CHRISTOPHER SCHOMMER-PRIES AND NATHANIEL STAPLETON

SINGULAR COHOMOLOGY FROM
SUPERSYMMETRIC FIELD THEORIES

ABSTRACT. We show that Sullivan’s model of rational differential
forms on a simplicial set X may be interpreted as a (kind of) 0]1-
dimensional supersymmetric quantum field theory over X, and, as
a consequence, concordance classes of such theories represent the
rational cohomology of X.

We introduce the notion of superalgebraic cartesian sets, a con-
cept of space which should roughly be thought of as a blend of
simplicial sets and supermanifolds, but valid over an arbitrary base
ring. Every simplicial set gives rise to a superalgebraic cartesian
set and so we can formulate the notion of 0|1-dimensional super-
symmetric quantum field theory over X, entirely within the lan-
guage of such spaces. We explore several variations in the kind of
field theory and discuss their cohomological interpretations.

Finally, utilizing a theorem of Cartan-Miller, we describe a vari-
ant of our theory which is valid over any commutative ring S and
allows one to recover the S-cohomology H*(X;S) additively and
with multiples of the cup product structure.
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INTRODUCTION

Cohomology theories such as real cohomology, K-theory, and cobor-
dism theories have the distinct advantage of a geometric description.
They are built out of geometric cochains such as differential forms, vec-
tor bundles, or cobordism classes of manifolds. This significantly aids
our ability to compute with these theories while also allowing methods
from algebraic topology to be used to solve geometric problems.

Chromatic homotopy theory organizes cohomology theories accord-
ing to their height, which is a measure of the complexity of the theory.
Real cohomology and K-theory are at heights 0 and 1, respectively.
The theory of topological modular forms T M F introduced by Hopkins
and Miller is of height 2, while there are numerous theories, such as
Morava E,-theory and K (n)-theory, which exist for arbitrary heights
n.

In contrast to real cohomology and K-theory, there are no known
geometric descriptions of these latter theories. In fact, aside from bor-
dism theories (which are manifestly geometric), to our knowledge the
only known geometric construction of a cohomology theory of com-
plexity greater than K-theory is via the Baas-Dundas-Richter-Rognes
theory of ‘2-vector bundles’” [BDRR13, BDRR11]; it produces K (ku),
the algebraic K-theory of topological K-theory, a theory of telescopic
complexity two.

Nevertheless, several years ago the enticing idea was put forward
that quantum field theories could provide some of the best candidates
for geometric cochains for higher height cohomology theories. This
idea was pioneered by Graeme Segal [Seg88] who proposed to use 2-
dimensional conformal field theories to give geometric cocycles for el-
liptic cohomology. This idea has been further developed in the work of
Stolz-Teichner [ST04, ST11].
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While the primary goal of the Stolz-Teichner program has been to
use quantum field theories to construct a geometric model of TMF,
a goal which has not yet been fully realized, as an offshoot they have
been very successful in constructing new geometric models of K-theory
and de Rham cohomology based entirely on the formalism of quantum
field theory. See [HKST11] for the latter case.

The goal of this paper is to produce an algebraic model of the work in
[HKST11] (which relies on an observation of Kontsevich’s in [Kon03]).
There are essentially four ingredients which drive that story. First there
is a supermanifold R, called the superpoint, and representations of
End(R%") are positively graded chain complexes. Second there is a
way to associate to a manifold a supermanifold, the odd tangent bun-
dle 7T'M, whose functions are differential forms. Thirdly, there is an
identification of the odd tangent bundle 77°M with sMan (R, M) and
the obvious End(R%")-action induces the stadard grading and differen-
tial on forms. Finally, there is a interpretation of these observations in
terms of supersymmetric field theories.

Our first major departure from the results in [HKST11] is a move
away from the category of supermanifolds. In Section 1 we introduce
the notion of a superalgebraic cartesian set. To motivate this notion,
recall that one way to view manifolds is as certain sheaves on the
category of smooth cartesian spaces, i.e. the category with objects R"
for n € N5y and morphisms hom(R"™, R™) the set of smooth maps from
R" to R™. Similarly supermanifolds may be viewed as certain sheaves
on the category of smooth supercartesian spaces R"l4.

