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1. Introduction

1.1. Overview

Let m ∈ N and U ⊂ Rm be a nonempty, open set with nonempty boundary ∂U .
Let X ⊂ Rm be an open set containing U = U∪∂U and let Mm×r denote the set
of m × r matrices with entries in R. Consider a linear second-order differential
operator of the form

L =
m∑

i=1
(b(x))i

∂

∂xi
+ 1

2

m∑

i,j=1
(σ(x)σ(x)T )i,j

∂2

∂xi∂xj
, (1.1)

where b ∈ C∞(X ;Rm) and σ ∈ C∞(X ;Mm×r). In this paper, we study the
formal stochastic representation ustoc (see (1.4) below) corresponding to the
combined Dirichlet and Poisson problems for L on U :

{
Lu = −f on U ,

u(x) → g(x∗) as x → x∗ ∈ ∂U, x ∈ U ,
(1.2)
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where f ∈ C∞(U) and g is continuous in a neighborhood of ∂U . Importantly,
our assumptions allow for U to be unbounded and for L to be hypoelliptic on U
(see Definition 2.6 below).

Formally, the method of stochastic characteristics (see Section 1.2 below)
produces the formula ustoc as a candidate expression for a classical solution
of (1.2). However, in this setting, ustoc may not be defined let alone be a classical
solution of (1.2). The goal of this paper is to provide practical, probabilistic
conditions under which ustoc is well defined and satisfies the properties required
by the problem (1.2):

• ustoc ∈ C2(U) and Lustoc = f on U in the classical sense;
• u(x) → g(x∗) as x → x∗ ∈ ∂U, x ∈ U .

Results for classical well-posedness of (1.2) in the setting of a bounded domain
U are also obtained.

Although we employ tools from analysis, the manuscript primarily focuses
on probabilistic methods. One may compare our work with the classical work
of Oksendal [52, Chapter 9] adapted to our setting, but we aim to be more
self-contained on this particular topic. Specifically, we start from a probabilis-
tic construction of fundamental solutions and build up to a solution theory
for the boundary-value problem (1.2). As a consequence, one may also com-
pare this work to a portion of the classical elliptic theory text of Gilbarg and
Trudinger [27], but we use probabilistic techniques in the possibly unbounded
U , hypoelliptic L setting.

1.2. The method of stochastic characteristics

In order to employ probabilistic techniques, we associate to L a diffusion process
xt on X with infinitesimal generator L. That is, we suppose that xt satisfies an
Itô stochastic differential equation (SDE) of the form

dxt = b(xt) dt + σ(xt) dWt , (1.3)

where Wt = (W 1
t ,W

2
t , . . . ,W

r
t )T is a standard, r-dimensional Brownian motion

defined on, and adapted to, a filtered probability space (Ω,F ,Ft,P,E). The
formal stochastic representation ustoc corresponding to the problem (1.2) then
has the form

ustoc(x) = Ex

∫ τ

0
f(xs) ds + Exg(xτ ), x ∈ U, (1.4)

where

τ = inf{t > 0 : xt /∈ U} (1.5)

is the first positive exit time from U . Note that in (1.4), the symbol Ex means the
expected value for the law Px of the process xt with x0 = x. The formula (1.4)
is formally derived using Dynkin’s/Itô’s formula (2.8) applied to a sufficiently
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nice classical solution of (1.2), which may or may not exist in this setting.
Specifically, in Dynkin’s formula (2.8) below, formally set φ(t, x) = u(x) and
σ = τ to arrive at (1.4). Compared with the usual method of characteristics
for first-order partial differential equations, this is the analogous method for
linear second-order equations, but this time the characteristic trajectories xt

are random.
Aside from it being unclear its precise relationship to (1.2), observe that the

expression ustoc in (1.4) is itself formal in two ways. First, depending on the
set U and the coefficients b,σ, both the process xt and the expected values
in (1.4) may not be defined, so ustoc in turn is not defined. Second, even if ustoc
is defined on U , it may not satisfy the equation (1.2) in the classical sense.
However, employing this formal argument via Dynkin’s formula (2.8), ustoc is a
best guess at a solution of (1.2), and so it is natural to study ustoc in relation
to (1.2).

If the operator L is hypoelliptic on U , then it has a smoothing effect reminis-
cent of second-order uniformly elliptic operators on U with smooth coefficients.
However, even if U is a bounded domain with boundary ∂U satisfying the exte-
rior cone condition (see Definition 3.10 below) there are many examples where
the problem (1.2) is ill-posed in the classical sense (see Example 3.8 below). This
is different compared to equation (1.2) when L is a uniformly elliptic operator of
the form (1.1). From a probabilistic perspective, this difference can be explained
intuitively, especially as it relates to satisfaction of the boundary condition in
equation (1.2). Indeed, if L is uniformly elliptic, then the noise in (1.3) is present
in each direction of the equation, and therefore for short times the particle visits
all points in a small ball. See [16] for a rigorous formulation of this statement.
This is, however, not necessarily the case for a general hypoelliptic diffusion.
In particular, even if the process xt initiated at any point x ∈ U is defined,
it may not hit certain portions of the boundary with positive probability, and
consequently the values of g on these portions do not influence ustoc in (1.4).
Moreover, when started on the boundary ∂U , the process may have a positive
probability of re-entering U prior to exiting, so that ustoc may not satisfy the
boundary condition. Thus, we can arbitrarily define the boundary conditions
on a part of the boundary that is not hit by the process, and from the ab-
stract perspective it means that the operator that maps boundary conditions to
the solution has infinite dimensional kernel and infinite dimensional co-kernel.
Thus the classical spectral theory is not applicable and tools from the functional
analysis are limited.

1.3. Previous results and layout of the paper

Despite these issues in the hypoelliptic setting, understanding when the equa-
tion or boundary conditions in (1.2) are satisfied in the classical sense by ustoc
is of notable importance, as hypoelliptic operators, and their corresponding
boundary-value problems like (1.2), play a key role in a number of problems
in science and engineering. See, for example, hypoelliptic diffusions arising in
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finite-dimensional models of turbulence [4, 5, 6, 7, 18, 19, 23, 32, 58] or in statis-
tical mechanics and machine learning [10, 15, 26, 31, 46, 61]. Direct applications
also occur in the ergodic theory of SDEs, where functionals of return times to
compact sets can be seen as the formal stochastic representations correspond-
ing to equations of the form (1.2). Such functionals are essential to understand
precise rates of convergence to equilibrium [17, 29, 56].

Historically, various aspects of the problem (1.2) in the hypoelliptic setting
have drawn interest from researchers dating back to Kolmogorov [41], who gave
the first known example of a hypoelliptic diffusion that is not uniformly elliptic.
Later, the seminal work of Hörmander [33] provided an efficient tool to determine
hypoellipticity of L by calculating the Lie algebra of vector fields that define
the operator L in the form (1.1). See Section 2.4 for further information. For
classical well-posedness of the problem (1.2), the pioneering work of Bony [9]
is fundamental. There, Bony gives conditions on a bounded open set U and a
hypoelliptic operator M of the form M = L−a, where a ∈ C∞(U) is positive and
bounded away from zero on U , so that the problem (1.2) with M replacing L is
well-posed in the classical sense. Apart from the presence of the positive function
a, which in particular aides in the existence part of the problem (1.2), a critical
assumption guaranteeing continuity on U is that at every point on ∂U , the noise
in the equation points in the normal direction. Such an assumption is often not
satisfied for many hypoelliptic operators of interest, for example if the noise is
additive (that is, spatially constant) [6, 7, 10, 15, 18, 19, 23, 31, 32, 46, 58].
Thus, it is natural to investigate if classical well-posedness holds under weaker
assumptions. More recently, the hypoelliptic Dirichlet problem (f ≡ 0 in (1.2))
in a bounded domain U was revisited in [55], where Bony’s result was extended
to operators L of the form (1.1); that is, with a ≡ 0, assuming L satisfies a
maximum principle and again that at every point on ∂U there is noise pointing
in the normal direction. Similar to Bony’s work, the results in [55] fail to apply
in many problems of interest.

Perhaps more closely related to the present paper is the work of Kogoj [39],
which uses methods from potential theory to establish a cone-type criterion for
the existence of a generalized solution, in the sense of Perron-Wiener, of the
Dirichlet problem for a second-order hypoelliptic operator in the form L − ∂t
where L is as in (1.1). Importantly, [39] assumes the existence of a well-behaved
fundamental solution and that the diagonal of σ(x)σ(x)T never vanishes. Note
that, probabilistically, the cone-type condition is natural as it gives particle
a space to exit the domain, and indeed for uniformly elliptic operators, such
condition is sufficient to guarantee that every point on the boundary is regular
(see Section 3 for a probabilistic definition of a regular point). As described
above, additional conditions are required in the hypoelliptic setting, and the
supplementary criteria provided in [39] appear difficult to check in concrete
scenarios. We refer the reader to [22, 45, 51] for earlier, related results and to
the interesting, recent work of Carfagnini and Gordina [11] in the context of
sub-Laplacians on homogeneous Carnot groups. There, an analytical criteria is
given for a boundary point to be regular. We also refer to the recent work of
the authors [16] which provides probabilistic methods for determining regular
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points on the boundary using the theory of large deviations and laws of the
iterated logarithm. Note that [16] was partly inspired by the work of Lachal [44],
where a functional law of the iterated logarithm was obtained for the iterated
Kolmogorov stochastic differential equation. However, applications to solvability
of (1.2) were not discussed in detail in [16] or [44].

In order to solve (1.2) for a hypoelliptic, second-order operator L, one can
alternatively employ the methods of Dirichlet forms and/or more classical an-
alytical methods. Although the work on this topic is vast, we refer the reader
to [8, 12, 20, 25, 28, 34, 47, 57, 59]. In these contexts, the operator L is assumed
to have a simpler form, i.e. be nonnegative with respect to a natural inner prod-
uct [47], e.g. L2(dx), or be a sum of squares of vector fields [59], often with
simpler boundary conditions, e.g. zero boundary conditions [47]. These simpli-
fications allow one to employ tools from geometry as well as arguments similar
to the ones employed when L is the standard Laplacian. However, even though
these results work in hypoelliptic settings, the results do not apply in the case
when L has a drift vector field and the drift is needed to generate directions
in the Lie algebra. These, more difficult situations where the drift vector field
is indispensably needed in the Lie algebraic calculations are referred to as the
weakly hypoelliptic settings (see Remark 2.9 for a precise definition). One of the
goals of this work is to produce results applicable in such cases.

Moving in the weakly hypoelliptic direction, let us also mention the works
[2, 13, 53, 54] where upper and lower Gaussian-type density bounds are obtained
for certain, weakly hypoelliptic diffusions. Such results are generalizations of the
classical works of Kusuoka and Stroock [42, 43]. In these works, upper Gaus-
sian bounds are obtained under general conditions [42] while lower Gaussian
bounds [43] are obtained under the strong Hörmander condition, i.e. the drift is
not needed in the bracket calculation. While we do not seek to obtain Gaussian
estimates in this setting, the calculations used in this setting are reminiscent
of the derivation of the laws of the iterated logarithm for the corresponding
diffusion [16].

In addition to generalizing the results mentioned above, another goal of the
present work is to provide a relatively self-contained presentation on the topic
in this paper, referring primarily to graduate-level textbooks to obtain needed
results. Our hope is that the level of the paper is similar to the level in Oksendal’s
book [52], and that the interested graduate student who has had an introductory
course in stochastic analysis will find the paper readable. We did this for two
reasons. First, prior to starting this project, at times we found it difficult to
locate results for (1.2) in the hypoelliptic setting and this sentiment was also
confirmed in conversations with colleagues. Second, there were claims in the
literature about (1.2) that seemed both correct and intuitive, but we could not
locate a proof in the existing literature. Thus, we hope this paper will serve as
a resource to which the (stochastic) analysis community can refer as needed,
since either there is a physical proof in the paper or the statement is easy to
locate in the literature using the provided references.

The organization of this paper is as follows. In Section 2, we introduce fur-
ther notation, assumptions, terminology and make preliminary remarks about
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hypoellipticity. Hörmander’s theorem, in particular, will be discussed in detail
in Section 2. In Section 3, we elaborate on the importance of boundary behavior
for xt as its relates to solvability of (1.2) in the classical sense. In particular,
in Section 3 one can find our definition of regular and irregular points on U .
Section 4 focuses on special equations of the form (1.2), in particular those in-
volving functionals of τ , and these special equations are used later to formulate
our main general results in Section 6. Section 6 provides conditions on L, τ ,
and ustoc that guarantee Lustoc = −f on U in the sense of distributions, hence
in the classical sense if L is hypoelliptic and f smooth. Green’s functions and
a generalization of Bony’s form of the Harnack inequality [9, Theorem 7.1] are
discussed in Section 5, while in Section 7, as an application of these results, we
re-derive the transience and recurrence dichotomy for degenerate diffusions.

2. Notation and preliminary remarks

In this section, we introduce notation, assumptions and terminology used
throughout the paper. We also make a few preliminary remarks. First, we fix
some standard notation.

2.1. Basic notation

For Borel sets V, V1 ⊂ Rk, V2 ⊂ Rn, and W ⊂ R#, we use the following notation.
– C(V ;W ) denotes the set of continuous functions φ : V → W ;
– Cj(V ;W ), j ≥ 1, denotes the set of j-times continuously differentiable

functions φ : V → W ;
– C∞(V ;W ) =

⋂∞
j=1 C

j(V ;W );
– Cj1,j2(V1 ×V2;W ) denotes the set of functions φ = φ(x, y) : V1 ×V2 → W

which are j1-times continuously differentiable in x and j2-times continu-
ously differentiable in y;

– B(V ;W ) denotes the set of bounded, Borel measurable functions φ : V →
W ;

– In any of the above functions spaces, a subscript of 0 indicate that the
function is moreover compactly supported in its domain of definition, e.g.
Cj

0 versus Cj ;
– For 1 ≤ p ≤ ∞, Lp(V ) denotes the set of measurable functions φ : V → R

such that ‖φ‖pLp(V ) :=
∫
V |φ|p dx < ∞ if p ∈ [1,∞) and ‖φ‖L∞(V ) :=

ess supx∈V |ϕ(x)| < ∞ if p = ∞;
– Lip(V ;W ) denotes the set of functions φ : V → W which are Lipschitz

continuous on V ;
– For any s ∈ R, Hs(Rk) denotes the usual Sobolev space W s,2(Rk);
– If the target W is clear from context or not important, we write Cj(V ) =

Cj(V ;W ), Cj
0(V ) = Cj

0(V ;W ), B(V ) = B(V ;W ), etc. When the context
is clear, we may also drop V and write Cj , Cj

0 , etc.
– BV denotes the set of Borel measurable subsets of V ;
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– B denotes the set of Borel measurable subsets of the open set X , where X
is as in the introduction.

– For any B ∈ B bounded with B ⊂ X , we define

τB = inf{t > 0 : xt ∈ Bc}, (2.1)

where inf ∅ := ∞.
– We define a sequence Xn ⊂ X , n ≥ 1 of bounded open sets with Xn ⊂ Xn+1

for all n and
⋃∞

n=1 Xn = X .
– At times, we will also need a sequence Un ⊂ U , n ≥ 1, of bounded open

sets with Un ⊂ Un+1 and
⋃∞

n=1 Un = U .
– We define

τ = τU := lim
k→∞

τU∩Xk . (2.2)

and

τX = lim
k→∞

τXk . (2.3)

2.2. Nonexplosivity of xt

Depending on the behavior of the coefficients b and σ, the solution xt of equa-
tion (1.3) evolving on the neighborhood X of U is only a priori defined locally in
time until the process exits X . That is, by the standard existence and unique-
ness theorem for SDEs [52], for any initial condition x ∈ X at time t = 0,
equation (1.3) has a unique (pathwise) solution xt for all times 0 ≤ t < τX .
However, throughout the paper, we will assume that τX is almost surely infinite
as in the following definition.
Definition 2.1. We say that the process xt is nonexplosive if

Px{τX < ∞} = 0 for all x ∈ X , (2.4)

where Px denotes the probability P but indicates that x0 = x.
The process being nonexplosive implies that for all initial conditions x ∈ X ,

equation (1.3) has a unique pathwise solution xt defined on X for all finite times
t ≥ 0 almost surely. Furthermore, t .→ xt : [0,∞) → X is continuous almost
surely.
Remark 2.2. Suppose that U is bounded. Since b and σ are smooth and de-
fined on an open neighborhood of U , one can extend b and σ to functions
b̂ ∈ C∞(Rm;Rm) and σ̂ ∈ C∞(Rm;Mm×r), respectively, such that b̂ = b on
U and σ̂ = σ on U and such that b̂, σ̂ both have bounded derivatives of all
orders, e.g. extend b, σ to be zero outside of a larger neighborhood and mol-
lify. Consequently, replacing X with Rm and b,σ in (1.3) with b̂, σ̂ we find that
the resulting solution x̂t is nonexplosive. Note that the problem (1.2) and its
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formal stochastic representation (1.4) remain unchanged regardless of the cho-
sen extension, so nonexplosivity is implicitly present. On the other hand, if U
is unbounded, then one must verify nonexplosivity separately, typically using
Lyapunov methods. See Lemma 2.4 below for further details.

