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Abstract

We study the statistically invariant structures of the nonlinear generalized Langevin
equation (GLE) with a power-law memory kernel. For a broad class of memory kernels,
including those in the subdiffusive regime, we construct solutions of the GLE using
a Gibbsian framework, which does not rely on existing Markovian approximations.
Moreover, we provide conditions on the decay of the memory to ensure uniqueness
of statistically steady states, generalizing previous known results for the GLE under
particular kernels as a sum of exponentials.
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1 Introduction

1.1 Overview

We study the generalized Langevin equation
dx(t) = v(t) dt,
t
do(t) = —o(t) dt — U (a(t)) dt — / K(t—ryo(r)drdt + V2dW () + F(t)dt,  (1.1)
—0o0
describing the motion of a particle with position z(¢) € R and velocity v(¢) € R in a poten-
tial U. The particle is subject to a viscous friction force —uv(t) dt and a convolution term

involving the convolution kernel K, modeling a thermal drag force with memory effects.
By the fluctuation-dissipation relation, both of these forces are respectively balanced by
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stochastic processes W (t) and F'(t), where W (¢) is a standard one-dimensional Brownian
motion and F(¢) is a mean-zero stationary Gaussian process with covariance given by

E[F(tl)F(tg)] = K('tl — t2|), for all t1,t5 € R. (1.2)

Note that the memory in equation (1.1) is present both in the integral term with the
kernel K and in the Gaussian process F'(t) which is not white in time.

In the absence of memory effects, that is setting K = 0 and F' = 0 in (1.1) above,
large-time properties of the resulting Markovian system are well-understood, in the
sense that under general conditions on the potential U, it is known that the system
admits a unique ergodic invariant measure 7(z,v) on R? which is exponentially attractive
and whose formula is given by

7(dx,dv) x exp(—H (z,v)) dz dv, (1.3)

where

02
H(z,v) = 5 +U(x)

denotes the Hamiltonian of the system. For example, see [4, 5, 16, 23, 31, 36] and
the references within. When K = 0 and F' = 0, one can equally speak of stationary
solutions in path space C(RR;R?) of (1.1) as they are in one-to-one correspondence
with the invariant measures on R?, namely the fixed points of the Markov semigroup
generated by (1.1) without the memory terms. Here, a process X(¢), t € (—o0,00), is
called stationary if the distribution

(X(t1+8),.... X(tn +9)), t1 < <tn,

does not depend on s. For further discussion, see Sections 4.1-4.2 below. On the other
hand, in the presence of memory in (1.1), comparatively much less is known about both
the existence and uniqueness of statistically stationary states under general conditions
on K. The goal of this paper is to make progress on bridging this gap between the
standard Langevin equation (K = 0, F' = 0) and its generalized counterpart (1.1) with
memory.

In general, there is no Markovian dynamics on R? associated with (1.1); and hence,
no directly analogous concept of an invariant measure on R2. Thus, we are left to study
the stationary solutions of (1.1) in C(RR; IRQ) as this concept remains well-defined. One
can always associate such a stationary solution to a deterministic dynamical system
X = (z,v,W, F) where X € C(R;R*) represents the dynamics lifted to the path space.
Here the dynamics is given by the shift map 6;: C(R; R*) — C(R;RR*) defined by

(0:X)(s) =0:X(s) = X(t + s), (1.4)

for X = (z,v,W, F) € C(R;R"). As with any deterministic dynamical system, we can
view this as a (nonrandom) Markov process whose invariant measures are the stationary
measures of X = (x,v, W, F'). However, the phase space of such a representation is so
large to be almost useless. The concepts of “future” and “past” which are so powerful in
a more standard Markovian representation have little power in this context. In particular,
the future trajectories encode the past and hence do not necessarily have the same
strong independence properties enjoyed by a more standard Markovian structure. One
of the central themes of this note is that there are representations lying between the
standard Markov representation of memoryless Langevin dynamics on R? and the lifted
dynamics to the path space C(R;R*). Moreover, these representations can be applied in
a fruitful way to the case of the generalized Langevin equation (1.1).
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Although there is no general way to represent solutions of (1.1) as a Markov process
on R?, there are special cases where one can still define a convenient Markov process
associated to (1.1) on an extended state space. In particular, when the memory kernel
K (t) can be written as a finite sum of exponentials; that is,

K(t) =) cpe ™, (1.5)
k=1

for some constants c;, Ay > 0, one can augment the resulting system (1.1) by a finite
number of auxiliary variables to produce a Markov process on a higher, but finite-
dimensional space. This corresponding finite-dimensional system was studied rigorously
in [30, 31]. There, under general hypotheses on U, it was shown that the system is
uniquely ergodic and the marginal invariant distribution of the pair (x, v) is precisely =
as in (1.3) [14, 30, 31]. However, because the sum above is finite, it cannot describe a
kernel with power-law decay, i.e., a kernel K (t) satisfying

K(t)~t“ as t — oo, (1.6)

for some o > 0. Subsequently, this approach was extended to handle such memory
kernels by writing K as an infinite-sum of exponentials (n — o0o,¢; = cx(Ag) > 0
in (1.5)) [13]. See Remark 2.12 below. The resulting dynamics is an infinite-dimensional
Markov process on a Sobolev-like space and still has a meaningful sense of “future” and
“past”. In particular, the process is amenable to classical Markovian techniques despite
being infinite dimensional.

In this infinite-dimensional context [13], it was shown that there exists an explicit
invariant probability measure whose (z, v)-marginal agrees with (1.3). This is true for
memory kernels in this specific form regardless of the memory decay rate > 0 as
in (1.6). However, to establish uniqueness of this measure, the restriction o € (1,00) as
in (1.5) was imposed leaving out the important subdiffusive regime of « € (0, 1) (see the
discussion in Section 1.2 below). One of our goals here is to push through this threshold.
Additionally, we will study (1.1) for the Gaussian forcing as in (1.2) both when the
memory kernel satisfies the structural assumption in (1.5) with n = oo and alternatively
when the memory kernel has power-law decay (1.6) but cannot be expressed as an
infinite sum of exponentials.

For general stationary Gaussian forcing F, there is not necessarily a Markovian
dynamics associated to (1.1).! Hence, we lack a natural notion of an Markov invariant
measure and study the stationary solutions of (1.1) instead. We give general conditions
guaranteeing that there is at most one stationary solution. Although there is no Markov
formulation of the stochastic dynamics, there is however a natural skew-flow on the
infinite past C((—oo,0];R?) of the trajectories of (x,v) fibered over the Gaussian forcing
F'. That is, given a noise realization and an initial trajectory on (—oc, 0], we evolve (1.1)
on [0,¢], 0 < ¢, hence obtaining a solution path on (—c0,t]. See Section 3.2 for a more
detailed discussion.

When (1.5) holds with n < co or n = oo, then there is a natural Markovian formulation
of the stochastic dynamics [13, 30, 31]. We will study a different Markovian formulation
than used in those works. The assumption in (1.5) implies that F'(¢) can be constructed
as a functional of a (possibly) infinite collection of independent Brownian Motions on the
time interval (—oo, t]. We formulate a Markovian dynamics which takes as its state space
the trajectories of (x,v) on the infinite past C((—oo,0]; R?) and the infinite past of the

10ne can always consider as the state space the path space of a process on the time interval (—00,00). The
dynamics is then the deterministic shift of the trajectories. Lifting of the deterministic process to pathspace is
not the type of stochastic Markov dynamics we seek.
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collection of independent Brownian Motions used to construct F'. We show that when
a > 1/2, this dynamics has at most one invariant measure; or equivalently, at most one
stationary solution, cf. Theorem 4.3.

Remark 1.1. Gibbsian Dynamics: As previously mentioned above, it is possible to
enlarge the state space of any dynamics to make it Markovian. In the extreme, by making
the state space the entire trajectory {(z(t),v(t), F(t)) : t € (—o0,00)}, the dynamics is
simply the shift map 6, : (z,v, F) — (2( - +t),v( - +t), F( - +t)). At this level of generality,
the fact that the dynamics is Markovian provides little useful structure. However, our
setting below has more structure.

In the continuous-time Markov setting, the distribution of infinitesimal increments
is a function the current state of the process. In the Gibbsian setting, as envisioned in
[9, 21], the distribution of infinitesimal increments is a function of the entire past. We
will return to this setting in Section 3.1. The term Gibbssian comes from the dynamics
being dictated, not by a compatible family of Markov measures (depending only on the
boundary data in space-time), but rather a compatible family of Gibbs measures (in the
general sense of [10]).

