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Abstract

We consider the effects of mixing by smooth bilipschitz shear flows in the

linearized Euler equations on TL × R. Here, we construct a model which is

closely related to a small high frequency perturbation around Couette flow,

which exhibits linear inviscid damping for L sufficiently small, but for which

damping fails if L is large. In particular, similar to the instability results for

convex profiles for a shear flow being bilipschitz is not sufficient for linear invis-

cid damping to hold. Instead of an eigenvalue-based argument the underlying

mechanism here is shown to be based on a new cascade of resonances mov-

ing to higher and higher frequencies in y, which is distinct from the echo chain

mechanism in the nonlinear problem.

Keywords: inviscid damping, Euler equations, fluid echoes, instability

Mathematics Subject Classification numbers: 76E05, Secondary: 35Q31,
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1. Introduction

We are interested in the long-time asymptotic behaviour of the linearized 2D Euler equations

near monotone shear flows v = (U(y), 0) in a periodic channel TL × R or circular flows

v = rU(r)eθ on R
2. After possibly relabeling the log-polar coordinates and considering

weighted spaces (see [CZZ19, Zil17]) both settings can be considered in the framework

∂tω + U(y)∂xω − β(y)∂xΔ
−1ω = 0, (1)

where β(y) = U′′(y) in the plane channel setting. The question of stability of shear flows has

a long history, where we in particular mention the stability results of Rayleigh and Fjortoft

∗Author to whom any correspondence should be addressed.
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[Dra02] (for the linearized equations) and of Arnold [Arn66]. Unlike the setting of mono-

tone flows considered in this article, these stability results rely on convexity. More precisely,

Rayleigh’s and Fjortoft’s theorems show that ifU is convex, then the linearized Euler equations

cannot be exponentially unstable in the sense that there cannot exist solutions of [1] of the form

eλtω0(x, y) with �(λ) > 0. However, the solutions may nevertheless be algebraically unstable

in the sense ‖ω(t)‖H1 →∞ as t→∞ with a power law rate. Indeed, one explicit example is

given by U(y) = y.
The stability mechanism which is the focus of this paper instead exploits monotonicity and

mixing by shearing. The prototypical example here is given by (Taylor-)Couette flow, which

we recall in the following. In the (Taylor-)Couette flow case U(y) = y and β(y) ≡ 0 and hence

the equation has an explicit solution

ω(t, x, y) = ω(0, x − tU(y), y).

We observe that the H1 norm of this solution diverges to infinity as t→∞ (for ∂xω(0) non-
trivial) and the L2 norm of ω(t) remains constant and in particular bounded. However, ω(t)
converges weakly in L2 (but not strongly) to its x-average. As a consequence due to compact-

ness in the Biot–Savart law the velocity field strongly converges to an asymptotic profile as

t→∞. This phenomenon is known as (linear) inviscid damping. While results for this spe-

cial case follow by explicit calculation, the study of the asymptotic behaviour of non-trivial

flows has been an area of active research in recent years, where a guiding question has been to

understand how robust this mechanism might be.

In this article, we construct a negative example in the form of a small sine wave perturbation

to a linear shear

U(y) = y+ c sin(y)

with |c| < 1
2
. More precisely, for simplicity of calculation we consider the approximate system

U(y) = y, β(y) = c sin(y),

which we introduce in section 2. We thus omit a term c sin(y)∂x compared to the linearized

Euler equations. Here we remark that in the setting of large period L in x and for small fre-

quencies one may heuristically expect that ∂x ∼ L−1 is negligible compared to ∂xΔ
−1 ∼ L.

However, we do not establish error bounds on this approximation in this paper.

We stress thatU(y) is Bilipschitz and smooth and that β(y) is small and analytic. Our choice

ofU(y) = y is motivated by the existing linear and nonlinear damping results for Couette flow,

where strict monotonicity and the associated shearing mechanism serve to stabilize the flow,

but require either smallness conditions (see for example [CZZ19, Zil16]) or non-resonance

conditions (see for example [WZZ17]). More precisely, one needs to require that the linearized

operator

U(y)∂x + U′′(y)∂xΔ
−1

has no embedding eigenvalues, which is not straightforward to check. As a related result on

eigenvalue instabilities we mention the work of Lin [Lin03], who shows that if U has an

inflection point ys inside an interval I and

K(y) := − U′′(y)

U(y)− U(ys)

is positive and

−∂2
y − K(y)
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has a negative eigenvalue, then linearized Euler equations on R× I is exponentially unstable
(that is, there exists an eigenvalue with positive real part). Furthermore, we mention that there

has beenmuch interest in the instability of Kolmogorov-typeflowsU(y) = cos(my) withm ∈ N

large, e.g. [FH98], for whichK(y) = m2 is constant. One aim of this article is then to understand

how such an instability mechanism at the level of U′′ may interact with shear and mixing by a

monotone profile U(y).
In view of the stability results exploiting convexity which we mentioned in the introduc-

tion, we note that there are special settings in which the shear profile is both convex and

monotone and one can exploit both mechanisms. In the article of Bedrossian, Coti Zelati and

Vicol [BCV17] on circular flows, monotone, convex profiles are considered and no smallness

condition is required. However, we observe that convexity by itself is only sufficient given a

beneficial sign. Indeed, in the sense of Arnold’s theory Kolmogorov flow, U(y) = cos(y), is
strictly convex with U′′

U = −1 < 0, but is known to be nonlinearly stable only on a short torus

TL × T, L < 1 but unstable on a long torus L� 1, [MS61].

Our main question of this article concerns the robustness of the stabilization by shearing

for Bilipschitz, non-convex profiles for short and long tori, in analogy to the results on Kol-

mogorov flow as a convex flow. Here, as in other works on (phase-)mixing [BM15, BMM16,

MV11] it is useful to work in coordinates moving with the shear and consider the profile of the

vorticity

W(t, x, y) :=ω(t, x + ty, y).

