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Abstract

We study the statistically invariant structures of the nonlinear generalized Langevin
equation (GLE) with a power-law memory kernel. For a broad class of memory kernels,
including those in the subdiffusive regime, we construct solutions of the GLE using
a Gibbsian framework, which does not rely on existing Markovian approximations.
Moreover, we provide conditions on the decay of the memory to ensure uniqueness
of statistically steady states, generalizing previous known results for the GLE under
particular kernels as a sum of exponentials.
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1 Introduction

1.1 Overview

We study the generalized Langevin equation

d x(t) = v(t) dt,

d v(t) = �v(t) dt� U
0(x(t)) dt�

Z t

�1

K(t� r)v(r) dr dt+
p

2 dW (t) + F (t) dt, (1.1)

describing the motion of a particle with position x(t) 2 R and velocity v(t) 2 R in a poten-
tial U . The particle is subject to a viscous friction force �v(t) dt and a convolution term
involving the convolution kernel K, modeling a thermal drag force with memory effects.
By the fluctuation-dissipation relation, both of these forces are respectively balanced by
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Gibbsian dynamics for the Langevin equation

stochastic processes W (t) and F (t), where W (t) is a standard one-dimensional Brownian
motion and F (t) is a mean-zero stationary Gaussian process with covariance given by

E[F (t1)F (t2)] = K(|t1 � t2|), for all t1, t2 2 R. (1.2)

Note that the memory in equation (1.1) is present both in the integral term with the
kernel K and in the Gaussian process F (t) which is not white in time.

In the absence of memory effects, that is setting K ⌘ 0 and F ⌘ 0 in (1.1) above,
large-time properties of the resulting Markovian system are well-understood, in the
sense that under general conditions on the potential U , it is known that the system
admits a unique ergodic invariant measure ⇡(x, v) on R2 which is exponentially attractive
and whose formula is given by

⇡(dx, dv) / exp(�H(x, v)) dx dv, (1.3)

where

H(x, v) =
v
2

2
+ U(x)

denotes the Hamiltonian of the system. For example, see [4, 5, 16, 23, 31, 36] and
the references within. When K ⌘ 0 and F ⌘ 0, one can equally speak of stationary
solutions in path space C(R;R2) of (1.1) as they are in one-to-one correspondence
with the invariant measures on R2, namely the fixed points of the Markov semigroup
generated by (1.1) without the memory terms. Here, a process X(t), t 2 (�1,1), is
called stationary if the distribution

�
X(t1 + s), . . . , X(tn + s)

�
, t1 < · · · < tn,

does not depend on s. For further discussion, see Sections 4.1–4.2 below. On the other
hand, in the presence of memory in (1.1), comparatively much less is known about both
the existence and uniqueness of statistically stationary states under general conditions
on K. The goal of this paper is to make progress on bridging this gap between the
standard Langevin equation (K ⌘ 0, F ⌘ 0) and its generalized counterpart (1.1) with
memory.

In general, there is no Markovian dynamics on R2 associated with (1.1); and hence,
no directly analogous concept of an invariant measure on R2. Thus, we are left to study
the stationary solutions of (1.1) in C(R;R2) as this concept remains well-defined. One
can always associate such a stationary solution to a deterministic dynamical system
X = (x, v,W, F ) where X 2 C(R;R4) represents the dynamics lifted to the path space.
Here the dynamics is given by the shift map ✓t : C(R;R4) ! C(R;R4) defined by

(✓tX)(s) = ✓tX(s) = X(t+ s), (1.4)

for X = (x, v,W, F ) 2 C(R;R4). As with any deterministic dynamical system, we can
view this as a (nonrandom) Markov process whose invariant measures are the stationary
measures of X = (x, v,W, F ). However, the phase space of such a representation is so
large to be almost useless. The concepts of “future” and “past” which are so powerful in
a more standard Markovian representation have little power in this context. In particular,
the future trajectories encode the past and hence do not necessarily have the same
strong independence properties enjoyed by a more standard Markovian structure. One
of the central themes of this note is that there are representations lying between the
standard Markov representation of memoryless Langevin dynamics on R2 and the lifted
dynamics to the path space C(R;R4). Moreover, these representations can be applied in
a fruitful way to the case of the generalized Langevin equation (1.1).
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Gibbsian dynamics for the Langevin equation

Although there is no general way to represent solutions of (1.1) as a Markov process
on R2, there are special cases where one can still define a convenient Markov process
associated to (1.1) on an extended state space. In particular, when the memory kernel
K(t) can be written as a finite sum of exponentials; that is,

K(t) =
nX

k=1

cke
��kt, (1.5)

for some constants ck, �k > 0, one can augment the resulting system (1.1) by a finite
number of auxiliary variables to produce a Markov process on a higher, but finite-
dimensional space. This corresponding finite-dimensional system was studied rigorously
in [30, 31]. There, under general hypotheses on U , it was shown that the system is
uniquely ergodic and the marginal invariant distribution of the pair (x, v) is precisely ⇡
as in (1.3) [14, 30, 31]. However, because the sum above is finite, it cannot describe a
kernel with power-law decay, i.e., a kernel K(t) satisfying

K(t) ⇠ t
�↵ as t ! 1, (1.6)

for some ↵ > 0. Subsequently, this approach was extended to handle such memory
kernels by writing K as an infinite-sum of exponentials (n ! 1, ck = ck(�k) > 0
in (1.5)) [13]. See Remark 2.12 below. The resulting dynamics is an infinite-dimensional
Markov process on a Sobolev-like space and still has a meaningful sense of “future” and
“past”. In particular, the process is amenable to classical Markovian techniques despite
being infinite dimensional.

In this infinite-dimensional context [13], it was shown that there exists an explicit
invariant probability measure whose (x, v)–marginal agrees with (1.3). This is true for
memory kernels in this specific form regardless of the memory decay rate ↵ > 0 as
in (1.6). However, to establish uniqueness of this measure, the restriction ↵ 2 (1,1) as
in (1.5) was imposed leaving out the important subdiffusive regime of ↵ 2 (0, 1) (see the
discussion in Section 1.2 below). One of our goals here is to push through this threshold.
Additionally, we will study (1.1) for the Gaussian forcing as in (1.2) both when the
memory kernel satisfies the structural assumption in (1.5) with n = 1 and alternatively
when the memory kernel has power-law decay (1.6) but cannot be expressed as an
infinite sum of exponentials.

For general stationary Gaussian forcing F , there is not necessarily a Markovian
dynamics associated to (1.1).1 Hence, we lack a natural notion of an Markov invariant
measure and study the stationary solutions of (1.1) instead. We give general conditions
guaranteeing that there is at most one stationary solution. Although there is no Markov
formulation of the stochastic dynamics, there is however a natural skew-flow on the
infinite past C((�1, 0];R2) of the trajectories of (x, v) fibered over the Gaussian forcing
F . That is, given a noise realization and an initial trajectory on (�1, 0], we evolve (1.1)
on [0, t], 0 < t, hence obtaining a solution path on (�1, t]. See Section 3.2 for a more
detailed discussion.

When (1.5) holds with n < 1 or n = 1, then there is a natural Markovian formulation
of the stochastic dynamics [13, 30, 31]. We will study a different Markovian formulation
than used in those works. The assumption in (1.5) implies that F (t) can be constructed
as a functional of a (possibly) infinite collection of independent Brownian Motions on the
time interval (�1, t]. We formulate a Markovian dynamics which takes as its state space
the trajectories of (x, v) on the infinite past C((�1, 0];R2) and the infinite past of the

1One can always consider as the state space the path space of a process on the time interval (�1,1). The
dynamics is then the deterministic shift of the trajectories. Lifting of the deterministic process to pathspace is
not the type of stochastic Markov dynamics we seek.
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Gibbsian dynamics for the Langevin equation

collection of independent Brownian Motions used to construct F . We show that when
↵ > 1/2, this dynamics has at most one invariant measure; or equivalently, at most one
stationary solution, cf. Theorem 4.3.

Remark 1.1. Gibbsian Dynamics: As previously mentioned above, it is possible to
enlarge the state space of any dynamics to make it Markovian. In the extreme, by making
the state space the entire trajectory {

�
x(t), v(t), F (t)

�
: t 2 (�1,1)}, the dynamics is

simply the shift map ✓t : (x, v, F ) 7!
�
x( · +t), v( · +t), F ( · +t)

�
. At this level of generality,

the fact that the dynamics is Markovian provides little useful structure. However, our
setting below has more structure.

In the continuous-time Markov setting, the distribution of infinitesimal increments
is a function the current state of the process. In the Gibbsian setting, as envisioned in
[9, 21], the distribution of infinitesimal increments is a function of the entire past. We
will return to this setting in Section 3.1. The term Gibbssian comes from the dynamics
being dictated, not by a compatible family of Markov measures (depending only on the
boundary data in space-time), but rather a compatible family of Gibbs measures (in the
general sense of [10]).

1.2 Physical motivation

It is important to note some of the physical reasons for considering memory kernels
K in general, and in the power-law regime in particular. The standard Langevin equation
is commonly used to describe microparticle motion embedded in Newtonian fluids, which
amounts to the implicit assumption that there is no time correlation between the foreign
microparticles and the thermally fluctuating fluid molecules. Following Newton’s Second
Law [31], the two-dimensional Langevin equation has the form (1.1) with K ⌘ 0 and
F ⌘ 0. On the other hand, for viscoelastic fluids, elasticity induces time correlation
between foreign particles and fluid molecules, leading to memory effects. Thus the
standard Langevin equation is not sufficient to describe the motion of the particles
suspended in the fluid. In order to capture such phenomena, the generalized Langevin
equation (1.1) with general K was introduced in [18, 27, 28] and later popularized
in [20].

It is known that the unconstrained GLE (i.e. U ⌘ 0 in (1.1)) exhibits anomalous
diffusion; that is, the mean-squared displacement Ex(t)2 may not be asymptotically
proportional to t as t ! 1. In fact, it was shown in [6, 24] that when K 2 L

1(R), the
unconstrained GLE is asymptotically diffusive, i.e., Ex(t)2 ⇠ t as t ! 1. Otherwise,
if K(t) ⇠ t

�↵, ↵ 2 (0, 1), then the unconstrained GLE is asymptotically subdiffusive,
i.e. Ex(t)2 ⇠ t

↵ and when ↵ = 1, there is a transition phase between diffusion and
subdiffusion, i.e., K(t) ⇠ t

�1 implies Ex(t)2 ⇠ t/ log(t) as t ! 1. For viscoelastic fluids,
the subdiffusive regime is observed in experiments [11, 19, 25, 26, 32, 33, 34], which is
why we are primarily interested in the scenario where K has a power-law decay rate
↵ 2 (0, 1].