1.2 Physical motivation

It is important to note some of the physical reasons for considering memory kernels
K in general, and in the power-law regime in particular. The standard Langevin equation
is commonly used to describe microparticle motion embedded in Newtonian fluids, which
amounts to the implicit assumption that there is no time correlation between the foreign
microparticles and the thermally fluctuating fluid molecules. Following Newton’s Second
Law [31], the two-dimensional Langevin equation has the form (1.1) with K = 0 and
F = 0. On the other hand, for viscoelastic fluids, elasticity induces time correlation
between foreign particles and fluid molecules, leading to memory effects. Thus the
standard Langevin equation is not sufficient to describe the motion of the particles
suspended in the fluid. In order to capture such phenomena, the generalized Langevin
equation (1.1) with general K was introduced in [18, 27, 28] and later popularized
in [20].

It is known that the unconstrained GLE (i.e. U = 0 in (1.1)) exhibits anomalous
diffusion; that is, the mean-squared displacement Ez(#)? may not be asymptotically
proportional to ¢t as t — oo. In fact, it was shown in [6, 24] that when K € L!(R), the
unconstrained GLE is asymptotically diffusive, i.e., ]Ex(t)2 ~ t ast — oo. Otherwise,
if K(t) ~t%, a € (0,1), then the unconstrained GLE is asymptotically subdiffusive,
i.e. Ex(t)? ~ t* and when o = 1, there is a transition phase between diffusion and
subdiffusion, i.e., K(t) ~ t~! implies Exz(¢)? ~ t/log(t) as t — oco. For viscoelastic fluids,
the subdiffusive regime is observed in experiments [11, 19, 25, 26, 32, 33, 34], which is
why we are primarily interested in the scenario where K has a power-law decay rate
a € (0,1].

1.3 Paper overview

The rest of the paper is organized as follows. In Section 2, we introduce assumptions
and briefly state the well-posedness result for (1.1). In Section 3, we discuss the solutions’
structures in accordance to different assumptions on the memory kernel and the noise.
In particular, we will see that the dynamics (1.1) induces a skew-flow on the skew
path space. Section 4 discusses the associated stationary solution(s) for this dynamics.
Furthermore, we prove our main result on the uniqueness of the associated stationary
measures in this section. The argument proving uniqueness, in particular, makes use
of some auxiliary results collected and proved in Section 5. In Section 6, we establish
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the existence of a stationary measure when the kernel can be written as an infinite sum
of exponentials. In Appendix A, we establish the well-posedness result in detail. In
Appendix B, we prove a technical result which allows us to bound the expected value of
the maximum of F'(t) over finite intervals of time. This result is employed in the proof of
well-posedness.

2 Assumptions and well-posedness

2.1 Well-posedness

We begin by clarifying what we mean by a solution of (1.1). Throughout, we consider
a probability space (2, F, P, {F;}) where the set 2 is endowed with a probability measure
P and a filtration of sigma-algebras {F;: t € R}.

Definition 2.1 (Solution on (—o0,00)). A (weak) solution to (1.1) on the time interval
(—o00,00) is a probability space (2, F, P, {F;}) on which a triple of stochastic processes
(&, F,W) is defined so that the following conditions are satisfied:

1. &(t) = (x(¢),v(t)), F(t) and W (t) are all stochastic processes adapted to the filtra-
tion {F:}.

2. F(t,w) is a stationary Gaussian process with mean zero and covariance K in the
sense of (1.2) and W (t,w) is a standard, two-sided Brownian Motion both with
respect to {F;} such that F' and W are independent.

3. With probability one, the triple (£, F,W) solves (1.1); that is, with probability one,
for all ty,t1 € R with ty < t; we have

J;(tl)—m(to):/lv(t) dt,

to

U(tl)—v(to):—/tl [o(t) + U (2(0) +/t K(t— o) dr|dt (2.1)

to

ty
+V2(W(th) — W(to)) +/ F(t)dt.

to
Definition 2.2 (Solution with an initial past). A (weak) solution to (1.1) on the time inter-
val (Ty, T1) with Ty € R and Ty € RU {oo} with initial past & = (xg,vo) € C((—o0, To]; R?)
satisfies the same conditions as in theorem 2.1 but the stochastic processes need only
be defined on the time interval (Ty,T)) with the exception of ¢ = (x,v) which is defined
on (—oo,Ty) with £(t) = &y(t) fort € (—oo0,Tp]. Additionally, (2.1) need only hold for
to,t1 € (To,Tl).
Remark 2.3. In this paper, we will prove strong existence of solutions on [Tj, 00) given
an initial past & = (z0,vo) belonging to an appropriate subclass of C((—oo,Tp]; R?).
Moreover, we will also establish weak uniqueness, which together is stronger than weak
existence and weak uniqueness.

Throughout, we will employ the following assumption on the potential U in (1.1).

Assumption 2.4. The potential U: R — R is such that U € C3(R), [, |U'(z)|e~V®dx <
oo and the global estimate holds

b(U(z) +1) > |z|**° forall = e R,

for some constants b > 0 and ¢ € (0, 1).

Remark 2.5. The first two conditions on U are not directly used in this paper. They
were previously used in [13, Theorem 7] to construct an explicit invariant measure for
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the Markov system (6.3) below. We then will use this result to construct a stationary
measure for the dynamics (1.1) in Section 6.

We also use the following condition on the memory kernel.
Assumption 2.6. K ¢ C*([0,); [0,00)) and there exists K € C([0,0¢)) for which

K(t
sup B+ )

— K(t) forall t>0.
s>0 K(s) ®) -

In order to state our main existence and uniqueness result, for ¢ € R let
t
C(—o0,t] := {(x,v) € C((—o0,t];R?) : / Kt —nr)|v(r)dr < oo}. (2.2)

Proposition 2.7. Suppose that Assumption 2.4 and Assumption 2.6 are satisfied. Then
there exists a subset K C C((—00,);R) so that P(F € K) = 1 and for every t; € R,
F € K and every initial condition £y = (xg,v9) € C(—00, o], there exists a unique solution
¢ = (z,v) with initial past & on the time interval [ty,o0) such that £ € C(—o0,t] for all
t > to. Furthermore, we have the energy estimate

B Sil?gtH(I(T),v(T))

to

2
< H(a:o(to)mo(to))—k( K(to—r)|v0(r)|dr) +E sup F(r)2+41|etod  (2.3)

—0o0 to<r<t

where we recall that H(z,v) = $v? 4+ U(z).
The proof of Propoosition 2.7 is given later in Appendix A.

Remark 2.8. For a general centered stationary Gaussian process F'(¢), it is not immedi-
ately obvious that for all t; < ¢

E sup F(r)? < oco. (2.4)
to<r<t

In Appendix B, we will make use of the condition that K € C', cf. Assumption 2.6, to
show that this is indeed the case for the process F'(t).

2.2 Structural assumptions on the noise

At times, we will further assume that memory kernel K has the following specific
form previously employed in [13].

Assumption 2.9. There exists continuously differentiable functions Jy: [0, 00) — [0, 00),
¢ > 1, so that the stationary Gaussian forcing F(t) can be represented as

F(t) = i/t Jo(t — s)dBY(s), (2.5)
=177

where {B(“) : ¢ > 1} is a collection of mutually independent standard two-sided Brownian
motions. Furthermore,

L Z/ Jo(t + 1) Je(r)dr,
=170
is continuously differentiable.
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Remark 2.10. theorem 2.9 together with the fluctuation-dissipation relation (1.2)
immediately imply that the memory kernel K (¢) is continuously differentiable and of the
form

K(r)=>_ Kt) where K(t)= / Ong(t+7”)Jg(r)dr.
(=1 0

We will also need some structure on the decay of the kernel at infinity.

Assumption 2.11. There exist constants t, > 0, C > 0 and « > 1/2 such that
K(t)<Ct™® forall t>t,.

Remark 2.12. When F' is of the form (2.5), an example of particular interest is when J,
¢ > 1, is given by

Jg(t) =/ QCgAge_Mt,

where
1 1

Cyp = W and )\g = — (26)

for some constants a > 0,3 > 1. In this case,
(oo}

K(t) =Y cre ™, 2.7)
r=1

and one can show that [1, Example 3.2]
K(t)~t7% t— o0.

Hence, K is a power-law memory kernel which clearly satisfies Assumptions 2.6 and 2.11.

Remark 2.13. Note that if we first suppose that K is of the form (2.7), Doob’s Theorem
[7] and the fluctuation-dissipation relation (1.2) together imply that F' must be of the
form

00 t
F(t)=> V2N / e M= RO (1), (2.8)
(=1 -

where in the above, {B(e)} ¢>1 are two-sided, independent standard Brownian motions.

