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SUMMARY

Debiased machine learning is a meta-algorithm based on bias correction and sample splitting to calculate
confidence intervals for functionals, i.e., scalar summaries, of machine learning algorithms. For example, an
analyst may seek the confidence interval for a treatment effect estimated with a neural network. We present
a non-asymptotic debiased machine learning theorem that encompasses any global or local functional of
any machine learning algorithm that satisfies a few simple, interpretable conditions. Formally, we prove
consistency, Gaussian approximation and semiparametric efficiency by finite-sample arguments. The rate
of convergence is n~!/? for global functionals, and it degrades gracefully for local functionals. Our results
culminate in a simple set of conditions that an analyst can use to translate modern learning theory rates into
traditional statistical inference. The conditions reveal a general double robustness property for ill-posed
inverse problems.

Some key words: Gaussian approximation; Ill-posed inverse; Non-asymptotic rate; Semiparametric inference.

1. INTRODUCTION

The goal of this paper is to provide a useful technical result for analysts who wish to find confidence
intervals for functionals, i.e., scalar summaries, of machine learning algorithms. For example, the functional
of interest could be the average treatment effect of a medical intervention, and the machine learning
algorithm could be a neural network trained on medical scans. Alternatively, the functional of interest
could be the price elasticity of consumer demand, and the machine learning algorithm could be a kernel
ridge regression trained on economic transactions. Treatment effects and price elasticities for a specific
demographic are examples of localized functionals. In such applications, confidence intervals are essential.

We give a simple set of conditions that can be verified using the kind of rates provided by statistical
learning theory. Unlike previous work, we provide a finite-sample analysis for any global or local functional
of any machine learning algorithm, without bootstrapping, subject to these simple and interpretable con-
ditions. The machine learning algorithm may be estimating a nonparametric regression, a nonparametric
instrumental variable regression or some other nonparametric quantity. This work makes conceptual and
statistical contributions to the rapidly growing literature on debiased machine learning.

Conceptually, our result unifies, refines and extends existing debiased machine learning theory for a
broad audience. We unify finite-sample results that are specific to particular functionals or machine learning
algorithms. General asymptotic theory with abstract conditions already exists, which we refine to finite-
sample theory with simple conditions. In doing so, we uncover a new notion of double robustness for
exactly identified ill-posed inverse problems. A virtue of finite-sample analysis is that it handles the case
where the functional involves localization. We show how learning theory delivers inference.

Statistically, we present results for the class of global functionals that are mean-square continuous, and
their local counterparts, using algorithms that have sufficiently fast finite-sample learning rates. Formally,
we prove (i) consistency, Gaussian approximation and semiparametric efficiency for global functionals;
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and (ii) consistency and Gaussian approximation for local functionals. The analysis explicitly accounts for
each source of error in any finite sample. The rate of convergence is the parametric rate of /2 for global
functionals, and it degrades gracefully to nonparametric rates for local functionals.

2. RELATED WORK

By focusing on functionals of nonparametric quantities, this paper continues the tradition of classic
semiparametric statistics (Hasminskii & Ibragimov, 1979; Robinson, 1988; Bickel et al., 1993; Andrews,
1994; Newey, 1994; Robins & Rotnitzky, 1995; Ai & Chen, 2003). Whereas classic semiparametric theory
studies functionals of densities or regressions over low-dimensional domains, we study functionals of
machine learning algorithms over arbitrary domains. In classic semiparametric theory, an object called the
Riesz representer appears in efficient influence functions and asymptotic variance calculations (Newey,
1994). For the same reasons, it appears in debiased machine learning confidence intervals.

In asymptotic inference, the Riesz representer is inevitable. A growing body of work directly incorpo-
rates the Riesz representer into estimation, which amounts to debiasing known estimators. Doubly robust
estimating equations serve this purpose (Robins & Rotnitzky, 1995). A geometric perspective emphasizes
Neyman orthogonality: by debiasing, the learning problem for the functional becomes orthogonal to the
learning problem for the nonparametric object (Chernozhukov et al., 2022¢, 2018; Foster & Syrgkanis,
2020). An analytic perspective emphasizes the mixed bias property: by debiasing, the functional has bias
equal to the product of certain learning rates (Chernozhukov et al., 2018; Rotnitzky et al., 2021). In the
present work, we focus on debiased machine learning with doubly robust estimating equations.

