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To evaluate the probability of a gravitational-wave candidate originating from noise, GstLAL collects
noise statistics from the data it analyzes. Gravitational-wave signals of astrophysical origin get added to the
noise statistics, harming the sensitivity of the search. We present the background filter, a novel tool to
prevent this by removing noise statistics that were collected from gravitational-wave candidates. To
demonstrate its efficacy, we analyze one week of LIGO and Virgo O3 data, and show that it improves the
sensitivity of the analysis by 20%–40% in the high mass region, in the presence of 868 simulated
gravitational-wave signals. With the upcoming fourth observing run of LIGO, Virgo, and KAGRA
expected to yield a high rate of gravitational-wave detections, we expect the background filter to be an
important tool for increasing the sensitivity of a GstLAL analysis.
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I. INTRODUCTION

The Laser Interferometer Gravitational-wave Observatory
(LIGO) [1] andVirgo [2] Collaborations have revolutionized
the field of gravitational-wave (GW) astronomy by detecting
black hole and neutron star mergers [3–6]. The detections
have allowed us to observe the Universe in new ways and
have opened upnewavenues of scientific inquiry. [7–10] The
GstLALGWsearch pipeline [11–14] (referred to as GstLAL
hereafter) has been a significant contributor to this field. In
particular, GstLAL’s ability to detect signals in low latency
[15] has facilitated multimessenger observations [16].
GstLAL is a GW search pipeline that can process data

from ground-based GW detectors, such as the Hanford and
Livingston LIGO detectors, the Virgo detector, and the
KAGRA detector [17], in near real time. It makes use of
time-domain matched filtering to enable the detection of
signals in noise-dominated data. It uses a likelihood ratio
(LR) [18–20] as a ranking statistic for assigning signifi-
cance to detections. GstLAL divides its template bank
[21,22] into different “template bins” to reduce the com-
putational cost of the analysis, and analyzes each one
separately. Some of these techniques are also used by other
search pipelines, such as PyCBC [23–25], MBTA [26,27],
SPIIR [28,29], and IAS [30,31].

The fourth observing run of the LIGO Scientific, Virgo,
and KAGRA Collaborations (O4) is set to begin in May
2023 [32] and promises to provide improved detector
sensitivity. GstLAL will continue to play an essential role
in the detection of new GW candidates. As such, it is
necessary to keep refining the analysis pipeline to reap the
benefits of improved detector sensitivity to detect even
more and new types of candidates. The background filter is
one such new feature to this end.
This paper is structured as follows. In Sec. II, we

introduce the LR used by GstLAL, in particular the ρ − ξ2

histograms that GstLAL uses to evaluate one term
of the likelihood ratio, and how the presence of GW
signals in the data can cause “contamination” of these
histograms. In Sec. III, we describe how the background
filter works, and how it removes this contamination.
Finally, in Sec. IV, we describe the analyses we per-
formed to evaluate the performance of the background
filter, and the impact it has on the sensitivity of a GstLAL
analysis.

II. SIGNAL CONTAMINATION

A. Likelihood ratio

GstLAL is a matched-filtering based GW search pipeline
which uses a likelihood ratio statistic to rank GW candi-
dates [18,19]. The LR is defined as*prathamesh.joshi@ligo.org
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L ¼ PðO⃗; ρ⃗; ξ⃗2; ⃗t; ϕ⃗; θjHsÞ
PðO⃗; ρ⃗; ξ⃗2; ⃗t; ϕ⃗; θjHnÞ

; ð1Þ

where the numerator is the probability of obtaining a GW

candidate with parameters ðO⃗; ρ⃗; ξ⃗2; ⃗t; ϕ⃗; θÞ under the
signal hypothesis (Hs) and the denominator is the proba-
bility of obtaining the same candidate under the noise
hypothesis (Hn). O⃗ is the subset of GW detectors that the

candidate was found in, ρ⃗ is the set of matched-filtering

signal-to-noise-ratios (SNRs) of those detectors, ξ⃗2 is the
set of ξ2-signal-based-veto values, ⃗t; ϕ⃗ are the times and
phases with which the candidate was found in the detectors,
and θ is the template that recovered the candidate, which
also represents a set of intrinsic parameters (masses
and spins).
The LR can be factorized as