When theorem 2.9 holds, we arrive at the following form for the GLE

do(t) = —v(t)dt — U'(z(t)) dt — Z /75 Ko(t —r)v(r)drdt (2.9)
¢>17 7>
+y /t Jo(t —r)dBO (r) dt +V2dW (t),
>1Y 7>

where W is a standard, two-sided, real-valued Brownian motion independent of the
collection {B¥},>, and K, is as in Remark 2.10.
3 Structures on Pathspace

Since we often work on the phase space C(RR;R?) and its subspaces, we use the
topology on C(RR;R?) defined in the follow sense: A sequence {g,} C C(R;R?) is said to
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converge to g € C(RR; R?) if the convergence holds in the sup norm on any bounded time
interval. That is, for all fixed 7" > 0,

sup |gn(t) —g(t)| = 0, asn — co.
te[—T,T)

The closed sets in C(R;R?) are then defined with respect to the above mode of conver-
gence, hence inducing the corresponding topology of open sets as well as the Borel
sigma algebra of subsets of C(RR; R?).

In the introduction, we already discussed how (1.1) along with its two forcings, W
and F, can be viewed together as Markov process on the extended path space C(RR; R*)
under the shift map. However, this encodes little useful structure of the system. This is
in direct contrast to the more traditional Markovian embeddings which hold when (1.5)
(with n possibly infinite) is enforced as also discussed in the introduction. In this section,
we therefore discuss some intermediate, but fruitful structures used in later sections in
this paper. To aid in the discussion, we begin with a number of preliminary discussions
in simplified settings.

3.1 The structure of solutions in simplified settings

As we have already noted, when both the general Gaussian forcing F' and memory
kernel K are taken to be zero, (1.1) is a standard stochastic differential equation (SDE)
which generates a Markov process on R?. The appearance of each of these introduces
particular complications and structures. We will first consider them individually before
exploring their combined effects.

Time inhomogeneous SDE and its skew-flow of kernels

If only the memory kernel K is taken to be zero and F' is a stationary Gaussian process,
then the resulting equation (1.1) is a standard, time-homogeneous SDE. The resulting
equation, in particular, generates (provided solutions make sense) a family of solution
maps @i’tW of (1.1) for (F,W) € C(R;RR?) and s < t. The addition of F' does not destroy
the classical skew structure of the SDE; namely,
FW 0,.(F,W
@s-&-nt—i—r = @s,t( ) for any r € R
where, for any function of time f, we offer the slight abuse of notation and set (6, f)(t) =

fE+r).

By averaging over W, we define a flow of Markov kernels Ri + by
R{,(6.4) = Pp" (€) € Al§, F) for ACR?

and initial conditions ¢ = (x,v) € R2. For s < r < t, we have the usual time inhomoge-
neous Markov property RY, RY, = RE,. But, we also have the following skew property
inherited from the underline SDE,

F _ pb.F
Rs+r,t+’r - Rs,t

for s <tandr € R. (See Section 3.2 for more details.)

Without more information on F', Markovian representations of the dynamics must
include the entire future of the process F. This means that the only independence of
the future from the past must come from the standard Brownian motion W and not the
process F. However, if the process F' satisfies Assumption 2.9, then there is memory
loss in F' and one can define Markov process with state variables (¢, BM B® . ) on
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the statespace R? x C((—o0,0],R)N. The resulting Markov Kernel P, is then defined
as follows: First {B("}2° , are extended to the time intervals (—oo, t] by drawing inde-
pendent increments of the Weiner process of each. Next, a realization of the Weiner
process W is drawn on the time [0, ¢] starting from zero as only the increments of W

are used. Then the initial conditions are evolved to time ¢ using <pgft(F’W)(§) with F'
reconstructed from (B B .. .) using the formula from (2.8). The resulting state

(&(t), BN, B@) .. .) is a random variable taking values in R? x C((—ooc, t]; R)N and hence
(z(t),v(t),0,BM 0,B(3) .. .) takes values again in R? x C((—o0,0]; R)N. The law of this
random variable is taken as the transition measure defining P, starting from this initial
condition. The advantage of this representation is that the marginals the process in
¢ = (z,v) again have “Markovian feel” of the original process.

The Gibbsian SDE and Markov process on path space

Consider now the situation where F' = 0 and we leave the memory kernel intact. The
resulting dynamics is not a Markovian diffusion in the classical sense. However, the
resulting SDE is still a rather standard It6 process as its coefficients at time ¢ are
still adapted to the past of W. This particular form of an Itd process, considered in
[2, 8, 15,17, 21, 22], can be written abstractly as

where 6, is again the shift in time on pathspace, {(t) € R, §_wy € C((—00,t];RY),
01&(—00y) € C((—00,0];R?) and f,g: C((—o0,0];R?Y) — R? are the coefficients of the
process. In the context of (1.1) with F' = 0, the dimension d is 2, f represents the drift
terms in (1.1) (including the memory term), and g is the constant 2 x 2 matrix with
goo = v/2 and all other entries zero.

In [2, 8, 15, 21, 22], this type of equation was termed Gibbsian in that it defined a
family of compatible conditional transition kernels which depend on the entire past of
the process rather than the most recent point in time as in the Markovian setting. This
process has an infinitesimal Gibbsian generator at time ¢ given by

d d

L g HED) = 32 Al Coe)OR(ED) + 5 D 04y (E ) DOH(E),

i=1 i,j=1

for a test function h : R? — R and matrix a = g¢”. This structure implies a certain
amount of independence of the future from the past, or at least a rate of decorrelation
depending on the properties of K. In this case, we can define a family of random maps
ol C((—o0, s; R?) — C((—o0,t];R?) for s < ¢ depending on a random increment path
of Brownian motion W of length ¢ — s. For sufficiently nice i : R — R, we have that

LE__ h(E®) = T Bl (o)t + 1)) — BED)]
By setting P;({(—cc,0), - ) to be the law of Gtga(‘)’f’t(f(_wo]) viewed as a random vari-
able taking values in C((—oo,0]; R?), we can define a Markov operator on the space
C((—o0,0]; RY). This Markovian representation has more structure than the lifting to
the future and past performed in the introduction as it encodes that the future in our
context only depends on the past.

3.2 The Skew-flow and kernel for the full system

We now combine the discussions above to provide insight into the structure of (1.1)
when both K and F' are nonzero. We will reuse the symbols ¢ and R from the previous
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section but with sightly different domains of definition needed to accomodate our current
setting with neither F' nor K identically zero. We allow this slight abuse of notation to
make the analogies between this section and the preliminary discussion in Section 3.1
above clearer.

As before, we can associate to the dynamics (1.1) a skew product flow; however, we
now must include the past of z and v because of the memory in the drift. That is, given a
realization of F' and W on the time interval (—oo, c0) and recalling the space C(—oo,t] as
in (2.2), we define the family maps

oW C(—o0,to] — C(—o00,t], to <, (3.2)

as the extension of an initial past £, € C(—o0, to] to a function in C(—oc, t] by appending to
the front of &, the solution (1.1) on the time interval [to, ¢] with initial past £, and random
forcing W and F. When ¢ is deterministic, gptFO ’};Véo is a random path adapted to

Fiot = 0(F(r),W(r) — W(to) : v € [to,1]) with (p; 7 &)(r) = &(r) for r < tq.

Observe that if 6, again denotes the shift map in the space of trajectories, defined by
0:f(s) = f(s+1t), then et@OF;tho: C(—00,0] = C(—0o0,0]. More specifically, we see that

C(—00,0] — C(—o00,t] — C(—00,0]
o — wéi’twfo — ettﬂg,kwfo-
So, the skew-flow S; defined by
Se: (€0, F,W) > (Bepg Y €0, 0.F, 0, — W (1)), (3.3)

is a random semi-flow on the space C(—o0, 0] x C(R; R?). In particular Ssi; = SsS;.
Next we define the skew transition kernel RY on C(—o0,0] by taking the law of
Htcpéi ’twgo conditioned on &, and F’; namely,

Rf (€0, A) == P(0ppg " &0 € Ao, F), (3.4)

for
(&0, F) € Sskew := C(—00,0] x C((—00,0); R), (3.5)
and A C C(—o0,0] Borel. Observe we have the following skew structure stemming
from (3.3)
RE R = RF,,

or more explicitly,

Rieod)= [ RE@dORET(C )

3.3 A more Markovian kernel

Looking at (2.9), we see that when theorem 2.9 is enforced, we can consider a
solution to be a triple of stochastic processes (£, W, B) where £ and W are as before but
B = {B®},>, is a countable collection of standard two-sided independent Brownian
Motions independent of . We can then define a map ;" : S(—oc0,0] — S(—00,t] where

S(—00,1] := C(—o00,t] x C((—o0,t]; R)N, (3.6)
and ;" (&, Bo) is equal to the pair (¢, B) obtained by continuing the Brownian motions

By € C((—00,0]; R)N over the interval [0,¢] and then extending ¢ over the same interval
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by evolving (2.9) using F' as in (2.5) with the Brownian Motions in B, which is the
continuation of By. We again have a skew-flow defined for (&, By) € S(—00,0] and
W e C((—o0,00); R) by

(&0, Bo, W) = (0130 (€0, Bo), 0: W) .

