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1. Introduction
1.1. Overview

Let m € N and U C R™ be a nonempty, open set with nonempty boundary oU .
Let X € R™ be an open set containing U = UUAQU and let My, denote the set
of m x r matrices with entries in R. Consider a linear second-order differential
operator of the form

L= 0 +3 2 oo g ()

=1

where b € C®°(X;R™) and 0 € C®(X; Mux.). In this paper, we study the
formal stochastic representation usoc (see (1.4) below) corresponding to the
combined Dirichlet and Poisson problems for L on U:

{Lu:—f on U, (1.2)

u(z) > g(z.) asz—z, €U, zelU,
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where f € C*°(U) and ¢ is continuous in a neighborhood of OU. Importantly,
our assumptions allow for U to be unbounded and for L to be hypoelliptic on U
(see Definition 2.6 below).

Formally, the method of stochastic characteristics (see Section 1.2 below)
produces the formula wugo. as a candidate expression for a classical solution
of (1.2). However, in this setting, usio. may not be defined let alone be a classical
solution of (1.2). The goal of this paper is to provide practical, probabilistic
conditions under which wugto. is well defined and satisfies the properties required
by the problem (1.2):

o Ugoc € C2(U) and Lugioc = f on U in the classical sense;
o u(x) = g(xs) asx — x, €U, z € U.

Results for classical well-posedness of (1.2) in the setting of a bounded domain
U are also obtained.

Although we employ tools from analysis, the manuscript primarily focuses
on probabilistic methods. One may compare our work with the classical work
of Oksendal [52, Chapter 9] adapted to our setting, but we aim to be more
self-contained on this particular topic. Specifically, we start from a probabilis-
tic construction of fundamental solutions and build up to a solution theory
for the boundary-value problem (1.2). As a consequence, one may also com-
pare this work to a portion of the classical elliptic theory text of Gilbarg and
Trudinger [27], but we use probabilistic techniques in the possibly unbounded
U, hypoelliptic L setting.

1.2. The method of stochastic characteristics

In order to employ probabilistic techniques, we associate to L a diffusion process
z; on X with infinitesimal generator L. That is, we suppose that z; satisfies an
It6 stochastic differential equation (SDE) of the form

det = b(xt) dt + O'("Et) th s (13)

where W, = (WL, W2, ...,W/)T is a standard, r-dimensional Brownian motion
defined on, and adapted to, a filtered probability space (2, F, F;, P,E). The
formal stochastic representation usio. corresponding to the problem (1.2) then
has the form

waoe(@) =B [ J()ds+ Bagle), @€ (1.4)
0
where
T=inf{t>0: 2, ¢ U} (1.5)

is the first positive exit time from U. Note that in (1.4), the symbol E, means the
expected value for the law P, of the process x; with xg = . The formula (1.4)
is formally derived using Dynkin’s/Itd’s formula (2.8) applied to a sufficiently
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nice classical solution of (1.2), which may or may not exist in this setting.
Specifically, in Dynkin’s formula (2.8) below, formally set ¢(t,2) = u(x) and
o = 7 to arrive at (1.4). Compared with the usual method of characteristics
for first-order partial differential equations, this is the analogous method for
linear second-order equations, but this time the characteristic trajectories x;
are random.

Aside from it being unclear its precise relationship to (1.2), observe that the
expression Usgoc in (1.4) is itself formal in two ways. First, depending on the
set U and the coefficients b, o, both the process z; and the expected values
in (1.4) may not be defined, so ugtoc in turn is not defined. Second, even if ugioe
is defined on U, it may not satisfy the equation (1.2) in the classical sense.
However, employing this formal argument via Dynkin’s formula (2.8), ustoc is a
best guess at a solution of (1.2), and so it is natural to study ugsioc in relation
to (1.2).

If the operator L is hypoelliptic on U, then it has a smoothing effect reminis-
cent of second-order uniformly elliptic operators on U with smooth coefficients.
However, even if U is a bounded domain with boundary QU satisfying the exte-
rior cone condition (see Definition 3.10 below) there are many examples where
the problem (1.2) is ill-posed in the classical sense (see Example 3.8 below). This
is different compared to equation (1.2) when L is a uniformly elliptic operator of
the form (1.1). From a probabilistic perspective, this difference can be explained
intuitively, especially as it relates to satisfaction of the boundary condition in
equation (1.2). Indeed, if L is uniformly elliptic, then the noise in (1.3) is present
in each direction of the equation, and therefore for short times the particle visits
all points in a small ball. See [16] for a rigorous formulation of this statement.
This is, however, not necessarily the case for a general hypoelliptic diffusion.
In particular, even if the process x; initiated at any point x € U is defined,
it may not hit certain portions of the boundary with positive probability, and
consequently the values of g on these portions do not influence ugto. in (1.4).
Moreover, when started on the boundary dU, the process may have a positive
probability of re-entering U prior to exiting, so that usio. may not satisfy the
boundary condition. Thus, we can arbitrarily define the boundary conditions
on a part of the boundary that is not hit by the process, and from the ab-
stract perspective it means that the operator that maps boundary conditions to
the solution has infinite dimensional kernel and infinite dimensional co-kernel.
Thus the classical spectral theory is not applicable and tools from the functional
analysis are limited.

1.3. Previous results and layout of the paper

Despite these issues in the hypoelliptic setting, understanding when the equa-
tion or boundary conditions in (1.2) are satisfied in the classical sense by ustoc
is of notable importance, as hypoelliptic operators, and their corresponding
boundary-value problems like (1.2), play a key role in a number of problems
in science and engineering. See, for example, hypoelliptic diffusions arising in
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finite-dimensional models of turbulence [4, 5, 6, 7, 18, 19, 23, 32, 58] or in statis-
tical mechanics and machine learning [10, 15, 26, 31, 46, 61]. Direct applications
also occur in the ergodic theory of SDEs, where functionals of return times to
compact sets can be seen as the formal stochastic representations correspond-
ing to equations of the form (1.2). Such functionals are essential to understand
precise rates of convergence to equilibrium [17, 29, 56].

Historically, various aspects of the problem (1.2) in the hypoelliptic setting
have drawn interest from researchers dating back to Kolmogorov [41], who gave
the first known example of a hypoelliptic diffusion that is not uniformly elliptic.
Later, the seminal work of Hérmander [33] provided an efficient tool to determine
hypoellipticity of L by calculating the Lie algebra of vector fields that define
the operator L in the form (1.1). See Section 2.4 for further information. For
classical well-posedness of the problem (1.2), the pioneering work of Bony [9]
is fundamental. There, Bony gives conditions on a bounded open set U and a
hypoelliptic operator M of the form M = L—a, where a € C°°(U) is positive and
bounded away from zero on U, so that the problem (1.2) with M replacing L is
well-posed in the classical sense. Apart from the presence of the positive function
a, which in particular aides in the existence part of the problem (1.2), a critical
assumption guaranteeing continuity on U is that at every point on AU, the noise
in the equation points in the normal direction. Such an assumption is often not
satisfied for many hypoelliptic operators of interest, for example if the noise is
additive (that is, spatially constant) [6, 7, 10, 15, 18, 19, 23, 31, 32, 46, 58].
Thus, it is natural to investigate if classical well-posedness holds under weaker
assumptions. More recently, the hypoelliptic Dirichlet problem (f =0 in (1.2))
in a bounded domain U was revisited in [55], where Bony’s result was extended
to operators L of the form (1.1); that is, with a = 0, assuming L satisfies a
maximum principle and again that at every point on QU there is noise pointing
in the normal direction. Similar to Bony’s work, the results in [55] fail to apply
in many problems of interest.

Perhaps more closely related to the present paper is the work of Kogoj [39],
which uses methods from potential theory to establish a cone-type criterion for
the existence of a generalized solution, in the sense of Perron-Wiener, of the
Dirichlet problem for a second-order hypoelliptic operator in the form L — 0,
where L is as in (1.1). Importantly, [39] assumes the existence of a well-behaved
fundamental solution and that the diagonal of o(x)o ()T never vanishes. Note
that, probabilistically, the cone-type condition is natural as it gives particle
a space to exit the domain, and indeed for uniformly elliptic operators, such
condition is sufficient to guarantee that every point on the boundary is regular
(see Section 3 for a probabilistic definition of a regular point). As described
above, additional conditions are required in the hypoelliptic setting, and the
supplementary criteria provided in [39] appear difficult to check in concrete
scenarios. We refer the reader to [22, 45, 51] for earlier, related results and to
the interesting, recent work of Carfagnini and Gordina [11] in the context of
sub-Laplacians on homogeneous Carnot groups. There, an analytical criteria is
given for a boundary point to be regular. We also refer to the recent work of
the authors [16] which provides probabilistic methods for determining regular
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points on the boundary using the theory of large deviations and laws of the
iterated logarithm. Note that [16] was partly inspired by the work of Lachal [44],
where a functional law of the iterated logarithm was obtained for the iterated
Kolmogorov stochastic differential equation. However, applications to solvability
of (1.2) were not discussed in detail in [16] or [44].

In order to solve (1.2) for a hypoelliptic, second-order operator L, one can
alternatively employ the methods of Dirichlet forms and/or more classical an-
alytical methods. Although the work on this topic is vast, we refer the reader
to [8, 12, 20, 25, 28, 34, 47, 57, 59]. In these contexts, the operator L is assumed
to have a simpler form, i.e. be nonnegative with respect to a natural inner prod-
uct [47], e.g. L?(dx), or be a sum of squares of vector fields [59], often with
simpler boundary conditions, e.g. zero boundary conditions [47]. These simpli-
fications allow one to employ tools from geometry as well as arguments similar
to the ones employed when L is the standard Laplacian. However, even though
these results work in hypoelliptic settings, the results do not apply in the case
when L has a drift vector field and the drift is needed to generate directions
in the Lie algebra. These, more difficult situations where the drift vector field
is indispensably needed in the Lie algebraic calculations are referred to as the
weakly hypoelliptic settings (see Remark 2.9 for a precise definition). One of the
goals of this work is to produce results applicable in such cases.

Moving in the weakly hypoelliptic direction, let us also mention the works
[2, 13, 53, 54] where upper and lower Gaussian-type density bounds are obtained
for certain, weakly hypoelliptic diffusions. Such results are generalizations of the
classical works of Kusuoka and Stroock [42, 43]. In these works, upper Gaus-
sian bounds are obtained under general conditions [42] while lower Gaussian
bounds [43] are obtained under the strong Hormander condition, i.e. the drift is
not needed in the bracket calculation. While we do not seek to obtain Gaussian
estimates in this setting, the calculations used in this setting are reminiscent
of the derivation of the laws of the iterated logarithm for the corresponding
diffusion [16].

In addition to generalizing the results mentioned above, another goal of the
present work is to provide a relatively self-contained presentation on the topic
in this paper, referring primarily to graduate-level textbooks to obtain needed
results. Our hope is that the level of the paper is similar to the level in Oksendal’s
book [52], and that the interested graduate student who has had an introductory
course in stochastic analysis will find the paper readable. We did this for two
reasons. First, prior to starting this project, at times we found it difficult to
locate results for (1.2) in the hypoelliptic setting and this sentiment was also
confirmed in conversations with colleagues. Second, there were claims in the
literature about (1.2) that seemed both correct and intuitive, but we could not
locate a proof in the existing literature. Thus, we hope this paper will serve as
a resource to which the (stochastic) analysis community can refer as needed,
since either there is a physical proof in the paper or the statement is easy to
locate in the literature using the provided references.

The organization of this paper is as follows. In Section 2, we introduce fur-
ther notation, assumptions, terminology and make preliminary remarks about
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hypoellipticity. Hérmander’s theorem, in particular, will be discussed in detail
in Section 2. In Section 3, we elaborate on the importance of boundary behavior
for x; as its relates to solvability of (1.2) in the classical sense. In particular,
in Section 3 one can find our definition of regular and irregular points on U.
Section 4 focuses on special equations of the form (1.2), in particular those in-
volving functionals of 7, and these special equations are used later to formulate
our main general results in Section 6. Section 6 provides conditions on L, T,
and ugpoc that guarantee Lugioc = —f on U in the sense of distributions, hence
in the classical sense if L is hypoelliptic and f smooth. Green’s functions and
a generalization of Bony’s form of the Harnack inequality [9, Theorem 7.1] are
discussed in Section 5, while in Section 7, as an application of these results, we
re-derive the transience and recurrence dichotomy for degenerate diffusions.

2. Notation and preliminary remarks

In this section, we introduce notation, assumptions and terminology used
throughout the paper. We also make a few preliminary remarks. First, we fix
some standard notation.

2.1. Basic notation

For Borel sets V,V; € R, V, € R, and W C RY, we use the following notation.

— C(V; W) denotes the set of continuous functions ¢ : V. — W;

— CI(V;W), 7 > 1, denotes the set of j-times continuously differentiable
functions ¢ : V. — W;

= OV W) = N2, CU(V; W);

— C91:32(Vy x Vo; W) denotes the set of functions ¢ = ¢(z,y) : V4 x Vo — W
which are ji-times continuously differentiable in x and jo-times continu-
ously differentiable in y;

— B(V; W) denotes the set of bounded, Borel measurable functions ¢ : V- —
W

— In any of the above functions spaces, a subscript of 0 indicate that the
function is moreover compactly supported in its domain of definition, e.g.
CJ versus CY;

— For 1 < p < oo, LP(V) denotes the set of measurable functions ¢ : V— R
such that [|¢]|7, ) = [, [8[Pdz < oo if p € [1,00) and [|¢]|L=(v) =
ess sup,cy |p(x)] < oo if p = oo;

— Lip(V; W) denotes the set of functions ¢ : V' — W which are Lipschitz
continuous on V;

— For any s € R, H*(R¥) denotes the usual Sobolev space W*2(Rk);

— If the target W is clear from context or not important, we write Ci(V) =
CI(V; W), CH(V) = CH(V; W), B(V) = B(V; W), etc. When the context
is clear, we may also drop V and write C7, C’g, ete.

— By denotes the set of Borel measurable subsets of V;



120 J. Foldes and D. P. Herzog

— B denotes the set of Borel measurable subsets of the open set X', where X
is as in the introduction.

— For any B € B bounded with B C X, we define
g =inf{t >0 : x; € B°}, (2.1)

where inf () := oo.

— We define a sequence X,, C X, n > 1 of bounded open sets with &,, C X1
for all n and J,—; X, = X.

— At times, we will also need a sequence U,, C U, n > 1, of bounded open
sets with U,, C Uy, 4+ and U, U,=U.

— We define
T =1y = lim Tynx,. (2.2)
k—o0
and
Tx = lim TXx, - (23)
k—o00

2.2. Nomnexplosivity of x;

Depending on the behavior of the coeflicients b and o, the solution x; of equa-
tion (1.3) evolving on the neighborhood X of U is only a priori defined locally in
time until the process exits X'. That is, by the standard existence and unique-
ness theorem for SDEs [52], for any initial condition x € X at time ¢t = 0,
equation (1.3) has a unique (pathwise) solution x; for all times 0 < t < 7y.
However, throughout the paper, we will assume that 7y is almost surely infinite
as in the following definition.

