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Abstract

We consider the effects of mixing by smooth bilipschitz shear flows in the
linearized Euler equations on T; x R. Here, we construct a model which is
closely related to a small high frequency perturbation around Couette flow,
which exhibits linear inviscid damping for L sufficiently small, but for which
damping fails if L is large. In particular, similar to the instability results for
convex profiles for a shear flow being bilipschitz is not sufficient for linear invis-
cid damping to hold. Instead of an eigenvalue-based argument the underlying
mechanism here is shown to be based on a new cascade of resonances mov-
ing to higher and higher frequencies in y, which is distinct from the echo chain
mechanism in the nonlinear problem.

Keywords: inviscid damping, Euler equations, fluid echoes, instability

Mathematics Subject Classification numbers: 76E05, Secondary: 35Q31,
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1. Introduction

We are interested in the long-time asymptotic behaviour of the linearized 2D Euler equations
near monotone shear flows v = (U(y),0) in a periodic channel T; x R or circular flows
v = rU(r)ey on R?. After possibly relabeling the log-polar coordinates and considering
weighted spaces (see [CZZ19, Zil17]) both settings can be considered in the framework

0w + UOw — B0 A 'w =0, (1)

where 3(y) = U”(y) in the plane channel setting. The question of stability of shear flows has
a long history, where we in particular mention the stability results of Rayleigh and Fjortoft
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[Dra02] (for the linearized equations) and of Arnold [Arn66]. Unlike the setting of mono-
tone flows considered in this article, these stability results rely on convexity. More precisely,
Rayleigh’s and Fjortoft’s theorems show that if U is convex, then the linearized Euler equations
cannot be exponentially unstable in the sense that there cannot exist solutions of [1] of the form
eMwo(x, y) with ®(A\) > 0. However, the solutions may nevertheless be algebraically unstable
in the sense ||w()||;1 — oo as r — oo with a power law rate. Indeed, one explicit example is
given by U(y) = y.

The stability mechanism which is the focus of this paper instead exploits monotonicity and
mixing by shearing. The prototypical example here is given by (Taylor-)Couette flow, which
we recall in the following. In the (Taylor-)Couette flow case U(y) = y and 3(y) = 0 and hence
the equation has an explicit solution

w(t,x,y) = w(0,x —tU(©), ).

We observe that the H' norm of this solution diverges to infinity as  — oo (for 9,w(0) non-
trivial) and the L? norm of w(f) remains constant and in particular bounded. However, w(f)
converges weakly in L? (but not strongly) to its x-average. As a consequence due to compact-
ness in the Biot—Savart law the velocity field strongly converges to an asymptotic profile as
t — 0o. This phenomenon is known as (linear) inviscid damping. While results for this spe-
cial case follow by explicit calculation, the study of the asymptotic behaviour of non-trivial
flows has been an area of active research in recent years, where a guiding question has been to
understand how robust this mechanism might be.

In this article, we construct a negative example in the form of a small sine wave perturbation
to a linear shear

UG) =y +c sin(y)

with || < % More precisely, for simplicity of calculation we consider the approximate system

U =y, B =c sin(y),

which we introduce in section 2. We thus omit a term c sin(y)0, compared to the linearized
Euler equations. Here we remark that in the setting of large period L in x and for small fre-
quencies one may heuristically expect that 9, ~ L' is negligible compared to d,A~" ~ L.
However, we do not establish error bounds on this approximation in this paper.

We stress that U(y) is Bilipschitz and smooth and that S(y) is small and analytic. Our choice
of U(y) = y is motivated by the existing linear and nonlinear damping results for Couette flow,
where strict monotonicity and the associated shearing mechanism serve to stabilize the flow,
but require either smallness conditions (see for example [CZZ19, Zil16]) or non-resonance
conditions (see for example [WZZ17]). More precisely, one needs to require that the linearized
operator

U)oy + U"(y)0,A™!
has no embedding eigenvalues, which is not straightforward to check. As a related result on

eigenvalue instabilities we mention the work of Lin [Lin03], who shows that if U has an
inflection point y, inside an interval / and

o U//(y)
KO==1m = vow

is positive and

—87 — K(y)
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has a negative eigenvalue, then linearized Euler equations on R x I is exponentially unstable
(that is, there exists an eigenvalue with positive real part). Furthermore, we mention that there
has been much interest in the instability of Kolmogorov-type flows U(y) = cos(my) withm € N
large, e.g. [FH98], for which K(y) = m? is constant. One aim of this article is then to understand
how such an instability mechanism at the level of U” may interact with shear and mixing by a
monotone profile U(y).

In view of the stability results exploiting convexity which we mentioned in the introduc-
tion, we note that there are special settings in which the shear profile is both convex and
monotone and one can exploit both mechanisms. In the article of Bedrossian, Coti Zelati and
Vicol [BCV17] on circular flows, monotone, convex profiles are considered and no smallness
condition is required. However, we observe that convexity by itself is only sufficient given a
beneficial sign. Indeed, in the sense of Arnold’s theory Kolmogorov flow, U(y) = cos(y), is
strictly convex with %N = —1 < 0, but is known to be nonlinearly stable only on a short torus
T, x T, L < 1 but unstable on a long torus L > 1, [MS61].