In contrast to Section 3.2, where the skew-flow \S; as in (3.3) is fibered over the bivariate
process (W, F), whose future increments depend on its entire past, this skew-flow
(09} (&, Bo), 0:W) is fibered over a process, namely W, whose future increments are
independent of its past increments. Thus, we can obtain a Markov kernel by averaging
over the randomness in W. We cannot average over the randomness in B as the
increment added to £ over the time interval [0, ¢] depends on the entire history of B back
to time —oo.
With these considerations, we define the Markov kernel P; on S(—o0, 0] by

Py((&0, Bo), A) = P(6,1," (€0, Bo) € A| &, Bo), (3.7)

for (&, By) € S(—0,0] and A C S(—o0, 0] Borel.

3.4 Solutions on the time interval [0, c0)

theorem 2.7 gives a finite-time existence and uniqueness result for initial pasts in
C(—00,0]. Thus solutions do not blow up in finite time, but it is possible that they may
tend to co as t — oo. Hence this fact induces a well-defined mapping

@QW : C(—OO, 0} - C([Oa OO), RQ):
but it is still possible that
IP(|§0§O’W(€0)(S)| —ooass—oo)>0.

In the next section, we will consider the large-time behavior of the system, in particular
the existence and uniqueness of stationary solutions.

Because the mapping ¢2"" makes sense, we can define a family of kernels Qfg’oo) on
the infinite future by

Q[}(?),oo) (607 A) = P(W[O,m)(pgﬂow(fo) €A | Fa 50)7 (3.8)

for initial pasts £ € C(—o0, 0] and Borel sets A C C([0,00); R?). Here, 7| ) denotes the
projection of the trajectory onto the time interval [0, 00). While R} captures the effect of
starting from an initial past at time —¢ and flowing forward to time 0, Q¥ captures the
distribution on the infinite future starting from &, at time 0.

4 Stationary solutions and invariant measures

Recall that the stochastic process (£, F') on the time interval (—oco, 00) is stationary
if for any finite collection of times ¢, -+ ,t, € (—o00,c0) the distribution of the random
vector

(E(t1+ ), F(t1+5)), .., (§(tn + 8), F(tn +5))), t1 <ty <---<ty,

is independent of s € R. Letting #, denote the shift mapping on the space of trajectories,
cf. (1.4), stationarity is equivalent in our setting to the distribution of the path 6;(¢, F)
being independent of ¢.

In Sections 4.1 and 4.2 below, we discuss the relation of stationary solutions and
invariant measures for the skew-kernel Rf and P; defined in (3.4) and (3.7), respectively.
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4.1 For the skew kernel R

Recalling the skew transition kernel Rf on C(—o00,0] as in (3.4), a family of measures
pf" on Borel subsets of C(—oc, 0], indexed by a realization F € C((—o0,00); R), is called
skew-invariant for R if the following holds

uFRE = OF

b

where we define the measure " R} for A C C(—o0, 0] Borel by

P RF(A) = / RF (€, A)u (déo)
C(—00,0]

_ /C PO € A6, Pt (d50). @.1)
—00,0

We note that a stationary solution (¢, F') on the time interval (—oo, 00) always gen-
erates a skew-invariant measure u!". To see this, let Law(¢, F) denote the law of the
stationary solution (£, F'). Then, Law(¢), being the disintegration of Law(¢, F') relative
to Law(F') restricted to C(—oo, 0], is the desired skew-invariant pf". Indeed, from (4.1),
observe that u" Rl is the law of 0,¢, which agrees with Law(¢) by stationarity.

On the other hand, given a skew-invariant measure /LF on C(—o0,0], let /lF be the
extension of pf" to the time interval (—oo, 00) using the dynamics 995 ’tW. That is, for any
Borel set A € C(—o0, ],

A (A) = / PtV ey € Ao, F)uF (deo)
C(

—00,0])

Then i (d¢)Law(F)(df) is the law of the desired stationary process (£, F). To see the
stationarity of ¢, for A;,..., Ay C R?,

/]F({g(tl +5) € Ay, ... &ty + 5) € An})

= /C ( 15(995,;1‘1550@1 +5) €A1, 0 Eoltn +8) € Ay | o, F)p® (d&o)
—00,0

= /C( I;P)(ethrs@g:},‘erng(tl - tn) S Al, ey ethrSSD(IJ?t‘erng(O) c An | 507 F)//[/F(dfo)
—o00,0
= W ({€(t —tn) € A1, €/(0) € A,})

= / ( Jiwtn@i%(tl —tn) € A1y, 00,00, £0(0) € An| &0, )" (dSo)
C(—o0,0

= /C ( liwé”,ﬁvgo(tl) € Arye 0 Eolt + 8) € An | €0, F)uF (d€o)
—00,0

= iF ({&(t1) € A1, &(tn) € An}). 4.2)

In the third and fourth implications above, we invoked the stationarity of ;%"

4.2 For the Markov kernel P;

When theorem 2.9 holds, recall that (£, B) evolves as a Markov process on the state
space
S(—00,0] := C(—00,0] x C((—o0,0]; R)N,

under the Markov kernel P; defined in (3.7). In this setting, there is a one-to-one
correspondence between stationary solutions on the time interval (—oo, c0) and invariant
probability measures u for P;.
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Given an invariant probability measure u for P, on S(—o0, 0], we can create a station-
ary measure /i on the interval (—oo, c0) by flowing the dynamics forward from p by the
map ¢}" defined in Section 3.3 from a random initial past distributed according to ; and
then taking the measure obtained on (—oo, o) by averaging over the realization of V.
That is, for any Borel set A € S(—o0, ],

i) = [ PO (60 Bo) € A6, Bo(den, dBo).
S(—00,0]
The argument for [i being stationary is analogous to (4.2).

Conversely, given a stationary solution i on S(—oo, co) then we can simply restrict the
distribution to a measure p on S(—o0,0]. For any Borel set A € S(—0, 0], observe that
0_+A € S(—0,t]. Letting m7{ denote the projection of £ onto the interval T' C (—o0, 00),
we have

WP (A) :/S P(0:1);" (S0, Bo) € A|&o, Bo)u(déo, dBo)

(700’0]

- /S PO (60 Bo) € 014 | Bo)uldes,dB)
—00,0

A({E : T(—oo,yé € 01 A})
A({€ : T(—oo,010:€ € A})
1({€ s m(—o0,00§ € A}) = u(4).

In the second to last implication above, we employed the stationarity of ji. We therefore
see that the resulting measure p is invariant for the Markov Kernel F;.

-

4.3 Existence and uniqueness of stationary measures

Recalling the space C(—o0, ] defined in (2.2), for p > 0 we introduce the following
subset of moderate growth:
|z(

_  sup 0
Co(—00,t] = {(:c,v) € C(—o0,t] : ?};E) T2 < oo}, (4.3)

and define

Co(—00,0) = U Co(—00,n].

nezZ,n>0

Our main result concerning the existence of an invariant measure for the Markov
kernel P, is the following theorem whose proof is deferred to Section 6.

Theorem 4.1. Suppose that U satisfies Assumption 2.4 and that Assumption 2.9 is
satisfied with the choice of J, as in Remark 2.12. Then there exists an invariant measure
s« for P; defined in (3.7). Moreover, for every o > 0,

1 (Cy(—00,0]) = 1. (4.4)

Remark 4.2. The proof of Theorem 4.1 relies on constructing an explicit invariant
measure for an infinite-dimensional auxiliary Markovian system. A good Lyapunov-type
estimate for the equation (1.1) which would ensure the abstract existence of such a
measure in more generality is currently unavailable. It is thus left as an open problem to
determine whether (4.4) always holds for any invariant measure u.

The following is our uniqueness result which pairs with the existence result given
in theorem 4.1. However, it is worth noting that the uniqueness result applies in many
settings where we do not know that there exists a stationary measure.
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Theorem 4.3. Suppose that U satisfies Assumption 2.4 and that the memory kernel K
satisfies Assumptions 2.6 and 2.11. For every o < a — 1/2, the skew dynamics S; admits
at most one stationary solution (¢, F') such that Law(¢ | F) is supported in C,(—00, o).

The following corollary is an immediate result of the theorem 4.3 when we are in the
Markovian setting discussed in section 3.3 and section 4.2.

Corollary 4.4. When theorem 2.9 holds in addition to the assumptions of theorem 4.3,
there exists at most one invariant measure supported on

Sp(—00,0] := {(¢,B) € §(—0,0] : £ € Cp(—0, 0]},

for the Markov semigroup on that space discussed in section 3.3.

The proof of theorem 4.3 makes use of a coupling argument employed in [2, 12,
15, 21, 22, 8, 9] to show that starting from two distinct initial history paths, the time
averages of their solutions in the future must converge to the same place, hence yielding
uniqueness of a given stationary measure. Two of the main ingredients in the coupling
argument are the following two results to be proved in the next section.