Definition 2.1. We say that the process z; is nonexplosive if
P.{tx <oo}=0 forallz e X, (2.4)

where P, denotes the probability P but indicates that x¢o = z.

The process being nonexplosive implies that for all initial conditions = € X,
equation (1.3) has a unique pathwise solution z; defined on X for all finite times
t > 0 almost surely. Furthermore, ¢ — z; : [0,00) — X is continuous almost
surely.

Remark 2.2. Suppose that U is bounded. Since b and o are smooth and de-
fined on an open neighborhood of U, one can extend b and ¢ to functions
be C*(R™;R™) and 6 € C°(R™; Myx,), respectively, such that b=1bon
U and 6 = ¢ on U and such that 13,6 both have bounded derivatives of all
orders, e.g. extend b, ¢ to be zero outside of a larger neighborhood and mol-
lify. Consequently, replacing X with R™ and b, 0 in (1.3) with b, & we find that
the resulting solution Z; is nonexplosive. Note that the problem (1.2) and its
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formal stochastic representation (1.4) remain unchanged regardless of the cho-
sen extension, so nonexplosivity is implicitly present. On the other hand, if U
is unbounded, then one must verify nonexplosivity separately, typically using
Lyapunov methods. See Lemma 2.4 below for further details.

If x; is nonexplosive, then x; is a well-defined Markov process on X. It thus
induces a corresponding Markov semigroup {P;};>o which acts on functions
¢ € B(X;R) via

Pip(x) := Exd(x:) (2.5)
and dually on B-measures v via
VP(B) /X Pin(2)v(dz), B € B. (2.6)
We let
Pi(z,B) :=Pilp(x), BeB, zelX, (2.7)

denote the corresponding Markov transitions.
Note that if L is as in (1.1) and ¢ € Cy*([0,00) x X;R), then Dynkin’s
formula

E, (0, 2,) = 6(0,7) + E, /Oa(at + L)(s, 24) ds (2.8)

holds for any bounded stopping time o with respect to the filtration F;. Dynkin’s
formula allows one to study various properties of L by analyzing path properties
of the stochastic process x;.

Remark 2.3. By a standard localization procedure applied to the equation (1.3)
on X1, the same formula (2.8) holds for any bounded stopping time o < Tx,
and any ¢ € C12([0,00) X Xj+1) regardless if x; is nonexplosive.

As a simple application of Dynkin’s formula, we briefly recall the following
basic method for checking that z; is nonexplosive. See also [36, 49, 56].

Lemma 2.4. Suppose there exists w € C%(X;[0,00)) and constants C,D > 0
such that

wg = i%gc w(z) =00 as k— 0o and Lw<Cw+D on X.
xTe k

Then x; is nonexplosive as in Definition 2.1.

Proof. Remark 2.3, nonnegativity of w and Dynkin’s formula together imply
that if 7, = 7x,, then

wkefcth{Tk <t} < Exw(xt/wk)efc(mﬂ“)

tATE
=w(z)+ E, / —Cw(zs)e %% 4+ e % Lw(x,) ds
0
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t
< w(x) —|—/ e~ “*Dds < w(z)+ D.
0

Rearranging the above we obtain P,{r;, < t} < e“!(w(z) + D)/wy. Passing
k — oo, we find that P,{7x <t} =0 for any given ¢t > 0 and x € X and (2.4)
follows. O

2.3. The process x; stopped on U

We will often use the process x; stopped on the boundary OU. That is, define
the stopping time

To=inf{t >0 : z ¢ U}. (2.9)
Then the stopped process T; is defined by
‘%t = TtATgo t 2 0. (210)

Because z; is assumed to be nonexplosive, the stopped process Z; is a well-
defined Markov_ process distributed on U for all times ¢ > 0. We let P; and

73t(x, ), ¢ € U, respectively denote the Markov semigroup and transitions
associated to ;.

Remark 2.5. For the process z; with ¢ € U, 7y is the first time x; hits the
boundary. Note that 7y is in general different from the first positive exit time 7
from U when z; initiates on the boundary U, as the process started there may
first enter the region U before exiting.

2.4. Huypoellipticity

Let us first define precisely the term hypoelliptic.

Definition 2.6. Let V' C R* be nonempty, open set and M be a differential
operator with coefficients belonging to C>°(V'). We say that M is hypoelliptic on
V if for any distribution v on V' with Mv € C*°(W) for some W C V nonempty
open, we have v € C*°(W).

Fundamental to our analysis are the smoothing properties of the differential
operator L afforded by hypoellipticity. In the classical paper [33], Hérmander
(see Theorem 2.10 below) provides a sufficient condition for hypoellipticity on
an open set V C R¥ for operators M of the form

J
M=a+Xo+3Y X7, (2.11)
(=1

where ¢ € C>*(V;R) and Xy, X1,...,X; are C*° vector fields on V.
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After standard algebraic manipulations, note that
L,L*,0;+L,0; =+ L*,

where L is as in (1.1) and L* denotes the formal L?(dx)-adjoint of L, can all be
written in the form (2.11) on the respective open sets X', X, (0, 00) x X, (0, 00) x
X. For example, observe that if we let X; Z - aﬂ(x)awj, t=1,...,r, and

Yo = E]:l bj(x)0y;, then

L:YO—Z[ZZaﬂ Ou, (ol } 22;@ (2.12)
=1 ti=1j=1
=: Xo + %Z,:X?. (2.13)
j=1

To introduce Hérmander’s condition which implies hypoellipticity, we first
define the Lie bracket [X,Y] of differentiable vector fields X = 3. X'0,, and
Y =3,Y70,, on an open set in R* by

k
X, Y] =) (x —Y'9,,(X7))0s,.

j=1i=1

Definition 2.7. Suppose V C RF is an open set and M is an operator of the
form (2.11), where X, X1, ..., X,, are C* vector fields on V and a € C*° (V).
Define the following C'>° vector fields on V:

Xio) ioE{O,l,...,m}
[szX ] io,i1€{0,1,...,m}
[[Xlon ] Xi2]7 i07i17i2 S {071,2,...,771} (214)

If the vector fields in (2.14) span the tangent space at all points in V', we say
M satisfies the Héormander condition on V.

Remark 2.8. If M of the form (2.11) is elliptic, then X1, X, ..., X,, span the
tangent space at all points in V. Thus the brackets in (2.14) can be viewed as
a generalization of ellipticity. Relating this back to L in (1.1) and the equa-
tion (1.3), one can interpret Lie brackets in (2.13) as a propagation of the
randomness implicitly through the equation.

Remark 2.9. Consider an operator M of the form (2.11) and the subclass of

vector fields
Xi, 0 €{1,2,...,m}

[szX ] io,i1€{1,2,...,m}
X, Xiu], Xau] doyit,in € {1,2,...,m} (2.15)
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Note here that, different from (2.14), the list (2.15) does not contain X, or
any brackets with Xg. If, however, on an open set V C R*, the sublist (2.15)
spans the tangent space at all points in V', then we call the operator M strongly
hypoelliptic on V', or that it satisfies the strong Hormander condition on V.
Otherwise, if the full list (2.14) must be used and it spans the tangent space
at all points in V', then M is called weakly hypoelliptic on V and we say that
it satisfies the weak Hérmander condition on V. In the present manuscript, we
consider more general operators M that are weakly hypoelliptic.

Hormander’s theorem provides refined estimates on the smoothing effect
along every bracket in the list (2.14). Essentially, the more brackets one takes
to reach a certain direction, the smaller the smoothing effect occurs along that
direction. While we do not state this general result rigorously, we need below
the following simpler version to establish a generalization of Bony’s Harnack
inequality in Section 5.

Theorem 2.10 (Hormander 1967 [33]). If M defined in (2.11) satisfies the
Hérmander condition on a nonempty open set V.C RF, then M is hypoelliptic
on V. More specifically, there exists § > 0 such that for any i1,¢2 € C§°(V)
with Y9 =1 on an open neighborhood of supp(1) we have

brull gors mry < Cs([V2Mul| gomey + [[2ull e mr)) (2.16)

for any s € R and any distribution u on V with ou,poMu € H*(RF).
In (2.16), Cs is a constant depending only on s, 1, V2, and the domain V
and all functions are assumed to be zero outside of their compact supports.

Remark 2.11. Note that hypoellipticity is a consequence of the inequality (2.16)
by a bootstrapping argument. As remarked above, although we mostly use hy-
poellipticity somewhat independently of Hormander’s result, we need the precise
estimate (2.16) for the proof of a generalization of Bony’s Harnack inequality [9].

Often, instead of listing all of the operators we need to be hypoelliptic, we
make a simper hypothesis ensuring that all of them are hypoelliptic. See the
parabolic Hormander condition below, which ensures that an entire list of oper-
ators is hypoelliptic.

Definition 2.12. Suppose that V' C RF is open and M is an operator of
the form (2.11) where the Xg, X1,...,X,, are C™ vector fields on V and a €
C*(V). Let Vo = {X1,X2,..., X} and for k > 1 inductively define

Ve ={[X;,X] : X €Ve1,i=0,1,2,...,m} and V=]V
k=0
If V spans R™ at all points in V, then we say that M satisfies the parabolic

Hérmander condition on V.

Remark 2.13. Observe that for M to satisfy the parabolic Hérmander condi-
tion, one cannot include X itself in the list of a spanning set. Rather, Xy must
be first commuted with another vector field, for example [Xg, X1].
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Example 2.14. Let
M =02, + 0y, =: X7 + Xo.

Then, M satisfies the Hérmander condition on R? but M does not satisfy the
parabolic Hérmander condition on any open set in R2.

Because the parabolic Hérmander condition limits the fields that can be
taken in a spanning set, a routine calculation shows that if V' C X is nonempty,
open and L as in (1.1) is written in the form (2.13) and satisfies the parabolic
Hoérmander condition on V, then all operators

L, L, L+p3, L*+3,0,+ L, 0, + L* (2.17)
where 8 € R are hypoelliptic on the respective sets
V, V.V, V,(0,00) x V, (0,00) x V. (2.18)

Below, we will see that hypoellipticity of the operators in (2.17) decides the
existence and regularity of densities related to the law of z;.

2.5. Assumption list

Here we provide an almost complete list of assumptions used in the paper. It is
meant as a reference except for Remark 2.15. Thus, aside from Remark 2.15, the
reader should skip the rest of this section and come back to consult particular
assumptions used later in the paper.

Remark 2.15. Throughout, we assume that b € C°(X;R™) and o €

C®(X; M) without explicitly mentioning it. Also, if U is bounded, one
does not need to explicitly assume that x; is nonexplosive using the extension
argument from Remark 2.2.

Depending on the context, we apply the following assumptions as needed.
(U00) U c R™ is nonempty, open set and V := U® is nonempty, closed set
with X D U open.

(U0) U C R™ is nonempty, open set and X D U is an open set.

(L1) L is hypoelliptic on U.

(L2) 9, — L* is hypoelliptic on (0,00) x U.

(L3) 9; — L is hypoelliptic on (0,00) x U.

(L4) L* is hypoelliptic on U.

(PH) L satisfies the parabolic Hérmander condition on U as in Definition 2.12.
(UID(g,r.)) Fix g : U — R measurable and x, € OU. Then for some § > 0
the family

Gos(xs) ={g9(z-(2)) : |z —zs| <6,z €U} (2.19)
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is uniformly integrable. Here, 7 is as in (2.2) and x in x.(x) means zy = .
(UID(g)) Fix g : U — R measurable. Then, for every z, € OU, condition
(UID(g,x.)) is satisfied.

(UIP(f,z.)) Fix x, € U and f : U — R measurable. Then for some & > 0,

Gl (x.) = 1{[fy f(zs(z))ds : |x— 2] <, 2 €U} (2.20)

is uniformly integrable.

(UIP(f)) Fix f : U — R measurable. Then for every z, € OU, condition
(UIP(f,x.)) is satisfied.

(CE(z.)) Fix z, € U and recall X,, introduced in (2.3). For every d; > 0
there exists n € N and d2 > 0 such that |x — x| < d2, v € U, implies

P.{tx, <7} < 1. (2.21)

(CE) For every z, € 0U, condition (CE(x,)) is satisfied.
In Remark 6.7, we provide sufficient conditions for (CE(z,)) to hold.

3. Remarks on boundary behavior

In order to solve the equation (1.2) in the classical sense, understanding the
behavior of the process x; satisfying the equation (1.3) near the boundary U
is critical. In this section, we explore various conditions related to boundary
behavior used in the literature to ensure well-posedness of equation (1.2) (in
the classical sense) when L fails to be uniformly elliptic.

3.1. Nice points and regular points

Definition 3.1. We call z, € 9U nice if there exists an open neighborhood
U,. C X of x, and a function w € C%(U,,) satisfying the following conditions:

(ii) Lw <0 on Uy, .

Remark 3.2. We show in Proposition 3.9 below that if z, € QU is nice and
the relevant hypoellipticity is satisfied, then the process z; exits U instanta-
neously when started from z,. However, proving that x, is nice; that is, finding
a Lyapunov-type function w as in Definition 3.1, can be highly nontrivial or
even impossible. One can ensure x, € QU is nice provided OU has an exterior
normal vector to U at z, and randomness pointing in the direction of the normal
vector (see Remark 3.11 below). Intuitively, the process x; projected onto this
normal direction for small times behaves like a scaled one-dimensional Brow-
nian motion. Then, the process must exit the domain instantaneously as the
one-dimensional Brownian motion has no preferred direction and dominates the
motion in small times. See [16, Section 7] for further details.
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Remark 3.3. If U is furthermore assumed to be bounded and L is assumed to
be hypoelliptic, then one can show that the Dirichlet problem (1.2) with f =0,
has a unique classical solution if all points on the boundary are nice. Although
the main result in [55] establishes this fact, it is not explicitly stated in this way.

In this paper, we find it more convenient to phrase our hypotheses in terms
of stopping times for the process x; solving (1.3). Hence, we define

T=inf{t>0:2,¢U}, (3.1)

and recall the first positive exit time 7 from U defined in equation (2.2).

Definition 3.4. We call an interior point z € U regular if P,{Tr =7} =1. A
boundary point z, € AU is called regular if P, {7 = 0} = 1. Points in U are
called irregular otherwise. We call the set U interior reqular if all x € U are
regular. We call U boundary regular if all x, € QU are regular.

Remark 3.5. Observe that if € U is regular, then the process x; started from
z exits U and U at the same time. In particular, z; cannot reach OU and return
to the interior of U with positive probability. On the other hand, z, € OU being
regular means z; initiated at z, must exit U instantaneously.