Superalgebraic cartesian sets are defined analogously but with the
following changes:

e We drop the sheaf requirement, allowing ourselves to consider
arbitrary presheaves;

e Instead of all smooth maps between R™¢ and R™P, we restrict
to functions which are polynomials in the standard coordinates;

e We allow these polynomials to be defined over an arbitrary base
ring.

Consequently we find it more appropriate to denote the representable
superalgebraic cartesian sets as A™9. The term ‘superalgebraic carte-
sian set’ is supposed to remind us that this notion of space is based
on the polynomial algebra over an arbitrary ring, while also being
evocative of the term ‘simplicial set’. Indeed any simplicial set has
an algebraic realization as a superalgebraic cartesian set, and any su-
peralgebraic cartesian set has a corresponding singular simplicial set
(see Section 1). Since the category of superalgebraic cartesian sets is



4 CHRISTOPHER SCHOMMER-PRIES AND NATHANIEL STAPLETON

a category of presheaves, it has excellent categorical properties. In
particular, it has all limits and colimits and an internal hom functor
sCart(—, —).

Thus, the category of superalgebraic cartesian sets contains both
the superpoint A°' and simplicial sets. With these objects in hand, we
prove (combining Propositions 4.3 and 4.7 as well as Corollary 5.2) an
algebraic version of Kontsevich’s observation alluded to above:

Proposition 0.1. Let X be a finite dimensional simplicial set viewed
as a superalgebraic cartesian set over a rational base ring. The ring of
functions on the internal mapping space sCart(A%", X), can be iden-
tified with Sullivan’s ring of rational differential forms on X and the
action of the automorphisms of the superpoint on sCart(A°", X) gives
rise to the commutative differential graded algebra structure on Sulli-
van’s ring of rational differential forms on X.

An interpretation in terms of supersymmetric quantum field theories
also follows along the lines of [HKST11]. There are two categories which
go into the Atiyah-Segal formulation of quantum field theories.

e A symmetric monoidal category (or more generally n-category)
Bord of bordisms. Here the objects are manifolds (say of di-
mension d — 1) and the morphisms are isomorphism classes of
bordisms between these. In the context relevant to cohomology
theories these manifolds will typically be equipped with some
geometric structure such as metrics or conformal structures,
though the purely topological case is also of interest.

e A target symmetric monoidal category V. This is often the
category Vect of vector spaces (or Hilbert spaces). In higher
categorical contexts a suitable higher categorical analog of vec-
tor spaces should be used.

A quantum field theory is then defined to be a symmetric monoidal
functor:

7 : Bord — V.

When there is geometry involved the set of all choices of that geom-
etry (on a given bordism) will form a kind of ‘space’, and our quantum
field theory should restrict to give a function (continuous, smooth, holo-
morphic, etc.) on that space. In certain degenerate cases these ‘spaces’
will actually themselves be represented by manifolds, but more gener-
ally we will need to use ‘generalized manifolds’ (i.e. concrete sheaves)
or stacks.

It is important that quantum field theories respect this structure.
One way to accomplish this (following [ST11, §2]) is to regard Bord
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as an internal category, internal to stacks or generalized manifolds.
The target category V will be of the same kind and our field theory is
required to be an internal functor.

There are several other key ideas which play a role in the Stolz-
Teichner program. One of them is the use of supersymmetric quantum
field theories. The theory of supermanifolds and resulting supergeom-
etry are used extensively in their work. Another key idea is that it is
possible to form twisted field theories, and in particular field theories of
a fixed degree n € Z. A third ingredient is that it is possible to consider
field theories over a (super) manifold X, in which the relevant cobor-
disms are equipped with maps to X. This will be (contravariantly)
functorial in X and hence one obtains a series of (pointed) presheaves:

X+ 0]1-QFT™(X).

Here 0]1-QFT"(X) denotes the set of isomorphism classes of degree
n quantum field theories over X. By varying the dimension of the
bordisms, the geometry, and the target category one obtains a plethora
of varieties of quantum field theories. This flexibility is part of the
appeal of the subject.

Two quantum field theories over X are defined to be concordant if
there exists a quantum field theory over X x R which restricts to the
two given fields theories on X x {i}, i = 0, 1. Concordance induces an
equivalence relation, and we denote the set of concordance classes of
quantum field theories over X by 0|1-QFT"[X]. It is automatically ho-
motopy invariant. In very favorable situations this construction yields a
cohomology theory; this is the case for de Rham cohomology [HKST11],
K-theory [ST], Tate K-theory [Che08], and complexified TM F' [BE13].
In the current work we build on these ideas. We were particularly
influenced by the results of Hohnhold-Kreck-Stolz-Teichner [HKST11].

