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ABSTRACT

Up-to-date sea ice charts are crucial for safer navigation in

ice-infested waters. Recently, Convolutional Neural Network

(CNN) models show the potential to accelerate the generation

of ice maps for large regions. However, results from CNN

models still need to undergo scrutiny as higher metrics per-

formance not always translate to adequate outputs. Sea ice

type classes are imbalanced, requiring special treatment dur-

ing training. We evaluate how three different loss functions,

some developed for imbalanced class problems, affect the per-

formance of CNN models trained to predict the dominant ice

type in Sentinel-1 images. Despite the fact that Dice and Fo-

cal loss produce higher metrics, results from cross-entropy

seem generally more physically consistent.

Index TermsÐ Convolutional Neural Networks, loss

function, sea ice, semantic segmentation, Synthetic Aperture

Radar (SAR)

1. INTRODUCTION

The recent reduction in sea ice volume has led to increased

potential for shipping in the Arctic (e.g., [1, 2]), which re-

quires improved marine information services to ensure both

safe transit and minimal environmental impact. Several na-

tional ice centers periodically produce sea ice charts, used by

navigators to find the best and safest shipping routes. The

generation of ice charts continues heavily dependent on sea

ice experts that manually interpret remotely sensed data in

conjunction with other information to create maps that indi-

cate ocean conditions. Machine learning was identified as a

methodology with significant potential for accelerating the

generation of sea ice charts. Convolutional Neural Networks

(CNNs), in particular, showed promising results for sea ice

characterization using remotely sensed data as input, in both

image classification and semantic segmentation frameworks.

In classification, subsampled patches of remotely sensed im-

ages are labeled as water or other sea ice attribute, and then

patches are mosaiced into a classified scene (e.g., [3, 4]).

Most studies approaching sea ice mapping as a semantic seg-

mentation task have used U-Net [5] variations. Ren et al.
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[6] added attention components into U-Net that further cap-

tured the spatial correlation of features in individual feature

maps and the interrelation of pixel values between differ-

ent feature maps. Adding attention components improved

accuracy when compared to the original architecture for a

binary segmentation of open water and sea ice. Wang and

Li [7] combined five U-Nets outputs to perform a binary

segmentation of Sentinel-1 scenes into open water and sea

ice. Stokholm et al. [8] explored expanding the number

of convolutional blocks in a U-Net architecture to perform

semantic segmentation of Sentinel-1 images to segment sea

ice concentration. In [3, 4, 6, 7, 8], the models were trained

using categorical or binary cross-entropy (CE) loss. Wang

and Li [7] combined binary CE and Dice loss [9] to train their

models. Despite these improvements, automated ice type

classification remains unreliable for operational purposes,

which can be attributed to multiple potential reasons, includ-

ing the subjectivity of sea ice expert interpretation (labels)

or loss functions used to train models. Sea ice type is gen-

erally an imblanaced problem, and adopting different losses

has the potential to improve the performance of the models

without requiring significant changes in model development

and training. Recently, Kucic and Stokholm [10] evaluated

the effect of different losses for sea ice concentration map-

ping. Here, we use a semantic segmentation framework and

rely on the ExtremeEarth V2 dataset [11] to perform a set of

experiments and evaluate what is the effect in performance

when we train the models using different loss functions for

ice type mapping.

2. MODEL ARCHITECTURE AND TRAINING

STRATEGY

We approach sea ice type charting as a semantic segmentation

task. To do so, we design a model architecture that uses the

first three blocks of ResNet18 [12] as encoder, and a decoder

based on the Atrous Spatial Pyramid Pooling (ASPP) module

[13]. The encoder and decoder sum 4 M trainable parameters.