With debiasing alone, a key challenge remains: for inference, the function class in which the nonpara-
metric quantity is learned must be Donsker (van der Laan & Rubin, 2006; Luedtke & van der Laan, 2016;
van der Laan & Rose, 2018; Qiu et al., 2021) or must have slowly increasing entropy (Belloni et al., 2013,
2014; Javanmard & Montanari, 2014; Van de Geer et al., 2014; Zhang & Zhang, 2014). However, popular
nonparametric settings in machine learning may not satisfy either property. A solution to this challenging
issue is to combine debiasing with sample splitting (Klaassen, 1987). The targeted (Zheng & van der Laan,
2011) and debiased (Belloni et al., 2012; Chernozhukov et al., 2018, 2022¢) machine learning literatures
provide this insight. In particular, debiased machine learning delivers sufficient conditions for asymptotic
inference on functionals in terms of learning rates of the underlying nonparametric quantity and the Riesz
representer. We complement prior results with a finite-sample analysis.

This paper subsumes Singh (2021, § 4).

3. FRAMEWORK AND EXAMPLES

The general inference problem is to find a confidence interval for some scalar 8, € R where 6, =
E{m(W,y)}, withyy € 'and m : W x L, — R being an abstract formula; W € W is a concatenation of
random variables in the model excluding the outcome ¥ € Y C R, L, is the space of functions of the form
y : W — R that are square-integrable with respect to measure pr, and I is a linear subset of L, known by
the analyst, which may be L, itself.

Here y, may be the conditional expectation function y,(w) = E(Y | W = w) or some other non-
parametric quantity. For example, it could be the function defined as the solution to the ill-posed inverse
problem E(Y | W, = wy) = E{y(Wy) | W, = w,} where W, W, C W. Such a function is called a
nonparametric instrumental variable regression in econometrics (Newey & Powell, 2003). We study the
exactly identified case, which amounts to assuming completeness when I' = 1L, (Chen & Santos, 2018).
If W, = W,, then nonparametric instrumental variable regression simplifies to nonparametric regression.

A local functional 6™ € R is a scalar that takes the form

6" =limog, 6y = E(my(W,y0)} = E{l:(WpymW,y0)),  yo €T,

where ¢, is a Nadaraya—Watson weighting with bandwidth 4 and W is a scalar component of . Though
6am is a nonparametric quantity, it can be approximated by the sequence (6). Each 6 can be analysed like
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6, above as long as we keep track of how certain quantities depend on /. By this logic, finite-sample semi-
parametric theory for 6! translates to finite-sample nonparametric theory for 6™ up to some approximation
error. In this sense, our analysis encompasses both global and local functionals.

To illustrate, we consider some classic functionals.

Example 1 (Heterogeneous treatment effect estimated by neural network). Let Y be a health outcome.
Let W = (D, V,X) concatenate a binary treatment D, a covariate of interest V', such as age, and other
covariates X, such as medical scans. Let y(d,v,x) = E(Y | D =d,V = v,X = x) be a function estimated
by a neural network. Under the assumption of selection on observables, the heterogeneous treatment
effect is

CATE(V) = E{VO(I, VaX) - )/0(03 VaX) | V= V} = Illgr(l)E[Zh(V){J/O(la V:X) - VO(Oa VaX)}]a

where £,(V) = (hw)"'K{(V —v)/h}, v = E[h"'K{(V —v)/h}] and K is a bounded and symmetric kernel
that integrates to 1.

The heterogeneous treatment effect is defined with respect to some interpretable, low-dimensional
characteristic V' such as age, race or gender (Abrevaya et al., 2015). The same functional without the
localization ¢, is the classic average treatment effect. See Bibaut & van der Laan (2017) and Colangelo &
Lee (2021) for other meaningful localizations of the average treatment effect.