L ¼ Pðθ̄jHsÞ × Pðtref ;ϕref jθ̄;HsÞ × PðO⃗jtref ;HsÞ × Pðρ⃗; Δ⃗t; Δ⃗ϕjO⃗; tref ;HsÞ × Pðξ⃗2jρ⃗; θ;HsÞ
Pðtref ; θ̄jHnÞ × PðO⃗jtref ; θ̄;HnÞ × PðΔ⃗t; ϕ⃗jO⃗;HnÞ × Pðρ⃗; ξ⃗2jtref ; θ;HnÞ

ð2Þ

For a comprehensive explanation of Eq. (2) and every
individual term in the LR, readers are referred to [18]. For
the purpose of this paper, we are only concerned with the
last term in the denominator, Pðρ⃗; ξ⃗2jtref ; θ;HnÞ (hereby
referred to as the ρ − ξ2 noise LR term).

B. The ρ − ξ2 histograms

The ρ − ξ2 noise LR term is calculated in a data-driven
way. GstLAL creates a histogram for each detector and
template bin in ρ − ξ2 space, called ρ − ξ2 background
histograms, and populates it with the (ρ, ξ2) values of noise
events found in that template bin during the analysis. Then,
the ρ − ξ2 noise LR term can be calculated by evaluating
the probability density function represented by the histo-

grams at the relevant (ρ⃗, ξ⃗2) value.
Since the ρ − ξ2 noise LR term assumes the noise

hypothesis, we need to populate the histograms with events
originating only from noise, as compared to events origi-
nating from GW candidates. To a large degree, this is
achieved by requiring those events to be recovered only in
one detector (called a single detector or single event in
contrast to a coincident event) during a time when more
than one detector was producing data (called coincident
time in contrast to single time). This is because we expect
GW signals to be correlated across detectors, but not noise
events.
Despite this, GW signals can sometimes enter the ρ − ξ2

histograms. The reason might be astrophysical in origin,
e.g., the GW source is located in the blind spot of all but
one detector, or it might be terrestrial, e.g., only one
detector is sensitive enough to pick up the GW signal.
In addition, GW signals that are recovered as coincident
events in one template bin sometimes also get recovered as
a single event, with a lower ρ and LR in other neighboring
template bins, which do not contain templates with high ρ
for that GW signal. We say a bin has a good match with a
GW signal if it has templates with a high ρ for that GW
signal, and that it has a bad match otherwise. GW events

being recovered as coincident events in one bin and as
single events in others is demonstrated in Fig. 1 for
GW200129_065458, a known GW candidate reported
in GWTC-3 [6]. The candidate is recovered as a coinci-
dent event in bin 818, with which it has the best match. It is
also recovered in bin 838 as a Livingston single with a
lower ρ, since its match with that bin is not as good. As a
result, the candidate will be added to the background
histogram of bin 838. Gravitational wave signals entering
the background histograms are commonly called the signal
contamination of the ρ − ξ2 background histograms. The
contamination caused by GW200129_065458 in the back-
ground histogram of bin 838 is shown in Fig. 2. Since the
GW signal gets added to the background histogram, it
occupies a region in ρ − ξ2 space typical of signals, but not
of noise. As a result, we see a protrusion to the histogram,
which is generally how signal contamination manifests
visually.
Signal contamination can result in the ρ − ξ2 histograms

not accurately reflecting the noise characteristics of the
data, and as a result, the ρ − ξ2 noise LR term will not be
calculated correctly. In general, it can cause the ρ − ξ2 noise
LR term for GW candidates to be evaluated higher than its
true value, leading to lower LR values of candidates. In
short, signal contamination can lower the sensitivity of the
GW search.

