover the entire space €, the property of L?
Pesin sets is an additional property, explained in more detail in section 6.2. Theorem 4.2 is
proved in section 11.

Remark 4.3 (U™ 'zU vs. U"r). The explicit formulas for the direct and iterative
schemes reveal a basic mathematical law that makes the direct method unsuitable for long-
term prediction. It involves the operator 7U", which projects the evolving measurement ¢
back into the space W. For strongly mixing systems, the Koopman operator drives out any
function from any finite-dimensional subspace, up to a constant function. On the other hand,
the iterative method always involves the term U™ !7U. The crucial difference is that the
projection 7 is not made after the application of U", but always to the static operator U.
The U™ ! in front of the 7 then merely acts as a rotation/unitary transform and thus does
not change the L%(uz) (i.e., RMS) magnitude of the error. Also see Remark 4.4 for a further
discussion on decay of correlations.

Remark 4.4 (decay of correlations). Theorem 4.1 relates the growth of errorgiect with
the rate of decay of correlation, while Theorem 4.2 relates the growth of errorjt, with the top
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Lyapunov exponent. The former is a spectral/operator-theoretic property, while the latter is
a combination of differential and ergodic properties such as Lyapunov exponents. The exact
connections between mixing and positive Lyapunov exponents are still far from understood
[2]. Connections have been established heuristically in some cases, such as [56, 17]. Rigorous
proofs have been possible under additional assumptions such as the existence of finite Markov
partitions [80, 79], or an expansive property of the map [3].

Remark 4.5  (autocorrelations). Given any nonzero function ¢ € L?(u), we define its
normalized autocorrelation (with respect to the underlying dynamics) as

AutCorr(n; ) = [[¥]| =% (U™, ).

Now, suppose that ¢ lies in W. Let {t;}}£, be any orthonormal basis for the hypothesis
space WW. Then

2
AutCorr(n; 1) := ¢l = (U, )P = 9|~ <U"w,z (i, ) mi>
M 2 i
= [l (i, ) (Ue), vs)
v M M
< ku“‘; r<mi,w>\22 (U™, v0,)[* = WH‘QZI (U™, v0,) .

We show in section 10 that
errordirect (n)” = [|(1d = ) U |72,y = 19]I° + [ 7U"S||* — 2(U" ¢, 7U" )

M
=llI* =D (U, i)
=1

Combining, we get
(4.13) pEW = errorgpect(n)? < | ol [1 — AutCorr(n; ¢)?] .

Thus, if the hypothesis space happens to include the initial observation map ¢, then the
growth of the direct error is directly related to the autocorrelation function of the observed
signal ¢. Autocorrelation is a statistical property of signals used frequently in classical time
series analysis (see, e.g., [13]). Equation 4.13 thus combines concepts from learning theory,
ergodic theory, and time series analysis.

Remark 4.6  (overfitting error vs. projection error). Equation (4.11) shows that the
projection rate grows exponentially as expected from the presence of a Lyapunov exponent.
The rate of growth is proportional to the smoothness of the learned function w;, while the
multiplicative constant is proportional to the projection error . Thus this displays a trade-
off between projection error and overfitting, and one can minimize the projection error by
increasing the hypothesis space. But the resulting learned function may be too oscillatory,
as a result increasing the instability of the feedback system (1.4). On the other hand, if one
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approximates wi by a less oscillatory function, our base error ¢ itself will be large to begin
with. To state this trade-off more precisely, define

0(e) :=inf {||Dw| : w € some hypothesis space H, §(H) < €} .
Then 6 is a nondecreasing function of €, satisfying
0(l¢l) =0, lim 6(c) = [ Dwl].
e—0+
Thus (4.11) can be rewritten as
erroriter (k) = €O (k@(e)k> as k — oo.

Remark 4.7 (cocycle structure). Equations (4.11) and (4.8) together describe the evolution
of the reconstructed dynamics as the normal and error parts, respectively. The format of
(4.8) is that of a matriz cocycle, one of the major contributions of our paper. It also bears a
resemblance to the perturbed nonautonomous equations, studied in the continuous-time case
by Barreira and Valls [6, 5]. We look more closely at the growth or decay of these cocycles in
section 7 and Theorem 7.1.

Remark 4.8 (tightness of bounds). The bound derived in (4.11) is not a tight bound. We
obtain a better estimate in section 11 in terms of the full Lyapunov spectrum.

This completes the statement of our main results. In section 5, we discuss the consequences
of our results and look at some numerical verification. In section 6 we review some concepts
from random matrix cocycle theory. In the sections after that, we prove our theorems.

5. Examples and discussions. In this section we explore some of the consequences of
Theorems 4.1 and 4.2.

1. According to Theorem 4.1 (iii), for a weakly mixing system, the direct prediction loses
track of the signal and eventually only retains the mean of ¢. The error from direct
prediction thus converges to the variance of the observation ¢.

2. For a mixed spectrum system, the direct method should recover a portion of projpe,
depending on the size of the hypothesis space H, and lose track of the complementary
component. Moreover, in (10.1), (10.5), which we derive later, the error errorgipect(n)
does not converge to the variance, but fluctuates periodically.

3. The growth of the iterative error on the other hand does not depend on spectral
properties of the dynamics. It depends on the top Lyapunov exponent \;(w) of the
reconstructed dynamics, which in turn depends on the top Lyapunov exponent of
the original dynamics (€2, f, 1) as well as the accuracy of the approximation w. In a
practical application, A;(w) could be affected by the number of training data, and the
smoothness of the true feedback function w.

4. Another feature of the iterative error is that unlike the direct error, it is not bounded
by [|#|lr2(, as it is not the result of the applications of pure operators, but it is the
deviation between the trajectories of two different dynamical systems. Thus the error
could be of the order of \/§||¢||L2(u).

We next describe some numerical experiments conducted to verify and illustrate these
universal behaviors.
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5.1. Numerical experiments. We now compare the reconstruction technique using the
two paradigms of invariant graphs and delay-coordinate embedding. The former was imple-
mented using reservoir systems, and the latter using kernel regression. We applied both of
these techniques to three systems:

(i) A quasiperiodic rotation on a two-dimensional torus (Figure 3, top panel):

(5.1) (el(n +1),0@(n+ 1)) - (91(n +1),0@(n+ 1)) + (p1, p2) mod 2r.