Our main question of this article concerns the robustness of the stabilization by shearing
for Bilipschitz, non-convex profiles for short and long tori, in analogy to the results on Kol-
mogorov flow as a convex flow. Here, as in other works on (phase-)mixing [BM15, BMM16,
MV 11] it is useful to work in coordinates moving with the shear and consider the profile of the
vorticity

W(t, x,y) =w(t,x + 1y,y).

As observed for instance in [LZ11, theorem 3] and to some extent already in the classical work
of Orr [Orr07], control of W(¢) in Sobolev regularity allows one to deduce asymptotic stability
and damping of the velocity field by the estimate

o) — /T olt,x, )2 < CA+ 07 W

[0(®) - €2l ;2 < CA + 7 |WD)| 2.

In this sense inviscid damping of the velocity field follows as consequence of the stability of
the profile W. Our main results are summarized in the following theorem.

Theorem 1. Let ¢ € (0, %) and consider the following linear problem
Ow + yOuw + ¢ sin(y)d, A" w =0, 2)

on the domain T, x R with initial data w,. We consider this equation as a perturbation of the
transport problem 0, + y0, (by a compact operator) and study the stability of the profile

W(t’ X,)’) = w(ta X+ ty’y)’

which moves with the shear dynamics.
Then if cL < % it holds that for any s > O the evolution is stable in H® in the sense that
there exists Cy such that for any time t > 0

IWO|lms < Cllwollrs-
Furthermore, there exists Cy such that if the Fourier transform of wy satisfies
Jeall = [ expcClnblFentf <
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Sfor some C > Cy, then also HW(I)HQLGC0 < oo for all times.
On the other hand, suppose that ¢ < 11—0 and L is such that cwL > 20, but 7c*L < 1 (e.g.

choose L ~ ¢=3/%). Then there exists smooth initial data wy (compactly supported in Fourier
space), a frequency k and d > 1 such that its Fourier transform satisfies

|.FW(IJ‘, k,’l7 = k[j)‘ > dtj

forallt; = j & N. That is, the evolution is exponentially growing along a sequence of times.

The growth mechanism in the second result here is not given by an eigenfunction construc-
tion, but given by a new cascade mechanism which propagates in the frequency 7 associated
to y. We stress that this resonance chain is distinct from the one considered in [BM15, DM 18]
which propagates in the frequency k associated to x (see section 3). In the regime of large
period L it is, to our knowledge, not known whether the problem [2] may additionally pos-
sess eigenvalue instabilities (for w). Our main aim in this article thus lies in establishing the
cascade mechanism as a new, interesting instability/resonance mechanism, which also yields
exponential growth (of W).

For simplicity of calculation and presentation we neglect the effects of boundaries and con-
sider the setting of an infinite periodic channel T; x R. We however expect that our results
should extend with moderate technical effort to the setting of smooth compactly supported
perturbations to Couette flow (which is considered in [Jial9]) and to more general Bilipschitz
flows as considered in [Zil16].

Our article is organized as follows:

e In section 1.1 we recall some definitions and summarize notational conventions used
throughout the article.

e Insection 2 we first establish global well-posedness of the equations and some rough upper
growth bounds. Afterwards we establish the stability statement of theorem 1 by means of
a Duhamel iteration estimate. We further present a second proof by means of a Lyapunov
functional, which is very transparent but requires stronger assumptions.

e Insection 3 we analyse the resonance mechanism in detail and how it can excite neighbours
of resonant modes. As our main result we show that if cL is sufficiently large this growth
can be sustained, resulting in an exponential growth rate. In particular, this shows that it
is not sufficient for a flow to be smooth and bilipschitz in order for asymptotic stability
and linear inviscid damping to hold, but that some further smallness or non-resonance
condition is required. While some eigenvalue instability constructions are available in the
literature [WZZ18], we here present a new cascade mechanism underlying this sustained
growth as well an explicit example.

1.1. Notation

In this article we are interested in the evolution of the vorticity in the linearized Euler equations
around v = (y + ¢ sin(y), 0) or more precisely a slightly simplified system (see section 2) on
TL x R.

As mentioned in theorem 1 and as we discuss in section 2, instead of considering w in
Eulerian (=Cartesian) coordinates it is useful to switch to Lagrangian coordinates and study
the profile

W(t, x,y) = w(t, x +1y,y).
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We then study the Fourier transform of W with respect to both x and y, which we with slight
abuse of notation again denote by w:

w(t, k,m) = Fry (W)L, k, ).

We further remark that, since the coefficient functions in our problem do not depend on x, the
evolution equations decouple with respect to k € ZT’TZ. For this reason we may consider k to
arbitrary but fixed and suppress the k-dependence in our notation by writing w(z, n).

As we discuss in remark 2 and in section 3, due to the structure of sin(y), the evolution
of w(t, ) only depends on w(z, ) if n — 1’ € Z is an integer. Thus, while the Fourier variable
1 € R naturally belongs to the whole space, in section 3 we restrict to discrete classes 1y + Z =
(no — |mo]) with ng — |n0] € [0, 1). For simplicity of notation we here write results for the
specific case 1y — |ny] = 0, so that n € Z.