As observed for instance in [LZ11, theorem 3] and to some extent already in the classical work

of Orr [Orr07], control ofW(t) in Sobolev regularity allows one to deduce asymptotic stability

and damping of the velocity field by the estimate

‖v(t)−
∫

T

v(t, x, ·)dx‖L2 � C(1+ t)−1‖W(t)‖H1 ,

‖v(t) · e2‖L2 � C(1+ t)−2‖W(t)‖H2 .

In this sense inviscid damping of the velocity field follows as consequence of the stability of

the profileW. Our main results are summarized in the following theorem.

Theorem 1. Let c ∈ (0, 1
2
) and consider the following linear problem

∂tω + y∂xω + c sin(y)∂xΔ
−1ω = 0, (2)

on the domain TL × R with initial data ω0. We consider this equation as a perturbation of the
transport problem ∂t + y∂x (by a compact operator) and study the stability of the profile

W(t, x, y) :=ω(t, x + ty, y),

which moves with the shear dynamics.
Then if cL < 1

2π it holds that for any s � 0 the evolution is stable in Hs in the sense that
there exists Cs such that for any time t � 0

‖W(t)‖Hs � Cs‖ω0‖Hs .

Furthermore, there exists C0 such that if the Fourier transform of ω0 satisfies

‖ω0‖2G1,C :=
∫

exp(C|η|)|Fyω0(η)|2 < ∞
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for some C > C0, then also ‖W(t)‖G1,C−C0 < ∞ for all times.

On the other hand, suppose that c < 1
10
and L is such that cπL > 20, but πc2L < 1 (e.g.

choose L ∼ c−3/2). Then there exists smooth initial data ω0 (compactly supported in Fourier
space), a frequency k and d > 1 such that its Fourier transform satisfies

|FW(t j, k, η = kt j)| � dt j

for all t j = j ∈ N. That is, the evolution is exponentially growing along a sequence of times.

The growth mechanism in the second result here is not given by an eigenfunction construc-

tion, but given by a new cascade mechanism which propagates in the frequency η associated

to y. We stress that this resonance chain is distinct from the one considered in [BM15, DM18]

which propagates in the frequency k associated to x (see section 3). In the regime of large

period L it is, to our knowledge, not known whether the problem [2] may additionally pos-

sess eigenvalue instabilities (for ω). Our main aim in this article thus lies in establishing the

cascade mechanism as a new, interesting instability/resonance mechanism, which also yields

exponential growth (ofW).

For simplicity of calculation and presentation we neglect the effects of boundaries and con-

sider the setting of an infinite periodic channel TL × R. We however expect that our results

should extend with moderate technical effort to the setting of smooth compactly supported

perturbations to Couette flow (which is considered in [Jia19]) and to more general Bilipschitz

flows as considered in [Zil16].

Our article is organized as follows:

• In section 1.1 we recall some definitions and summarize notational conventions used

throughout the article.

• In section 2we first establish globalwell-posedness of the equations and some rough upper

growth bounds. Afterwards we establish the stability statement of theorem 1 by means of

a Duhamel iteration estimate. We further present a second proof by means of a Lyapunov

functional, which is very transparent but requires stronger assumptions.

• In section 3we analyse the resonancemechanism in detail and how it can excite neighbours

of resonant modes. As our main result we show that if cL is sufficiently large this growth

can be sustained, resulting in an exponential growth rate. In particular, this shows that it

is not sufficient for a flow to be smooth and bilipschitz in order for asymptotic stability

and linear inviscid damping to hold, but that some further smallness or non-resonance

condition is required. While some eigenvalue instability constructions are available in the

literature [WZZ18], we here present a new cascade mechanism underlying this sustained

growth as well an explicit example.

1.1. Notation

In this article we are interested in the evolution of the vorticity in the linearized Euler equations

around v = (y+ c sin(y), 0) or more precisely a slightly simplified system (see section 2) on

TL × R.

As mentioned in theorem 1 and as we discuss in section 2, instead of considering ω in

Eulerian (=Cartesian) coordinates it is useful to switch to Lagrangian coordinates and study

the profile

W(t, x, y) = ω(t, x + ty, y).
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We then study the Fourier transform of W with respect to both x and y, which we with slight

abuse of notation again denote by ω:

ω(t, k, η) = Fx,y(W)(t, k, η).

We further remark that, since the coefficient functions in our problem do not depend on x, the
evolution equations decouple with respect to k ∈ 2π

L Z. For this reason we may consider k to
arbitrary but fixed and suppress the k-dependence in our notation by writing ω(t, η).

As we discuss in remark 2 and in section 3, due to the structure of sin(y), the evolution

of ω(t, η) only depends on ω(t, η′) if η − η′ ∈ Z is an integer. Thus, while the Fourier variable

η ∈ R naturally belongs to thewhole space, in section 3 we restrict to discrete classes η0 + Z =

(η0 − �η0
) with η0 − �η0
 ∈ [0, 1). For simplicity of notation we here write results for the

specific case η0 − �η0
 = 0, so that η ∈ Z.

2. Global well-posedness and Duhamel iterations

The linearized 2D Euler equations around v = (y+ c sin(y), 0) are given by:

∂tω + (y+ c sin(y))∂xω + c sin(y)v2 = 0.

As the map ω �→ v2 = ∂xΔ
−1ω is compact, we consider the transport by the linear profile to

be dominant, change to Lagrangian coordinates (x + ty, y) and consider

W(t, x, y) =: ω(t, x + ty, y).

With respect to these coordinates the equation is given by

∂tW + c sin(y)∂xW + c sin(y)∂xΔ
−1
t W = 0, Δt := ∂2

x + (∂y − t∂x)
2.