Proposition 4.5. Under the hypotheses of Theorem 4.3, for any stationary solution
(¢, F) of (1.1), the marginal of Law(¢ | F') at any fixed time ¢ is equivalent to Lebesgue
measure on R2.

Proposition 4.6. Under the hypotheses of Theorem 4.3, let {, and EO be two initial pasts
in C,(—00, 0] such that £,(0) = &,(0). Then for almost every realization of F, the measures

Q500 (€0, +) and Qf (o, -) are equivalent.
Given these two results, we can now conclude Theorem 4.3.

Proof of theorem 4.3. We first fix some notation. Given a set A C C(R;RR?), a measure v
on Borel subsets of C(R; R?) and a time interval T C R, we denote by 71 A and 7rv to be
respectively the projection of A and v on T. In other words, letting w1 be the projection
of a trajectory ¢ onto the time interval T, we set

mrA = {np€ : £ € A},
and for any Borel set B C C(T;R?),
mrv(B) = v({¢ € C(R;R?) : € € BY}).

Let (&1, F1) and (&, F») be two stationary solutions of (1.1). Without lost of generality,
we may assume that Law(&1, F1) and Law(&,, Fy) are ergodic by ergodic decomposition.
As discussed in Section 4.1, we can disintegrate Law(;, F;) into Law(&; | F) relative to
Law(F) since Law(F) = Law(F;) = Law(F3). Letting v; = Law(§; | F), i = 1,2, we aim to
prove v; = v, assuming v; and v» are supported in C,(—o0, 00).

Fixing an arbitrary bounded function ¢ : C(]0,>); R?) — R which only depends on
some compact set of time, Birkhoff’s Ergodic Theorem implies that there exists a set

Ai C CQ(_OOa OO),

such that v;(4;) = 1 and for every £ € A;,

T—o0

o1 T
0
It suffices to prove that ¢; = ¢5. To this end, for each ¢ € C((—oo, 0l; ]RQ), we set

Bi(C) = {71’[0’00)2 1z e Ai,ﬂ(,ooyo]z = C}
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Since v; is supported in A;, it is clear that
W[O,oo)Vi(W[O,oo)Ai) =v({ze€eA;: T[0,00) % € W[O,oo)Ai}) =y (A;) = 1.
On the other hand, recalling Qfg ) is the future law as in (3.8), observe that

1 = 70,00) Vi (T[0,00) Ai) = / Qf0.00) (€ 0,00) Ai ) (00,0771 (),

T(—o00,0] 4

= / i {8700)(47 {77[0,00)2 HEAS Aaﬂ-(foo,O]Z = C})ﬂ(foo,O]Vi(dC)a
T(—o00,0]41i

- / QF ) (6 Bi0) )7 oo i (dC),
T (—00,0]

o0 A

We then conclude that for almost every ¢ € m(_ 0)A; with respect to m(_u 0vi, We see
that

Qo) (¢, Bi(0)) = 1. (4.6)
In view of theorem 4.5, we know that myr; and myv, are both equivalent to Lebesgue
measure in R2. So that moA; N 7oAy # 0. Together with (4.6), it follows that there exist
¢; and (s such that ¢;(0) = ¢(2(0) and Q[o Oo)(Q,Bi(Q)) =1fori=1,2. As theorem 4.6
implies that QF 10.00) (¢i, - ) is equivalent to Q[o,oo) (¢2, - ), we also know that

Q[o oo)(Cth(Cz)) =1= Qo o) (C27B1(C1))
and hence
Q.00 (Gi» B1(Q1) N Ba(G2) ) =1, fori=1,2.
In particular, this implies that Bi(¢;) N Ba((2) # 0. By the definition of B;((;), there exist
z; € Aj, © = 1,2 such that m(_ g2; = ¢; and
T0,00) 21 = T0,00) %2 € B1(C1) N Ba(Cz),

whence for all ¢t > 0,
T[0,00) 0t 21 = T[0,00) 0t 22

As a consequence, we have from (4.5) that

T
¢ = lim */ o(m ooo)9t21)dt— lim */ D(T[0,00) Ot 22)dt = 3.
0

As ¢ was from a class of functions sufficiently rich to determine the laws of £, i = 1,2,
we conclude the laws are the same since we have proven that 1) = ¢(2). O

5 Proofs of theorem 4.5 and theorem 4.6

In order to setup the proof of Proposition 4.6, observe that we may express equa-
tion (1.1) in a convenient form using integration-by-parts on the convolution term. Indeed,
by Assumption 2.11, there exist constants C, ¢, > 0 and « > 1/2 such that K(¢) < Ct~«
ast > t,. Since K is continuously differentiable, L'Hospital’s rule implies that for any
e >0, K'(t)t*t'=¢ — 0 as t — oo. Now, given that & = (z¢,v9) € C,(—00,0] where
0 < a — 1/2, using integration-by-parts we may thus rewrite (1.1) as

dx(t) = v(t)dt,
mdv(t) = —yv(t)dt — U’ (x(t)) dt — t) dt +/ K'(t z(r)drdt (5.1)

+ /2y dW () + F(t) dt.
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Proof of Proposition 4.6. Suppose &y, & € Co(—00,0]. Let &, = & — & and observe
that (5.1) with m = v = 1 and initial condition £, can be expressed as

dF(t) = o(t) dt,

do(t) = —o(t)dt — U'(z(t)) dt — K(0)Z(t)dt + /O K'(t — r)zo(r)drdt (5.2)
/K’tfr r)drdt + F(t) dt

+V2dW (t) / K'(t — r)To(r)drdt.

If the following Novikov condition is satisfied

Eexp{ / / K (t — r)T(r )dr) it} < oo,

then Girsanov’s theorem would imply the desired measure equivalence on future paths.
Since Ty is deterministic, it suffices to show that the above integral is finite. To this end,
we note that since &g, &y € C,((—0o0, 0], R?), To(-) satisfies the growth bound

- [Zo(r)]
T = su
|| O”Q TSI:0)1+|T‘Q

Using this fact, we estimate as follows:

/ / K'(t —r)To(r )dr dt / (/ K'(t 1+ |r|9) +(|:)|g dr)th
< 702 (/ K'(t— ) 1+|>r)
= H%HQ/ (/ K'(t+7)(1+7r° )dr) dt.

For ¢ > 0 to be chosen later, recalling by L'Hospital’s rule applied to K (¢)/t*~%, by
Assumption 2.11, we saw that K'(¢)/t*"~! — 0 as t — oo. Hence, there exist C > 0 and
(t)| < Cte=o~! for all t > tq. It then follows that

OO >~ 2
/0 (/0 K(tJrT)(lJrr@)dr) dt
:/0( 0K’(t+r)(1+r9)dr+ OOK/(tJ”)(lJrT")dT)th
0 0 to
+/to (/0 K/(t+r)(1+r9)dr) dt

to ] 4 pe 2 oo 00 14 e 2
<C +C/ / —d dt—i—Cf/ / ——d dt.
e [N (R e [T ([ e

0

Choosing 0 < € < a — p — 1/2, notice that the first integral on the right hand side of the
last line above is finite since @ — € > p. For the final integral above, recalling that ¢y > 1
and making the substitution u = r/t produces

A I Y 2 S| 1 4 oyl 2
[ (L s o [t spn)
to o (t4mr)tto—e o 279\ Jo  (1+u)tte

2
i 1 >~ 1 0
§/ T TEmp—Y dt( _tu ul du> < 00,
p 1RO o (I+wu)tte

since a — € — p > 1/2. This finishes the proof. O
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We now turn to the proof of Proposition 4.5. In order to show equivalence in measures,
we aim to compare (1.1) with a standard, memoryless Langevin equation. However,
because of the memory terms and the nonlinearity U’, we do not do so directly. Instead,
we will consider a truncated version of (1.1), which will be useful in verifying Novikov’s
condition. More precisely, let 8, € C*(R, [0, 1]) satisfy 6,,(x) = 1 for all |z| < n and
0, (x) =0 for |x| > n+ 1, and consider the following system with initial path &,

du(t) = —v(t)dt — U’ (x(t))dt + /2dW (t)

T 0, (2(8)] + [0()] + | F(t) (/Ktr )dr+F()>d

(5.3)

In the following auxiliary result, we show that the solution of (5.3) converges to that
of (1.1) as n tends to infinity.

Lemma 5.1. Given an initial condition {; € C(—o0,0] as in (2.2), let ™ and £ respectively
be the solutions of (5.3) and (1.1) (withm = v =1 in (1.1)) with the same initial history
&o. Then, forallt > 0,

lim E sup {|x"(r) —z(r)| + [v"(r) — v(r)|} =0. (5.4)

n—oo 0<r<t

The proof of Lemma 5.1 follows a standard comparison argument that will be deferred
to the end of this section. Assuming this result, we now establish Proposition 4.5.