Given the notion of a superalgebraic cartesian set, we may mimic the
usual definition of quantum field theory. In this paper we will focus on
the simplest species of supersymmetric quantum field theories, those of
superdimension 0|1. The bordisms in this case consist of finite disjoint
unions of the representable superpoint A°.

Instead of working with bordism categories over a supermanifold as
in [HKST11], our quantum field theories are defined over an arbitrary
superalgebraic cartesian set. In particular, this includes superalgebraic
cartesian sets coming from simplicial sets. We consider a variety of
geometries on the superpoint, each of which gives rise to a notion of
supersymmetric 0| 1-dimensional quantum field theory. We classify the
possible global twists for these theories. In each case there is always a
degree n twist where n € N now takes values in the natural numbers.



6 CHRISTOPHER SCHOMMER-PRIES AND NATHANIEL STAPLETON

When the base ring is the field Q of rational numbers, the supersym-
metric 0|1-dimensional quantum field theories over a simplicial set X
have a familiar interpretation. They coincide precisely with Sullivan’s
model of rational polynomial differential forms on X [Sul77]. More
precisely, the most interesting geometries we consider are: fully-rigid,
Euclidean, and topological (no geometry). In these cases we obtain the
following result:

Theorem. Let R be a rational algebra, and consider the category of
superalgebraic cartesian sets defined over R. Let X be a simplicial set
regarded as a superalgebraic cartesian set. Then:

(1) For each of the following geometries the set of supersymmetric
0|1-dimensional quantum field theories of degree n over X may
be identified as:

(a) (topological) closed degree n polynomial forms over R

OJ1-TFT"(X) 2 O, (X))
(b) (Euclidean) closed 2-periodic polynomial forms over R

QR (X) n even

0|]1-EFT"(X) =
| (X) {Qj’{fgl(X) n odd

(¢) (fully-rigid) all polynomial forms over R
0[1-QF T, (X) = O (X).

(2) For each of the following geometries the set of concordance
classes of supersymmetric 0|1-dimensional quantum field the-
ories of degree n over X may be identified as:

(a) (topological) 0|]1-TFT"[X] = HR"(X) degree n cohomology
with coefficients in R;
(b) (Euclidean) O|1-EFT"[X| & PHR"(X) 2-periodic coho-
mology with coefficients in R.
Moreover in the case of fully-rigid geometry the natural symmetries
of the supersymmetric quantum field theory recover the commutative
differential graded algebra structure on Q5(X).

For rings S which are not rational we have a useful variant of the
above theory, inspired by the theorems of Cartan-Miller [Car76, Mil78|.
In this variant the base ring is taken to be R = I'g(t), the free divided
powers S-algebra on a single generator ¢. The functions on A™? are no
longer the polynomial algebra over R, but are further enhanced with
divided powers. As observed by Cartan and Miller, this is enough to
define an integration map from forms to simplicial cochains over R,
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and a slightly weaker version of Sullivan’s theorem holds as well. In
the language of field theories we have

Theorem. Let S be any ring and consider the category of superalge-
braic cartesian sets with divided powers defined over R = T's(t). Let X
be a simplicial set, regarded as one of these spaces. Then ‘integration’
gives a natural isomorphism

TFT[X] 2 &, H/(X:T3(1)) € HP(X:Ts(1))

between the concordance classes of supersymmetric 0|1-dimensional topo-
logical quantum field theories over X and the specified subring of the
cohomology HP(X;Ts(t)).

We refer the reader to Section 10 for full details, but note that since
I's(t) is flat over S,

HP(X;Ts(t) = HP(X;S) @5 Ts(t) = @ H (X S)

is simply a direct sum of countably many copies of H*(X;.S). In par-
ticular topological quantum field theories encode the S-cohomology of
X for any ring S. We note however, that this is only additively. A
portion of the multiplicative structure can be recovered; we refer the
reader to Section 10 for details.

