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Abstract. The close relationship between the scheme of level structures on the universal

deformation of a formal group and the Morava E-cohomology of finite abelian groups

has played an important role in the study of power operations for Morava E-theory. The
goal of this paper is to explore the relationship between level structures on the p-divisible

group given by the trivial extension of the universal deformation by a constant p-divisible
group and the Morava E-cohomology of the iterated free loop space of the classifying

space of a finite abelian group.

1. Introduction

Power operations for Morava E-theory have been studied for more than three decades.
Due to the close connection between Morava E-theory and the arithmetic geometry of the
universal deformation G, the best strategy for understanding these operations has been to
provide an algebro-geometric description of these maps whenever possible. In order to aid
this endeavor, Strickland proved that, after taking the quotient by a transfer ideal, the E-
cohomology of the symmetric group is the ring of functions on the scheme that represents
subgroup schemes of a particular order in the universal deformation formal group [Str98].
In [AHS04], Ando, Hopkins, and Strickland proved that the additive power operation

Pm/ITr : E
0 → E0(BΣm)/ITr

is the ring of functions on the map of formal schemes that takes a deformation with a choice
of subgroup of order m to the quotient deformation - a canonical deformation with formal
group given by the quotient. The target of the power operation can be simplified by making
use of the fact that there is an injection

E0(BΣm)/ITr ↪→
∏

A⊂Σmtransitive

E0(BA)/ITr,

where ITr ⊂ E0(BA) is another transfer ideal. The E0-algebra E0(BA)/ITr is very closely
related to the scheme of A∗-level structures on G. This scheme was introduced by Drinfeld
in [Dri74, Section 4] and plays an important role in arithmetic geometry. These E0-algebras
are complicated but somewhat accessible and quite well-behaved.

Any kind of explicit calculation of these power operations above height 1 turns out to
be quite difficult. Explicit calculations were initiated by Rezk in [Rez] and have been
successfully continued by Zhu in [Zhu14]. Certain variants of these power operations are
more geometric and thus more amenable to calculation. In particular, work of Ganter
[Gan13] and the first author [Hua18b, Hua18a] describe and study the power operations
on “Tate K-theory” and Quasi-elliptic cohomology, respectively, completely geometrically.
These cohomology theories are both closely related to height 2 Morava E-theory. In fact, the
character maps of the second author [Sta13, Sta15] and of the second author with Barthel
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[BS16] can be used to approximate Morava E-theory by a variety of types of extensions of
p-adic K-theory by the free loop space functor that are essentially coarse versions of Tate
K-theory. As more variants of “cohomology of the free loop space” arise in nature (eg.
[BE15, Bis85, Gan13, Han07, Hua18a, NY19, Sta15] and especially [Lur19]), it is worth
gaining a better understanding of the target of the power operation in the case of the
simplest extensions of Morava E-theory.

In this paper, we restrict our attention to the extension of Morava E-theory of the form
E0(Lh(−)). That is, we just compose E-cohomology with the h-fold free loop space functor
Lh(−). Although this “cohomology theory” does not seem to inherit power operations from
Morava E-theory, there are some extensions of E-theory, for instance the extension using the
Twist(−) construction studied in [Sta15], that may admit power operations and also map
canonically to the the construction studied here. Thus the first E0-algebra that one might
want to study in this context is E0(LhBΣm)/ITr. This was accomplished in [SS15], which
provides an algebro-geometric description in terms of subgroup schemes of order m in the
p-divisible group G⊕ (Qp/Zp)

h, generalizing Strickland’s fundamental result in [Str98]. As
level structures are often easier to work with than subgroups, and are also more amenable to
calculation, in this paper we study E0(LhBA)/ITr for A finite abelian. We prove a variety
of results analogous to more classical results regarding E0(BA)/ITr. Among other things,
we describe a product decomposition of E0(LhBA)/ITr by making use of certain families
of subgroups of A, give an algebro-geometric description of these E0-algebras in terms of
level structures on G⊕ (Qp/Zp)

h, and describe the relation to E0(LhBΣm)/ITr.
To state the main result more precisely, we need some setup. Assume that A is a finite

abelian p-group, let L′ = Zh
p , and let f : L′ → A be a continuous map of abelian groups.

Let Ff be the minimal family of subgroups of A containing

{H ⊂ A | H is proper and im(f) ⊆ H}.
Associated to Ff is the transfer ideal IFf

⊆ E0(BA), which is generated by the image of

the transfers along the subgroups H ∈ Ff . We produce a factorization of E0-algebras

E0(LhBA)/ITr
∼=

∏
f∈hom(L′,A)

E0(BA)/IFf
.

The Pontryagin dual of L′ is T′ ∼= (Qp/Zp)
h and the Pontryagin dual of f is

f∗ : A∗ → T′ .

Using the map f∗, we define a functor from complete local E0-algebras to sets called

Levelf∗(A∗,G⊕ T′) : complete local E0-algebras → Set.

For a complete local E0-algebra R, we define Levelf∗(A∗,G⊕T′)(R) to be the set of homo-
morphisms A∗ → G(R)⊕ T′ satisfying two properties:

• the composite A∗ → G(R)⊕ T′ → T′ is equal to f∗, and
• the induced map ker(f∗) → G(R) is a level structure.

By construction, there is a pullback of formal schemes

(1.1) Levelf∗(A∗,G⊕ T′) //

��

Level(ker(f∗),G)

��
Hom(A∗,G) // Hom(ker(f∗),G),

where the left vertical map is induced by the projection G⊕ T′ → G.
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Theorem 1.1. There is a canonical isomorphism of E0-algebras

(E0(BA)/IFf
)free ∼= OLevelf∗ (A∗,G⊕T′),

where OLevelf∗ (A∗,G⊕T′) denotes the ring of functions on Levelf∗(A∗,G⊕T′) and (E0(BA)/IFf
)free

denotes the torsion-free part of the ring E0(BA)/IFf
.

This result is proved by first using Hopkins–Kuhn–Ravenel character theory [HKR00] to
produce a canonical isomorphism of E0-algebras

(E0(LhBA)/ITr)
free ∼= OLevel(A∗,G⊕T′),

where ITr is generated by transfers along proper subgroups of A. We then analyze the fibers
of the map Level(A∗,G⊕T′) → Hom(A∗,T′) given by post-composition with the projection
G⊕ T′ → T′.

The scheme Levelf∗(A∗,G ⊕ T′) admits a simple, though non-canonical, factorization.
Given a decomposition A∗ ∼= M ⊕ K, where M is a minimal summand of A∗ containing
ker(f∗), there is an isomorphism

Levelf∗(A,G⊕ T′) ∼= Level(M,G)×Hom(K,G).

We believe that this should be viewed as a positive feature of the formal scheme Levelf∗(A,G⊕
T′) that is in contrast with the scheme SubA

pk(G⊕ T′) studied in [SS15]. The closest thing

to a similar decomposition of SubA
pk(G⊕ T′) is given in Proposition 6.5 of [SS15].

In fact, we compare Levelf∗(A∗,G ⊕ T′) to the scheme Sub
im(f∗)

pk (G ⊕ T′). There is a

canonical map

im: Levelf∗(A∗,G⊕ T′) → Sub
im(f∗)

pk (G⊕ T′)

defined by sending a level structure l : A∗ ↪→ G⊕T′ such that the composite A∗ ↪→ G⊕T′ →
T′ is equal to f∗ to the subgroup scheme im l, which is a subgroup of G⊕ T′ that projects
onto im(f∗) ⊂ T′.