Proof of Proposition 4.5. Let QF (&, -) be the law at time ¢ of gog’twgo on R?. By station-
arity,

Tl'tLaW( . /Qt fo, l/( 00,0] (dgo X dF)
It therefore suffices to show that QI (¢, -) is equivalent to Lebesgue measure.

Recalling that £” = (2™, v™) denotes the solution of (5.3), let Qﬁ]’g(fm -) be the law

induced by ¢" on C([0,#]; R?) and let Q7"* (&, - ) be the marginal of QEB’Z(&O, -) at time t.
We note that

/_toc Kt —r)v"(r)dr = /_OOO K(t —r)vo(r)dr + /Ot K(t — r)o"(r)dr.

By Assumption 2.6 and the definition of 6,,, the following estimate holds almost surely
On(|:c”(t)|+v()+|F )‘ / K(t—r)v )dr+F()‘
t
§/ K(tfr)|v0(r)|dr+n/ K(t—r)dr+n

—o00 0

_ 0 t

< K(t)/ K(—T)\vo(r)|dr+n/ K(t —r)dr+n,
oo 0

implying the following Novikov-type condition is satisfied

Eexp{;/oten(|xn(r)|+|v<)|+F ( / K(r — 0)u(0)de + F(r ))2dr}<oo
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As a consequence, Q%’Z(fo, -) is equivalent to the law @[07,5] (&0(0), -) induced by the
solution of the following Langevin equation

dx(t) = v(t)dt, x(0) = z0(0),

do(t) = —v(t)dt — U’ (z(t))dt + V2dW (t), v(0) = v9(0).
The above system is well-understood. By verifying Hormander’s condition, it is clear
that Q¢(£0(0), - ) as the marginal law of Qo4 (£0(0), ) at time ¢ is equivalent to Lebesgue
measure [31]. It follows immediately that Q?’F (€0, - ) must be too. By taking n to infinity,

in light of Lemma 5.1, Q"' (&, -) converges to QF (&, -), which preserves measure
equivalence. The proof is thus complete. O

We finally give the proof of Lemma 5.1 whose proof is somewhat standard.

Proof of Lemma 5.1. We first note that by adapting the energy estimate as in the proof
of Proposition 2.7 to (5.3), we have the following uniform bound in n

E sup H(xn(r),vn(r))
rel0,t]
0 2
< (H(mo(O)mo(O)) + (/ K(—w)|v0(w)|dw) + T sup |F(r)]* + 1)ec(t). (5.5)
_T rel0,t]
Now consider the stopping time 7,, given by
Tn = inf{t > 0: |x(t)| + [v(t)] + |F(t)| > n}.

It is clear that &(r) = £"(r) for all 0 < r < 7,,. Using Holder’s inequality and recalling
0 € (0,1) as in Assumption 2.4:

E sup [a” () = 2(r)] + [v"(r) — v(r)

=E( suwp [2"(r) = 2(r)| + o () = () [1{ra < 1})
0<r<t

< C(E sup [a" (r)|"*0 + 0" ()]0 + B sup [a(r)[0 4 o)
0<r<t 0<r<t

5/(1+6)
x (P(Tn < t)) .
We invoke the energy estimates (2.3) and (5.5) and recall that the nonlinear potential U
dominates |z|'*?, cf. Assumption 2.4, to see that

E sup [o"(r)["*0 + 0" ()" + E sup [2(r)["F + Ju(r) [+
0<r<t 0<r<t

>1/(1+5)

< c(]E sup [2"(r)|*T0 + [0 (1) 2+ E sup |z(r)|"F0 + |u(r) |2 + 1) < bt F)
0<r<t 0<r<t

where ¢(t, &y, F') > 0 is a constant independent of n. Also, by Chebyshev’s inequality and
Lemma B.2,

P(r, <t) =P( sup |z(r)[ + [o(r)] + F(r) = n)

0<r<t
1 ec(t:€0,F)
< (B sup [o(r)] + o)+ sup |F()]) < .
n 0<r<t 0<r<t n
Altogether, we arrive at the bound
[2"() = 2] + e 5) — o) < S
E sup |z"(r) —x(r)|+ |[v"(r) —v(r)| L ——,
0<r<t N
which converges to zero as n tends to infinity. This finishes the proof. O
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6 Existence of an invariant measure
In this section, we assume that the memory kernel K is of the form
K(t) = Z/ Jo(s +t)Jy(s) ds, (6.1)
>170

where the functions Jy, £ > 1, are as in Remark 2.12. In this case, we will see here that
we can construct an explicit stationary measure for the Markov flow on C,((—o0, 0]) by
pulling back a known invariant measure for an augmented version of (1.1).

Introducing the auxiliary variable z(¢) given by

t t
20(t) = Jor / e MUy (P drdt + /20 / e MU= aBO (1) dt, (6.2)

we find that equation (1.1) can be expressed as
dxz(t) = v(t) dt,
do(t) = —v(t)dt — U'(2(t)) dt — Y sy /Coze(t) dt + V/2dW (2), (6.3)
d z2g(t) = —Apzg(t) dt + Jegu(t) dt + /22 dBO(t), € > 1.

In this setting, the relationship between the system above and the original equation (1.1)
must account for a specific initial condition in the past. For now, however, we view this
system as a Markovian dynamics started from a given initial condition on the phase
space H_s where

Hoy={X=(z,v,21,...) | X[, =2+ 0" + 22216_252,? < 00} (6.4)
In the above, the real parameter s is such that
1< 2s<ap, (6.5)

and o, > 0 are as in Remark 2.12. Under these hypotheses, the system (6.3) is
well-posed on H_g, and the probability measure on #_; given by

[oX T X 1_[1/47 (6.6)
>1

where 7 is the Boltzmann-Gibbs measure in (z, v) as in (1.3) and {v };>1 are independent
copies of the standard normal distribution N(0,1) on R, is an invariant probability
measure for the Markov process (6.3) [13, Theorem 7].

6.1 The induced measure on path space

Consider an arbitrary collection of real numbers

1 <tp <o St

ns

and a collection of Borel sets Ay,..., A, C H_s. If X; (-) denotes the solution of (6.3)
distributed as p at time ¢;, we define [i;, ., on the cylinder set 4; x --- x A,, by

ﬁtl,...,tn(Al X 0o X An) = ]P{th (tl) € Al, .. .,th (tn) S An} (67)

Since p is invariant for the Markov process (6.3), it can be shown by Kolmogorov’s
extension theorem (by taking a continuous version of the process X solving (6.3)) that
the family

{lty,t, eI 1 <ty < ... <y},

EJP 28 (2023), paper 13. https://www.imstat.org/ejp
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is consistent, and hence induces a stationary measure, denoted by /i, on Borel subsets of
C(R,H_s) whose finite-dimensional distributions are as in (6.7). Let £, = (z., v.) denote
the projection of the corresponding stationary process on C(R,H_) onto C((—o0, 0], R?).
By definition, it follows that )}V (¢, B) is stationary on S(—o0, 0] given by (3.6). Let .
denote its corresponding distribution, which in particular is invariant for the Markov
semigroup F; as in (3.7).

We will next show that u, concentrates on a path space with moderate growth,
thereby finishing the proof of Theorem 4.1.
Lemma 6.1. Let u, be the probability measure in S(—oo, 0] constructed above. Then,
for every o > 0,

M*(CQ(—OO, OD =1,

where C,(—o0,0] is as in (4.3).

Proof. By Borel-Cantelli, it suffices to prove that

ZQ{X“ = (2,5, ) ECRH L)+ swp o(r)] > (n+ 1)‘-’} < .

n>1 —n<r<—-n+1

By invariance

(X0 sw el o0t =ad sup (o) > 0+ 10,

—n<r<—n+l1 0<t<1

where Xo(-) = (&(-),21(-),...) denotes the solution of (6.3) with initial distribution x at
time 0. To estimate the righthand side above, we apply It6’s formula to the Hamiltonian
H(¢) = H(x,v) = 3v* 4 U(x), and obtain for ¢ > 0

dH(£(t) = —v(t)?dt + 1dt + v(t)dW (t) = > egze(t)o(t)dt. 6.8)

1
The cross terms involving z,(¢) and v(¢) can be bounded from above by

2s
ez ((t)] < CE25 (1) + %v(t)z,

where C > 0 is large enough such that 0252105623 < 1. Integrating (6.8) on [0,¢], t < 1
using the estimates above then produces

H(g(t))gﬂ(g(O))+1+C/ D 7%z (s)*ds + sup /0 v(r)dW (r).

0 =1 0<t<1

Fixing ¢ € (1/2, s) and recalling Assumption 2.4, namely, U(z) dominates |z|**°, § € (0, 1),
we have the following chain of implications

{ sup |zo(t)| > (n+ 1)9} C { sup U(zo(t)) > c(n + 1)(1+6)Q}

0<t<1 0<t<1
- {H(f(())) +1+ C'fol D1 07%52y(5)% ds 4 supg< i<y fof v(r)dW (r) > e(n + 1)(1+5)9}.
< {U((0) 2 e(n+ 1)U {50(0)% + 1+ supgeyey fy 0(r)AW (1) > eln + 1)1 +9e}
U {Cfo1 0725 24(s)*ds > c(n + 1)(1%)94*25} =1, UL, Upy Ip.