If xt is nonexplosive, then xt is a well-defined Markov process on X . It thus
induces a corresponding Markov semigroup {Pt}t≥0 which acts on functions
φ ∈ B(X ;R) via

Ptφ(x) := Exφ(xt) (2.5)

and dually on B-measures ν via

νPt(B) =
∫

X
Pt1B(x)ν(dx), B ∈ B. (2.6)

We let

Pt(x,B) := Pt1B(x), B ∈ B, x ∈ X , (2.7)

denote the corresponding Markov transitions.
Note that if L is as in (1.1) and φ ∈ C1,2

0 ([0,∞) × X ;R), then Dynkin’s
formula

Exφ(σ, xσ) = φ(0, x) + Ex

∫ σ

0
(∂t + L)φ(s, xs) ds (2.8)

holds for any bounded stopping time σ with respect to the filtration Ft. Dynkin’s
formula allows one to study various properties of L by analyzing path properties
of the stochastic process xt.
Remark 2.3. By a standard localization procedure applied to the equation (1.3)
on Xk+1, the same formula (2.8) holds for any bounded stopping time σ ≤ τXk

and any φ ∈ C1,2([0,∞) × Xk+1) regardless if xt is nonexplosive.
As a simple application of Dynkin’s formula, we briefly recall the following

basic method for checking that xt is nonexplosive. See also [36, 49, 56].
Lemma 2.4. Suppose there exists w ∈ C2(X ; [0,∞)) and constants C,D > 0
such that

wk := inf
x∈∂Xk

w(x) → ∞ as k → ∞ and Lw ≤ Cw + D on X .

Then xt is nonexplosive as in Definition 2.1.
Proof. Remark 2.3, nonnegativity of w and Dynkin’s formula together imply
that if τk = τXk , then

wke
−CtPx{τk ≤ t} ≤ Exw(xt∧τk)e−C(t∧τk)

= w(x) + Ex

∫ t∧τk

0
−Cw(xs)e−Cs + e−CsLw(xs) ds
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≤ w(x) +
∫ t

0
e−CsDds ≤ w(x) + D.

Rearranging the above we obtain Px{τk ≤ t} ≤ eCt(w(x) + D)/wk. Passing
k → ∞, we find that Px{τX ≤ t} = 0 for any given t ≥ 0 and x ∈ X and (2.4)
follows.

2.3. The process xt stopped on ∂U

We will often use the process xt stopped on the boundary ∂U . That is, define
the stopping time

τ0 = inf{t ≥ 0 : xt /∈ U}. (2.9)

Then the stopped process x̃t is defined by

x̃t := xt∧τ0 , t ≥ 0. (2.10)

Because xt is assumed to be nonexplosive, the stopped process x̃t is a well-
defined Markov process distributed on U for all times t ≥ 0. We let P̃t and
P̃t(x, · ), x ∈ U , respectively denote the Markov semigroup and transitions
associated to x̃t.

Remark 2.5. For the process xt with x0 ∈ U , τ0 is the first time xt hits the
boundary. Note that τ0 is in general different from the first positive exit time τ
from U when xt initiates on the boundary ∂U , as the process started there may
first enter the region U before exiting.

2.4. Hypoellipticity

Let us first define precisely the term hypoelliptic.

Definition 2.6. Let V ⊂ Rk be nonempty, open set and M be a differential
operator with coefficients belonging to C∞(V ). We say that M is hypoelliptic on
V if for any distribution v on V with Mv ∈ C∞(W ) for some W ⊂ V nonempty
open, we have v ∈ C∞(W ).

Fundamental to our analysis are the smoothing properties of the differential
operator L afforded by hypoellipticity. In the classical paper [33], Hörmander
(see Theorem 2.10 below) provides a sufficient condition for hypoellipticity on
an open set V ⊂ Rk for operators M of the form

M = a + X0 + 1
2

j∑

#=1
X2

# , (2.11)

where a ∈ C∞(V ;R) and X0, X1, . . . , Xj are C∞ vector fields on V .
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After standard algebraic manipulations, note that

L,L∗, ∂t ± L, ∂t ± L∗,

where L is as in (1.1) and L∗ denotes the formal L2(dx)-adjoint of L, can all be
written in the form (2.11) on the respective open sets X ,X , (0,∞)×X , (0,∞)×
X . For example, observe that if we let Xi =

∑m
j=1 σji(x)∂xj , i = 1, . . . , r, and

Y0 =
∑m

j=1 bj(x)∂xj , then

L = Y0 −
m∑

#=1

[ r∑

i=1

m∑

j=1
σji(x)∂xj (σ#i(x))

]
∂

∂x#
+ 1

2

r∑

j=1
X2

j (2.12)

=: X0 + 1
2

r∑

j=1
X2

j . (2.13)

To introduce Hörmander’s condition which implies hypoellipticity, we first
define the Lie bracket [X,Y ] of differentiable vector fields X =

∑
i X

i∂xi and
Y =

∑
j Y

j∂xj on an open set in Rk by

[X,Y ] =
k∑

j=1

k∑

i=1
(Xi∂xi(Y j) − Y i∂xi(Xj))∂xj .

Definition 2.7. Suppose V ⊂ Rk is an open set and M is an operator of the
form (2.11), where X0, X1, . . . , Xm are C∞ vector fields on V and a ∈ C∞(V ).
Define the following C∞ vector fields on V :

Xi0 , i0 ∈ {0, 1, . . . ,m}
[Xi0 , Xi1 ], i0, i1 ∈ {0, 1, . . . ,m}
[[Xi0 , Xi1 ], Xi2 ], i0, i1, i2 ∈ {0, 1, 2, . . . ,m}
...

...

(2.14)

If the vector fields in (2.14) span the tangent space at all points in V , we say
M satisfies the Hörmander condition on V .
Remark 2.8. If M of the form (2.11) is elliptic, then X1, X2, . . . , Xm span the
tangent space at all points in V . Thus the brackets in (2.14) can be viewed as
a generalization of ellipticity. Relating this back to L in (1.1) and the equa-
tion (1.3), one can interpret Lie brackets in (2.13) as a propagation of the
randomness implicitly through the equation.
Remark 2.9. Consider an operator M of the form (2.11) and the subclass of
vector fields

Xi0 i0 ∈ {1, 2, . . . ,m}
[Xi0 , Xi1 ] i0, i1 ∈ {1, 2, . . . ,m}
[[Xi0 , Xi1 ], Xi2 ] i0, i1, i2 ∈ {1, 2, . . . ,m}
...

...

(2.15)
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Note here that, different from (2.14), the list (2.15) does not contain X0 or
any brackets with X0. If, however, on an open set V ⊂ Rk, the sublist (2.15)
spans the tangent space at all points in V , then we call the operator M strongly
hypoelliptic on V , or that it satisfies the strong Hörmander condition on V .
Otherwise, if the full list (2.14) must be used and it spans the tangent space
at all points in V , then M is called weakly hypoelliptic on V and we say that
it satisfies the weak Hörmander condition on V . In the present manuscript, we
consider more general operators M that are weakly hypoelliptic.

Hörmander’s theorem provides refined estimates on the smoothing effect
along every bracket in the list (2.14). Essentially, the more brackets one takes
to reach a certain direction, the smaller the smoothing effect occurs along that
direction. While we do not state this general result rigorously, we need below
the following simpler version to establish a generalization of Bony’s Harnack
inequality in Section 5.
Theorem 2.10 (Hörmander 1967 [33]). If M defined in (2.11) satisfies the
Hörmander condition on a nonempty open set V ⊂ Rk, then M is hypoelliptic
on V . More specifically, there exists δ > 0 such that for any ψ1,ψ2 ∈ C∞

0 (V )
with ψ2 = 1 on an open neighborhood of supp(ψ1) we have

‖ψ1u‖Hs+δ(Rk) ≤ Cs(‖ψ2Mu‖Hs(Rk) + ‖ψ2u‖Hs(Rk)) (2.16)

for any s ∈ R and any distribution u on V with ψ2u,ψ2Mu ∈ Hs(Rk).
In (2.16), Cs is a constant depending only on s, ψ1, ψ2, and the domain V
and all functions are assumed to be zero outside of their compact supports.
Remark 2.11. Note that hypoellipticity is a consequence of the inequality (2.16)
by a bootstrapping argument. As remarked above, although we mostly use hy-
poellipticity somewhat independently of Hörmander’s result, we need the precise
estimate (2.16) for the proof of a generalization of Bony’s Harnack inequality [9].

Often, instead of listing all of the operators we need to be hypoelliptic, we
make a simper hypothesis ensuring that all of them are hypoelliptic. See the
parabolic Hörmander condition below, which ensures that an entire list of oper-
ators is hypoelliptic.
Definition 2.12. Suppose that V ⊂ Rk is open and M is an operator of
the form (2.11) where the X0, X1, . . . , Xm are C∞ vector fields on V and a ∈
C∞(V ). Let V0 = {X1, X2, . . . , Xm} and for k ≥ 1 inductively define

Vk = {[Xi, X] : X ∈ Vk−1, i = 0, 1, 2, . . . ,m} and V =
∞⋃

k=0
Vk .

If V spans Rm at all points in V , then we say that M satisfies the parabolic
Hörmander condition on V .
Remark 2.13. Observe that for M to satisfy the parabolic Hörmander condi-
tion, one cannot include X0 itself in the list of a spanning set. Rather, X0 must
be first commuted with another vector field, for example [X0, X1].
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Example 2.14. Let

M = ∂2
x2 + ∂x1 =: X2

1 + X0.

Then, M satisfies the Hörmander condition on R2 but M does not satisfy the
parabolic Hörmander condition on any open set in R2.

Because the parabolic Hörmander condition limits the fields that can be
taken in a spanning set, a routine calculation shows that if V ⊂ X is nonempty,
open and L as in (1.1) is written in the form (2.13) and satisfies the parabolic
Hörmander condition on V , then all operators

L, L∗, L + β, L∗ + β, ∂t ± L, ∂t ± L∗ (2.17)

where β ∈ R are hypoelliptic on the respective sets

V, V, V, V, (0,∞) × V, (0,∞) × V. (2.18)

Below, we will see that hypoellipticity of the operators in (2.17) decides the
existence and regularity of densities related to the law of xt.

2.5. Assumption list

Here we provide an almost complete list of assumptions used in the paper. It is
meant as a reference except for Remark 2.15. Thus, aside from Remark 2.15, the
reader should skip the rest of this section and come back to consult particular
assumptions used later in the paper.

Remark 2.15. Throughout, we assume that b ∈ C∞(X ;Rm) and σ ∈
C∞(X ;Mm×r) without explicitly mentioning it. Also, if U is bounded, one

does not need to explicitly assume that xt is nonexplosive using the extension
argument from Remark 2.2.

Depending on the context, we apply the following assumptions as needed.
(U00) U ⊂ Rm is nonempty, open set and V := U c is nonempty, closed set
with X ⊃ U open.
(U0) U ⊂ Rm is nonempty, open set and X ⊃ U is an open set.
(L1) L is hypoelliptic on U .
(L2) ∂t − L∗ is hypoelliptic on (0,∞) × U .
(L3) ∂t − L is hypoelliptic on (0,∞) × U .
(L4) L∗ is hypoelliptic on U .
(PH) L satisfies the parabolic Hörmander condition on U as in Definition 2.12.
(UID(g, x∗)) Fix g : U → R measurable and x∗ ∈ ∂U . Then for some δ > 0
the family

Gg,δ(x∗) := {g(xτ (x)) : |x− x∗| < δ, x ∈ U} (2.19)
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is uniformly integrable. Here, τ is as in (2.2) and x in xτ (x) means x0 = x.
(UID(g)) Fix g : U → R measurable. Then, for every x∗ ∈ ∂U , condition
(UID(g, x∗)) is satisfied.
(UIP(f, x∗)) Fix x∗ ∈ ∂U and f : U → R measurable. Then for some δ > 0,

Gf
δ (x∗) := {

∫ τ
0 f(xs(x)) ds : |x− x∗| < δ, x ∈ U} (2.20)

is uniformly integrable.
(UIP(f)) Fix f : U → R measurable. Then for every x∗ ∈ ∂U , condition
(UIP(f, x∗)) is satisfied.
(CE(x∗)) Fix x∗ ∈ ∂U and recall Xn introduced in (2.3). For every δ1 > 0
there exists n ∈ N and δ2 > 0 such that |x− x∗| < δ2, x ∈ U , implies

Px{τXn < τ} < δ1. (2.21)

(CE) For every x∗ ∈ ∂U , condition (CE(x∗)) is satisfied.
In Remark 6.7, we provide sufficient conditions for (CE(x∗)) to hold.

3. Remarks on boundary behavior

In order to solve the equation (1.2) in the classical sense, understanding the
behavior of the process xt satisfying the equation (1.3) near the boundary ∂U
is critical. In this section, we explore various conditions related to boundary
behavior used in the literature to ensure well-posedness of equation (1.2) (in
the classical sense) when L fails to be uniformly elliptic.

3.1. Nice points and regular points

Definition 3.1. We call x∗ ∈ ∂U nice if there exists an open neighborhood
Ux∗ ⊂ X of x∗ and a function w ∈ C2(Ux∗) satisfying the following conditions:

(i) w > 0 on Ux∗ \ {x∗} and w(x∗) = 0;
(ii) Lw < 0 on Ux∗ .

Remark 3.2. We show in Proposition 3.9 below that if x∗ ∈ ∂U is nice and
the relevant hypoellipticity is satisfied, then the process xt exits U instanta-
neously when started from x∗. However, proving that x∗ is nice; that is, finding
a Lyapunov-type function w as in Definition 3.1, can be highly nontrivial or
even impossible. One can ensure x∗ ∈ ∂U is nice provided ∂U has an exterior
normal vector to U at x∗ and randomness pointing in the direction of the normal
vector (see Remark 3.11 below). Intuitively, the process xt projected onto this
normal direction for small times behaves like a scaled one-dimensional Brow-
nian motion. Then, the process must exit the domain instantaneously as the
one-dimensional Brownian motion has no preferred direction and dominates the
motion in small times. See [16, Section 7] for further details.



The method of stochastic characteristics 127

Remark 3.3. If U is furthermore assumed to be bounded and L is assumed to
be hypoelliptic, then one can show that the Dirichlet problem (1.2) with f ≡ 0,
has a unique classical solution if all points on the boundary are nice. Although
the main result in [55] establishes this fact, it is not explicitly stated in this way.

In this paper, we find it more convenient to phrase our hypotheses in terms
of stopping times for the process xt solving (1.3). Hence, we define

τ = inf{t ≥ 0 : xt /∈ U} , (3.1)

and recall the first positive exit time τ from U defined in equation (2.2).
Definition 3.4. We call an interior point x ∈ U regular if Px{τ = τ} = 1. A
boundary point x∗ ∈ ∂U is called regular if Px∗{τ = 0} = 1. Points in U are
called irregular otherwise. We call the set U interior regular if all x ∈ U are
regular. We call U boundary regular if all x∗ ∈ ∂U are regular.
Remark 3.5. Observe that if x ∈ U is regular, then the process xt started from
x exits U and U at the same time. In particular, xt cannot reach ∂U and return
to the interior of U with positive probability. On the other hand, x∗ ∈ ∂U being
regular means xt initiated at x∗ must exit U instantaneously.
Remark 3.6. Note that the event {τ = 0} belongs to the germ sigma field⋂

t>0 Ft, hence has probability 0 or 1 by Blumenthal’s 0-1 law. Thus, x∗ ∈ ∂U
being regular is equivalent to Px∗{τ = 0} > 0.

Using the strong Markov property for xt, the next result states that boundary
regular implies interior regular.
Proposition 3.7. If U is boundary regular, then U is interior regular.
Proof. Let x ∈ U and suppose τ = ∞. Then τ ≥ τ = ∞, so τ = τ . If the
event {τ < ∞} has positive probability, then the strong Markov property and
boundary regularity gives

Px{τ = τ , τ < ∞} = Ex[Ex1{τ=τ , τ<∞}|Fτ ] = Ex1{τ<∞}Pxτ {τ = 0}
= Px{τ < ∞}.

This finishes the proof since

Px{τ = τ} = Px{τ = τ , τ = ∞} + Px{τ = τ , τ < ∞}
= Px{τ = ∞} + Px{τ < ∞} = 1.

As the next example shows, the converse of Proposition 3.7 is false even if
the parabolic Hörmander condition is satisfied.
Example 3.8. Let U ⊂ R2 be the interior of the open square with vertices
(−1, 1), (1, 1), (1,−1), (−1,−1), and consider the following SDE on U

dx1
t = −(x2

t )2 dt ,
dx2

t =
√

2 dBt ,
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where Bt is a standard, one-dimensional Brownian motion. Let I be the open
segment connecting (1,−1) and (1, 1). Note that all points on I ⊂ ∂U are not
regular since x1

t is decreasing for all times. On the other hand, xt = (x1
t , x

2
t ) has

generator
L = −(x2)2∂x1 + ∂2

x2 =: X0 + X2
1 ,

which satisfies the parabolic Hörmander condition on R2 since
X1 = ∂x2 and [X1, [X1, X0]] = −2∂x1

span the tangent space at all points in R2. Also, observe that the process ini-
tiated at x ∈ U can only exit U on ∂U \ I. Hence, U is interior regular since
every point on ∂U \ I is regular.