Here 0 and 0 are angular coordinates on the torus, and (p1,p2) is the rotation
vector.

(ii) The Lorenz63 (L63) system (Figure 2). Let ®! ., denote the flow under the Lorenz63
system. Fix a sampling interval At. This leads to the discrete time system

(52) (xn—i-l, Yn+1, Zn-‘rl) = lI166253 (CEn, Yn, Zn) .

Cbi63 has a unique physical measure which has been proved to be nonuniformly hyper-
bolic and mixing.

(iii) A dynamical system formed by taking the Cartesian product of L63 with a simple
harmonic oscillator (Figure 3, bottom panel). Such a system will have a mixed spec-
trum, with the space D generated by a single base eigenfunction. We shall refer to
this system as L63Rot.

0p11 =0, + p mod 27,
(5.3) n+1 nAt P
(xn—i-l, Yn+1, Zn+1) = \IJL63 ($nv Yn, Zn) .

This system is analyzed in the bottom panel of Figure 3.
The results of our computations in Figures 2, 3, and 4 illustrate the consequences of
Theorems 4.1 and 4.2. Figure 4 highlights the two most important conclusions from our
results. First, as seen in the top row, the iterative errors grow at an exponential rate compa-
rable to the top Lyapunov exponent A;. Second, if the hypothesis space is large enough, then
the direct error is bounded above by a formula (4.13) involving the autocorrelation function
of the direct observation map ¢. There are three things to note concerning Figure 4:

(i) Theorem 4.2 gives an upper bound for the long-term behavior of the iterative error.
The theoretical bound for exponential rate of growth is indicated by the slope of the
black dashed line and is =~ 0.9056At. So although the initial exponential rate of errors
seem to be larger than this, by choosing a multiplicative constant large enough, the
error graph still remains underneath the theoretical curve. The offset of the straight
dashed line equals the logarithm of this multiplicative constant. Thus as long as the
long-term averaged error growth rate is less than =~ 0.9056At, there will always be a
multiplicative constant large enough to satisfy the bounds in (4.11) and (4.12).

(ii) The errors from the direct error occasionally cross the theoretical bound indicated by
the black dashed line. This is because the bound in (4.13) assumes that the learning
error for w is zero, i.e., w lies in the hypothesis space H. In most situations such as in
our experiments, there is always a small learning error. An extended analysis for this
situation is an interesting and open task.
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Figure 3. Performance of the two reconstruction techniques for (i) a quasiperiodic rotation on the torus T>
(bottom panels), and (ii) a Cartesian product of Lorenz63 with a simple harmonic oscillator (top panels). By
Theorem 4.1 (iv), if one has a proper embedding and a good approzimation W of w, one can achieve arbitrarily
small errors for the torus rotation for all forecast times. This is supported by the fact that the direct methods for
both the paradigms show errors of the order of 107%. Since the torus rotation has all Lyapunov exponents zero,
by Theorem 4.2 (ii) and Theorem 3.1 (i), the error from the iterative techniques should grow subexponentially,
as supported by the figures. The system (5.3) is a mized spectrum system, i.e., the splitting in (1.1) is nontrivial.
The plots conform to the expected behavior discussed in points (1)—(4) of section 5.

(iii) The errors from the iterative forecasts made using the reservoir blow up. This is be-
cause the standard reservoir computers are not guaranteed to be stable. This drawback
is a important subject for further study.

This completes the presentation of our main theoretical and numerical results. The frame-
work that we have built provides many new directions of research into the field of learning of
dynamical systems. We now present some other directions of work.

5.2. Methods based on Koopman approximation. There are many techniques of fore-
casting which do not attempt to reconstruct the dynamics using some form of embedding.
Instead, they directly try to approximate the Koopman operator by tracking its action on a
limited subspace of functions. In this section we review some of these methods and relate
them loosely to our main mathematical constructions.

Kernel analogue forecasting. This technique [81] is a direct method for pointwise forecast,
using locally decaying kernels. Suppose that y is a smooth volume measure, and p, is a C?,
strictly positive definite, locally decaying kernel, which is Markov with respect to y, i.e.,

/pe(ny)du(y) = lo.
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Figure 4. Error analysis using theoretical results. The top row shows how the iterative errors of the L63
and L63Rot systems compare with the theoretical bounds of Theorem 4.2. The dashed lines each have slopes
M AL, with At being the sampling interval, and A1 =~ 0.9056 for both the systems. The bottom row compares
the errors from direct forecast with the autocorrelation bound of (4.13). The assumption there that w lies in
the hypothesis space is not met, and thus we see some fluctuations above the theoretical upper bound. Together,
these plots indicate conformity with our theoretical predictions.

Let P. be the kernel integral operator corresponding to p. and u. The core idea of this
technique is the following pointwise estimate (see, e.g., [16, 75]):

(5.4) () = (Pg) ()| < [ Do)l + O () VoeCH(Q), Ywel.

Using a change-of-variables formula, one can write

(PU'9)(w) = [ pulw) (U0 @)du) = [ pelow)o(@)dp(e).  take o' i= 2
= [ pio, 7@ ),
Therefore
(5.5) U'd)(w) = /Pe(wa W) P(w")d(PLp) (W) + || DU ) (w) | O (e) -
In the above inequality the integral is approximated as

1 N-—1
/pe(w, O~ )p(w")d(PLp) (W) R 7 D pe (s wn) d(wni).
n=0

One of the major drawbacks of this method is that the pointwise approximation deteriorates
as t increases, since the function U'¢ becomes increasingly oscillatory.
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Diffusion forecast. This involves choosing an orthonormal basis {¢; : j € N} for some
choice of a Hilbert space H, choosing the size of a truncation L, setting Hy, :=span {¢; : j =
1,...,L}, and setting

UL = r Uny, U}LL) =, U g,

where 7y, : H — Hj is the orthogonal projection. U (L) and U,(LL) are the L-dimensional approx-
imations of the Koopman operator. Typical choices of H are L?(u) or Sobolev spaces, and
the ¢; are typically Laplacian eigenfunctions, or eigenfunctions of symmetric kernel integral
operators. The choice between U®) and UT(LL) is similar to the choice between the iterative
and direct methods (4.1) and (4.2). However, since these methods are not dependent on an
actual embedding of the dynamics, the error of both of these forecasts grows at the same rate
as the rate of decay of correlations.