Remark 3.6. Note that the event {7 = 0} belongs to the germ sigma field
;>0 Ft, hence has probability 0 or 1 by Blumenthal’s 0-1 law. Thus, z. € oU
being regular is equivalent to P, {7 =0} > 0.

Using the strong Markov property for z;, the next result states that boundary
regular implies interior regular.

Proposition 3.7. If U is boundary regular, then U is interior regular.

Proof. Let x € U and suppose 7 = co. Then 7 > 7 = o0, so 7 = 7. If the
event {7 < oo} has positive probability, then the strong Markov property and
boundary regularity gives

Px{T = 7, T < OO} = Ex[Exl{T:?,T<w}|FT] = ]5)36]-{'r<o<>}:lec7-{F = O}
=P, {1 < oo}.

This finishes the proof since
PAr=7}=P,{r=7,7=00}+P,{r=7, 7 < o0}
=P, {r=00}+P,{r <0} =10

As the next example shows, the converse of Proposition 3.7 is false even if
the parabolic Hérmander condition is satisfied.

Example 3.8. Let U C R? be the interior of the open square with vertices
(-1,1), (1,1), (1,-1), (—1,—1), and consider the following SDE on U

dr} = —(z?)?dt,
dz? =\/2dBy,
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where B, is a standard, one-dimensional Brownian motion. Let I be the open
segment connecting (1,—1) and (1, 1). Note that all points on I C 9U are not
regular since x} is decreasing for all times. On the other hand, x; = (z}, x?) has
generator

L= —(2?)%0, + 0% =: Xo + X7,
which satisfies the parabolic Hérmander condition on R? since
X1 = 8x2 and [Xl, [Xl,Xoﬂ = 72(9@1

span the tangent space at all points in R2. Also, observe that the process ini-
tiated at € U can only exit U on OU \ I. Hence, U is interior regular since
every point on 9U \ I is regular.

Next, we clarify a the relationship between boundary regular and nice.

Proposition 3.9. Suppose z, € OU is nice and that 0; = L and Oy = L* are
hypoelliptic on (0,00) x Bs(x.) for some & > 0 such that Bs(x.) C X. Then, x.
is regular.

Proof. Let x, € OU be nice and fix 6 > 0 such that 0; + L*, 0; £ L* are hypoel-
liptic on (0,00) X Bj(z,). Choose an open neighborhood U,, of x. such that
there exists a function w € C%(U,, ) satisfying properties (i) and (ii) in Defini-
tion 3.1. Without loss of generality, we may assume that V := U,, = Bs(z.).
It follows that the distribution g of the stopped process x} := z4rr, (see The-
orem 4.3) satisfies the equation (0; + L*)(p:) = 0 in the sense of distributions
on (0,00) x V. Thus, when restricted to subsets of (0,00) x V', p, is absolutely
continuous with respect to Lebesgue measure with density p; which is smooth
on (0,00) x V. In other words, the law of x}" restricted to subsets of V, for fixed
t, is absolutely continuous with respect to Lebesgue measure on V.

Now if z, is not regular, then P, {7 > 0} = 1. Thus, there exists ¢ > 0
such that B(z.) C V and Py {7 (,.) < T} > 0, for otherwise the distribution
of xf started at z, would have nonzero mass concentrated at x., violating the
absolute continuity of y; above. For o(t) := t A Tp_(z,) A T, Dynkin’s formula
(see (2.8)) and positivity of w on dB¢(x,) gives

cPo {TB (2,) < TNt} < By, w(z,)) < w(zs) =0

for some constant ¢ > 0 independent of t. Passing t — oo we obtain P, {75, (5.) <
7} =0, a contradiction.

Recall the following properties of OU.

Definition 3.10. We say that the boundary 0U of an open set U satisfies the
exterior sphere condition at x, € AU if there exists A > 0 such that z. € By(z/)
and By (z') C U, where By(z') is the open ball centered at =’ = x, + \v(z,)
with v(x,) being a unit exterior normal vector to OU at .

We say QU satisfies the exterior cone condition at x, € OU, if there exists a
basis z1, s, ..., Tn of R™ and a parameter A, > 0 such that

Cone(T., A) = {zs + 30 Ny = N € (0,0,)} Cc TU”.
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Remark 3.11. Fix x, € OU and suppose that U satisfies the exterior sphere
condition at x.. In addition, assume 0; + L and 9; + L* are hypoelliptic on
(0,00) X Bs(zs) for some § > 0 such that Bs(z,) C X. It is not hard to see
that we can decrease )\ in the definition of exterior sphere condition if necessary.
Then, if the noise has a nonzero component in v(z.) at x,, then z, is regular
(see for example [9]). Such an assumption in fact implies that x, is nice. Indeed,
suppose

> (o(@)o (@)ijvi(x.)vs(.) > 0. (3.2)

i,j=1
Then, by choosing 5 > 0 large enough, the function
w(z) = e=Ble’—z* _ o=Bla’—al? (3.3)

satisfies Definition 3.1 at z, on U, = B(x., |2’ —z.|/2)NU if 2’ = . + Av(zy)
and A > 0 is sufficiently small. Note that (3.2) and large 8 > 0 allows one to to
disregard terms in Lw of order f.

3.2. Modification of the domain

We conclude this section by restating [16, Corollary 7.10] in our context. Intu-
itively, it asserts that starting from a reasonable domain U, provided there is
noise in a fixed direction for all points on the boundary OU (see Remark 3.11),
one can slightly modify U to produce an approximate domain V' which is bound-
ary regular. Thus, by Proposition 3.7, V' is both interior regular and boundary
regular.

In order to state the result, we say that U has nonflat boundary OU if for each
x. € OU and every r > 0, the set U N B,.(x) is not a subset of a hyperplane.
Then the following result was proved in [16, Corollary 7.10].

Theorem 3.12. Suppose that U C R™, m > 2, is a bounded, convex, nonflat
domain with C' boundary OU. Suppose, furthermore, that there exists a fized
unit vector v € R™ such that v belongs to the column space of o(x) for all
x € OU. Then, for every ¢ > 0, there exists a nonempty, open convex domain
Ve C U with piecewise linear boundary OV such that V. and V¢ are boundary
regular for xy and |U| — |V| < e. Here, |- | denotes Lebesgue measure on R™.

To prove Theorem 3.12, one defines V. to be the interior of the convex hull of
a sufficient number of points z1, 2, ..., 2, () € OU selected independently and
randomly according to Hausdorff measure on OU. One can then show that with
probability one, the faces generated by these points on dV, are not parallel to
the fixed vector v in Theorem 3.12, so that the process exits V. instantaneously
when started there. The fact that the volumes of V, and U are close is intuitive
provided n(e) is large enough. This fact was rigorously proved in [60].
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4. Interior regularity of functionals of 7

Our goal in this section is to obtain interior smoothness of various functionals
of the first positive exit time 7 from U. Given the relevant hypoellipticity, the
key first step is to show that the law of the stopped process Z;, introduced in
Section 2.3, when restricted to Borel subsets of U, denoted by By, has a density
pi(z,y) with respect to Lebesgue measure on U. Furthermore, the mapping
(t,x,y) = Pe(x,y) € C°((0,00) x U x U) and satisfies, respectively, the forward
and backward Kolmogorov equations in the classical sense:

Opi(w,y) = Lypi(z,y) on (0,00) x U, x € U fixed, (4.1)
Ope(x,y) = Lype(z,y) on (0,00) x U, y € U fixed. (4.2)

This is done in Section 4.2. In Section 4.3, we deduce interior smoothness and
the equations satisfied by

x> Eo(r): U >R (4.3)

for some choices of smooth ¢ : [0,00) — R, for example ¢(z) = 2¥, k € N or
©(x) = 1(4,00) () for fixed .
First, however, we need to establish a few auxiliary results.

4.1. Auzxiliary results

Lemma 4.1. Suppose that the condition (UQ) is satisfied and that the process
x¢ is nonexplosive as in Definition 2.1. Then, the following assertions hold true.

(i) For anyt >0, x € X, and M > 0 we have

lim E{ sup ar:s(ac)—acs(y)|2/\M}:O7

y—x s€[0,t]

where s — x5(2) satisfies (1.3) with zo(z) = 2.

(i) If . € OU is regular, then for any €,0 > 0, there is p > 0 such that
P,{r > 6} < e for any x € U with |z — x| < p. That is, as x — z, €
U,z € U, 7(x) — 7(x«) in probability.

Proof. The proof of part (i) follows a standard Gronwall-type comparison argu-
ment. Let 7, = Ty, and we denote the dependence of 7 on the initial condition
x of x; by writing 71 (z). Observe that for z,y € X and s < 7,(x) A 7 (y), the
processes zs(x) and z,s(y) respectively agree pathwise with processes z;(z)
and z,k(y) satisfying It6 SDEs with globally Lipschitz coefficients (cf. Re-
mark 2.2). Thus if Ay = z4(x) — x4 (y) and Ay = z¢ k() — 2 £(y), then for any
o <t ATi(x) AT(y) with ¢ > 0 deterministic, we have the estimate

E sup |A,><E sup |A5,k|2.
s€[0,0] s€[0,t]
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Hence, to estimate Esupye( .1 |As|* it suffices, for a given deterministic time
t >0 to estimate Esup,c(o ,j |As|*, where A; = z4(x) — x4(y) satisfies

Av=z—y+ / b () — blas ()] ds + / [o(as(2)) — olas(y))] AW, (4.4)

with globally Lipschitz b,0 on R™ and Lipschitz constants depending on k.
Hence, there exists a constant QQ; > 0 such that

b(z) = b(y)| + |o(2) — o (y)| < Qulz —y| forall z,y€R™.

Using Doob’s maximal inequality and the It6 isometry, we have

s 2
B sup AP <0l — y? + 9Q2B sup ( / |xu<x>—xu<y>|du)
s€[0,t] s€[0,¢] \JO

2

+ 9E sup
s€[0,t]

/ (0(2u(@)) — o(za(y)dW,,

t
<9z —y*+ C’k(t)/ E sup |A,|%du
0 s€[0,u]
for some constant Cy(t) depending only on k,¢. Consequently by Grénwall’s
inequality, we have
E sup |A.)? <9z —y|?e O = |z — 42Dy (t). (4.5)
s€[0,t]
Now if b, o are no longer globally Lipschitz and §; = dist(Xy, 0Xk+1) > 0, we
have by Chebyshev’s inequality and (4.5)
E sup |[APAM
s€[0,t]
=E sup |AJ* AM1{r(z) <t} + 1{rp(z) > t})
s€[0,t]
< MP{r, <t} +E, sup |Agx*1{m(x) > t,70y1(y) >t}
s€0,t]
+ MP{ sup |Ag 41| > 67}
s€[0,t]
|z — y[* D41 ()

M.
0%

< MP {1, <t} + Dp(t)|z —y|* +

Passing y — 2 and then k — oo using that z4(z) is nonexplosive, we obtain (i).
To obtain (ii), suppose there exist €, dg > 0 and a sequence {z,} C U with
T, — Xy such that

P, {7>d}>¢e0
for all n. For any € > 0, let U be given by
Uf ={zre X : dist(z,U) < €}. (4.6)
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By path continuity, 7 = lime 0 7;;+ almost surely. Since . is regular, there is
€ € (0,1) so that

P, {my+ <00/2} > 1—¢0/2,
and consequently for any n
P{T(.’L’n) > (50,TU€+(.T*) < (50/2} > 60/2,

where the initial condition is indicated in the stopping times above. By conclu-
sion (i) with M =1, and € < 1 for any large enough n one has P{sup¢(q s, /2]
|zs(2n) — s (zs)| > €/2} < €9/4. But then

0,
O P dr(an) > b0, s () < 2, sup  |zs(zn) — 2s(22)] < <
2 ‘ 5€[0,60/2] 2

+P{ sup [za(wn) —ae(@)] > S <04+ 2
s€[0,50/2] 2 4

a contradiction. O

In addition to Lemma 4.1, we need one more auxiliary result. Although this
result is basic, it is used repeatedly throughout the paper.

Lemma 4.2. Let V. C R¥ be open and let £ and L,,, n € N, be linear second-
order differential operators with C*° (V) coefficients. Suppose that {v,} be a
uniformly bounded sequence of measurable functions v, : V. — R and that the
following conditions are satisfied:

- For every ¢ € C§°(V), (Ln— L)*¢ — 0 asn — oo in LY(V,dz) where the
* denotes the formal adjoint with respect to L?(V,dx)-inner product;

- For some measurable function f on V which is bounded on compact subsets
of V., Lov, — —f asn — oo on V in the sense of distributions.

- vy converges to Vs in the sense of distributions on V as n — oo.

Then, Lve = —f on V in the sense of distributions. Furthermore, if L is
hypoelliptic on V and f € C®(V), then vy € C°(V) and Lvo = —f on V in
the classical sense.

Proof. For fixed ¢ € C5°(V), the conditions of the statement and the Dominated
Convergence Theorem imply

/ Voo L dr= lim v LY pdr = lim v L — lim Un(Lyn — L) pdx
1%

n—oo \% n—oo \% n—oo U
= / —fodx.
v
Thus Lvs = —f on V in the sense of distributions. The remaining assertion is

an immediate consequence of hypoellipticity. O
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4.2. The forward and backward Kolmogorov equations for the
stopped process

Recall that if z; is nonexplosive, then the stopped process I, see (2.10), is
a well-defined, continuous-time Markov process distributed on U. Moreover,
the associated semigroup and transitions are respectively denoted by P and
Pt (x, )

Our main result in this section is the following.

Theorem 4.3. Suppose that the process xy is nonexplosive as in Definition 2.1
and that conditions (UO0) and (L2) are satisfied.

(i) For all x € U and t > 0, the restriction of the measure Py(z, -) to Borel
subsets of U is absolutely continuous with respect to Lebesgue measure on
U with density pi(x,y), and for fired x € U the mapping (t,y) — p(z,y) €
C*((0,00) x U). Furthermore, the forward Kolmogorov equation (4.1) is
satisfied in the classical sense.

(ii) If (L3) is furthermore satisfied, then (t,x,y) — pi(x,y) belongs to
C*((0,00) x U x U) and the backward Kolmogorov equation (4.2) is sat-
isfied in the classical sense.

Remark 4.4. The above result is natural and understood by experts in the
field. However, we found it difficult to locate a complete proof of part (ii) as it
is much more subtle than part (i). While part (i) follows almost immediately
from Dynkin’s formula, part (ii) requires several nontrivial approximations and
steps.

Remark 4.5. Intuitively the result above holds because, while the measure
75t(x, -) has a singular component on the boundary if the process exits U by
time ¢ with positive probability, when restricted to subsets of U this singularity
is not seen.

Remark 4.6. Note that in the statement above we may take U = X, in which
case Z; coincides with the original process x; on X, and thus the statement is
about the law of z; in X.