Next, we clarify a the relationship between boundary regular and nice.
Proposition 3.9. Suppose x∗ ∈ ∂U is nice and that ∂t ± L and ∂t ± L∗ are
hypoelliptic on (0,∞)×Bδ(x∗) for some δ > 0 such that Bδ(x∗) ⊂ X . Then, x∗
is regular.
Proof. Let x∗ ∈ ∂U be nice and fix δ > 0 such that ∂t ±L∗, ∂t ±L∗ are hypoel-
liptic on (0,∞) × Bδ(x∗). Choose an open neighborhood Ux∗ of x∗ such that
there exists a function w ∈ C2(Ux∗) satisfying properties (i) and (ii) in Defini-
tion 3.1. Without loss of generality, we may assume that V := Ux∗ = Bδ(x∗).
It follows that the distribution µt of the stopped process xV

t := xt∧τV (see The-
orem 4.3) satisfies the equation (∂t + L∗)(µt) = 0 in the sense of distributions
on (0,∞) × V . Thus, when restricted to subsets of (0,∞) × V , µt is absolutely
continuous with respect to Lebesgue measure with density pt which is smooth
on (0,∞)×V . In other words, the law of xV

t restricted to subsets of V , for fixed
t, is absolutely continuous with respect to Lebesgue measure on V .

Now if x∗ is not regular, then Px∗{τ > 0} = 1. Thus, there exists ε > 0
such that Bε(x∗) ⊂ V and Px∗{τBε(x∗) < τ} > 0, for otherwise the distribution
of xV

t started at x∗ would have nonzero mass concentrated at x∗, violating the
absolute continuity of µt above. For σ(t) := t ∧ τBε(x∗) ∧ τ , Dynkin’s formula
(see (2.8)) and positivity of w on ∂Bε(x∗) gives

cPx∗{τBε(x∗) < τ ∧ t} ≤ Ex∗w(xσ(t)) ≤ w(x∗) = 0
for some constant c > 0 independent of t. Passing t→∞ we obtain Px∗{τBε(x∗)<
τ} = 0, a contradiction.

Recall the following properties of ∂U .
Definition 3.10. We say that the boundary ∂U of an open set U satisfies the
exterior sphere condition at x∗ ∈ ∂U if there exists λ > 0 such that x∗ ∈ Bλ(x′)
and Bλ(x′) ⊆ U

c, where Bλ(x′) is the open ball centered at x′ = x∗ + λν(x∗)
with ν(x∗) being a unit exterior normal vector to ∂U at x∗.

We say ∂U satisfies the exterior cone condition at x∗ ∈ ∂U , if there exists a
basis x1, x2, . . . , xm of Rm and a parameter λ∗ > 0 such that

Cone(x∗,λ∗) := {x∗ +
∑m

i=1λixi : λi ∈ (0,λ∗)} ⊂ U
c
.
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Remark 3.11. Fix x∗ ∈ ∂U and suppose that ∂U satisfies the exterior sphere
condition at x∗. In addition, assume ∂t ± L and ∂t ± L∗ are hypoelliptic on
(0,∞) × Bδ(x∗) for some δ > 0 such that Bδ(x∗) ⊂ X . It is not hard to see
that we can decrease λ in the definition of exterior sphere condition if necessary.
Then, if the noise has a nonzero component in ν(x∗) at x∗, then x∗ is regular
(see for example [9]). Such an assumption in fact implies that x∗ is nice. Indeed,
suppose

m∑

i,j=1
(σ(x∗)σT (x∗))ijvi(x∗)vj(x∗) > 0. (3.2)

Then, by choosing β > 0 large enough, the function

w(x) = e−β|x′−x∗|2 − e−β|x′−x|2 (3.3)

satisfies Definition 3.1 at x∗ on Ux∗ = B(x∗, |x′−x∗|/2)∩U if x′ = x∗ +λν(x∗)
and λ > 0 is sufficiently small. Note that (3.2) and large β > 0 allows one to to
disregard terms in Lw of order β.

3.2. Modification of the domain

We conclude this section by restating [16, Corollary 7.10] in our context. Intu-
itively, it asserts that starting from a reasonable domain U , provided there is
noise in a fixed direction for all points on the boundary ∂U (see Remark 3.11),
one can slightly modify U to produce an approximate domain V which is bound-
ary regular. Thus, by Proposition 3.7, V is both interior regular and boundary
regular.

In order to state the result, we say that U has nonflat boundary ∂U if for each
x∗ ∈ ∂U and every r > 0, the set ∂U ∩Br(x∗) is not a subset of a hyperplane.
Then the following result was proved in [16, Corollary 7.10].

Theorem 3.12. Suppose that U ⊂ Rm, m ≥ 2, is a bounded, convex, nonflat
domain with C1 boundary ∂U . Suppose, furthermore, that there exists a fixed
unit vector v ∈ Rm such that v belongs to the column space of σ(x) for all
x ∈ ∂U . Then, for every ε > 0, there exists a nonempty, open convex domain
Vε ⊂ U with piecewise linear boundary ∂Vε such that Vε and V c

ε are boundary
regular for xt and |U |− |Vε| < ε. Here, | · | denotes Lebesgue measure on Rm.

To prove Theorem 3.12, one defines Vε to be the interior of the convex hull of
a sufficient number of points x1, x2, . . . , xn(ε) ∈ ∂U selected independently and
randomly according to Hausdorff measure on ∂U . One can then show that with
probability one, the faces generated by these points on ∂Vε are not parallel to
the fixed vector v in Theorem 3.12, so that the process exits Vε instantaneously
when started there. The fact that the volumes of Vε and U are close is intuitive
provided n(ε) is large enough. This fact was rigorously proved in [60].
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4. Interior regularity of functionals of τ

Our goal in this section is to obtain interior smoothness of various functionals
of the first positive exit time τ from U . Given the relevant hypoellipticity, the
key first step is to show that the law of the stopped process x̃t, introduced in
Section 2.3, when restricted to Borel subsets of U , denoted by BU , has a density
p̃t(x, y) with respect to Lebesgue measure on U . Furthermore, the mapping
(t, x, y) .→ p̃t(x, y) ∈ C∞((0,∞)×U×U) and satisfies, respectively, the forward
and backward Kolmogorov equations in the classical sense:

∂tp̃t(x, y) = L∗
yp̃t(x, y) on (0,∞) × U, x ∈ U fixed, (4.1)

∂tp̃t(x, y) = Lxp̃t(x, y) on (0,∞) × U, y ∈ U fixed. (4.2)

This is done in Section 4.2. In Section 4.3, we deduce interior smoothness and
the equations satisfied by

x .→ Exϕ(τ) : U → R (4.3)

for some choices of smooth ϕ : [0,∞) → R, for example ϕ(x) = xk, k ∈ N or
ϕ(x) = 1(t,∞)(x) for fixed t.

First, however, we need to establish a few auxiliary results.

4.1. Auxiliary results

Lemma 4.1. Suppose that the condition (U0) is satisfied and that the process
xt is nonexplosive as in Definition 2.1. Then, the following assertions hold true.

(i) For any t > 0, x ∈ X , and M > 0 we have

lim
y→x

E
{

sup
s∈[0,t]

|xs(x) − xs(y)|2 ∧M

}
= 0 ,

where s .→ xs(z) satisfies (1.3) with x0(z) = z.
(ii) If x∗ ∈ ∂U is regular, then for any ε, δ > 0, there is ρ > 0 such that

Px{τ ≥ δ} ≤ ε for any x ∈ U with |x − x∗| < ρ. That is, as x → x∗ ∈
∂U, x ∈ U , τ(x) → τ(x∗) in probability.

Proof. The proof of part (i) follows a standard Grönwall-type comparison argu-
ment. Let τk = τXk and we denote the dependence of τk on the initial condition
x of xt by writing τk(x). Observe that for x, y ∈ X and s ≤ τk(x) ∧ τk(y), the
processes xs(x) and xs(y) respectively agree pathwise with processes xs,k(x)
and xs,k(y) satisfying Itô SDEs with globally Lipschitz coefficients (cf. Re-
mark 2.2). Thus if ∆t = xt(x)−xt(y) and ∆t,k = xt,k(x)−xt,k(y), then for any
σ ≤ t ∧ τk(x) ∧ τk(y) with t ≥ 0 deterministic, we have the estimate

E sup
s∈[0,σ]

|∆s|2 ≤ E sup
s∈[0,t]

|∆s,k|2.
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Hence, to estimate E sups∈[0,σ] |∆s|2 it suffices, for a given deterministic time
t ≥ 0 to estimate E sups∈[0,t] |∆s|2, where ∆t = xt(x) − xt(y) satisfies

∆t = x− y +
∫ t

0
[b(xs(x)) − b(xs(y))] ds +

∫ t

0
[σ(xs(x)) − σ(xs(y))] dWs (4.4)

with globally Lipschitz b,σ on Rm and Lipschitz constants depending on k.
Hence, there exists a constant Qk > 0 such that

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ Qk|x− y| for all x, y ∈ Rm.

Using Doob’s maximal inequality and the Itô isometry, we have

E sup
s∈[0,t]

|∆s|2 ≤ 9|x− y|2 + 9Q2
kE sup

s∈[0,t]

(∫ s

0
|xu(x) − xu(y)| du

)2

+ 9E sup
s∈[0,t]

∣∣∣∣
∫ s

0
(σ(xu(x)) − σ(xu(y)))dWu

∣∣∣∣
2

≤ 9|x− y|2 + Ck(t)
∫ t

0
E sup

s∈[0,u]
|∆s|2du

for some constant Ck(t) depending only on k, t. Consequently by Grönwall’s
inequality, we have

E sup
s∈[0,t]

|∆s|2 ≤ 9|x− y|2eCk(t)t =: |x− y|2Dk(t). (4.5)

Now if b,σ are no longer globally Lipschitz and δk = dist(Xk, ∂Xk+1) > 0, we
have by Chebyshev’s inequality and (4.5)

E sup
s∈[0,t]

|∆s|2 ∧M

= E sup
s∈[0,t]

|∆s|2 ∧M(1{τk(x) < t} + 1{τk(x) ≥ t})

≤ MPx{τk < t} + Ex sup
s∈[0,t]

|∆s,k|21{τk(x) ≥ t, τk+1(y) ≥ t}

+ MP{ sup
s∈[0,t]

|∆s,k+1|2 > δ2
k}

≤ MPx{τk < t} + Dk(t)|x− y|2 + |x− y|2Dk+1(t)
δ2
k

M.

Passing y → x and then k → ∞ using that xt(x) is nonexplosive, we obtain (i).
To obtain (ii), suppose there exist ε0, δ0 > 0 and a sequence {xn} ⊂ U with

xn → x∗ such that

Pxn{τ ≥ δ0} ≥ ε0

for all n. For any ε > 0, let U+
ε be given by

U+
ε = {x ∈ X : dist(x, U) < ε}. (4.6)
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By path continuity, τ = limε→0 τU+
ε

almost surely. Since x∗ is regular, there is
ε ∈ (0, 1) so that

Px∗{τU+
ε
< δ0/2} ≥ 1 − ε0/2 ,

and consequently for any n

P{τ(xn) ≥ δ0, τU+
ε

(x∗) < δ0/2} ≥ ε0/2 ,

where the initial condition is indicated in the stopping times above. By conclu-
sion (i) with M = 1, and ε < 1 for any large enough n one has P{sups∈[0,δ0/2]
|xs(xn) − xs(x∗)| > ε/2} ≤ ε0/4. But then

ε0
2 ≤ P

{
τ(xn) ≥ δ0, τU+

ε
(x∗) <

δ0
2 , sup

s∈[0,δ0/2]
|xs(xn) − xs(x∗)| ≤

ε

2

}

+ P
{

sup
s∈[0,δ0/2]

|xs(xn) − xs(x∗)| >
ε

2

}
≤ 0 + ε0

4 ,

a contradiction.
In addition to Lemma 4.1, we need one more auxiliary result. Although this

result is basic, it is used repeatedly throughout the paper.
Lemma 4.2. Let V ⊂ Rk be open and let L and Ln, n ∈ N, be linear second-
order differential operators with C∞(V ) coefficients. Suppose that {vn} be a
uniformly bounded sequence of measurable functions vn : V → R and that the
following conditions are satisfied:

- For every φ ∈ C∞
0 (V ), (Ln −L)∗φ → 0 as n → ∞ in L1(V, dx) where the

∗ denotes the formal adjoint with respect to L2(V, dx)-inner product;
- For some measurable function f on V which is bounded on compact subsets

of V , Lnvn → −f as n → ∞ on V in the sense of distributions.
- vn converges to v∞ in the sense of distributions on V as n → ∞.

Then, Lv∞ = −f on V in the sense of distributions. Furthermore, if L is
hypoelliptic on V and f ∈ C∞(V ), then v∞ ∈ C∞(V ) and Lv∞ = −f on V in
the classical sense.
Proof. For fixed ϕ ∈ C∞

0 (V ), the conditions of the statement and the Dominated
Convergence Theorem imply
∫

V
v∞L∗ϕ dx= lim

n→∞

∫

V
vnL∗ϕ dx = lim

n→∞

∫

V
vnL∗

nϕ− lim
n→∞

∫

U
vn(Ln − L)∗ϕ dx

=
∫

V
−fϕ dx.

Thus Lv∞ = −f on V in the sense of distributions. The remaining assertion is
an immediate consequence of hypoellipticity.
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4.2. The forward and backward Kolmogorov equations for the
stopped process

Recall that if xt is nonexplosive, then the stopped process x̃t, see (2.10), is
a well-defined, continuous-time Markov process distributed on U . Moreover,
the associated semigroup and transitions are respectively denoted by P̃t and
P̃t(x, · ).

Our main result in this section is the following.
Theorem 4.3. Suppose that the process xt is nonexplosive as in Definition 2.1
and that conditions (U0) and (L2) are satisfied.

(i) For all x ∈ U and t > 0, the restriction of the measure P̃t(x, · ) to Borel
subsets of U is absolutely continuous with respect to Lebesgue measure on
U with density p̃t(x, y), and for fixed x ∈ U the mapping (t, y) .→ p̃t(x, y) ∈
C∞((0,∞) × U). Furthermore, the forward Kolmogorov equation (4.1) is
satisfied in the classical sense.

(ii) If (L3) is furthermore satisfied, then (t, x, y) .→ p̃t(x, y) belongs to
C∞((0,∞) × U × U) and the backward Kolmogorov equation (4.2) is sat-
isfied in the classical sense.

Remark 4.4. The above result is natural and understood by experts in the
field. However, we found it difficult to locate a complete proof of part (ii) as it
is much more subtle than part (i). While part (i) follows almost immediately
from Dynkin’s formula, part (ii) requires several nontrivial approximations and
steps.
Remark 4.5. Intuitively the result above holds because, while the measure
P̃t(x, · ) has a singular component on the boundary if the process exits U by
time t with positive probability, when restricted to subsets of U this singularity
is not seen.
Remark 4.6. Note that in the statement above we may take U = X , in which
case x̃t coincides with the original process xt on X , and thus the statement is
about the law of xt in X .
Proof of Theorem 4.3. To prove part (i), fix t > 0, x ∈ U , and take any ψ ∈
C∞([0, t] × U) ∩C∞

0 ((0, t) × U). Thus, in particular, ψ is compactly supported
in (0, t) × U . Then, Dynkin’s formula yields

0 = Exψ(t, x̃t) = Exψ(t, xt∧τ0) = ψ(0, x) + Ex

∫ t∧τ0

0
(L + ∂s)ψ(s, xs) ds

= 0 + Ex

∫ t

0
(L + ∂s)ψ(s, x̃s) ds ,

where τ0 from (2.9) is the first exit time from U . Hence,

Ex

∫ t

0
(L + ∂s)ψ(s, x̃s) =

∫ t

0

∫

U
(L + ∂s)ψ(s, y)p̃s(x, dy)ds = 0
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for any ψ ∈ C∞
0 ((0, t) × U). That is, (L∗

y − ∂t)(p̃t(x, dy)) = 0 on (0,∞) × U
in the sense of distributions. By hypoellipticity of ∂t − L∗ on (0,∞) × U as in
(L2), part (i) follows.

Part (ii) is more involved as there are several layers of approximations. We
divide the proof into two main steps.

Step 1 . Let ψ ∈ C∞
0 (U) and consider the mapping (t, x) .→ u(t, x) := P̃tψ(x).

We claim that u ∈ C∞((0,∞) × U) and ∂tu = Lu in the classical sense on
(0,∞) × U .