1.3 Paper overview

The rest of the paper is organized as follows. In Section 2, we introduce assumptions
and briefly state the well-posedness result for (1.1). In Section 3, we discuss the solutions’
structures in accordance to different assumptions on the memory kernel and the noise.
In particular, we will see that the dynamics (1.1) induces a skew-flow on the skew
path space. Section 4 discusses the associated stationary solution(s) for this dynamics.
Furthermore, we prove our main result on the uniqueness of the associated stationary
measures in this section. The argument proving uniqueness, in particular, makes use
of some auxiliary results collected and proved in Section 5. In Section 6, we establish
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Gibbsian dynamics for the Langevin equation

the existence of a stationary measure when the kernel can be written as an infinite sum
of exponentials. In Appendix A, we establish the well-posedness result in detail. In
Appendix B, we prove a technical result which allows us to bound the expected value of
the maximum of F (t) over finite intervals of time. This result is employed in the proof of
well-posedness.

2 Assumptions and well-posedness

2.1 Well-posedness

We begin by clarifying what we mean by a solution of (1.1). Throughout, we consider
a probability space (⌦,F ,P, {Ft}) where the set ⌦ is endowed with a probability measure
P and a filtration of sigma-algebras {Ft : t 2 R}.

Definition 2.1 (Solution on (�1,1)). A (weak) solution to (1.1) on the time interval
(�1,1) is a probability space (⌦,F ,P, {Ft}) on which a triple of stochastic processes
(⇠, F,W ) is defined so that the following conditions are satisfied:

1. ⇠(t) = (x(t), v(t)), F (t) and W (t) are all stochastic processes adapted to the filtra-
tion {Ft}.

2. F (t,!) is a stationary Gaussian process with mean zero and covariance K in the
sense of (1.2) and W (t,!) is a standard, two-sided Brownian Motion both with
respect to {Ft} such that F and W are independent.

3. With probability one, the triple (⇠, F,W ) solves (1.1); that is, with probability one,
for all t0, t1 2 R with t0 < t1 we have

x(t1)� x(t0) =

Z t1

t0

v(t) dt,

v(t1)� v(t0) = �

Z t1

t0

h
v(t) + U

0(x(t)) +

Z t

�1

K(t� r)v(r) dr
i
dt

+
p

2
�
W (t1)�W (t0)

�
+

Z t1

t0

F (t) dt.

(2.1)

Definition 2.2 (Solution with an initial past). A (weak) solution to (1.1) on the time inter-
val (T0, T1) with T0 2 R and T1 2 R[ {1} with initial past ⇠0 = (x0, v0) 2 C((�1, T0];R2)
satisfies the same conditions as in theorem 2.1 but the stochastic processes need only
be defined on the time interval (T0, T1) with the exception of ⇠ = (x, v) which is defined
on (�1, T1) with ⇠(t) = ⇠0(t) for t 2 (�1, T0]. Additionally, (2.1) need only hold for
t0, t1 2 (T0, T1).

Remark 2.3. In this paper, we will prove strong existence of solutions on [T0,1) given
an initial past ⇠0 = (x0, v0) belonging to an appropriate subclass of C((�1, T0];R2).
Moreover, we will also establish weak uniqueness, which together is stronger than weak
existence and weak uniqueness.

Throughout, we will employ the following assumption on the potential U in (1.1).

Assumption 2.4. The potential U : R! R is such that U 2 C
3(R),

R
R
|U

0(x)|e�U(x)
dx <

1 and the global estimate holds

b(U(x) + 1) � |x|
1+� for all x 2 R,

for some constants b > 0 and � 2 (0, 1).

Remark 2.5. The first two conditions on U are not directly used in this paper. They
were previously used in [13, Theorem 7] to construct an explicit invariant measure for
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the Markov system (6.3) below. We then will use this result to construct a stationary
measure for the dynamics (1.1) in Section 6.

We also use the following condition on the memory kernel.

Assumption 2.6. K 2 C
1([0,1); [0,1)) and there exists eK 2 C([0,1)) for which

sup
s�0

K(t+ s)

K(s)
= eK(t) for all t � 0.

In order to state our main existence and uniqueness result, for t 2 R let

C(�1, t] :=

⇢
(x, v) 2 C((�1, t];R2) :

Z t

�1

K(t� r)|v(r)|dr < 1

�
. (2.2)

Proposition 2.7. Suppose that Assumption 2.4 and Assumption 2.6 are satisfied. Then
there exists a subset K ⇢ C((�1,1);R) so that P(F 2 K) = 1 and for every t0 2 R,
F 2 K and every initial condition ⇠0 = (x0, v0) 2 C(�1, t0], there exists a unique solution
⇠ = (x, v) with initial past ⇠0 on the time interval [t0,1) such that ⇠ 2 C(�1, t] for all
t � t0. Furthermore, we have the energy estimate

E sup
t0rt

H(x(r), v(r))




H(x0(t0), v0(t0)) +

✓Z t0

�1

K(t0 � r)|v0(r)|dr

◆2

+ E sup
t0rt

F (r)2 + 1

�
e
c(t0,t), (2.3)

where we recall that H(x, v) = 1
2v

2 + U(x).

The proof of Propoosition 2.7 is given later in Appendix A.

Remark 2.8. For a general centered stationary Gaussian process F (t), it is not immedi-
ately obvious that for all t0 < t

E sup
t0rt

F (r)2 < 1. (2.4)

In Appendix B, we will make use of the condition that K 2 C
1, cf. Assumption 2.6, to

show that this is indeed the case for the process F (t).

2.2 Structural assumptions on the noise

At times, we will further assume that memory kernel K has the following specific
form previously employed in [13].

Assumption 2.9. There exists continuously differentiable functions J` : [0,1) ! [0,1),
` � 1, so that the stationary Gaussian forcing F (t) can be represented as

F (t) =
1X

`=1

Z t

�1

J`(t� s)dB(`)(s), (2.5)

where {B
(`) : ` � 1} is a collection of mutually independent standard two-sided Brownian

motions. Furthermore,

t 7!

1X

`=1

Z
1

0
J`(t+ r)J`(r)dr,

is continuously differentiable.
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Remark 2.10. theorem 2.9 together with the fluctuation-dissipation relation (1.2)
immediately imply that the memory kernel K(t) is continuously differentiable and of the
form

K(r) =
1X

`=1

K`(t) where K`(t) =

Z
1

0
J`(t+ r)J`(r)dr.

We will also need some structure on the decay of the kernel at infinity.

Assumption 2.11. There exist constants t⇤ > 0, C > 0 and ↵ > 1/2 such that

K(t)  Ct
�↵ for all t � t⇤.

Remark 2.12. When F is of the form (2.5), an example of particular interest is when J`,
` � 1, is given by

J`(t) =
p

2c`�`e
��`t,

where

c` =
1

`1+↵�
and �` =

1

`�
, (2.6)

for some constants ↵ > 0,� > 1. In this case,

K(t) =
1X

`=1

c`e
��`t, (2.7)

and one can show that [1, Example 3.2]

K(t) ⇠ t
�↵

, t ! 1.

Hence, K is a power-law memory kernel which clearly satisfies Assumptions 2.6 and 2.11.

Remark 2.13. Note that if we first suppose that K is of the form (2.7), Doob’s Theorem
[7] and the fluctuation-dissipation relation (1.2) together imply that F must be of the
form

F (t) =
1X

`=1

p
2�`c`

Z t

�1

e
��`(t�r)

dB
(`)(r), (2.8)

where in the above, {B(`)
}`�1 are two-sided, independent standard Brownian motions.

When theorem 2.9 holds, we arrive at the following form for the GLE

d x(t) = v(t) dt,

d v(t) = �v(t) dt� U
0(x(t)) dt�

X

`�1

Z t

�1

K`(t� r)v(r)dr dt (2.9)

+
X

`�1

Z t

�1

J`(t� r)dB(`)(r) dt+
p

2 dW (t),

where W is a standard, two-sided, real-valued Brownian motion independent of the
collection {B

(`)
}`�1 and K` is as in Remark 2.10.

3 Structures on Pathspace

Since we often work on the phase space C(R;R2) and its subspaces, we use the
topology on C(R;R2) defined in the follow sense: A sequence {gn} ⇢ C(R;R2) is said to
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converge to g 2 C(R;R2) if the convergence holds in the sup norm on any bounded time
interval. That is, for all fixed T > 0,

sup
t2[�T,T ]

|gn(t)� g(t)| ! 0, as n ! 1.

The closed sets in C(R;R2) are then defined with respect to the above mode of conver-
gence, hence inducing the corresponding topology of open sets as well as the Borel
sigma algebra of subsets of C(R;R2).

In the introduction, we already discussed how (1.1) along with its two forcings, W
and F , can be viewed together as Markov process on the extended path space C(R;R4)
under the shift map. However, this encodes little useful structure of the system. This is
in direct contrast to the more traditional Markovian embeddings which hold when (1.5)
(with n possibly infinite) is enforced as also discussed in the introduction. In this section,
we therefore discuss some intermediate, but fruitful structures used in later sections in
this paper. To aid in the discussion, we begin with a number of preliminary discussions
in simplified settings.

3.1 The structure of solutions in simplified settings

As we have already noted, when both the general Gaussian forcing F and memory
kernel K are taken to be zero, (1.1) is a standard stochastic differential equation (SDE)
which generates a Markov process on R2. The appearance of each of these introduces
particular complications and structures. We will first consider them individually before
exploring their combined effects.

Time inhomogeneous SDE and its skew-flow of kernels

If only the memory kernel K is taken to be zero and F is a stationary Gaussian process,
then the resulting equation (1.1) is a standard, time-homogeneous SDE. The resulting
equation, in particular, generates (provided solutions make sense) a family of solution
maps 'F,W

s,t of (1.1) for (F,W ) 2 C(R;R2) and s  t. The addition of F does not destroy
the classical skew structure of the SDE; namely,

'
F,W
s+r,t+r = '

✓r(F,W )
s,t for any r 2 R

where, for any function of time f , we offer the slight abuse of notation and set (✓rf)(t) =
f(t+ r).