III. REMOVING CONTAMINATION
WITH THE BACKGROUND FILTER

To prevent any loss in sensitivity due to signal contami-
nation, we need to selectively remove the events in the
ρ − ξ2 background histograms which originate from GW
signals. The background filter is a way to track the
background in a time-dependent fashion so that we only
use events from times not corresponding to GW events to
populate the background histograms. In this paper, we will
describe the working of the background filter when
GstLAL is running in the low-latency online mode, in

JOSHI, TSUKADA, and HANNA PHYS. REV. D 108, 084032 (2023)

084032-2



which data is analyzed and results are produced in near real
time [33].

A. Recording events

The strategy of the background filter is to record the
events that are likely to have originated from GW signals,
and then after verification by the user, subtract them from
the background histograms. To associate events with a GW
candidate, we need to record the time at which they were
found in the data, apart from their ρ⃗ and ξ⃗2 values. This
increases the dimensionality of the parameters we need to

store, and thus could potentially impact the memory and
storage used during analysis. To prevent this, we record
events only if they pass certain constraints placed on their ρ,
ξ2, and time parameters.
The ρ and ξ2 constraints take the form of a bounding box

in ρ − ξ2 space, defined by ρ > 6 and ξ2=ρ2 < 0.04.
Qualitatively, ξ2 represents how well the data fits the
template, with large values of ξ2 meaning the data is
dissimilar to the template. Since, in general, noise events
will not fit the template well, they generally have ξ2=ρ2

values that are greater than those of signals. As a result, we
only expect events originating from GW signals to fall
inside the bounding box. This is shown in Fig. 1, where
most of the high ρ events caused by GW200129_065458
pass the ρ and ξ2 constraints, and are recorded by the
background filter. The ρ and ξ2 constraints are shown on
top of a background histogram in Fig. 3.
The time constraint makes use of the GstLAL online

analysis’ ability to process data, generate events, assign
LRs, and upload them to the Gravitational Wave Candidate
Event Database (GraceDB) [34] in near real time. A GW
signal can create multiple contaminating events across
template bins. Only a small subset gets uploaded to
GraceDB, since the events are aggregated within some
time windows across bins before uploading [33], and the
remaining contaminating events lie both before and after
the uploaded events in time. With this in mind, and in order
to account for processing delays during a GstLAL online
analysis, the background filter keeps a temporary record of
events passing the ρ and ξ2 constraints, which occurred in
the last 5000 s. When an event is uploaded to GraceDB, the
events in the 10 s window around it are found from the
temporary record of the last 5000s, and are then recorded
by the background filter permanently.

FIG. 2. An example of signal contamination in a ρ − ξ2

histogram for Livingston. The contamination can be seen as a
protrusion to the histogram at ðρ; ξ2=ρ2Þ ∼ ð15; 0.004Þ, a region
usually occupied exclusively by GW signals. This contamination
was caused by GW200129_065458 being recovered as a single
event in this template bin, which is not the best match bin for that
GW candidate, as demonstrated in Fig. 1. Note that kernel
smoothing has been applied to this histogram.

FIG. 1. An example of an event (GW200129_065458) having templates with high match in multiple template bins. Bin 818 has the
best match with the GW candidate, and recovers it in both Hanford and Livingston as a coincidence. Bin 838 has a lower match than bin
818, causing it to recover the candidate as a Livingston single. This will lead to the candidate being added to the ρ − ξ2 background
histogram of bin 838, causing signal contamination for bin 838. This is shown in Fig. 2. The events passing the ρ and ξ2 constraints, and
hence recorded by the background filter, are outlined in orange.
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The threshold for uploading an event to GraceDB differs
among different GstLAL analyses, but it is often set to false
alarm rate (FAR) < 1 per hour. That means all events
recovered as a single event during coincident time, with
ρ > 6, ξ2=ρ2 < 0.04, and falling in a 10 s interval around
an event with FAR < 1 per hour, are recorded by the
background filter.
The ρ and ξ2 constraints, and the time constraint work

together to ensure that only events originating from GW
signals are recorded by the background filter in most cases.
As a result, very few events are recorded by the background
filter, in comparison to the number of events in the
background histograms. This ensures that adding the
background filter to a GstLAL analysis does not affect
its memory or disk usage significantly. The choice of these
constraints and their impact on the performance of a
GstLAL analysis are discussed in Appendix A.