Spectral techniques. The diffusion forecast is one among many techniques of approximat-
ing the Koopman operator. A more robust approach is a spectral approximation technique
developed in [32], in which the goal is to approximate the spectral measure of the generator V'
associated with a continuous-time dynamical system. This technique is convergent and works
for any kind of ergodic dynamical system. The Koopman group {U?:t € R} is then approxi-
mated by the 1-parameter unitary group generated by a compact, spectral approximation V
of V. In this technique, U? is not approximated by its action on a fixed subspace of functions,
but on a subspace spanned by approrimate eigenfunctions. This also leads to a discovery of
nearly periodic structures present within the possibly chaotic system.

5.3. Future work. There are several promising directions of research that can be built
upon our framework.

1. Multimodal forecasting: One of the main ideas verified theoretically and via numerical
experiments is that the error of direct forecasts increase at the rate of mixing of the
system, which is usually larger than the top Lyapunov exponent. However, if there
are quasiperiodic components, the direct method is effective in retaining that compo-
nent. On the other hand, the error from the iterative method increases at a slower
rate, but does not preserve the quasiperiodic components of the signal. The iteration
model eventually behaves effectively in an uncorrelated fashion with the true dynamics.
A multimodal forecasting technique would be a combination of these two modes, which
combines their best features.

2. The direct method is essentially 7U" ¢, and the iterative is U" " '7U¢. Another possi-
bility is a k-time step iterative forecast which would be U *71U*¢. As k increases the
leading term 7U¥¢ will have an error that decays according to the decay of correlations.
To make amends, we could incorporate several k’s in a window [1, K] as

K
z a U R rU" .
k=1

3. Yet another idea we are pursuing is ensemble forecasting, which has long been sug-
gested as a prediction technique for chaotic systems [42, 18].
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4. Numerical approximation of optimal feedback function w: A key insight of Theorem 3.1
is that the top Lyapunov exponent of the reconstructed model depends on the behavior
of the feedback function in a neighborhood of the image of the attractor. Theorem 4.2
then shows that this Lyapunov exponent describes the exponential rate at which the
reconstructed model diverges from the true system. In most learning techniques, one
tries to find a feedback function that simultaneously minimizes a fitting error and an
oscillation penalty term. Theorems 3.1 and 4.2 suggest that instead of measuring the
overfitting error via the usual oscillation bond, a good candidate would be to take
into account the behavior of w in a neighborhood of the dataset. The precise manner
in which this ambient space behavior is to be translated into a penalty function is a
promising field of research. A related and inseparable question concerns that of an
appropriate choice of hypothesis space.

5. Effect of noise: Our techniques have not addressed the challenges posed by noise,
either in measurement or dynamic. It is well known (see, e.g., [74]) that measurement
noise could be hard to distinguish from chaos and can severely restrict the accuracy of
even short-term predictions. Numerical averages rely on ergodic convergences, and the
stability of ergodic averages to noise is a complicated and broad question of its own.
Stability results have been shown in systems with Sinai-Ruelle-Bowen (SRB) measures
[77, 10]. In such settings, the use of Kalman filtering in a model-free approach [40, 41]
may yield promising results.

6. Review of nonuniform hyperbolicity. This section provides an overview of the topics
of matrix cocycles and Lyapunov exponent theory.

6.1. Matrix cocycles. Let Assumption 1 hold, and let G : Q@ — GL(R,m) be a measurable
map. Then it generates a matriz cocycle (see [27], [4, sect. 3.4]), which is the map

1dy if n=0,
(6.1) G:QxNy—=GL(R;m), Gnw):=<G(f"'w) - Gw) it n>0,
G(fMw)y=t-.G(f~lw)~t ifn<o.

G is called a GL(m;R)-valued cocycle over the dynamics (2, i, f) generated by f. It has the
property

(6.2) Gm+n,w)=G(n, fMw)-G(m,w) Ywe, Vm,néecZ.

Here the - notation denotes the matrix multiplication. Equation (6.2) is the defining equation
of a matrix cocycle. Conversely, given any map G : Q2 x Ny — GL(m;R) satisfying (6.2), one
has a generator G : Q — GL(m;R) so that G is related to G via (6.1). One of the immediate
consequences of (6.2) is that

G(0,w)=1Idp, G(—n,w)=G(n, f"w)™' VYwe.
When the initial point wg € Q is fixed, we will drop it from the notation and define

G(n—1,5):=G(n—j, fwo) = G(f" 'wo) - G(fwo).
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Matrix-valued cocycles arise naturally in multiple ways in dynamical systems. For example,
if 2 is an m-dimensional manifold and f a differentiable map, then G(w,n) := Df™(w) is a
GL(m;R) cocycle.

Proposition 6.1 (multiplicative ergodic theorem [66], [27 Thm. 4.1, p. 10]). Let Assump-
tion 1 hold. Then there exists a forward invariant set ' of full p-measure such that the
limit

Aw) == lim [G(n,w)*G(n,w)]/?"

n—oo

exists for every w € Q. Moreover, there is a splitting RM = @ézlEi(w) and constants \1 >
<o+ > )\ > —00 such that

1
veE, = lim —In||G(n,w)v|=A\.

n—oo N
The numbers [, \1,...,\; are constant on Q. The subspaces E; depend measurably on w e
and
(6.3) G(n,w)v € E; (f"w) Yve E;j(w), YneZ.

The vector spaces E; are called the Lyapunov subspaces and \; the Lyapunov exponents.
These measure the asymptotic rate of expansion or contraction along the Lyapunov directions.

6.2. Pesin sets. Lyapunov exponents describe the asymptotic behavior of orbits and not
the local differential properties of the map. By Proposition 6.1, at almost every w, the limits
A; are attained along the various Oseledet subspaces E;. However, the rate at which the limits
are attained are in general not uniform or even continuous as a function of w. The Oseledet
subspace of T,,Q corresponding to \; itself is usually a measurable but noncontinuous function
of w.