Further, if i : A ↪→ Σpk is the Cayley embedding (so that |A| = pk) and |A/ im f | = pj ,
then there is a topologically induced map

E0(B(im if ≀ Σpj ))/I
[if ]
Tr → E0(BA)/IFf

making the following diagram of formal schemes commute

Spf((E0(BA)/IFf
)free) //

∼=
��

Spf(E0(B(im if ≀ Σpj ))/I
[if ]
Tr )

∼=
��

Levelf∗(A∗,G⊕ T′) // Subim(f∗)

pk (G⊕ T′),

where the right vertical map is the isomorphism of [SS15, Proposition 7.12].
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2. Recollections and extensions

We recall the relationship between the E-cohomology of finite abelian groups and level
structures on the universal deformation of a height n formal group over a perfect field.
Further, we note that a result of Hopkins, Kuhn, and Ravenel regarding localizations of the
E-cohomology of groups of the form (Z/pk)n extend to finite abelian p-groups A such that
A/pA has p-rank n.

Let G be the universal deformation of a height n formal group over a perfect field of
characteristic p. Let E be the associated Morava E-theory. As in [Sta], we will view G as a
functor from the category of complete local E0-algebras to the category of abelian groups.

Let A be a finite abelian p-group such that A = A[pk], where A[pk] is the pk-torsion in
A. The formal scheme of maps Hom(A,G) sends a complete local E0-algebra R to the set
of maps of commutative group schemes from A to G[pk] over Spf(R). This is isomorphic to
the set of maps of abelian groups from A to G(R).

Building on the canonical isomorphism E0(BS1) ∼= OG, Hopkins, Kuhn, and Ravenel
discovered the following fundamental relationship between formal groups and Morava E-
theory:

Proposition 2.1. [HKR00, Proposition 5.12] Let A be a finite abelian group and let A∗ be
the Pontryagin dual of A. There is a canonical isomorphism of E0-algebras

E0(BA) ∼= OHom(A∗,G)

natural in maps of finite abelian groups.

Applying Spf(−), we have a canonical isomorphism of formal schemes Hom(A∗,G) ∼=
Spf(E0(BA)). Thus, given a complete local ring R, there is a canonical isomorphism of sets
between Hom(A∗,G)(R) = HomAb(A

∗,G(R)) and Homcts E0-alg(E
0(BA), R).

Given a coordinate E0(BS1) ∼= E0[[x]], we have E0(BZ/pk) ∼= E0[[x]]/[pk](x), where
[pk](x) is the pk-series for the formal group law associated to the coordinate. Further, since
the Weierstrass preparation theorem implies that E0(BZ/pk) is a finitely generated free

E0-module, for A ∼=
j∏

i=1

Z/pki , we have

(2.1) E0(BA) ∼= E0[[x1, . . . , xj ]]/([p
k1 ](x), . . . , [pkj ](x)).

A map of abelian groups l : A → G(R) is a level structure if the divisor im(l[p]) =
Spf(R[[x]]/(

∏
a∈A[p](x − l(a))) is a subgroup scheme of Spf(R) ×Spf(E0) G[p]. This implies

that im(l) = Spf(R[[x]]/(
∏

a∈A(x − l(a))) is a subgroup scheme of Spf(R) ×Spf(E0) G. The

formal scheme of level structures Level(A,G) sends a complete local E0-algebra R to the
set of level structures from A to G(R). See [Str97] for many more details.

Let IA ⊂ E0(BA) be the ideal generated by the image of the transfer maps from proper
subgroups of A. Given a commutative ring R, let Rfree = im(R → Q⊗R) be the torsion-free
quotient of R. In [AHS04, Section 7], Ando, Hopkins, and Strickland produce a canonical
isomorphism

(2.2) (E0(BA)/IA)
free ∼= OLevel(A∗,G).

We discuss this isomorphism more in Section 5.
Let SA ⊂ E0(BA) be the set of Euler classes of nontrivial line bundles on BA (ie. line

bundles induced by nontrivial irreducible representations of A). In [HKR00, Lemma 6.12], it
is noted that the canonical map E0(BA) → S−1

A E0(BA) factors through E0(BA)/IA. This
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follows from Frobenius reciprocity together with the fact that, for each proper subgroup
A′ ⊂ A, there is a nontrivial representation A → S1 with A′ contained in the kernel.

In [HKR00, Proposition 6.5], Hopkins, Kuhn, and Ravenel show that, when A ∼= (Z/pk)n,
the canonical map E0(BA)/IA → S−1

A E0(BA) induces an isomorphism

(2.3) Q⊗ E0(BA)/IA ∼= S−1
A E0(BA).

We will make use of a mild extension of this result. We begin with a lemma. Given a
map of finite abelian groups ρ : A → H, we will write ρ∗(SH) ⊂ E0(BA) for the image of
SH ⊂ E0(BH) in E0(BA).

Lemma 2.2. Let A be a finite abelian p-group such that A/pA ∼= (Z/p)n. Let ρ : A → A/pA
be the quotient map. Inverting the set SA ⊂ E0(BA) is equivalent to inverting ρ∗(SA/pA) ⊂
E0(BA).

Proof. By construction ρ∗(SA/pA) ⊆ SA. We will show that inverting ρ∗(SA/pA) inverts SA.

Let L be a nontrivial line bundle on BA and let s = e(L) ∈ SA. Since [pj ](s) = e(L⊗pj

) is
the Euler class associated to the pjth tensor power of the line bundle L, there exists a j ≥ 0
such that [pj ](s) ∈ ρ∗(SA/pA). Since s|[pj ](s), s is a unit if [pj ](s) is a unit. □

Let TA = im(E0(BA) → S−1
A E0(BA)).

Proposition 2.3. Let A be a finite abelian p-group such that A/pA ∼= (Z/p)n. There is a
canonical isomorphism

Q⊗ TA
∼= S−1

A E0(BA).

Proof. This follows the proof of Proposition 6.5 in [HKR00]. The set ρ∗(SA/pA) ⊂ TA

provides a collection of distinct roots of ⟨p⟩(x) = [p](x)/x = p+ . . .. Thus∏
s∈ρ∗(SA/pA)

(x− s)

differs from ⟨p⟩(x) by multiplication by a unit in TA[[x]]. Thus inverting p is equivalent to
inverting ρ∗(SA/pA) in TA and, by Lemma 2.2, this is equivalent to inverting SA. □

Corollary 2.4. Let A be a finite abelian p-group such that A/pA ∼= (Z/p)n. There is a
canonical isomorphism

Q⊗ E0(BA)/IA ∼= S−1
A E0(BA).

Proof. Since Q ⊗ E0(BA)/IA ∼= Q ⊗ OLevel(A∗,G) and, as indicated in [Dri74, Proposition
4.3], OLevel(A∗,G) is a domain, we have

Q⊗ E0(BA)/IA ∼= Q⊗ TA
∼= Q⊗OLevel(A∗,G).

□

Thus we see that TA
∼= (E0(BA)/IA)

free.