B. Removing contamination

As explained in Sec. II, since the ρ − ξ2 noise LR term is
calculated by evaluating the probability density function
represented by the background histograms at the relevant

(ρ⃗, ξ⃗2) value, we need the background histograms to
accurately reflect the detector noise characteristics for that
template bin. As much as possible, we need to take care not
to let events originating from signals enter the background
histograms. In addition, we must also make sure that events
originating from noise are not removed from the back-
ground histograms by the background filter. In most cases,
the ρ and ξ2 constraints along with the time constraint are
sufficient to ensure only events originating from signals are
recorded by the background filter.

However, in rare cases, such as when the GstLAL
analysis uploads a false positive to GraceDB (also called
a “retraction”), these measures might not be enough. Out of
an abundance of caution, we leave the decision of which
events to remove from the background histograms to the
user. At any point during a GstLAL online analysis, the
user can choose to inform the analysis which events they
are confident are GW candidates. The message is commu-
nicated to the analysis in real time using HTTP request
methods, with the help of the PYTHON BOTTLE module [35].
Then, out of all the events that had been recorded by the
background filter previously, it will subtract those which
fall within a 10 s window of the given candidate from the
background histograms. Thus, any contamination that
candidate could have potentially caused is removed, and
the LR of all future events is evaluated using the modified
ρ − ξ2 background histograms.
To summarize, for the background filter to subtract an

event from the background histograms, three conditions
need to be met:
(1) The event needs to pass the ρ and ξ2 constraints.
(2) The event needs to pass the time constraint.
(3) The user needs to inform the GstLAL analysis that

there was a GW candidate nearby the event in time.
The first two conditions are sufficient for the background
filter to record an event and save it to disk, but all three are
necessary (and sufficient) for the event to be subtracted
from the background histograms. For O4, we have decided
that the criteria for informing the analysis of a GW
candidate, and hence for removing the background events
associated with it are
(1) The event should have a FAR ≤ one per 5 months,

which is the public alert threshold for significant
events [36].

(2) The event should not be a retraction, i.e., the
GraceDB event should not have the “ADVNO”
label applied to it.

This criteria was chosen keeping in mind the tradeoff
between removing contamination from as many GW
candidates as possible, and not removing noise events
from the background. This choice and its effects on the
sensitivity improvement caused by the background filter
are discussed in Appendix B.
In Fig. 2, signal contamination caused by

GW200129_065458 is shown. The same ρ − ξ2 histogram,
but with the background filter used to remove that
contamination, is shown in Fig. 3.

IV. RESULTS

A. Analysis methods

To test the effect of signal contamination on the
sensitivity of a GstLAL analysis, and the ability of the
background filter to remove the contamination, we analyze
a week of O3 data [37], from Apr 18 2019 16∶46 UTC to

FIG. 3. The ρ and ξ2 constraints for recording events. The
bottom right area bounded by the blue lines is the area in which
the background filter records events. If the events also pass
the time constraint, the user can choose to remove them from the
ρ − ξ2 histogram. The result of doing so, to remove the
contamination caused by GW200129_065458, is also shown.
The same histogram, without using the background filter, and
hence with contamination, is shown in Fig. 2. Note that kernel
smoothing has been applied to this histogram.
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Apr 26 2019 17∶14 UTC, in three different ways. First, we
perform a control run without any GW signals. Next, to
simulate the effect of GW signals, we add “blind injec-
tions.” The concept of blind injections and the set of blind
injections that we used are explained in the following
subsection. Finally, we perform a “rerank” with the back-
ground filter enabled, in which LRs are recomputed and
significance assignment is done again, but the filtering
stage of the GstLAL analysis is taken from the blind
injection analysis, since the ρ and ξ2 values of analyzed
events are not affected by the background filter, only the
LRs and the FARs are. Hence, the rerank corresponds to the
case with blind injections present and the background filter
being used.
As noted in Sec. III, our policy during O4 for selecting