2. Global well-posedness and Duhamel iterations

The linearized 2D Euler equations around v = (y + ¢ sin(y), 0) are given by:
Ow + (y + ¢ sin(y))0yw + ¢ sin(y)v, = 0.

As the map w — v, = 9, A~'w is compact, we consider the transport by the linear profile to
be dominant, change to Lagrangian coordinates (x + ty, y) and consider

W(t, x,y) = w(t,x + ty,y).
With respect to these coordinates the equation is given by
oW + ¢ sin(y)o,W + ¢ sin(y)@xAt_lW =0, A= 3? +(0y — 10,)°.

Here, our choice of coordinates has the benefit of the very transparent structure of A, lasa
Fourier multiplier. As the coefficient functions do not depend on x, we note that this system
decouples in the associated frequency k, which we hence treat as arbitrary but fixed. Since
our main focus is on considering the effect of long tori (and thus very small frequency k), we
further consider an approximate system

AW + ¢ sin(1»)0, A 'W =0, (3)

where we omit the contribution by ¢ sin(y)d, and with slight abuse of notation denote the
Fourier transform of W by w again.
This then leads to the following system:

c k c

k
1 — -
Y e r I R YN s gy

Ouw(n) + wmn—1)=0. “)
Since the system decouples in k and leaves the mode k = O invariant, in the following we
without loss of generality consider k # 0 and equivalently rescale time as 7 = kz, which yields:

c 1 c 1

hd - Hn--- —1)=0. 5
Py ey g kU R Ve Sy iy gkl ) )
Remark 2. This equation is an ODE system with nearest-neighbour interaction. In partic-
ular, since modes interact only via chains of neighbours, the system decouples into problems
onn € n* 4+ Z, with n* € [0, 1). Considering n* as arbitrary but fixed and with slight abuse of

Orw(n) +
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notation shifting time by n* to prescribe ‘initial” data at that time it thus suffices to consider the
periodic problem n € Z. We remark that this setting would also appear when considering peri-
odic perturbations with respect to Lagrangian coordinates (x + ty, y), which seems physically
unmotivated, but by the above consideration appears naturally due to the decoupling structure.

Roughly estimating the coefficient functions by 575, we immediately obtain the following
suboptimal global well-posedness result.

Lemma 3. Let X = L*(p, ZT"Z x R) be a weighted L? space in Fourier space such that its
weight satisfies

plk,n £ 1)

< Cp < .
k) P(k,n)

This for example includes fractional Sobolev spaces H® or Gevrey spaces.
Then there exists a constant C such that the solution w of [ 5] satisfies

[w(™)|lx < exp(CcL*T)||wol|x

forallT > 0.

We remark that the time variable 7 includes a factor L and that expressed with respect to ¢
the growth factor is given by exp(CcLf).

Proof. We note that

10:wllx < [le w(n £ Dlx < cCL|wllx-

1
P+mtl-—1)2
The result then immediately follows by integrating the differential inequality. (]

While this a priori bound is sufficient to establish global well-posedness, it is far from sharp.
Indeed, the following theorem shows that for cL sufficiently small, the evolution is globally sta-
ble in a Lyapunov sense. In contrast, in theorem 9 we show that if L > ¢!, then this stability
fails and the evolution is exponentially unstable. Here, we stress that the shear profile is Bilip-
schitz and ¢ sin(y) is smooth and bounded. Furthermore, we show that the described growth is
due to a new cascade mechanism, where chains of resonances excite higher and higher modes
in y (while the nonlinear echo chain mechanism excites smaller and smaller modes in x and
stops at mode 1).

As first result, we consider the setting of very small ¢, which is an amenable to the con-
struction of a Lyapunov functional as in [CZZ19]. Here, the simple Fourier structure allows
for a particularly transparent proof. In a second theorem 8 we introduce a different method of
proof by expressing the Duhamel iteration as formal infinite series of integrals over paths (see
definition 6).

Theorem 4 (global stability for small cL). Let j € N and consider the stability problem
forthe PDE[5] on' Ty x R in F. Then there exists Cy = Cy(j) > 0 such that if cL < Cy, there
exists a constant C such that

[w™lgi < Cllwollgi
forall T > 0. Furthermore, &CAt_lW € L?H/ and w converges strongly in ' as T — oo.
Proof. We define the Fourier weight

a(t,n) = exp(Cic arctan(Co(n — 7)),
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with Cy, C, > 0 to be fixed later.
Then it holds that

c

1 _|_ C%(T] o T)z a(T’ 77)|CU(T, 77)|2

d
?a(T’ 77)‘0-)(7', 77)‘2 = _C1C2
T

+ 2a(t,n) w(T,n+ Dw(,n)

c
K4+ m+1—71)72

- 261(7', 77) 20.)(7', n— I)W(T’ 77)

S
R+m—1-1)

We may estimate [w(7,7 £ Dw(r,n)| < $(|w(T, 7+ D|* + |w(7,n)|*) and integrate over all
to obtain:

d/ 2 c 2
— fa(m,n)|wtn]|” < —C1C2/761(T, n) |w (1,7) |
dr J, 21+ Cin—1)?