3. Level structures

The goal of this section is to describe and study level structures on p-divisible groups of
the form G⊕T′ over Spf(R), where R is complete local, G is the p-divisible group associated
to a height n formal group, and T′ ∼= (Qp/Zp)

h is a height h constant p-divisible group.
Level structures on p-divisible groups were studied in quite a bit of generality in [HT01,
Chapter 3]. A good reference for level structures on formal groups is [Str97].
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The following definition of a level structure on the trivial extension of a formal group by
a constant finite height p-divisible group is based on [HT01, Lemma 3.1.4]. Let A be a finite
abelian p-group and assume that |A| = pk. Let π : G⊕ T′ → T′ be the projection.

Definition 3.1. An A-level structure l : A ↪→ G⊕T′ is a homomorphism of group schemes
l : A → (G⊕ T′)[pk] such that the induced map ker(πl) → G is a ker(πl)-level structure on
G.

There are canonical maps

Hom(A,G⊕ T′) → Hom(A,T′)

and
Level(A,G⊕ T′) → Hom(A,T′)

given by post-composing with the projection π : G⊕T′ → T′. Fix a map g : A → T′. Define

Homg(A,G⊕ T′)

to be the scheme of homomorphisms h : A → G ⊕ T′ such that πh = g. By construction,
there is a canonical isomorphism

Homg(A,G⊕ T′) ∼= Hom(A,G).

Similarly, we define Levelg(A,G⊕ T′):

Definition 3.2. Given g : A → T′, define

Levelg(A,G⊕ T′)

to be the functor from complete local R-algebras to sets sending a complete local ring S to
the set of A-level structures on the pullback Spf(S)×Spf(R)(G⊕T′) such that post-composing
with π gives g.

Since Hom(A,T′) is a set, we may decompose Level(A,G⊕T′) using the map Level(A,G⊕
T′) → Hom(A,T′).

Proposition 3.3. There is a decomposition of formal schemes

Level(A,G⊕ T′) =
∐

g∈Hom(A,T′)

Levelg(A,G⊕ T′).

For some values of g, Levelg(A,G⊕ T′) may be the empty scheme.

From the definition, we see that Levelg(A,G⊕ T′) is the pullback of formal schemes

(3.1) Levelg(A,G⊕ T′) //

��

Level(ker(g),G)

ι

��
Hom(A,G)

Res // Hom(ker(g),G),

where the left vertical map is induced by the projection G⊕T′ → G. This description makes
Levelg(A,G⊕ T′) accessible; it can be understood in terms of well-studied objects.

Example 3.4. Two extreme cases follow from the pullback above: If g : A → T′ is injective,
then ι is an isomorphism and we have

Levelg(A,G⊕ T′) ∼= Hom(A,G).

If g : A → T′ is the zero map, then Res is an isomorphism and we have

Levelg(A,G⊕ T′) ∼= Level(A,G).
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Remark 3.5. Note that, as a special case of Definition 3.1, Level(A,T′) is the set of injective
group homomorphisms from A to T′.

Proposition 3.6. The functor Levelg(A,G⊕T′) is corepresentable by an R-algebra that is
finitely generated and free as an R-module and is a closed subscheme of Homg(A,G⊕ T′).

Proof. We will make use of the pullback of (3.1). The map

OHom(ker(g),G) → OLevel(ker(g),G)

is surjective as Level(ker(g),G) is a closed subscheme of Hom(ker(g),G). [Str97, Proposi-
tion 7.11] implies that the R-algebra OLevel(ker(g),G) is a finitely generated free R-module.
Further, OHom(A,G) is a finitely generated free module over OHom(ker(g),G), via the canonical
inclusion Res∗. Thus

OLevelg(A,G⊕T′)
∼= OHom(A,G) ⊗OHom(ker(g),G)

OLevel(ker(g),G)

is a finitely generated free R-module.
Since Level(ker(g),G) is a closed subscheme of Hom(ker(g),G), we have Levelg(A,G⊕T′)

is a closed subscheme of Hom(A,G) ∼= Homg(A,G⊕ T′). The composite

Levelg(A,G⊕ T′) → Hom(A,G) ∼= Homg(A,G⊕ T′)

is the canonical inclusion. □

Example 3.7. Let G = Ĝm be the p-divisible group associated to the formal multiplicative
group over Zp. Let A = Z/p× Z/p, let T′ = Qp/Zp, and let g : A → T′ be the composite of
the projection on the the second factor composed with an inclusion of Z/p into T′. In this
case ker(g) is the first factor of A.

Given a coordinate x on G, we have

OLevel(ker(g),G)
∼= Zp[[x]]/⟨p⟩(x),

where ⟨p⟩(x) = [p](x)/x and [p](x) is the p-series associated to the Ĝm. The inclusion of the
closed subscheme Level(ker(g),G) ⊆ Hom(ker(g),G) induces the surjection of Zp-algebras

Zp[[x]]/[p](x) → Zp[[x]]/⟨p⟩(x).
Further, the map OHom(ker(g),G) → OHom(A,G) is the map

Zp[[x]]/[p](x) → Zp[[x1, x2]]/([p](x1), [p](x2))

sending x to x1. We may conclude that

OLevelg(A,G⊕T′)
∼= Zp[[x1, x2]]/(⟨p⟩(x1), [p](x2)).

This example foreshadows the next result, we see that this Zp-algebra may also be expressed
as the tensor product

Zp[[x1, x2]]/(⟨p⟩(x1), [p](x2)) ∼= Zp[[x1]]/⟨p⟩(x1)⊗Zp
Zp[[x2]]/[p](x2).

Recall that l : A → G is a level structure if and only if l[p] : A[p] → G is a level structure.
From Definition 3.1, we see that if l : A ↪→ G ⊕ T′ is a level structure and M ⊆ A is a
minimal summand of A containing ker(πl), then the induced map M → G is an M -level
structure on G. This may be compared with Part 4 of Lemma 3.1 in Harris-Taylor [HT01].
Note that they are working with full rank level structures.

The next lemma shows that Levelg(A,G⊕T′) admits a simple non-canonical description.
This should be viewed as a positive aspect of the scheme Levelg(A,G ⊕ T′) that is in

contrast with the scheme SubA
pk(G⊕ T′) from [SS15]. The closest thing to a decomposition

of SubApk(G⊕ T′) is given in Proposition 6.5 of [SS15].
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Lemma 3.8. Assume that A ∼= M ⊕K and that M is a minimal summand of A containing
ker(g). There is an isomorphism

Levelg(A,G⊕ T′) ∼= Level(M,G)×Hom(K,G)

depending on the choice of decomposition of A.

Proof. Since M is a minimal summand of A containing ker(g), we have M [p] = ker(g)[p].
Thus we have a pullback square of formal schemes

(3.2) Levelg(A,G⊕ T′) //

��

Level(M,G)

��
Hom(M ⊕K,G)

Res // Hom(M,G).

The result follows from the fact that Hom(M ⊕K,G) ∼= Hom(M,G)×Hom(K,G). □

4. Transfer ideals

In this section we recall the relationship between transfers and the Hopkins-Kuhn-Ravenel
character map and apply it to understand the quotient of E0(LhBA), when A is a finite
abelian p-group, by a certain transfer ideal.

Since the free loop space of a finite cover is a finite cover, the functor E∗(Lh(−)) has
transfer maps for finite covers by making use of the fact that E∗(−) is a cohomology theory.
For any subgroup A′ of A, BA′ −→ BA is equivalent to a finite cover and so there is a
transfer map

TrA′,A : E0(LhBA′) −→ E0(LhBA).