Here, our choice of coordinates has the benefit of the very transparent structure of Δ−1
t as a

Fourier multiplier. As the coefficient functions do not depend on x, we note that this system
decouples in the associated frequency k, which we hence treat as arbitrary but fixed. Since

our main focus is on considering the effect of long tori (and thus very small frequency k), we
further consider an approximate system

∂tW + c sin(y)∂xΔ
−1
t W = 0, (3)

where we omit the contribution by c sin(y)∂x and with slight abuse of notation denote the

Fourier transform ofW by ω again.

This then leads to the following system:

∂tω(η)+
c

2

k

k2 + (η + 1− kt)2
ω(η + 1)− c

2

k

k2 + (η − 1− kt)2
ω(η − 1) = 0. (4)

Since the system decouples in k and leaves the mode k = 0 invariant, in the following we

without loss of generality consider k �= 0 and equivalently rescale time as τ = kt, which yields:

∂τω(η)+
c

2

1

k2 + (η + 1− τ )2
ω(η + 1)− c

2

1

k2 + (η − 1− τ )2
ω(η − 1) = 0. (5)

Remark 2. This equation is an ODE system with nearest-neighbour interaction. In partic-

ular, since modes interact only via chains of neighbours, the system decouples into problems

on η ∈ η∗ + Z, with η∗ ∈ [0, 1). Considering η∗ as arbitrary but fixed and with slight abuse of
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notation shifting time by η∗ to prescribe ‘initial’ data at that time it thus suffices to consider the

periodic problem η ∈ Z. We remark that this setting would also appear when considering peri-

odic perturbations with respect to Lagrangian coordinates (x + ty, y), which seems physically

unmotivated, but by the above consideration appears naturally due to the decoupling structure.

Roughly estimating the coefficient functions by c
2k2 , we immediately obtain the following

suboptimal global well-posedness result.

Lemma 3. Let X = L2(ρ, 2πL Z× R) be a weighted L2 space in Fourier space such that its
weight satisfies

sup
k,η

ρ(k, η ± 1)

ρ(k, η)
� C1 < ∞.

This for example includes fractional Sobolev spaces Hs or Gevrey spaces.
Then there exists a constant C such that the solution ω of [5] satisfies

‖ω(τ )‖X � exp(CcL2τ )‖ω0‖X

for all τ � 0.

We remark that the time variable τ includes a factor L and that expressed with respect to t
the growth factor is given by exp(CcLt).

Proof. We note that

‖∂τω‖X � ‖c 1

k2 + (η ± 1− τ )2
ω(η ± 1)‖X � cCL2‖ω‖X.

The result then immediately follows by integrating the differential inequality. �

While this a priori bound is sufficient to establish globalwell-posedness, it is far from sharp.

Indeed, the following theorem shows that for cL sufficiently small, the evolution is globally sta-

ble in a Lyapunov sense. In contrast, in theorem 9 we show that if L � c−1, then this stability

fails and the evolution is exponentially unstable. Here, we stress that the shear profile is Bilip-

schitz and c sin(y) is smooth and bounded. Furthermore, we show that the described growth is

due to a new cascade mechanism, where chains of resonances excite higher and higher modes

in y (while the nonlinear echo chain mechanism excites smaller and smaller modes in x and

stops at mode 1).

As first result, we consider the setting of very small c, which is an amenable to the con-

struction of a Lyapunov functional as in [CZZ19]. Here, the simple Fourier structure allows

for a particularly transparent proof. In a second theorem 8 we introduce a different method of

proof by expressing the Duhamel iteration as formal infinite series of integrals over paths (see
definition 6).

Theorem 4 (global stability for small cL). Let j ∈ N and consider the stability problem
for the PDE [5] onTL × R in Hj. Then there exists C0 = C0( j) > 0 such that if cL < C0, there
exists a constant C such that

‖ω(τ )‖H j � C‖ω0‖H j

for all τ � 0. Furthermore, ∂xΔ
−1
t W ∈ L2tH

j and ω converges strongly in Hj as τ →∞.

Proof. We define the Fourier weight

a(τ , η) = exp (C1c arctan(C2(η − τ )),
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with C1,C2 > 0 to be fixed later.

Then it holds that

d

dτ
a(τ , η)|ω(τ , η)|2 = −C1C2

c

1+ C2
2(η − τ )2

a(τ , η)|ω(τ , η)|2

+ 2a(τ , η)
c

k2 + (η + 1− τ )2
ω(τ , η + 1)ω(t, η)

− 2a(τ , η)
c

k2 + (η − 1− τ )2
ω(τ , η − 1)ω(τ , η).

We may estimate |ω(τ , η ± 1)ω(τ , η)| � 1
2
(|ω(τ , η ± 1)|2 + |ω(τ , η)|2) and integrate over all η

to obtain:

d

dτ

∫

η

a (τ , η) |ω (t, η) |2 � −C1C2

∫

η

c

1+ C2
2(η − t)2

a (τ , η) |ω (τ , η) |2

+

∫

η

a (τ , η)

(

c

k2 + (η + 1− t)2
+

c

k2 + (η − 1− t)2

)

|ω (τ , η) |2

+

∫

η

(a (τ , η − 1)+ a (τ , η + 1))
c

k2 + (η − τ )2
|ω (τ , η) |2,

where we shifted η in the last sum. By the definition of our weight a it holds that

(a(τ , η − 1)+ a(τ , η + 1)) � exp(2C1c)a(τ , η)

and that
(

c

k2 + (η + 1− τ )2
+

c

k2 + (η − 1− τ )2

)

� 4k−2 c

1+ k−2(η − τ )2
.

Hence, we may conclude that

d

dτ

∫

η

a (τ , η) |ω (τ , η) |2 � −C

2

∫

η

c

k2 + (η − τ )2
a (τ , η) |ω (τ , η) |2 � 0, (6)

provided that

C2 = k−1, (7)

C1C2 − 2k−2 exp(2C1c) �
C

2
. (8)

We may then fix C2 = k−1
� L, C1 = 4k−1, at which point the estimate reduces to 4

− 2exp(2cL)=:C/2 > 0, which is satisfied if cL is sufficiently small.