Further motivations. One tool that aids in the study of higher height
cohomology theories is a form of character theory [HKR00, Stal3]. Tt
provides a character map that approximates higher height cohomology
theories by a form of rational cohomology. The form of rational coho-
mology has coefficients that are a ring extension of the rationalization
of the coefficients of the higher height cohomology theory. These rings
are often algebras over the p-adic rationals.

Many features of these character maps are reminiscent of dimensional
reduction maps between field theories. In fact there is a quantum field
theoretic interpretation of the (Bismut) Chern character map which
arises precisely as a dimensional reduction [Han05]. This geometric
construction yields a character map from K-theory taking values in
periodic de Rham cohomology.

Periodic de Rham cohomology cannot be a suitable target for the
higher height character maps that take place at a prime p. This is
essentially because there is no (interesting) map from the real numbers
R to the p-adic rationals Q,. For example the p-adic Chern character
may be obtained as the completion of the ordinary Chern character,
but only once it is factored through periodic rational cohomology.

This project grew out of a desire to explore the relationship between
higher character theory and quantum field theory, which remains an
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ongoing project. This paper achieves a crucial first step, which is to
construct a geometric and quantum field theoretic construction of the
cohomology theories which serve as targets of these higher character
maps.

Outline of the paper. In Section 1 we define the category of superal-
gebraic cartesian sets. The category is a presheaf topos and we develop
basic properties of the category from that perspective. The category
has a distinguished supercommutative algebra object O. In Section
2 we study the Picard category of invertible modules for O. This is
important when studying twisted field theories in Section 8.

In Sections 3 and 4 we study the mapping space from the superpoint
into a superalgebraic cartesian set and show that under certain condi-
tions the action of the endomorphisms of the superpoint on the map-
ping space produces a cdga structure. In Section 5 we examine more
closely the case where the superalgebraic cartesian set comes from a
simplicial set X. We show that the ring of functions on this mapping
superalgebraic cartesian set is precisely Sullivan’s rational differential
forms on X and that the endomorphisms of the superpoint reproduce
the grading and differential on Sullivan’s rational differential forms.

Section 6 explores the structure induced by submonoids of the endo-
morphisms of the superpoint. These are called geometries. In Section
7 we define and study 0|1-dimensional supersymmetric quantum field
theories in the context of superalgebraic cartesian sets. In analogy to
the smooth setting, we define a bordism category over an arbitrary su-
peralgebraic cartesian set X. The bordisms in this case consist of finite
disjoint unions of copies of the superpoint A% and they are equipped
with maps to the superalgebraic cartesian set X. For each geometry
we describe the collection of 0]|1-dimensional supersymmetric quantum
field theories over X in terms of Sullivan’s rational differential forms.

In Section 8 we define twisted field theories and describe the twisted
field theories in terms of rational differential forms. Various natural
notions of concordance are defined in Section 9 and we show that they
are all equivalent. This gives the main theorem. In Section 10 we
describe a variant which recovers the Cartan-Miller theory of divided
power differential forms over an arbitrary (possibly non-rational) base
ring.

Acknowledgments. We would like to thank Peter Teichner for sev-
eral useful conversations and for suggesting that we look at Sullivan’s
work as a geometric model of rational cohomology. We would also like
to thank Martin Olbermann for highlighting an important difference
between the linear and non-linear twists. We would like to thank Gerd
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hospitality; this work was carried out at the MPIM.

1. SUPERALGEBRAIC CARTESIAN SETS

In this section we define and study the basic properties of the cat-
egory of superalgebraic cartesian sets. The definition of a superalge-
braic cartesian set is an algebraic analogue of the definition of a (su-
per)manifold. Both the category of smooth manifolds and the category
of supermanifolds can be defined as certain sheaves on the subcategory
of affine objects. For example the category of smooth manifolds con-
sists of certain sheaves on the site with objects R™, morphisms smooth
maps, and covers given by usual covers (jointly surjective collections
of open subsets). The category of supermanifolds consists of certain
sheaves on a similar site with objects R™? and morphisms smooth maps
of supermanifolds. Analogously, superalgebraic cartesian sets will be
defined as presheaves on a category of superaffine spaces over a fixed
commutative base ring.

As a presheaf category superalgebraic cartesian sets exhibits bet-
ter categorical properties than the category of supermanifolds. It is
both complete and cocomplete. One may talk of group objects, ring
objects, and even supercommutative ring objects internal to superalge-
braic cartesian sets. One critical example of a supercommutative ring
object we will introduce in this section is @. It is an analog of R, a
supercommutative ring object in the category of supermanifolds.