Pesin sets [64, 66] were introduced to capture the regularity and boundedness in the highly
nonuniform nature of the Oseledet splitting. Fix a constant ¢; > 0, such that ¢; < min; |\;|. ¢
is called the leakage rate. Then there is a nested sequence of compact sets 21 CQs CQ3C---
whose union has p-measure 1, such that for every k € N

e~kaeiman < || DM (w)| B < eFreitan e Vie {1,..., 1}, Vne Z.

Moreover, the subspaces E; vary smoothly on the sets (2.

Although the norm of the Jacobian D f"(w) when restricted to E; grows asymptotically
at the rate eM™, this exact exponential growth need not be attained for finite n. There is a
constant Cxyn(w) = Cnun(w; €;) depending on w such that

1

(6.4) 7CNUH(UJ)

(MmN DM (W) | Bil| < Cnum(w)e™ O VneZ, Vi€l . .

Cnun(w) plays the role of a multiplicative constant, and €; behaves as the extent of fluctuation
around the limiting rate A;. The decomposition into Pesin sets imply that if w is restricted to
Qp, then Oxun(w) can be uniformly bounded by €.
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Thus the Pesin sets 2 have uniformly hyperbolic behavior. However, they need not
be uniformly hyperbolic sets, as they are not necessarily invariant sets. In general f(€) C
Qr+1. Note that if Q is invariant, then it is a uniformly hyperbolic set. Despite not being
invariant sets, Pesin sets are useful for obtaining concrete bounds on the rate of hyperbolicity.
The Poincaré recurrence theorem guarantees that a typical trajectory returns to a Pesin set
infinitely many times. These two properties of recurrence and uniform hyperbolic rates have
been used effectively to establish strong global properties of the system, such as approximation
by periodic points [49], shadowing [78], and metric properties of local stable and unstable
manifolds [53, 54]. These techniques will play an important role in our proofs.

LP Pesin sets. For every choice of the leakage rate ¢, the Pesin sets 2, grow to form
an invariant set of full measure. The rate at which u(€2;) approaches 1 is an important
consideration. It is important for obtaining estimates on various statistical properties of the
nonuniformly hyperbolic system. However, there are not many estimates on how quickly
the Pesin sets grow, except under additional conditions, such as the existence of reasonably
good Markov approximations (see, e.g., [35]). For our purpose, we say that a nonuniformly
hyperbolic system has LP Pesin sets if the function w — Cnun(w;€) is LP-integrable with
respect to w. This property will be used later to obtain global bounds from local behavior in
Theorem 7.1.

6.3. Lyapunov exponents in Euclidean space. Given a dynamical system on F : RM —
RM one has the following alternative definition of Lyapunov exponents:

1 1

Az,v) :=limsup —In lim = [[F"(z+6v) — F"(2)|, zeRM veRM.
n—oco N 6—0+ 5

Lemma 6.2. Let T : RM — RM be a C' map, with an invariant ergodic measure fi with

compact support X. Let TxRM = E1 @ Ey®---® E), be a splitting of TRM restricted to X. Let

A1 be the maximal Lyapunov exponent with respect to the measure . Then for p-a.e. z € X,

A1=max sup A(z,v)=  sup A(z,v).
1<i<k yeE,(2)\{0} veT.RM\{0}
The proof is a direct consequence of the definition of Lyapunov exponents and will be
omitted. We next consider a special type of perturbed sequences of points.
Pseudotrajectories. Let T : RM — RM be a C' map on a manifold M, with an ergodic
invariant measure g with compact support X. Fix a sequence of positive numbers (cj)]o-‘;o and
initial point zg € X. Now define

(6.5)
8 (20, (e)3%0 ) = { (20)320 €RM + 20iy = T(20), dlzh 11, 2001) < cndl(21,20) ¥ €N,

S (6;z0, (cj)]?’;(J) = {(zj);.io €S (zo, (cj)ﬁ()) s d(2),20) < (5} )

Thus S(z0, (¢j)52) is the set of all pseudotrajectories 2z, € R™ such that at each stage n, 2,41
is the image of a perturbation z/, of z,. Moreover, the perturbation to z,i1 is at most ¢,
times the perturbation to z,. The set S(d;z20,(c;)72¢) is the subset of these sequences such
that the initial perturbation is no more than §. Thus S(zo,c¢) = Us>0S(0; 20,¢). The figure
below illustrates such a sequence in S(d; 20, (¢;)720):
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20 —L— T(z0) —L— T2(20) —L— ... — T Tn(z)

| |
iJrﬂo i
’ T o ’ |
2y —— 21 =T (%)) |
|

e
A |
AT =T 1
| |
i-&-gz i

2 L =T 2 =T )

The top row shows the reference trajectory {7"zp : n € Ny}, starting at an initial point zp.
At each time step n =1,2,..., z, is the image of a point 2/, _,, which is a S;L,l perturbation
of the earlier point z,_1. The magnitude of S;L is bounded by ¢,_10,—1. Thus at every stage,
the error accumulates and is scaled by the factor of at most ¢,,. The magnitude of the initial
perturbation is ||56H < 4. Such perturbed sequences arise in our proof of Theorem 3.1. We
study the rate of growth of the divergence between the two trajectories, as a ratio of the initial

error magnitude §. The maximum possible deviation after n steps can be written as

dev(zg,n,d) :=sup {d(zn,Tn(Z())) : (zj);io cS ((5;z0, (cj)(;io> }

We are more interested in the growth of this deviation as a multiplier of the initial error
margin ¢, namely,

1
dev(zp,n) :=limsup —dev(zg,n,d).
6—0+ 4

We next derive the asymptotic rate at which these rates of divergence dev(zp,n) grow.