Proof of Theorem 4.3. To prove part (i), fix t > 0, x € U, and take any ¥ €
C>([0,t] x U)NC§°((0,¢t) x U). Thus, in particular, ¢ is compactly supported
in (0,¢) x U. Then, Dynkin’s formula yields

tATo
0=E (t, &) = Ex(t, venr,) = ¥(0,z) + Egc/O (L + 0s)9(s, xs) ds
t
=0+E, / (L4 0s)Y(s,Ts)ds,
0

where 79 from (2.9) is the first exit time from U. Hence,

E. /0 (L +00)(s, ) = /0 /U (L + 0 (5, 9)ps(x, dy)ds = 0
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for any ¢ € C§°((0,t) x U). That is, (L; — 0¢)(p¢(z,dy)) = 0 on (0,00) x U
in the sense of distributions. By hypoellipticity of 9, — L* on (0,00) X U as in
(L2), part (i) follows.

Part (ii) is more involved as there are several layers of approximations. We
divide the proof into two main steps.

Step 1. Let 1) € Cg°(U) and consider the mapping (t, x) — u(t, ) := Pyp(x).
We claim that v € C*°((0,00) x U) and dyu = Lu in the classical sense on
(0,00) x U.

Step 2 ‘We prove part (ii) by taking a sequence of approximations of p;(z, y)
of the form P, (2), 1, € C3°(U).

Proof of Step 1. First observe that since z; is nonexplosive, the stopped
process Ty = Tinr, With initial condition o = x € U satisfies the It6 SDE

di’t = b(lit)]_U(j't) dt + O-(jt)]-U(jt) th

We first show u € C*°((0,00) x U) and d;u = Lu in the classical sense on
(0,00) x U in the special case when b,0 € C°°(X) are bounded with bounded
derivatives of all orders.

Recall that U, is a sequence of bounded open sets with U,, C U and U,, 1 U
as n — 00. Suppose that ¢, € C°°(U;[0,1]) satisfies p,(z) = 1 on U, and
on(x) = 0 for x € U, ;. Consider a sequence of approximating processes
with xf = = and

dzi = b(xy )pn(xy) dt + o(xy ) on(Ty) AWy (4.7)

Claim. If bjo € C*(X) are bounded with bounded derivatives of all orders,
then for any t > 0 fized,

E, sup | — 27> =0 as n — oo. (4.8)
re(0,t]

Proof of (4.8). Observe that
Fo—af = / on (2 [b(Es) — b(a)] ds + / o (@) [0() — o(a™)] AW,
0 0

+/0 (1—wn<xz>>1U<azs>b<a:~s>ds+/0 (1= pu(a™) Ly (E0)0 () AW,

Hence, squaring both sides, taking the supremum and using Doob’s maximal
inequality we find that for all ¢t < T

t t

E sup |:irfxf|2§C’1/ E sup \:%fo:,’|2ds+02/ E[(1—¢n(z™)1y(2,)]* ds,
rel0,t] 0 rel0,s] 0

where the constants Ci1 = Ci(T, ||b||Lip; |o]lLip) > 0 and Cy = Co(T, ||b]| -,

lollzs<) > 0 do not depend on n. Gronwall’s inequality then implies that for all

t<T

t
E sup |i — "2 < cgefcl/ E[(1 — g (a™)) 10 (3,)]2 ds .
r€(0,t] 0
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Next, observe that if Zs(w) € U for some s > 0, then by path continuity and
the definition of the stopped process, Z,(w) € Uy, for all u € [0, s] for some
ny = no(w,s) € N. Hence, by definition, 22 (w) = &, (w) for all u € [0, s] and
n > ng, and consequently by the Bounded Convergence Theorem

lim E[(1 — ¢n(z™)1y(#)]*ds = 0.

n—oo 0
Hence, Esup, (4 | — 27| = 0 as n — oo, establishing (4.8). O

Let up(t,z) := Ey¢(z}). It follows that for fixed ¢ > 0, the mapping = —
un(t,z) belongs to the space C?(R™) [21, Theorem 5.5]. Define an extended
version A,, of the generator of z} by

. E,g(z}) —g(x

(4.9)

where the domain of A,, consists of all measurable functions g : R™ — R such
that the limit in (4.9) exists for each x. Next, by [52, Theorem 8.1.1], for fixed
z € R™, t — u,(t,z) € CY(R™) and by the Markov property u,, satisfies on
(0,00) x R™ the generalized backward equation

atun = Anun .

Since & + uy,(t, ) is globally C?, Dynkin’s formula implies that A,u = L,u
where L, is the classical generator of x}', which is a second-order differential
operator with C*°(R™) coeflicients. Moreover, these coefficients agree with the
coefficients of L on U,,. In particular, by (L3), L — 9, is hypoelliptic on (0, c0) x
U,, and therefore u,, € C*°((0,00) x U, ) and dyu,, = Lu,, on (0,00) x Uy, in the
classical sense. To obtain a similar result for u(t,z) = Pub(x) = E b(E,), we
note that wu,, is uniformly bounded. Furthermore, u,, — u pointwise as n — oo
since by the claim above

lun(t, ) — u(t, )] < [YlEiBel Tt — 27 — 0 (4.10)

as n — 00. By Lemma 4.2, uw € C*°((0,00) x U) and d;u = Lu in the classical
sense on (0,00) xU. Thus Step 1 is completed in the case when b, o have bounded
derivatives of all orders.

To complete Step 1, assume that b € C°(X;R™) and 0 € C°(X; Myx,) are
not necessarily bounded and x; is nonexplosive. For the sequence {U,} above,
note that the restrictions of b, ¢ to U, can be extended to functions on R™ which
are bounded with bounded derivatives all orders. Setting 7, = inf{¢t > 0 : #; ¢
U, }, we have shown above that if £ := &ipr, , then (¢, 2) — @y (¢, z) = E ¢ (E})
satisfies @, € C*((0,00) x U,) and 0, = Li, on (0,00) x U, in the classical
sense. However, since v is bounded, then @, is also uniformly bounded in n and
by (4.10), 4, — wu pointwise on (0,00) x U. Step 1 now follows after applying
Lemma 4.2.
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Proof of Step 2. Let x € C§°(R™;[0,00)) with [ x(z)dz = 1. Let x.(z) =
e ™x(e1z) and extend p;(x,y) to be zero for all (¢, z,y) ¢ (0,00) x U x U. For
any (t,z,y) € (0,00) x R™ x R™, define

wltioy) = [ plo2dy - 2)de (4.11)

Consider any bounded open V C U with V' C U. For each fixed y € V, there is
eo(y) > 0 small enough such that z — y.(y — 2) € C§° is compactly supported
in U for all € € (0,€q(y)]. It follows by compactness of V, that we may choose
€0 > 0 such that z — . (y —2) is compactly supported in U for all y € V and all
€ € (0, ). Thus, for any € € (0,€g] and (¢,z) € (0,00) x U, the formula (4.11)
makes sense and y — uc(t,x,y) € C®(V). Also, by Step 1, for each y € V' and
€ € (0, €], (t,2) — uc(t,z,y) € C°°((0,00) x U) and Oyu,(t, z,y) = Lyu(t,z,y)
on (0,00) x U in the classical sense. To conclude the result, it suffices to show for
any ¢ € Cp((0,00) x U x V) with ¢ supported in K C (0,00) x U x V compact,
that

e—0

lim [ ot z,y)[ue(t, ,y) — Pz, y)ldv dydt = 0.
K

Indeed, simply replace ¢ in the above formula by (9; — L,.)*¢, where ¢ is smooth
with compact support.

First, since me x(z)dz = 1, a standard substitution gives for all € € (0, €]
andy eV

ue(t, z,y) — P, y) =/ [De(z,y — €2) — pe(, y)]x(2) dz.

m

Next, let pi(x,y)

= pe(x,y) on K and pi(z,y) = 0 otherwise. By Tonelli’s
Theorem, (t,z,y) — pi(,

' Y)
y) € LY(R x (R™)?). Moreover,
K
Slellem [ iy - )~ e y) x(:)dz do dy .
RX(R"‘)B'

Since p; € L'(R x (R™)?), for any § > 0 there is ¢ € C§°((R™)3) within L*
distance § of p;. Thus, by translation invariance and Fubini’s Theorem

\ [ et luttn) - i) dxdydt\
K
< 25”90”[/0" + H(PHLOO /(R v ‘w(tan?y - 62) - w(t’w7y)|X(z)dZd$ dydt

Since v is compactly supported, passing ¢ — 0, using the Dominated Conver-
gence Theorem, and then § — 0 finishes the proof of Theorem 4.3(ii). O
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4.3. Interior smoothness of functionals of the first positive exit time

In this section we analyze quantities of the form
E,o(r), z €U, (4.12)
for various functions ¢ and 7 as in (2.2). The first two choices
p(x) = 1{|z| < oo} and ¢(z) =z,
that respectively yield in (4.12)
P, {r < oo} and E,T (4.13)

are of significant importance for analyzing recurrence and transience in Section 7
below. Throughout, we assume the parabolic Hérmander condition (PH) for
simplicity, which in particular implies that (L1)—(L4) are satisfied.

Proposition 4.7. Suppose that the process xy is monexplosive as in Defini-
tion 2.1 and that conditions (U00) and (PH) are satisfied. For any (t,x) €
(0,00) x U, define

ur(t, ) = Py{r >t} and ug(z) = Py{T = o0}. (4.14)

Then:

(i) up € C*°((0,00) xU) and Oyuy = Luy on (0,00) x U in the classical sense;
(ii) us € C°(U) and Lus =0 on U in the classical sense.

Proof. For (i), observe that for any = € U, ui(t,z) = P{r > t} = Py(z,U)
where ’bt(:m -) is the transition kernel of the stopped process Z; = Tnr,. Let
K C U be compact and by Theorem 4.3 Py(x, K) = Sy Pt(x,y) dy. Further-
more, by Theorem 4.3 and the Dominated Convergence Theorem, it follows
that (t,z) — Pi(x,K) is C®((0,00) x U) and 8,Py(z, K) = LP,(z,K) on
(0,00) x U in the classical sense. To obtain the same result for Py(z,U), let
K,, € U be a sequence of compact sets with K,, T U as n — oo. Then, by
the Monotone Convergence Theorem, the sequence (Py(z, K,)), is uniformly
bounded and converges pointwise to P;(z, U). The assertion (i) follows after
applying Lemma 4.2.
To obtain (ii), first observe that

ug(x) =Py{r = o0} = tl_i)rgo’pt(%U).

Thus we seek to apply an argument similar to that in Lemma 4.2. To this end,
note that

t+1
u(t,x) = / Ps(x,U)ds — uz(x) pointwise as ¢t — oo
t
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and that @(t,z) is uniformly bounded on [0,00) x U. Thus, for any function
p € C5°(U) and any t > 0, using integration by parts and the Fubini-Tonelli
Theorem we have

t+1 }
0= /t /U(L — 0s)Ps(x, U)p(z) dz ds
:/ u(t,x)L*p(x) dx_/[,f)t+1($,U)_7~Dt(.’I;, U)p(x) dz.
U U

By passing t — oo and using the Dominated Convergence Theorem, us solves
Lus = 0 in the sense of distributions on U. Part (ii) follows by hypoellipticity
of L onU. O

We next state and prove a regularity result for E,7; that is, for ¢(z) = =
in (4.12).

Proposition 4.8. Suppose that the process x; is nonexplosive as in Defini-
tion 2.1 and that conditions (U00) and (PH) are satisfied. Suppose, further-
more, that Py{r < oo} =1 for allz € U.

(i) If Uy C U is bounded open with Uy C U, then vo(z) := E, 7y, is bounded
on Uy. Furthermore, vy € C*(Uy) and Lvg = —1 on Uy in the classical
sense.

(i) Let Uy C U be an open set and suppose that v(z) = Eg7 is finite on a
dense set D C Uy. Then, v € C*(Uy) and v solves Lv = —1 on Uy in the
classical sense.

Remark 4.9. The technical hypothesis in (ii) that v is finite on a dense set
and not everywhere is needed below in Section 7. We defer the proof of Proposi-
tion 4.8(ii) until after we prove a hypoelliptic Harnack inequality (Theorem 5.5).

Proof of Proposition 4.8(i). Let o = 7y, and note that P, {7 < co} = 1 implies
that for all @ € Uy, there exists t > 0,a € (0,1/2) such that P,{o > t} <
(1—2a). By Proposition 4.7(i), there exists € = e(x) > 0 such that P,{c >t} <
(1—a) for all y € B.(z). Using compactness of Uy and taking a finite subcover,
it follows that there exists ¢, > 0, . € (0,1) such that Py{oc > t.} < (1 — )
for all y € Up. Since 7 is almost surely finite, so is ¢ by Uy C U and path
continuity. Thus, for any = € Uy we have

E,o = i E,ol{c € [(m — 1)t.,mt.)}

m=1

< 3t + i mt,Po{o > (m — 2)t,}. (4.15)

m=3
By the Markov property, for z € Uy and m € N we have

P.{o > mt.} = E.[E.1{c > mt. }| Fn_1).]

= E,1{oc > (m — 1)t,}P (o>t}

T(m—1)tx
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<(1-0a)Pi{o>m—1t.} < (1—a)™

and (4.15) implies for all z € Uy

E.o <3t + Y mt.(1—a,)" 2

m=3

which is finite and bounded independently of 2 € Uj.
Next, in order to show that vy € C*°(Up) and satisfies Lvg = —1 on Up in
the classical sense, observe that

vo(z) = Eyo = /OOO P,{o >t} dt = /000 u(t, z) dt.

Proposition 4.7 yields u € C°°((0,00) x Up) and Lu = dyu on Uy in the classical
sense. Thus if v,(z) = ff}n u(t,z)dt for n € N, it follows that v, € C*(U))
and for all z € U,

Lo, (z) = / Lu(t,z)dt = Opu(t, z) dt

1 1
n n

=u(n,z) —u(l/n,z)
=P, {oc>n}—-P,{oc>1/n}— -1

as n — oo in the sense of distributions on Uy. Since the sequence v, is uniformly
bounded by bounded vy and v,, — vg pointwise on Uy, the result follows from
Lemma 4.2. O

We next consider the expression (4.12) for more general ¢ : [0,00) — R. First
we need an auxiliary lemma, which is a representation result for the expected
value of certain random variables.

Lemma 4.10. Suppose that the process x; is nonexplosive as in Definition 2.1
and the condition (U00) and is met. Let ¢ : [0,00) — R be C*, strictly increas-
ing and satisfy p(t) — 0o as t — co. Then

E.o(1) = ¢(0) + /OOO O ()P {r > t}dt. (4.16)

Proof. Note that by shifting the formula (4.16), it suffices to assume that ¢(0) =
0. Since ¢ is C!, strictly increasing with (t) — oo as t — oo,  has a C! inverse
! mapping [0, 00) onto [0, c0). Moreover, ¢~ is strictly increasing on [0, cc).
It thus follows that ¢=1(t) — oo as t — oo. Then,

N N
E, (p(r) A N) = / P, {p(r) > t}dt = / P, {r > o l(1)) dt

e H(N)
_ / o (P, {r > t} dt.
0

Passing N — oo and using the Monotone Convergence Theorem finishes the
proof. O
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Next, we state and prove our main result for general ¢.