Another important property of the category of superalgebraic carte-
sian sets is that it has a series of adjunctions relating it to the category
of sets. These permit us, for example, to regard superalgebraic carte-
sian sets as having an underlying set, much the same way a superman-
ifold has an underlying manifold, which in turn has an underlying set.
There are two further adjunctions which we describe in this section.
The first relates superalgebraic cartesian sets to the category of super-
commutative algebras. The second, which is more important, relates
superalgebraic cartesian sets to the category of simplicial sets. In par-
ticular every simplicial set gives rise to a superalgebraic cartesian set.
Topos theory provides a consistent terminology for describing these ad-
junctions, and so we will employ that language. However each of these
functors will be described explicitly, so no background in topos theory
is required to read this section.
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1.1. The category of (super)affine spaces. By a Z/2-graded com-
mutative ring we will mean a Z/2-graded ring which satisfies the com-
mutativity condition xy = (—1)*I¥lyx for all homogeneous elements
and y. Let sAlg be the category of Z/2-graded commutative rings and
grading preserving homomorphisms. We will refer to objects in this
category as supercommutative rings.

Given a commutative ring R we may form a supercommutative ring
denoted R[xy,...,%n,€1,...,€], where we implicitly assume that the
variables x; refer to even generators and the variables €; refer to odd
generators. This ring is the tensor product over R of a polynomial ring

on even variables x1,...,x, with an exterior algebra on odd variables
€1,...,€g.
To be completely explicit, this means that R[xy, ..., Tn, €1, .., €] is

presented as
R[xh s 7$n]<€1a s >€q>/(€?7€i€j + Ejeiyz.aj = 17 s ,Q),

the quotient of the free polynomial ring on the generators x; adjoined
non-commutative generators €; by the two-sided ideal generated by
the squares e? and the supercommutators €€, + €;¢;. Since this ideal is
generated by even degree elements, the result is still a Z/2-graded ring
and is manifestly graded commutative. This formulation is important
when 2 is not a unit (such as in characteristic 2) where the relation
€2 = 0 for odd elements € does not follow from the super commutation
relation alone. If 2 is invertible, then the square terms are already
contained in the two-sided ideal generated by the supercommutators
€i€; T €5€;.

Remark 1.1. Here and throughout the paper the degree of anything
called € or ¢ will be odd. Thus these are square zero elements of the
supercommutative ring.

In this section we introduce superalgebraic cartesian sets. These are
a species of space which are a primordial mixture of the concepts of
supermanifold, (super)scheme, and simplicial set. While everything we
will explain in this section is super (i.e. Z/2-graded commutative), one
could just as well form an ungraded analogue called algebraic cartesian
sets.

Definition 1.2. Fix a commutative ring R. The superalgebraic carte-

sian category sA has objects A;;lq for n,q € N and morphisms the
polynomial maps

SA(qu,Aglp) = sAIg(R[z1, ..., Tp, €1, .., €], R[T1, ..., Ty €1, ..., €p)]).
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Hence sA is a full subcategory of the opposite of the category of super-
commutative R-algebras.

Definition 1.3. The category of superalgebraic cartesian sets is the
category of presheaves sCart := Pre(sA). A superalgebraic cartesian
set is an object of sCart.

Example 1.4. We will often abuse notation and write A" instead
of Azlq for the representable superalgebraic cartesian sets, however,
everything that we do will be functorial in the ring R. Note that
Arla = (AN x (A%, The superpoint is the superalgebraic cartesian
set AL,

1.2. Superalgebraic cartesian sets as a presheaf topos. The cat-
egory of superalgebraic cartesian sets is, by definition, a presheaf topos
and consequently it enjoys the nicest possible categorical properties.
In particular, we will see that it has all limits and colimits, an internal
hom functor, a global sections functor, and several useful adjunctions
with the category of simplicial sets.

Example 1.5. The category sCart is cartesian closed. The categorical
product of two superalgebraic cartesian sets X and Y is computed
pointwise, and for each superalgebraic cartesian set X, the right adjoint
to X x (—) is given by the internal mapping functor sCart(X, —). The
internal mapping superalgebraic cartesian set is given as the presheaf

sCart(X,Y) : sCart — Set

mapping
A9 s sCart (A" x X, Y).