Proposition 6.3 (§-pseudotrajectory). Let T : M — M be a C* map on a manifold M, with
an ergodic, nonuniformly hyperbolic invariant measure i with compact support X. Assume
the motation in (6.5). Let (¢j)52, be a sequence of positive numbers for which the limit C' =

limpy oo % Z;V:o Inc; exists. Then

1
limsup —Indev(zg,n) < A\i(7) +C, fi-a.e. zp € X.
n

n—0o0

The proof is a direct consequence of the local stable/unstable manifold theorem [66, sect. 6]
and will be omitted. Let ¢ : X — RT be a continuous function. Now define, similarly
to (6.5),

(6.6) S (z0,¢) == {(zj);io s 21 =T (21,), (2415 2nt1) < c(zn)d (2, 2), Vn € N} ,
S (0;20,¢) := {(zj);io € S (20,¢) : d(z,20) < (5} ,
sup {d (20, T"(20)) + ()32 €S (0:20,€) }

dev(n,d; zg,¢) :

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/23 to 129.174.240.213 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEARNING THEORY FOR DYNAMICS 2107

Proposition 6.4 (d-pseudotrajectory II). Let T : M — M be a C* map on a manifold M,
with an ergodic, nonuniformly hyperbolic invariant measure i with compact support X, and
c: M — R is a continuous map. Assume the notation in (6.6). Then

1 1
lim sup — limsupIn —dev(n, d; zp, ¢) < A1 (f) + /lncdu.

n—oo T §0+ o

Proof. Set ¢j := ¢(zj). Then as 6 — 0, the sum %Z?:_ol Inc¢; converge by the uniform
continuity of ¢ and the ergodic theorem. Thus Proposition 6.3 applies. |

7. Cocycles with random perturbations. This section investigates a type of dynamics
that we shall call a perturbed random cocycle in (4.8). The results in this section are of inde-
pendent interest, but also directly apply to our study of the growth of error under iterations
of the reconstructed system (1.4). We shall later use them in the proof of Theorem 4.2.
A version of perturbed random cocycles was investigated by Barreira and Valls [6, 5] in the
context of nonautonomous differential equations of the form

Do(t) = AL) + Fpesaot (0(0), )
in Euclidean space. The nonautonomous behavior is due to the dependence on the time
parameter t. In our case, for a fixed initial state wy of the underlying dynamical system
(€, f), the time dependence is via the orbit of wy. The authors assumed that the function
Jperturb decays at a polynomial rate with respect to the norm of v, a property not applicable
to our case. We shall study the problem in more generality.

Consider dynamics of the form

(71) Zn+1 = Grzn + d?’b+17

where the z,’s and d,,’s are m-vectors, and the G,’s are invertible m X m matrices. z,
represents a state vector. The G,,,d, form a sequence of random matrices and perturbation
vectors. If we assume that the source of this randomness is the dynamical system (€2, u, f),
then the iterates of (7.1) can be realized as iterates of the skew-product map

(7.2 F:0xRY 0 xRY, F:<5>H<G(w)zfrd(fw)>’

where d € L%*(Q, u;RM) can be interpreted as a random perturbation vector. We call the
system (7.2) a perturbed random matriz cocycle. If we fix an initial state (wg,2p) and set

Zn = projoF" (wo, 20), Gpn:=G(f"wo), dn:=d(f"wy), n€Np,

then we get (7.1). Iterating (7.1) n times gives

n—1 n
(73)  zn=[Gn1--Golzo+dn+» [Gno1--Gildj=G(n—1,0)20+ Y _G(n—1,5)d;.
j=1 j=1
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Equation (7.3) can be rewritten in terms of (7.2) as

(7.4) F*" (w,2) = (f"w, G(n,w)z + (¥"d) (w)),

where

(7.5) (9"d) (w):=> G (n—j, flw)d(fw) eR?
7=1

for every n € N. We shall call this map W" the graph-transform operator. If one views the
map d as an R%valued graph over €2, then U"d is a new graph over Q. Also note that the
transformation is linear in d, justifying the name of “operator.” Moreover,

(7.6) Wu=0, Vu=u Vu:Q—RL
Moreover, if the initial value zg =0, then
Zn(w) =projo F"(w, 20 =0) = (V"d)(w) VneN.

By (7.4), the growth of z, depends on the initial value zy only through the action of G(n,w),
which is well tractable by the multiplicative ergodic theorem. We are mainly interested in the
remaining part, i.e., the behavior of the operator ¥". In the following theorem, we shall use
AF to denote max(\;,0).

Theorem 7.1. Let Assumption 1 hold and suppose G is a GL(m;R)-valued cocycle as in
(6.1), (6.2), along with a perturbed matriz cocycle as in (7.2). Assume the notation of the
associated Oseledet splitting as in Proposition 6.1, so that the vector-valued function d has the
splitting

d=a_dV, d9eE®,

Finally let U be as in (7.5). Then the following hold:
(i) Suppose d is essentially bounded. Then for p-a.e. w €€,

i o] -

. Cnun(w)O (e(’\j“l)") asn—oo V1<i<r,
where A\ :=max()\;,0).
(ii) If the system has L? Pesin sets, then

(7.8)
[rra],.,

|

()HC’NUHH%Z(M)O(e()‘:r“")") asn—oo V1<i<r.
o

Proof. To gain more insight into the growth of z,, we use (6.2) to get

n

(U"d) ( Zg (n—j, flw)d (flw) =G (n—j, fw) G (j,w) G (j,w) " d (fw)

=1

(n,w) Zg (Jyw fjw)
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We have thus related the error in the prediction to the growth of the vector G(n,w). The
growth of the matrix G(n,w) with n can be estimated using Proposition 6.1. Broadly speaking,
the different Oseledet subspaces grow approximately at rate eM™ under the action of G(n,w).
We now estimate the growth of the components of the summand along the Oseledet splitting.
Define

¢j(@)=G(G:w) d(fw), &) (w)=g(Gw) " dD (fw).
Then we have
(79) G (n—j,fw)d(fw) =G (nw)ew), G(n—jfw)d? (fw)=Gnw)e w).
The analysis of the growth of this term will depend on the sign of A;.
Case: A\; > 0. Then

e @)]| = | 96.w) aD ()| < 166G ) g | [ (i)
< Onun(w)e 19 d(i)(fjw)H i
Therefore by (6.4) and (7.9),
Y RV IVR I R A T
SC’NUH(w)e"(/\ i+ eI (i) |1 g®) fjw H
Thus A; > 0 implies
(7.10) | (va®) @) < i |g(n - ) d® (p70)
j=1
< Onun (w)2enite) Zn: eI || a) (fie) H ,
=1
At this point the following identity is relevant to uS]:
(7.11)  enAro ane—jw—e) _ (g nirto e 9 e

n(Xi+e) _ 2e
- P Vs e Ry [e € }
]:

=¢0 <e”()‘i+€)>

for some constant ¢; > 0. Suppose that d is essentially bounded. Then (7.10) and (7.11) give

o(e0).