Example 2 (Regression discontinuity design estimated by random forest). Let Y be an educational
outcome. Let W = (D, X) concatenate a test score variable D and covariates X. Let y(d,x) = E(Y | D =
d, X = x) be a function estimated by a random forest. Suppose the cut-off for a scholarship is the test score
D = 0. The regression discontinuity design parameter is

ROD = lim E{y(d. X)) — lim E{yo(d. X))} = lim E{£] (D)1o(D.X) — & (D) (D. X)),

where ¢/ (D) = (ho™)"'K{(2D—h)/(2h)}, o™ = E[h"'K{(2D—h)/(2h)}], ¢, (D) = (ho™ ) 'K{(—2D—
h)/(2h)}, o~ = E[h"'K{(—2D — h)/(2h)}] and K vanishes outside the interval (—1/2,1/2).

The expressions for fuzzy regression discontinuity, exact kink and fuzzy kink designs are similar.

Example 3 (Demand elasticity estimated by kernel instrumental variable regression). Let Y be the
logarithm of the quantity demanded of some goods. Let W = (D,X,Z) concatenate the log price D,
covariates X and cost shifter Z. Let y,(d,x) be defined as the solution to E(Y | X = x,Z = z) =
E{y(D,X) | X = x,Z = z} estimated by a kernel instrumental variable regression (Singh et al., 2019).
The demand elasticity is

0
ELASTICITY = E{ — 1(D, X) ¢.
{ 9d Yol )}

The Supplementary Material includes the additional example of heterogeneous average derivative
estimated by lasso, which is useful when an analyst has access to data on household spending behaviour.
For our simple and general theorem, we require that the formula m be mean-square continuous.

Assumption 1 (Linearity and mean-square continuity). The functional y +— E{m(W,y)} is linear, and
there exist O < oo and ¢ > 0 such that E{m(W, y)?*} < Q[E{y (W)?}])¢ forall y € T.

This condition will be key in § 5, where we reduce the problem of inference for 6, to the problem of
learning (y, &™), where o is introduced below. It is a powerful condition satisfied by many functionals
of interest, or at least satisfied by their approximating sequences. Although the local functional ™ does
not satisfy Assumption 1, each approximating 6 does. In particular, for each mj, there exists some 0, that
depends on /. We keep track of O in our analysis and subsequently consider O = Q. See Theorem 2 for

conditions that characterize 0, in local functionals, including Examples 1 and 2.
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The restriction that y, be in ' C IL,, where I" is some linear function space, is called a restricted model
in semiparametric statistical theory. In learning theory, mean-square rates are adaptive to the smoothness
of y,, encoded by y, € I'. We quote a general Riesz representation theorem for restricted models.

LEmMMA 1 (RIESZ REPRESENTATION, Chernozhukov et al., 2022a). Suppose that Assumption 1 holds.
Further suppose that vy, is in I'. Then there exists a Riesz representer oy € 1L, such that for all y in T,
E{m(W,y)} = E{ag(W)y (W)}. There exists a unique minimal Riesz representer o™ € closure(I") that
satisfies this equation, obtained by projecting any o onto T'. Moreover, denoting by M the operator norm
of y — E{m(W,y)}, we have that [E{a™™(W)?}]'? = M < Q' < oo.

The condition M < oo is enough for the conclusions of Lemma 1 to hold. Since M < 02, 0 <ooin
Assumption 1 is a sufficient condition. Nonetheless, we assume O < oo because mean-square continuity
plays a central role in the main results of § 5. In Examples 1 and 2, with propensity score 7, (v, x),

d 1—-d
T[()(V,.x) 1- 7T()(V,)C)

oo(d,v,x) = £,(v) { } . ag(d,x) =45(d), oy (d,x)=12,(d).

Riesz representation delivers a doubly robust formulation of the target 6, € R. For the case where y,(w)
is defined as a nonparametric regression in I or a projection onto I', consider the estimating equation

b0 = E[m(W, v5) + o™ MY — yo(W)}].
This formulation is doubly robust since it remains valid if either y; or a{)“i“ is correct: for all (y,a) in T,
b0 = E[m(W, y5) +a(N{Y — yo(W)}] = E[m(W,y) + ag™ (WY — y (W)}].