Step 2 .We prove part (ii) by taking a sequence of approximations of p̃t(x, y)
of the form P̃tψn(x), ψn ∈ C∞

0 (U).
Proof of Step 1. First observe that since xt is nonexplosive, the stopped

process x̃t = xt∧τ0 with initial condition x̃0 = x ∈ U satisfies the Itô SDE

dx̃t = b(x̃t)1U (x̃t) dt + σ(x̃t)1U (x̃t) dWt.

We first show u ∈ C∞((0,∞) × U) and ∂tu = Lu in the classical sense on
(0,∞) × U in the special case when b,σ ∈ C∞(X ) are bounded with bounded
derivatives of all orders.

Recall that Un is a sequence of bounded open sets with Un ⊂ U and Un ↑ U
as n → ∞. Suppose that ϕn ∈ C∞(U ; [0, 1]) satisfies ϕn(x) = 1 on Un and
ϕn(x) = 0 for x ∈ U c

n+1. Consider a sequence of approximating processes xn
t

with xn
0 = x and

dxn
t = b(xn

t )ϕn(xn
t ) dt + σ(xn

t )ϕn(xn
t ) dWt. (4.7)

Claim. If b,σ ∈ C∞(X ) are bounded with bounded derivatives of all orders,
then for any t > 0 fixed,

Ex sup
r∈[0,t]

|x̃r − xn
r |2 → 0 as n → ∞. (4.8)

Proof of (4.8). Observe that

x̃t − xn
t =

∫ t

0
ϕn(xn

s )[b(x̃s) − b(xn
s )] ds +

∫ t

0
ϕn(xn

s )[σ(x̃s) − σ(xn
s )] dWs

+
∫ t

0
(1−ϕn(xn

s ))1U (x̃s)b(x̃s) ds+
∫ t

0
(1−ϕn(xn

s ))1U (x̃s)σ(x̃s) dWs.

Hence, squaring both sides, taking the supremum and using Doob’s maximal
inequality we find that for all t ≤ T

E sup
r∈[0,t]

|x̃r−xn
r |2≤C1

∫ t

0
E sup

r∈[0,s]
|x̃r−xn

r |2 ds+C2

∫ t

0
E[(1−ϕn(xn

s ))1U (x̃s)]2 ds ,

where the constants C1 = C1(T, ‖b‖Lip, ‖σ‖Lip) > 0 and C2 = C2(T, ‖b‖L∞ ,
‖σ‖L∞) > 0 do not depend on n. Grönwall’s inequality then implies that for all
t ≤ T

E sup
r∈[0,t]

|x̃r − xn
r |2 ≤ C2e

tC1

∫ t

0
E[(1 − ϕn(xn

s ))1U (x̃s)]2 ds .
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Next, observe that if x̃s(ω) ∈ U for some s ≥ 0, then by path continuity and
the definition of the stopped process, x̃u(ω) ∈ Un0 for all u ∈ [0, s] for some
n0 = n0(ω, s) ∈ N. Hence, by definition, xn

u(ω) ≡ x̃u(ω) for all u ∈ [0, s] and
n ≥ n0, and consequently by the Bounded Convergence Theorem

lim
n→∞

∫ t

0
E[(1 − ϕn(xn

s ))1U (x̃s)]2 ds = 0 .

Hence, E supr∈[0,t] |x̃r − xn
r |2 → 0 as n → ∞, establishing (4.8).

Let un(t, x) := Exψ(xn
t ). It follows that for fixed t > 0, the mapping x .→

un(t, x) belongs to the space C2(Rm) [21, Theorem 5.5]. Define an extended
version An of the generator of xn

t by

Ang(x) := lim
t→0

Exg(xn
t ) − g(x)
t

, (4.9)

where the domain of An consists of all measurable functions g : Rm → R such
that the limit in (4.9) exists for each x. Next, by [52, Theorem 8.1.1], for fixed
x ∈ Rm, t .→ un(t, x) ∈ C1(Rm) and by the Markov property un satisfies on
(0,∞) × Rm the generalized backward equation

∂tun = Anun.

Since x .→ un(t, x) is globally C2, Dynkin’s formula implies that Anu = Lnu
where Ln is the classical generator of xn

t , which is a second-order differential
operator with C∞(Rm) coefficients. Moreover, these coefficients agree with the
coefficients of L on Un. In particular, by (L3), L−∂t is hypoelliptic on (0,∞)×
Un, and therefore un ∈ C∞((0,∞)×Un) and ∂tun = Lun on (0,∞)×Un in the
classical sense. To obtain a similar result for u(t, x) = P̃tψ(x) = Exψ(x̃t), we
note that un is uniformly bounded. Furthermore, un → u pointwise as n → ∞
since by the claim above

|un(t, x) − u(t, x)|2 ≤ ‖ψ‖2
LipEx|x̃t − xn

t |2 → 0 (4.10)

as n → ∞. By Lemma 4.2, u ∈ C∞((0,∞) × U) and ∂tu = Lu in the classical
sense on (0,∞)×U . Thus Step 1 is completed in the case when b,σ have bounded
derivatives of all orders.

To complete Step 1, assume that b ∈ C∞(X ;Rm) and σ ∈ C∞(X ;Mm×r) are
not necessarily bounded and xt is nonexplosive. For the sequence {Un} above,
note that the restrictions of b,σ to Un can be extended to functions on Rm which
are bounded with bounded derivatives all orders. Setting τn = inf{t > 0 : x̃t /∈
Un}, we have shown above that if x̃n

t := x̃t∧τn , then (t, x) .→ ũn(t, x) := Exψ(x̃n
t )

satisfies ũn ∈ C∞((0,∞)×Un) and ∂tũn = Lũn on (0,∞)×Un in the classical
sense. However, since ψ is bounded, then ũn is also uniformly bounded in n and
by (4.10), ũn → u pointwise on (0,∞) × U . Step 1 now follows after applying
Lemma 4.2.
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Proof of Step 2. Let χ ∈ C∞
0 (Rm; [0,∞)) with

∫
Rm χ(x) dx = 1. Let χε(x) =

ε−mχ(ε−1x) and extend p̃t(x, y) to be zero for all (t, x, y) /∈ (0,∞)×U ×U . For
any (t, x, y) ∈ (0,∞) × Rm × Rm, define

uε(t, x, y) :=
∫

Rm

p̃t(x, z)χε(y − z) dz. (4.11)

Consider any bounded open V ⊂ U with V ⊂ U . For each fixed y ∈ V , there is
ε0(y) > 0 small enough such that z .→ χε(y − z) ∈ C∞

0 is compactly supported
in U for all ε ∈ (0, ε0(y)]. It follows by compactness of V , that we may choose
ε0 > 0 such that z .→ χε(y−z) is compactly supported in U for all y ∈ V and all
ε ∈ (0, ε0]. Thus, for any ε ∈ (0, ε0] and (t, x) ∈ (0,∞) × U , the formula (4.11)
makes sense and y .→ uε(t, x, y) ∈ C∞(V ). Also, by Step 1, for each y ∈ V and
ε ∈ (0, ε0], (t, x) .→ uε(t, x, y) ∈ C∞((0,∞)×U) and ∂tuε(t, x, y) = Lxuε(t, x, y)
on (0,∞)×U in the classical sense. To conclude the result, it suffices to show for
any ϕ ∈ C0((0,∞)×U ×V ) with ϕ supported in K ⊂ (0,∞)×U ×V compact,
that

lim
ε→0

∫

K
ϕ(t, x, y)[uε(t, x, y) − p̃t(x, y)]dx dy dt = 0 .

Indeed, simply replace ϕ in the above formula by (∂t−Lx)∗ϕ, where ϕ is smooth
with compact support.

First, since
∫
Rm χ(z) dz = 1, a standard substitution gives for all ε ∈ (0, ε0]

and y ∈ V

uε(t, x, y) − p̃t(x, y) =
∫

Rm

[p̃t(x, y − εz) − p̃t(x, y)]χ(z) dz.

Next, let p̂t(x, y) = p̃t(x, y) on K and p̂t(x, y) = 0 otherwise. By Tonelli’s
Theorem, (t, x, y) .→ p̂t(x, y) ∈ L1(R × (Rm)2). Moreover,

∣∣∣∣
∫

K
ϕ(t, x, y)[uε(t, x, y) − p̃t(x, y)] dx dy dt

∣∣∣∣

≤ ‖ϕ‖L∞

∫

R×(Rm)3
|p̂t(x, y − εz) − p̂t(x, y)|χ(z)dz dx dy dt.

Since p̂t ∈ L1(R × (Rm)2), for any δ > 0 there is ψ ∈ C∞
0 ((Rm)3) within L1

distance δ of p̂t. Thus, by translation invariance and Fubini’s Theorem
∣∣∣∣
∫

K
ϕ(t, x, y)[uε(t, x, y) − p̃t(x, y)] dx dy dt

∣∣∣∣

≤ 2δ‖ϕ‖L∞ + ‖ϕ‖L∞

∫

(Rm)4
|ψ(t, x, y − εz) − ψ(t, x, y)|χ(z)dz dx dy dt.

Since ψ is compactly supported, passing ε → 0, using the Dominated Conver-
gence Theorem, and then δ → 0 finishes the proof of Theorem 4.3(ii).
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4.3. Interior smoothness of functionals of the first positive exit time

In this section we analyze quantities of the form

Exϕ(τ), x ∈ U, (4.12)

for various functions ϕ and τ as in (2.2). The first two choices

ϕ(x) = 1{|x| < ∞} and ϕ(x) = x,

that respectively yield in (4.12)

Px{τ < ∞} and Exτ (4.13)

are of significant importance for analyzing recurrence and transience in Section 7
below. Throughout, we assume the parabolic Hörmander condition (PH) for
simplicity, which in particular implies that (L1)–(L4) are satisfied.

Proposition 4.7. Suppose that the process xt is nonexplosive as in Defini-
tion 2.1 and that conditions (U00) and (PH) are satisfied. For any (t, x) ∈
(0,∞) × U , define

u1(t, x) = Px{τ > t} and u2(x) = Px{τ = ∞}. (4.14)

Then:

(i) u1 ∈ C∞((0,∞)×U) and ∂tu1 = Lu1 on (0,∞)×U in the classical sense;
(ii) u2 ∈ C∞(U) and Lu2 = 0 on U in the classical sense.

Proof. For (i), observe that for any x ∈ U , u1(t, x) = Px{τ > t} = P̃t(x, U)
where P̃t(x, · ) is the transition kernel of the stopped process x̃t = xt∧τ0 . Let
K ⊂ U be compact and by Theorem 4.3 P̃t(x,K) =

∫
K p̃t(x, y) dy. Further-

more, by Theorem 4.3 and the Dominated Convergence Theorem, it follows
that (t, x) .→ P̃t(x,K) is C∞((0,∞) × U) and ∂tP̃t(x,K) = LP̃t(x,K) on
(0,∞) × U in the classical sense. To obtain the same result for P̃t(x, U), let
Kn ⊂ U be a sequence of compact sets with Kn ↑ U as n → ∞. Then, by
the Monotone Convergence Theorem, the sequence (P̃t(x,Kn))n is uniformly
bounded and converges pointwise to P̃t(x, U). The assertion (i) follows after
applying Lemma 4.2.

To obtain (ii), first observe that

u2(x) = Px{τ = ∞} = lim
t→∞

P̃t(x, U).

Thus we seek to apply an argument similar to that in Lemma 4.2. To this end,
note that

ū(t, x) :=
∫ t+1

t
P̃s(x, U) ds → u2(x) pointwise as t → ∞
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and that ū(t, x) is uniformly bounded on [0,∞) × U . Thus, for any function
ϕ ∈ C∞

0 (U) and any t > 0, using integration by parts and the Fubini-Tonelli
Theorem we have

0 =
∫ t+1

t

∫

U
(L− ∂s)P̃s(x, U)ϕ(x) dx ds

=
∫

U
ū(t, x)L∗ϕ(x) dx−

∫

U
[P̃t+1(x, U) − P̃t(x, U)]ϕ(x) dx.

By passing t → ∞ and using the Dominated Convergence Theorem, u2 solves
Lu2 = 0 in the sense of distributions on U . Part (ii) follows by hypoellipticity
of L on U .

We next state and prove a regularity result for Exτ ; that is, for ϕ(x) = x
in (4.12).
Proposition 4.8. Suppose that the process xt is nonexplosive as in Defini-
tion 2.1 and that conditions (U00) and (PH) are satisfied. Suppose, further-
more, that Px{τ < ∞} = 1 for all x ∈ U .

(i) If U0 ⊂ U is bounded open with U0 ⊂ U , then v0(x) := ExτU0 is bounded
on U0. Furthermore, v0 ∈ C∞(U0) and Lv0 = −1 on U0 in the classical
sense.

(ii) Let U0 ⊂ U be an open set and suppose that v(x) := Exτ is finite on a
dense set D ⊂ U0. Then, v ∈ C∞(U0) and v solves Lv = −1 on U0 in the
classical sense.

Remark 4.9. The technical hypothesis in (ii) that v is finite on a dense set
and not everywhere is needed below in Section 7. We defer the proof of Proposi-
tion 4.8(ii) until after we prove a hypoelliptic Harnack inequality (Theorem 5.5).
Proof of Proposition 4.8(i). Let σ = τU0 and note that Px{τ < ∞} = 1 implies
that for all x ∈ U0, there exists t > 0,α ∈ (0, 1/2) such that Px{σ > t} ≤
(1−2α). By Proposition 4.7(i), there exists ε = ε(x) > 0 such that Py{σ > t} ≤
(1−α) for all y ∈ Bε(x). Using compactness of U0 and taking a finite subcover,
it follows that there exists t∗ > 0,α∗ ∈ (0, 1) such that Py{σ > t∗} ≤ (1 − α∗)
for all y ∈ U0. Since τ is almost surely finite, so is σ by U0 ⊂ U and path
continuity. Thus, for any x ∈ U0 we have

Exσ =
∞∑

m=1
Exσ1{σ ∈ [(m− 1)t∗,mt∗)}

≤ 3t∗ +
∞∑

m=3
mt∗Px{σ > (m− 2)t∗}. (4.15)

By the Markov property, for x ∈ U0 and m ∈ N we have

Px{σ > mt∗} = Ex[Ex1{σ > mt∗}|F(m−1)t∗ ]
= Ex1{σ > (m− 1)t∗}Px(m−1)t∗

{σ > t∗}
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≤ (1 − α∗)Px{σ > (m− 1)t∗} ≤ (1 − α∗)m

and (4.15) implies for all x ∈ U0

Exσ ≤ 3t∗ +
∞∑

m=3
mt∗(1 − α∗)m−2,

which is finite and bounded independently of x ∈ U0.
Next, in order to show that v0 ∈ C∞(U0) and satisfies Lv0 = −1 on U0 in

the classical sense, observe that

v0(x) = Exσ =
∫ ∞

0
Px{σ > t} dt =:

∫ ∞

0
u(t, x) dt.

Proposition 4.7 yields u ∈ C∞((0,∞)×U0) and Lu = ∂tu on U0 in the classical
sense. Thus if vn(x) =

∫ n
1/n u(t, x) dt for n ∈ N, it follows that vn ∈ C∞(U0)

and for all x ∈ U0

Lvn(x) =
∫ n

1
n

Lu(t, x) dt =
∫ n

1
n

∂tu(t, x) dt

= u(n, x) − u(1/n, x)
= Px{σ > n}− Px{σ > 1/n} → −1

as n → ∞ in the sense of distributions on U0. Since the sequence vn is uniformly
bounded by bounded v0 and vn → v0 pointwise on U0, the result follows from
Lemma 4.2.

We next consider the expression (4.12) for more general ϕ : [0,∞) → R. First
we need an auxiliary lemma, which is a representation result for the expected
value of certain random variables.
Lemma 4.10. Suppose that the process xt is nonexplosive as in Definition 2.1
and the condition (U00) and is met. Let ϕ : [0,∞) → R be C1, strictly increas-
ing and satisfy ϕ(t) → ∞ as t → ∞. Then

Exϕ(τ) = ϕ(0) +
∫ ∞

0
ϕ′(t)Px{τ > t} dt. (4.16)

Proof. Note that by shifting the formula (4.16), it suffices to assume that ϕ(0) =
0. Since ϕ is C1, strictly increasing with ϕ(t) → ∞ as t → ∞, ϕ has a C1 inverse
ϕ−1 mapping [0,∞) onto [0,∞). Moreover, ϕ−1 is strictly increasing on [0,∞).
It thus follows that ϕ−1(t) → ∞ as t → ∞. Then,

Ex(ϕ(τ) ∧N) =
∫ N

0
Px{ϕ(τ) > t} dt =

∫ N

0
Px{τ > ϕ−1(t)} dt

=
∫ ϕ−1(N)

0
ϕ′(t)Px{τ > t} dt.

Passing N → ∞ and using the Monotone Convergence Theorem finishes the
proof.