By averaging over W , we define a flow of Markov kernels RF
s,t by

R
F
s,t(⇠, A) = P('

F,W
s,t (⇠) 2 A|⇠, F ) for A ✓ R2

and initial conditions ⇠ = (x, v) 2 R2. For s < r < t, we have the usual time inhomoge-
neous Markov property R

F
r,tR

F
s,r = R

F
s,t. But, we also have the following skew property

inherited from the underline SDE,

R
F
s+r,t+r = R

✓rF
s,t

for s  t and r 2 R. (See Section 3.2 for more details.)
Without more information on F , Markovian representations of the dynamics must

include the entire future of the process F . This means that the only independence of
the future from the past must come from the standard Brownian motion W and not the
process F . However, if the process F satisfies Assumption 2.9, then there is memory
loss in F and one can define Markov process with state variables (⇠, B(1)

, B
(2)

, . . . ) on
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the statespace R2
⇥ C((�1, 0],R)N. The resulting Markov Kernel Pt is then defined

as follows: First {B(n)
}
1

n=1 are extended to the time intervals (�1, t] by drawing inde-
pendent increments of the Weiner process of each. Next, a realization of the Weiner
process W is drawn on the time [0, t] starting from zero as only the increments of W

are used. Then the initial conditions are evolved to time t using '
✓r(F,W )
0,t (⇠) with F

reconstructed from (B(1)
, B

(2)
, . . . ) using the formula from (2.8). The resulting state

(⇠(t), B(1)
, B

(2)
, . . . ) is a random variable taking values in R2

⇥C((�1, t];R)N and hence
(x(t), v(t), ✓tB(1)

, ✓tB
(2)

, . . . ) takes values again in R2
⇥ C((�1, 0];R)N. The law of this

random variable is taken as the transition measure defining Pt starting from this initial
condition. The advantage of this representation is that the marginals the process in
⇠ = (x, v) again have “Markovian feel” of the original process.

The Gibbsian SDE and Markov process on path space

Consider now the situation where F ⌘ 0 and we leave the memory kernel intact. The
resulting dynamics is not a Markovian diffusion in the classical sense. However, the
resulting SDE is still a rather standard Itô process as its coefficients at time t are
still adapted to the past of W . This particular form of an Itô process, considered in
[2, 8, 15, 17, 21, 22], can be written abstractly as

d⇠(t) = f(✓t⇠(�1,t])dt+ g(✓t⇠(�1,t])dW (t), (3.1)

where ✓t is again the shift in time on pathspace, ⇠(t) 2 Rd, ⇠(�1,t] 2 C((�1, t];Rd),
✓t⇠(�1,t] 2 C((�1, 0];Rd) and f, g : C((�1, 0];Rd) ! Rd are the coefficients of the
process. In the context of (1.1) with F ⌘ 0, the dimension d is 2, f represents the drift
terms in (1.1) (including the memory term), and g is the constant 2 ⇥ 2 matrix with
g22 =

p
2 and all other entries zero.

In [2, 8, 15, 21, 22], this type of equation was termed Gibbsian in that it defined a
family of compatible conditional transition kernels which depend on the entire past of
the process rather than the most recent point in time as in the Markovian setting. This
process has an infinitesimal Gibbsian generator at time t given by

L
t
⇠(�1,t]

h(⇠(t)) =
dX

i=1

fi(⇠(�1,t])@ih(⇠(t)) +
1

2

dX

i,j=1

aij(⇠(�1,t])@i@jh(⇠(t)),

for a test function h : Rd
! R and matrix a = gg

T . This structure implies a certain
amount of independence of the future from the past, or at least a rate of decorrelation
depending on the properties of K. In this case, we can define a family of random maps
'
W
s,t : C((�1, s];Rd) ! C((�1, t];Rd) for s  t depending on a random increment path

of Brownian motion W of length t� s. For sufficiently nice h : Rd
! R, we have that

L
t
⇠(�1,t]

h(⇠(t)) = lim
r!0+

1

r
E
⇥
h
�
'
W
t,t+r(⇠(�1,t])(t+ r)

�
� h(⇠(t))

⇤
.

By setting Pt(⇠(�1,0], · ) to be the law of ✓t'W
0,t(⇠(�1,0]) viewed as a random vari-

able taking values in C((�1, 0];Rd), we can define a Markov operator on the space
C((�1, 0];Rd). This Markovian representation has more structure than the lifting to
the future and past performed in the introduction as it encodes that the future in our
context only depends on the past.

3.2 The Skew-flow and kernel for the full system

We now combine the discussions above to provide insight into the structure of (1.1)
when both K and F are nonzero. We will reuse the symbols ' and R from the previous
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section but with sightly different domains of definition needed to accomodate our current
setting with neither F nor K identically zero. We allow this slight abuse of notation to
make the analogies between this section and the preliminary discussion in Section 3.1
above clearer.

As before, we can associate to the dynamics (1.1) a skew product flow; however, we
now must include the past of x and v because of the memory in the drift. That is, given a
realization of F and W on the time interval (�1,1) and recalling the space C(�1, t] as
in (2.2), we define the family maps

'
F,W
t0,t : C(�1, t0] ! C(�1, t], t0  t, (3.2)

as the extension of an initial past ⇠0 2 C(�1, t0] to a function in C(�1, t] by appending to
the front of ⇠0 the solution (1.1) on the time interval [t0, t] with initial past ⇠0 and random
forcing W and F . When ⇠0 is deterministic, 'F,W

t0,t ⇠0 is a random path adapted to

Ft0,t = �(F (r),W (r)�W (t0) : r 2 [t0, t]) with ('F,W
t0,t ⇠0)(r) = ⇠0(r) for r  t0.

Observe that if ✓t again denotes the shift map in the space of trajectories, defined by
✓tf(s) = f(s+ t), then ✓t'

F,W
0,t ⇠0 : C(�1, 0] ! C(�1, 0]. More specifically, we see that

C(�1, 0] ! C(�1, t] ! C(�1, 0]

⇠0 7! '
F,W
0,t ⇠0 7! ✓t'

F,W
0,t ⇠0.

So, the skew-flow St defined by

St : (⇠0, F,W ) 7! (✓t'
F,W
0,t ⇠0, ✓tF, ✓tW �W (t)), (3.3)

is a random semi-flow on the space C(�1, 0]⇥ C(R;R2). In particular Ss+t = SsSt.
Next we define the skew transition kernel RF

t on C(�1, 0] by taking the law of
✓t'

F,W
0,t ⇠0 conditioned on ⇠0 and F ; namely,

R
F
t (⇠0, A) := P(✓t'

F,W
0,t ⇠0 2 A | ⇠0, F ), (3.4)

for
(⇠0, F ) 2 Sskew := C(�1, 0]⇥ C((�1,1);R), (3.5)

and A ⇢ C(�1, 0] Borel. Observe we have the following skew structure stemming
from (3.3)

R
F
t R

✓tF
s = R

F
t+s,

or more explicitly,

R
F
t+s(⇠0, A) =

Z

C(�1,0]
R

F
t (⇠0, d⇣)R

✓tF
s (⇣, A).

3.3 A more Markovian kernel

Looking at (2.9), we see that when theorem 2.9 is enforced, we can consider a
solution to be a triple of stochastic processes (⇠,W,B) where ⇠ and W are as before but
B = {B

(`)
}`�1 is a countable collection of standard two-sided independent Brownian

Motions independent of W . We can then define a map  W
t : S(�1, 0] ! S(�1, t] where

S(�1, t] := C(�1, t]⇥ C((�1, t];R)N, (3.6)

and  W
t (⇠0, B0) is equal to the pair (⇠, B) obtained by continuing the Brownian motions

B0 2 C((�1, 0];R)N over the interval [0, t] and then extending ⇠ over the same interval
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by evolving (2.9) using F as in (2.5) with the Brownian Motions in B, which is the
continuation of B0. We again have a skew-flow defined for (⇠0, B0) 2 S(�1, 0] and
W 2 C((�1,1);R) by

(⇠0, B0,W ) 7! (✓t 
W
t (⇠0, B0), ✓tW ) .

In contrast to Section 3.2, where the skew-flow St as in (3.3) is fibered over the bivariate
process (W,F ), whose future increments depend on its entire past, this skew-flow
(✓t W

t (⇠0, B0), ✓tW ) is fibered over a process, namely W , whose future increments are
independent of its past increments. Thus, we can obtain a Markov kernel by averaging
over the randomness in W . We cannot average over the randomness in B as the
increment added to ⇠ over the time interval [0, t] depends on the entire history of B back
to time �1.

With these considerations, we define the Markov kernel Pt on S(�1, 0] by

Pt

�
(⇠0, B0), A

�
= P(✓t 

W
t (⇠0, B0) 2 A | ⇠0, B0), (3.7)

for (⇠0, B0) 2 S(�1, 0] and A ⇢ S(�1, 0] Borel.

3.4 Solutions on the time interval [0,1)

theorem 2.7 gives a finite-time existence and uniqueness result for initial pasts in
C(�1, 0]. Thus solutions do not blow up in finite time, but it is possible that they may
tend to 1 as t ! 1. Hence this fact induces a well-defined mapping

'
F,W
1

: C(�1, 0] ! C([0,1);R2),

but it is still possible that

P(|'F,W
1

(⇠0)(s)| ! 1 as s ! 1) > 0.

In the next section, we will consider the large-time behavior of the system, in particular
the existence and uniqueness of stationary solutions.

Because the mapping 'F,W
1

makes sense, we can define a family of kernels QF
[0,1) on

the infinite future by

Q
F
[0,1)(⇠0, A) = P(⇡[0,1)'

F,W
1

(⇠0) 2 A |F, ⇠0), (3.8)

for initial pasts ⇠0 2 C(�1, 0] and Borel sets A ⇢ C([0,1);R2). Here, ⇡[0,1) denotes the
projection of the trajectory onto the time interval [0,1). While R

F
t captures the effect of

starting from an initial past at time �t and flowing forward to time 0, QF captures the
distribution on the infinite future starting from ⇠0 at time 0.