We initialize the encoder with ImageNet [14] weights that

are updated in training, while the decoder is randomly initial-

ized. Our model takes as input Horizontal-Horizontal (HH),

Horizontal-Vertical (HV), and incidence angle from Sentinel-

1 images, and outputs ice type. We train the models using



Fig. 1. Example of model predictions with highest scores for January. a) Input to the models, a Sentinel-1 image. b) Rasterized

ExtremeEarth V2 labels. c), d), and e) share the same legend as b) and show predictions with highest weighted F1 for models

trained with CE, Dice, and Focal loss, respectively. f), g), and h) share the same legend and show errors of losses compared to

the labels in b). Although there is a larger mismatch between Dice results and ExtremeEarth V2 labels, the First Year Ice shows

fewer blobs of other ice types in comparison to CE and Focal loss results.

a batch size of 24, Adam optimizer [15] with a learning rate

starting at 1e-5. The learning rate is multiplied by 0.1 if the

validation loss does not decrease in five epochs, to a mini-

mum of 1e-8 and training stops if the validation loss does not

decrease in 20 epochs. The weights with smallest validation

loss are used for testing. These hyperparameters are kept the

same, and we train models using three different loss functions

with their default parameters: CE, Dice [9], and Focal [16].

We repeat each experiment three times to account for stochas-

tic variation.

3. DATASET PRE-PROCESSING

The ExtremeEarth V2 dataset [11] is a collection of labels in

the form of high-resolution ice charts for twelve Sentinel-1

images in Extra Wide (EW) mode acquired over the East

Coast of Greenland. The twelve images are roughly one

month apart, one for each month of 2018, and show several

types of sea ice under different weather conditions. Ex-

tremeEarth V2 labels are polygons representing sea ice or

open water with different characteristics. Each polygon con-

tains attributes characterizing oldest sea ice, second oldest

sea ice, as well as their respective concentrations. We derive

the ªdominant ice typeº by computing the sea ice with the

highest concentration in a polygon and use that as the target

for our CNN models. We separate two scenes, January and

July for testing. We clip half of February, June, August, and

December for validation. Test and validation outputs are gen-

erated on a single pass for full images. To generate training

samples, we extract 100 randomly placed patches of size 80

km2, which correspond to 1000 x 1000 pixels of Sentinel-1

images that were resampled to 80 x 80 m pixel size.

4. RESULTS AND DISCUSSION

Results show similar performance metrics for all losses inves-

tigated, with a marginal improvement for Focal loss. The av-

erage test weighted F1 score (average across January and July



Fig. 2. Example of model predictions with highest scores for July. a) Input to the models, a Sentinel-1 image. b) Rasterized

ExtremeEarth V2 labels. c), d), and e) share the same legend as b) and show predictions with highest weighted F1 for models

trained with CE, Dice, and Focal loss, respectively. f), g), and h) share the same legend and show errors of losses compared to

the labels in b).

for all three experiments) for CE is 0.815 (minimum of 0.805,

maximum of 0.825). Dice results are 0.810 (0.80, 0.82), and

Focal results are 0.822 (0.81, 0.83). Although Dice and Fo-

cal loss were developed for imbalanced datasets, our results

show comparable performance for the more common CE loss

for the ExtremeEarth V2 dataset. This potentially hints at

other reasons that might have contributed to a relatively low

performance in ice type classification, including lack of suffi-

cient training samples, subjective labels at the polygon level

as interpreted by the sea ice analyst, and ambiguity of SAR

backscatter over different types. However, evaluating the re-

sults solely based on metrics performance can be problem-

atic. Fig. 1 shows the results for the models with the high-

est weighted F1 for January. The model trained with Dice

loss misses all old ice and classifies those regions as first-year

ice. Due to the difference in thickness, incorrectly identify-

ing old ice as first-year ice can have serious consequences for

shipping and other marine operations. Of the three proposed

methods, CE results appear to best capture the old ice areas.

All models struggle to correctly identify the ice edge, which

is attributed to a combination of the model’s architecture res-

olution and the fact that the new ice at the edge appears darker

in the SAR image. Fig. 2 shows results for the models with

the highest weighted F1 for July, during Summer when ice is

generally melting and there is no ice growth. All models miss

the old ice regions that are classified either as young or first-

year ice. The weighted F1 for the model trained with Dice is

the highest, however, the model predicts relatively large new

ice regions when compared to CE or Focal, an undesirable

outcome.

5. CONCLUSIONS

We evaluated how different loss functions affect the semantic

segmentation of CNN models trained to classify the dominant

ice type of ExtremeEarth V2 labels. Although Dice and Focal

loss sometimes show better performance metrics, visual in-

spection indicates that predictions from models trained with

CE loss are generally more physically reasonable. Further re-

search for proper classification of minority classes might help



in the loss function choice.
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