140 J. Földes and D. P. Herzog

Next, we state and prove our main result for general ϕ.
Proposition 4.11. Suppose that the process xt is nonexplosive as in Defini-
tion 2.1 and conditions (U00) and (PH) are satisfied. Let ϕ ∈ C2([0,∞);R) be
strictly increasing with ϕ(t) → ∞ as t → ∞ with derivative ϕ′ ∈ C1([0,∞);R)
which is strictly increasing with ϕ′(t) → ∞ as t → ∞. Suppose furthermore that

v1(x) := Exϕ(τ) and v2(x) = Exϕ
′(τ)

are bounded on compact subsets of U . Then Lv1 = −v2 on U in the sense of
distributions.
Remark 4.12. Compare the equation Lv1 = −v2 with Lv = −1 when ϕ(x) =
x. Although such a ϕ does not satisfy the hypotheses above, we still have the
analogous conclusion.
Proof of Proposition 4.11. By Lemma 4.10, we have

v1(x) = ϕ(0) +
∫ ∞

0
ϕ′(t)Px{τ > t} dt,

v2(x) = ϕ′(0) +
∫ ∞

0
ϕ′′(t)Px{τ > t} dt.

In the latter formula, simply apply Lemma 4.10 to ϕ′ instead of ϕ. Consider the
sequence of functions on U given by

v1,n(x) := ϕ(0) +
∫ n

1/n
ϕ′(t)Px{τ > t} dt .

Observe that by Proposition 4.7, v1,n ∈ C∞(U) and

Lv1,n(x) =
∫ n

1/n
ϕ′(t)Lx(Px{τ > t}) dt

=
∫ n

1/n
ϕ′(t)∂t(Px{τ > t}) dt

= ϕ′(n)Px{τ > n}− ϕ′(1/n)Px{τ > 1/n}−
∫ n

1/n
ϕ′′(t)Px{τ > t} dt .

Since for any x ∈ U we have Exϕ′(τ) < ∞, it follows that

lim
n→∞

ϕ′(n)Px{τ > n} ≤ lim
n→∞

Exϕ
′(τ)1{τ ≥ n} = 0 (4.17)

on U . Furthermore, since Px{τ = 0} = 0 for any x ∈ U , it also follows that on
U

lim
n→∞

ϕ′(1/n)Px{τ > 1/n} = ϕ′(0)Px{τ > 0} = ϕ′(0). (4.18)

In addition, ϕ′ is strictly increasing, and therefore ϕ′′ ≥ 0 and by the monotone
convergence theorem, Lv1,n → −v2 pointwise as n → ∞ on U . Since v1, v2 are
bounded on compact subsets of U and v1,n → v1 as n → ∞, Lemma 4.2 implies
Lv1 = −v2 on U in the sense of distributions.
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Let us note some more specific examples and results that follow as an imme-
diate consequence of the previous results.
Corollary 4.13. Suppose that xt is nonexplosive as in Definition 2.1 and con-
ditions (U00) and (PH) are satisfied. Then:

(i) If for some k ∈ N, k ≥ 2, vk1 (x) := Exτk is bounded on compact subsets of
U , then vk1 ∈ C∞(U) and Lvk1 = −kExτk−1 on U in the classical sense.

(ii) Suppose that for some δ > 0, wδ(x) := Exeδτ is bounded on compact
subsets of U . Then wδ ∈ C∞(U) and Lwδ = −δwδ.

Proof. For (i), set ϕ(t) = tk and note that vk1 (x) and vk2 (x) := kExτk−1 are
both bounded on compact subsets of U . By Proposition 4.11, Lvk1 = −vk2 on U
in the sense of distributions. By induction and Proposition 4.8, vk2 ∈ C∞(U) so
that vk1 ∈ C∞(U) and Lvk1 = −vk2 in the classical sense.

For (ii), set ϕ(t) = eδt. Then, Proposition 4.11 implies (L + δ)wδ = 0 in the
sense of distributions. However, L+ δ is hypoelliptic on U , so that wδ ∈ C∞(U)
and Lwδ = −δwδ in the classical sense.

5. Green’s functions and Bony’s Harnack inequality

In this section, we explore Green’s functions in the hypoelliptic setting for an
open set U . As a consequence, we generalize Bony’s form of the Harnack in-
equality [9].

Let β > 0 be a constant and suppose f ∈ C∞(U) ∩ B(U). Often (see [9])
one refers to the Green’s operator Gβ as the ‘mapping’ f .→ v, where v is the
‘unique’ solution of the Poisson problem

{
(L− β)v = −f on U ,

u = 0 on ∂U.
(5.1)

When β = 0 and L is hypoelliptic on U , the uniqueness of solutions of (5.1)
heavily depends on the structure of the diffusion xt driven by L near ∂U . Indeed,
as mentioned in the introduction, the parts of the boundary that cannot be
attained by the underlying stochastic process are sources of nonuniqueness. This
is also the case for (5.1) when β > 0. Here, we employ stochastic methods to
define and deduce properties of Gβf without needing to assume uniqueness.

Formally, our ‘best guess’ of solution of (5.1) would be

v(x) = Ex

∫ τ

0
f(xs)e−βs ds , (5.2)

where τ = inf{t > 0 : xt /∈ U}. The expression (5.2) is motivated by a formal
application of Itô’s formula to the function e−βtv(xt), where v is a presumed
classical solution of (5.1). Even though it is not clear nor necessarily true that
v solves (5.1), v in (5.2) is well-defined for any function f ∈ B(U). Note that v
in (5.2) is well-defined even if τ = ∞, due to the presence of the exponentially
decaying factor e−βs.
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Remark 5.1. Under further conditions on the stopping time τ , one can define
G0 or even sometimes G−β for β > 0 small enough. Here, for simplicity, we keep
β positive to avoid any further complexities of assumptions on τ . Additionally,
under similar assumptions, one can replace β by a spatially dependent function
β = β(x) ∈ C(U) to arrive at the Feynman-Kac formula

Ex

∫ τ

0
f(xs)e−

∫ s
0 β(xv) dv ds, (5.3)

provided (5.3) makes sense.

5.1. Definition and properties of Gβ

Given the preliminary remarks above, we now define Gβ .
Definition 5.2. Suppose that the process xt is nonexplosive as in Definition 2.1
and suppose (U00) is satisfied. For any β > 0 and any f : U → [0,∞) measur-
able, define Gβf : U → [0,+∞] by

Gβf(x) := Ex

∫ τ

0
f(xs)e−βs ds. (5.4)

If f : U → R is measurable and Gβ |f |(x) < ∞ for all x ∈ U , we define

Gβf(x) := Gβf+(x) −Gβf−(x) = Ex

∫ τ

0
f(xs)e−βs ds (5.5)

where f+, f− denote the positive and negative parts of f , respectively. We call
Gβ the Green’s operator of order β > 0. Let

Dβ := {f : U → R measurable : x .→ Gβ |f |(x) is bounded on compacts in U}

be the domain of Gβ .
Remark 5.3. Observe that the expression (5.5) is better behaved compared
with the formal stochastic representation corresponding to the usual Poisson
problem (i.e. with β = 0) due to the presence of the exponentially decaying
factor e−βs.

Often it is convenient to express the operator Gβf as a traditional integral
operator, meaning that for any ‘reasonable’ function f on U and any x ∈ U :

Gβf(x) =
∫

U
f(y)gβ(x, y) dy (5.6)

for some kernel gβ to be referred to as the Green’s function associated to Gβ .
However, we must be careful as there are subtleties in defining gβ(x, y) for
y ∈ ∂U and for x = y in U .

To obtain a workable expression for gβ , under the assumptions that xt is
nonexplosive and condition (U00) is satisfied, we recall the stopped process
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x̃t = xt∧τ0 from (2.10) is a Markov process distributed on U , where τ0 = inf{t ≥
0 : xt /∈ U}. We also recall its transition kernel P̃t(x, · ) which is defined on
Borel subsets of U . Note that, for any x ∈ U and any f ∈ Dβ , the Dominated
Convergence theorem implies

Ex

∫ τ0

0
f(x̃s)1U (x̃s)e−βs ds = lim

δ↓0
Ex

∫ (τ0−δ)∨0

0
f(x̃s)1U (x̃s)e−βs ds

= lim
δ↓0

Ex

∫ (τ0−δ)∨0

0
f(x̃s)e−βs ds

= Ex

∫ τ0

0
f(x̃s)e−βs ds.

Hence, for any f ∈ Dβ and x ∈ U , we have by Fubini’s theorem

Gβf(x) = Ex

∫ τ0

0
f(x̃s)e−βs ds = Ex

∫ ∞

0
1U (x̃s)f(x̃s)e−βs ds

=
∫ ∞

0

∫

U
f(y)P̃s(x, dy)e−βs ds =

∫

U
f(y)

∫ ∞

0
P̃s(x, dy)e−βs ds

=:
∫

U
f(y)gβ,x(dy) ,

(5.7)

where for each x ∈ U , gβ,x is a finite Borel measure on U given by

gβ,x(A) =
∫ ∞

0
P̃s(x,A ∩ U)e−βs ds. (5.8)

In particular, the purported Green’s ‘function’ gβ,x, x ∈ U , does not charge the
boundary ∂U . In order to show that gβ,x has a density with respect to Lebesgue
measure on U , we prove the following result:
Theorem 5.4. Let β > 0, and suppose that xt is nonexplosive and that condi-
tions (U00) and (PH) are satisfied. Then:

(i) For every x ∈ U , the finite measure gβ,x on Borel subsets of U given
by (5.8) is absolutely continuous with respect to Lebesgue measure on U
with density gβ(x, y).

(ii) The mapping (x, y) .→ gβ(x, y) ∈ C∞(U×U\Diag), where Diag = {(x, x) :
x ∈ U}. Furthermore, for fixed x ∈ U , (L∗

y−β)gβ(x, y) = −δx in the sense
of distributions on U and, for fixed y ∈ U , (Lx − β)gβ(x, y) = −δy in the
sense of distributions on U .

(iii) For any f ∈ Dβ ∩ C(U), (Lx − β)Gβf = −f on U in the sense of distri-
butions.

(iv) If u ∈ C2(U ; [0,∞)) satisfies Lu = 0 on U , then u ≥ βGβu on U .
Proof. First, we show (i). By Theorem 4.3, for s > 0 and x ∈ U , the measure
P̃s(x, · ∩ U) is absolutely continuous with respect to Lebesgue measure on U
with density p̃t(x, y). Furthermore, (t, x, y) .→ p̃t(x, y) : (0,∞) × U × U .→ R
is C∞ and p̃t satisfies both the forward and backward Kolmogorov equations
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in the classical sense as in Theorem 4.3(i), (ii). Thus, if |A ∩ U | = 0, then
P̃s(x,A∩U) = 0 for any s > 0 and by (5.8) one has gβ,x(A) = 0. Hence, by the
Radon-Nikodym theorem, for each x ∈ U , gβ,x has density y .→ gβ(x, y) which
belongs to L1(U). This concludes (i).

Next, we establish parts (ii) and (iii) simultaneously. Note that for any f ∈
C∞

0 (U), we have for any x ∈ U ,

Gβ((L− β)f)(x) =
∫

U
(L− β)f(y)gβ(x, y)dy. (5.9)

On the other hand, because f vanishes outside of a compact set in U , Dynkin’s
formula (2.8) applied to f(xt∧τ0)e−β(t∧τ0) gives

Exf(xt∧τ0)e−β(t∧τ0) = f(x) + Ex

∫ t∧τ0

0
(L− β)f(xs)e−βsds. (5.10)

Since f is compactly supported in U and β > 0, after passing t → ∞ we have

Exf(xt∧τ0)e−β(t∧τ0) → 0.

By (5.5) and (5.10),

Gβ(L− β)f(x) = −f(x) (5.11)

on U for all f ∈ C∞
0 (U). By combining (5.9) and (5.11) we obtain

(L∗
y − β)gβ(x, ·) = −δx on U (5.12)

in the sense of distributions. Hence, by hypoellipticity of L∗−β, for each x ∈ U ,
the mapping y .→ gβ(x, y) ∈ C∞(U \ {x}).

To obtain regularity in the x variable, for any f ∈ C(U) ∩ B(U) ⊂ Dβ ,
consider the sequence of approximations

Gn
βf(x) :=

∫ n

1/n

∫

U
f(y)p̃s(x, y) dy e−βs ds =:

∫

U
f(y)gnβ (x, y) dy

and let h ∈ C∞
0 (U). Employing Theorem 4.3 and the Dominated Convergence

Theorem (in order to interchange the integral and derivatives) it follows that
∫

U
h(x)(L− β)xGn

βf(x) dx =
∫

U

∫

U
h(x)f(y)

∫ n

1/n
∂t(p̃t(x, y)e−βt) dt dy dx

=
∫

U
h(x)[e−βnExf(x̃n) − e−β/nExf(x̃1/n)] dx.

Passing n → ∞ and using the Dominated Convergence Theorem, we find that
Gβ satisfies

(L− β)xGβf(x) = −f(x) (5.13)
in the sense of distributions on U . More generally, if f ∈ Dβ ∩ C(U), then for
every N ∈ N define fN := f ∧N ∈ C(U) ∩B(U). Then (L− β)xGβfN = −fN
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in the sense of distributions on U . Passing N → ∞, it follows by Lemma 4.2
and definition of Dβ , that (L − β)xGβf = −f in the sense of distributions on
U . This proves (iii).

To finish the rest of (ii), let f, h ∈ C∞
0 (U) and note that by (5.13)

∫

U×U
[(L− β)∗xh](x)gβ(x, y)f(y) dydx = −

∫

U
h(x)f(x) dx. (5.14)

Since f and h are arbitrary,

(L− β)xgβ(x, y) = −δy(x) (5.15)

on U in the sense of distributions, and therefore the hypoellipticity of L − β
implies that x .→ gβ(x, y) is C∞(U \ {y}), as desired.

Finally, for part (iv), for n ≥ 1 let Un be a sequence of bounded open sets
with Un ↑ U and Un ⊂ U . Set τn = inf{t ≥ 0 : xt /∈ Un}. Then, Dynkin’s
formula (2.8), Lu = 0, and u ≥ 0 imply for any x ∈ U ,

0 ≤ Exe
−βt∧τ0∧τnu(xt∧τ0∧τn) = u(x) − βEx

∫ t∧τ0∧τn

0
u(xs)e−βs ds.

Rearranging and passing n → ∞ and t → ∞ gives the result by the Monotone
Convergence Theorem.

We now apply Theorem 5.4 to obtain a version of Harnack’s inequality orig-
inally due to Bony [9]. Our assumptions are weaker as we do not assume the
uniqueness of the solution of (5.1). Before we proceed, let

HU = {u ∈ C2(U ; [0,∞)) : Lu = 0 on U}. (5.16)

Of course, if L is hypoelliptic on U , then any distribution u with Lu = 0 on U
must belong to C∞(U) and satisfy Lu = 0 on U in the classical sense.
Theorem 5.5 (Harnack inequality). Suppose that xt is nonexplosive and that
conditions (U00) and (PH) are satisfied. Consider any compact set K ⊂ U ,
any set D ⊂ U which is dense in U and any multiindex α. Then, there exist
points y1, y2, . . . , yk ∈ D and a constant c > 0 such that the following inequality

sup
x∈K

|Dαu(x)| ≤ c[u(y1) + u(y2) + · · · + u(yk)] (5.17)

is satisfied for all u ∈ HU .
Proof. From this point in the paper, the argument is a slight modification of
the proof of [9, Lemma 7.1]. Fix any multi-index α. Let K ⊂ U be compact
and x0 ∈ K. We show that there exist an open neighborhood V ⊂ U of x0, an
element y ∈ D, and a constant c > 0 such that

u(y) ≥ c sup
x∈V

|Dαu(x)| for all u ∈ HU . (5.18)
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The result then follows from (5.18) using compactness of K. By Theorem 5.4,
fixing β > 0, we obtain for all y ∈ U and all u ∈ HU

u(y) ≥ β

∫

U
u(z)gβ(y, z) dz.

We next claim that there exists y ∈ D \ {x0} such that gβ(y, x0) > 0. If not, by
Theorem 5.4, gβ(·, x0) = 0 on U \ {x0}, a contradiction to (L− β)ygβ(y, x0) =
−δx0(x) on U in the sense of distributions (see (5.15)). Thus fix y ∈ D \ {x0}
so that gβ(y, x0) > 0 and by continuity, choose disjoint neighborhoods W of y
and X of x0 and a constant c > 0 such that

gβ(w, x) ≥ c for all (w, x) ∈ W ×X.

Nonnegativity of gβ then implies for fixed y ∈ D

u(y) ≥ βc

∫

X
u(x) dx

for all u ∈ HU . In order to bound the integral c
∫
X u(x) dx = c‖u‖L1(X) from

below, we bootstrap (2.16) to obtain for any s > 0 and t < 0 and any open
neighborhood V of x0 with V ⊆ X, the existence of a constant Cs,t depending
only on s, t and V,X such that

‖u‖Hs(V ) ≤ Cs,t‖u‖Ht(X) for all u ∈ HU .

For sufficiently negative t we have L1 ↪→ Ht, and there exists C > 0 independent
of u such that

sup
x∈V

|Dαu(x)| ≤ C

∫

X
u(x) dx ≤ C

βc
u(y).

