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We demonstrate a new geometric method for fast template placement for searches for gravitational
waves from the inspiral, merger and ringdown of compact binaries. The method is based on a binary tree
decomposition of the template bank parameter space into nonoverlapping hypercubes. We use a numerical
approximation of the signal overlap metric at the center of each hypercube to estimate the number of
templates required to cover the hypercube and determine whether to further split the hypercube. As long as
the expected number of templates in a given cube is greater than a given threshold, we split the cube along
its longest edge according to the metric. When the expected number of templates in a given hypercube
drops below this threshold, the splitting stops and a template is placed at the center of the hypercube. Using
this method, we generate aligned-spin template banks covering the mass range suitable for a search of
Advanced LIGO, Advanced Virgo and KAGRA data. The aligned-spin bank was generated in ∼24 hours
using a single CPU core and produced 2 million templates. Our primary motivation for developing this
algorithm is to produce a bank with useful geometric properties in the physical parameter space
coordinates. Such properties are useful for population modeling and parameter estimation.
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I. INTRODUCTION

Banks of template gravitational-wave signals are central
tools in the matched-filter detection of gravitational-wave
signals from compact binary coalescence [1–3]. The general

compact binary gravitational-wave signal depends on
at least 15 parameters: two mass parameters, six spin
parameters, distance, time, and five angles defining binary
orientation with respect to the gravitational-wave antenna.
The parameter space can be even larger if, for instance,
matter or eccentricity effects are included. Since we do not
know the source parameters a priori, we must search the
data over all possible source parameters.
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We are often able to quickly maximize the signal-to-noise
ratio (SNR) over a subset of the parameters either analyti-
cally or by efficient numerical techniques. For instance,
some parameters enter only into the overall amplitude of the
signal which is normalized away by the matched-filter
definition of SNR. Which parameters these are depends
on the assumptions made about the signal. For instance,
nonprecessing binaries have a constant inclination angle,
which enters into the gravitational-wave signal only in the
overall scale of the waveform, whereas precessing binaries
have a time-dependent inclination, leading to modulation in
the waveform phase and amplitude. The coalescence time
enters into the waveform as a frequency-dependent phase
shift which can efficiently be searched over using widely
available fast Fourier transform routines. Considering only
dominant ðl; jmjÞ ¼ ð2; 2Þ modes of gravitational-wave
signals, the coalescence phase can also be maximized over
analytically.
Given the approximations, assumptions and techniques

described above, a subset of parameters, λ⃗, the template
bank parameters, are generally relevant for template place-
ment. We search over these parameters by laying down a
discrete set of points in the parameter space and repeating
the matched-filter calculation for each template. The set of
points must be chosen as a compromise between optimal
SNR recovery and available computational resources.
Placing templates finely in the template parameter space
leads to high SNR recovery, but can quickly make the
search prohibitively expensive. In particular, the number of
templates required to cover a D-dimensional parameter
space such that no more than a fractionM of the SNR is lost
to any potential signal scales as M−D=2 [2].
In the case of nonspinning binaries, lattice placement

strategies based on an approximate analytic expression for
the signal space “distance” between two nearby templates
have been shown to be effective for covering the template
parameter space [4,5]. To guarantee efficiency of the
placement, these methods require that the metric gðλ⃗Þ,
which defines the distance between nearby templates, is
very nearly constant throughout the parameter space. For
waveforms involving spin, in which a metric is either
unavailable or varies rapidly throughout the parameter
space, stochastic template placement has proven to be
effective in covering the parameter space [6–10]. The
stochastic placement technique works by randomly select-
ing a large number of points in parameter space and keeping
only those points which fall sufficiently far away from
points which have already been accepted into the bank. This
technique, while robust, is computationally inefficient,
although recent implementations have made significant
strides towards optimization [9,11,12].
Geometric techniques have also been applied to generate

aligned-spin template banks [13–15]. In Ref. [13], the
authors demonstrate a geometric template bank for neu-
tron-star–black-hole binaries. The authors find satisfactory

coverage for this parameter space by stacking two two-
dimensional lattices, taking advantage of the fact that the
parameter space is “thin” in the third dimension. This
placement strategy was used in conjunction with ordinary
stochastic placement [11] to cover the full compact binary
parameter space searched in the recent LIGO-Virgo
searches [16,17]. In Ref. [14], the authors consider an
interesting extension of this technique which starts with a
true three-dimensional lattice, and falls back to the stochas-
tic approach when the lattice approach breaks down. In
Ref. [12], the authors also consider a hybrid stochastic-
geometric technique, similar to the algorithm we propose
here; however, the notion of lattice adjacency the authors
used is Cartesian whereas we incorporate the intrinsic
geometry of the parameter manifold.
These solutions continue to rely at least partially on