We note that [6] implies L2 stability, since a(τ , η) ≈ 1. Furthermore, as
∫

η
a(τ , η)|ω(t, η)|2|Tt=0 is bounded, it follows that

∫

η

c

k2 + (η − t)2
a(τ , η)|ω(τ , η)|2

is integrable in time. Expressing the evolution equation in integral form then further yields the

claimed asymptotic stability in L2.
It remains to establish stability in higher Sobolev norms. We define

a j(τ , η) := 〈η〉 ja(τ , η)
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for j ∈ N and further define

A j(τ , η) := a j(τ , η)+

∫

j′� j−1

(

j

j′

)

A j′ (τ , η).

Using [6] as the start of a proof by induction, we then claim that

d

dτ

∫

η

A j(τ , η)|ω(η)|2 � −C

2

∫

η

c

k2 + (η − τ )2
A j(τ , η)|ω(η)|2. (9)

Let thus ĵ � 1 be given and suppose that [9] is satisfied for all j � ĵ. Then it holds that

d

dt

∫

η

A ĵ+1(τ , η)|ω(η)|2 =
d

dt

∫

η

a ĵ+1(τ , η)|ω(η)|2 + 2
d

dt

∫

η

A ĵ(τ , η)|ω(η)|2

� −C
∫

η

c

1+ (η − τ )2
a ĵ+1(τ , η)|ω(η)|2

+ 2

∫

η

a ĵ+1(τ , η)ω(τ , η)
d

dτ
ω(τ , η)

− C

∫

η

c

1+ (η − τ )2
A ĵ(τ , η)|ω(η)|2.

Plugging in the equation for d
dtω(τ , η) and using Young’s inequality, we again have to control

shifts:

a ĵ+1(τ , η ± 1) = 〈η ± 1〉 ĵ+1a(τ , η ± 1)

�
a(τ , η ± 1)

a(τ , η)
a ĵ+1(τ , η)+ (〈η ± 1〉 ĵ+1 − 〈η〉 ĵ+1)a(τ , η ± 1)

� exp(cC)a ĵ+1(τ , η)+

∫

j′� ĵ

(

j

j′

)

a j′(τ , η ± 1),

where the binomial factors are obtained by expanding 〈η ± 1〉ĵ+1 − 〈η〉ĵ+1. As in the case

ĵ = 0, exp(cC)aĵ+1(τ , η) may be absorbed by d
dτ
a ĵ+1(τ , η) provided c is sufficiently small. The

additional correction by
(

j
j′

)

a j′(τ , η ± 1) is of lower order and can be absorbed into

−C
∫

η

c

k2 + (η − τ )2
A ĵ(τ , η)|ω(η)|2.

�

While the precedingmethod of proof allows for a useful control of the evolution and stability

and is very explicit, it is only applicable in the regime of very small cL and does not allow for

a more precise description of the evolution in terms of the initial data.

In the following we hence instead argue by considering iterated Duhamel iterations as a

formal infinite series. We remark that in [DZ19] we employed similar methods to study the

(nonlinear) echo chain mechanism.

Lemma 5 establishes the convergence of the Duhamel iteration under very mild assump-

tions. In the followingwe then relate the Duhamel iteration to considering sums over paths (see
definition 6). Theorem 8 serves to introduce our new techniques in a transparent and accessi-

ble manner, also for c small. Afterwards, in theorem 9 we show that for c larger than this, but
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still smaller than 0.5, a cascade of resonances yields exponential growth and a well-described

non-trivial asymptotic behaviour.

Lemma 5. Let U(y) be a measurable function and let β ∈ L∞. Consider the problem

∂tω + β(y)∂xΔ̃
−1
t ω = 0, (10)

where

Δ̃t = ∂2
x + (∂y − tU′(y)∂x)

2 (11)

is obtained by conjugatingΔ with the flow with (U(y), 0). Since the equations preserve the x
average, additionally assume without loss of generality that

∫

ω0dx = 0. Then there exists a
constant C possibly depending on the domain such that for all times t � 0 it holds that

‖ω(t)‖2L2 � eC‖β‖L∞ t‖ω0‖2L2 .

Furthermore, the formal infinite Duhamel series

Id +

∫ t

0

β(y)∂xΔ̃
−1
t1
dt1 +

∫ t

0

∫ t1

0

β(y)∂xΔ̃
−1
t1
β(y)∂xΔ̃

−1
t2
dt2dt1 + . . .

is convergent in the L2 operator topology with the jth-term bounded by (C‖β‖L∞ t) j

j! .

We point out that this lemma imposes very mild assumptions on U and β. A big question in

the following will be how far from optimal this estimate is when considering the specific case

[5].

Proof of lemma 5. We remark that the equation [10] is obtained from the linearized Euler

equations (and related models where β(y) �= U′′(y))

∂tω + U(y)∂xω + β(y)∂xΔ
−1ω = 0, (12)

by considering Lagrangian coordinates

(x + tU(y), y).

We observe that [12] and hence also equation [10] preserves the x-average ofω and therefore

without loss of generality restrict to considering solutions whose x-average vanishes.
As the change to Lagrangian coordinates is an L2 isometry, we observe that the L2 operator

norm of ∂xΔ̃
−1
t does not depend on time. More precisely, by the above discussion we consider

the operator norm of ∂xΔ
−1 restricted to functions with vanishing x-average, which we denote

by the projection P�= on frequencies k �= 0. Then ∂xΔ
−1P �= is a bounded operator, since the

corresponding Fourier multiplier ik
k2+η2

1k �=0 is uniformly bounded for all k ∈ Z, η ∈ R. Thus,

the L2 norm of β(y)∂xΔ̃−1
t ω(t) can be controlled by

‖β‖L∞‖∂xΔ−1P �= ‖L2→L2‖ω(t)‖L2 .