Proposition 4.11. Suppose that the process x; is nonexplosive as in Defini-
tion 2.1 and conditions (U00) and (PH) are satisfied. Let ¢ € C?([0,00); R) be
strictly increasing with p(t) — 0o as t — oo with derivative ¢’ € C1([0,00); R)
which is strictly increasing with ©'(t) — oo as t — oo. Suppose furthermore that

v1(z) := Epp(T) and vo(z) = E o' (1)

are bounded on compact subsets of U. Then Lvy = —vq on U in the sense of
distributions.

Remark 4.12. Compare the equation Lv; = —vy with Lv = —1 when p(z) =
z. Although such a ¢ does not satisfy the hypotheses above, we still have the
analogous conclusion.

Proof of Proposition 4.11. By Lemma 4.10, we have
vi(x) = ©(0) +/ O (O)PL{T >t} dt,
0

va(z) = '(0) + /0°° " (P {T > t}dt.

In the latter formula, simply apply Lemma 4.10 to ¢’ instead of ¢. Consider the
sequence of functions on U given by

n

v1n(2) == p(0) +/ O (OPL{T > t}dt.
1/n
Observe that by Proposition 4.7, vy , € C*°(U) and

Lot n(z) = /1 j S () La(Polr > t}) dt

_ / S0P > ) dt
1/n

=o' (NPT >n} — ¢ (1/n)P{T > 1/n} — /17 " (OPL{T > t}hdt.

Since for any x € U we have E, ¢’ (1) < 0o, it follows that
lim ' (n)P{r>n} < lim E.o' (1)1{r >n} =0 (4.17)

on U. Furthermore, since P,{7 = 0} = 0 for any = € U, it also follows that on

U
Jim ' (1/n)P{r > 1/n} = ' (0)P,{r > 0} = ¢'(0). (4.18)

In addition, ¢’ is strictly increasing, and therefore ¢ > 0 and by the monotone
convergence theorem, Lv; , — —v2 pointwise as n — oo on U. Since vy, vy are
bounded on compact subsets of U and v; 5, = v1 as n — oo, Lemma 4.2 implies
Lvy = —v9 on U in the sense of distributions. O
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Let us note some more specific examples and results that follow as an imme-
diate consequence of the previous results.

Corollary 4.13. Suppose that x; is nonexplosive as in Definition 2.1 and con-
ditions (U00) and (PH) are satisfied. Then:

(i) If for some k € N, k > 2, v¥(z) := E,7" is bounded on compact subsets of
U, then vf € C®(U) and Lv¥ = —kE,7*~! on U in the classical sense.

(i) Suppose that for some § > 0, ws(x) := E,e is bounded on compact
subsets of U. Then ws € C*(U) and Lws = —dws.

Proof. For (i), set ¢(t) = t* and note that vf(z) and v§(x) := kE,7%"! are
both bounded on compact subsets of U. By Proposition 4.11, Lvf¥ = —vk on U
in the sense of distributions. By induction and Proposition 4.8, v§ € C*°(U) so
that vf € C°(U) and Lv¥ = —vk in the classical sense.

For (ii), set ¢(t) = €. Then, Proposition 4.11 implies (L + §)ws = 0 in the
sense of distributions. However, L + ¢ is hypoelliptic on U, so that ws € C*°(U)
and Lws = —dws in the classical sense. O

5. Green’s functions and Bony’s Harnack inequality

In this section, we explore Green’s functions in the hypoelliptic setting for an
open set U. As a consequence, we generalize Bony’s form of the Harnack in-
equality [9].

Let 3 > 0 be a constant and suppose f € C>(U) N B(U). Often (see [9])
one refers to the Green’s operator G as the ‘mapping’ f +— v, where v is the
‘unique’ solution of the Poisson problem

(Lfﬁ)vsz OHU,
{ u=0 on OU. (5.1)

When 8 = 0 and L is hypoelliptic on U, the uniqueness of solutions of (5.1)

heavily depends on the structure of the diffusion z; driven by L near OU. Indeed,

as mentioned in the introduction, the parts of the boundary that cannot be

attained by the underlying stochastic process are sources of nonuniqueness. This

is also the case for (5.1) when 8 > 0. Here, we employ stochastic methods to

define and deduce properties of Ggf without needing to assume uniqueness.
Formally, our ‘best guess’ of solution of (5.1) would be

v(z) =E,; /OT fzs)e P ds, (5.2)

where 7 = inf{¢t > 0 : x4 ¢ U}. The expression (5.2) is motivated by a formal
application of It6’s formula to the function e=#*v(x;), where v is a presumed
classical solution of (5.1). Even though it is not clear nor necessarily true that
v solves (5.1), v in (5.2) is well-defined for any function f € B(U). Note that v
in (5.2) is well-defined even if 7 = oo, due to the presence of the exponentially

decaying factor e~ 9%,
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Remark 5.1. Under further conditions on the stopping time 7, one can define
Gy or even sometimes G_g for B > 0 small enough. Here, for simplicity, we keep
[ positive to avoid any further complexities of assumptions on 7. Additionally,
under similar assumptions, one can replace $ by a spatially dependent function

B = B(z) € C(U) to arrive at the Feynman-Kac formula

Ez/ flag)e Jo Plan)dv g (5.3)
0

provided (5.3) makes sense.

5.1. Definition and properties of Gpg

Given the preliminary remarks above, we now define Gpg.

Definition 5.2. Suppose that the process z; is nonexplosive as in Definition 2.1
and suppose (U00) is satisfied. For any 8 > 0 and any f : U — [0, 0c0) measur-
able, define Ggf : U — [0, 4+00] by

Gaf(z) = Ez/ f(zs)e P ds. (5.4)
0
If f:U — R is measurable and Gg|f|(x) < oo for all € U, we define

Gpf(x) = Gafelz) — Cof_(x) = E, / e tds  (55)

where f,, f_ denote the positive and negative parts of f, respectively. We call
Gp the Green’s operator of order 8 > 0. Let

Ds := {f : U — R measurable : x — Gg|f|(z) is bounded on compacts in U}

be the domain of Gg.

Remark 5.3. Observe that the expression (5.5) is better behaved compared
with the formal stochastic representation corresponding to the usual Poisson
problem (i.e. with 8 = 0) due to the presence of the exponentially decaying
factor e=7%.

Often it is convenient to express the operator Ggf as a traditional integral
operator, meaning that for any ‘reasonable’ function f on U and any x € U:

Gof(x) = /ﬁ F(w)gs(z,y) dy (5.6)

for some kernel gg to be referred to as the Green’s function associated to Gpg.
However, we must be careful as there are subtleties in defining gg(z,y) for
y € OU and for x =y in U.

To obtain a workable expression for gg, under the assumptions that x; is
nonexplosive and condition (U00) is satisfied, we recall the stopped process
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T = Typr, from (2.10) is a Markov process distributed on U, where 79 = inf{t >
0 : z ¢ U}. We also recall its transition kernel Py(z, -) which is defined on
Borel subsets of U. Note that, for any x € U and any f € Dg, the Dominated
Convergence theorem implies

To (TQ 5)\/0
Em/ f(Z )1y (Es)e P ds = %{I&Em/ &)1y (Zs)e P ds
0 0

(t0—38)V0 5
=IlmE Ts)e P°
61%1 x/o f(zs)e P ds

70
:Ez/ f(Zs)e P ds.
0

Hence, for any f € Dg and x € U, we have by Fubini’s theorem

Gsf(z) = E, mf@gaﬂ%u:Ex/m1U@gﬂ@kﬂ%w
0

:/ yf Pz, dy)e m@—/f / Pu(x,dy)e P ds (5.7)
= [ f)gs.cla).

where for each x € U, gg , is a finite Borel measure on U given by
o ~
950 (A4) = / Py(z, ANU)e P ds. (5.8)
0

In particular, the purported Green’s ‘function’ gg ., * € U, does not charge the
boundary 0U. In order to show that gs , has a density with respect to Lebesgue
measure on U, we prove the following result:

Theorem 5.4. Let 5 > 0, and suppose that x; is nonexplosive and that condi-
tions (U00) and (PH) are satisfied. Then:

(i) For every x € U, the finite measure gg, on Borel subsets of U given
by (5.8) is absolutely continuous with respect to Lebesque measure on U
with density ga(x,y).

(i) The mapping (x,y) — ga(z,y) € C°(UxU\Diag), where Diag = {(z,z) :
x € U}. Furthermore, for fived x € U, (Ly —B)gs(x,y) = —0z in the sense
of distributions on U and, for fized y € U, (L, — B)gs(z,y) = —0, in the
sense of distributions on U.

(iii) For any f € DgNC(U), (Ly — B)Gpf = —f on U in the sense of distri-
butions.

(iv) If u € C*(U;[0,00)) satisfies Lu =0 on U, then u > BGsu on U.

Proof. First, we show (i). By Theorem 4.3, for s > 0 and « € U, the measure
Py(z, - NU) is absolutely continuous with respect to Lebesgue measure on U
with density p¢(x,y). Furthermore, (¢,2,y) — pi(z,y) : (0,00) x U x U — R
is C*° and p; satisfies both the forward and backward Kolmogorov equations
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in the classical sense as in Theorem 4.3(i), (ii). Thus, if |[ANU| = 0, then

Ps(xz, ANU) =0 for any s > 0 and by (5.8) one has gz (A4) = 0. Hence, by the
Radon-Nikodym theorem, for each z € U, gg, has density y — gs(x,y) which
belongs to L!(U). This concludes (i).

Next, we establish parts (ii) and (iii) simultaneously. Note that for any f €

C§°(U), we have for any z € U,

Go((L - B)f)(x) = /U (L — B)F ()95 (. y)dy. (5.9)

On the other hand, because f vanishes outside of a compact set in U, Dynkin’s
formula (2.8) applied to f(ziar,)e P/ 70) gives

E. f(zinm)e P = f(z) + By / MTO(L — B)f(xs)e P ds. (5.10)
0

Since f is compactly supported in U and 8 > 0, after passing ¢ — co we have
Exf(a:t/\m)e_ﬁ(t/\m) — 0.

By (5.5) and (5.10),

Gp(L = p)f(z) = —f(x) (5.11)
on U for all f € C§°(U). By combining (5.9) and (5.11) we obtain
(Ly = Bgp(x,-) = =0, on U (5.12)

in the sense of distributions. Hence, by hypoellipticity of L* — 3, for each z € U,

the mapping y — gs(z,y) € C*(U \ {z}).
To obtain regularity in the x variable, for any f € C(U) N B(U) C Dg,
consider the sequence of approximations

nf(a) = /1 . /U F)pe(a, ) dy e ds = /U Fw)gl () dy

and let h € C§°(U). Employing Theorem 4.3 and the Dominated Convergence
Theorem (in order to interchange the integral and derivatives) it follows that

[ row-snesr@ar= [ [ 1wrw) [ aiepe ) eyds
U vJu 1/n

= /U h(@) e "By f(#,) — e /"By f (31 )n)] da.

Passing n — oo and using the Dominated Convergence Theorem, we find that
G5 satisfies

(L = B)2Gaf(z) = —f(x) (5.13)
in the sense of distributions on U. More generally, if f € Dg N C(U), then for
every N € N define fy := f AN € C({U)NB(U). Then (L — 8),Gpfn = —fn
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in the sense of distributions on U. Passing N — oo, it follows by Lemma 4.2
and definition of Dg, that (L — 3),Gaf = —f in the sense of distributions on
U. This proves (iii).

To finish the rest of (ii), let f,h € C§°(U) and note that by (5.13)

[ - pin@s s s = [ W@)f@de (61
UxU

U

Since f and h are arbitrary,

(L = B)zgs(z,y) = —0y(x) (5.15)

on U in the sense of distributions, and therefore the hypoellipticity of L — 8
implies that « — gg(z,y) is C(U \ {y}), as desired.

Finally, for part (iv), for n > 1 let U,, be a sequence of bounded open sets
with U, + U and U,, C U. Set 7, = inf{t > 0 : x; ¢ U,}. Then, Dynkin’s
formula (2.8), Lu =0, and v > 0 imply for any = € U,

tATONTR
0 < Epe NNy (@i rong, ) = u(x) — ﬂEz/ u(zs)e P ds.
0

Rearranging and passing n — oo and ¢t — oo gives the result by the Monotone
Convergence Theorem. O

We now apply Theorem 5.4 to obtain a version of Harnack’s inequality orig-
inally due to Bony [9]. Our assumptions are weaker as we do not assume the
uniqueness of the solution of (5.1). Before we proceed, let

Hy = {u e C*(U;[0,00)) : Lu=0on U}. (5.16)

Of course, if L is hypoelliptic on U, then any distribution «w with Lu = 0 on U
must belong to C*°(U) and satisfy Lu = 0 on U in the classical sense.

Theorem 5.5 (Harnack inequality). Suppose that x; is nonexplosive and that
conditions (U00) and (PH) are satisfied. Consider any compact set K C U,
any set D C U which is dense in U and any multiindexr o. Then, there exist
points y1,Ya, - - -, Yr € D and a constant ¢ > 0 such that the following inequality

Sup, [D%u(@)] < clu(yr) +ulyz) +- - + uly)] (5.17)

1s satisfied for all u € Hy .

Proof. From this point in the paper, the argument is a slight modification of
the proof of [9, Lemma 7.1]. Fix any multi-index a. Let K C U be compact
and zo € K. We show that there exist an open neighborhood V' C U of z(, an
element y € D, and a constant ¢ > 0 such that

u(y) > csup |[D%u(z)| for all u € Hy. (5.18)
zeV
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The result then follows from (5.18) using compactness of K. By Theorem 5.4,
fixing 5 > 0, we obtain for all y € U and all u € Hy

>B/ 2)9s(y,

We next claim that there exists y € D\ {x¢} such that gg(y, z¢) > 0. If not, by
Theorem 5.4, gg(-,z9) =0 on U \ {20}, a contradiction to (L — f3),9s(y,z0) =
—0z,(2) on U in the sense of distributions (see (5.15)). Thus fix y € D\ {z¢}
so that gg(y,zo) > 0 and by continuity, choose disjoint neighborhoods W of y
and X of xy and a constant ¢ > 0 such that

gg(w,z) > ¢ for all (w,z) € W x X.