Given the previous result, we return to the proof of Proposition 4.8(ii).
Proof of Proposition 4.8(ii). Take a sequence of bounded open sets Un, n ≥ 1,
with Un ⊂ U and Un ↑ U as n → ∞. By Proposition 4.8(i), for any n ≥ 1, if
τn := τUn , then wn(x) := Exτn is bounded on Un and C∞(Un) with Lwn = −1
on Un in the classical sense. In addition, since Un ⊂ U , we have wn ≤ v. Let
x ∈ U0 and fix δ > 0 such that Bδ(x) ⊂ U0. Fix m ∈ N such that Um ⊃ Bδ(x).
Then, for each n ≥ m, the function zn = wn − wm satisfies Lzn = 0 on Bδ(x)
and for any y ∈ D, 0 ≤ zn(y) ≤ v(y) < ∞. By Theorem 5.5, zn has bounded
derivatives of all orders independently of n on Bδ(x). Since m is fixed, wn =
zn +wm has has bounded derivatives of all orders independently of n on Bδ(x).
Then, wn converges to a function v, uniformly on compact subsets of U0.

The assertion (ii) follows from Lemma 4.2 once we show that v = v on U0.
Since Un ↑ U , then τn ↑ τ and v = v follows from the monotone convergence
theorem. This finishes the proof of (ii).
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6. General results on the formal stochastic solution

6.1. Preliminary remarks

Throughout this section, we assume that U ⊂ Rm is nonempty, open set with
nonempty complement U c. We return to one of our main goals: satisfaction
of (1.2) by the formal stochastic representation, which for the Poisson equation
is given by (provided it makes sense)

vstoc,0(x) = Ex

∫ τ

0
f(xs) ds =

∫ τ0

0
f(x̃s) ds, x ∈ U, (6.1)

where x̃t = xt∧τ0 is the process stopped at the boundary ∂U . For example if
f ≡ 1, v(x) := Exτ = Exτ0 = Ex

∫ τ0
0 1 ds, x ∈ U and as long as the hypotheses

of Proposition 4.8(ii) are satisfied, v ∈ C∞(U) and Lv = −1 on U in the classical
sense. Thus, we expect that under analogous assumptions, vstoc,0 ∈ C∞(U) and
Lvstoc,0 = −f in the classical sense on U .

Additionally, if g ∈ C∞
0 (X ) for the formal stochastic solution of the Dirichlet

problem

ustoc,0(x) = Exg(xτ ), (6.2)

Dynkin’s formula applied to g yields for any x ∈ U , t ≥ 0

ustoc,0(x, t) := Exg(xτ∧t) = g(x) + Ex

∫ τ∧t

0
Lg(xs) ds. (6.3)

Thus by formally passing t → ∞, rearranging and using (6.1), one has that
ustoc,0 − g satisfies L(u − g) = Lg, and interior smoothness and Lustoc,0 = 0
on U in the classical sense follows. Then, by an approximation argument and
Lemma 4.2, the same properties follow for more general g.

6.2. Interior smoothness for vstoc,0 and ustoc,0

We begin with the interior smoothness for vstoc,0. Suppose the process xt is
nonexplosive as in Definition 2.1 and that condition (U00) holds. For any mea-
surable f : U → [0,∞), define G0f : U → [0,∞] by (cf. (5.4))

G0f(x) = Ex

∫ τ

0
f(xs) ds. (6.4)

For any f : U → R measurable with G0|f |(x) < ∞ for all x ∈ U , we let
(cf. (5.5))

G0f(x) := G0f+(x) −G0f−(x) = Ex

∫ τ

0
f(xs) ds (6.5)

and

D0(U) = {f : U → R measurable : x .→ G0|f |(x) (6.6)
is bounded on compact sets in U}.
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Theorem 6.1 (Interior Smoothness for vstoc,0). Let f ∈ C(U)∩D0(U). Assume
that xt is nonexplosive as in Definition 2.1 and that conditions (U00) and
(PH) are satisfied. Suppose, moreover Px{τ < ∞} = 1 for all x ∈ U . Then

Lvstoc,0 = −f on U (6.7)

in the sense of distributions. Also, if f ∈ C∞(U)∩D0(U), then vstoc,0 ∈ C∞(U)
and Lvstoc,0 = −f on U in the classical sense.
Proof. Suppose f ∈ C(U) ∩D0(U). Let Un be bounded, open set with Un ⊂ U
and Un ↑ U as n → ∞. For n, k ∈ N define

vn,k(x) :=
∫ k

1/k

∫

Un

p̃t(x, y)f(y) dy dt.

By Theorem 4.3, vn,k ∈ C∞(U). Fubini’s Theorem then gives

Lvn,k(x) =
∫ k

1
k

∫

Un

Lxp̃t(x, y)f(y) dy dt

=
∫ k

1
k

∫

Un

∂tp̃t(x, y)f(y) dy dt

= Ex1Un(x̃k)f(x̃k) − Ex1Un(x̃1/k)f(x̃1/k) → −1Un(x)f(x)

as k → ∞ in the sense of distributions on U , where we used that f is bounded,
continuous on Un and for all x ∈ U , Ex1Un(x̃k) ≤ 1 − P{x̃k ∈ ∂U} → 0 as
k → ∞ by Px{τ < ∞} = 1.

Since f is bounded on Un, by the Dominated Convergence theorem vn,k → vn
as k → ∞, where

vn(x) :=
∫ ∞

0

∫

Un

p̃t(x, y)f(y) dy dt = Ex

∫ τ

0
1Un(x̃s)f(x̃s) ds.

Then, by Lemma 4.2, Lvn = −f on Un in the sense of distributions. Splitting
f into positive and negative parts (using f ∈ D0(U)) and using the Monotone
Convergence Theorem, we obtain that vn, which is locally uniformly bounded
on U , converges pointwise to vstoc,0 as n → ∞. By employing Lemma 4.2 again,
we obtain the desired result.

Given the previous result, we next investigate the interior smoothness of
ustoc,0.
Theorem 6.2 (Interior smoothness for ustoc,0). Assume that xt is nonexplosive
as in Definition 2.1 and that conditions (U00) and (PH) are satisfied. Suppose
Px{τ < ∞} = 1 for all x ∈ U and g ∈ C(X ) is such that ustoc,0(x) = Exg(xτ )
is bounded on compact subsets of U . Then, ustoc,0 ∈ C∞(U) and Lustoc,0 = 0
on U in the classical sense.
Remark 6.3. Note that by the Tietze Extension Theorem we can replace the
assumption g ∈ C(X ) with g being continuous only on a neighborhood of ∂U .
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Proof. First let U0 ⊂ U be bounded, open with U0 ⊂ U . By Proposition 4.8(i),
v0(x) := ExτU0 is bounded on U0. Thus, for any open V0 with V0 ⊃ U0 and any
g ∈ C2(V0), the boundedness of U0 implies Lg ∈ C(U0) ∩D0(U0) (with respect
to τU0). By Theorem 6.1, the function

v0(x) = Ex

∫ τU0

0
Lg(xs) ds (6.8)

satisfies Lv0 = −Lg on U0 in the sense of distributions. For u0(x) := Exg(xτU0
),

Dynkin’s formula, the Dominated Convergence Theorem, and ExτU0 < ∞ imply

u0(x) = lim
t→∞

Exg(xτU0∧t) = g(x) + lim
t→∞

Ex

∫ τU0∧t

0
Lg(xs) ds

= g(x) + Ex

∫ τU0

0
Lg(xs) ds.

Hence, by (6.8) and Lv0 = −Lg,

Lu0 = Lg − Lg = 0 on U0

in the sense of distributions. Since L is hypoelliptic, u0 ∈ C∞(U0) and Lu0 = 0
on U0 in the classical sense.

Next assume g is merely continuous and supported on a bounded neighbor-
hood W0 of the boundary ∂U0, and without loss of generality assume g ≡ 0
on W c

0 . Fix any ψ ∈ C∞
0 (Rm; [0,∞)) with

∫
Rm ψ dx = 1, denote ψε(x) =

ε−mψ(ε−1x) and set

gε(x) =
∫

Rm

g(y)ψε(x− y) dy ∈ C∞
0 (Rm) and uε(x) = Exgε(xτU0

).

(6.9)

Since gε is smooth, by the first part of the proof, uε ∈ C∞(U0) and Luε = 0
on U0 in the classical sense. Furthermore, g is bounded, and therefore uε is
uniformly bounded and converges pointwise to u0(x) = Exg(xτU0

) on U0 as
ε → 0. It follows by Lemma 4.2 and hypoellipticity of L that u0 ∈ C∞(U0) and
Lu0 = 0 on U0 in the classical sense.

Finally, let Un, n ∈ N, be a sequence of bounded open sets with Un ⊂ U
and Un ↑ U . Suppose that g ∈ C(X ; [0,∞)) is nonnegative and by assumption
u+(x) := Exg(xτ ) is bounded on compact subsets of U . Set τn = inf{t > 0 :
xt /∈ Un} and note that we already proved that un,N (x) := Ex[g(xτn) ∧ N ] ∈
C∞(Un) with Lun,N = 0 on Un in the classical sense. After passing n → ∞,
Lemma 4.2, the Dominated Convergence Theorem, and τn → τ imply that
u∞,N (x) := Ex[g(xτ ) ∧ N ] satisfies u∞,N ∈ C∞(U) with Lu∞,N = 0 on U
in the classical sense. Passing N → ∞ and again applying Lemma 4.2 and
Monotone convergence theorem, we find that u+ ∈ C∞(U) with Lu+ = 0 on U
in the classical sense. The result follows after decomposing g into positive and
negative parts, g = g+ − g−.
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6.3. Boundary behavior

Note that under the hypotheses of Theorem 6.1 and Theorem 6.2, the formal
stochastic solution ustoc belongs to (1.4) is C∞(U) and ustoc is also classical
solution of Lustoc = −f on U , provided f ∈ C∞(U). The next natural problem
is to determine satisfaction of the boundary condition in (1.2). We explore it
first for the Dirichlet part ustoc,0.

Theorem 6.4. Fix x∗ ∈ ∂U , g ∈ C(X ) and assume xt is nonexplosive as in
Definition 2.1. Assume that condition (U00) is satisfied and Px{τ < ∞} = 1
for all x ∈ U . If, furthermore, conditions (UID(g, x∗)) and (CE(x∗)) are
satisfied and x∗ is regular as in Definition 3.4, then ustoc,0(x) → g(x∗) as x →
x∗, x ∈ U .

Remark 6.5. Note that if U is bounded, by extending b,σ to Rm so that xt

is nonexplosive as in Remark 2.2, conditions (UID(g, x∗)) and (CE(x∗)) are
satisfied for every x∗ ∈ ∂U . Indeed, g is continuous on Rm and bounded on U .
Moreover, one can set Xn = Bn so that for all n large enough Px{τXn < τ} = 0
for all x ∈ U .

Remark 6.6. As discussed above, checking that a given point x∗ ∈ ∂U is
regular can be challenging. See [11, 39, 16] for some criteria. However, if it
makes sense to slightly modify the set U , then regularity of x∗ can be easier to
verify. See Theorem 3.12 for further information.

Proof of Theorem 6.4. By (UID(g, x∗)), choose δ > 0 so that Gg,δ(x∗) as in (2.19)
is uniformly integrable. For |x− x∗| < δ and n ∈ N, write

ustoc,0(x) − g(x∗) = Ex[(g(xτ ) − g(x∗))1{xτ /∈ Xn}]
+ Ex[(g(xτ ) − g(x∗))1{xτ ∈ Xn}] =: T1(x, n) + T2(x, n).

Fix ε > 0 and we claim that there exists n ∈ N and δ1 ∈ (0, δ] such that
|T1(x, n)| < ε/2 for all |x−x∗| < δ1, x ∈ U . Since the family Gg,δ(x∗) is uniformly
integrable, there is ε′ > 0 be such that

ε′ <
ε

4(|g(x∗)| + 1)

and whenever P{A} < ε′ we have E|X|1A < ε
4 for all X ∈ Gg,δ(x∗). However,

by (CE(x∗)), there exists n ∈ N, δ1 ∈ (0, δ] such that |x − x∗| < δ1, x ∈ U
implies

Px{xτ /∈ Xn} ≤ Px{τXn < τ} < ε′.

Hence, for such n and δ1, uniformly integrability gives |T1(x, n)| < ε
2 for all

|x− x∗| < δ1, x ∈ U , establishing the claim.
We next claim that for this choice of n, there exists δ2 ∈ (0, δ1] such that

|T2(x, n)| < ε
2 , thus finishing the proof of the result. Indeed, since g is continuous
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on the compact set Xn, there is a Lipschitz function h ∈ C(Xn) such that
‖g − h‖L∞(Xn) <

ε
8 . Hence, for any ε∗ > 0 we have

|T2(x, n)| ≤ ε

4 + Ex[(h(xτ ) − h(x∗))1{xτ ∈ Xn}]

≤ ε

4 + C1E|xτ (x) − x∗| ∧ C21{τ < ε∗} + 2‖h‖L∞Px{τ ≥ ε∗}

≤ ε

4 + C1E sup
s∈[0,ε∗]

|xs − x∗| ∧ C2 + 2‖h‖L∞Px{τ ≥ ε∗}

=: ε

4 + T 1
2 + T 2

2 ,

where C1, C2 > 0 are constants depending only on n and h. To estimate T 1
2 ,

observe that

T 1
2 = C1E sup

s∈[0,ε∗]
|xs(x) − x∗| ∧ C2

≤ C1
(
E sup

s∈[0,ε∗]
|xs(x) − xs(x∗)|2 ∧ C2

2
)1/2

+ C1
(
E sup

s∈[0,ε∗]
|xs(x∗) − x∗|2 ∧ C2

2
)1/2

where the last inequality follows by triangle and Cauchy-Schwarz inequalities.
Using Lemma 4.1(i) and path continuity of xt, there exits δ2 ∈ (0, δ1] and ε∗ > 0
small enough so that T 1

2 ≤ ε/8 for all x with |x−x∗| < δ2. For T 2
2 , Lemma 4.1(ii)

and the regularity of x∗, ensure that T 2
2 < ε/8 if δ2 > 0 is sufficiently small.

This finishes the proof of the result.
Remark 6.7. Note that if U us bounded, then (CE(x∗)) is trivially satisfied
by choosing n large such that U ⊂ Xn. Here, we verify (CE(x∗)) for unbounded
U if x .→ Exτ is bounded on Bδ2(x∗) ∩ U for some δ2 > 0 and hypotheses of
Lemma 2.4 are satisfied.

For any t > 0, we have

Px{τXn < τ} ≤ Px{τ ≥ t} + Px{τXn ≤ t}.

Fix any δ1 > 0. Then, Chebychev’s inequality gives for all x ∈ Bδ(x∗) ∩ U that

Px{τ ≥ t} ≤ t−1Exτ ≤ C/t .

Fix t > 0 large enough independent of x, such that Px{τ ≥ t} < δ1
2 . As in the

proof of Lemma 2.4, we have

wne
−CtPx{τXn ≤ t} ≤ w(x) + D .

with wn → ∞ as n → ∞. For already fixed t > 0, there is n ∈ N large enough
so that Px{τXn ≤ t} < δ1

2 for each x ∈ Bδ2(x∗) and (2.21) is satisfied.
Next, we derive sufficient conditions on the Poisson part vstoc,0 of ustoc that

ensure vstoc,0(x) → 0 as x → x∗ ∈ ∂U , x ∈ U .
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Theorem 6.8. Suppose xt is nonexplosive as in Definition 2.1, x∗ ∈ ∂U is reg-
ular as in Definition 3.4 and condition (U00) is satisfied. Suppose, furthermore,
that conditions (UIP(f, x∗)) and (CE(x∗)) are satisfied for some f : U → R
which is measurable and bounded on Xn ∩ U for all n. If for every x ∈ U ,
Px{τ < ∞} = 1, then vstoc,0(x) → 0 as x → x∗, x ∈ U .
Proof. Let ε > 0 and by (UIP(f, x∗)) there is δ1 > 0 such that for all x ∈ U
with |x − x∗| < δ1 the family Gf

δ1
(x∗) in (2.20) is uniformly integrable. For

simplicity, set Yt =
∫ t
0 f(xs) ds. Then, since f is bounded on Xn ∩ U , for any

δ > 0

|vstoc,0(x)| ≤ |ExYτ1{τXn < τ}| + |ExYτ1{τXn ≥ τ}|
≤ |ExYτ1{τXn < τ}| + |ExYτ∧δ1{τXn ≥ τ, τ ≤ δ}| + |ExYτ1{τ > δ}|
≤ |ExYτ1{τXn < τ}| + δ‖f‖L∞(Xn∩U) + |ExYτ1{τ > δ}|.

By uniform integrability, there exists ε′ > 0 such that P{A} < ε′ implies
ExY 1A < ε/3 for all |x − x∗| < δ1. By (CE(x∗)), there are n ∈ N, δ2 ∈ (0, δ1]
such that Px{τXn < τ} < ε′ for all |x−x∗| < δ2, x ∈ U . For this choice of n, let

δ = ε

3(‖f‖L∞(Xn∩U) + 1) .