The exponential growth bound hence follows by Gronwall’s lemma.

In order to prove the convergenceof theDuhamel serieswe need amore detailed description.

We observe that ω solves the integral equation

ω(t) = ω0 +

∫ t

0

β(y)∂xΔ̃
−1
t1
ω(t1) dt1.
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Thus, repeatedly inserting this characterization we formally obtain

ω(t) = ω0 +

∫ t

0

β(y)∂xΔ̃
−1
t1
ω0 dt1 +

∫ t

0

∫ t1

0

β(y)∂xΔ̃
−1
t1
β(y)∂xΔ̃

−1
t2
ω0 dt2dt1

+

∫ t

0

∫ t1

0

∫ t2

0

. . . dt3 dt2 dt1 + . . . .

It remains to be shown that the series on the right-hand side is well-defined and convergent.

As remarked above, due to the decoupling structure of the equation with respect to the

frequencies in x, we may without loss of generality establish such a result for ω0 given by a

single (y-dependent) mode k (with estimate uniform in k, of course). The key property we now
use is that β(y)∂xΔ̃−1

t depends on time only due to the change of variables (t, x, y) �→ (t, x +
tU(y), y). For any single mode data at frequency k, this change of variables in turn corresponds
to a multiplication by eiktU(y).

Let thus k �= 0 be arbitrary but fixed and let G1(y, y′) denote the Green’s function of

∂xΔ
−1

= ik(−k2 + ∂2
y )

−1 (that is, the time t = 0 case). Then the kernel of ∂xΔ̃
−1
t is given

by eiktU(y)G1(y, y′)e−iktU(y′) and we may isolate the time-dependence of the kernel of

β(y)∂xΔ̃
−1
t

as

e−iktU(y)β(y)G1(y, y
′)eiktU(y

′ )
=: eikt(U(y)−U(y

′ ))K(y, y′).

The jth term of the Duhamel iteration is thus given by

∫ t

0

∫ t1

0

. . .

∫ t j−1

0

∫∫

y1 ,...y j

∏

eikt(U(y j−1 )−U(y j))K(y j−1, y j).

We now can bound all the exponentials by 1 and may estimate this integral as follows:

t j

j!

∫∫

y1,...y j

∏

|K(y j−1, y j)|.

Recalling the structure of K(y, y′) as cke−|k(y−y′)| in the whole space or a function in terms of

sinh and cosh in the case of an interval, we note that also |K(y, y′)| induces an operator with

finite operator norm and that we thus obtain a bound in operator norm by

t j

j!
C j,

where C is the operator norm associated to |K(y, y′)|. The result hence follows by comparison

with the exponential series. �

With this abstract convergence result at hand, we next establish a finer description of each

Duhamel iteration and the resulting value of the infinite series. Here we use that our equation

only contains nearest-neighbour interaction and that the jth Duhamel iteration thus only relates

modes that are at most j apart.We hence show that all non-trivial contributions from initial data

at a mode (k, η0) to a mode (k, η1) correspond to paths from onemode to the other. Furthermore,

when considering the infinite Duhamel series, the integrals are given solely in terms of the

initial data.

Definition 6 (path). A path γ from η0 ∈ R to η1 ∈ R is a sequence γ = (γ0, γ1, γ2, . . . , γj)
with γ0 = η0, γj = η1 and |γi+1 − γ i| = 1. We call |γ| := j the length of γ.
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Given two times t0 < t1 we then associate to each path γ a Duhamel integral Iγ[t0, t1]:

Iγ[t0, t1] =

∫∫

t0�τ0�τ1�···�τ j�t1

ω(t0, k, γ0)
|γ|−1
∏

i=0

sgn(γi+1 − γi)
c

k2 + (γi − τi)2
.

The sign of γ i+1 − γ i here accounts for the different signs of the exponentials in 2i sin(y)
= eiy − e−iy. We note that paths between η0 and η1 can only exist if η0 − η1 ∈ Z is an integer.

As discussed in remark 2 this due to the fact that products of sin(y) introduce integer-sized
Fourier shifts and the evolution thus decouples into equivalence classes

ξ + Z,

with ξ ∈ [0, 1). As remarked in section 1.1 we in the following for simplicity of notation con-

sider ξ = 0 and thus consider η ∈ Z discrete. In particular, we naturally associate this setting

with y ∈ T and hence ω(t) ∈ L2(TL × T).

With this definition and conventions we may restate the Duhamel characterization of a

solution in lemma 5 as a series of paths. Here we recall from remark 2 that the evolution

decouples into classes [η] ∈ R/N and that hence ω(t, k, η) depends only on the discrete values
(ω0(t, k, η + l))l∈Z. Indeed, the following lemma shows that ω(t, k, η) can be computed in terms

of a sum over paths ending in η. For simplicity of notation in the formulation of this lemma we

use the discrete structure to phrase this a result for ω0 ∈ L2(T× T) (that is η ∈ Z). The case

ω0 ∈ L2(T× R) is then obtained by studying all classes R/Z.

Lemma 7. Let k be arbitrary but fixed and let η0 be given. Let further ω0 ∈ L2(TL × T) with
F (ω0)(k, η) = αδ(k0,η0)(k, η). Then for any time t > 0 and any frequency (k0, η) it holds that the
solution ω(t) satisfies

ω(t, k, η) = ω0(k, η)+
∑

γ:γ0=η0,γ|γ|=η

Iγ[0, t].

Proof. We recall that by lemma 5 it holds that (in an L2 sense)

ω(t, x, y) = ω0(x, y)+

∫ t

0

sin(y)∂xΔ
−1
t1
ω0 dt1

+

∫∫

0<t1<t2<t
sin(y)∂xΔ

−1
t2

sin(y)∂xΔ
−1
t1
ω0 dt1dt2 + . . . ,

where

Δt = ∂2
x + (∂y − t∂x)

2.