¢ ¢ )
+/,7“(7’77)<k2+(n+1—t)2 - k2+(n—1—z)2> o 7. m)|

+/(a(7',77— D4a(r,n+ 1))
7

c 2
exm—rp Tl
where we shifted 7 in the last sum. By the definition of our weight a it holds that

(a(m,n =1 +a(r,n+ 1) < exp2Cic)a(r,n)

and that

- + < <4kr——°
R+m+1-77 R+n-1-77%) " 1+ k2(n—7)*

Hence, we may conclude that

d ) C c 2
3 5 ) < - A PN s 5 < Oa 6
dT/na(T mlw T, 2/nk2+(77—7)2a(7 n |w (T, )| (6)
provided that
C=k", (N
) C
CiCy — 2k~ exp(2Cic) 2 5 (8)

We may then fix C, = K<L, C = 4k~', at which point the estimate reduces to 4
— 2exp(2cL) =: C/2 > 0, which is satisfied if cL is sufficiently small.

We note that [6] implies I? stability, since a(7,n)~ 1. Furthermore, as
f a(T, mlw, ||, is bounded, it follows that

c
/nma(ﬂ n|w(r, 77)|2

is integrable in time. Expressing the evolution equation in integral form then further yields the
claimed asymptotic stability in L2.
It remains to establish stability in higher Sobolev norms. We define
aj(T’ 77) = <77>ja(7_’ 77)
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for j € N and further define

Aj(r,n>:=aj(r,n>+/ (’.,)Af(r,n).
J<i-1 \J

Using [6] as the start of a proof by induction, we then claim that

d c )
d7_/7]141‘(7', 77)|w(77)|2 < _2/”]{2_’_(77_7.)2‘41‘(7', n)‘w(n)‘Z. )

Let thus / > 1 be given and suppose that [9] is satisfied for all j < j. Then it holds that

d d d
5/UA;+1(T, M| = 5/770;41(7, Mlwml® + ZE/UA?‘(T’ mwm)|?

<[ ot koP
n

d
+ Z/Ua}H(T, mMw(T, U)EW(T’ )

- ¢ g
n

Plugging in the equation for %w(T, 1) and using Young’s inequality, we again have to control
shifts:

aj (rn 1) = (n£ 1) atr,n+ 1)

,nt1 N .
< 61(2(77-7777))61}41(7’ n + ((n + 1>j+1 - <77>j+1)a(7,77 +1)

g eXp(CC)a}+1(T, 77) + / N (‘{) aj/(T’T] + 1)5
7<i\J

where the binomial factors are obtained by expanding (1 + 1Y+ — (nV*1. As in the case
j=0, exp(cC)ay, (T, 1) may be absorbed by %a} 1(7,m) provided c is sufficiently small. The

additional correction by ( jf/) ay(t,m £ 1) is of lower order and can be absorbed into

c
—C/nmf\}(ﬂ 77)|W(77)|2~

O

While the preceding method of proof allows for a useful control of the evolution and stability
and is very explicit, it is only applicable in the regime of very small cL and does not allow for
a more precise description of the evolution in terms of the initial data.

In the following we hence instead argue by considering iterated Duhamel iterations as a
formal infinite series. We remark that in [DZ19] we employed similar methods to study the
(nonlinear) echo chain mechanism.

Lemma 5 establishes the convergence of the Duhamel iteration under very mild assump-
tions. In the following we then relate the Duhamel iteration to considering sums over paths (see
definition 6). Theorem 8 serves to introduce our new techniques in a transparent and accessi-
ble manner, also for ¢ small. Afterwards, in theorem 9 we show that for ¢ larger than this, but
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still smaller than 0.5, a cascade of resonances yields exponential growth and a well-described
non-trivial asymptotic behaviour.

Lemma 5. Let U(y) be a measurable function and let 3 € L™. Consider the problem

dw + LA 'w =0, (10)
where

A, =02+ (0, — tU'(1)d,) (11)

is obtained by conjugating A\ with the flow with (U(y), 0). Since the equations preserve the x
average, additionally assume without loss of generality that [ wodx = 0. Then there exists a
constant C possibly depending on the domain such that for all times t > 0 it holds that

lo)ll7> < eI g |72

Furthermore, the formal infinite Duhamel series
t ~ 1 11 - -
1d+ / BOOA,  dny + / / BOOA, BOOA, didry + ...
0 o Jo

is convergent in the L* operator topology with the jth-term bounded by (CH‘BL‘.! 08!,

We point out that this lemma imposes very mild assumptions on U and 3. A big question in
the following will be how far from optimal this estimate is when considering the specific case

[5].

Proof of lemma 5. We remark that the equation [10] is obtained from the linearized Euler
equations (and related models where 5(y) # U"(y))

Ow + U + BOOA™'w =0, (12)
by considering Lagrangian coordinates

(x +tU(), y).

We observe that [12] and hence also equation [ 10] preserves the x-average of w and therefore
without loss of generality restrict to considering solutions whose x-average vanishes.