4 Stationary solutions and invariant measures

Recall that the stochastic process (⇠, F ) on the time interval (�1,1) is stationary
if for any finite collection of times t1, · · · , tn 2 (�1,1) the distribution of the random
vector

�
(⇠(t1 + s), F (t1 + s)), . . . , (⇠(tn + s), F (tn + s))

�
, t1 < t2 < · · · < tn,

is independent of s 2 R. Letting ✓t denote the shift mapping on the space of trajectories,
cf. (1.4), stationarity is equivalent in our setting to the distribution of the path ✓t(⇠, F )
being independent of t.

In Sections 4.1 and 4.2 below, we discuss the relation of stationary solutions and
invariant measures for the skew-kernel RF

t and Pt defined in (3.4) and (3.7), respectively.
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4.1 For the skew kernel RF
t

Recalling the skew transition kernel RF
t on C(�1, 0] as in (3.4), a family of measures

µ
F on Borel subsets of C(�1, 0], indexed by a realization F 2 C((�1,1);R), is called

skew-invariant for RF
t if the following holds

µ
F
R

F
t = µ

✓tF ,

where we define the measure µ
F
R

F
t for A ⇢ C(�1, 0] Borel by

µ
F
R

F
t (A) =

Z

C(�1,0]
R

F
t (⇠0, A)µ

F (d⇠0)

=

Z

C(�1,0]
P(✓t'

F,W
0,t ⇠0 2 A | ⇠0, F )µF (d⇠0) . (4.1)

We note that a stationary solution (⇠, F ) on the time interval (�1,1) always gen-
erates a skew-invariant measure µ

F . To see this, let Law(⇠, F ) denote the law of the
stationary solution (⇠, F ). Then, Law(⇠), being the disintegration of Law(⇠, F ) relative
to Law(F ) restricted to C(�1, 0], is the desired skew-invariant µF . Indeed, from (4.1),
observe that µF

R
F
t is the law of ✓t⇠, which agrees with Law(⇠) by stationarity.

On the other hand, given a skew-invariant measure µ
F on C(�1, 0], let µ̃F be the

extension of µF to the time interval (�1,1) using the dynamics 'F,W
0,t . That is, for any

Borel set A 2 C(�1, t],

µ̃
F (A) =

Z

C(�1,0])
P('F,W

0,t ⇠0 2 A | ⇠0, F )µF (d⇠0) .

Then µ̃
F (d⇠)Law(F )(df) is the law of the desired stationary process (⇠, F ). To see the

stationarity of ⇠, for A1, . . . , AN ⇢ R2,

µ̃
F
��
⇠(t1 + s) 2 A1, . . . , ⇠(tn + s) 2 An

 �

=

Z

C(�1,0])
P('F,W

0,tn+s⇠0(t1 + s) 2 A1, . . . ,'
F,W
0,tn+s⇠0(tn + s) 2 An | ⇠0, F )µF (d⇠0)

=

Z

C(�1,0])
P(✓tn+s'

F,W
0,tn+s⇠0(t1 � tn) 2 A1, . . . , ✓tn+s'

F,W
0,tn+s⇠0(0) 2 An | ⇠0, F )µF (d⇠0)

= µ
F
��
⇠
0(t1 � tn) 2 A1, . . . , ⇠

0(0) 2 An

 �

=

Z

C(�1,0])
P(✓tn'

F,W
0,tn ⇠0(t1 � tn) 2 A1, . . . , ✓tn'

F,W
0,tn ⇠0(0) 2 An | ⇠0, F )µF (d⇠0)

=

Z

C(�1,0])
P('F,W

0,tn ⇠0(t1) 2 A1, . . . ,'
F,W
0,tn ⇠0(tn + s) 2 An | ⇠0, F )µF (d⇠0)

= µ̃
F
��
⇠(t1) 2 A1, . . . , ⇠(tn) 2 An

 �
. (4.2)

In the third and fourth implications above, we invoked the stationarity of µF .

4.2 For the Markov kernel Pt

When theorem 2.9 holds, recall that (⇠, B) evolves as a Markov process on the state
space

S(�1, 0] := C(�1, 0]⇥ C((�1, 0];R)N,

under the Markov kernel Pt defined in (3.7). In this setting, there is a one-to-one
correspondence between stationary solutions on the time interval (�1,1) and invariant
probability measures µ for Pt.
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Given an invariant probability measure µ for Pt on S(�1, 0], we can create a station-
ary measure µ̃ on the interval (�1,1) by flowing the dynamics forward from µ by the
map  W

t defined in Section 3.3 from a random initial past distributed according to µ and
then taking the measure obtained on (�1,1) by averaging over the realization of W .
That is, for any Borel set A 2 S(�1, t],

µ̃(A) =

Z

S(�1,0]
P( W

t (⇠0, B0) 2 A | ⇠0, B0)µ(d⇠0, dB0) .

The argument for µ̃ being stationary is analogous to (4.2).
Conversely, given a stationary solution µ̃ on S(�1,1) then we can simply restrict the

distribution to a measure µ on S(�1, 0]. For any Borel set A 2 S(�1, 0], observe that
✓�tA 2 S(�1, t]. Letting ⇡T ⇠ denote the projection of ⇠ onto the interval T ⇢ (�1,1),
we have

µPt(A) =

Z

S(�1,0]
P(✓t 

W
t (⇠0, B0) 2 A | ⇠0, B0)µ(d⇠0, dB0)

=

Z

S(�1,0]
P( W

t (⇠0, B0) 2 ✓�tA | ⇠0, B0)µ(d⇠0, dB0)

= µ̃({⇠ : ⇡(�1,t]⇠ 2 ✓�tA})

= µ̃({⇠ : ⇡(�1,0]✓t⇠ 2 A})

= µ̃({⇠ : ⇡(�1,0]⇠ 2 A}) = µ(A) .

In the second to last implication above, we employed the stationarity of µ̃. We therefore
see that the resulting measure µ is invariant for the Markov Kernel Pt.

4.3 Existence and uniqueness of stationary measures

Recalling the space C(�1, t] defined in (2.2), for % > 0 we introduce the following
subset of moderate growth :

C%(�1, t] =

⇢
(x, v) 2 C(�1, t] : sup

rt

|x(r)|

1 + |r|%
< 1

�
, (4.3)

and define

C%(�1,1) =
[

n2Z,n�0

C%(�1, n].

Our main result concerning the existence of an invariant measure for the Markov
kernel Pt is the following theorem whose proof is deferred to Section 6.

Theorem 4.1. Suppose that U satisfies Assumption 2.4 and that Assumption 2.9 is
satisfied with the choice of J` as in Remark 2.12. Then there exists an invariant measure
µ⇤ for Pt defined in (3.7). Moreover, for every % > 0,

µ⇤(C%(�1, 0]) = 1. (4.4)

Remark 4.2. The proof of Theorem 4.1 relies on constructing an explicit invariant
measure for an infinite-dimensional auxiliary Markovian system. A good Lyapunov-type
estimate for the equation (1.1) which would ensure the abstract existence of such a
measure in more generality is currently unavailable. It is thus left as an open problem to
determine whether (4.4) always holds for any invariant measure µ.

The following is our uniqueness result which pairs with the existence result given
in theorem 4.1. However, it is worth noting that the uniqueness result applies in many
settings where we do not know that there exists a stationary measure.
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Theorem 4.3. Suppose that U satisfies Assumption 2.4 and that the memory kernel K
satisfies Assumptions 2.6 and 2.11. For every % < ↵� 1/2, the skew dynamics St admits
at most one stationary solution (⇠, F ) such that Law(⇠ |F ) is supported in C%(�1,1).

The following corollary is an immediate result of the theorem 4.3 when we are in the
Markovian setting discussed in section 3.3 and section 4.2.

Corollary 4.4. When theorem 2.9 holds in addition to the assumptions of theorem 4.3,
there exists at most one invariant measure supported on

S%(�1, 0] := {(⇠, B) 2 S(�1, 0] : ⇠ 2 C%(�1, 0]},

for the Markov semigroup on that space discussed in section 3.3.

The proof of theorem 4.3 makes use of a coupling argument employed in [2, 12,
15, 21, 22, 8, 9] to show that starting from two distinct initial history paths, the time
averages of their solutions in the future must converge to the same place, hence yielding
uniqueness of a given stationary measure. Two of the main ingredients in the coupling
argument are the following two results to be proved in the next section.

Proposition 4.5. Under the hypotheses of Theorem 4.3, for any stationary solution
(⇠, F ) of (1.1), the marginal of Law(⇠ |F ) at any fixed time t is equivalent to Lebesgue
measure on R2.

Proposition 4.6. Under the hypotheses of Theorem 4.3, let ⇠0 and e⇠0 be two initial pasts
in C%(�1, 0] such that ⇠0(0) = e⇠0(0). Then for almost every realization of F , the measures
Q

F
[0,1)(⇠0, · ) and Q

F
[0,1)(

e⇠0, · ) are equivalent.

Given these two results, we can now conclude Theorem 4.3.

Proof of theorem 4.3. We first fix some notation. Given a set A ⇢ C(R;R2), a measure ⌫
on Borel subsets of C(R;R2) and a time interval T ⇢ R, we denote by ⇡TA and ⇡T⌫ to be
respectively the projection of A and ⌫ on T. In other words, letting ⇡T⇠ be the projection
of a trajectory ⇠ onto the time interval T, we set

⇡TA = {⇡T⇠ : ⇠ 2 A},

and for any Borel set B ⇢ C
�
T;R2

�
,

⇡T⌫(B) := ⌫({⇠ 2 C(R;R2) : ⇡T⇠ 2 B}).

Let (⇠1, F1) and (⇠2, F2) be two stationary solutions of (1.1). Without lost of generality,
we may assume that Law(⇠1, F1) and Law(⇠2, F2) are ergodic by ergodic decomposition.
As discussed in Section 4.1, we can disintegrate Law(⇠i, Fi) into Law(⇠i |F ) relative to
Law(F ) since Law(F ) = Law(F1) = Law(F2). Letting ⌫i = Law(⇠i |F ), i = 1, 2, we aim to
prove ⌫1 = ⌫2 assuming ⌫1 and ⌫2 are supported in C%(�1,1).