We may then again use that this evolution decouples with respect to the frequency k in x to

replace all operators ∂x by a multiplication by ik. Furthermore, we note that 2i sin(y) = eiy

− e−iy is a sum of (Fourier) shifts in η and we can hence identify

Fx,y

(
∫ t

0

sin(y)∂xΔ
−1
t1
ω0 dt1

)

(k, η) =

∫ t

0

1

2i

ik

k2 + ((η − 1)− kt)2
(Fω0)(k, η − 1) dt1

−
∫ t

0

1

2i

ik

k2 + ((η + 1)− kt)2
(Fω0)(k, η + 1) dt1

as corresponding to the two paths (η − 1, η) and (η + 1, η). Analogously, for any j ∈ N we

may identify the jth Duhamel integral as the sum over 2j paths of length j. Since we without
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loss of generality assumed that ω0(t, k, ξ) is only non-zero for a single ξ ∈ Z, ξ = η0, in order
to compute ω(t, k, η) we then only need to take into account those paths γ which start in η0 and
end in η. Thus, for each fixed η, we obtain

ω(t, k, η) = ω0(k, η)+
∑

j

∑

γ:|γ|= j,γ0=η0 ,γ|γ|=η

Iγ[0, t]

= ω0(k, η)+
∑

γ:γ0=η0,γ|γ|=η

Iγ[0, t].

�

We remark that any initial datum (Fω0(k, η))η∈Z ∈ �2(Z) can be decomposed into a sum of

δη’s and the result for general initial data hence immediately follows by linearity. Furthermore,

we may repeat the same proof for starting times other than 0.

Theorem 8 (second stability theorem). Suppose that cL2π < 1 and let ω0 ∈ L2(TL × T).
Then for all τ � 0 and all η it holds that

|ω(τ , η)− ω0(η)| �
1

1− cL2π

∑

η0∈Z
(cL2π)|η−η0||ω0(η0)|.

We remark that the right-hand side corresponds to a convolution in η0 against an exponentially
decreasing function. In particular, this implies that the evolution is stable in Hs for any s > 0

and in Gevrey regularity.

Proof. By our assumption on c it holds that
∫

R

c

k2 + τ 2
dτ =

c

|k|π =: d <
1

2
. (13)

In contrast to the norm-based approached of theorem 4 and lemma 3, we in the following

consider the frequency-wise evolution of the solution established in lemma 7. Then [13] will

allow us to bound each integral Iγ[t0, t1] in terms of d |γ|.
Suppose at first that ω0 = δη0 and fix a time τ > 0. Then by lemma 7 the value of ω(η) at

time τ can be obtained by summing over all integrals corresponding to paths starting in η0 and
ending in η:

ω(τ , η)− ω(0, η) =
∑

γ:γ0=η0 ,γ|γ|=η

Iγ[0, τ ].

By Fubini’s theorem and [13] we may easily estimate each integral by

|Iγ[0, τ ]| � d|γ|.

Now for any given length j there are only 2j paths starting in η0 of length |γ| = j (of which
only a fraction ends in η). If we denote the length of the shortest path connecting η0 and η by

dist(η0, η1) it thus follows that

|ω(τ , η)− ω(0, η)| �
∑

j�dist(η0,η1)

(2d) j

=
1

1− 2d
(2d)dist(η0,η1).
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Having established the bound for the special case ω0 = δη0 ∈ �2(Z), we now turn to the general

case ω0 ∈ �2(Z). Then we may decompose ω0 as

ω0 =
∑

η0

ω0(η0)δη0 ,

and may use the linearity of the problem to compute

ω(τ , η)− ω(0, η) =
∑

η0

ω0(η0)
∑

γ:γ0=η0,γ|γ|=η

Iγ[0, τ ].

Therefore, by the triangle inequality it follows that

|ω(τ , η)− ω(0, η)| � 1

1− 2d

∑

η0

(2d)|η−η0||ω0(η0)|,

which is a (discrete) convolution in η0. �

3. Instability for long tori and cascades

As a complementary result to the stability established in section 2, we show that for long

tori or respectively slightly larger c the dynamics are exponentially unstable. Here, we do not

construct eigenfunctions but instead establish a new cascade mechanism for resonances with

respect to the frequency in y. We recall that by the Orr mechanism the multiplier associated

with the stream function

1

k2 + (η − kt)2

is largest when η − kt = 0. In the study of the nonlinear problem [BM15, DM18, DZ19] this

resonance underlies the main growthmechanism, where η is roughly fixed and amode k at time

t ≈ η
k excites a mode k− 1, which then later excites a mode k− 2 and so on. As we discuss

in [DZ19] this cascade is a property of the linearized problem around the low-frequency part

of the vorticity depending on x, e.g. c sin(x). As one of the main results of this paper we show

that the linearized problem around the x-independent part, i.e. the shear flow component, also

exhibits a cascade mechanism but with respect to η. That is, here k is fixed and a mode η at

time t ≈ η
k excites the mode η + 1, which later excites the mode η + 2 at time t ≈ η+1

k and so

on.

We in particular note the following similarities and differences, where we refer to the

cascades as k-chain and η-chain, respectively.

• In the k-chain for any initial mode (k0, η0) the resonant times are given by tk =
η0
k with

k = k0, k0 − 1, . . . , 1. In particular, starting from any strictly positive time, there are only

finitely many resonances and no resonances after a maximal time t = η. In contrast, the η-
chain has the resonant times tη =

η
k0
with η = η0, η0 + 1, . . . , which is a cascade of infinite

length.

• The sequences of resonant times tk is unevenly spaced, while the sequence of times tη is a
rescaled integer sequence.