The category of superalgebraic cartesian sets is complete and cocom-
plete with both limits and colimits computed pointwise

(colim X,,)(A™P) = colim(X,(A™P))
and
(lim Xo) (A™P) = lim (X, (A™P)).
As a topos, superalgebraic cartesian sets are also a context in which to
carryout mathematics. We can almost effortlessly study the theories

of groups, monoids, commutative rings, modules, categories, and even
supercommutative rings, internally to superalgebraic cartesian sets.

Example 1.6. There is an important supercommutative algebra object
O € sCart. As a superalgebraic cartesian set we have O = A'll,
Addition is given by

Rlx,e] — R[x1, 79, €1, €] : (x +— 21 + X9, € — €1 + €3)
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and multiplication is given by
Rlz, €] — R[x1, 9, €1, €] : (x = 2129 + €162, € > X169 + To€q),

where we have used the embedding of sA into sAlg® to write down
these maps.

Every topos has a global sections functor I' which is given by eval-
uation on the terminal object. In the language of topos theory this is
a geometric morphism to the terminal topos, the category of sets. In
the case at hand, we have even more structure. Since the category sA
has all finite products the category of superalgebraic cartesian sets is
a cohesive topos [Law05, Law07] (just like the category of simplicial
sets). This means that we have a series of adjunctions:

7o 1 const 4 I" H codis

and moreover the functor my commutes with finite products. In more
detail these functors are given by:

codis : Set — sCart
S (AP oy SR — gAY
I': sCart — Set
X — X(AY)
const : Set — sCart

SHHAO
S

7 : sCart — Set
X — colim X.

sA°P
The functor my sends a superalgebraic cartesian set, viewed as diagram
of sets indexed on sA°P, to its colimit. The functor I' evaluates a
superalgebraic cartesian set on the terminal object A°. The functor
const sends a set to the constant presheaf on that set, and codis sends
a set to the codiscrete superalgebraic cartesian set on that set.

These functors allow us to pass back and forth between set based
mathematical concepts and those same concepts developed internally
to superalgebraic cartesian sets. For example every ring object in su-
peralgebraic cartesian sets has, via the functor I', an underlying ordi-
nary ring. For example I'(O) = R is our chosen base ring. Similarly
every ordinary ring may be augmented, via the functor const, to a ring
object internal to superalgebraic cartesian sets. The counit map

const(R) — O
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is automatically a map of ring objects. These observations will be used
in Section 2.

As we mentioned above, all of these considerations are functorial in
the base ring R. A ring homomorphism R’ — R induces a functor
sAr — sAgr and hence gives rise to a geometric morphism of topoi

f* i sCartp S sCartp @ fy,

where the restriction of scalars f,. is given by precomposition with
sA% — sA%. In particular since this is a geometric morphism of topoi
the left-adjoint, which is given by left Kan extension along the Yoneda
embedding, commutes with finite limits. Moreover this morphism of
topoi is local, that is the functor f, admits a further right adjoint
f': sCartp — sCartp.

1.3. Superalgebraic cartesian sets and superalgebras. Superal-
gebraic cartesian sets have a close connection to superalgebras and
superschemes. The category sA is the multisorted Lawvere theory!
for supercommutative R-algebras, which means that supercommuta-
tive R-algebras in any category C with finite products are the same as
product preserving functors sA — C. The generic object of sA is the
supercommutative R-algebra O from Example 1.6.

Example 1.7. The Yoneda embedding sA — sCart preserves prod-
ucts and corresponds to the supercommutative R-algebra object O in
superalgebraic cartesian sets as in Example 1.6.

Recall that sA is a full subcategory of sAlg®. The embedding of
sA into sAlg® is via the functor O(—) = sCart(—, Q). This formula
extends the functor O to all of sCart, and for a superalgebraic cartesian
set X we will refer to O(X) as the ring of global functions on X. For
a supermaniold, the ring of global functions can be identified with the
smooth maps into R!', a super commutative ring object in the category
of supermanifolds. As O is an anolog of R, our definition of ring of
global functions is consistent with the usual one.

Example 1.8. The functor O : sCart — sAlg® from superalgebraic
cartesian sets to the opposite category of supercommutative R-algebras
is easily seen to commute with colimits. It follows that it is given by
left Kan extension of its restriction to sA along the Yoneda embedding.