stochastic placement methods, which scales poorly with the
number of templates. The required number of template
parameters to cover a parameter space at a given minimal
match threshold increases dramatically with the bandwidth
of the interferometer and the dimension of the target signal
space, both of which are ever increasing in ground-based
gravitational wave searches [11,18,19]. Currently used
aligned-spin template banks have four template parameters
(two masses and two spins) and over 1 million templates at
maximal mismatches between 1%–3% [20]. Precessional
effects add five more parameters (four spin components and
the binary inclination at some reference frequency) and an
additional order of magnitude in templates [19]. At high
mass ratios, subdominant modes may also be important for
detection, which can only further increase the template bank
size. Presently template bank generation with stochastic
methods may be computationally slow. Future larger banks
will require more computing resources to generate as
gravitational wave detector sensitivity improves. This can
be problematic if banks are generated often.
Here, we demonstrate a new method for template

placement based on a binary tree decomposition of the
parameter space which is purely geometric originally
explored here [21]. The algorithm relies on a numerical
estimation of the parameter space metric and uses this
metric to determine how to grow the binary tree. This
algorithm requires Oð2nD2Þ overlap calculations, where n
is the bifurcation number of the parameter space, i.e., how
many times a characteristic cell is split, and dim is the
dimension of the resulting template bank. We demonstrate
this method by constructing a bank suitable for Advanced
LIGO [22], Advanced Virgo [23] and KAGRA [24] data
analysis.

II. MOTIVATION

Beyond general interest in pursuing novel template
placement algorithms, our motivation for pursuing this
work is threefold based on experiences analyzing LIGO
and Virgo data during the third observing run [25]. First,
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in order to apply a population model to gravitational wave
detection, it is important to account for template place-
ment [26] in a way that may account for the coordinate
volume that a template occupies [25,27–29]. The binary
tree approach that we have taken guarantees that each
template ends up in a hyper-rectangle in the physical
coordinates making coordinate volume calculations easy.
Second, in order to ensure a high availability of service for
online compact binary searches we run searches at two
different data centers. The goal is to split the parameter
space in a way that if one site goes down the other is still
efficient at detecting a broad class of binary signals. The
binary tree approach allows us to use a bank derived from
the “right” and “left” splits separately. Finally, having a
bank that is gridlike in physical coordinates is generally
useful for template interpolation [30] and rapid parameter
estimation [31] problems and we are interested in explor-
ing this as future work.

III. METHODS

Our method, whose implementation we refer to as
treebank, relies on having an accurate approximation
of the template space metric gðλ⃗Þ, which gives a measure of
the distance between nearby templates. For our work
λ⃗≡ ftc; log m1; log m2; χeffg, where tc is the coalescence
time, m1 is the primary component’s mass, m2 is the
secondary component’s mass, and χeff ≡ ðm1a1z þm2a2zÞ=
ðm1 þm2Þ with a1z; a2z as the dimensionless spins of each
component along the orbital angular momentum [32]. We
define the mismatch δ2 between two nearby gravitational-

wave templates, hðλ⃗Þ and hðλ⃗þ Δλ!!Þ, according to

δðλ⃗; Δλ!!Þ2 ¼ 1 − hĥðλ⃗Þjĥðλ⃗þ Δλ!!Þi; ð1Þ

hajbi≡
""""
Z

fN

−fN

ãðfÞb̃%ðfÞ
SnðfÞ

df
""""; ð2Þ

where the template a or b is taken to be complex valued
containing both the sine and cosine phases, thereby maxi-
mizing over phase, and fN is the Nyquist frequency. δ2 can
be expressed in terms of a metric tensor g on the template
signal manifold as

δðλ⃗; Δλ!!Þ2 ¼ Δλ!!Tgðλ⃗ÞΔλ!!
: ð3Þ

From the metric, we can also compute a local volume
element and thereby estimate the number of templates
required to fill a given hypercube cell in the binary tree
decomposition [2]:

N Cðλ⃗Þ ¼
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j det gðλ⃗Þj
q

dV

VT
; ð4Þ

where VT is the volume of a template in mismatch space.
We use the definition by Owen for the metric components in
terms of the mismatch [2]

gij ¼ −
1

2

$
∂2δ2ðλ⃗;Δλ⃗Þ
∂Δλi∂Δλj

%

Δλk¼0

: ð5Þ

We have implemented two numerical schemes for estimat-
ing the metric component values that we call the iterative
and deterministic methods. The iterative method is a
standard convergence scheme for numerical differentiation
leveraging the Python package NUMDIFFTOOLS [33]. The
deterministic method uses definitions of the metric compo-
nents as partial derivatives of the mismatch to compute the
preliminary metric γμν in a single step:

γμμ ¼
δ2ðλ⃗;Δλ⃗Þ
Δλμ2

γμν ¼
δ2ðλ⃗;Δλ⃗Þ − γμμΔλμ2 − γννΔλν2

2ΔλμΔλν
: ð6Þ

The preliminary metric is calculated using the faster deter-
ministic method. We then postprocess the metric in two
steps. First, we minimize γμνΔλμΔλν with respect to the time
lag between signals Δλ0 by projecting out the time compo-
nent of the metric estimate. This results in the adjusted,
spatial metric components

gij ¼ γij −
γ0iγ0j
γ00

; ð7Þ

where we use the term spatial above to mean nontemporal,
as in the familiar 3þ 1 decomposition. Second, we use an
eigenvalue decomposition to check for numerical stability
and validity of the estimated metric. If a negative eigenvalue
is found, which would incorrectly imply a negative spatial
signature, we attempt a reevaluation of the metric with a
perturbed set of intrinsic parameters λ⃗ → λ⃗0. At the moment
our perturbation simply removes precision from the defi-
nition of intrinsic parameters, e.g., changing 1.1234 to
1.123, etc., if after removing precision the metric evaluation
still fails, we attempt to use the NUMDIFFTOOLS method. If
that fails then the code would fatally crash. So far, we find
that these numerical error mitigation methods are adequate
but highlight it as an area for future improvement.
The template-bank algorithm then works as follows:
(1) Initialize a hyper-rectangle bounding the parameter

space one wishes to cover, e.g., a bounding box in
component masses.

(2) Compute the metric gðλ⃗Þ numerically at the center of
the hyper-rectangle. Alternatively, skip this step if
the metric is sufficiently constant, the condition for
which is described below.
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(3) From the metric, estimate the number of templates
N C needed to cover this hyper-rectangle via Eq. (4).

(4) If N C is greater than the user-supplied threshold
N C

%, compute the side lengths of the hyper-
rectangle according to the metric and split the cube
along its largest side in two children cells A and B.
Call the algorithm recursively on A and B. Choices
of N C are described in more detail below.

(5) If N C < N C
%, place a template at the center of

the cell and stop splitting. Choices N C
% are de-

scribed below.
The splitting stops when all rectangles have N C < N C

% or
alternatively if the user specifies a maximum coordinate
volume. In Fig. 1, we illustrate the decomposition.
In step 2, we determine if a metric is sufficiently constant

by placing a threshold on ϵ≡ j1 − 1
2Vi−2=Vi−1j, where V is

the proper volume of a cell. If the volume element of the
previous two iterations (i − 2, i − 1) is sufficiently
unchanged so that the cell and its parent’s volume differ
by approximately a factor of 2, the user may decide to skip
this step. Setting epsilon to 0 forces the metric to be
recomputed. The user also can add an additional maximum
mismatch which must be achieved in order to skip recom-
puting the metric that is applied in addition to the constraint
on ϵ. We find that for a bank targeting a 3% mismatch it is
reasonable to skip metric reevaluation when a cell has
achieved a 10%mismatch and the volumes are not changing
by more than ϵ ¼ &10%. We note that skipping the metric
evaluation is only used for computational efficiency. It can
be disabled for accuracy and for typical template banks

recomputing every metric changes the run-time by at most a
factor of a few.
In step 4, in most situations a user will set N C

% ¼ 1
which is the condition for normal template bank generation,
i.e., that one template should fit in the requested mismatch
volume cell. However, it is useful to sometimes set N C

% to
be larger, e.g., 1000, in order to identify regions of the
parameter space that would hold ∼1000 templates at a
requested match. This is useful to parallelize bank gener-
ation. By setting N C

% ¼ 1000, one could quickly (in a
matter of minutes) produce a “seed bank” that can define
regions for further splitting. Through the use of high
throughput computing resources, we have used this pro-
cedure to parallelize bank construction across a compute
cluster with thousands of cores and reduce the time to create
a template bank from hours down to minutes.
Other than waveform generation, the most computation-

ally costly step of this process is the evaluation of the
mismatch between two templates (2), which is needed to
evaluate the metric coefficients (5). In the case where the
template parameter space is bifurcated n times, there will be
at most 2n hyper-rectangles. If ϵ ¼ 0, then the metric will
be evaluated for every cell and

number of metric evaluations ¼
Xn

i¼0

2i ¼ 2nþ1 − 1: ð8Þ

Each metric evaluation requires OðDðDþ 1Þ=2Þ match
calculations, where D is the dimension of the template
parameter space, and the exact scaling depends on the finite
differencing scheme chosen. This means that the total
number of match calculations for a given bank assuming
ϵ ¼ 0 is