• The total growth exhibited by a k-chain is given by

cη0
k20

cη0
(k0 − 1)2

· · · = (cη0)k0

(k0!)2
,
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which attains its maximum with respect to k0, exp(
√
cη0) for k0 ≈

√
cη0. This growth

factor corresponds to a Gevrey regularity class.

The growth by the η-chain in contrast is exponential in time and tied to the x frequency
of the perturbation k0 instead of the regularity. That is, the growth factor is given by

(

2π
c

k

)t
,

provided 2π c
k � 1, even if we start with single mode initial data at η = 0.

• As can be seen from the growth factors and as shown in the previous section there is no

growth in the η-chain if c
k is small. Similarly, there is only growth by a constant in the

k-chain if
√
cη0 is small.

Theorem 9 (instability). Let 0 < c0 < 1
10
, then there exists L such that for any c > c0 the

evolution [5] is exponentially unstable in L2. More precisely, suppose that L is such that πcL >
20 and πc2L < 1 (e.g. choose L ∼ c−3/2). Then for any (arbitrarily smooth) initial dataω0 with
ω0(k, 0) = 1 � 0.5maxη|ω0(k, η)| it holds that

ω( j− 1

2
, k, j) � d j

for d = π
10
cL > 1 and all j ∈ N.

This shows that phase-mixing for smooth Bilipschitz profiles by itself is not strong enough

to prevent an exponential instability. Some smallness or non-resonance is necessary. While the

embedding eigenvalue criterion of [WZZ18] provides a very good description of this, we think

the present method of proof of constructing a sustained echo chain provides an important new

perspective on this instability.

Proof. By lemma 5 the Duhamel iteration converges for all times and is controlled by an

exponential series. In the following we use the more precise control of the Duhamel iterates as

sums over all paths (see definition 6 and lemma 7) starting in a frequency η0 and ending in a

frequency η1.
We recall that our equation [5]

∂τω(η)+
c

2

1

k2 + (η + 1− τ )2
ω(η + 1)− c

2

1

k2 + (η − 1− τ )2
ω(η − 1) = 0,

considers only nearest neighbour interactions.

In the following we argue by an iteration scheme, where we consider the sequence of times

T j = j− 1
2
, j ∈ N. We claim that if

|ω(T j, k, j)| � 0.5 max
η

|ω(T j, k, η)|, (14)

then it holds that

|ω(T j+1, k, j+ 1)| � 0.5 max
η

|ω(T j+1, k, η)|, (15)

and additionally

|ω(T j+1, k, j+ 1)| � d|ω(T j, k, j)|. (16)

The result then follows immediately by induction in j.
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Let thus j ∈ N be given and suppose that [14] holds. The proof of [15, 16] then consist of

establishing an upper bound on ω(Tj+1, k, η) for all frequencies η (to control the maximum)

as well as a lower bound for η = j+ 1. We will show that ω(Tj+1, k, η) satisfies the following
convolution inequality

|ω(T j+1, η)− ω(T j, η)| �
1

1− 2δ
(2δ)dist(·,·)∗|ω(T j, ·)|

+ Cr(2δ)|η− j±1|
∑

η0

(2δ)|η0− j||ω(T j, η0)|, (17)

where r ≈ cπL > 1 is a large constant (see (22) for the definition),C = 1
(1−2δ)3

1
1−2rδ is close to

1 and |η − j± 1| :=min(|η − j+ 1|, |η − j− 1|). We note that here η0 = j and η ∈ { j− 1, j+
1} have a distinguished role and will also prove that

|ω(T j+1, j+ 1)− rω(T j, j)| �
1

4
rω(T j, j) (18)

and hence

|ω(T j+1, j+ 1)| � 3

4
r|ω(T j, j)|. (19)

Supposing for the moment that [17] holds, we may take the supremum in η and further estimate

sup
η
(2δ)dist(·,·)∗|ω(T j, ·)| �

1

1− 2δ
sup
η
|ω(T j, η)|,

∑

η0

(2δ)|η0− j||ω(T j, η0)| �
1

1− 2δ
sup
η0

|ω(T j, η0)|,

and therefore by [14]

sup |ω(T j+1, k, η)| �
(

1+
1

1− 2δ
+ Cr

1

1− 2δ
(2δ)|η− j±1|

)

2|ω(T j, k, j)|. (20)

For r sufficiently large the last term in this upper bound is of greatest interest. It is comparable

to comparable to r|ω(Tj, k, j)| if η ∈ {j− 1, j+ 1}, which up to a factor matches our lower

bound [19]. In order to establish the estimates [15, 16] we now additionally note that for η /∈
{j− 1, j+ 1} the exponential (2δ)|η−j±1| is small and can counteract the loss of a factor 2/ 3

4
.

It thus remains to prove [17, 19]. We again begin by studying the case when ω0(Tj) be given
by a single mode:

ω(t j, k, η) = δη0 (η).

Then using lemma 7 for any η we may compute

ω(T j+1, k, η)− ω(T j, k, η) =
∑

γ:γ0=η0,γ|γ|=η

Iγ[T j, T j+1].

While in the proof of theorem 8 we roughly estimated

Iγ[T j, T j+1] � d|γ|,
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in the following we estimate more carefully. In each integral we have to consider terms of the

form
∫

τi−1�τi�τi+1

c

k2 + (γi − τi)2
dτi �

∫

T j�τi�T j+1

c

k2 + (γi − τi)2
dτi.

If |γ i − j| � 1, we can bound this contribution by

∫ 1
2

− 1
2

c

k2 + 1
4

dτi � 4c =: δ <
1

4
.

We call such γ i non-resonant. We recall that by remark 2 that we only need to consider γi ∈
Z and thus there is a clean dichotomy: either γ i �= j is non-resonant or γi = j is (perfectly)
resonant.

In the following we thus group paths by the number of resonances appearing. Similarly to

the proof of theorem 8, if all γi in a path γ are non-resonant, we may estimate

Iγ[T j, T j+1] � δ|γ|.