As the change to Lagrangian coordinates is an L* isometry, we observe that the L? operator
norm of &CA; ! does not depend on time. More precisely, by the above discussion we consider
the operator norm of 9, A~! restricted to functions with vanishing x-average, which we denote
by the projection P on frequencies k # 0. Then &CA*IP# is a bounded operator, since the
corresponding Fourier multiplier ﬁ 1x0 is uniformly bounded for all k € Z,n € R. Thus,
the L? norm of A(y)d:A; 'w(#) can be controlled by

1Bl 10:A7 P 2 22|l 2

The exponential growth bound hence follows by Gronwall’s lemma.
In order to prove the convergence of the Duhamel series we need a more detailed description.
We observe that w solves the integral equation

w(t) = wo +/ BOOA, w(ty)dry.
0
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Thus, repeatedly inserting this characterization we formally obtain

! ~ t n _ ~
w(t) = wo + / BOOA,  wo dry + / / BN, BOOA, wo dipdry
0 0 JO

t 1] %)
+// / ...dizdrdy + ...
0 Jo 0

It remains to be shown that the series on the right-hand side is well-defined and convergent.

As remarked above, due to the decoupling structure of the equation with respect to the
frequencies in x, we may without loss of generality establish such a result for wy given by a
single (y-dependent) mode k (with estimate uniform in k, of course). The key property we now
use is that 5(y)8xA;1 depends on time only due to the change of variables (¢, x,y) — (¢, x +
tU(y), y). For any single mode data at frequency k, this change of variables in turn corresponds
to a multiplication by V0

Let thus k # 0 be arbitrary but fixed and let G;(y,y’) denote the Green’s function of
A" = ik(—k* + d7)~! (that is, the time # = 0 case). Then the kernel of A is given
by V0 G (y,y)e U0 and we may isolate the time-dependence of the kernel of

BOIA!

as
e KU0) ﬂ(y)Gl(y, y/)eiktU(v’) — eikt(U(v)—U(y/)) K(, y’).

The jth term of the Duhamel iteration is thus given by

t n i1 .
/ / / J / / [T K y0,0),
0 0 0 yl,...yj

We now can bound all the exponentials by 1 and may estimate this integral as follows:

t
7// [T IKG-1.9)1-
.]' yl,myj

Recalling the structure of K(y, ') as cxe "0 in the whole space or a function in terms of
sinh and cosh in the case of an interval, we note that also |K(y, y’)| induces an operator with
finite operator norm and that we thus obtain a bound in operator norm by

ﬁcf
i

where C is the operator norm associated to |K(y, y")|. The result hence follows by comparison
with the exponential series. (]

With this abstract convergence result at hand, we next establish a finer description of each
Duhamel iteration and the resulting value of the infinite series. Here we use that our equation
only contains nearest-neighbour interaction and that the jth Duhamel iteration thus only relates
modes that are at most j apart. We hence show that all non-trivial contributions from initial data
at a mode (k, 1)) to a mode (k, 77,) correspond to paths from one mode to the other. Furthermore,
when considering the infinite Duhamel series, the integrals are given solely in terms of the
initial data.

Definition 6 (path). A path v from 7y € Rton; € Ris asequencey = (7o, V1> V2 - - -5 7})
with vy = 19, 7, = 1y and |7, — ;| = 1. We call |y| = the length of .
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Given two times ) < #; we then associate to each path v a Duhamel integral I, [1y, 1, ]:

ly|-1
c
L, nl = // w(to,k,v0) | | senOyit1 =Wz T—————3-
’ 1p<TOST S ST g l TR A (=)
The sign of ~,, | — 7, here accounts for the different signs of the exponentials in 2i sin(y)
= eV — e” V. We note that paths between 7, and 1, can only exist if 770 — 1, € Z is an integer.
As discussed in remark 2 this due to the fact that products of sin(y) introduce integer-sized
Fourier shifts and the evolution thus decouples into equivalence classes

£+ 72,

with £ € [0, 1). As remarked in section 1.1 we in the following for simplicity of notation con-
sider £ = 0 and thus consider 1) € Z discrete. In particular, we naturally associate this setting
with y € T and hence w(f) € L*(T; x T).

With this definition and conventions we may restate the Duhamel characterization of a
solution in lemma 5 as a series of paths. Here we recall from remark 2 that the evolution
decouples into classes [17] € R/N and that hence w(t, k, ) depends only on the discrete values
(wo(t, k,n + 1))ez. Indeed, the following lemma shows that w(t, k, 7) can be computed in terms
of a sum over paths ending in 7). For simplicity of notation in the formulation of this lemma we
use the discrete structure to phrase this a result for wy € L?>(T x T) (that is 7 € Z). The case
wo € L*(T x R) is then obtained by studying all classes R /Z.

Lemma7 Letkbe arbitrary but fixed and let 1y be given. Let further wy € L*(Ty x T) with
Fwo)(k,n) = k) (k, ). Then for any time t > 0 and any frequency (ko, ) it holds that the
solution w(r) satisfies

witkm) =wolkm+ > L0,

Y0=10+Y]5| =1

Proof. We recall that by lemma 5 it holds that (in an L? sense)
t
sty =)+ [ sinmOA, e dn
0

+ // sin(y)axAt_zl sin(y)BXA,_llwo dnde, + ...,
0<t1<tr<t

where

A, = 02+ (0 — t0,)*.