number of match evaluations ¼ ð2nþ1 − 1ÞDðDþ 1Þ
2

¼ Oð2nD2Þ: ð9Þ

Each hyper-rectangle will contain one template, which
means that a well balanced tree will contain a bank of at
most N B ¼ 2n templates. Thus, the number of match
calculations per waveform in the template bank is

number of match evaluations
number of templates ðN BÞ

¼ OðD2Þ: ð10Þ

The above gives a worst case scenario. Under normal
circumstances ϵ > 0 and the metric is found to be
sufficiently constant that it does not need to be evaluated
at the final tree depth. This leads to typical scaling where
there are fewer match calculations than there are tem-
plates in the bank N B.
By definition, the matches between waveforms used in

the metric calculation are extremely high—approaching
1 minus floating point epsilon. Therefore, the function of

FIG. 1. Example hyper-rectangle bifurcation in two arbitrary
dimensions, x1, x2. Each boxed number represents a place where
the metric, g, was computed at the nth stage of the bifurcation.
This example results in nine hyper-rectangles, which is less than
the maximum value of 24 after four bifurcations.
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frequency is extremely smooth and we evaluate waveforms
and matches with extremely coarse spacing, typically 1 Hz.

IV. RESULTS

Software implementing the previously described algo-
rithm has been developed in a package called MANIFOLD

[34]. We used the MANIFOLD software to generate an
advanced LIGO, Virgo and KAGRA template bank using
projected O4 sensitivity estimates [35]. We used a chirp
mass range from 0.87 − 174M⊙, a minimum secondary

mass of 0.98M⊙, a maximum mass ratio of 20 and a
maximum total mass of 400M⊙. We specified an effective
spin range, χ, from −0.99 to 0.99 but limited the spin of
objects below 3M⊙ to be less than 0.05. We allowed the
template low frequency to go down to 10 Hz, but specified a
maximum duration of 128 s. We requested a maximum
mismatch of 3%, but also set the maximum coordinate
volume (Δ log m1 × Δ log m2 × Δχ) to be less than
0.0001. This resulted in 2,083,547 templates as shown
in Fig. 2.
We validated the template bank by injecting 16,000

simulated signals in the parameter space using the
IMRPhenomD [32] approximant—the same approximant
that was used for computing the template metric. This
validation was done by choosing random points that satisfy
the bounding-box constraints of the requested template
bank and evaluating the overlap between those signals and
the templates in the bank. The signals were chosen
uniformly in the logarithm of component masses and
uniformly in χeff . For each simulated signal, the best
match was chosen among the nearest 30,000 templates in
the bank defined by their absolute chirp mass. We find that
the bank achieves the requested 97% match better than
99% of the time as shown in Fig. 3. The software required
to perform this validation is included in the release
described below.
It is important to validate the binary tree template bank

algorithm against other template placement algorithms in
the context of a specific gravitational wave search and with
independent tools. For that reason, some of the authors here
and others have written a second manuscript describing in
great detail bank construction and validation for one of the
LIGO, Virgo, and KAGRA compact binary searches using
the methods presented in our work [36] which includes an
independent validation of a binary tree template bank using

FIG. 2. Example template bank. This is a projection of the
three-dimensional bank in coordinates flog m1; log m2; χeffg into
the flog m1; log m2g plane. The templates that appear to be
outside of the region of interest have hyper-rectangles that
overlap with the region. Note that the naive template density
is directly related to local volume element magnitude, and varies
accordingly.

FIG. 3. Template bank validation. The color bar indicates mismatch of simulated signal and nearest template. The injected signals
were created using uniform distributions of the individual parameters flog m1; log m2χeffg. The bank achieves the requested 97%match
99% of the time and a better than 98% match 90% of the time. The evaluation method used here is likely to be conservative since it does
not maximize the match of all templates in the bank but only the 30,000 templates that are closest according to the absolute value of their
chirp mass.

BINARY TREE APPROACH TO TEMPLATE PLACEMENT FOR … PHYS. REV. D 108, 042003 (2023)

042003-5



the sbank [9] method. They conclude broadly similar
results to the stochastic template placement methods in
both template count and bank efficacy. They also conclude
that the validation software provided by MANIFOLD pro-
duces consistent results to the bank validation from sbank
within the considered parameter space.

V. CONCLUSION

We have described here a new method for fast template
bank placement, and shown that the method works in three
dimensions relevant to dominant-mode aligned-spin tem-
plate searches. The treebank method is computationally
efficient and we expect this method will scale to higher
dimensional template placement, such as precessing or
subdominant mode templates, but we leave this for future
work. It should also have applications in producing high
density banks for use in rapid parameter estimation [31].
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