This proves claim (i) for the case \; > 0. Now suppose that the map has L? Pesin sets.
Integrating both sides of (7.10) with respect to w and then summing according to (7.11) gives

e O <en()‘i+€)) .

Ai>0 = H (ll’”d(i)> (w)H < ||d®

(7.12) H\Iﬂld(i

/H \I/”d Hdu <C2Hd
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Case: \; < 0. Suppose that w € Q. In this case note that for each 1 <j <mn,

|9 (=5, ) a® (57) | <116 (= 5 7)o (570 |
< e(n=DAita) g (k+i) H d (fiw) H _

Summing over j gives

(7.13) <0 = H(\ynd(i>) (w)ngkelen(Ai‘f'el)iej)\l

j=1

d (fiw) H .

The rest of the analysis is similar to the previous analysis, now made simpler by the fact that
A; <0 and the right-hand side above is bounded uniformly with respect to n. This completes
the proof of theorem. [ ]

8. Proof of Proposition 2.1. Proposition 2.1 is a direct consequence of a result of J.
Stark, which we state below.

Skew-product systems. Let €,Y be smooth manifolds, and let T : (z,y) — (fz,g(x,y)) be
a skew-product map on Q x Y. For every n €N, let ¢/ : Q x Y =Y be the map such that

T"(2,y) = (f"x,g(”) (a:,y)) V(z,y) e Qx Y.

Lemma 8.1 (invariant graphs for skew-product systems [73, Thm. 1.3]). Assume the nota-
tion above, and suppose that the following hold:
(i) f is a C*T% diffeomorphism and there are constants p>0,C >0 such that ||Df~"| <
Cge’m.
(ii) There is a closed and f-invariant subset Q C ().
(iii) There exist constants X\,C3 >0 such that

(8.1) Lip (g(") (x, )) < Czexp(—An) VzeQ.

(iv) g is uniformly C1*® on compact sets.
Then there is a continuous map @ : Q =Y such that the graph of ® is invariant and
globally attracting under T'. Moreover, for every v € (0,a] such that p(1+~v) < A, ®
is C1*7 in the Whitney sense.

Note that for every n€ N, x € Q, yey,
gV =g, ¢ (z,y)=g (f"(W)yg(”) (z, y)) ~

For our purposes, set Q= and Y =RZ, and let f, g be smooth maps satisfying Assumptions 1
and 2 and (2.1). Then clearly all the conditions of Lemma 8.1 are satisfied. Thus there is a
smooth map ® : ® — RY whose graph is invariant under 7. This completes the proof of the
proposition. |
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9. Proof of Theorem 3.1.

9.1. Proof of claims (i), (ii). Claim (i) was proved by Dechert and Gengay. We restate
their result using our terminology. Although they prove their result in the context of delay-
coordinate maps, their proof is based on a commutation identity [24, eqn. (3.4)] which also
holds in our more general case.

Lemma 9.1 (see [24, Thm. 3.1]). Let M, N be C' manifolds of dimension m,n, respectively.
Let f: M — M and g: N — N be two C' diffeomorphisms, conjugate via a C* map J : M — N
as goJ =Jo f. Let p be an invariant ergodic measure p of f. Let A\i(f,u) > -+ > A\ (f, 1)
be the distinct Lyapunov exponents of the ergodic system (f,u), and let E1 & --- @® E, be the
corresponding Oseledet splitting.

(i) For every 1 <j <r, \j=X\;(f,n) is also a Lyapunov exponent of the ergodic system

(g, Jxpt). The Oseledet subspace of TN corresponding to \j contains the subspace
DJ(Ej).
(i1) In particular, the Lyapunov exponents of g contains as a subset the Lyapunov exponents

of f.

In our case, the conjugation is via the map
hi=(¢,®): Q—RIHL

We next prove claim (ii). Under our assumption of ergodicity of i, the Lyapunov exponents are
constant p-a.e. and coincide with their averages. The semicontinuity of averaged Lyapunov
exponents is well known, either as functions of the map [11, Prop. 2.2.] or as a function of a
cocycle over a fixed base dynamics [76, Rem. 1.4].

9.2. Proof of claim (iii). Fix a generic point wy € supp(i) and set

20 := (¢(wp), (wo)) = h(wo).
zp is a point in X. To determine the maximal Lyapunov exponent of 7, we have to de-
termine the maximum rate of deviation of orbits under perturbations. By Lemma 6.2, it is
sufficient to consider the perturbation to occur either only in the first d coordinates or in the
last L coordinates in the space R4TL. We call these ¢-perturbations and ®-perturbations,

respectively.
¢-perturbations. First perturb 2o to 2} = (¢(wo) + &, ®(wp)) for some § € RY. Then

T(20) =T (¢(wo) + 0, ®(wo)) = (w o D(wp), g ($(wo) + 6, D(wn))) -

Therefore setting &' = g(p(wp) + d, P(wp)) — g(d(wo), P(wp)), we get

01 T(a0(5)) =T+ () 1l<lolays

Thus by Assumption 3, the map is contractive under ¢-perturbations. In light of this obser-
vation, it is sufficient to bound the rate of growth of ®-perturbations by A;(f).
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®-perturbations. Next perturb zg to z) = (¢(wp), ®(wo) + o) for some dy € R, Then

" B(wo) _ w (q)(w()) +§0>
T (20) —T<q><wo>0+50> g (¢(w0),<1>(w0) +50>

We wish to show that if one starts with a ®-perturbation of zy, then after one iteration of T,
one still ends up with a ®-perturbation with the image of a perturbed point. More precisely,
we have the picture

o, v T

20 ) Z1
(9.2) HO"%) b(oﬁl)
z T s Tz

as described below.