We may then again use that this evolution decouples with respect to the frequency k in x to
replace all operators 0, by a multiplication by ik. Furthermore, we note that 2isin(y) = e
— e~V is a sum of (Fourier) shifts in 1 and we can hence identify

o 1 B tl % .
Fry (/0 sin(y)0x A, wo dt1> (k,m) = /0 R+ (- 1) — kP (Fwo)(k,n — 1)dn
"1 ik
- /0 AT (1 1) knp T w0tk + Ddn

as corresponding to the two paths (7 — 1,7) and (1 + 1, 7). Analogously, for any j € N we
may identify the jth Duhamel integral as the sum over 2/ paths of length j. Since we without
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loss of generality assumed that w(t, k, £) is only non-zero for a single £ € Z, £ = 1), in order
to compute w(?, k, 77) we then only need to take into account those paths y which start in 7, and
end in 7). Thus, for each fixed 1, we obtain

wt.k) =wkm+> Y LI0.1]

7 vilvl=ivo=nov=n

=wok))+ > L0,

Y=10+Y]5| =1
O

We remark that any initial datum (Fwo(k, 1))yez € (*(Z) can be decomposed into a sum of
d,’s and the result for general initial data hence immediately follows by linearity. Furthermore,
we may repeat the same proof for starting times other than 0.

Theorem 8 (second stability theorem).  Suppose that cL27 < 1 and let wy € L*(T; x T).
Then for all T > 0 and all n it holds that

1
|w(T, n) — wo(n)| < mZ(CLzW)Wm”WO(UO)\-

NoEZ

We remark that the right-hand side corresponds to a convolution in 1 against an exponentially
decreasing function. In particular, this implies that the evolution is stable in H® for any s > 0
and in Gevrey regularity.

Proof. By our assumption on c it holds that

c c 1
—drT = —7m=1d < —. 13
/Rk2+72 T T2 (13)

In contrast to the norm-based approached of theorem 4 and lemma 3, we in the following
consider the frequency-wise evolution of the solution established in lemma 7. Then [13] will
allow us to bound each integral I, [f, #;] in terms of dah.

Suppose at first that wy = dy,, and fix a time 7 > 0. Then by lemma 7 the value of w(n) at
time 7 can be obtained by summing over all integrals corresponding to paths starting in 77, and
ending in 7:

wrm —wOn= > L7l

YNO=107]5| =1
By Fubini’s theorem and [13] we may easily estimate each integral by
1,10, 71| < d".

Now for any given length j there are only 2/ paths starting in 7, of length |y| = j (of which
only a fraction ends in 7). If we denote the length of the shortest path connecting 7, and 1 by
dist(ny, 1) it thus follows that

wir,m —w@m| < > dY

J=dist(no,n)

1 .
_ 2d dlsl('r](),'r“).
1—2d 2d)
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Having established the bound for the special case wy = d,, € (?(Z), we now turn to the general
case wy € ¢*(Z). Then we may decompose w as

wo = Zwo(ﬁo)dqo,

o

and may use the linearity of the problem to compute

w(r,m) —wO0,m) = wine) »_  LI0,7].

0 YOZ10: V]| =1

Therefore, by the triangle inequality it follows that

1 ,
jw(r.m) = w(O.0)] < 155> D" ™ wolno)],

o

which is a (discrete) convolution in 7). O

3. Instability for long tori and cascades

As a complementary result to the stability established in section 2, we show that for long
tori or respectively slightly larger ¢ the dynamics are exponentially unstable. Here, we do not
construct eigenfunctions but instead establish a new cascade mechanism for resonances with
respect to the frequency in y. We recall that by the Orr mechanism the multiplier associated
with the stream function

1
k2 + (n — kr)?

is largest when 1 — kt = 0. In the study of the nonlinear problem [BM15, DM 18, DZ19] this
resonance underlies the main growth mechanism, where 7 is roughly fixed and a mode k at time
= % excites a mode k — 1, which then later excites a mode k — 2 and so on. As we discuss
in [DZ19] this cascade is a property of the linearized problem around the low-frequency part
of the vorticity depending on x, e.g. ¢ sin(x). As one of the main results of this paper we show
that the linearized problem around the x-independent part, i.e. the shear flow component, also
exhibits a cascade mechanism but with respect to 7. That is, here k is fixed and a mode 7 at
time ¢ &~ ¥ excites the mode 1) + 1, which later excites the mode 7 + 2 at time ¢ ~ UI—I and so
on.

We in particular note the following similarities and differences, where we refer to the
cascades as k-chain and n-chain, respectively.

e In the k-chain for any initial mode (ko, 7o) the resonant times are given by # = % with
k = ko, ko — 1,..., 1. In particular, starting from any strictly positive time, there are only
finitely many resonances and no resonances after a maximal time ¢ = 7. In contrast, the 7)-
chain has the resonant times 7, = % withn = 19,1y + 1, ..., whichis a cascade of infinite
length.

e The sequences of resonant times # is unevenly spaced, while the sequence of times 7, is a
rescaled integer sequence.

e The total growth exhibited by a k-chain is given by

e emo o (em)©
kg (ko — 1)? (ko)?”
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which attains its maximum with respect to ko, exp(,/cno) for ko = /cno. This growth
factor corresponds to a Gevrey regularity class.