The term o (w){y — y (w)} serves as a bias correction for the term m(w, y). We view (yp, o) as nuisance
parameters that we must learn in order to learn and infer 6,. Any Riesz representer ¢ will suffice for
valid learning and inference of 6, = E{m(W,y,)} under correct specification of y, as the regression
E(Y | W = w) in I'. The minimal Riesz representer o™ confers specification-robust inference and
semiparametric efficiency for estimating 8y = E{m(W, y,)} when yj is only the projectionof E(Y | W = w)
onto I'; see Chernozhukov et al. (2022a, Theorem 4.2).

If y5(w) is defined as the solution to an ill-posed inverse problem, then the appropriate Riesz representer
is defined as the solution to another ill-posed inverse problem (Severini & Tripathi, 2012; Ichimura &

Newey, 2022). The relevant nuisance parameters are (y, oz(‘)“i“), defined as unique solutions (v, «) to

E(Y | Wy=w) =E{y(W) | Wa=w}, 15" (w1) = Efa(W) | Wi = wi},
where ng‘i“ is the minimal Riesz representer satisfying E{m (Wi, y)} = E{no(W1)y (Wy)} forall y inT" from
Lemma 1. Uniqueness is due to the assumption of exact identification, which amounts to completeness
when I' = L,. In Example 3, w; = (d,x), w, = (z,x) and no(d,x) = —9,logf (d | x) where f(d | x) is a
conditional density. This abuse of notation allows us to state unified results. The estimating equation is

0o = E[m(W1,v0) + g™ (W)Y — yo(W1)}].

A new insight provided by this work is that for any mean-square-continuous functional, n~'/? Gaussian
min

approximation is still possible if either y; or of™" is the solution to a mildly, rather than severely, ill-posed
inverse problem; the doubly robust formulation confers double robustness to ill-posedness.

4. ALGORITHM

Our goal is general-purpose learning and inference for the target parameter 6, € R, which is a mean-
square-continuous functional of ¥, € I'. Lemma | demonstrates that any such 6, has a unique minimal
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representer '™ € I. In this section, we describe a meta-algorithm for turning estimators 7 of y, and & of
oM™ into an estimator 6 of 6, such that § has a valid and practical confidence interval. Recall that  may be
any machine learning algorithm. To preserve this generality, we do not instantiate a choice of y; we treat
it as a black box. In subsequent analysis, we will only require that 7 converge to y, in mean-square error.
This mean-square rate is guaranteed by existing statistical learning theory.

The target estimator 6 as well as its confidence interval will depend on nuisance estimators y and &.
We refrain from instantiating the estimator & for ™. As we will see in subsequent analysis, the general
theory only requires that & converge to /" in mean-square error. Recent literature provides & estimators
with fast rates inspired by the Dantzig selector (Chernozhukov et al., 2022a), lasso (Chernozhukov et al.,
2022b; Avagyan & Vansteelandt, 2023; Smucler et al., 2019), adversarial neural networks (Chernozhukov

et al., 2020; Kallus et al., 2021) and kernel ridge regression (Singh, 2021).

Algorithm 1. Debiased machine learning.
Given a sample (Y;, W;) (i = 1,...,n), partition the sample into folds (Z,) (¢ = 1,...,L). Denote by I;
the complement of /,.

Step 1. For each fold ¢, estimate y, and &, from observations in I;.
Step 2. Estimate 6y as 6 = n™! Zé:l Z,.EI[ [m(W,-, Vo) + @ (W)LY, — J%(Wi)}].
1

Step 3. Estimate its (1 — a)100% confidence interval as 6 + c,6n~/2, where ¢, is the 1 — a/2 quantile
of the standard Gaussian and 6> = n~! ZLI Dier, [m(W, 90) + (WY — 2e(W))} — é]z

This meta-algorithm can be seen as an extension of classic one-step corrections (Pfanzagl, 1982)
amenable to the use of modern machine learning, and it has been termed debiased machine learning
(Chernozhukov et al., 2018). It departs from targeted machine learning inference with a finite sample
(van der Laan, 2017; Cai & van der Laan, 2020) in a few ways. On the one hand, it avoids iteration and
bootstrapping, thereby simplifying computation. On the other hand, it does not involve substitution, which
would ensure that the estimator obeys additional meaningful constraints. See Chernozhukov et al. (2022b)
for an algorithm that combines the two approaches.