Fixing an arbitrary bounded function � : C([0,1);R2) ! R which only depends on
some compact set of time, Birkhoff’s Ergodic Theorem implies that there exists a set

Ai ⇢ C%(�1,1),

such that ⌫i(Ai) = 1 and for every ⇠ 2 Ai,

lim
T!1

1

T

Z T

0
�(⇡[0,1)✓t⇠)dt =

Z
�(⇡[0,1)⇠)⌫i(d⇠) =: �i. (4.5)

It suffices to prove that �1 = �2. To this end, for each ⇣ 2 C
�
(�1, 0];R2

�
, we set

Bi(⇣) = {⇡[0,1)z : z 2 Ai,⇡(�1,0]z = ⇣}.
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Since ⌫i is supported in Ai, it is clear that

⇡[0,1)⌫i(⇡[0,1)Ai) = ⌫({z 2 Ai : ⇡[0,1)z 2 ⇡[0,1)Ai}) = ⌫i(Ai) = 1.

On the other hand, recalling Q
F
[0,1) is the future law as in (3.8), observe that

1 = ⇡[0,1)⌫i(⇡[0,1)Ai) =

Z

⇡(�1,0]Ai

Q
F
[0,1)

�
⇣,⇡[0,1)Ai

�
⇡(�1,0]⌫i(d⇣),

=

Z

⇡(�1,0]Ai

Q
F
[0,1)

�
⇣, {⇡[0,1)z : z 2 A,⇡(�1,0]z = ⇣}

�
⇡(�1,0]⌫i(d⇣),

=

Z

⇡(�1,0]Ai

Q
F
[0,1)

�
⇣, Bi(⇣)

�
⇡(�1,0]⌫i(d⇣),

We then conclude that for almost every ⇣ 2 ⇡(�1,0]Ai with respect to ⇡(�1,0]⌫i, we see
that

Q
F
[0,1)

�
⇣, Bi(⇣)

�
= 1. (4.6)

In view of theorem 4.5, we know that ⇡0⌫1 and ⇡0⌫2 are both equivalent to Lebesgue
measure in R2. So that ⇡0A1 \ ⇡0A2 6= ;. Together with (4.6), it follows that there exist
⇣1 and ⇣2 such that ⇣1(0) = ⇣2(0) and Q

F
[0,1)

�
⇣i, Bi(⇣i)

�
= 1 for i = 1, 2. As theorem 4.6

implies that QF
[0,1)

�
⇣1, ·

�
is equivalent to Q

F
[0,1)

�
⇣2, ·

�
, we also know that

Q
F
[0,1)

�
⇣1, B2(⇣2)

�
= 1 = Q

F
[0,1)

�
⇣2, B1(⇣1)

�
,

and hence

Q
F
[0,1)

�
⇣i, B1(⇣1) \B2(⇣2)

�
= 1, for i = 1, 2.

In particular, this implies that B1(⇣1) \B2(⇣2) 6= ;. By the definition of Bi(⇣i), there exist
zi 2 Ai, i = 1, 2 such that ⇡(�1,0]zi = ⇣i and

⇡[0,1)z1 = ⇡[0,1)z2 2 B1(⇣1) \B2(⇣2),

whence for all t � 0,
⇡[0,1)✓tz1 = ⇡[0,1)✓tz2.

As a consequence, we have from (4.5) that

�̄1 = lim
T!1

1

T

Z T

0
�(⇡[0,1)✓tz1)dt = lim

T!1

1

T

Z T

0
�(⇡[0,1)✓tz2)dt = �̄2.

As � was from a class of functions sufficiently rich to determine the laws of ⇠(i), i = 1, 2,
we conclude the laws are the same since we have proven that �̄(1) = �̄

(2).

5 Proofs of theorem 4.5 and theorem 4.6

In order to setup the proof of Proposition 4.6, observe that we may express equa-
tion (1.1) in a convenient form using integration-by-parts on the convolution term. Indeed,
by Assumption 2.11, there exist constants C, t⇤ > 0 and ↵ > 1/2 such that K(t)  Ct

�↵

as t � t⇤. Since K is continuously differentiable, L’Hospital’s rule implies that for any
✏ > 0, K 0(t)t↵+1�✏

! 0 as t ! 1. Now, given that ⇠0 = (x0, v0) 2 C%(�1, 0] where
% < ↵� 1/2, using integration-by-parts we may thus rewrite (1.1) as

dx(t) = v(t)dt,

mdv(t) = ��v(t) dt� U
0(x(t)) dt�K(0)x(t) dt+

Z t

�1

K
0(t� r)x(r) dr dt

+
p
2� dW (t) + F (t) dt.

(5.1)
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Gibbsian dynamics for the Langevin equation

Proof of Proposition 4.6. Suppose ⇠0, ⇠̃0 2 C%(�1, 0]. Let ⇠0 = ⇠0 � ⇠̃0 and observe
that (5.1) with m = � = 1 and initial condition e⇠0 can be expressed as

dex(t) = ev(t) dt,

dev(t) = �ev(t) dt� U
0(ex(t)) dt�K(0)ex(t)dt+

Z 0

�1

K
0(t� r)x0(r)drdt (5.2)

+

Z t

0
K

0(t� r)ex(r)drdt+ F (t) dt

+
p

2dW (t)�

Z 0

�1

K
0(t� r)x0(r)drdt.

If the following Novikov condition is satisfied

E exp
n1

2

Z
1

0

⇣Z 0

�1

K
0(t� r)x0(r)dr

⌘2
dt

o
< 1,

then Girsanov’s theorem would imply the desired measure equivalence on future paths.
Since x0 is deterministic, it suffices to show that the above integral is finite. To this end,
we note that since ⇠0, e⇠0 2 C%((�1, 0],R2), x0(·) satisfies the growth bound

kx0k% := sup
r0

|x0(r)|

1 + |r|%
< 1.

Using this fact, we estimate as follows:
Z

1

0

⇣Z 0

�1

K
0(t� r)x0(r)dr

⌘2
dt =

Z
1

0

✓Z 0

�1

K
0(t� r)(1 + |r|

%)
x0(r)

1 + |r|%
dr

◆2

dt

 kx0k
2
%

Z
1

0

✓Z 0

�1

K
0(t� r)(1 + |r|

%) dr

◆2

dt

= kx0k
2
%

Z
1

0

✓Z
1

0
K

0(t+ r)(1 + r
%) dr

◆2

dt.

For ✏ > 0 to be chosen later, recalling by L’Hospital’s rule applied to K(t)/t✏�↵, by
Assumption 2.11, we saw that K 0(t)/t✏�↵�1

! 0 as t ! 1. Hence, there exist C > 0 and
t0 > 1 such that |K 0(t)|  Ct

✏�↵�1 for all t � t0. It then follows that
Z

1

0

⇣Z 1

0
K

0(t+ r)(1 + r
%) dr

⌘2
dt

=

Z t0

0

⇣Z t0

0
K

0(t+ r)(1 + r
%) dr +

Z
1

t0

K
0(t+ r)(1 + r

%) dr
⌘2

dt

+

Z
1

t0

⇣Z 1

0
K

0(t+ r)(1 + r
%) dr

⌘2
dt

 C1 + C2

Z t0

0

⇣Z 1

t0

1 + r
%

r1+↵�✏
dr

⌘2
dt+ C3

Z
1

t0

⇣Z 1

0

1 + r
%

(t+ r)1+↵�✏
dr

⌘2
dt.

Choosing 0 < ✏ < ↵� %� 1/2, notice that the first integral on the right hand side of the
last line above is finite since ↵� ✏ > %. For the final integral above, recalling that t0 > 1
and making the substitution u = r/t produces

Z
1

t0

✓Z
1

0

1 + r
%

(t+ r)1+↵�✏
dr

◆2

dt =

Z
1

t0

1

t2(↵�✏)

✓Z
1

0

1 + t
%
u
%

(1 + u)1+↵
du

◆2

dt



Z
1

t0

1

t2(↵�✏�%)
dt

✓Z
1

0

1 + u
%

(1 + u)1+↵
du

◆2

< 1,

since ↵� ✏� % > 1/2. This finishes the proof.
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Gibbsian dynamics for the Langevin equation

We now turn to the proof of Proposition 4.5. In order to show equivalence in measures,
we aim to compare (1.1) with a standard, memoryless Langevin equation. However,
because of the memory terms and the nonlinearity U

0, we do not do so directly. Instead,
we will consider a truncated version of (1.1), which will be useful in verifying Novikov’s
condition. More precisely, let ✓n 2 C

1(R, [0, 1]) satisfy ✓n(x) = 1 for all |x|  n and
✓n(x) = 0 for |x| � n+ 1, and consider the following system with initial path ⇠0

d x(t) = v(t)dt,

d v(t) = �v(t)dt� U
0(x(t))dt+

p

2dW (t)

+ ✓n

�
|x(t)|+ |v(t)|+ |F (t)|

�✓
�

Z t

�1

K(t� r)v(r)dr + F (t)

◆
dt.

(5.3)

In the following auxiliary result, we show that the solution of (5.3) converges to that
of (1.1) as n tends to infinity.

Lemma 5.1. Given an initial condition ⇠0 2 C(�1, 0] as in (2.2), let ⇠n and ⇠ respectively
be the solutions of (5.3) and (1.1) (with m = � = 1 in (1.1)) with the same initial history
⇠0. Then, for all t � 0,

lim
n!1

E sup
0rt

⇢
|x

n(r)� x(r)|+ |v
n(r)� v(r)|

�
= 0. (5.4)

The proof of Lemma 5.1 follows a standard comparison argument that will be deferred
to the end of this section. Assuming this result, we now establish Proposition 4.5.

Proof of Proposition 4.5. Let QF
t (⇠0, · ) be the law at time t of 'F,W

0,t ⇠0 on R2. By station-
arity,

⇡tLaw(⇠, · |F ) =

Z
Q

F
t (⇠0, · )⌫(�1,0](d⇠0 ⇥ dF ).

It therefore suffices to show that QF
t (⇠0, · ) is equivalent to Lebesgue measure.