Nonnegativity of gg then implies for fixed y € D

u(y) > 5C/Xu(ac) dz

for all u € Hy. In order to bound the integral ¢ [y u(x) dz = cl|lu||11(x) from
below, we bootstrap (2.16) to obtain for any s > 0 and t < 0 and any open
neighborhood V' of o with V' C X, the existence of a constant (s, depending
only on s,t and V, X such that

||u||Hs(V) < CS,tH’U/HHt(X) for all u € Hy.

For sufficiently negative ¢t we have L' < H?, and there exists C' > 0 independent
of u such that

sup |D%u(x \<C/ dx<—u(y)[1
zeV

Given the previous result, we return to the proof of Proposition 4.8(ii).

Proof of Proposition 4.8(ii). Take a sequence of bounded open sets Uy, n > 1,
with U,, C U and U,, 1 U as n — co. By Proposition 4.8(i), for any n > 1, if
7, := Tu, , then w,(z) := E,7, is bounded on U,, and C*(U,,) with Lw,, = —1
on U, in the classical sense. In addition, since U,, C U, we have w, < v. Let
x € Up and fix 6 > 0 such that Bs(z) C Up. Fix m € N such that U,, D Bs(x).
Then, for each n > m, the function z, = w, — w,, satisfies Lz, = 0 on Bs(x)
and for any y € D, 0 < z,(y) < v(y) < oco. By Theorem 5.5, z, has bounded
derivatives of all orders independently of n on Bs(x). Since m is fixed, w, =
Zn + Wy, has has bounded derivatives of all orders independently of n on Bj(x).
Then, w,, converges to a function @, uniformly on compact subsets of Uy.

The assertion (ii) follows from Lemma 4.2 once we show that v = ¥ on Uj.
Since U, T U, then 7, 1 7 and v = v follows from the monotone convergence
theorem. This finishes the proof of (ii). O
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6. General results on the formal stochastic solution
6.1. Preliminary remarks

Throughout this section, we assume that U C R™ is nonempty, open set with
nonempty complement U¢. We return to one of our main goals: satisfaction
of (1.2) by the formal stochastic representation, which for the Poisson equation
is given by (provided it makes sense)

Ustoc,0(2) = By /OT f(zs)ds = /OTO f(@s)ds, z €U, (6.1)

where Z; = x¢ar, is the process stopped at the boundary OU. For example if
f=1v@) =E, 7 =E;70=E, fOTO 1ds, x € U and as long as the hypotheses
of Proposition 4.8(ii) are satisfied, v € C*°(U) and Lv = —1 on U in the classical
sense. Thus, we expect that under analogous assumptions, vstoc,0 € C*°(U) and
Lvstoc,0 = —f in the classical sense on U.

Additionally, if g € C§°(X) for the formal stochastic solution of the Dirichlet
problem

ustoc,O(x) = E:L’g(x'r)a (62)
Dynkin’s formula applied to g yields for any z € U, t > 0

TAL
Ustoc,0(2, 1) = Egg(z,at) = g(x) + ch/ Lg(xs)ds. (6.3)
0

Thus by formally passing ¢ — oo, rearranging and using (6.1), one has that
Ustoc,0 — ¢ satisfies L(u — g) = Lg, and interior smoothness and Lugioc,0 = 0
on U in the classical sense follows. Then, by an approximation argument and
Lemma 4.2, the same properties follow for more general g.

6.2. Interior smoothness for vsoc,o and Ugoc,o

We begin with the interior smoothness for vsioc,0. Suppose the process x; is
nonexplosive as in Definition 2.1 and that condition (U00) holds. For any mea-
surable f : U — [0,00), define Gof : U — [0, 00] by (cf. (5.4))

Gof(z) =E, /OT flxs) ds. (6.4)

For any f : U — R measurable with Go|f|(z) < oo for all x € U, we let
(cf. (5.5))

Gof(x) = Gofs(z) — Gof—(z) =B, / " fa) ds (6.5)
and

Do(U) = {f : U — R measurable : z + Gol|f|(x) (6.6)

is bounded on compact sets in U}.
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Theorem 6.1 (Interior Smoothness for vgioc,0). Let f € C(U)NDy(U). Assume
that x¢ is nonexplosive as in Definition 2.1 and that conditions (U00) and
(PH) are satisfied. Suppose, moreover P, {T < co} =1 for all x € U. Then

Lvgtoco =—f on U (6.7)
in the sense of distributions. Also, if f € C®°(U)NDy(U), then vsioe,0 € C(U)

and Lvgoe0 = —f on U in the classical sense.

Proof. Suppose f € C(U) N Dy(U). Let U, be bounded, open set with U,, C U
and U, T U as n — oo. For n, k € N define

k
Unk(2) = /1/1C /Un pe(z,y) fy) dy dt.

By Theorem 4.3, v, € C°°(U). Fubini’s Theorem then gives
k
Loy, i (z) = /1 / L.p(z,y) f(y) dy dt
k n

B /j /Un Oupr(x,y) f(y) dy dt

= E. 1y, (1) f(Zx) — Exlv, (Z1/) f(Z1/k) = —1u, (2) f(2)

as k — oo in the sense of distributions on U, where we used that f is bounded,
continuous on U, and for all z € U, E 1y, (Tx) < 1 —P{Z, € OU} — 0 as
k — oo by Py{r < o0} = 1.

Since f is bounded on U,,, by the Dominated Convergence theorem vy, ;, — v,
as k — oo, where

o) = [ °°/ ) (0) dy = JARTACAVEATS

Then, by Lemma 4.2, Lv,, = —f on U, in the sense of distributions. Splitting
f into positive and negative parts (using f € Do(U)) and using the Monotone
Convergence Theorem, we obtain that v,, which is locally uniformly bounded
on U, converges pointwise to ¥stoc,0 a8 m — 00. By employing Lemma 4.2 again,
we obtain the desired result. O

Given the previous result, we next investigate the interior smoothness of
Ustoc,0-

Theorem 6.2 (Interior smoothness for ugioc,0). Assume that x, is nonexplosive
as in Definition 2.1 and that conditions (U00) and (PH) are satisfied. Suppose
P.{r <oo} =1 forallxz € U and g € C(X) is such that usoco(x) = Epg(xr)
is bounded on compact subsets of U. Then, Usioc,0 € C(U) and Lustoeo = 0
on U in the classical sense.

Remark 6.3. Note that by the Tietze Extension Theorem we can replace the
assumption g € C(X) with g being continuous only on a neighborhood of 9U.
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Proof. First let Uy C U be bounded, open with Uy C U. By Proposition 4.8(i),
vo(x) := E, 7y, is bounded on Uy. Thus, for any open V, with Vy D Uj and any
g € C?(V), the boundedness of Uy implies Lg € C(Up) N Dy (Up) (with respect
to 7y, ). By Theorem 6.1, the function

vo(z) = E, /OTUO Lg(zs)ds (6.8)

satisfies Lvg = —Lg on Up in the sense of distributions. For ug(z) := Eg(v-,, ),
Dynkin’s formula, the Dominated Convergence Theorem, and E, 1y, < oo imply

t—o0 t—o00

TUO/\t
up(z) = lim Eyg(zr at) = g(z) + lim Egr/O Lg(xs)ds
U
= g(;p) —+ E$/ Lg(l’s) ds.
0

Hence, by (6.8) and Lvg = —Lg,
Luy=Lg—Lg=0 on U

in the sense of distributions. Since L is hypoelliptic, ug € C*°(Uy) and Luy = 0
on Uy in the classical sense.

Next assume g is merely continuous and supported on a bounded neighbor-
hood Wy of the boundary AUy, and without loss of generality assume g = 0
on Wg. Fix any ¢ € C§°(R™;[0,00)) with [.1¢dx = 1, denote ¥(x) =
e~™p(e~1z) and set

ale) = [ gvde—p)dy € CFR™)  and  ule) = Eagilon,)
(6.9)

Since g, is smooth, by the first part of the proof, u. € C*°(Uy) and Lu. = 0
on Up in the classical sense. Furthermore, g is bounded, and therefore wu. is
uniformly bounded and converges pointwise to uo(z) = Egzg(zs,,) on Uy as
e — 0. It follows by Lemma 4.2 and hypoellipticity of L that ug € C*°(Up) and
Lug = 0 on Uy in the classical sense.

Finally, let U,, n € N, be a sequence of bounded open sets with U, c U
and U, 1 U. Suppose that g € C(X;[0,00)) is nonnegative and by assumption
uy(x) := Ezg(x;) is bounded on compact subsets of U. Set 7, = inf{t > 0 :
x¢ ¢ U,} and note that we already proved that w, y(z) = Eg[g(z,,) A N] €
C*(U,) with Lu, y = 0 on U, in the classical sense. After passing n — oo,
Lemma 4.2, the Dominated Convergence Theorem, and 7, — 7 imply that
Uso,N (z) 1= Eg[g(z;) A N| satisfies uoo,ny € C°(U) with Lusny = 0 on U
in the classical sense. Passing N — oo and again applying Lemma 4.2 and
Monotone convergence theorem, we find that uy € C*°(U) with Luy = 0 on U
in the classical sense. The result follows after decomposing g into positive and
negative parts, ¢ = g+ — g—. UJ
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6.3. Boundary behavior

Note that under the hypotheses of Theorem 6.1 and Theorem 6.2, the formal
stochastic solution ugec belongs to (1.4) is C°(U) and usgtoe is also classical
solution of Lugtoe = —f on U, provided f € C*°(U). The next natural problem
is to determine satisfaction of the boundary condition in (1.2). We explore it
first for the Dirichlet part usioc,0-

Theorem 6.4. Fix xz, € 0U, g € C(X) and assume x; is nonexplosive as in
Definition 2.1. Assume that condition (U0O0) is satisfied and P {T < oo} =1
for all x € U. If, furthermore, conditions (UID(g,x.)) and (CE(x.)) are
satisfied and x, is reqular as in Definition 3.4, then usioco() = g(xx) as x —
Te,x €U.

Remark 6.5. Note that if U is bounded, by extending b, to R™ so that x;
is nonexplosive as in Remark 2.2, conditions (UID(g,z.)) and (CE(x.)) are
satisfied for every x, € OU. Indeed, g is continuous on R™ and bounded on U.
Moreover, one can set X,, = B, so that for all n large enough P, {7y, <7} =0
for all z € U.

Remark 6.6. As discussed above, checking that a given point x, € OU is
regular can be challenging. See [11, 39, 16] for some criteria. However, if it
makes sense to slightly modify the set U, then regularity of x, can be easier to
verify. See Theorem 3.12 for further information.

Proof of Theorem 6.4. By (UID(g,z.)), choose § > 0 so that G, s(z.) asin (2.19)
is uniformly integrable. For |z — z.| < § and n € N, write

Ustoc,0 (%) — 9(2:) = Ex[(9(2r) — g(.))1{zr ¢ X}
+Ea(9(z) — g(2:))H{zr € X} = Ti(w,n) + Ta(w,n).

Fix € > 0 and we claim that there exists n € N and §; € (0,d] such that
[Ty (z,n)| < €/2forall |[z—z,| < §;,2 € U. Since the family G, 5(x.) is uniformly
integrable, there is ¢ > 0 be such that

€

Alg(x.) +1)

and whenever P{A} < ¢ we have E[X[14 < { for all X € G, ;(x.). However,
by (CE(z.)), there exists n € N,d; € (0,9] such that |z — z.| < 61, x € U
implies

€ <

P.{z, ¢ X,} <P, {rx, <7} <F€.

Hence, for such n and 4;, uniformly integrability gives |Ti(z,n)| < § for all
|z — x| < &1, € U, establishing the claim.

We next claim that for this choice of n, there exists d; € (0,d;] such that
|T5(x,n)| < §, thus finishing the proof of the result. Indeed, since g is continuous
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on the compact set X, there is a Lipschitz function h € C(&,) such that
g — hll @) < §- Hence, for any €, > 0 we have

To(,m)] < 7+ Eal(h(er) = hia.) 1z, € )]

€

< B + C1E|z, () — 2| A Col{T < €.} + 2||h||p=Pp{7T > €.}

< i 4 CE sup |zs — 2| A Co + 2|h||L=Po{r > .}
s€[0,€4]

=: i +Ty + T3,

where C1,Cy > 0 are constants depending only on n and h. To estimate T3,
observe that

T) =CiE sup |zg(z) — .| ACo
s€[0,€x]

<Ci(E sup |zs(z) — zs(@)]? A 022)1/2
s€[0,64]

+C1(E sup |zg(z.) — 2> ANC3

1/2
S€[0,€4] )

where the last inequality follows by triangle and Cauchy-Schwarz inequalities.
Using Lemma 4.1(i) and path continuity of x, there exits d2 € (0,d;] and €, > 0
small enough so that Ty < ¢/8 for all x with |z —z.| < §2. For T3, Lemma 4.1(ii)
and the regularity of ., ensure that T3 < ¢/8 if do > 0 is sufficiently small.
This finishes the proof of the result. O

Remark 6.7. Note that if U us bounded, then (CE(z.)) is trivially satisfied
by choosing n large such that U C X,,. Here, we verify (CE(z.)) for unbounded
U if x — E,7 is bounded on Bs,(x,) NU for some d2 > 0 and hypotheses of
Lemma 2.4 are satisfied.

For any t > 0, we have

P.{rx, <7} <P {7 >t} +P,{rx, <t}.
Fix any 6; > 0. Then, Chebychev’s inequality gives for all z € Bs(x,) N U that
P {r>t} <t 'E,7<C/t.

Fix ¢ > 0 large enough independent of x, such that P,{r > ¢} < 2. As in the
proof of Lemma 2.4, we have

wpe CP {1y, <t} <w(z)+D.

with w,, — 0o as n — oco. For already fixed t > 0, there is n € N large enough
so that P, {rx, <t} < %1 for each z € Bs,(x,) and (2.21) is satisfied.

Next, we derive sufficient conditions on the Poisson part vstoc,0 of Ustoc that
ensure Uggoc,0(z) > 0asz — z, € 0U, x € U.
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Theorem 6.8. Suppose x; is nonexplosive as in Definition 2.1, x, € OU is reg-
ular as in Definition 3.4 and condition (U0O0) is satisfied. Suppose, furthermore,
that conditions (UIP(f,x.)) and (CE(x.)) are satisfied for some f : U — R
which is measurable and bounded on X, NU for all n. If for every x € U,
P, {7 < oo} =1, then vsoc0(x) >0 asxz =z, x €U.

Proof. Let € > 0 and by (UIP(f,z.)) there is 6; > 0 such that for all x € U
with |z — z.| < 41 the family g({l (z4) in (2.20) is uniformly integrable. For
simplicity, set Y; = fot f(zs)ds. Then, since f is bounded on X, N U, for any
0>0

[Ustoc,0(2)| < [EoY:1{7x, <7} + [ExY:1{7x, > T}
<|E Y, 1{rx, <7} + |E:Yrnsl{rx, > 7,7 <} + |E.Y-1{T > 0}
< [BLYo1{ry, < 7} 4 0] e v + [BaYoL{r > 6.