Summing over all the proper subgroups of A, we get a map⊕
A′⊂A

TrA′,A :
⊕
A′⊂A

E0(LhBA′) −→ E0(LhBA).

Frobenius reciprocity implies that the image of this map is an ideal.

Definition 4.1. The transfer ideal IA ⊂ E0(LhBA) is defined by

IA = im(
⊕
A′⊂A

TrA′,A).

Remark 4.2. The formula in Definition 4.1 can be simplified to include only the maximal
proper subgroups of A. Since the transfer map has the property that

TrA′,A ◦TrA′′,A′ = TrA′′,A

for A′′ ⊂ A′ ⊂ A, im(TrA′′,A) is contained in im(TrA′,A).

In [HKR00, Theorem D] Hopkins, Kuhn, and Ravenel describe the relationship between
character theory and transfers. We recall this relationship now while introducing some
notation.

Let L = Zn
p and let T = L∗ so that T ∼= (Qp/Zp)

n. Hopkins, Kuhn, and Ravenel

introduce a Q⊗E0-algebra C0 that carries the universal isomorphism of p-divisible groups
T → G, where G is the p-divisible group associated to the universal deformation formal
group. Explicitly, the ring C0 can be taken to be

C0 := S−1E0
cont(B L),
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where

E0
cont(B L) = colimk E

0(B L /pk L)
and S is the set of Euler classes of nontrivial irreducible representations of the abelian group
L /pk L as k varies.

Let G be a finite group and let Hom(L, G) denote the set of continuous group homo-
morphisms from L to G. Note that this set is isomorphic to the set of n-tuples of pairwise
commuting p-power order elements in G and that G acts on this set by conjugation. Let
Cln(G,C0) be the ring of C0-valued functions on the set of conjugacy classes in Hom(L, G).
Hopkins, Kuhn, and Ravenel produce a character map

χ : E0(BG) −→ Cln(G,C0)

in the following way: given [α : L → G], they map E0(BG) to C0 by the composite

E0(BG)
α∗

−→ E0
cont(B L) → C0 = S−1E0

cont(B L).

In Theorem C of [HKR00], they prove that this map induces an isomorphism

C0 ⊗E0 E0(BG)
∼=−→ Cln(G,C0).

When G = A is abelian, the conjugation action of A on Hom(L, A) is trivial. Thus

C0 ⊗E0 E0(BA) ∼=
∏

Hom(L,A)

C0 = C
Hom(L,A)
0 ,

which is the ring of C0-valued functions on the set Hom(L, A).
Theorem D of [HKR00] gives a formula relating transfers in E-cohomology along inclu-

sions of subgroups and the character map. Specialized to an inclusion of abelian groups
A′ ⊂ A, we learn that the transfer map extends a C0-valued function on Hom(L, A′)
to the larger domain Hom(L, A) by extending by zero. In other words, given a function
γ : Hom(L, A′) → C0, we have that

TrC0

A′,A(γ)(α) =

{
|A/A′|γ(α) if α factors through A′

0 otherwise.

Returning to the situation at hand, note that there is an equivalence LhBA ≃ Hom(L′, A)×
BA, where L′ = Zh

p . Given A′ ⊂ A, the induced map LhBA′ → LhBA is equivalent to the
cover (with fibers that may be empty)

Hom(L′, A′)×BA′ → Hom(L′, A)×BA,

where the component in the domain corresponding to L′ → A′ is sent to the component
corresponding to the composite L′ → A′ ⊂ A in the codomain by the covering map BA′ →
BA induced by the inclusion A′ ⊂ A. Said another way, the cover of the copy of BA
corresponding to a map L′ → A is BA′ if imL′ ⊆ A′ and ∅ otherwise. Applying E-
cohomology we get the product of transfer maps

∏
Hom(L′,A′)

E0(BA′)

∏
Hom(L′,A′)

TrE
A′,A

−−−−−−−−−−−→
∏

Hom(L′,A′)

E0(BA)

followed by the inclusion

i :
∏

Hom(L′,A′)

E0(BA) ↪→
∏

Hom(L′,A)

E0(BA).
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Here TrEA′,A is the transfer map for E-cohomology. This gives a formula for the transfer

map TrA′,A : E0(LhBA′) −→ E0(LhBA) in terms of the ordinary transfer in E-cohomology
that we’ll explore more thoroughly in Section 6.

Recall that T′ = (L′)∗.

Lemma 4.3. The character map induces an isomorphism of C0-algebra

C0 ⊗E0 E0(LhBA)/IA ∼=
∏

Level(A∗,T⊕T′)

C0,

where Level(A∗,T⊕T′) is the set of injections A∗ ↪→ T⊕T′.

Proof. Putting together the observations above, we see that applying the functor C0 ⊗E0

E0(−) to the map LhBA′ → LhBA produces the map

∏
Hom(L′,A′)

∏
Hom(L,A′)

C0

i◦(
∏

Hom(L′,A′)
Tr

C0
A′,A)

−−−−−−−−−−−−−→
∏

Hom(L′,A)

∏
Hom(L,A)

C0.

Since C0 is a Q-algebra, the formula for TrC0

A′,A implies that this map sends the factor corre-

sponding to a pair of maps (L′ → A′,L → A′) to the factor in the codomain corresponding
to (L′ → A′ ⊂ A,L → A′ ⊂ A) by an isomorphism.

Since IA is the ideal generated by the image of the transfer maps from all proper subgroups
of A, we wish to understand the quotient of∏

Hom(L′,A)

∏
Hom(L,A)

C0

by the image of these transfer maps for all proper subgroups of A.
Thus the quotient of the product above, which is isomorphic to C0 ⊗E0 E0(LhBA)/IA,

consists of the factors corresponding to pairs of maps (L′ → A,L → A) such that the image
of both maps do not lie in the same maximal proper subgroup. In other words, the union
of the images of the maps generate all of A. This is equivalent to the statement that the
induced map L⊕L′ → A is surjective. Thus the Pontryagin dual A∗ → T⊕T′ is injective
and, by Remark 3.5, an element in Level(A∗,T⊕T′). □

5. The isomorphism

In this section, we give an algebro-geometric description of E0(LhBA)/IA (after removing
possible torsion) generalizing the classical case h = 0 described in [AHS04, Section 7].

We begin by generalizing Proposition 2.1 to the iterated free loop space of BA. In
Section 3, we described a map of formal schemes Hom(A∗,G ⊕ T′) −→ Hom(A∗,T′). The
components of the scheme Spf(E0(LhBA)) are in bijective correspondence with Hom(L′, A).
The Pontryagin dual of a homomorphism L′ → A is a homomorphism A∗ → T′. Thus there
is a canonical map Spf(E0(LhBA)) → Hom(A∗,T′). The following proposition describes the
relationship between Hom(A∗,G⊕T′) and Spf(E0(LhBA)) providing a mild generalization
of [HKR00, Proposition 5.12].
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Proposition 5.1. Let A be a finite abelian group. There is a canonical isomorphism of
formal schemes over Spf(E0)

Hom(A∗,G⊕ T′)
∼= //

((

Spf(E0(LhBA))

vv
Hom(A∗,T′)

compatible with the maps to Hom(A∗,T′) described above.