Recalling that ⇠n = (xn
, v

n) denotes the solution of (5.3), let Qn,F
[0,t](⇠0, · ) be the law

induced by ⇠n on C([0, t];R2) and let Qn,F
t (⇠0, · ) be the marginal of Qn,F

[0,t](⇠0, · ) at time t.
We note that

Z t

�1

K(t� r)vn(r)dr =

Z 0

�1

K(t� r)v0(r)dr +

Z t

0
K(t� r)vn(r)dr.

By Assumption 2.6 and the definition of ✓n, the following estimate holds almost surely

✓n

✓
|x

n(t)|+ |v
n(t)|+ |F (t)|

◆�����
Z t

�1

K(t� r)v(r)dr + F (t)

����



Z 0

�1

K(t� r)|v0(r)|dr + n

Z t

0
K(t� r)dr + n

 eK(t)

Z 0

�1

K(�r)|v0(r)|dr + n

Z t

0
K(t� r)dr + n,

implying the following Novikov-type condition is satisfied

E exp

⇢
1
2

Z t

0
✓n

�
|x

n(r)|+ |v
n(r)|+ |F (r)|

�2
✓
�

Z r

�1

K(r � `)v(`)d`+ F (r)

◆2

dr

�
< 1.
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As a consequence, Qn,F
[0,t](⇠0, · ) is equivalent to the law eQ[0,t](⇠0(0), · ) induced by the

solution of the following Langevin equation

d x(t) = v(t)dt, x(0) = x0(0),

d v(t) = �v(t)dt� U
0(x(t))dt+

p

2dW (t), v(0) = v0(0).

The above system is well-understood. By verifying Hormander’s condition, it is clear
that eQt(⇠0(0), · ) as the marginal law of eQ[0,t](⇠0(0), · ) at time t is equivalent to Lebesgue

measure [31]. It follows immediately that Qn,F
t (⇠0, · ) must be too. By taking n to infinity,

in light of Lemma 5.1, Qn,F
t (⇠0, · ) converges to Q

F
t (⇠0, · ), which preserves measure

equivalence. The proof is thus complete.

We finally give the proof of Lemma 5.1 whose proof is somewhat standard.

Proof of Lemma 5.1. We first note that by adapting the energy estimate as in the proof
of Proposition 2.7 to (5.3), we have the following uniform bound in n

E sup
r2[0,t]

H(xn(r), vn(r))



⇣
H(x0(0), v0(0)) +

⇣Z 0

�T
K(�w)|v0(w)| dw

⌘2
+ E sup

r2[0,t]
|F (r)|2 + 1

⌘
e
c(t)

. (5.5)

Now consider the stopping time ⌧n given by

⌧n = inf{t � 0 : |x(t)|+ |v(t)|+ |F (t)| � n}.

It is clear that ⇠(r) = ⇠
n(r) for all 0  r  ⌧n. Using Holder’s inequality and recalling

� 2 (0, 1) as in Assumption 2.4:

E sup
0rt

|x
n(r)� x(r)|+ |v

n(r)� v(r)|

= E
⇣

sup
0rt

|x
n(r)� x(r)|+ |v

n(r)� v(r)|1{⌧n  t}

⌘

 c

⇣
E sup

0rt
|x

n(r)|1+� + |v
n(r)|1+� + E sup

0rt
|x(r)|1+� + |v(r)|1+�

⌘1/(1+�)

⇥

⇣
P(⌧n  t)

⌘�/(1+�)
.

We invoke the energy estimates (2.3) and (5.5) and recall that the nonlinear potential U
dominates |x|1+�, cf. Assumption 2.4, to see that

E sup
0rt

|x
n(r)|1+� + |v

n(r)|1+� + E sup
0rt

|x(r)|1+� + |v(r)|1+�

 c

⇣
E sup

0rt
|x

n(r)|1+� + |v
n(r)|2 + E sup

0rt
|x(r)|1+� + |v(r)|2 + 1

⌘
 e

c(t,⇠0,F )
,

where c(t, ⇠0, F ) > 0 is a constant independent of n. Also, by Chebyshev’s inequality and
Lemma B.2,

P(⌧n  t) = P( sup
0rt

|x(r)|+ |v(r)|+ F (r) � n)


1

n

⇣
E sup

0rt
|x(r)|+ |v(r)|+ sup

0rt
|F (r)|

⌘


e
c(t,⇠0,F )

n
.

Altogether, we arrive at the bound

E sup
0rt

|x
n(r)� x(r)|+ |v

n(r)� v(r)| 
e
c(t,⇠0,F )

p
n

,

which converges to zero as n tends to infinity. This finishes the proof.
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6 Existence of an invariant measure

In this section, we assume that the memory kernel K is of the form

K(t) =
X

`�1

Z
1

0
J`(s+ t)J`(s) ds, (6.1)

where the functions J`, ` � 1, are as in Remark 2.12. In this case, we will see here that
we can construct an explicit stationary measure for the Markov flow on C%((�1, 0]) by
pulling back a known invariant measure for an augmented version of (1.1).

Introducing the auxiliary variable zk(t) given by

z`(t) =
p
c`

Z t

�1

e
��`(t�r)

v(r)drdt+
p
2�`

Z t

�1

e
��`(t�r)

dB
(`)(r)dt, (6.2)

we find that equation (1.1) can be expressed as

d x(t) = v(t) dt,

d v(t) = �v(t) dt� U
0(x(t)) dt�

P
`�1

p
c`z`(t) dt+

p
2 dW (t),

d z`(t) = ��`z`(t) dt+
p
c`v(t) dt+

p
2�` dB

(`)(t), ` � 1.

(6.3)

In this setting, the relationship between the system above and the original equation (1.1)
must account for a specific initial condition in the past. For now, however, we view this
system as a Markovian dynamics started from a given initial condition on the phase
space H�s where

H�s :=
�
X = (x, v, z1, . . . ) : kXk

2
�s := x

2 + v
2 +

P
`�1`

�2s
z
2
` < 1

 
. (6.4)

In the above, the real parameter s is such that

1 < 2s < ↵�, (6.5)

and ↵,� > 0 are as in Remark 2.12. Under these hypotheses, the system (6.3) is
well-posed on H�s, and the probability measure on H�s given by

µ / ⇡ ⇥

Y

`�1

⌫`, (6.6)

where ⇡ is the Boltzmann-Gibbs measure in (x, v) as in (1.3) and {⌫k}k�1 are independent
copies of the standard normal distribution N(0, 1) on R, is an invariant probability
measure for the Markov process (6.3) [13, Theorem 7].

6.1 The induced measure on path space

Consider an arbitrary collection of real numbers

t1  t2  · · ·  tn,

and a collection of Borel sets A1, . . . , An ⇢ H�s. If Xt1( · ) denotes the solution of (6.3)
distributed as µ at time t1, we define bµt1,...,tn on the cylinder set A1 ⇥ · · ·⇥An by

bµt1,...,tn(A1 ⇥ · · ·⇥An) = P{Xt1(t1) 2 A1, . . . , Xt1(tn) 2 An}. (6.7)

Since µ is invariant for the Markov process (6.3), it can be shown by Kolmogorov’s
extension theorem (by taking a continuous version of the process X solving (6.3)) that
the family

{bµt1,...,tn : n 2 N, t1  t2  . . .  tn},
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is consistent, and hence induces a stationary measure, denoted by bµ, on Borel subsets of
C(R,H�s) whose finite-dimensional distributions are as in (6.7). Let ⇠⇤ = (x⇤, v⇤) denote
the projection of the corresponding stationary process on C(R,H�s) onto C((�1, 0],R2).
By definition, it follows that  W

t (⇠⇤, B) is stationary on S(�1, 0] given by (3.6). Let µ⇤

denote its corresponding distribution, which in particular is invariant for the Markov
semigroup Pt as in (3.7).

We will next show that µ⇤ concentrates on a path space with moderate growth,
thereby finishing the proof of Theorem 4.1.

Lemma 6.1. Let µ⇤ be the probability measure in S(�1, 0] constructed above. Then,
for every % > 0,

µ⇤(C%(�1, 0]) = 1,

where C%(�1, 0] is as in (4.3).

Proof. By Borel-Cantelli, it suffices to prove that

X

n�1

bµ
⇢
X(·) = (⇠, z1, z2, . . .) 2 C(R,H�s) : sup

�nr�n+1
|x(r)| > (n+ 1)%

�
< 1.

By invariance

bµ
⇢
X(·) : sup

�nr�n+1
|x(r)| > (n+ 1)%

�
= bµ

⇢
sup

0t1
|x0(t)| > (n+ 1)%

�
,

where X0( · ) = (⇠0( · ), z1( · ), . . .) denotes the solution of (6.3) with initial distribution µ at
time 0. To estimate the righthand side above, we apply Itô’s formula to the Hamiltonian
H(⇠) = H(x, v) = 1

2v
2 + U(x), and obtain for t � 0

dH(⇠(t)) = �v(t)2dt+ 1dt+ v(t)dW (t)�
X

`�1

p
c`z`(t)v(t)dt. (6.8)

The cross terms involving z`(t) and v(t) can be bounded from above by

p
c`|z`(t)v(t)|  C`

�2s
z`(t)

2 +
c``

2s

C
v(t)2,

where C > 0 is large enough such that C
P

`�1c``
2s

< 1. Integrating (6.8) on [0, t], t  1
using the estimates above then produces

H(⇠(t))  H(⇠(0)) + 1 + C

Z 1

0

X

`�1

`
�2s

z`(s)
2
ds+ sup

0t1

Z t

0
v(r)dW (r).

Fixing " 2 (1/2, s) and recalling Assumption 2.4, namely, U(x) dominates |x|1+�, � 2 (0, 1),
we have the following chain of implications

n
sup

0t1
|x0(t)| � (n+ 1)%

o
⇢

n
sup

0t1
U(x0(t)) � c(n+ 1)(1+�)%

o

⇢

n
H(⇠(0)) + 1 + C

R 1
0

P
`�1 `

�2s
z`(s)2 ds+ sup0t1

R t
0 v(r)dW (r) � c(n+ 1)(1+�)%

o
.

⇢

n
U(x(0)) � c(n+ 1)(1+�)%

} [ {
1
2v(0)

2 + 1 + sup0t1

R t
0 v(r)dW (r) � c(n+ 1)(1+�)%

o

[

`�1

n
C
R 1
0 `

�2s
z`(s)2 ds � c(n+ 1)(1+�)%

`
�2"

o
= Ix [ Iv [`�1 I`.
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We are left to estimate each of the above events. For p > 0, using Chebychev’s inequality,
we estimate Ix as follows:

bµ(Ix) = µ{Ix} 
c

(n+ 1)(1+�)%p

Z

H�s

U(x)pµ(dX)

=
c

(n+ 1)(1+�)%p

Z

R

U(x)pe�U(x)
dx 

c

(n+ 1)(1+�)%p
.