By making δ2 > 0 smaller if necessary, by Lemma 4.1(ii) we can ensure that
Px{τ > δ} < ε′ for all |x − x∗| < δ2, x ∈ U . The result follows since for
|x− x∗| < δ2, x ∈ U , we have |vstoc,0(x)| < ε and ε > 0 is arbitrary.

We can now combine the previous results and relate them back to the original
problem (1.2).
Corollary 6.9. Suppose xt is nonexplosive as in Definition 2.1, Px{τ < ∞} =
1 for all x ∈ U , and condition (U00) is satisfied. Let g ∈ C(X ) and f ∈
C∞(U) ∩ D0(U) be such that ustoc,0 is bounded on compact subsets of U and
f ∈ B(Xn ∩ U) for all n. If U is boundary regular for xt and the conditions
(UID(g)), (UIP(f)), and (CE) are satisfied, then ustoc is a classical solution
of (1.2). If U is furthermore assumed to be bounded, then ustoc is the unique
classical solution of (1.2).
Proof. The only assertion we have left to prove is uniqueness when U is bounded.

Let {Un} be a sequence of bounded open subsets of U with Un ⊂ Un+1 and
U = ∪nUn. If u is a classical solution of (1.2), then u is smooth on Un for each
n, and by Dynkin’s formula (2.8) we have for any x ∈ U and n ∈ N large enough

Exu(xt∧τUn
) = u(x) + Ex

∫ t∧τUn

0
Lu(xs) ds = u(x) − Ex

∫ t∧τUn

0
f(xs) ds,

and therefore

u(x) = Exu(xt∧τUn
) + Ex

∫ t∧τUn

0
f(xs) ds.
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Since u is continuous on the compact set U , u is bounded on U . Also, since
g ∈ C(X ) and f ∈ C∞(U)∩D0(U), passing t → ∞ and then n → ∞, boundary
regularity and the Dominated Convergence Theorem imply that u(x) = ustoc(x).

7. The transience and recurrence dichotomy for degenerate
diffusions

The goal of this section is to carefully establish the dichotomy between tran-
sience and recurrence for degenerate diffusions by adapting the classic cycle
constructions of Khasminskii [35], which was carried out in the setting of ellip-
tic diffusions on Euclidean space. Note that this has been done previously using
the language of invariant control sets as in [37]. However, we found a gap in
the arguments in [37] that we could not fix in an obvious way (see Remark 7.22
below). Moreover, some regularity claims in [37] could not be verified without
calculations analogous to ones in the previous sections. Although it is known
that there are alternative, probabilistic paths which circumnavigate these issues
(we refer, in particular, to the work of Harris [30], the survey paper of Baxen-
dale [3] and the work of Meyn-Tweedie [50]), here we establish the dichotomy
using classical ideas of Khasminskii and regularity properties established above.
Note that this approach traces back to Maruyama and Tanaka [48] and Watan-
abe [63] in the case of a one-dimensional, elliptic diffusion. We also refer to the
works [1, 27] which we found helpful.

7.1. Nice diffusions

In this subsection, we briefly introduce the structural assumptions we make on
the diffusion xt satisfying (1.3) in this section. Recall that if xt is nonexplosive as
in Definition 2.1, then xt ∈ X for all t ≥ 0 and any initial condition x0 = x ∈ X .

In order to formulate our results, we need a notion of irreducibility of xt as
introduced in the following definition.

Definition 7.1. Suppose that xt is nonexplosive as in Definition 2.1. We call
xt irreducible if for any x, y ∈ X and δ > 0 we have Py{τBδ(x)c < ∞} > 0.

Note that irreducibility means that, for all x, y ∈ X , the process started at y ∈
X enters an arbitrarily small neighborhood of x ∈ X with positive probability.
Thus, the process can transition between arbitrarily small neighborhoods of any
two points in X .

Remark 7.2. Comparing terminology, if xt is irreducible in the sense of Defi-
nition 7.1, then X is the unique invariant control set of xt as in [37]. Certainly,
the methods used below can be applied in more general settings, e.g. if there
is more than one invariant control set or if the process xt eventually enters an
invariant control set from a larger set to not return to other parts of space. For
our purposes, one irreducible set X is sufficient.
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We are ready to introduce the assumptions we impose on the diffusion xt in
this section.
Definition 7.3. We say that the diffusion xt is nice if the following conditions
are met:

(i) xt is nonexplosive as in Definition 2.1;
(ii) The generator L of xt is satisfies the parabolic Hörmander condition on

X as in Definition 2.12;
(iii) xt is irreducible as in Definition 7.1.

One key property of a nice diffusion employed below is that the process leaves
bounded sets in X sufficiently fast.
Proposition 7.4. Suppose that xt is a nice diffusion and U ⊂ X is nonempty,
open and bounded with U ⊂ X . Then there exists δ > 0 such that

sup
x∈U

Exe
δτU < ∞. (7.1)

Proof. The proof of this result follows a similar reasoning used in the proof of
Proposition 4.8(i). Let z ∈ X \ U and fix ε > 0 such that Bε(z) ⊂ X \ U . By
irreducibility of xt, for all x ∈ U there exists t = t(x) > 0 and α = α(x) ∈ (0, 1)
such that

Px{τBε(z)c > t} ≤ 1 − α.

Applying Proposition 4.7(i) along with the parabolic Hörmander condition on
X and compactness of U , there exists t∗ > 0 and α∗ ∈ (0, 1) independent of x
so that

Px{τU > t∗} ≤ Px{τBε(z)c > t∗} ≤ 1 − α∗ for all x ∈ U. (7.2)

Following the proof of Proposition 4.8(i), the Markov property implies that

Px{τU ≥ mt∗} ≤ (1 − α∗)m−1

for all m ∈ N and all x ∈ U . Hence τU < ∞, Px-almost surely. Furthermore,
choosing δ = δ(t∗,α∗) > 0 small enough so that eδt∗(1−α∗) < 1, it follows that
for any x ∈ U :

Exe
δτU =

∞∑

m=1
Exe

δτU1{(m− 1)t∗≤τU < mt∗} ≤
∞∑

m=1
eδmt∗Px{τU ≥ (m− 1)t∗}

≤ (1 − α∗)−2
∞∑

m=1
(eδt∗(1 − α∗))m

< ∞.

Remark 7.5. Yet another way to rephrase the conclusion of Proposition 7.4
is that the process xt exits any bounded domain in X in logarithmic time or
exponentially fast on average.
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7.2. Recurrence and transience for nice diffusions

We start with the definition of transience and recurrence.
Definition 7.6. Suppose the diffusion xt is nice. We say that a point x ∈ X is
recurrent if for any δ > 0 and any y ∈ X \Bδ(x)

Py{τBδ(x)c < ∞} = 1. (7.3)

Otherwise, we say x ∈ X is transient.
Our next goal is to prove that points in X are either all recurrent, in which

case we call xt recurrent, or all transient, in which case we call xt transient.
Thus, the dichotomy between transience and recurrence is established in the
following proposition. Afterwards, we establish further properties of transience
and recurrence.
Proposition 7.7. Assume xt is nice. If x ∈ X is recurrent, then all points in
X are recurrent. Consequently, either all points in X are recurrent or all points
in X are transient.
Proof. Suppose x ∈ X is recurrent and let y ∈ X with x 5= y. We show that y
is also recurrent. Suppose that δ > 0 is any positive real number such that x /∈
B2δ(y) and B2δ(y) ⊂ X . By irreducibility in Definition 7.1 and path continuity
(if xt ∈ Bδ(y) for some t, then the inclusion holds for rational t), there exists
t∗ > 0 such that

2α := Pt∗(x,Bδ(y)) > 0. (7.4)

Since L satisfies the parabolic Hörmander condition on X , w .→ Pt∗(w,Bδ(y))
is continuous at x by Remark 4.6 and Theorem 4.3. In particular, there exists
ε > 0 such that Bε(x) ∩ B2δ(y) = ∅, Bε(x) ⊂ X and Pt∗(w,Bδ(y)) ≥ α for all
w ∈ Bε(x). Define stopping times σj , j = 0, 1, . . ., inductively as follows:

σ1 = inf{t ≥ 0 : xt ∈ Bε(x)},
σ2 = σ1 + t∗

σ3 = inf{t ≥ σ2 : xt ∈ Bε(x)}
...

...
σ2k = σ2k−1 + t∗

σ2k+1 = inf{t ≥ σ2k : xt ∈ Bε(x)}.

for k ≥ 2. Then for all j ≥ 1, the stopping time σj is almost surely finite since
xt is nice and x is recurrent. Next, by the strong Markov property we have for
each j ≥ 0:

Pw{τBδ(y)c > σ2j+2} = EwEw[1{τBδ(y)c > σ2j+2}|Fσ2j+1 ]
= Ew1{τBδ(y)c > σ2j+1}Exσ2j+1

1{τBδ(y)c > t∗}
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≤ (1 − α)Pw{τBδ(y)c > σ2j}.

Thus, by induction, Pw{τBδ(y)c > σ2j} ≤ (1 − α)j for all j ≥ 0. Finally, the
Borel-Cantelli Lemma implies Pw{τBδ(y)c < ∞} = 1 for all w ∈ X , and therefore
y is recurrent.

We also have the following corollary of Proposition 7.7.
Corollary 7.8. Suppose xt is nice. If xt is recurrent, then for any x, y ∈ X
and any open set Uy ⊂ X containing y:

Px{ω : ∃ sj(ω) ∈ (0,∞) ↑ ∞ for which xsj ∈ Uy for all j} = 1.

Remark 7.9. Corollary 7.8 states that if xt is recurrent, then for all x ∈ X ,
almost surely the process started from x visits infinitely often any neighborhood
of any y ∈ X .
Proof of Corollary 7.8. Let x, y ∈ X and Uy ⊂ X be open with y ∈ Uy. Fix z ∈
X with z 5= x and z 5= y. Choose δ > 0 such that Bδ(y) ⊂ Uy, Bδ(z) ∩Bδ(x) =
∅, Bδ(z) ∩ Bδ(y) = ∅ and Bδ(z) ⊂ X . Define stopping times σi, i = 0, 1, . . .
inductively by

σ0 = 0;
σ1 = inf{t ≥ σ0 : xt ∈ Bδ(y)}
σ2 = inf{t ≥ σ1 + 1 : xt ∈ Bδ(z)}

...
...

σ2k+1 = inf{t ≥ σ2k : xt ∈ Bδ(y)}
σ2k+2 = inf{t ≥ σ2k+1 + 1 : xt ∈ Bδ(z)}.

By recurrence, σk, k ≥ 0 is almost surely finite. The result follows by setting
sj = σ2j+1.

The next proposition further explores implications of transience for a nice
diffusion xt.
Proposition 7.10. Suppose xt is nice and transient. For any x, y ∈ X there
exists δ > 0 small enough such that Bδ(y) ⊂ X and

Px{ω : ∃ t0(ω) ∈ [0,∞) such that xt(ω) /∈ Bδ(y) ∀t ≥ t0(ω)} = 1. (7.5)

Proof. Since xt is transient, there exist δ1 > 0, y ∈ X , and z ∈ X \B2δ1(y) such
that

Pz{τBδ1 (y)c = ∞} =: 2α > 0. (7.6)

By Proposition 4.7, there exists ε > 0 such that Bε(z) ⊂ X and

Pw{τBδ1 (y)c = ∞} ≥ α
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for all w ∈ Bε(z). In order to obtain a contradiction, for every δ > 0 define

Eδ(x) := {ω : ∃ sj(ω) ∈ (0,∞) ↑ ∞ such that xsj (ω) ∈ Bδ(y), x0 = x} (7.7)

and assume there is x ∈ X such that for each δ > 0

P{Eδ(x)} > 0. (7.8)

Note that for each t ≥ 0, one has Eδ(x) = Eδ(xt(x)), where xt(x) is the process
with x0(x) = x. Next, we claim that, on the set Eδ(x) for all δ > 0 small enough,
the process xt almost surely enters Bε/2(z).

To prove the claim, first observe that since X is irreducible,

Py{τBε/2(z)c < ∞} > 0.

Thus, by path continuity (cf. the proof of Proposition 7.7) there exists t∗ > 0
such that Pt∗(y,Bε/2(z)) =: 2a > 0. Since w .→ Pt∗(w,Bε/2(z)) is continuous,
there exists δ ∈ (0, δ1) such that Bδ(y) ⊂ X and Pt∗(w,Bε/2(z)) ≥ a for all w ∈
Bδ(y). Fix such δ ∈ (0, δ1) and inductively define stopping times ζi, i = 1, 2, . . .,
by

ζ1 = inf{t ≥ 0 : xt ∈ Bδ(y)} ,
ζ2 = ζ1 + t∗ ,

...
...

ζ2k+1 = inf{t ≥ ζ2k : xt ∈ Bδ(y)} ,
ζ2k+2 = ζ2k+1 + t∗.

By the definition of Eδ(x), the stopping times ζi are almost surely finite on
Eδ(x). Then, the strong Markov property (cf. the proof of Proposition 7.7)
yields

Px{τBε/2(z)c > ζ2j |Eδ(x)} ≤ (1 − a)j (7.9)

for any j. Thus the Borel-Cantelli lemma implies that Px{τBε/2(z)c <∞|Eδ(x)}=
1, establishing the claim.

Next, define stopping times σ′
i, i = 1, 2, . . ., by

σ′
1 = inf{t ≥ 0 : xt ∈ Bδ(y)} ,

σ′
2 = inf{t ≥ σ′

1 : xt ∈ Bε/2(z)} ,
...

...
σ′

2k+1 = inf{t ≥ σ′
2k : xt ∈ Bδ(y)} ,

σ′
2k+2 = inf{t ≥ σ′

2k+1 : xt ∈ Bε/2(z)}.

By a similar argument to the one used above, it also follows that on the event
Eδ(x), σ′

j is finite almost surely for all j ≥ 1. Observe that P(σ′
j < ∞) ≥
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P(Eδ(x)) ≥ c, where c is independent of j. However, by the strong Markov
property and iteration, if j ≥ 2 we have

Px{σ′
2j < ∞} = ExEx[1{σ′

2j < ∞} | Fσ′
2j−2

]
= Ex1{σ′

2j−2 < ∞}Pxσ′
2j−2

{σ′
2 < ∞} ≤ (1 − α)Px{σ′

2j−2 < ∞}

≤ (1 − α)j−1.

Thus Borel-Cantelli implies that σ′
2j < ∞ for only finitely many j, a contradic-

tion.
As an immediate consequence, we have the following corollary.

Corollary 7.11. If xt is transient, then for any compact set K ⊂ X and x ∈ X

Px{ω : ∃ tK0 (ω) ∈ [0,∞) such that xt(ω) /∈ K ∀t ≥ tK0 (ω)} = 1

and

lim
t→∞

Px{xt ∈ K} = 0 .

Proof. Fix x ∈ X and for any y ∈ K fix δy > 0 and t0(ω) = t0,y(ω) such that the
conclusion of Proposition 7.10 holds true. From the open cover {Bδ(y)(y)}y∈K

of K choose a finite subcover and define tK0 to be the maximum of t0,y in this
finite subcover. For the second conclusion, we note that

Px{xt ∈ K} ≤ Px{tK0 (ω) > t} → 0

as t → ∞, where tK0 is as in the first assertion.

7.3. Invariant measures

A central interest in the theory of stochastic differential equations is the large-
time behavior of the process xt. In particular, we are interested in the relation-
ship between recurrence, transience and the existence of invariant measures.
Such measures are the random analogues of equilibrium points of deterministic
ordinary differential equations.

To introduce invariant measures, throughout this section we again assume
xt is a nice diffusion. In particular, xt is a nonexplosive process on X , and
consequently the process xt is Markov with Markov semigroup (Pt)t≥0. Recalling
that B denotes the Borel sigma algebra of subsets of X , we call a positive, B-
measure µ an invariant measure, if µPt = µ for all t ≥ 0, where µPt was defined
in (2.6). An invariant measure µ with µ(X ) = 1 is called an invariant probability
measure.
Remark 7.12. Observe that if µ is an invariant probability measure, the equal-
ity µPt = µ for all t ≥ 0 means that the process xt with initial distribution µ
has the distribution µ for all times t ≥ 0. In other words, the statistics remain
invariant under the dynamics.
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Remark 7.13. It is common in the literature to implicitly assume that an
invariant measure is an invariant probability measure. However, below we need
to distinguish between invariant measures which are probability distributions
and those which are not.

We first show that a nice diffusion xt which is transient cannot have an
invariant probability measure.

Corollary 7.14. If xt is nice diffusion which is transient, then xt cannot have
an invariant probability measure.

Proof. Suppose to the contrary that there exists an invariant probability mea-
sure µ. Then, there exists a compact set K ⊂ Rm with K ⊂ X and µ(K) > 0.
Since µ is invariant,

0 < µ(K) =
∫

X
µ(dx)Pt(x,K) for all t ≥ 0.

Using the Bounded Convergence Theorem and Corollary 7.11, it follows that
∫

X
µ(dx)Pt(x,K) → 0

as t → ∞. Hence, µ(K) = 0, a contradiction.