'In fact it is a super Fermat theory [CR13].
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sA sAlg?

1 =5

sCart

We obtain an adjunction:
O : sCart = sAlg®? : O".

The right adjoint O* is the functor sending a supercommutative algebra
A to the superalgebraic cartesian set defined via

sCart(A"7, 0% (A)) = sAlg (O(A"?), A) = sAlg(A, O(A"?)).

Thus every supercommutative algebra gives rise to a superalgebraic
cartesian set.

Example 1.9. We define a superalgebraic cartesian set called €2 (pur-
posefully similar to Sullivan’s Q% introduced in Section 5) which sends
A" to the supercommutative ring O(sCart(A% A7), Thus 2 is an-
other supercommutative ring object in superalgebraic cartesian sets.
It is an algebra over the supercommutative ring O, and we will see in
Section 4 that Q(A"9) is isomorphic to the ring of Kéhler differential
forms on O(A").

1.4. Superalgebraic cartesian sets and simplicial sets. Let A
be the category of combinatorial simplices (i.e. the category of finite
non-empty totally ordered sets and order preserving maps). There is
an important faithful functor (which factors through the category of
(non-super) algebraic cartesian sets)

1 A —> sA.
The functor i sends [n] to A" = A™? and we use the isomorphism
O(A"™) = Rlzy, ..., x,] = Rlzo, ..., x,]/(Eiz; — 1)

to see the simplicial maps and identities. The objects A™° may be
viewed as extended simplices.

Example 1.10. Let sSet = Pre(A) be the category of simplicial sets.
We apologize for the use of the letter “s” for both simplicial and super.
Given a simplicial set X, we can form a superalgebraic cartesian set by
left Kan extension. We have the following diagram



SINGULAR COHOMOLOGY FROM SUPERSYMMETRIC FIELD THEORIES 15

A ! sA Y sCart
{J
sSet !

and the superalgebraic cartesian set associated to X is #,X, the left
Kan extension along the Yoneda embedding. We will call this the
algebraic realization of X, in analogy with the geometric realization.
This fits into an adjunction with the restriction functor ¢* that brings
a superalgebraic cartesian set to its underlying simplicial set:

7 : sSet = sCart : 7*.

Given a superalgebraic cartesian set Y and a simplicial set X, there is
a natural isomorphism

sSet(X, 1Y) = sCart(i, X, Y).

As a left adjoint, 4, commutes with colimits. Furthermore, i* also

commutes with colimits, hence it admits a further right adjoint .,
given by right Kan extension.

Remark 1.11. The triple (4, ¢*,i,) constitutes an essential morphism
of topoi [Law07] from sSet to sCart.

Proposition 1.12. Recall the functor my : sCart — Set introduced
previously. We have the equality mg = moot*, in other words the functor
o applied to a superalgebraic cartesian set may be computed as the path
components of the underlying simplical set. Similarly mg = my o 1y, the
path components of a simplical set may be computed as the value of m
applied to its algebraic realization.

Proof. Recall that moX = colimgaer X and that mpi*(X) = colimper X 0
7. Thus one way to see this is to show directly that A°P is cofinal in
sA°P?. Alternatively first observe that i, sends discrete simplicial sets
[15A° to constant superalgebraic cartesian sets [[4 A% = const(S).
This follows formally from the observation that i*A™P is a connected
simplical set for each m|p. From this the above proposition follows
immediately since for any set S and any superalgebraic cartesian set X
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we have

Set(mp X, S) = sCart(X, const(5))
sCart(X, i, H A%
S

I

I

sSet(i* X, H A%)
s

= Set(ﬂoi*X, S)
The second statement is easier:

10X = 1 colim AF
ll(Ak*)X)

~ colim moA*
Z|(Ak—>X)

Sy

=~ 7oi colim A*
l|(Ak~>X)
= 7T(]Z‘!X.

The first and last isomorphisms just rewrite X as a colimit over its
simplices, the second and fourth isomorphisms follow from the fact that
the functors 7y and 4, commute with colimits (they are left adjoints),
and the third isomorphism is the fact that moA™% 2 pt 22 1o A*, U

Example 1.13. The functor i from Example 1.10 factors through the
category F of finite non-empty sets. Thus there is a situation which
is entirely analogous to the previous one with simplicial sets replaced
with the category Pre(F) of presheaves on F. This latter is sometimes
called the category of symmetric simplicial sets.