GW candidates to inform the analysis about, is that the
candidate should have a FAR ≤ one per 5 months. This is
also what is done during the rerank, and hence, the
background filter is only applied to events passing the
one per 5 months threshold.
This chunk of data contains two known GW candidates

reported in GWTC-2.1 [5] and elsewhere [6,38],
GW190421_213856 and GW190425. However, since we
use the background filter only on the times of the blind
injections, any contamination and subsequent loss in
sensitivity caused by either of the two candidates will be
present in all three analyses that we perform, and will not
affect the evaluation of the performance of the background
filter.

B. Simulation set

Blind injections are simulated GW signals that are added
to the data which we analyze and collect background events
from (in contrast to regular injections, from which we do
not collect background events). We use a set of 868 blind
injections distributed across the binary black hole (BBH),
binary neutron star (BNS), neutron star-black hole (NSBH),
and intermediate-mass black hole (IMBH) parameter
spaces. The blind injection set comprises three subsets, a
BNS subset, a BBH subset, and a broad subset, with the
BNS subset containing half of the total blind injections, and
the BBH and broad subsets containing a quarter each. The
BNS subset has component masses distributed uniformly
from 1 to 3M⊙, and the z components of dimensionless
spin (which are parallel to the orbital angular momentum of
the binary) distributed uniformly from −0.05 to 0.05. The
BBH subset has component masses distributed uniformly
from 5 to 50M⊙ and the z components of dimensionless
spin distributed uniformly from −0.99 to 0.99. The broad
subset spans all four parameter spaces mentioned above. It
is distributed uniformly in the log of the component masses
from 1 to 300M⊙ and has the z components of dimension-
less spin distributed uniformly from −0.99 to 0.99. In
addition to the definitions of the BNS and BBH parameter
spaces provided above, and the implied NSBH parameter

space definition, for the purpose of this paper, we shall
consider the parameter space with either component mass
greater than 50M⊙ to be the IMBH space. The distribution
of the blind injection set in the two component masses can
be seen in Fig. 4.
A point to note is that even though 868 blind injections

may sound high, most of these are too quiet to be recovered,
as shown in Fig. 4, and hence will not cause any
contamination. The result of the analysis shows that only
190 blind injections are recovered with a FAR ≤ 1 per
5 months. We will also see later that BNS and NSBH
template bins are not affected by signal contamination to a
significant degree. As a result, only the BBH and IMBH
injections will contribute to contaminating the background.
Given the high number of GW candidate events we expect
to detect in O4, this is a reasonable representation of the
total amount of signal contamination we expect to see.
We also perform an injection campaign to calculate the

sensitivity of the analysis, both with and without the
application of the background filter. The injection set is
distributed similarly to the blind injection set, but with a
total size of 86,606 injections. It is important to note that
the injections and blind injections are analyzed separately,
with the blind injections affecting injection recovery only
through the background events they add to the ρ − ξ2

background histograms.

C. Sensitivity improvements

In order to estimate the sensitivity of a search, we use the
sensitive volume-time (VT) as a measure. The volume that
we analyze is determined by the efficiency of recovering
injections at a given FAR and redshift, and T is the live time
of the analysis. We calculate VT separately for injections
falling in four different chirp mass bins. The first is from
0.5 to 2M⊙, the second from 2 to 4.5M⊙, the third from 4.5