Proof. Let R be a complete local ring and assume that we are given a continuous map
of E0-algebras E0(LhBA) → R. Thus for each map t : L′ → A, we have the data of a
continuous map of E0-algebras g : E0(BA) → R. Given an element f : A → S1 in A∗, we
will produce an element in G(R)⊕T′. Following [HKR00, Proposition 5.12], the element in
G(R) is the composite

E0(BS1)
f∗

−→ E0(BA)
g−→ R.

The element in T′ is given by the composite

L′ t−→ A
f−→ S1.

This produces the canonical map. By construction, it is compatible with the maps to
Hom(A∗,T′). □

As in Section 2, for a commutative ring R, we will write Rfree for the image of R in Q⊗R.
Thus Rfree is the quotient of R by the ideal of integer torsion elements in R. If R is a finite
product of Noetherian complete local rings, then Rfree is also a finite product of Noetherian
complete local rings.

Theorem 5.2. There is a canonical isomorphism of formal schemes over Spf(E0)

Level(A∗,G⊕ T′)
∼= //

((

Spf((E0(LhBA)/IA)
free)

uu
Hom(A∗,T′)

compatible with the canonical maps to Hom(A∗,T′).

Proof. We begin with the commutative diagram below:

E0(LhBA)
∼= //

����

OHom(A∗,G⊕T′)

����
E0(LhBA)/IA

��

OLevel(A∗,G⊕T′)� _

��
C0 ⊗E0 E0(LhBA)/IA

∼= // ∏
Level(A∗,T⊕T′)

C0.
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The top horizontal map is the isomorphism of Proposition 5.1. The top right vertical map
is a surjection because Level(A∗,G ⊕ T′) is a closed subscheme of Hom(A∗,G ⊕ T′). The
injection OLevel(A∗,G⊕T′) ↪→

∏
Level(A∗,T⊕T′)

C0 is induced by base change:

OLevel(A∗,G⊕T′) −→ C0 ⊗E0 OLevel(A∗,G⊕T′)
∼= OLevel(A∗,T⊕T′)

∼=
∏

Level(A∗,T⊕T′)

C0.

It is an injection since OLevel(A∗,G⊕T′) is a finitely generated free E0-module. The bottom
horizontal map is the isomorphism of Lemma 4.3.

The bottom left map is induced by the character map. By [HKR00, Theorem C], it lands
in the GLn(Zp)-invariants; this is Q⊗ E0(LhBA)/IA. Thus we have the induced diagram

E0(LhBA)
∼= //

����

OHom(A∗,G⊕T′)

����
(E0(LhBA)/IA)

free
� _

��

// OLevel(A∗,G⊕T′)� _

��
C0 ⊗E0 E0(LhBA)/IA

∼= // ∏
Level(A∗,T⊕T′)

C0.

Using this diagram, we may produce the dashed arrow by choosing a lift of an element in
(E0(LhBA)/IA)

free and then pushing it into OLevel(A∗,G⊕T′). This is well-defined since the
bottom vertical maps are injective. It is an isomorphism since we can produce an inverse
by the reverse procedure.

Compatibility with the maps to Hom(A∗,T′) follows from the fact that the isomorphism
is compatible with the isomorphism of Proposition 5.1 by construction. □

Remark 5.3. It would be nice to know when the canonical map

E0(LhBA)/IA → (E0(LhBA)/IA)
free

is an isomorphism. It is known that this map is an isomorphism when A is cyclic and is not
necessarily an isomorphism when the rank of A is greater than n. This question has been
explored further in [BS20].

Example 5.4. We show that the map E0(LhBA)/IA → (E0(LhBA)/IA)
free is not an

isomorphism when E = K2 is 2-adic K-theory, A = Z/2 × Z/2, and h = 0. We thank
Jeremy Hahn for pointing this out to us several years ago.

In this case, after picking the coordinate on Ĝm with formal group law x + y + xy, we
have

(5.1) K0
2 (BA) ∼= K0

2 [[x, y]]/([2](x), [2](y)) = K0
2 [[x, y]]/(x

2 + 2x, y2 + 2y).

Recalling [Qui71, Proposition 4.2], the transfer ideal IA is generated by ⟨2⟩(x), ⟨2⟩(y), and
⟨2⟩(x+y+xy), corresponding to the three maximal subgroups of A. Here, ⟨2⟩(x) = [2](x)/x.
In our case, these power series are the polynomials x+ 2, y + 2, and xy + x+ y + 2. Since

2 = (x+ 2) + (y + 2) + (xy + x+ y + 2)− (x+ 2)(y + 2),

we have an equality of ideals

(2, x, y) = (x+ 2, y + 2, xy + x+ y + 2)
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so K0
2 (BA)/IA ∼= K0

2/(2)
∼= F2.

6. Decomposing the transfer ideal

Let f : L′ → A. We will associate a family of subgroups Ff of A to the map f . Recall
that a family of subgroups of a finite group G is a set of subgroups that is closed under
conjugation and taking subgroups. Thus, given a collection of subgroups of a group, we may
form a family of subgroups by closing the set of subgroups under conjugation and taking
subgroups. The family formed in this way is the minimal family of subgroups containing
the chosen set of subgroups. We define

Ff = {H ⊂ A | H is proper and f does factor through H}
and define Ff to be the minimal family of subgroups of A containing Ff .

Example 6.1. If f : L′ → A is surjective, then Ff = ∅ and Ff = ∅.

Example 6.2. Assume that A = Cpk . If f : L′ → Cpk is not surjective, then im f = Cph

for h < k. In this case, Ff = {Cpj | h ≤ j < k} and Ff is the family of all proper subgroups

of Cpk . Thus every non-surjective map from L′ to Cpk gives rise to the same family.

Example 6.3. Assume that A = C4 × C4. If im f = C2 × {e} ⊂ C4 × C4, then the family
of subgroups Ff is the family of all proper subgroups of A. However, if im f = C4 × {e},
then Ff is the minimal family of subgroups containing C4 × C2 ⊂ C4 × C4. Therefore Ff

need not contain all of the proper subgroups of A.

Example 6.4. Assume that A = C×3
2 and assume that im f = C2 × {e} × {e} ⊂ C×3

2 .
Then Ff consists of the minimal family of subgroups of C×3

2 containing the three maximal
subgroups that contain C2 × {e} × {e}. This shows that sometimes Ff is not determined
by a single maximal subgroup of A.

Given an abelian p-group A, we will write FA for the family of all proper subgroups of
A. Note that FA = F0, where 0: L′ → A is the zero map. Given a map q : A → A′ and a
family F of subgroups of A′, we set q∗ F to be the minimal family of proper subgroups of
A containing the set of subgroups {q−1(H) | H ∈ F}.

The next lemmas follow from the definition of the family Ff and basic facts about abelian
groups.

Lemma 6.5. Let f : L′ → A, let q : A → A/ im f be the quotient map, and recall that
FA/ im f is the family of all proper subgroups of A/ im f . Then

• Ff = q∗ FA/ im f .
• if im f ⊆ pA, then Ff = FA.

Proof. The first statement follows from the third isomorphism theorem. The maximal
proper subgroups of A that contain im f are in bijective correspondence with the maxi-
mal proper subgroups of A/ im f . The second statement follows from the fact that maximal
proper subgroups of A are in bijective correspondence with the maximal proper subgroups
of A/pA. □

Lemma 6.6. Let π : A×B → A be the projection and let F be a family of subgroups of A.
It follows that π∗ F is the family of subgroups of A × B generated by the subgroups of the
form H ×B, where H ∈ F .