The growth by the n-chain in contrast is exponential in time and tied to the x frequency
of the perturbation k instead of the regularity. That is, the growth factor is given by

c\!
22,
( Tk
provided 277 > 1, even if we start with single mode initial data at 7 = 0.
e As can be seen from the growth factors and as shown in the previous section there is no
growth in the 7-chain if { is small. Similarly, there is only growth by a constant in the
k-chain if | /cng is small.

L
10’

evolution [ 5] is exponentially unstable in L*. More precisely, suppose that L is such that tcL >
20 and w2 L < 1(e.g. choose L ~ ¢3/2). Then for any (arbitrarily smooth) initial data wy with
wo(k,0) = 1 > 0.5 max,|wo(k,n)| it holds that

Theorem 9 (instability). Let 0 < ¢y < =5, then there exists L such that for any ¢ > ¢ the

1 .
(JJ(J— Eak,,]) 2 dj

Jord = {5cL > 1and all j € N.

This shows that phase-mixing for smooth Bilipschitz profiles by itself is not strong enough
to prevent an exponential instability. Some smallness or non-resonance is necessary. While the
embedding eigenvalue criterion of [WZZ18] provides a very good description of this, we think
the present method of proof of constructing a sustained echo chain provides an important new
perspective on this instability.

Proof. By lemma 5 the Duhamel iteration converges for all times and is controlled by an
exponential series. In the following we use the more precise control of the Duhamel iterates as
sums over all paths (see definition 6 and lemma 7) starting in a frequency 7, and ending in a
frequency ;.

We recall that our equation [5]

c 1 c 1

e e

(n—1=0,
considers only nearest neighbour interactions.

In the following we argue by an iteration scheme, where we consider the sequence of times
T;=j— 3. j € N. We claim that if

(T k, )l = 0.5 mgx\w(Tj, k.m)l, (14)
then it holds that

|w(Tjr1.k, j+ 1| > 0.5 m;lx|w(Tj+1,k, NIB (15)
and additionally

|w(T 1.k, j+ D] = d|w(T;, k, ). (16)

The result then follows immediately by induction in j.
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Let thus j € N be given and suppose that [14] holds. The proof of [15, 16] then consist of
establishing an upper bound on w(7j, k,n) for all frequencies 7 (to control the maximum)
as well as a lower bound for n = j + 1. We will show that w(7Tj, k, n) satisfies the following
convolution inequality

1
1-26

+ Cr28) N " 28) 0 w(T 5, 1), (17)

0

W(Tjs1,m) — (T )] < QO w(T, )|

where r ~ cmL > 1 is a large constant (see (22) for the definition), C = m 5 is close to
land |p —j =+ 1|:=min(|n —j+ 1|, |n —j — 1]). We note thathere n, = jandn € {j — 1,j +
1} have a distinguished role and will also prove that

. . 1 .
|w(Tjr1, j+ 1) —rw(T), )| < er(T" b)) (18)
and hence
. 3 .
lw(Tjr1, j+ D] = ZVIW(T',J)\~ (19)

Supposing for the moment that [17] holds, we may take the supremum in 7 and further estimate

: 1
sup(25)d‘St("‘)>k|w(Tj, )| < ——=sup|w(T;,n),
) 1-20,

S g !
25

)
and therefore by [14]

1 1 A
i < In—Jj+1| koDl
sup Jo(T 1, k)] < (1 + 155+ Crr—5529) )M(T,,k,m 0)

For r sufficiently large the last term in this upper bound is of greatest interest. It is comparable
to comparable to r|w(Tj,k,j)| if n € {j — 1,j+ 1}, which up to a factor matches our lower
bound [19]. In order to establish the estimates [15, 16] we now additionally note that for 7) ¢
{j — 1,j+ 1} the exponential (26)"7*!/ is small and can counteract the loss of a factor 2/3.

It thus remains to prove [17, 19]. We again begin by studying the case when wq(7}) be given
by a single mode:

w(tj’ k, 77) = 57]0(77)
Then using lemma 7 for any 1 we may compute

W(Tjp ko) =Tk = Y LIT, Tl
V0=V =N

While in the proof of theorem 8 we roughly estimated
LIT), Tyl < d7,
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in the following we estimate more carefully. In each integral we have to consider terms of the
form

/ c dr < / c d
S E—— § S B —— § I
T <T<Tig 1 R+ (i—m)? T,<m<Tjy R+ (-

If |y, — j| > 1, we can bound this contribution by

1
2 ¢ 1
o dn<de=:16< .
/_;k2+idﬂ\4c 5<4

We call such «y; non-resonant. We recall that by remark 2 that we only need to consider ~; €
Z and thus there is a clean dichotomy: either +; # j is non-resonant or ~y; = j is (perfectly)
resonant.