>1
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We are left to estimate each of the above events. For p > 0, using Chebychev’s inequality,
we estimate I, as follows:

A(lL) = {1} < | verax)

c
(n + 1)(A+0)ep
c

- pe—U(=) ¢
- (n+ 1)(1+5)9p /RU(QC) ¢ dr < (n+ 1)(1+6)9p

For I,, we first employ Burkholder’s inequality to see that

t 2p 1
E sup (/ v(r)dBO(r)> < c/ E|v(r)|*Pdr.
o<t<1 \ Jo 0

Using the fact that 4 is invariant for X (t), we estimate I,

A < oy [ /Hzﬂpu(dX) + / g / o)X )dr

c 2
(n+1)(1+5)9p/7{ 207 p(dX)

—s

_ c 2p —v2/2
= MWD/]RQ'U Pe dv S

Likewise, for I, we find that

N 62(6 s)p
fi(1) < (n+ 1) (1+6)gp/ / p(dX)dr

062(6 s)p 9y 22/
T (n+1) (1+a>gp/| Fre="/2dz.

c
(n+ 1)(1+5)@p

We now collect everything and note that ¢ € (1/2, s) to arrive at

c C
m | > 1 @} < ¢ _n P < -
,u{ 0831;21 ‘$( )| - (n+ ) — (n+ 1)(1+5)gp[ +; ] — (TL+ 1)(1+6)gp

which holds for p sufficiently large, e.g., 2(s — €)p > 1. Furthermore, we emphasize that
the above constant c is independent of n. It follows that

Zﬁ{X() = (& 21,29,...) ECR, H_y) : sup  Jz(r)] > (n+ 1)9}

n>1 —n<r<—-n+l
C
<) mrnaoe
- 1+68)op’
= (n + 1)(+0)ep

which is summable as long as p is chosen such that (1 + d)gp > 1. The proof is thus
complete. O

A Well-posedness

In this section, we show that equation (1.1) is well-posed as stated in Proposition 2.7.
We first construct strong, i.e., pathwise, solutions. Then, the existence and uniqueness
of weak solutions simply follow by using classical arguments [29, Chapter 5].

First, fixing 7' > 0 we consider a slightly different approximating equation

dz(t) = v(t) dt, (A.1)
do(t) = —v(t) dt — )) dt — / K(t — s)v(s)dsdt +V2dW (t) + F(t) dt,
EJP 28 (2023), paper 13. https://www.imstat.org/ejp
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where we have truncated the memory term in (1.1) at time —7'. Following the standard
iteration procedure for standard SDEs with globally Lipschitz coefficients [3, 29], we
can obtain the well-posedness of relation (A.1) assuming that U’ is globally Lipschitz:

Lemma A.1. Fix T > 0, K € C(R) and suppose that U’ is globally Lipschitz. Then
for all § = (zg,v9) € C(—00,0], there exists a unique continuous adapted solution
€T (t) = (27 (t),vT(t)) of equation (A.1) for all times t > 0 with £7(0) = (2¢(0),v0(0)).

In order to remove the globally Lipschitz hypothesis in Lemma A.1, we use an energy

estimate to show absence of explosion under the assumption that U’ € C*(R) with
U’ — oo as |z| = oc.
Lemma A.2. Fix T > 0, K € C(R) and suppose Assumption 2.6 holds. Furthermore,
suppose that U’ in equation (A.1) satisfies U’ — oo as |z| — oo. Then for all & =
(z0,v0) € C(—00,0], there exists a unique continuous solution ¢7 () = (27 (t),vT (t)) of
equation (A.1) for all times t > 0 with ¢7(0) = (z0(0),v9(0)).

Proof. Recalling 6, as in (5.3), let H,(z,v) = v* + U(z)0,(x). Define U, : R — R by
U, (z) = U(z)0,(x) and note that the system (A.1) with U’ replaced by U,, has unique
solutions (x,(t),v,(t)) as in Lemma A.1 with (2,(0),v,(0)) = £(0) € R2. Furthermore,
these solutions agree with the solutions of equation (A.1) for all times ¢ < o, := inf{t >
0 : H(x,(t),v,(t)) > n} where H is the Hamiltonian. Now, fix ¢t > 0 and note that It6’s
formula implies

B sup H(o () 0a(r)) < )+ E sup [ il [ K= w)lo, ()] f au

r€[0,t] re(0,t] JO
+V2E sup / v (w)dW (u)| + E sup / U (u) F(u) du
re(0,t] | Jo ref0,t] | Jo

= H(£(0)) + (D¢ + (I)¢ + (I11)y.

For the term ([);, we note that Assumption 2.6 gives

/{' ol [ K=ol >|dw}du
/{vn I/ K K(- w)lvn(w)|dw}+{|vn(u)/O“K(u_w)lvn(w”dw}du

/\vn ) K (u / K(—w)|vo( )\dwdu—l—/ sup |vn(w)\2/ K(u—w) dw du.
0 wel0,u] 0

Hence we can estimate (I); as

(z)tg/ot L{(MVE sup [on(s)|? dr + es(t (/ K (—w)[uo )|dw>2,

s€[0,r]

for some continuous functions ¢; on [0, t]. For the term (I);, note that Doob’s Maximal

Inequality implies
T t
/ vp (w)dW (u) <c<1—|—/ E sup |Un(u)2dr>.
0 0 uelor)

Concerning (I11);, we use Young’s inequality for products to obtain

(IT); = V2E sup
r€[0,t]

t
(I1I); < %/ E sup |v,(u)[*dr + $tE sup |[F(r)]*.
0 u€e[0,r] re[0,t]
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We collect the estimates above to arrive at the bound

E sup Hy(wn(r),va(r)) < Ha(£(0)) + (1) / E sup Hy(wn(u), vn(w))dr
r€(0,t] 0 u€[0,r]

2
+ caft (/ K(—w)|ve( )|dw> + 3E sup |F(r)]* +cs(t),

rel0,t]

whence using Gronwall’s inequality and the Monotone Convergence Theorem

E sup H(zn(r),vn(r)) (A.2)
relo0,t]
2
< (H(mo( (/ K(—w)|vo( )|dw> + T sup |F(r)]* + 1)ec(’f)7
r€(0,t]
Turning back to o, we note that
E sup Hn(xn(r)vvn(r)) > E|: sup Hn(In(’l"),’U"(T)) : l{an—l < t}:| (A.3)
re[0,t] ref0,t]

> (n—1)P(o,_1 <),

which together with (A.2) yields P(o,, < t) < Lc(t). By taking n to infinity, we immediately
obtain P(0 < t) = 0 for any ¢ > 0. Hence PP(0o, = o0) = 1, finishing the proof. O

Our next goal is to allow the memory to depend on the infinite past by carefully
passing 7' to infinity in (A.1).
Lemma A.3. LetT > 0, & = (z0,v9) € C(—00,0] and suppose K satisfies Assumption 2.6.
Suppose U € C*(R) is such that U(z) — oo as |z| — oo, and let T (t) = (z7(t),vT(t))
denote the solution of equation (A.1) with £7'(0) = £,(0). Then for any t > 0, the solution
¢T converges as T — oo to € in C([0,t],R?). Furthermore, ¢ is the unique pathwise
solution of (1.1) with £(0) = &,(0).

Proof. Lett > 0. Uniqueness of solutions and the fact that the presumed limit solves (1.1)
both follow almost immediately once we show that an appropriate approximating se-
quence is Cauchy in C([0,¢]; R?). To be more precise, for Ty > Ty > 0, let £t = (21 vI1)

’I’L rn

and ¢I' = (2I2 vI2) respectively be the solutions of (A.1) with U’(x) being replaced

717 n

by U/ (x) where U, (x) = U(x)0,(z) as in the proof of Lemma A.2. For simplicity, let
¢, =¢h — ¢ = (7,,7,) and observe that

|Zn ()] + [0n ()] < 2/ O (r)]dr + |Un(33£1 () = Un(y? (r)|dr

/ / K(r —u)|vg(u )|dud7“+/ / K(r — u)|v, (u)|dudr.

Note that by Assumption 2.6,

// K(r —u)|vo(u |dudr—/ / TZKT_U K (u)|vo(u)|dudr
< /0 R(r)dr- /_ Tsz K () o ()| du.