Definition 6.7. Let IFf
be the ideal of E0(BA) generated by the image of transfers from

H ∈ Ff .
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In Section 4, we showed that the ideal IA is the ideal generated by transfers along the
covers

Hom(L′, A′)×BA′ → Hom(L′, A)×BA

for proper subgroups A′ ⊂ A. Thus, given f : L′ → A, we learn that the factor of IA
corresponding to f is the ideal of E0(BA) generated by transfers along proper subgroups
A′ ⊂ A with the property that im f ⊆ A′. This is precisely the ideal IFf

⊆ E0(BA). It

follows that there is an isomorphism of E0-algebras

E0(LhBA)/IA ∼=
∏

f∈Hom(L′,A)

E0(BA)/IFf
.

Example 6.8. AssumeA = Cpk . Fix a coordinate x onG, so that E0(BCpk) ∼= E0[[x]]/[pk](x),

where [pk](x) is the pk-series. If f : L′ → Cpk is surjective, then Example 6.1 implies that
IFf

= (0). However, if f is not surjective, then Example 6.2 implies that Ff = FC
pk

and

that the ideal IFf
= (⟨pk⟩(x)), where ⟨pk⟩(x) = [pk](x)/[pk−1](x).

Let Surj(L′, Cpk) ⊆ Hom(L′, Cpk) be the subset of surjective maps. Let NonSurj(L′, Cpk)
be its complement. It follows from the discussion prior to the example that

E0(LhBCpk)/IC
pk

∼=
∏

Surj(L′,C
pk

)

E0[[x]]/[pk](x)×
∏

NonSurj(L′,C
pk

)

E0[[x]]/⟨pk⟩(x).

Example 6.9. Building on Example 5.4, we consider K0
2 (LBA)/IA, where A ∼= C2 × C2.

In this case, we may identify the maps L′ = Z2 → A with the elements of A. Thus we have
an equivalence

LBA ≃
∐
A

BA.

After choosing the standard coordinate x on Ĝm, we have

K0
2 (LBA) ∼=

∏
a∈A

K0
2 (BA)

∼=
∏
a∈A

Z2[xa, ya]/(2xa + x2
a, 2ya + y2a).

We have an isomorphism

K0
2 (LBA)/IA ∼=

∏
a∈A

K0
2 (BA)/IFa

.

If A = {0, (1, 0), (1, 1), (0, 1)}, then IF0
is described in Example 5.4 and K0

2 (BA)/IF0
∼=

F2. Further, we have that IF(1,0)
is the image of the transfer from ⟨(1, 0)⟩) ⊂ A. Thus

IF(1,0)
= (x2

(1,0) − 2x(1,0), y(1,0) − 2). Similarly, IF(0,1)
= (x(0,1) − 2, y2(0,1) − 2y(0,1)) and

IF(1,1)
= (x2

(1,1) − 2x(1,1), 2 + x(1,1) + y(1,1) + x(1,1)y(1,1)).

The pullback of families of subgroups and taking the quotient by the transfer ideal interact
well together.

Proposition 6.10. Let q : A → A′ be a surjective map of abelian p-groups and let F be a
family of subgroups in A′. The map q induces a map of E0-algebras

E0(BA′)/IF → E0(BA)/Iq∗ F .
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Proof. The ideals IF and Iq∗ F are determined by the maximal subgroups in F and q∗ F .
Assume that H ∈ F is maximal, then q−1H ⊂ A is a maximal subgroup of q∗ F and all of
the maximal subgroups of q∗ F arise in this way by the third group isomorphism theorem.
There is a homotopy pullback of spaces

Bq−1H //

��

BH

��
BA // BA′.

This follows from the fact that homotopy pullback is the geometric realization of the “double
coset groupoid” (A′/H)//A. Since q is surjective, A acts transitively on A′/H. The stabilizer
of the coset eH is precisely q−1H.

Applying E-cohomology gives the commutative diagram

E0(BH) //

TrE
H,A′

��

E0(Bq−1H)

TrE
q−1H,A

��
E0(BA′) // E0(BA).

Frobenius reciprocity implies that the image of the transfer map is an ideal. Thus we have
a well-defined map of E0-algebras

E0(BA′)/ im(TrEH,A′) −→ E0(BA)/ im(TrEq−1H,A).

Taking the sum of the images of the transfer maps as we vary through the maximal subgroups
in F , we attain the desired map. □

Applying this proposition to q : A → A/ im(f) and FA/ im(f) gives the following corollary:

Corollary 6.11. The quotient map A → A/ im(f) induces a map

E0(BA/ im(f))/IFA/ im(f)
→ E0(BA)/IFf

,

where FA/ im(f) is the family of all proper subgroups of A/ im(f).

Given f : L′ → A and a decomposition A = M ⊕K, we will write fM : L′ → M for the
composite of f with the projection onto M .

Proposition 6.12. Assume given f : L′ → A and a decomposition A = M ×K such that
e×K ⊂ im f and im fM ⊂ pM , then there is an isomorphism

E0(BA)/IFf
∼= E0(BM)/IM ⊗E0 E0(BK)

depending on the decomposition of A.

Proof. It suffices to show that Ff = π∗ FM . If that is the case, then IFf
⊆ E0(BM ×K)

is generated by the image of transfers along subgroups of the form H × K, where H is a
proper subgroup of M . The result follows.

To see that Ff = π∗ FM , consider the following commutative square of abelian groups

M ×K
π //

q

��

M

qM

��
(M ×K)/ im f

∼= // M/ im fM ,
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in which the vertical maps are both quotient maps. Lemma 6.5 implies that q∗ F (M×K)/ im f =
Ff . Going around the square the other way, we see that since im fM ⊂ pM , Lemma 6.5
implies that each q∗M FM/ im fM = FM and Lemma 6.6 implies that Ff = π∗q∗M FM/ im fM =
π∗ FM . □

Let Sf = {e(ρ : A → S1) | ker(ρ) ∈ Ff}, the set of Euler classes of nontrivial irreducible
representations of A with kernel in the family determined by f . As with Ff , we will write
SA for the set of Euler classes of all nontrivial irreducible representations of A.

Example 6.13. Assume A = Cpk . Fix a coordinate x on G, so that E0(BCpk) ∼=
E0[[x]]/[pk](x), where [pk](x) is the pk-series. If f : L′ → Cpk is surjective, Sf = ∅. However,

if f is not surjective, then Sf = {x, [2](x), [3](x), . . . , [pk − 1](x)}.

Just as in the classical case, described in Section 2, the localization map E0(BA) →
S−1
f E0(BA) factors through the quotient E0(BA)/IFf

to give a canonical map of E0-
algebras

E0(BA)/IFf
→ S−1

f E0(BA).

This follows from the fact that if ρ : A → S1 has the property that ker(ρ) ∈ Ff so that
e(ρ) ∈ Sf , then the restriction of e(ρ) to E0(B ker(ρ)) is zero. Frobenius reciprocity then
implies that multiplication by e(ρ) kills the image of the transfer from ker(ρ). Thus, inverting
all of these Euler classes kills the entire transfer ideal.