FIG. 4. The distribution of component masses of the blind
injection set, colored by injected ρ. Blind injections are used to
replicate the contamination caused by GW signals in the data.
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to 45M⊙, and the final one is from 45 to 450M⊙. The
reason for calculating VT separately for different mass bins
is so that we have an idea about how sensitive the analysis
is for different source categories, with the four mass bins
roughly corresponding to BNS, NSBH, BBH, and IMBH
source categories, respectively.
Comparing the blind injection analysis with the control

run, signal contamination due to the presence of blind
injections causes a small (∼5%) decrease in VT in the two
lowest mass bins, but causes a significant (∼20%–30%)
decrease in VT in the two highest mass bins. This is shown
in Fig. 5. High mass templates have a greater match with
their neighboring templates, and with themselves across
time, as compared to low mass templates. We hypothesize
that this causes a single high mass GW signal to be
recovered multiple times across template bins and time
with suboptimal ρ, leading to more signal contamination in
the high mass template bins than in the low mass ones. This
is discussed in more detail in Appendix C.
Next, to check the efficacy of the background filter in

removing contamination, we compare the VT of the rerank
to the VT of the control run. Despite the presence of blind
injections in the data, the background filter mitigates the
effect they have on the background histograms, and
sensitivities of all four mass bins are close to the same
as what they were in the control run. This is shown in
Fig. 6. This represents a 20%–40% increase in the
sensitivities of the two high mass bins in the case of the
rerank, as compared to that of the blind injection analysis.
We can conclude that the background filter is successful in
removing close to all of the contamination that the blind
injections cause. Since the number of blind injections we
used was a high estimate of the number of GW events we
expect to see in O4, this means that by using the back-
ground filter, we do not expect signal contamination to be a

significant problem during O4. To test our readiness for O4,
GstLAL has participated in a mock data challenge, where
an online analysis is run over 40 days of O3 data [33]. This
chunk of data contains nine GW candidates. The back-
ground filter was deployed in this analysis, and applied to
all nine candidates. It was able to remove all instances of
signal contamination we had previously seen, as verified by
visual inspection.

V. CONCLUSION

GstLAL constructs ρ − ξ2 background histograms to

calculate the Pðρ⃗; ξ⃗2jtref ; θ;HnÞ term in the likelihood ratio.
However, GW signals in the data can cause the background
histograms to be incorrectly constructed. This is called
signal contamination, and it leads to the sensitivity of the
GstLAL analysis being lowered.
The background filter is a novel way to remove the

contamination. It records the events that populate the
background histograms which satisfy two constraints.
The first is that the event must fall in an area in ρ − ξ2

space consistent with GW signals. The second is that it
must fall in a 10 s window around a significant event. The
user then identifies which of the significant events originate
from GW signals. The user communicates this to the
GstLAL analysis in real time, and then the events recorded
by the background filter corresponding to the times
identified by the user are subtracted from the background
histograms. Thus, signal contamination is removed from
the background histograms.
To test the efficacy of the background filter, we ran a

GstLAL analysis over a week of O3 data, with simulated

FIG. 5. The decrease in VT caused by signal contamination due
to the presence of blind injections in the data. The two highest
mass bins are the most affected. The presence of GW signals will
also have a similar effect.

FIG. 6. The VT of the rerank, which has blind injections with
the background filter applied, compared to that of the control run,
which has neither. The fact that all four lines are close to 1 tells us
that the background filter is successful in removing nearly all of
the contamination caused by the presence of the blind injections
in the data. The peaks and dips in the highest mass bin curve are
explained by the smaller number of injections in this bin as
compared to other bins, leading to greater variance.
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gravitational-wave signals injected into the data. We found
that signal contamination primarily affects the high
mass bins. The sensitivity of these bins decreased by
20%–30% due to the presence of the gravitational-wave
signals. By applying the background filter, we were able to
increase the sensitivity close to what it was without the
injected gravitational-wave signals. This shows that the
background filter is effective in removing nearly all
the signal contamination. With a high rate of gravita-
tional-wave events expected during O4, the background
filter will be an important tool in improving the sensitivity
of the GstLAL analysis.
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APPENDIX A: CHOICE OF CONSTRAINTS
AND THEIR IMPACT ON PERFORMANCE