Using the fact that U, is Lipschitz we then obtain

t —Ts
sup [T (r)| + [Ua(r)] < c(t, n)/ sup [T, (u)| + [U, (w)|dr + c(t) K (u)|vo(u)|du.
0<r<t 0 0<u<r —T
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Thus Gronwall’s inequality gives
—T,

sup |Zn (r)| + [0 (r)] < ef™? K (u)]vo(u)|du. (A.4)
0<r<t —T1

Next, let 011 and o2 respectively denote the stopping times associated with ¢! (¢) and
€I2(t) as in the proof of Lemma A.2. Setting £(t) = ¢71(t) — £72(t) we find that

E| sup Iw(T)IJrIv(?“)I] < E[l{ov? Aoj? >t} sup |£E(T)|+|v(r)|}
0<r<t 0<r<t

+ E[1{a§ <t} sup. 1Z(r)| + |v(r)]

+ E[l{a% <4 sup [7(r)] + |v<r>]
0<r<t

=)+ ()¢ + (1)
In view of (A.4), we have
—Ts

(D) <E sup |Zn(r)| + [Ta(r)| < e K (u)|vo(u)|du.
0<r<t -7

Concerning (II);, we use Holder’s inequality and Assumption 2.4 to infer the bound

o (e g o mo]) ot =0)*

0<r<t

§c<1+]E sup |x(r)|1+5+|v(r)|2)”(1P(a§1 gt))ﬁ

0<r<t

< c(l + E[ sup H(le (7")71)T1 (7“)) + H(sz(T)aUTZ(T))})W (P(Ugl < t))l%

0<r<t

< c<1 + E[Og;;t H(«™ (r), 07 (1)) + H (272 (r), 0™ (T))D o ns%ﬁ&) < na(/zgla)'

In the above estimate, we employed (A.3) together with (A.2). Likewise,

c(t)

(D) < —S7sy

Altogether, we arrive at the bound

T>
E sup [z(r)| + [o(r)] < ef™? K (u)|vo(w)|du +
0<r<t T

0o/ (1+3) ().

Thanks to the assumption that £ € C(—o0,0], it is now clear that {¢7} is a Cauchy
sequence in C([0, t]; R?) by first taking n sufficiently large and then sending 7 and 75 to
infinity. As a consequence, there exists a solution ¢ for (1.1) with the initial condition
& eC.

Turning to the uniqueness of &, it suffices to show that if E solves (1.1) with the
same initial path &;, then ¢ and §~ must agree a.s. in [0,¢]. To see this, consider the
stopping times o,, and &, associated with £ and 5 respectively. Similarly to the above
existence part, denoting 2 =& §~ we observe that for 0 < ¢ < o, Ad,, £ and §~ both solve
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equation (1.1) with U’ being replaced by U/ (z). So that, for 0 < ¢ < o, ATy, gsatisﬁes
£(0) =0 and

t
—Z(t) = —0(t) — [U}(z(t)) — UL (Z(t))] — / K(t —r)v(r)dr.
0
Since the nonlinear term is Lipschitz, by Gronwall’s inequality, we immediately obtain
E {l{an ANap >t} sup |Z(r)|+ |6(r)|] =0.
0<r<t
On the other hand, similar to the estimate of (I7); above, we also have the bound

E[(l{an <t}+1{5, < t}) S |Z(r)| + Iﬁ(r)l}

1/(1+45)
< c(l + E[ sup H(z(r),v(r)) + H(Z(r),o(r)) ) . mc(t) < mc(t).

0<r<t

By taking n large, we observe that IE supy<,.<, [Z(r)| + [0(r)| is arbitrarily small, forcing

E sup |z(r)|+|9(r)| =0,
0<r<t

holds true. The proof is thus complete. O

Given the strong solutions constructed above, we are now ready to give the proof of
Proposition 2.7. The argument is relatively short and can be found in previous works
(see, for example, [29]).

Proof of Proposition 2.7. The existence of weak solution is clear since we already con-
structed strong solutions as in Lemma A.3. It remains to show weak uniqueness.
Suppose (&, F,W) and (€, F,W) are two weak solutions as in Definition 2.2 on the
interval [to, ] with the same initial condition &;. By the uniqueness of strong solutions,
we may consider ¢ and ¢ as the unique path-wise solutions given (F,W) and (F,W),
respectively. To see that £ and é have the same law, we recall the construction of ¢
starting from system (A.1) with U’ being Lipschitz. Then, it is clear that the processes
gT and §~T as in Lemma A.1 must agree in distribution [29, Lemma 5.3.1]. In view of
Lemma A.2, this property also holds for general U satisfying Assumption 2.4. Finally,
since ¢7 and £7 respectively converge to & and & on C([to, t]; R?) as T — oo, cf. proof of
Lemma A.3, we immediately establish the equality in law for £ and 5 thereby concluding
the uniqueness of weak solutions. O

B Bound on the expected maximum of F(t)?

In this section, we will show that under the condition that the autocorrelation K is
continuously differentiable, the corresponding stationary process F(t) must satisfy the
supremum bound (2.4). Thanks to stationarity, it suffices to prove (2.4) holds for the
time interval [0, T], namely, for all T > 0,

E sup F(t)? < .
0<t<T

For convenience, we first recap several notions from the technique of generic chaining
in [35, Chapter 2]. Consider the time interval [0, T and the distance

d(s,t) € JE[F(t) — F(s).
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It is well-known that d is a metric in [0, 7). For a set A C [0,7T], we denote by A(A) the
diameter of A with respect to metric d, that is

NS inf d(s,1).

Next, we provide the definition of an admissible sequence.

Definition B.1. An admissible sequence is an increasing sequence { A, },>o of partitions
of [0, T] such that Ay = [0,7] and for alln > 1, card (A,,) is at most N,, = 22" .
Here, increasing sequence means every set of A, is contained in some set of A,,.

Given an admissible sequence 4, and a time ¢t € [0,7], we denote by A,(t) the
element in A,, that contains ¢ and define v,(7, d) given by

(T, d) < inf sup Y25 A(4,(1)),

t€[0,T] n>0

where the infimum is taken over all admissible sequences. We now state the following
result asserting that under the conditions imposed on F(t), Esupy<;<r F(t)? is always
finite.

Lemma B.2. Let F(t) be a mean-zero Gaussian stationary process whose covariance
function K is in C'(R). Then, for all T > 0, there exists a positive constant c¢(T) such
that
E sup F()* <c(T). (B.1)
0<t<T

Proof. We first observe that

sup F(t)> = sup (F(t) — F(0)+ F(0))* <2 sup (F(t) — F(0))” 4 2F(0)?

0<t<T 0<t<T 0<t<T
<2 sup (F(t)—F(s))’ +2F(0),
0<t,s<T
whence

E sup F(t)2<2E sup (F(t)— F(s))” + 2K(0).
0<t<T 0<t,s<T

It therefore suffices to establish an upper bound for Esupy<, ,<r (F(t) — F(s))Q.
Now, since F'(t) is a mean-zero Gaussian process, F(t) satisfies [35, inequality (1.4)],
that is forall r > 0

P(|F(s) — F(t)| > r) < 2exp ( - m) (B.2)
Indeed, by Markov’s inequality,
r2 1 r?
P(IF(s)~F()] = r)=P(exp ( - m) > %) < 2Bexp ( - m)

Observe that f(x) = e~"/% is concave down on (0, o). So that, Jensen’s inequality implies

7"2 2

T2 (s) — F(t)|2) < exp ( - QE\F(S;— F(t)|2)’

Eexp (

which proves (B.2). Now, in light of [35, inequality (2.49)], there exists a positive constant
C independent of T" such that

E sup (F(t)— F(s)® < Ca(T.d).

0<t,s<T
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It remains to show that (7T, d) is finite. To this end, consider the the following sequence
{A,}n=0 given by

Ay =1[0,7] and A, = [o,i)u[i E){M T

> 1.
N, N.'N, N, "=

)

It is straightforward to check that A, is an admissible sequence. For each ¢ € [0,T], by
definition of A, we note that

AA, (1) = sup d(s,t)= sup E(F(s)— F(r))?
SJ’eAn(t) 577'61477,(t)

= sup  /2(K(0) — K(Js — ).

s,r€A, (t)

By the choice of A,,, forall r,s € An(t),

r —s| <T/N,. So that,

s VARO) - K(s M= sw  ARQO) - K).
s,r€A,(t) 0<s<T/Nn

Since K € C'(R), by the Mean-Value Theorem, for s € [0, T/N,)]

T
K(0) — < K’ s < K’ S
|K(0) — K(s)] ngg]l (r)] s_ngg]l ()] N
implying
- 2T
AA, 1) < (] = K’
(An(t) < Nnrggg]l ()l

Turning back to (7T, d), we note that

Yo (T,d) < sup 2"/2A 2"/2, == max |K'
CLES DY Z N s [K(7)

n+1

T K'(r
o KON

+1
T K'(r ( )
= /T g WO+ X

which is clearly finite. Altogether, we arrive at the bound

E sup F(t)? <C /T max |K'(r)| +2K(0),
0<t<T r€[0,T]

thereby establishing (B.1) and completing the proof. O
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