This leads us to the following proposition relating the geometric fixed points construction
in equivariant stable homotopy theory and transfer ideals of the form IFf

:

Proposition 6.14. There are canonical isomorphisms of E0-algebras

π0Φ
Ff (E) ∼= S−1

f E0(BA) ∼= S−1
f E0(BA)/IFf

,

where ΦFf (E) is the geometric fixed points for the family of subgroups Ff of the Borel
completion E of the spectrum E.

Proof. The first isomorphism follows from Proposition 3.20 in [GM95]. The second isomor-
phism follows from the preceding the proposition. □

Remark 6.15. Note that Proposition 6.14 is true for any family F of subgroups of A and
the corresponding set of Euler classes SF := {e(ρ : A → S1) | ker(ρ) ∈ F}. Not all families
F are contained in the set {Ff | f ∈ hom(L′, A)}. We do not give an algebro-geometric
interpretation to each E0-algebra of the form E0(BA)/IF .

Finally, we extend Proposition 2.3 to families of the form Ff . Let TA,f = im(E0(BA) →
S−1
f E0(BA).

Proposition 6.16. Assume given f : L′ → A and a decomposition A ∼= M ⊕K such that
e×K ⊂ im f , im fM ⊂ pM , and M/pM ∼= (Z/p)n, then there is a canonical isomorphism

Q⊗ TA,f
∼= S−1

f E0(BA).

Proof. Let π be the projection A → M . This induces π∗ : E0(BM) → E0(BA). Since
e ×K ⊂ im f , we have π∗ FfM = Ff and π∗SfM = Sf , where fM = πf . Thus there is an
isomorphism

S−1
f E0(BA) ∼= S−1

fM
E0(BM)⊗E0 E0(BK).

Now since im fM ⊂ pM , we have FfM = FM . Proposition 2.3 implies that

S−1
fM

E0(BM) ∼= Q⊗ TM .
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Finally, since TA,f
∼= TM ⊗E0 E0(BK), we have

Q⊗ TA,f
∼= Q⊗ TM ⊗E0 E0(BK) ∼= S−1

fM
E0(BM)⊗E0 E0(BK) ∼= S−1

f E0(BA).

□

Corollary 6.17. Under the assumptions of Proposition 6.16, there is a canonical isomor-
phism

Q⊗ E0(BA)/IFf
∼= S−1

f E0(BA).

Proof. In the proof of Corollary 2.4, we showed that Q⊗E0(BM)/IM ∼= Q⊗TM . Applying
Proposition 6.12, we have

Q⊗ E0(BA)/IFf
∼= Q⊗ E0(BM)/IM ⊗E0 E0(BK) ∼= Q⊗ TM ⊗E0 E0(BK)

and the result follows. □

7. The fibers

We study the fibers of the canonical isomorphism in Theorem 5.2. Recall that the Pon-
tryagin dual of f : L′ → A is a map f∗ : A∗ → T′.

Theorem 7.1. There is a canonical isomorphism of E0-algebras

(E0(BA)/IFf
)free ∼= OLevelf∗ (A∗,G⊕T′).

Proof. It suffices to understand the fibers of the isomorphism of Theorem 5.2. By definition,
the fiber over f∗ : A∗ → T′ of the map Level(A∗,G⊕T′) → Hom(A∗,T′) is Levelf∗(A∗,G⊕
T′). Thus it suffices to understand the fiber over f∗ : A∗ → T′ of the map

Spf((E0(LhBA)/IA)
free) → Hom(A∗,T′).

This map is the composite

Spf((E0(LhBA)/IA)
free)

��
Spf(E0(LhBA))

∼= // Hom(L′, A)× Spf(E0(LhBA))

π

��
Hom(L′, A)

∼= // Hom(A∗,T′).

Thus we must understand the part of the ideal IA in the factor corresponding to f : L′ → A.
As discussed following Definition 6.7, this is precisely IFf

. □

Remark 7.2. There is another approach to the proof of the theorem above by combining
the isomorphism of Equation (2.2) with the decomposition of Levelf∗(A∗,G ⊕ T′) coming
from Equation (3.1) and the decomposition of E0(BA)/IFf

in Proposition 6.12.
More explicitly, given a decomposition A = M ×K such that e×K ⊂ im f and im fM ⊂

pM , there is an isomorphism

(7.1) E0(BA)/IFf
∼= E0(BM)/IM ⊗E0 E0(BK)
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depending on the decomposition of A. In addition E0(BK) ∼= OHom(K∗,G) and (E0(BM)/IM )free ∼=
OLevel(M∗,G). Since Levelf∗(A∗,G⊕ T′) ∼= Level(M∗,G)×Hom(K∗,G),

OLevelf∗ (A∗,G⊕T′)
∼= OLevel(M∗,G) ⊗OHom(K∗,G),

which is isomorphic to the free part of E0(BA)/IFf
.

Define S ⊂ E0(LhBA) to be the set of Euler classes of component-wise nontrivial complex
line bundles over LhBA.

Lemma 7.3. There is a canonical isomorphism of E0-algebras

S−1E0(LhBA) ∼=
∏

f :L→A

S−1
f E0(BA).

Proof. This follows immediately from the definition of the sets S and Sf . □

There is an analogous result to the isomorphism of Equation (2.3) for E0(LhBA), when
A ∼= (Z/pk)n+h.

Proposition 7.4. Assume A is isomorphic to (Z/pk)n+h. There is an isomorphism

Q⊗OLevel(A∗,G⊕T′)
∼= S−1E0(LhBA).

In addition, for each f : L → A,

Q⊗OLevelf∗ (A∗,G⊕T′)
∼= S−1

f E0(BA).

Proof. Assume that we are given f : L′ → A and a level structure

A∗ � � //

f∗
##

G⊕ T′

��
T′,

where A ∼= (Z/pk)n+h.
By definition, this is equivalent to the data of the map f∗ and a level structure ker(f∗) ↪→

G. For a level structure ker(f∗) ↪→ G to exist, rk(ker(f∗)[p]) must be less than or equal to
n. Since rk(im(f∗)[p]) ≤ h and im(f∗[p]) ⊂ im(f∗)[p], the short exact sequence of vector
spaces

ker(f∗)[p] ↪→ A∗[p] ↠ im(f∗[p])

implies that rk(ker(f∗)[p]) = n and rk(im(f∗[p])) = h. Thus im(f∗[p]) = im(f∗)[p] = T′[p].
Now Theorem 7.1 together with Corollary 6.17 imply that, in the case that rk(ker(f∗)[p]) =

n,
Q⊗OLevelf∗ (A∗,G⊕T′)

∼= S−1
f E0(BA).