For Iv, we first employ Burkholder’s inequality to see that

E sup
0t1

✓Z t

0
v(r)dB0(r)

◆2p

 c

Z 1

0
E|v(r)|2pdr.

Using the fact that µ is invariant for X0(t), we estimate Iv

bµ(Iv) 
c

(n+ 1)(1+�)%p

 Z

H�s

v
2p
µ(dX) +

Z 1

0
E

Z

H�s

v(r)2pµ(dX)dr

�

=
c

(n+ 1)(1+�)%p

Z

H�s

2v2pµ(dX)

=
c

(n+ 1)(1+�)%p

Z

R

2v2pe�v2/2
dv 

c

(n+ 1)(1+�)%p
.

Likewise, for I` we find that

bµ(I`) 
c`

2("�s)p

(n+ 1)(1+�)%p

Z 1

0
E

Z

H�s

|z
2
` (r)|

p
µ(dX)dr

=
c`

2("�s)p

(n+ 1)(1+�)%p

Z

R

|z|
2p
e
�z2/2

dz.

We now collect everything and note that " 2 (1/2, s) to arrive at

bµ
n

sup
0t1

|x(t)| � (n+ 1)%
o


c

(n+ 1)(1+�)%p

⇥
1 +

X

`�1

`
2("�s)p

⇤


c

(n+ 1)(1+�)%p
,

which holds for p sufficiently large, e.g., 2(s� ")p > 1. Furthermore, we emphasize that
the above constant c is independent of n. It follows that

X

n�1

bµ
⇢
X(·) = (⇠, z1, z2, . . .) 2 C(R,H�s) : sup

�nr�n+1
|x(r)| > (n+ 1)%

�



X

n�1

c

(n+ 1)(1+�)%p
,

which is summable as long as p is chosen such that (1 + �)%p > 1. The proof is thus
complete.

A Well-posedness

In this section, we show that equation (1.1) is well-posed as stated in Proposition 2.7.
We first construct strong, i.e., pathwise, solutions. Then, the existence and uniqueness
of weak solutions simply follow by using classical arguments [29, Chapter 5].

First, fixing T > 0 we consider a slightly different approximating equation

dx(t) = v(t) dt, (A.1)

dv(t) = �v(t) dt� U
0(x(t)) dt�

Z t

�T
K(t� s)v(s) ds dt+

p

2 dW (t) + F (t) dt,
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where we have truncated the memory term in (1.1) at time �T . Following the standard
iteration procedure for standard SDEs with globally Lipschitz coefficients [3, 29], we
can obtain the well-posedness of relation (A.1) assuming that U 0 is globally Lipschitz:

Lemma A.1. Fix T > 0, K 2 C(R) and suppose that U 0 is globally Lipschitz. Then
for all ⇠0 = (x0, v0) 2 C(�1, 0], there exists a unique continuous adapted solution
⇠
T (t) = (xT (t), vT (t)) of equation (A.1) for all times t � 0 with ⇠T (0) = (x0(0), v0(0)).

In order to remove the globally Lipschitz hypothesis in Lemma A.1, we use an energy
estimate to show absence of explosion under the assumption that U

0
2 C

1(R) with
U

0
! 1 as |x| ! 1.

Lemma A.2. Fix T > 0, K 2 C(R) and suppose Assumption 2.6 holds. Furthermore,
suppose that U

0 in equation (A.1) satisfies U
0
! 1 as |x| ! 1. Then for all ⇠0 =

(x0, v0) 2 C(�1, 0], there exists a unique continuous solution ⇠T (t) = (xT (t), vT (t)) of
equation (A.1) for all times t � 0 with ⇠T (0) = (x0(0), v0(0)).

Proof. Recalling ✓n as in (5.3), let Hn(x, v) =
1
2v

2 + U(x)✓n(x). Define Un : R ! R by
Un(x) = U(x)✓n(x) and note that the system (A.1) with U

0 replaced by U
0

n has unique
solutions (xn(t), vn(t)) as in Lemma A.1 with (xn(0), vn(0)) = ⇠(0) 2 R2. Furthermore,
these solutions agree with the solutions of equation (A.1) for all times t < �n := inf{t �
0 : H(xn(t), vn(t)) � n} where H is the Hamiltonian. Now, fix t > 0 and note that Itô’s
formula implies

E sup
r2[0,t]

Hn(xn(r), vn(r))  H(⇠(0)) + E sup
r2[0,t]

Z r

0

⇢
|vn(u)|

Z u

�T
K(u� w)|vn(w)| dw

�
du

+
p

2E sup
r2[0,t]

����
Z r

0
vn(u)dW (u)

����+ E sup
r2[0,t]

����
Z r

0
vn(u)F (u) du

����

=: H(⇠(0)) + (I)t + (II)t + (III)t.

For the term (I)t, we note that Assumption 2.6 gives

Z r

0

⇢
|vn(u)|

Z u

�T
K(u� w)|vn(w)| dw

�
du

=

Z r

0

⇢
|vn(u)|

Z 0

�T

K(u� w)

K(�w)
K(�w)|vn(w)| dw

�
+

⇢
|vn(u)|

Z u

0
K(u� w)|vn(w)| dw

�
du



Z r

0
|vn(u)| eK(u)

Z 0

�T
K(�w)|v0(w)| dw du+

Z r

0
sup

w2[0,u]
|vn(w)|

2

Z u

0
K(u� w) dw du.

Hence we can estimate (I)t as

(I)t 

Z t

0
c1(r)E sup

s2[0,r]
|vn(s)|

2
dr + c2(t)

✓Z 0

�T
K(�w)|v0(w)| dw

◆2

,

for some continuous functions ci on [0, t]. For the term (II)t, note that Doob’s Maximal
Inequality implies

(II)t =
p

2E sup
r2[0,t]

����
Z r

0
vn(u)dW (u)

����  c

✓
1 +

Z t

0
E sup

u2[0,r]
|vn(u)|

2
dr

◆
.

Concerning (III)t, we use Young’s inequality for products to obtain

(III)t 
1
2

Z t

0
E sup

u2[0,r]
|vn(u)|

2
dr + 1

2 tE sup
r2[0,t]

|F (r)|2.
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Gibbsian dynamics for the Langevin equation

We collect the estimates above to arrive at the bound

E sup
r2[0,t]

Hn(xn(r), vn(r))  Hn(⇠(0)) + c1(t)

Z t

0
E sup

u2[0,r]
Hn(xn(u), vn(u))dr

+ c2(t)

✓Z 0

�T
K(�w)|v0(w)| dw

◆2

+ 1
2 tE sup

r2[0,t]
|F (r)|2 + c3(t),

whence using Grönwall’s inequality and the Monotone Convergence Theorem

E sup
r2[0,t]

H(xn(r), vn(r)) (A.2)



✓
H(x0(0), v0(0)) +

✓Z 0

�T
K(�w)|v0(w)| dw

◆2

+ E sup
r2[0,t]

|F (r)|2 + 1

◆
e
c(t)

,

Turning back to �n, we note that

E sup
r2[0,t]

Hn(xn(r), vn(r)) � E


sup

r2[0,t]
Hn(xn(r), vn(r)) · 1{�n�1 < t}

�
(A.3)

� (n� 1)P(�n�1 < t),

which together with (A.2) yields P(�n < t)  1
nc(t). By taking n to infinity, we immediately

obtain P(�1 < t) = 0 for any t � 0. Hence P(�1 = 1) = 1, finishing the proof.

Our next goal is to allow the memory to depend on the infinite past by carefully
passing T to infinity in (A.1).

Lemma A.3. Let T > 0, ⇠0 = (x0, v0) 2 C(�1, 0] and supposeK satisfies Assumption 2.6.
Suppose U 2 C

1(R) is such that U(x) ! 1 as |x| ! 1, and let ⇠T (t) = (xT (t), vT (t))
denote the solution of equation (A.1) with ⇠T (0) = ⇠0(0). Then for any t > 0, the solution
⇠
T converges as T ! 1 to ⇠ in C([0, t],R2). Furthermore, ⇠ is the unique pathwise
solution of (1.1) with ⇠(0) = ⇠0(0).

Proof. Let t > 0. Uniqueness of solutions and the fact that the presumed limit solves (1.1)
both follow almost immediately once we show that an appropriate approximating se-
quence is Cauchy in C([0, t];R2). To be more precise, for T1 � T2 > 0, let ⇠T1

n = (xT1
n , v

T1
n )

and ⇠
T1
n = (xT2

n , v
T2
n ) respectively be the solutions of (A.1) with U

0(x) being replaced
by U

0

n(x) where Un(x) = U(x)✓n(x) as in the proof of Lemma A.2. For simplicity, let
⇠n = ⇠

T1
n � ⇠

T2
n = (xn, vn) and observe that

|xn(t)|+ |vn(t)|  2

Z t

0
|vn(r)|dr +

Z t

0

��Un(x
T1
n (r))� Un(x

T2
n (r)

��dr

+

Z t

0

Z
�T2

�T1

K(r � u)|v0(u)|dudr +

Z t

0

Z r

0
K(r � u)|vn(u)|dudr.

Note that by Assumption 2.6,
Z t

0

Z
�T2

�T1

K(r � u)|v0(u)|dudr =

Z t

0

Z
�T2

�T1

K(r � u)

K(u)
K(u)|v0(u)|dudr



Z t

0

eK(r)dr ·

Z
�T2

�T1

K(u)|v0(u)|du.

Using the fact that Un is Lipschitz we then obtain

sup
0rt

|xn(r)|+ |vn(r)|  c(t, n)

Z t

0
sup

0ur
|xn(u)|+ |vn(u)|dr + c(t)

Z
�T2

�T1

K(u)|v0(u)|du.
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Thus Grönwall’s inequality gives

sup
0rt

|xn(r)|+ |vn(r)|  e
c(n,t)

Z
�T2

�T1

K(u)|v0(u)|du. (A.4)

Next, let �T1
n and �T2

n respectively denote the stopping times associated with ⇠T1
n (t) and

⇠
T2
n (t) as in the proof of Lemma A.2. Setting ⇠(t) = ⇠

T1(t)� ⇠
T2(t) we find that

E


sup

0rt
|x(r)|+ |v(r)|

�
 E


1{�T1

n ^ �
T2
n � t} sup

0rt
|x(r)|+ |v(r)|

�

+ E


1{�T1

n  t} sup
0rt

|x(r)|+ |v(r)|

�

+ E


1{�T2

n  t} sup
0rt

|x(r)|+ |v(r)|

�

= (I)t + (II)t + (III)t.