By uniform integrability, there exists ¢ > 0 such that P{A} < € implies

E,.Y14 <¢/3 for all |z — x| < §;. By (CE(x.)), there are n € N, d2 € (0, d1]
such that P, {rx, <7} <¢€ forall |z —x.| < da, x € U. For this choice of n, let

€
(1l oo (xunoy +1)°

6:
3

By making o > 0 smaller if necessary, by Lemma 4.1(ii) we can ensure that
P.{r > ¢} < € for all [z — x,| < 2, € U. The result follows since for
|z — 24| < 02, x € U, we have |vsoc,0(z)| < € and € > 0 is arbitrary. O

We can now combine the previous results and relate them back to the original
problem (1.2).

Corollary 6.9. Suppose x; is nonexplosive as in Definition 2.1, P, {T < oo} =
1 for all x € U, and condition (U00) is satisfied. Let g € C(X) and [ €
C®(U) NDy(U) be such that ustec,o0 is bounded on compact subsets of U and
f e B(X,NU) for all n. If U is boundary regular for x; and the conditions
(UID(q)), (UIP(f)), and (CE) are satisfied, then usto. is a classical solution
of (1.2). If U is furthermore assumed to be bounded, then st is the unique
classical solution of (1.2).

Proof. The only assertion we have left to prove is uniqueness when U is bounded.

Let {U,} be a sequence of bounded open subsets of U with U, C U,y and
U =U,U,. If u is a classical solution of (1.2), then u is smooth on U, for each
n, and by Dynkin’s formula (2.8) we have for any z € U and n € N large enough

tATU, tATU,
Exu(ast,\mn) =u(x) + Ex/ Lu(zs)ds = u(x) — Ew/ f(zs) ds,
0 0

and therefore

tATU,
u(r) = Exu(Zinr, ) + Eg / f(zs) ds.
0
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Since u is continuous on the compact set U, u is bounded on U. Also, since
g€ C(X)and f e C°(U)NDy(U), passing t — oo and then n — oo, boundary
regularity and the Dominated Convergence Theorem imply that w(z) = ustoc ().

O

7. The transience and recurrence dichotomy for degenerate
diffusions

The goal of this section is to carefully establish the dichotomy between tran-
sience and recurrence for degenerate diffusions by adapting the classic cycle
constructions of Khasminskii [35], which was carried out in the setting of ellip-
tic diffusions on Euclidean space. Note that this has been done previously using
the language of invariant control sets as in [37]. However, we found a gap in
the arguments in [37] that we could not fix in an obvious way (see Remark 7.22
below). Moreover, some regularity claims in [37] could not be verified without
calculations analogous to ones in the previous sections. Although it is known
that there are alternative, probabilistic paths which circumnavigate these issues
(we refer, in particular, to the work of Harris [30], the survey paper of Baxen-
dale [3] and the work of Meyn-Tweedie [50]), here we establish the dichotomy
using classical ideas of Khasminskii and regularity properties established above.
Note that this approach traces back to Maruyama and Tanaka [48] and Watan-
abe [63] in the case of a one-dimensional, elliptic diffusion. We also refer to the
works [1, 27] which we found helpful.

7.1. Nice diffusions

In this subsection, we briefly introduce the structural assumptions we make on
the diffusion z; satisfying (1.3) in this section. Recall that if z; is nonexplosive as
in Definition 2.1, then x; € X for all ¢ > 0 and any initial condition zog = x € X.

In order to formulate our results, we need a notion of irreducibility of x; as
introduced in the following definition.

Definition 7.1. Suppose that z; is nonexplosive as in Definition 2.1. We call
xy irreducible if for any 2,y € X and § > 0 we have Py {7p;(z)c < oo} > 0.

Note that irreducibility means that, for all z,y € X, the process started at y €
X enters an arbitrarily small neighborhood of x € X with positive probability.
Thus, the process can transition between arbitrarily small neighborhoods of any
two points in X.

Remark 7.2. Comparing terminology, if z; is irreducible in the sense of Defi-
nition 7.1, then X is the unique invariant control set of x; as in [37]. Certainly,
the methods used below can be applied in more general settings, e.g. if there
is more than one invariant control set or if the process z; eventually enters an
invariant control set from a larger set to not return to other parts of space. For
our purposes, one irreducible set X is sufficient.
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We are ready to introduce the assumptions we impose on the diffusion z; in
this section.

Definition 7.3. We say that the diffusion x; is nice if the following conditions
are met:

(i) @ is nonexplosive as in Definition 2.1;
(ii) The generator L of x; is satisfies the parabolic Hérmander condition on
X as in Definition 2.12;
(iii) =z is irreducible as in Definition 7.1.

One key property of a nice diffusion employed below is that the process leaves
bounded sets in X sufficiently fast.

Proposition 7.4. Suppose that x; is a nice diffusion and U C X is nonempty,
open and bounded with U C X. Then there exists 6 > 0 such that
sup E,e™7 < o0. (7.1)
z€U
Proof. The proof of this result follows a similar reasoning used in the proof of
Proposition 4.8(i). Let 2 € X \ U and fix € > 0 such that B.(z) C X\ U. By
irreducibility of z, for all x € U there exists t = t(x) > 0 and a = a(x) € (0,1)
such that

PJ){TBE(Z)C >tp<1—a.

Applying Proposition 4.7 (i) along with the parabolic Hérmander condition on
X and compactness of U, there exists ¢, > 0 and «, € (0,1) independent of x
so that

P {7 >t.} <P {1p.(s)c >t} <1— 0, forall z€U. (7.2)
Following the proof of Proposition 4.8(i), the Markov property implies that
P.{rg >mt.} <(1—a,)™!

for all m € N and all € U. Hence T < 00, Py-almost surely. Furthermore,
choosing & = (t., cv,) > 0 small enough so that e’ (1 —a,) < 1, it follows that
for any x € U:

E,e”0=>" B, V1{(m - Dt.<rp < mt.} < > "Po{ry > (m— 1t}

m=1 m=1

o0
].—Oé* QZ 575*1_@*)771
m=1

< oo.Ud

Remark 7.5. Yet another way to rephrase the conclusion of Proposition 7.4
is that the process z; exits any bounded domain in X in logarithmic time or
exponentially fast on average.
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7.2. Recurrence and transience for nice diffusions

We start with the definition of transience and recurrence.

Definition 7.6. Suppose the diffusion z; is nice. We say that a point x € X is
recurrent if for any 6 > 0 and any y € X' \ B;(z)

Py{TBg(I)C < OO} =1 (73)

Otherwise, we say x € X is transient.

Our next goal is to prove that points in X are either all recurrent, in which
case we call z; recurrent, or all transient, in which case we call z; transient.
Thus, the dichotomy between transience and recurrence is established in the
following proposition. Afterwards, we establish further properties of transience
and recurrence.

Proposition 7.7. Assume x; is nice. If x € X is recurrent, then all points in
X are recurrent. Consequently, either all points in X are recurrent or all points
in X are transient.

Proof. Suppose x € X is recurrent and let y € X with x # y. We show that y
is also recurrent. Suppose that § > 0 is any positive real number such that z ¢
Bss(y) and Bas(y) C X. By irreducibility in Definition 7.1 and path continuity
(if x4 € Bs(y) for some ¢, then the inclusion holds for rational t), there exists
t. > 0 such that

2a:= P, (x, Bs(y)) > 0. (7.4)

Since L satisfies the parabolic Hérmander condition on X, w +— P, (w, Bs(y))
is continuous at x by Remark 4.6 and Theorem 4.3. In particular, there exists
€ > 0 such that B.(z) N Bas(y) = 0, Bc(z) C X and P;, (w, Bs(y)) > « for all
w € B(x). Define stopping times o, j = 0,1,.. ., inductively as follows:

o1 =inf{t >0 : z; € B.(2)},
09 — 01 +t*
o3 =inf{t > o9 : x4 € B.(2)}

o2k = O2k—1 + s
02k+1 — inf{t 2 o9k + Tt € BE(LC)}

for k > 2. Then for all j > 1, the stopping time o; is almost surely finite since
x4 is nice and x is recurrent. Next, by the strong Markov property we have for
each j > 0:

Pu{mBs(p)e > 0242} = EwEw [H{TB;(y)c > 02542} Fos; 1]
= Ewl{TB{;(y)C > 02j+1}Ez02j+1 1{TBg(y)C > t*}
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< (1 — Oé)Pw{TBé(y)c > 0’2]'}.

Thus, by induction, P, {75,y > 02;} < (1 — @)’ for all j > 0. Finally, the
Borel-Cantelli Lemma implies P, {75, (y)c < 0o} = 1 forallw € &', and therefore
y is recurrent. U

We also have the following corollary of Proposition 7.7.

Corollary 7.8. Suppose x; is nice. If x; is recurrent, then for any z,y € X
and any open set Uy, C X containing y:

P {w : 3s;(w) € (0,00) 1 00 for which x5, € U, for all j} = 1.

Remark 7.9. Corollary 7.8 states that if x; is recurrent, then for all x € X,
almost surely the process started from x visits infinitely often any neighborhood
of any y € X.

Proof of Corollary 7.8. Let x,y € X and U, C X be open with y € U,. Fix z €
X with z # z and z # y. Choose § > 0 such that Bs(y) C Uy, Bs(z) N Bs(x) =
0, Bs(z) N Bs(y) = 0 and Bs(z) C X. Define stopping times 0,7 = 0,1, ...
inductively by

o9 = 0;
o1 =inf{t >0 : 2+ € Bs(y)}
oo =inf{t > 01+ 1 : 2, € Bs(2)}

Oop+1 = inf{t > oor = x4 € Bs(y)}
Ookto = Inf{t > oor11 + 1 : x4 € Bs(2)}.

By recurrence, oy, k > 0 is almost surely finite. The result follows by setting
Sj = 02j41- O

The next proposition further explores implications of transience for a nice
diffusion x;.

Proposition 7.10. Suppose z; is nice and transient. For any x,y € X there
exists § > 0 small enough such that Bs(y) C X and

P {w : Jto(w) € [0,00) such that z(w) ¢ Bs(y) Vt > to(w)} = 1. (7.5)

Proof. Since w; is transient, there exist d; > 0, y € X, and z € X'\ Bas, (y) such
that

P.{7B;, (y)c = 0o} =: 2a > 0. (7.6)

By Proposition 4.7, there exists € > 0 such that B.(z) C X and

Pw{Tle (y)e = OO} >
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for all w € B.(z). In order to obtain a contradiction, for every ¢ > 0 define
Es(x) :={w : 3s;(w) € (0,00) T oo such that z, (w) € Bs(y),ro =z} (7.7)
and assume there is x € & such that for each § > 0
P{Es(x)} > 0. (7.8)

Note that for each ¢ > 0, one has Es(x) = Es(x:(x)), where z;(x) is the process
with z¢(x) = . Next, we claim that, on the set E5(x) for all § > 0 small enough,
the process x; almost surely enters B, /(2).

To prove the claim, first observe that since X’ is irreducible,

Py{TBe/g(z)C < OO} > 0.

Thus, by path continuity (cf. the proof of Proposition 7.7) there exists t, > 0
such that P, (y, Bej2(2)) =: 2a > 0. Since w + P, (w, B¢/2(z)) is continuous,

there exists § € (0, 1) such that Bs(y) C X and P, (w, Be/2(2)) > a for all w €

B;(y). Fix such ¢ € (0,67) and inductively define stopping times ¢;, i = 1,2, ...,
by

Cl = 1nf{t > 0 : T € Bg(y)},

<2 = Cl + 1y ;

Cowr = nf{t > G+ 21 € Bs(y)},
Cokt2 = Cok+1 + tw.
By the definition of Es(z), the stopping times (; are almost surely finite on

Es(x). Then, the strong Markov property (cf. the proof of Proposition 7.7)
yields

Po{Tp, a(2)e > Coj | Es(2)} < (1 - a) (7.9)

for any j. Thus the Borel-Cantelli lemma implies that P {7p, () <oo|Es(z)}=
1, establishing the claim.
Next, define stopping times o}, i = 1,2, ..., by
oy =inf{t >0 : x; € Bs(y)},
oy =inf{t > o} : 21 € Bja(2)},

O = inf{t > oy, : x4 € Bs(y)},
Oppyo = inf{t > 09,1 21 € Beja(2)}.

By a similar argument to the one used above, it also follows that on the event

Es(z), o’ is finite almost surely for all j > 1. Observe that P(c} < oo) >
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P(Es5(x)) > ¢, where c is independent of j. However, by the strong Markov
property and iteration, if j > 2 we have

Pz{O'/Qj < oo} = EIEI[I{Jéj < oo} |]-—C,éj72]
= Exl{aéj_g < oo}chaé;2 {of < o0} < (1- a)Pz{a’Qj_Q < oo}
<(1—a)y

Thus Borel-Cantelli implies that aéj < oo for only finitely many j, a contradic-
tion. U

As an immediate consequence, we have the following corollary.

Corollary 7.11. If x; is transient, then for any compact set K C X andx € X
P, {w : FtF(w) € [0,00) such that z,(w) ¢ K ¥t > t&(w)} =1
and
tli)IglOPx{th S K} =0.

Proof. Fix € X and for any y € K fix §, > 0 and to(w) = to,,(w) such that the
conclusion of Proposition 7.10 holds true. From the open cover {Bj,(y)}yex
of K choose a finite subcover and define tf to be the maximum of ¢, in this
finite subcover. For the second conclusion, we note that

P.{z; € K} <P {tf(w) >t} =0

as t — oo, where & is as in the first assertion. O

7.3. Invariant measures

A central interest in the theory of stochastic differential equations is the large-
time behavior of the process x;. In particular, we are interested in the relation-
ship between recurrence, transience and the existence of invariant measures.
Such measures are the random analogues of equilibrium points of deterministic
ordinary differential equations.

To introduce invariant measures, throughout this section we again assume
x; is a nice diffusion. In particular, x; is a nonexplosive process on X, and
consequently the process z; is Markov with Markov semigroup (P;);>0. Recalling
that B denotes the Borel sigma algebra of subsets of X, we call a positive, B-
measure p an invariant measure, if fPy = p for all t > 0, where pP; was defined
n (2.6). An invariant measure p with p(X) = 1 is called an invariant probability
measure.

Remark 7.12. Observe that if p is an invariant probability measure, the equal-
ity uPy = p for all t > 0 means that the process x; with initial distribution p
has the distribution p for all times ¢ > 0. In other words, the statistics remain
invariant under the dynamics.
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Remark 7.13. It is common in the literature to implicitly assume that an
invariant measure is an invariant probability measure. However, below we need
to distinguish between invariant measures which are probability distributions
and those which are not.

We first show that a nice diffusion x; which is transient cannot have an
invariant probability measure.

Corollary 7.14. If x; is nice diffusion which is transient, then x; cannot have
an tnvariant probability measure.