If rk(ker(f∗)[p]) > n, then Levelf∗(A∗,G ⊕ T′) = ∅. We must also check that this holds
on the right hand side. We will show that there is a map of commutative rings from the zero
ring to S−1

f E0(BA). First note that S−1
f E0(BA) receives a map of commutative rings from

S−1
A/ im fE

0(BA/ im f) and, since ker(f∗) = (A/(im f))∗, we have rk((A/ im f)[p]) > n. Let

Z = (A/ im f)[p]. Since S−1
A/ im fE

0(BA/ im f) receives a map of commutative rings from

S−1
Z E0(BZ), it suffices to show that S−1

Z E0(BZ) = 0.
This follows from two facts: Each s ∈ SZ satisfies [p](s) = 0 and, if s, t ∈ SZ , then s− t

is a unit. The second fact follows from the fact that s− t and s−G t differ by multiplication
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by a unit. Now, the Vandermonde matrix associated to the set S (ie. the matrix in which
each row consists of {1, s, s2, . . . , s|SZ |−1}) has determinant

∏
(si − sj), for si, sj ∈ SZ

distinct, which is a unit. However, the pnth column in the Vandermonde matrix is a linear
combination of the earlier columns since each element in SZ satisfies the p-series. Thus 0 is
a unit in S−1

Z E0(BZ). □

Recall that ker(f∗) = (A/(im f))∗ ⊂ A∗. Corollary 6.11 and Theorem 7.1 are related in
the following way:

Proposition 7.5. There is a commutative diagram of formal schemes over Spf(E0)

Levelf∗(A∗,G⊕ T′)

��

// Level(ker(f∗),G)

��
Spf E0(BA)/IFf

// Spf E0(BA/ im(f))/IFA/ im(f)
.

Proof. It suffices to show that the front face of the cube below commutes

E0(BA/ im(f))
∼= //

��

tt

OHom(ker(f∗),G)

��

vv
(E0(BA/ im(f))/IFA/ im(f)

)free
∼= //

��

OLevel(ker(f∗),G)

��

E0(BA)
∼= //

tt

OHom(A∗,G)

vv
(E0(BA)/IFf

)free
∼= // OLevelf∗ (A∗,G⊕T′).

All of the other faces of the cube commute. The back face commutes by the naturality
of the isomorphism E0(B(−)) ∼= OHom((−)∗,G) in finite abelian groups. The right face is
purely algebro-geometric. The left face commutes by the construction used to produce the
map in Corollary 6.11. The top and bottom squares commute by the construction of the
isomorphism in Theorem 7.1.

Since the arrows from the back square to the front square are all surjective, the front
square commutes as well. □

8. The relation to subgroups

In this section, we describe the relationship between the isomorphism of Theorem 7.1
and the isomorphism of Corollary 7.12 in [SS15].

Assume |A| = pk. Embed A in Σpk = AutSet(A) via the Caley embedding, so that we
have i : A ↪→ Σpk exhibiting A as a transitive abelian subgroup of Σpk . We have an induced
map

LhBA → LhBΣpk .

We say a map α : Zh
p → Σpk is monotypical if the corresponding Zh

p -set of size p
k is a disjoint

union of isomorphic transitive Zh
p -sets.
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Fix f : L′ → A. Making use of the language in [SS15, Section 4], we have the following
lemma:

Lemma 8.1. The composite if : L′ → Σpk is monotypical.

Proof. We will view A as a L′-set through f . To see that if is monotypical, it suffices to
show that A is a coproduct of isomorphic transitive L′-sets. This follows from the fact that
the transitive components are the cosets of im(if) in A and multiplication by ba−1 gives an
isomorphism of L′-sets between the cosets a im(if) and b im(if). □

Since if is monotypical, there is an isomorphism C(im if) ∼= im(if) ≀ Σpj , where pj =

|A/ im(f)|. Recall I [if ]Tr ⊂ E0(B im(if) ≀Σpj ) is the ideal generated by the image of transfers

along im(if) ≀ (Σl × Σm) → im(if) ≀ Σpj where l,m > 0 and l +m = pj .

Proposition 8.2. The map E0(B im(if) ≀ Σpj ) → E0(BA) induced by the inclusion A ⊆
im(if) ≀ Σpj induces a map of E0-algebras

E0(B im(if) ≀ Σpj )/I
[if ]
Tr → E0(BA)/IFf

.

Proof. The homotopy pullback of the diagram

B(im(if) ≀ (Σl × Σm))

��
BA // B(im(if) ≀ Σpj )

is the disjoint union of the classifying spaces of the form of

B(A ∩ g(im(if) ≀ Σl × Σm)g−1)

with g a representative of a double coset in

A\(im(if) ≀ Σpj )/(im(if) ≀ (Σl × Σm)).

Since the image of the composite A → im(if) ≀Σpj → Σpj is a transitive subgroup of Σpj

and Σl ×Σm is a non-transitive subgroup of Σpj , subgroups of A of the form A∩ g(im(if) ≀
(Σl×Σm))g−1 are proper. Thus it suffices to prove that f factors through subgroups of the
form g(im(if) ≀ (Σl ×Σm))g−1. This follows from the fact that im(f) ∼= im(if) is central in
im(if) ≀Σpj when viewed as a subgroup through the diagonal embedding. Therefore im(if)
is a subgroup of g(im(if) ≀ (Σl × Σm))g−1 for any choice of g.

We may conclude that the map E0(B im(if) ≀ Σpj ) → E0(BA) induces a map of E0-
algebras

E0(B im(if) ≀ Σpj )/I
[if ]
Tr → E0(BA)/IFf

.

□

Example 8.3. Consider the inclusion i : Cp ↪→ Σp and let f : L′ → Cp. If f = 0, then
B im(if) ≀ Σpj = BΣp. If f ̸= 0, then B im(if) ≀ Σpj = BCp. Proposition 8.2 implies that
there is a map of E0-algebras

E0(BCp)/IFf
→ E0(B im(if) ≀ Σpj )/I

[if ]
Tr .

Applying Example 6.8, when f = 0, I
[if ]
Tr is the image of the transfer along e ⊂ Σp and IFf

is the image of the transfer along e ⊂ Cp. When f ̸= 0, I
[if ]
Tr = 0 and IFf

= 0.
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There is also a canonical map

im: Levelf∗(A∗,G⊕ T′) → Subim f∗

pk (G⊕ T′)

given by sending a level structure l : A∗ ↪→ G⊕T′ such that the composite A∗ ↪→ G⊕T′ → T′

is equal to f∗ to the subgroup scheme im(l), a subgroup of G ⊕ T′ that projects onto
im(f∗) ⊂ T′.

Proposition 8.4. The map of Proposition 8.2 fits into a commutative diagram of formal
schemes

Levelf∗(A∗,G⊕ T′)
im //

��

Sub
im(f∗)

pk (G⊕ T′)

��
Spf(E0(BA)/IFf

) // Spf(E0(B im(if) ≀ Σpj )/I
[if ]
Tr ).

Proof. Consider the following cube:

E0(B(im(if) ≀ Σpj
))/I

[if ]
Tr

∼= //

��

uu

O
Sub

im(f∗)

pk
(G⊕T′)

��

vv
(E0(BA)/IFf

)free
∼= //

��

OLevelf∗ (A∗,G⊕T′)

��

Cln(im(if) ≀ Σpj , C0)/I
[if ]
Tr

∼= //

vv

∏
Sub

im(f∗)

pk
(T⊕T′)

C0

ww
Cln(A,C0)/IFf

∼= // ∏
Levelf∗ (A∗,T⊕T′)

C0.

We wish to show that the top square commutes. All of the vertical maps in the diagram
are injections and are given by tensoring with C0 over E0. The left square commutes by
Hopkins–Kuhn–Ravenel character theory. The right square commutes as C0 ⊗G ∼= T. The
back square is built by base change applied to the isomorphism of [SS15] and the front square
is built by base change applied to the isomorphism of Theorem 7.1. Since the vertical maps
are injective and each of the other squares commute, the top square commutes. □
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