With the constraints described in Sec. III, the back-
ground filter does not consume too many resources. When
looking at a month-long GstLAL analysis, we found that on
average, it adds ∼ bytes to kilobytes to the data products
stored by a GstLAL analysis for every template bin. We did
not see any significant increase to the memory used by the
GstLAL analysis either. Figure 6 shows that with these
constraints, the background filter is effective in removing
close to all contamination.
To check if there is any improvement to the sensitivity

upon loosening the ρ and ξ2 constraints, we performed the
same analysis as described in Sec. IV, but with the ρ and ξ2

constraints changed to record events with ρ > 6 and
ξ2=ρ2 < 0.4. This broader bounding box for recording
events did not have any noticeable effect on the sensitivity.
This is shown in Fig. 7. However, loosening the constraints
did increase memory usage of the GstLAL analysis to a
noticeable degree.
We do not expect that loosening the ρ > 6 constraint or

the time constraint would increase sensitivity, since the
extra events collected by changing these constraints would
be no more significant than noise. This discussion, along
with Fig. 6 shows us that the existing constraints used by
the background filter satisfy all our requirements.

FIG. 7. The VTwith the background filter recording events with
looser constraints, as compared to the VT with the background
filter recording events with the regular constraints. The fact that
the VT ratios for all four mass bins are close to 1 shows that
loosening the constraints does not improve sensitivity. The peaks
and dips in the highest mass bin curve are explained by the
smaller number of injections in this bin as compared to other bins,
leading to greater variance. Both analyses included the 868 blind
injections described in Sec. IV. The regular constraints are
described in Sec. III, whereas the looser constraints are described
in Appendix A.
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APPENDIX B: CRITERIA FOR REMOVING
EVENTS FROM THE BACKGROUND,
AND ITS EFFECT ON SENSITIVITY

In Sec. III, we saw that in order for an event to be
removed from the background, it needs to pass the ρ and ξ2

constraints, the time constraint, and the user needs to
inform the analysis that there was a GW candidate at the
time of the event. This last condition was implemented as
an additional check that the event being removed does
actually originate from a GW candidate. For the back-
ground histograms to accurately model the ρ − ξ2 noise LR
term, only events originating from noise must populate the
ρ − ξ2 histograms. Events originating from GW candidates
entering the histograms and events originating from noise
being removed from the histograms will both cause the
ρ − ξ2 noise LR term to not be evaluated correctly, and will
cause a lowering of sensitivity.
As a result, it is important to choose the criteria for

informing the analysis of a GW candidate correctly. For
O4, we have chosen this criteria to be that the candidate has
a FAR ≤ 1 per 5 months, and that it is not retracted. The
FAR threshold is low enough that it is highly unlikely that
the candidate is not astrophysical in origin without being a
retraction, while simultaneously being high enough to not
exclude too many contaminating (and hence, loud) GW
candidates.
To test this, we set up a rerank similar to the one

described in Sec. IV, but instead of applying the back-
ground filter to blind injections with FAR ≤ 1 per
5 months, we applied it to all blind injections. This rerank

represents the biggest improvement in sensitivity possible
from the background filter. The result is shown in Fig. 8.
We can see that the FAR threshold of 1 per 5 months works
well, and out of the 20%–30% lost sensitivity due to signal
contamination from the blind injections, it manages to
recover most of it (see Fig. 5, Fig. 6), with only around 5%
not being recovered in the heavier mass bins.