Proof. Suppose to the contrary that there exists an invariant probability mea-
sure p. Then, there exists a compact set K C R™ with K C X and u(K) > 0.
Since p is invariant,

0 < u(K) = / w(dx)Py(z, K) for all ¢ > 0.
X

Using the Bounded Convergence Theorem and Corollary 7.11, it follows that

/ w(dz)Py(x, K) — 0
X

as t — oo. Hence, p(K) = 0, a contradiction. O

On the other hand, when z; is recurrent, one can always construct a o-finite
invariant measure using an embedded Markov chain via cycles. We provide
details below, but first we prove an auxiliary result that allows us to further
categorize recurrence.

Proposition 7.15. Let z; be a nice diffusion. If U C X is a bounded, nonempty,
open set with U C X and E 1y < oo for all x € X, then:

(i) x4 is recurrent; B
(i) EyxTye < 0o for allx € X and any nonempty, open set V. .C X withV C X

Remark 7.16. The argument is similar to previous cycle constructions, except
that one has to control expected values rather than probabilities.

Proof of Proposition 7.15. We prove both conclusions simultaneously. By mak-
ing V smaller, we may suppose without loss of generality that V C V C X is
an open ball. Fixing € &, our goal is to show that E;mye < oo.

Let X, C X be an increasing sequence of bounded open sets with X} C
X411 and Up X, = X. By compactness, there is ky € IN large enough so that
X, D UUV U{z} for each k > kg. Since x; is nice, for each fixed y € U
there is £ = £(y) > ko + 1 such that ue(y) := Py{myc < 7x,} > 0. Note that
for each k > ko and 2z € Q := X, \ 'V one has P.{rg < oo} = 1. Indeed, by
Proposition 7.4, z; almost surely leaves X} in finite time. Setting g = 1 on OV
and g = 0 on 0}, we have u(y) = Eyg(z-,) and by Theorem 6.2, ue(w) > 0
for all w € B.(y) and some € > 0. Since ¢ — wuy(x) is nondecreasing for any
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2 € Xy,+1, the compactness implies the existence of k* > ko + 1 and ¢ > 0 such
that

inf Py{rye <7x,.}>q.
yeU

Next, define stopping times n;, i = —2,0,1,2..., as follows: n_o = 0 and

No = mf{t >0: x EU},
m =inf{t >n : x4 € OXp-},
ne = inf{t >n : z, € U},

M2i+1 = mf{t Z M2i * Tt € an*}7
M2i42 = inf{t > M2i+1 : Tt € U}

As in the proof of Proposition 7.7, using Proposition 7.4 one can show that each
n; is almost surely finite and P {rz > man} < (1 — ¢)V 1. Then, by Borel-
Cantelli, 7 < n2n, for Pg-almost surely for some bounded random index V.
The conclusion in (i) follows as x was arbitrary.

To prove (ii), note that

oo

E, Ty = ZE TVFl[Tiz(g 1):7M25) 7—V Z 22,1 772(;'_1),712]')(7-76) (7'10)
7=0 7=0

and if By := {w : x; € V for some t € [M2(e—1), M2¢) }, then

Jj—1

ey N [ﬂEzf} nE;. (7.11)

=1

Define a = sup, cir Eyn2. We next claim that o < co. Indeed, for any y € U, we
have 1y = 0. Moreover, by the strong Markov property,

Eyne = Eym + EyEy[ne — m|Fy,] = Eym + EE;, 5

<Eym + sup E.71ge.
ZED X+

Applying Proposition 7.4 with U = X« SUp,cp M < 0. Also, by assumption
E,mpc < oo for all z € X. Applying Proposition 4.8(ii) (with U replaced by
X\ U) and z; € X for each t > 0, yield that z — E, 75 is smooth on X' \ U.
In particular, z — E,7ge is bounded on the compact set Xy, and the claim
follows.

In addition, for our fixed x € A}, one has E;ny < oo, and consequently by
Proposition 7.4 and the arguments above

B = Ezn2 = Exno + Bz [m — no] + ExEx[n2 — m|Fy,] (7.12)
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< Euno +supEyry, + sup E,r5e < oo. (7.13)
yeU YyED Xy,
We next claim that for j > 2 the following estimate holds:

Euni2j 1,0 mop (77e) < (L= gV 2B+ (G- 2)(1 - ¢ Pa+ (1 - ¢) e
(7.14)

We proceed by induction. If j = 2, then
Ex7741[772,174)(7'7‘:) = EJCEQU["M]-EfﬁEQ |‘F'f]2}
<Em +E;lpE; e < B+ (1 - q)a,
which establishes the base case of the induction argument. Suppose (7.14) holds

for some j > 2. Then,

E$n2(j+1)1[?72;"772(”1))(7'V°) = Ew [Ewn2(j+1)1 1:1 EiNE; 1 |]:T72]

J
= Emsz( (BN Ej+1|-7:772>
(=1
+ Ex[Ea(2gi41) = m2) 1 peng,., [
S B(l - Q)j71 + (1 - Q) SuEEy"hj]-m%;ll E¢NE;

yeU
<BlL-¢ '+ G -DA-g e+ (1-g)a
This finishes the proof of (7.14). Then, (ii) follows from (7.10). d

The previous result gives rise to the following definition.

Definition 7.17. Suppose z; is a nice diffusion and assume there exists a
bounded, nonempty open set U C X with U C X such that E,mye < oo for all
y € X. Then, we call x; positive recurrent. Otherwise, if x; is recurrent but not
positive recurrent, we call x; null recurrent.

Note that by Proposition 7.15, positive recurrence immediately implies recur-
rence. Next, we show that if x; is positive recurrent, it has an invariant proba-
bility measure. The following result can be found in a number of references, see
for example [37, 56]. We provide most of the details for completeness.

Proposition 7.18. Suppose x; is nice. If x4 is recurrent, then there exists a o-
finite invariant measure. If Ty is positive recurrent, then there exists an invariant
probability measure.

Proof. Fix open balls U,V withU CV CV C X.DenoteI'; = 9V and 'y = U
and introduce stopping times o;, ¢ = 0, 1,... defined by

O’QZO7
oy =inf{t >0 : 2 €T},
09 :mf{tz o] @ Tt € FQ},
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O2k+1 = inf{t > 09k Xt € Fl},

O2k+2 = inf{t > O2k41 @ Xt € FQ} .

Since x; is a nice recurrent diffusion, each of the stopping times o; is almost
surely finite. We can thus define a discrete-time Markov chain {X,,},,>0 on I'y
by Xo = « € Ty and X,, = z,,,, n > 1. Because {X,,} has compact state
space I'9, it possesses an invariant probability measure v supported on I's by
the Krylov-Bogolyubov Theorem.! Then, v induces a measure y on B by

w(B) = /F v(dz)E, /002 1p(z,)ds =: /F v(dz)E 0", (7.15)

where o is the total time spent by the process z; in B during one ‘cycle’ [0, o3].
The calculations in [56, starting on p. 31] yield that g is an invariant measure
for x;.

To prove that p is o-finite, we show that for any compact set K C X

sup ExaK < 00,
zel's

where
o2 o1 o2
oK :/ 1x(xs)ds :/ 1K(xs)ds—|—/ 1x(xs)ds = o + 65 . (7.16)
0 0 o1

Without loss of generality, by making K larger, we can assume U UV C K.
First observe that

Tﬁc
sup E,0% < sup E o1 + sup Ey/ 1{z; € K}ds.
z€ls xeU yel'y 0

Using Proposition 7.4, sup, 7 Ez01 < oo. For the other term, note that since

I'y € K we have

TUc TUc
sup Ey/ 1{zs € K}ds < sup Ey/ 1{zs; € K}ds.
y€er, 0 yeK 0

Following the arguments in [37], set n = [/7" 1{z, € K} ds and let A(t) = {n >

t}. By definition of 1, note that n < 7. Hence
P, {A(t)} < Py{rge = t} < Py{mye >1/2}.

Thus using the fact that x; is recurrent, applying Proposition 4.7(i) and com-
pactness of K we deduce the existence of o < 1 and large ¢y > 0 such that

P, {A(to)} < Py{rge > fo} < Py{rge > t0/2} <a (7.17)

IHere, if Q(z, dy) denotes the one-step transition kernel of X,,, a probability measure is a
invariant if p@Q = u.
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for all y € K. Fix such ¢y and define
ni(t) =inf{fw >0 : [["1x(zs)ds =t +to}.

Then, by path continuity, z,, ;) € K. Hence, by the strong Markov property
and (7.17)

P, {AQ2(t+1t0))} = Ey1{n>2(t +t0)} = B,1{n >t + 1 }E
<a?

1{n>t+to}

g (1)

Repeating the process inductively yields P, {A(n(t +t9))} < o™ for all y € K.
Finite expectation of 7, hence sigma finiteness of 1, now follows.

To prove that p is a ﬁnite measure if x; is positive recurrent, note that oy is
almost surely finite and p(X fr v(dz)E,o5. By the strong Markov property,
for any x € I'; we have

E,oo =E,01+E; (00 —01) =E;01 + E, E;, m5e < sup E,o1 + sup E,7ge.
z€ly yelr

By Proposition 7.4, sup,cr, Ez02 < co. By positive recurrence E,7ge < oo for
each y € X, and by Proposition 4.8(i), we obtain sup,cr, E,7ge < 0o, and the
finiteness of p follows. Thus, p can be normalized to an invariant probability
measure, and the proof is complete. O

Proposition 7.19. Suppose x; is a nice diffusion. If x; has an invariant prob-
ability measure [, then u is unique and defined (cf. (7.15)) by

i(B) = % v(dz)EyoB for any B € B, (7.18)

where N = fr (dz)Egzo® < oo, and v, Ty and o® are as in the proof of
Proposition 7.18. In addition, i(B) > 0 for any nonempty open B C X.

Proof. Suppose ji is an invariant probability measure and fix a nonempty, open
set B C X. We may assume without loss of generality that B is bounded. We
first claim that fi(B) > 0. Since any invariant probability measure is a solution
of L*i = 0 on X in the sense of distributions, by hypoellipticity of L* on X,
[t has a continuous probability density p with respect to Lebesgue measure on
X. Since i(X) = 1, then p > ¢ > 0 on some bounded open set W C X and
some constant ¢ > 0. By Definition 7.3(iii) and path continuity, for any x € W
there exists t > 0 with P(z, B) > 0. By applying Remark 4.6 to Theorem 4.3,
x — Py(z, B) is continuous, and therefore P;(x, B) > ¢’ > 0 for all z in an open
subset W’ of W. Then,

WB) = [ ida)Pie.B)> [ plda)PilaB) = oW 0.

where |[W’| is the Lebesgue measure of W’. This finishes the proof of the claim.
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If there is more than one invariant probability measure, then by standard
arguments we can choose two distinct ergodic invariant measures, which are in
particular mutually singular. But we showed by the claim above that X belongs
to the support of any invariant probability measure, and therefore such measure
is unique.

Since x; has an invariant probability measure fi, Corollary 7.14 implies that
x4 is recurrent and by Proposition 7.18, u in (7.15) is o-finite.

Since fi is the unique invariant probability measure, it is ergodic and we
proved that the support of i is X. Then, by Birkhoff’s Ergodic Theorem, for
any compact set K C X

1T X
Jim / Lic(ae) dt = j(K) (7.19)
for almost every = € supp(ft) = X. Hence, by the invariance of pu, for any

compact set K C X and ¢ > 0, we have

() = [ Boteontin) = Jim [ p(o)Bo g [ L) ds > n(0ace).

where the last inequality follows from Fatou’s lemma and (7.19). Since there
exists a compact K C X so that f(K) > 0 and by o-finiteness pu(K) < oo we
have shown that u(X) < oco.

After normalization, p, and therefore fi, is a well defined invariant probability
measure and, by uniqueness, i = [i, as desired. O

Remark 7.20. Note that one can choose arbitrarily the sets U,V, I'y = 9V
and I'y = QU in the definition of x4 in (7.15), as long as U C V C V C X and
U,V are nonempty bounded, open with smooth boundaries I'y, I's, respectively.
By Proposition 7.19, different choices of U and V induce the same measure p
up to a normalization constant.

The final result in this section establishes that in our context, the existence
of an invariant probability measure implies that x; is positive recurrent.

Theorem 7.21. Suppose x; is a nice diffusion. Then, x; has an invariant
probability measure if and only if x; is positive recurrent.

Proof. If x; is positive recurrent, then there is an invariant probability measure,
which is moreover unique, according to Proposition 7.18 and Proposition 7.19.

Conversely, if x; has an invariant probability measure fi, then it is unique
and given by (7.18). Fix an open, nonempty, bounded set V C X with V C X.
It suffices to show that E, 7y < oo for all z in a dense set D C X'\ V, because
then recurrence combined with Proposition 4.8(ii) implies E;7c < oo for all
x € X\ V and the result follows.

Fix 2 € X\ V and € > 0 such that B.(x) C X\ V. By hypothesis and (7.15),
A(X) = 1 < oo, which implies E o9 < o0, for every y € I'y C I's, where
v(Ty) = 1. By Proposition 7.19 one has ji(B,/2(x)) > 0, and there exists z, € I'y
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for which Pw*{TBS/z(fv) < 09} > 0. Denoting for simplicity n = TBE (2> the
strong Markov property implies

oo > EI*O-Q > Em*l{n < 0'2}0'2
=E,; nl{n < o2} +E;, 1{n < 02}E,; [(02 — n)|Fy] > E; 1{n < UZ}EanVC'

Since P, {n < o2} > 0, there exists y € B.(x) for which E,7yc < co. This
finishes the proof. O

Remark 7.22. We indicate a gap in the proof of [37, Lemma 3.7] and note
some missing details in [37, Lemma 4.4].

The result [37, Lemma 3.7] is crucially used to establish the dichotomy for
transient and recurrent points (see [37, Theorem 3.2]). In our notation, the con-
text of the argument is as follows. It is assumed that for fized x, fooo Pe(x,V)dt <
oo for some open neighborhood V' of x. It is then claimed that

o0 o0 oo
lim sup/ Py, V)dt < / limsup P (y, V) dt < / Pe(x, V) dt < oo.
0 0 0

y—x y—x

Thus it then follows that there exists an open neighborhood of x where the
integral is finite. To the best of our knowledge, the limit-integral exchange was
not justified and we could not find a simple solution. In essence, our fix of the
arguments in [37] were presented this section.

In addition, there are missing details in the proof of [37, Lemma 4.4]. Indeed
it is claimed that Bony’s form of the Harnack inequality applies without the
assumptions made in Bony’s original paper [9, Theorem 7.1]. Although we have
seen that this is indeed true as claimed (see Theorem 5.5), it requires some
nontrivial arguments like those presented in this paper. Similarly, the claim
in [37, Lemma 4.4] is effectively Proposition 4.8.
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