Lemma 9.2. Let Assumptions 1, 2, 3, and 4 hold. Let zg = h(wo) € X, and let 2 be a
d-perturbation of zg by a vector Se RL Then there is a point z1 € X such that the following
hold:

(i) 21 =T (z]) for some point z{ € X such that the perturbation € := z{] — zo has length

at most C¢7q>,ret(w0)||50\| fmm 20, where

C¢,<I>,ret (w):=(1+ C¢,<I>(w)) Kret Vw € §L.
(ii) T(2) is a ®-perturbation of z1 = T (z)) with perturbation magnitude at most [1 +
C¢,<D ret(wo)] HéOH

Before proving Lemma 9.2 we show how its repeated application leads to a proof of
Theorem 3.1 (iii). Repeated applications of (9.2) gives

(9.3)

20 AL 2 T, ., 4 2 T o > Zn e 2 T, 41 N
b(o.so) b(o.&) [+05) b(o,&) [+(0512)

2 T Tz, T 722 > Tz T Tz b

Thus we have the following.

Lemma 9.3. Let Assumptions 1, 2, 3, and 4 hold. Then for every wo € Q and any -
perturbation z{, of zy = h(wp), there is a sequence of points z{j,2},25 ... € X such that for
every n € N, the following hold:

(i) T™(2() is a ®-perturbation of the point z, :=T (z))).

(ii) Since the points 2! and z, lie on X, there is a sequence of points wy, :=h~1(2,) on Q.

(iii) The perturbation &, :=T™(z)) — zn satisfies ||| < [1+ C¢,gret(wn—1)]\\gn—1|’~

(iv) The perturbation €, := z), — zy satisfies ||€,]| < Cy o ret (wn)||0n-

Combining Lemma 9.3 (ii) and (iii) gives

HgnH :d(Z Zn < H(SOHC¢,<I> ret wn H 1+C¢,€I> ret wz)]
1=0

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/23 to 129.174.240.213 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEARNING THEORY FOR DYNAMICS 2113

Thus the sequence z, is a pseudotrajectory, and similarly to Proposition 6.3 it follows that

inf A\ (w) — Ai(f,p) < /ln 14+ (14 Cpa(w)) Kret) dpp(w).

wes
This completes the proof of claim (iii) and of the theorem. [ |

9.3. Proof of Lemma 9.2. Lemma 9.2 is where Assumption 4 is needed. We first show
how a neighborhood retraction of the attractor leads to an extension w of w.

w from retraction. Since ret is a retraction, we have ret|X =Idx. Let projs: RIHL - RE
be the projection onto the last L coordinates. Note that Uy := pI‘Oj;l(Z/{) is a neighborhood
of X in R*L. Now define

b= (Up)od toret:U —ran ¢
and
a:=d toretoprojs:Ux — Q.

Then we have the following commutations.

o 2
/,j“,// Ucbl o1
(9.4) Ux oo, U ==--"---5 ran
CT TC ret
X —> ranq) ran ®

Note that by definition, « is a continuous map which coincides with ® ! oprojs when restricted
to ran ®. Moreover,

(9.5) U¢ o a=w o projs.

The construction. Set wjy = a(z}) and z{j := h(w()) and w; := f(w(), as shown below:

wo wy —— w1

J{h / lh lh
+(0760) / 17 T

20 ——— % 2y —— 21

Proof of claim (i). We first obtain a bound for ®(w() — ®(wp). Note that
o)) =doa (zo + (0, 50)) ® o0 ® ! oret o proj (zo + (0,50)>
=ret o projs <zo + (0, (50)> =ret (Cb(wo) + 50> )

Therefore

—

(9.6) |2 (wh) — @ (wo)]| = 5

ret (Cb(wo) + 50) —ret (q)(wo))H < Kret
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We next estimate the gap ¢(wj) — ¢(wo). By the definition of the constant Cy ¢(wo) and by
(9.6),

(9.7) [6(wp) — ¢(wo)|| < Co.0(wo) [[@(wh) — @ (wo)|| < Co,o(wo)riret

-
Equip the space R*E with the norm ||(z,y)||ge+s := ||2||ge + ||y||gz. Then we have

=5~ bl = | | o0t | - | aee) | | = llote ~ oendl + oter) - o) - o]

< (1+ Coalwn) et 8] 109.6), (9.7,

-

ofl -

=9

= C4 . ret(Wo) ‘
Similarly, we have
(9.8) 16 — 201l < 126 = 20l + [120 = ]| = [+ Co 0 (w0)] ||

This completes the proof of claim (i).
Proof of claim (ii). Next, by the contractiveness of g from Assumption 3,

by (9.8) .
(9.9) lo () =g )l <[z =l < 11+ Copantwo)] [

We have from definition that
proja(z1) = projg o h(wi) = projg o ho f(wpy) = proja o T o h(wy) = g(z ).
Thus

by (9.9) .
9.10)  [|proja(z1) — projz o T(:6)|| = [l9(z6)) — ()| < [1+ Copen(wi) |50

Finally set 3 := ®(wo) 4+ 6. Then note that

proji(z1) =projj o h(w1) =projioho f(wé) =projjo7T o h(wé) = w 0 Projs o h(wé)
—wod(wh)=wodod toret(y) =w(y)
=proji o T (z)).

This completes the proof of claim (ii) and thus of the lemma. |

9.4. Proof of Corollary 3.4. Corollary 3.4 satisfies the conditions of Theorem 3.1. The
claim will be proved if it can be shown that Cy ¢ < é + QO (Ab).

Do(w) = (D® (¥°4%w), DO (¥~2w) ..., DO (9@ D)),

Since ¢ is a C? function,

| D¢ (P9%%w) — D® (w)|| = O (Jq|At) as At—07.
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Thus

ID®(w)[| = Q|D¢ ()| +Zo gAl) = QD¢ (w)|| + Q0 (At) as At— 0%,
Therefore

Conle) = [ Fa(ll = TR + QOTar ~ g + Q04 w A0
This proves the claim. m

10. Proof of Theorem 4.1. By (4.4), the direct forecast error can be expressed in terms
of the Koopman operator as

erTordirect (1) 1= [[U" ¢ — projwU" ¢ || 12,y = [|(Id — projw) U || (. -

as claimed. To proceed further, we have to separately examine the components of ¢ along D
and its complement. For that purpose, define

0@ :=projpe, ¢ :=¢—¢l¥

This decomposition is possible due to the linearity of U™ and the invariance of the subspaces
D, D*. Therefore

(10.1) errorgirect () = || (Id — projy) U”qu%z(u

= || = projw) U6

+ H (Id — projy) U ¢@ ’

L2(n)

We call them the discrete and continuous components, respectlvely, and analyze them sepa-
rately.