In the following we thus group paths by the number of resonances appearing. Similarly to
the proof of theorem 8, if all -y, in a path  are non-resonant, we may estimate

LIT; Tj] < 67

Again roughly estimating the number of all paths of length || by 21!, the sum over all such
paths can be estimated by a geometric series:

DA T B S CLa At @)
~y:non—resonant i>dist(n,10)
We remark that here the distance refers to the shortest non-trivial path, thus dist(n, ny) = |1
— 1| if n # ny and dist(ny, 79) = 2. As in the proof of theorem 8 in the case of general initial
data (that is, not just a single mode) this estimate results in a discrete convolution against
|w(Ty, k, -)|, which produces the first term in the estimate [17].
In contrast, consider the special case 7y = j and 7 = j + 1. Then the path v = (9,19 + 1)
has the associated integral given by

1
2 C 2C 1
/% WdT = ; arctan (ﬁ() =.7r. (22)

If k < c is sufficiently small, then 2 arctan(zl—k) ~mand r~ cf > cwL > 1 is comparatively
large.
More generally, let -y be a path starting in 7, and ending in 7).

e If all , are non-resonant, this path is estimated by (21). Thus suppose that it has several
resonances.

e We note that in order to be resonant, the path first has to reach j starting from 7, for which
it needs j; > |n, — j| steps.

e Itis then resonant for a number j, > 1 of times, between which is non-resonant a number
at least j; > j, — 1 > 0 times, since subsequent entries in a path are distinct, that is you
have to leave the resonant frequency before visiting again.

e Finally, after visiting the resonant frequency a last time, the path has to reach the frequency
7 for which it uses j, > | — j & 1| non-resonant steps (for example the pathy = (j,j — 1)
has a single resonance and no non-resonance).

Thus, in total the integral corresponding to this path can be estimated by
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§hp2§is§ia = 5j1+j4r1(r(j)jz—l(jjrjz-&-l,
n—j+1],
07

Jrz1mo—jl, Jja
=120, s—jp+1

VoWV

where we use the short notation |n — j + 1| = min(|n —j + 1|, |y —j — 1]). We note that by
assumption

1
16 < 87PL < -,

4
1 (23)
4’
r > 10.

0 <

Again roughly estimating the number of such paths by 21, we estimate the sums in j, — 1 and
inj; —j, +1by

Lo,
1—-2r61—24

and similarly estimate the sums in j,, j, by
1

(28t
(1 —20)?

We thus in total obtain an estimate by
1 1 A A

= &)miEn=E 24

T—20p 1= 2r5 %) (24)
Denoting C = 5575 7575+ We may again argue as in the proof of theorem 8 to obtain an
estimate for the case of general initial data in terms of a convolution in 7. This concludes the
proof of the estimate [17].

It remains to prove [19]. We saw in (21) that the contribution by the path v = (j,j + 1) (and

analogously (j,j — 1)) is given by

rw(T;, j).

In constrast all other paths ending in j + 1 involve at least one non-resonance (and more the
further 1 or 1), are from j). Hence, we further obtain the following lower bound:

. . . 1 _i
|w(Tjr1, j+ 1) —w(T, j+ 1) — rw(T, )] < 1-25 sup|w(T))| + CFZ(Zé)no Newo(Tj, m0)|
"

2 no#Jj
1
ST s%plw(Tj)l
+ Cr(26) ! sup|w(T;, no)|
- A
1-25 nopw >70)1

where we used the geometric series in the last step. Since w(7Tj, /) is comparable to the supre-
mum at that time by the assumption [14] and using that » > 1 and choosing § sufficiently small
such that C(26) ;s < 1, we deduce that

|w(Tjr1, j+ 1) —w(Tj, j+ 1) — rw(T}, j)] < 0.1 r|w(Tj, ),
which implies [19]. O
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In this theorem we have shown that if a torus is sufficiently long such that cL > 1, then a
new resonance cascade mechanism persists, where (k, n = j) excites a mode (k,j + 1) around
time 7}, which in turn excites (k,j + 2) and so on. We thus present a new explicit instability
mechanism associated to the smallness assumption imposed in [Zill16]. Furthermore, simi-
larly to convexity/concavity assumptions imposed in classical stability results by Rayleigh,
Fjortoft or Arnold [Dra02], this result shows that even if a flow is bilipschitz and smooth,
this is not sufficient to establish (asymptotic) stability and that some additional condition to
control long wave-length perturbations is necessary. We thus develop a further understanding
of what (linear) instability mechanisms may be encountered in the study of perturbations to
shear flows, how instabilities may propagate and cascade and what conditions may be imposed
to avoid these scenarios (e.g. limiting the wave length of admissible perturbations). Here an
interesting but very challenging question concerns the implications of this linear instability
mechanism for the nonlinear problem. While such an instability rules out some types of asymp-
totic convergence results (that is, scattering to the linear dynamics), it might be the case that
the linearization around the initial velocity profile is the ‘wrong guess’ for the asymptotics and
that the evolution is nevertheless asymptotically stable.

In view of the nonlinear problem we remark that the n-chain model of the present article and
the fluid echo chains studied in [DM18] and [DZ19] share commonalities in how instabilities
appear at critical times and then lead to new instabilities at later times, resulting in a cascade.
However, as remarked earlier the details such as the direction (in Fourier space), length or time
scales of these cascades are very different. Furthermore, in the general nonlinear problem one
may expect both mechanisms to interact, resulting in resonances in further directions.
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