5. VALIDITY OF THE CONFIDENCE INTERVAL

This section is presented at a high level of generality so that it can be used by analysts working on
a variety of problems. We assume a few simple and interpretable conditions and consider black-box
estimators (7, @). We prove by finite-sample arguments that 6 defined by Algorithm 1 is consistent and
that its confidence interval is valid and semiparametrically efficient. Towards this end, define the oracle
moment function

Yow) = Y (w, 00, 0, g™, Y (w,0,y,0) = mw,y) +aw){y — y(w)} — 6.

Its moments are o> = E{y(W)?}, k> = E{|Yo(W)|*} and ¢* = E{yy(W)*}. Write the Berry—Esseen
constant as cPE = 0.4748 (Shevtsova, 2011). The result will be in terms of abstract mean-square rates.

DEFINITION 1 (MEAN-SQUARE ERROR). Write the mean-square ervor R(,) and the projected mean-
square error P(y,) of y, trained on observations indexed by I} as

R@) =E[{peW) =Y | ], PG = E([ER W) — vo(Wy) | Wo, Y | ).
Likewise define R(Q,) and P(&,).

Statistical learning theory provides rates of this form, where /; is a training set and W is a test point. In
the case of nonparametric regression, R(7;) or R(&) typically has a fast rate between n='/> and n~!. In
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the case of nonparametric instrumental variable regression, R(y,) and R(Q,) typically have rates slower
than n~'/2 due to ill-posedness, but P () or P(a&,) may have a fast rate (Blundell et al., 2007; Singh et al.,
2019; Dikkala et al., 2020). Our main result is a finite-sample Gaussian approximation.

THEOREM 1 (FINITE-SAMPLE GAUSSIAN APPROXIMATION). Suppose that Assumption 1 holds, E[{Y —
Yo | W1 < 62 and || o™l < . Then with probability 1 — €,

sup
z€eR

K 3
< CPF (_) 2 1 fe,
o

nl2 .
Pf{—(9 —6) < Z} —®(2)
o

A
Q2m)1/2
where ®(z) is the standard Gaussian cumulative distribution function and

3L . - _ . _ . N N
A =—[Q" +ORGN" +5{R@N"” + (RGOR@)}].

If in addition || &, s < &', then the same result holds upon updating A to

4L
e2g

- 1
[0 + &+ @) REV" + 5 {R(G} ] + ;[{HP(%)R(&O}W APR@POP @)} ).

For local functionals, further suppose an approximation error of size A, = n'?a, "0} — 6i™|. Then the
same result holds upon replacing (,60o, A) with (0", 0™, A + A,).

Theorem 1 is a finite-sample Gaussian approximation for debiased machine learning with black box
(Do, @;). Tt degrades gracefully if the parameters (Q, &, &, @’) diverge relative to n and the learning rates.
Here &' is a bound on the chosen estimator &, that can be imposed by censoring extreme evaluations.
Theorem 1 is a finite-sample refinement of the asymptotic black-box result in Chernozhukov et al. (2022c).

In the bound A, the expression {nR(7,)R(&,)}'/? allows a trade-off: one of the learning rates may be
slow, as long as the other is sufficiently fast to compensate. It is easily handled in the case of nonparametric
regression, where R(y,) or R(a,) typically has a fast rate. However, the expression may diverge in the
case of nonparametric instrumental variable regression, where both rates may be slow due to ill-posedness.