Again roughly estimating the number of all paths of length |γ| by 2|γ|, the sum over all such

paths can be estimated by a geometric series:

∑

γ:non−resonant

Iγ[T j, T j+1] �
∑

i�dist(η,η0)

2iδi =
1

1− 2δ
(2δ)dist(η,η0 ). (21)

We remark that here the distance refers to the shortest non-trivial path, thus dist(η, η0) = |η
− η0| if η �= η0 and dist(η0, η0) = 2. As in the proof of theorem 8 in the case of general initial

data (that is, not just a single mode) this estimate results in a discrete convolution against

|ω(T0, k, ·)|, which produces the first term in the estimate [17].

In contrast, consider the special case η0 = j and η = j+ 1. Then the path γ = (η0, η0 + 1)

has the associated integral given by

∫ 1
2

− 1
2

c

k2 + τ 2
dτ =

2c

k
arctan

(

1

2k

)

=: r. (22)

If k < c is sufficiently small, then 2 arctan( 1
2k ) ≈ π and r ≈ c πk � cπL > 1 is comparatively

large.

More generally, let γ be a path starting in η0 and ending in η.

• If all γ i are non-resonant, this path is estimated by (21). Thus suppose that it has several

resonances.

• We note that in order to be resonant, the path first has to reach j starting from η0, for which
it needs j1 � |η0 − j| steps.

• It is then resonant for a number j2 � 1 of times, between which is non-resonant a number

at least j3 � j2 − 1 � 0 times, since subsequent entries in a path are distinct, that is you

have to leave the resonant frequency before visiting again.

• Finally, after visiting the resonant frequency a last time, the path has to reach the frequency

η for which it uses j4 � |η − j± 1| non-resonant steps (for example the path γ = ( j, j− 1)

has a single resonance and no non-resonance).

Thus, in total the integral corresponding to this path can be estimated by
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δ j1r j2δ j3δ j4 = δ j1+ j4r1(rδ) j2−1δ j3− j2+1,

j1 � |η0 − j|, j4 � |η − j± 1|,
j2 − 1 � 0, j3 − j2 + 1 � 0,

where we use the short notation |η − j± 1| = min(|η − j+ 1|, |η − j− 1|). We note that by

assumption

rδ � 8πc2L <
1

4
,

δ <
1

4
,

r > 10.

(23)

Again roughly estimating the number of such paths by 2|γ|, we estimate the sums in j2 − 1 and
in j3 − j2 + 1 by

1

1− 2rδ

1

1− 2δ
� 4

and similarly estimate the sums in j1, j4 by
1

(1− 2δ)2
(2δ)|η0− j|+|η− j±1|.

We thus in total obtain an estimate by

1

(1− 2δ)3
1

1− 2rδ
r(2δ)|η0− j|+|η− j±1|. (24)

Denoting C = 1
(1−2δ)3

1
1−2rδ , we may again argue as in the proof of theorem 8 to obtain an

estimate for the case of general initial data in terms of a convolution in η0. This concludes the
proof of the estimate [17].

It remains to prove [19]. We saw in (21) that the contribution by the path γ = ( j, j+ 1) (and

analogously ( j, j− 1)) is given by

rω(T j, j).

In constrast all other paths ending in j+ 1 involve at least one non-resonance (and more the

further η or η0 are from j). Hence, we further obtain the following lower bound:

|ω(T j+1, j+ 1)− ω(T j, j+ 1)− rω(T j, j)| �
1

1− 2δ
sup
η
|ω(T j)|+ Cr

∑

η0 �= j

(2δ)η0− j|ω0(T j, η0)|

�
1

1− 2δ
sup
η
|ω(T j)|

+ Cr(2δ)
1

1− 2δ
sup
η0

|ω(T j, η0)|,

where we used the geometric series in the last step. Since ω(Tj, j) is comparable to the supre-

mum at that time by the assumption [14] and using that r� 1 and choosing δ sufficiently small

such that C(2δ) 1
1−2δ � 1, we deduce that

|ω(T j+1, j+ 1)− ω(T j, j+ 1)− rω(T j, j)| � 0.1 r|ω(T j, j)|,

which implies [19]. �
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In this theorem we have shown that if a torus is sufficiently long such that cL � 1, then a

new resonance cascade mechanism persists, where (k, η = j) excites a mode (k, j+ 1) around

time Tj, which in turn excites (k, j+ 2) and so on. We thus present a new explicit instability

mechanism associated to the smallness assumption imposed in [Zil16]. Furthermore, simi-

larly to convexity/concavity assumptions imposed in classical stability results by Rayleigh,

Fjortoft or Arnold [Dra02], this result shows that even if a flow is bilipschitz and smooth,

this is not sufficient to establish (asymptotic) stability and that some additional condition to

control long wave-length perturbations is necessary. We thus develop a further understanding

of what (linear) instability mechanisms may be encountered in the study of perturbations to

shear flows, how instabilities may propagate and cascade and what conditionsmay be imposed

to avoid these scenarios (e.g. limiting the wave length of admissible perturbations). Here an

interesting but very challenging question concerns the implications of this linear instability

mechanism for the nonlinear problem.While such an instability rules out some types of asymp-

totic convergence results (that is, scattering to the linear dynamics), it might be the case that

the linearization around the initial velocity profile is the ‘wrong guess’ for the asymptotics and

that the evolution is nevertheless asymptotically stable.

In view of the nonlinear problemwe remark that the η-chainmodel of the present article and

the fluid echo chains studied in [DM18] and [DZ19] share commonalities in how instabilities

appear at critical times and then lead to new instabilities at later times, resulting in a cascade.

However, as remarked earlier the details such as the direction (in Fourier space), length or time

scales of these cascades are very different. Furthermore, in the general nonlinear problem one

may expect both mechanisms to interact, resulting in resonances in further directions.
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