Continuous component. We begin with a review of some concepts from ergodic theory
related to mixing.

Lemma 10.1 (weak mixing). Let (Q,u, f) be a measure preserving system, with the splitting
as in (1.1). Then for every ¢1,€ DL and every ¢o € L*(p),

lim *Z’ ¢, U™ ¢2 L2(p _U(¢1)M(¢2) =0,
lim <<Z>1,U $2) 2(u) = K (D1) 1 (D2)

NeN' ,N—oco
where N’ is a subset N with density 1.

Proof. The first identity follows from [39, Mixing Theorem, p. 45]. The second identity
follows from [55, sect. 2.1]. [ |

If N” above can be taken to be N and D = {constant}, then the system (€, f, ) will be
called strongly mixing. In other words the following holds:

(102) ]\}E;noo <¢1,UN¢2>L2(“) :H(¢1)M(¢2) v¢17¢2 € LQ(H)
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We are now ready to prove the following:

i — proiw) U"é© _ H ()
(10.3) ol H(Id projw) U6 | <o .
We will in fact prove the stronger result
(10.4) lim  projyUm¢® =

neN’ ,n—oo

Proof of (10.4). By (4.3), W is spanned by a finite orthonormal basis {to;:i=1,...,M}.
Then note that

M
projwy = Z(mz‘, )i V€ L (p).

i=1

Therefore,
M
. () : b, )
ol PROMUTO = i 3 (1o U9

=1

M
—Z lim (w0, U"6) i = D ja(r03) ()i = 0.
i=1

nEN’,n—>oo

The identity in (10.4) now follows.
Discrete component. Next, let z1,z2,... be an orthonormal basis for D in terms of the
Koopman eigenfunctions. Then one has

projpto; = Zamzj, 1<I<M, aj:= <Zjaml>L2(u)'
J

Let II be the N x N matrix defined as IL; j, := (72;, 72k) 12,y Then

M M M
Zalkal,J D (1, 20) £ (25 00) 12y = <Z<Zk;ml>L2(M)ml,Z<Zjaml>[,2(u)ml>
L2 ()

=1 =1 =1

= <7TZj,7Tzk>L2(M) = Hj,k-

Now let ¢(@) = > ®;j%j- Then Ungld = > ¢je " z;. Therefore,
(o0, Um6®) = (proiown U6) Z¢ €M (01, 25) 12 ) = Z% it .

Therefore,

M
U™ Z (001, U"$) 12,y 01 = qus] “wingy oy

=1 g3
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Note that the infinite sequence qz; = (¢)jen is an £? sequence. Define the operator

F 22 (f&)j =e%ig; VjeN.
Then
HwU”qﬁ(d)‘ ;(#) = %: Prpje e é ay a; = (J-'”q;) I <f"5> :
Therefore
(10.5) H (Id — projyy) U%(d)’ ;w) — & F 1d — T F*d.

The operator F is a unitary operator which is diagonal with respect to the usual basis of £2.
Thus
2

i — proiw) U™ (d)’
(10.6) ngrlldH(Id projw) U™ ¢

=0.
L2(p)

If the hypothesis space is increased, then II converges strongly to Id and the above limit is
approached. Thus for any € > 0, if W is large enough, then ||(Id — projW)U”¢(d)H%2(M) <e.
Proof of Theorem 4.1. Claim (i) follows from (10.1), (10.4), and (10.6). In claim (ii), if
(f,u) is weakly mixing, then D = {constant}, and thus ¢(?) is just the average u(¢). The
claim now follows from (10.1) and (10.4). Claim (iii) follows from the definition of strong
mixing and (10.2). In claim (iv), D+ = {0}, and the claim follows from (10.6). [ |

11. Proof of Theorem 4.2. We next look at the iterates of the map 7 in (1.4), with initial
conditions in (1.6). Let w=1w; as in (4.4). The following identity will be used repeatedly:

(1L1) @ (U®) =dodof* LY (brojwlUe) o f* = UprojwlUé = UrUé Vn €N.

The proof of (4.10) will be by induction on n. For the base case, note that

21 = 21 (wo) = T (20) = [t (®) g 0 (6,®)] ‘2 [xUg, UD],

and thus Au; = a; = 0¢ and Ay; = by = 0X. Next suppose that the statement is true up to
some n € N. Using the notation in (4.9) we have

1 = (yn) = (U"® = Ayy) = (U"®) = Ditly=o Ay + O (|| Ayal?)
—U"7UG— W (f"(-)) Aya+ O (|Agal”) by (46), (11.1),
So

AUnJrl = UTLWUQZ’ — Up+1 = W (fn()) Ayn + 0O (||Ayn||2> ’
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Similarly,

Ynt1 =0 (Un,yn) = g (U" 70U — Au,, U — Ayy,)
=g(U"¢— Au, —U" TAUS,U"® — Ay,)
=g(U"$,U"®) = Viglnosn (Aun +U" T AUG)

~ Vaglhor»Ayn + O ([18u]*) + O (|| Aya*)
= U = GW (1) Aup — G (£7() Aya +(£7()
+0 (l1aun]?) +0 (I1agalP)
So
Aypi1:=U"10 —y, 44
=G (7)) At + GD (£7()) Aga + (7)) + O (1 Aual*) + O (1 Apal?)

Combining we get

(11.2) [ tn } =M (f*() [ o } + [ c(f}l(-)) ] 0 (Aufg)iynO?Ayﬂ)

Yn+1 Yn

The evolution equation (11.2) for (uy,yy,) is thus the addition of the Taylor series error terms
to the evolution equation (4.8) for (a,,b,). Claim (i) and (4.10) immediately follow. Since the
evolution of (ay,by) is that of a perturbed random cocycle, Theorem 7.1 applies and Claims
(ii) and (iii) follow. This completes the proof of Theorem 4.2. [ ]
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