On the other hand, when xt is recurrent, one can always construct a σ-finite
invariant measure using an embedded Markov chain via cycles. We provide
details below, but first we prove an auxiliary result that allows us to further
categorize recurrence.

Proposition 7.15. Let xt be a nice diffusion. If U ⊂ X is a bounded, nonempty,
open set with U ⊂ X and ExτUc < ∞ for all x ∈ X , then:

(i) xt is recurrent;
(ii) ExτV c < ∞ for all x ∈ X and any nonempty, open set V ⊂ X with V ⊂ X

Remark 7.16. The argument is similar to previous cycle constructions, except
that one has to control expected values rather than probabilities.

Proof of Proposition 7.15. We prove both conclusions simultaneously. By mak-
ing V smaller, we may suppose without loss of generality that V ⊂ V ⊂ X is
an open ball. Fixing x ∈ X , our goal is to show that ExτV c < ∞.

Let Xk ⊂ X be an increasing sequence of bounded open sets with Xk ⊂
Xk+1 and ∪kXk = X . By compactness, there is k0 ∈ N large enough so that
Xk ⊃ U ∪ V ∪ {x} for each k ≥ k0. Since xt is nice, for each fixed y ∈ U
there is 2 = 2(y) ≥ k0 + 1 such that u#(y) := Py{τV c < τX%} > 0. Note that
for each k ≥ k0 and z ∈ Q := Xk \ V one has Pz{τQ < ∞} = 1. Indeed, by
Proposition 7.4, xt almost surely leaves Xk in finite time. Setting g = 1 on ∂V
and g = 0 on ∂X#, we have u#(y) = Eyg(xτQ) and by Theorem 6.2, u#(w) > 0
for all w ∈ Bε(y) and some ε > 0. Since 2 .→ u#(x) is nondecreasing for any
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x ∈ Xk0+1, the compactness implies the existence of k∗ ≥ k0 +1 and q > 0 such
that

inf
y∈U

Py{τV c < τXk∗ } ≥ q .

Next, define stopping times ηi, i = −2, 0, 1, 2 . . ., as follows: η−2 = 0 and

η0 = inf{t ≥ 0 : xt ∈ U},
η1 = inf{t ≥ η0 : xt ∈ ∂Xk∗},
η2 = inf{t ≥ η1 : xt ∈ U},

...
...

η2i+1 = inf{t ≥ η2i : xt ∈ ∂Xk∗},
η2i+2 = inf{t ≥ η2i+1 : xt ∈ U}.

As in the proof of Proposition 7.7, using Proposition 7.4 one can show that each
ηj is almost surely finite and Px{τV c ≥ η2N} ≤ (1 − q)N−1. Then, by Borel-
Cantelli, τV c < η2N , for Px-almost surely for some bounded random index N .
The conclusion in (i) follows as x was arbitrary.

To prove (ii), note that

ExτV c =
∞∑

j=0
ExτV c1[η2(j−1),η2j)(τV c) ≤

∞∑

j=0
Exη2j1[η2(j−1),η2j)(τV c) (7.10)

and if E# := {ω : xt ∈ V for some t ∈ [η2(#−1), η2#)}, then

{ω : τV c ∈ [η2(j−1), η2j)} =
[ j−1⋂

#=1
Ec

#

]
∩ Ej . (7.11)

Define α = supy∈U Eyη2. We next claim that α < ∞. Indeed, for any y ∈ U , we
have η0 = 0. Moreover, by the strong Markov property,

Eyη2 = Eyη1 + EyEy[η2 − η1|Fη1 ] = Eyη1 + EyExη1
τUc

≤ Eyη1 + sup
z∈∂Xk∗

EzτUc .

Applying Proposition 7.4 with U = Xk∗ , supy∈U η1 < ∞. Also, by assumption
EzτUc < ∞ for all z ∈ X . Applying Proposition 4.8(ii) (with U replaced by
X \ U) and xt ∈ X for each t ≥ 0, yield that z .→ EzτUc is smooth on X \ U .
In particular, z .→ EzτUc is bounded on the compact set ∂Xk∗ , and the claim
follows.

In addition, for our fixed x ∈ Xk∗ , one has Exη0 < ∞, and consequently by
Proposition 7.4 and the arguments above

β := Exη2 = Exη0 + Ex[η1 − η0] + ExEx[η2 − η1|Fη1 ] (7.12)
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≤ Exη0 + sup
y∈U

EyτXk∗
+ sup

y∈∂Xk∗

EyτUc < ∞. (7.13)

We next claim that for j ≥ 2 the following estimate holds:

Exη2j1[η2(j−1),η2j)(τV c) ≤ (1 − q)j−2β + (j − 2)(1 − q)j−2α + (1 − q)j−1α.

(7.14)

We proceed by induction. If j = 2, then

Exη41[η2,η4)(τV c) = ExEx[η41Ec
1∩E2 |Fη2 ]

≤ Exη2 + Ex1Ec
1Exη2

η2 ≤ β + (1 − q)α,

which establishes the base case of the induction argument. Suppose (7.14) holds
for some j ≥ 2. Then,

Exη2(j+1)1[η2j ,η2(j+1))(τV c) = Ex[Exη2(j+1)1⋂j
%=1 Ec

%∩Ej+1
|Fη2 ]

= Exη2Px

( j⋂

#=1
Ec

# ∩ Ej+1|Fη2

)

+ Ex[Ex(η2(j+1) − η2)1⋂j
%=1 Ec

%∩Ej+1
|Fη2 ]

≤ β(1 − q)j−1 + (1 − q) sup
y∈U

Eyη2j1⋂j−1
%=1 Ec

i∩Ej

≤ β(1 − q)j−1 + (j − 1)(1 − q)j−1α + (1 − q)jα.

This finishes the proof of (7.14). Then, (ii) follows from (7.10).
The previous result gives rise to the following definition.

Definition 7.17. Suppose xt is a nice diffusion and assume there exists a
bounded, nonempty open set U ⊂ X with U ⊂ X such that EyτUc < ∞ for all
y ∈ X . Then, we call xt positive recurrent. Otherwise, if xt is recurrent but not
positive recurrent, we call xt null recurrent.

Note that by Proposition 7.15, positive recurrence immediately implies recur-
rence. Next, we show that if xt is positive recurrent, it has an invariant proba-
bility measure. The following result can be found in a number of references, see
for example [37, 56]. We provide most of the details for completeness.
Proposition 7.18. Suppose xt is nice. If xt is recurrent, then there exists a σ-
finite invariant measure. If xt is positive recurrent, then there exists an invariant
probability measure.
Proof. Fix open balls U, V with U ⊆ V ⊆ V ⊆ X . Denote Γ1 = ∂V and Γ2 = ∂U
and introduce stopping times σi, i = 0, 1, . . . defined by

σ0 = 0 ,
σ1 = inf{t ≥ 0 : xt ∈ Γ1} ,
σ2 = inf{t ≥ σ1 : xt ∈ Γ2} ,
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...
...

σ2k+1 = inf{t ≥ σ2k : xt ∈ Γ1} ,
σ2k+2 = inf{t ≥ σ2k+1 : xt ∈ Γ2} .

Since xt is a nice recurrent diffusion, each of the stopping times σi is almost
surely finite. We can thus define a discrete-time Markov chain {Xn}n≥0 on Γ2
by X0 = x ∈ Γ2 and Xn = xσ2n , n ≥ 1. Because {Xn} has compact state
space Γ2, it possesses an invariant probability measure ν supported on Γ2 by
the Krylov-Bogolyubov Theorem.1 Then, ν induces a measure µ on B by

µ(B) =
∫

Γ2

ν(dx)Ex

∫ σ2

0
1B(xs) ds =:

∫

Γ2

ν(dx)Exσ
B , (7.15)

where σB is the total time spent by the process xt in B during one ‘cycle’ [0,σ2].
The calculations in [56, starting on p. 31] yield that µ is an invariant measure
for xt.

To prove that µ is σ-finite, we show that for any compact set K ⊂ X

sup
x∈Γ2

Exσ
K < ∞ ,

where

σK =
∫ σ2

0
1K(xs) ds =

∫ σ1

0
1K(xs) ds +

∫ σ2

σ1

1K(xs) ds =: σK
1 + σK

2 . (7.16)

Without loss of generality, by making K larger, we can assume U ∪ V ⊂ K.
First observe that

sup
x∈Γ2

Exσ
K ≤ sup

x∈U

Exσ1 + sup
y∈Γ1

Ey

∫ τUc

0
1{xs ∈ K} ds.

Using Proposition 7.4, supx∈U Exσ1 < ∞. For the other term, note that since
Γ1 ⊂ K we have

sup
y∈Γ1

Ey

∫ τUc

0
1{xs ∈ K} ds ≤ sup

y∈K
Ey

∫ τUc

0
1{xs ∈ K} ds.

Following the arguments in [37], set η =
∫ τUc

0 1{xs ∈ K} ds and let A(t) = {η ≥
t}. By definition of η, note that η ≤ τUc . Hence

Py{A(t)} ≤ Py{τUc ≥ t} ≤ Py{τUc > t/2}.

Thus using the fact that xt is recurrent, applying Proposition 4.7(i) and com-
pactness of K we deduce the existence of α < 1 and large t0 > 0 such that

Py{A(t0)} ≤ Py{τUc ≥ t0} ≤ Py{τUc > t0/2} ≤ α (7.17)
1Here, if Q(x, dy) denotes the one-step transition kernel of Xn, a probability measure is a

invariant if µQ = µ.
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for all y ∈ K. Fix such t0 and define

ηK(t) = inf{w ≥ 0 :
∫ w
0 1K(xs) ds = t + t0}.

Then, by path continuity, xηK(t) ∈ K. Hence, by the strong Markov property
and (7.17)

Py{A(2(t + t0))} = Ey1{η ≥ 2(t + t0)} = Ey1{η ≥ t + t0}ExηK (t)1{η ≥ t + t0}
≤ α2

Repeating the process inductively yields Py{A(n(t + t0))} ≤ αn for all y ∈ K.
Finite expectation of η, hence sigma finiteness of µ, now follows.

To prove that µ is a finite measure if xt is positive recurrent, note that σ1 is
almost surely finite and µ(X ) =

∫
Γ2

ν(dx)Exσ2. By the strong Markov property,
for any x ∈ Γ2 we have

Exσ2 = Exσ1 + Ex(σ2 − σ1) = Exσ1 + ExExσ1
τUc ≤ sup

x∈Γ2

Exσ1 + sup
y∈Γ1

EyτUc .

By Proposition 7.4, supx∈Γ2 Exσ2 < ∞. By positive recurrence EyτUc < ∞ for
each y ∈ X , and by Proposition 4.8(i), we obtain supy∈Γ1 EyτUc < ∞, and the
finiteness of µ follows. Thus, µ can be normalized to an invariant probability
measure, and the proof is complete.

Proposition 7.19. Suppose xt is a nice diffusion. If xt has an invariant prob-
ability measure µ̃, then µ is unique and defined (cf. (7.15)) by

µ̃(B) = 1
N

∫

Γ2

ν(dx)Exσ
B for any B ∈ B , (7.18)

where N =
∫
Γ2

ν(dx)ExσX < ∞, and ν, Γ2 and σA are as in the proof of
Proposition 7.18. In addition, µ̃(B) > 0 for any nonempty open B ⊂ X .

Proof. Suppose µ̂ is an invariant probability measure and fix a nonempty, open
set B ⊂ X . We may assume without loss of generality that B is bounded. We
first claim that µ̂(B) > 0. Since any invariant probability measure is a solution
of L∗µ̂ = 0 on X in the sense of distributions, by hypoellipticity of L∗ on X ,
µ̂ has a continuous probability density ρ̂ with respect to Lebesgue measure on
X . Since µ̂(X ) = 1, then ρ̂ ≥ c > 0 on some bounded open set W ⊂ X and
some constant c > 0. By Definition 7.3(iii) and path continuity, for any x ∈ W
there exists t > 0 with Pt(x,B) > 0. By applying Remark 4.6 to Theorem 4.3,
x .→ Pt(x,B) is continuous, and therefore Pt(x,B) ≥ c′ > 0 for all x in an open
subset W ′ of W . Then,

µ̂(B) =
∫

X
µ̂(dx)Pt(x,B) ≥

∫

W ′
µ̂(dx)Pt(x,B) ≥ cc′|W ′| > 0 ,

where |W ′| is the Lebesgue measure of W ′. This finishes the proof of the claim.
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If there is more than one invariant probability measure, then by standard
arguments we can choose two distinct ergodic invariant measures, which are in
particular mutually singular. But we showed by the claim above that X belongs
to the support of any invariant probability measure, and therefore such measure
is unique.

Since xt has an invariant probability measure µ̂, Corollary 7.14 implies that
xt is recurrent and by Proposition 7.18, µ in (7.15) is σ-finite.

Since µ̂ is the unique invariant probability measure, it is ergodic and we
proved that the support of µ̂ is X . Then, by Birkhoff’s Ergodic Theorem, for
any compact set K ⊂ X

lim
T→∞

1
T

∫ T

0
1K(xt) dt = µ̂(K) (7.19)

for almost every x ∈ supp(µ̂) = X . Hence, by the invariance of µ, for any
compact set K ⊂ X and t ≥ 0, we have

µ(K) =
∫

X
Ex1K(xt)µ(dx) = lim

T→∞

∫

X
µ(dx)Ex

1
T

∫ T

0
1K(xs) ds ≥ µ(X )µ̂(K) ,

where the last inequality follows from Fatou’s lemma and (7.19). Since there
exists a compact K ⊆ X so that µ̂(K) > 0 and by σ-finiteness µ(K) < ∞ we
have shown that µ(X ) < ∞.

After normalization, µ, and therefore µ̃, is a well defined invariant probability
measure and, by uniqueness, µ̃ = µ̂, as desired.

Remark 7.20. Note that one can choose arbitrarily the sets U, V , Γ1 = ∂V
and Γ2 = ∂U in the definition of µ in (7.15), as long as U ⊆ V ⊆ V ⊆ X and
U, V are nonempty bounded, open with smooth boundaries Γ1,Γ2, respectively.
By Proposition 7.19, different choices of U and V induce the same measure µ
up to a normalization constant.

The final result in this section establishes that in our context, the existence
of an invariant probability measure implies that xt is positive recurrent.

Theorem 7.21. Suppose xt is a nice diffusion. Then, xt has an invariant
probability measure if and only if xt is positive recurrent.

Proof. If xt is positive recurrent, then there is an invariant probability measure,
which is moreover unique, according to Proposition 7.18 and Proposition 7.19.

Conversely, if xt has an invariant probability measure µ̃, then it is unique
and given by (7.18). Fix an open, nonempty, bounded set V ⊂ X with V ⊂ X .
It suffices to show that ExτV c < ∞ for all x in a dense set D ⊂ X \ V , because
then recurrence combined with Proposition 4.8(ii) implies ExτV c < ∞ for all
x ∈ X \ V and the result follows.

Fix x ∈ X \V and ε > 0 such that Bε(x) ⊂ X \V . By hypothesis and (7.15),
µ̃(X ) = 1 < ∞, which implies Eyσ2 < ∞, for every y ∈ Γ′

2 ⊂ Γ2, where
ν(Γ′

2) = 1. By Proposition 7.19 one has µ̃(Bε/2(x)) > 0, and there exists x∗ ∈ Γ′
2
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for which Px∗{τBc
ε/2(x) < σ2} > 0. Denoting for simplicity η = τBc

ε/2(x), the
strong Markov property implies

∞ > Ex∗σ2 ≥ Ex∗1{η < σ2}σ2

= Ex∗η1{η < σ2} + Ex∗1{η < σ2}Ex∗ [(σ2 − η)|Fη] ≥ Ex∗1{η < σ2}ExητV c .

Since Px∗{η < σ2} > 0, there exists y ∈ Bε(x) for which EyτV c < ∞. This
finishes the proof.

Remark 7.22. We indicate a gap in the proof of [37, Lemma 3.7] and note
some missing details in [37, Lemma 4.4].

The result [37, Lemma 3.7] is crucially used to establish the dichotomy for
transient and recurrent points (see [37, Theorem 3.2]). In our notation, the con-
text of the argument is as follows. It is assumed that for fixed x,

∫∞
0 Pt(x, V ) dt <

∞ for some open neighborhood V of x. It is then claimed that

lim sup
y→x

∫ ∞

0
Pt(y, V ) dt ≤

∫ ∞

0
lim sup
y→x

Pt(y, V ) dt ≤
∫ ∞

0
Pt(x, V ) dt < ∞.

Thus it then follows that there exists an open neighborhood of x where the
integral is finite. To the best of our knowledge, the limit-integral exchange was
not justified and we could not find a simple solution. In essence, our fix of the
arguments in [37] were presented this section.

In addition, there are missing details in the proof of [37, Lemma 4.4]. Indeed
it is claimed that Bony’s form of the Harnack inequality applies without the
assumptions made in Bony’s original paper [9, Theorem 7.1]. Although we have
seen that this is indeed true as claimed (see Theorem 5.5), it requires some
nontrivial arguments like those presented in this paper. Similarly, the claim
in [37, Lemma 4.4] is effectively Proposition 4.8.
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