In view of (A.4), we have

(I)t  E sup
0rt

|xn(r)|+ |vn(r)|  e
c(n,t)

Z
�T2

�T1

K(u)|v0(u)|du.

Concerning (II)t, we use Holder’s inequality and Assumption 2.4 to infer the bound

(II)t 

✓
E


sup

0rt
|x(r)|+ |v(r)|

�1+�◆ 1
1+� ⇣

P
⇣
�
T1
n  t

⌘⌘ �
1+�

 c

✓
1 + E sup

0rt
|x(r)|1+� + |v(r)|2

◆ 1
1+� ⇣

P
⇣
�
T1
n  t

⌘⌘ �
1+�

 c

✓
1 + E

h
sup

0rt
H
�
x
T1(r), vT1(r)

�
+H

�
x
T2(r), vT2(r)

�i◆ 1
1+� ⇣

P
⇣
�
T 1

n  t

⌘⌘ �
1+�

 c

✓
1 + E

h
sup

0rt
H
�
x
T1(r), vT1(r)

�
+H

�
x
T2(r), vT2(r)

�i◆ 1
1+�

·
c(t)

n�/(1+�)


c(t)

n�/(1+�)
.

In the above estimate, we employed (A.3) together with (A.2). Likewise,

(III)t 
c(t)

n�/(1+�)
.

Altogether, we arrive at the bound

E sup
0rt

|x(r)|+ |v(r)|  e
c(n,t)

Z
�T2

�T1

K(u)|v0(u)|du+
1

n�/(1+�)
c(t).

Thanks to the assumption that ⇠0 2 C(�1, 0], it is now clear that {⇠
T
} is a Cauchy

sequence in C([0, t];R2) by first taking n sufficiently large and then sending T1 and T2 to
infinity. As a consequence, there exists a solution ⇠ for (1.1) with the initial condition
⇠0 2 C.

Turning to the uniqueness of ⇠, it suffices to show that if e⇠ solves (1.1) with the
same initial path ⇠0, then ⇠ and ⇠̃ must agree a.s. in [0, t]. To see this, consider the
stopping times �n and e�n associated with ⇠ and ⇠̃ respectively. Similarly to the above
existence part, denoting b⇠ = ⇠� ⇠̃, we observe that for 0  t  �n ^ e�n, ⇠ and ⇠̃ both solve
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equation (1.1) with U
0 being replaced by U

0

n(x). So that, for 0  t  �n ^ e�n, b⇠ satisfies
b⇠(0) = 0 and

d

dt
bx(t) = bv(t),

d

dt
bx(t) = �bv(t)�

⇥
U

0

n(x(t))� U
0

n(ex(t))
⇤
�

Z t

0
K(t� r)bv(r)dr.

Since the nonlinear term is Lipschitz, by Gronwall’s inequality, we immediately obtain

E


1{�n ^ e�n � t} sup

0rt
|bx(r)|+ |bv(r)|

�
= 0.

On the other hand, similar to the estimate of (II)t above, we also have the bound

E

⇣
1{�n  t}+ 1{e�n  t}

⌘
sup

0rt
|bx(r)|+ |bv(r)|

�

 c

✓
1 + E

h
sup

0rt
H
�
x(r), v(r)

�
+H

�
ex(r), ev(r)

�i◆1/(1+�)

·
1

n�/(1+�)
c(t) 

1

n�/(1+�)
c(t).

By taking n large, we observe that E sup0rt |bx(r)|+ |bv(r)| is arbitrarily small, forcing

E sup
0rt

|bx(r)|+ |bv(r)| = 0,

holds true. The proof is thus complete.

Given the strong solutions constructed above, we are now ready to give the proof of
Proposition 2.7. The argument is relatively short and can be found in previous works
(see, for example, [29]).

Proof of Proposition 2.7. The existence of weak solution is clear since we already con-
structed strong solutions as in Lemma A.3. It remains to show weak uniqueness.

Suppose (⇠, F,W ) and (⇠̃, F̃ , W̃ ) are two weak solutions as in Definition 2.2 on the
interval [t0, t] with the same initial condition ⇠0. By the uniqueness of strong solutions,
we may consider ⇠ and ⇠̃ as the unique path-wise solutions given (F,W ) and (F̃ , W̃ ),
respectively. To see that ⇠ and ⇠̃ have the same law, we recall the construction of ⇠
starting from system (A.1) with U

0 being Lipschitz. Then, it is clear that the processes
⇠
T and ⇠̃ T as in Lemma A.1 must agree in distribution [29, Lemma 5.3.1]. In view of
Lemma A.2, this property also holds for general U satisfying Assumption 2.4. Finally,
since ⇠T and ⇠̃ T respectively converge to ⇠ and ⇠̃ on C([t0, t];R2) as T ! 1, cf. proof of
Lemma A.3, we immediately establish the equality in law for ⇠ and ⇠̃, thereby concluding
the uniqueness of weak solutions.

B Bound on the expected maximum of F (t)2

In this section, we will show that under the condition that the autocorrelation K is
continuously differentiable, the corresponding stationary process F (t) must satisfy the
supremum bound (2.4). Thanks to stationarity, it suffices to prove (2.4) holds for the
time interval [0, T ], namely, for all T � 0,

E sup
0tT

F (t)2 < 1.

For convenience, we first recap several notions from the technique of generic chaining
in [35, Chapter 2]. Consider the time interval [0, T ] and the distance

d(s, t)
def
=

p
E|F (t)� F (s)|2.
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It is well-known that d is a metric in [0, T ]. For a set A ⇢ [0, T ], we denote by 4(A) the
diameter of A with respect to metric d, that is

4(A)
def
= inf

s,t2A
d(s, t).

Next, we provide the definition of an admissible sequence.

Definition B.1. An admissible sequence is an increasing sequence {An}n�0 of partitions
of [0, T ] such that A0 = [0, T ] and for all n � 1, card (An) is at most Nn = 22

n

.
Here, increasing sequence means every set of An+1 is contained in some set of An.

Given an admissible sequence An and a time t 2 [0, T ], we denote by An(t) the
element in An that contains t and define �2(T, d) given by

�2(T, d)
def
= inf sup

t2[0,T ]

X

n�0

2
n
2 4(An(t)),

where the infimum is taken over all admissible sequences. We now state the following
result asserting that under the conditions imposed on F (t), E sup0tT F (t)2 is always
finite.

Lemma B.2. Let F (t) be a mean-zero Gaussian stationary process whose covariance
function K is in C

1(R). Then, for all T � 0, there exists a positive constant c(T ) such
that

E sup
0tT

F (t)2  c(T ). (B.1)

Proof. We first observe that

sup
0tT

F (t)2 = sup
0tT

�
F (t)� F (0) + F (0)

�2
 2 sup

0tT

�
F (t)� F (0)

�2
+ 2F (0)2

 2 sup
0t,sT

�
F (t)� F (s)

�2
+ 2F (0)2,

whence

E sup
0tT

F (t)2  2E sup
0t,sT

�
F (t)� F (s)

�2
+ 2K(0).

It therefore suffices to establish an upper bound for E sup0t,sT

�
F (t)� F (s)

�2
.

Now, since F (t) is a mean-zero Gaussian process, F (t) satisfies [35, inequality (1.4)],
that is for all r > 0

P(|F (s)� F (t)| � r)  2 exp
⇣
�

r
2

2d(s, t)2

⌘
. (B.2)

Indeed, by Markov’s inequality,

P(|F (s)�F (t)| � r)=P
⇣
exp

⇣
�

r
2

2|F (s)� F (t)|2

⌘
�

1
p
e

⌘
 2E exp

⇣
�

r
2

2|F (s)� F (t)|2

⌘
.

Observe that f(x) = e
�r/x is concave down on (0,1). So that, Jensen’s inequality implies

E exp
⇣
�

r
2

2|F (s)� F (t)|2

⌘
 exp

⇣
�

r
2

2E|F (s)� F (t)|2

⌘
,

which proves (B.2). Now, in light of [35, inequality (2.49)], there exists a positive constant
C independent of T such that

E sup
0t,sT

�
F (t)� F (s)

�2
 C�2(T, d).
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It remains to show that �2(T, d) is finite. To this end, consider the the following sequence
{Ãn}n=0 given by

Ã0 = [0, T ] and Ãn =
h
0,

T

Nn

⌘
[

h
T

Nn
,
2T

Nn

⌘
. . .

h (Nn � 1)T

Nn
, T

i
, n � 1.

It is straightforward to check that Ãn is an admissible sequence. For each t 2 [0, T ], by
definition of 4, we note that

4(Ãn(t)) = sup
s,r2Ãn(t)

d(s, t) = sup
s,r2Ãn(t)

p
E(F (s)� F (r))2

= sup
s,r2Ãn(t)

p
2(K(0)�K(|s� r|).

By the choice of Ãn, for all r, s 2 ÃN (t), |r � s|  T/Nn. So that,

sup
s,r2Ãn(t)

p
2(K(0)�K(|s� r|) = sup

0sT/Nn

p
2(K(0)�K(s)).

Since K 2 C
1(R), by the Mean-Value Theorem, for s 2 [0, T/Nn]

|K(0)�K(s)|  max
r2[0,T ]

|K
0(r)| · s  max

r2[0,T ]
|K

0(r)| ·
T

Nn
,

implying

4(Ãn(t)) 

s
2T

Nn
max

r2[0,T ]
|K 0(r)|.

Turning back to �2(T, d), we note that

�2(T, d)  sup
t2[0,T ]

X

n�0

2n/24(Ãn(t)) 
X

n�0

2n/2

s
2T

Nn
max

r2[0,T ]
|K 0(r)|

=
r
T max

r2[0,T ]
|K 0(r)|

X

n�0

2
n+1
2

p
Nn

=
r
T max

r2[0,T ]
|K 0(r)|

⇣p
2 +

X

n�1

2
n+1
2

22n�1

⌘
,

which is clearly finite. Altogether, we arrive at the bound

E sup
0tT

F (t)2  C

r
T max

r2[0,T ]
|K 0(r)|+ 2K(0),

thereby establishing (B.1) and completing the proof.
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