APPENDIX C: DIFFERING IMPACTS OF SIGNAL
CONTAMINATION OF THE SENSITIVITIES

OF TEMPLATE BINS

As discussed in Sec. IV, signal contamination only
causes a 5% decrease in the VT of low mass template
bins, such as the BNS and NSBH bins, whereas it causes a
20%–30% decrease in the VT of high mass template bins,
such as the BBH and IMBH bins. This is despite the fact
that there are more blind injections in the low mass
parameter spaces than in the high mass ones. We conjecture
two reasons for this, the first relating to how the correlation
among neighboring templates changes with mass, and the
second relating to how the correlation of a templates with
itself across time changes with mass. For the remainder of
this section, we shall treat BNS template bins as represen-
tative of all low mass bins, and IMBH template bins as
representative of all high mass bins.
The “bank correlation function” of a template measures

how well it matches with other templates in the template
bank. This calculation is similar to how ρ is calculated,
except that the match is calculated between two templates
with no time shift between them. To see how the bank
correlation function of templates changes with mass, we
took 5 BNS template bins (corresponding to ∼5000
templates), calculated the bank correlation of every combi-
nation of templates, and plotted the average bank correla-
tion function in descending order of template match. We
then did the same for 5 IMBH template bins. The results are
shown in Fig. 9. The fact that the BNS bank correlation
function drops sharply as compared to the IMBH one
means that there are many IMBH templates across template
bins that can recover a given IMBHGW signal with a lower
ρ than the best template, but only a few BNS templates that
can recover a given BNS GW signal. This means a high
mass GW signal will create many events, increasing the
probability of signal contamination. This is not a problem
for the GW candidates reported by GstLAL, since “event
clustering” [11] ensures that only the best candidate in an
8 s window survives.
The “autocorrelation function” of a template measures

how well it matches with a time-shifted version of itself,
similar to how ρ calculates the match between the data and
a time-shifted template. The autocorrelation function of a
typical BNS template and a typical IMBH template are
shown in Fig. 10. The IMBH autocorrelation function has
multiple secondary peaks ∼5–10 ms away from the pri-
mary one. We conjecture that in the case of an IMBH GW

FIG. 8. The VT with the background filter removing contami-
nation from all blind injections, as compared to the VT with the
background filter removing contamination from blind injections
with FAR ≤ 1 per 5 months. The first represents the best-case
performance of the background filter, whereas the second
represents the current (O4) performance, designed to prevent
noise events from being removed from the background. This
graph shows that the current system recovers almost all of the lost
sensitivity due to signal contamination.

JOSHI, TSUKADA, and HANNA PHYS. REV. D 108, 084032 (2023)

084032-8



singal with low ρ or in high noise, an IMBH template could
recover the signal in different detectors at different times,
corresponding to the different peaks in the IMBH auto-
correlation function. This would cause the signal to be
recovered as multiple single detector events, instead of a
single coincident one, leading to signal contamination of
the high mass template bins. Again, this is not a problem for
the GW candidates reported by GstLAL, due to event
clustering. Since all the secondary peaks in the autocorre-
lation function of an IMBH template lie well within an 8 s

window, multiple single detector events will be clustered
out, and only the best one will survive.
For high mass bins, the bank correlation factor

increases the probability of low ρ events getting created
by a GW signal, and the autocorrelation factor increases the
probability of signal contamination from those events.
These two factors compound each other’s effect, and as
a result, we see a much higher impact of signal contami-
nation in the high mass template bins than in the low
mass ones.

FIG. 9. The average bank correlation function of a BNS template in descending order of template match, as compared to that of an
IMBH template, calculated for the five closest template bins. Since IMBH templates correlate well with other IMBH templates across
template bins, an IMBH GW signal will be recovered by multiple template bins, increasing the probability of signal contamination. This
is not the case for BNS template bins, and it is more likely a BNS GW signal will be recovered by only one template bin, resulting in
fewer cases of signal contamination.

FIG. 10. The autocorrelation function of a BNS template, as compared to that of an IMBH template. Since there are multiple peaks in
autocorrelation function of the IMBH template, a quiet IMBH GW signal could be recovered in different detectors at different times,
corresponding to the different peaks in the IMBH autocorrelation function. This will result in the GW singal being recovered as multiple
single detector events rather than a single coincident event, which leads to signal contamination. Since the BNS autocorrelation function
does not have multiple peaks, signal contamination is less likely for BNS template bins.
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