The refined bound provides an alternative path to Gaussian approximation, replacing {nR(7,)R(&;)}"/?
with the minimum of {nP (P,)R(&)}"? and {nR(P,)P(&.)}'/%. Importantly, the projected mean-square
error P (y,) can have a fast rate even when the mean-square error R (3,) has a slow rate because its definition
side-steps ill-posedness. Moreover, the analyst only needs P (y,) to be fast enough to compensate for the
ill-posedness encoded in R(a&;), or P(&,) to be fast enough to compensate for the ill-posedness encoded
in R(7,). This general and finite-sample characterization of double robustness to ill-posedness appears to
be new. In independent work, Kallus et al. (2021) documented an asymptotic special case of this result for
a specific global functional and specific nuisance estimators; see the Supplementary Material.

By Theorem 1, the neighbourhood of Gaussian approximation scales as on~!/2, If o is a constant, then
the rate of convergence is n~'/2, i.e., the parametric rate. If o is a diverging sequence, then the rate of
convergence degrades gracefully to nonparametric rates. A precise characterization of o is possible, which
is provided in the Supplementary Material and summarized here. It turns out that global functionals have a
o that is constant, while local functionals have o = o, that is a diverging sequence. We emphasize which
quantities are diverging sequences for local functionals by indexing with the bandwidth 4.

THEOREM 2 (CHARACTERIZATION OF KEY QUANTITIES). If the noise has finite variance, then 6 < 00.

Suppose that the bounded-moment and heteroscedasticity conditions in the Supplementary Material hold.
Then for global functionals, kjo < 0 < M < oo, kK, & S M? < 0 < oo and @ < oo. Suppose that
the bounded-moment, heteroscedasticity, density and derivative conditions in the Supplementary Material

hold. Then for local functionals, K)o, < W=, o < My < h™'2, k, < W23 ¢, S B34 0y < k72,
ap S h7Vand A, < n'2RY Y2 where Vo is the order of differentiability defined in the Supplementary
Material.

For global functionals, (O, @) are finite constants that depend on the problem at hand. For example, for
treatment effects a sufficient condition is that the propensity score be bounded away from 0 and 1. For
derivatives, a sufficient condition is that I" should satisfy Sobolev conditions. For local functionals, we
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handle (O, &;) on a case-by-case basis. See the Supplementary Material for interpretable and complete
characterizations.

Observe that the finite-sample Gaussian approximation in Theorem 1 is in terms of the true asymptotic
variance o2, We now provide a guarantee for its estimator 62.

THEOREM 3 (VARIANCE ESTIMATION). Suppose that Assumption 1 holds, E[{Y — yo(W)}* | W] < o
and ||G; |0 < &'. Then with probability 1 — €, 6% — | < A +2(ANY2H(A")? + o} + A", where
24L

A =40 —6)" +

B B R B A 2 1/2
[0+ @RGY + 6 R@]. A" = <Z) e
_Theorem 3 is a finite-sample variance estimation guarantee. It degrades gracefully if the parameters
(Q,0,a’) diverge relative to n and the learning rates. Theorems 1 and 3 immediately imply simple,
interpretable conditions for validity of the confidence interval. We conclude by summarizing these
conditions.

COROLLARY 1 (CONFIDENCE INTERVAL). Suppose that Assumption 1 holds, as well as the following
regularity and learning-rate conditions as n — 0o and as h — 0:

(i) EHY —ypoOM)P | W1 < 6% e e < & @l < & and {(k/0)* + 2 — 0;
(ii) (02 +a/o +a&)NRP)I? = 0y(1);
(iti) G{R(@)}"* = 0,(1);
(iv) [(MRPORG)N? A {nPPOR@)}? A (nRP)P @)} ?]/o = 0,(D).

Then the estimator 0 in Algorithm 1 is consistent and asymptotically Gaussian, and the confidence interval
in Algorithm 1 includes 6, with probability approaching the nominal level. Formally,

0 =6 +0,(1), o 'n@—6)~ N©O,1), pr{de@Lc,n '} - 1-a

For local functionals, if A, — 0, then the same result holds upon replacing (é, 6o) with (éh, 03““).

SUPPLEMENTARY MATERIAL

The Supplementary Material includes simulation results, details of Theorem 2, further discussion, proofs
and code.
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