In fact the category of symmetric simplicial sets should be regarded
as a special case of our notion of superalgebraic cartesian sets; it is
the case where the base ring is Iy, the “field with one element”. The
functors corresponding to ¢, and ¢* above are then just ‘base change’
and ‘restriction of scalars’ between F; and R.

These observations suggest that we should regard superalgebraic
cartesian sets as an enhanced version of simplicial sets. They are sym-
metric simplicial sets equipped with additional ‘face’” and ‘degeneracy’
operators which depend on the base ring R.
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2. THE P1cARD CATEGORY

What is the analog of a line bundle on a superalgebraic cartesian
set? By taking our clues from algebraic geometry, we can avoid dis-
cussing covers and local trivializations (things not easily defined for
superalgebraic cartesian sets). If (X,Ox) is a scheme over the ring
R, then the analog of line bundles over X are the invertible sheaves of
Ox-modules. The simplest of these, the universal ones, are pulled back
from the terminal scheme Spec R. Unlike the case for manifolds and
supermanifolds, where these universal line bundles are trivial bundles,
the line bundles over Spec R may be nontrivial. They can be identified
with the invertible R-modules, and form an interesting category known
as the Picard category Picg. The complexity of this category depends
on the complexity of the ring R. In this section we explore the analog
for superalgebraic cartesian sets. We will study the category of invert-
ible O-modules and its relationship to the classical Picard category
PiCR.

Recall that we have a series of adjunctions

o - const 4 I'" 4 codis

which relate the topos of sets to the topos of superalgebraic cartesian
sets. The global sections functor I' is a left inverse to the constant
presheaf functor, I' o const = idg.;. Hence we can view the category of
sets as consisting of the full subcategory of constant presheaves. For
example, the ground ring R induces a ring object const(R) in sCart, the
constant presheaf with value R, which we will denote by R to simplify
notation.

Recall that the object O is a supercommutative R-algebra in sCart
and that ['(O) = AM(A%) = R. The R-algebra structure may be
viewed as coming from the counit map R = const oI'(O) — O. In this
section we develop the internal theory of O-modules in order to study
the invertible O-modules.

An O-module will be defined in the usual internal manner: an O-
module is a Z/27Z-graded superalgebraic cartesian abelian group M
with an action by O. Equivalently, M is a superalgebraic cartesian
set such that M(A™9) is an O(A"?)-module for each A™? € sA. Here,
since O is a supercommutative ring, we mean ‘module’ in the Z/27Z-
graded sense.

The category Modp of O-modules is a symmetric monoidal abelian
category with tensor product ®e given pointwise:

(M ®o N)(A") == M(A™) @ounay N(A™)
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for A™7 € sA. The forgetful functor from Modey to sCart has a left-
adjoint which takes the superalgebraic cartesian set X to the free
O-module Fp(X). The value of Fo(X) on A"? € sA is given by
FO(An|q)(X(A”|q)), the free O(A™7)-module on the set X (A™).

In addition Mody has an enrichment in sCart. A map A™¢ —
Hom, (M, N) is defined via

sCart (A", Hom, (M, N)) = Home(Fo(A"?) @0 M, N).

This makes Modp into a category enriched in sCart. In fact this enrich-
ment extends to one in the symmetric monoidal category of O-modules;
Modp is a closed symmetric monoidal category. To distinguish be-
tween the ordinary category of O-modules and the O-linear category
(enriched in O-modules) we will denote the former by Modep and the
latter by Mode.

Let Modg denote the ordinary category of R-modules (in sets). This
is a closed symmetric monoidal category and thus an R-linear category.
Since I'(O) = R, we obtain an adjunction:

O SR (—) : MOdR = MOd(f) . F,

where the right-adjoint simply applies I' to both the module and ring
structure (it is evaluation at A° € sA). The left-adjoint is given by first
viewing a set theoretical R-module as a constant (discrete) superalge-
braic cartesian set and then tensoring up to obtain an O-module. As
expected, this is a monoidal adjunction with respect to the two symmet-
ric monoidal structures ® g and ®¢, and moreover I'o (O ®g (—)) = id
is the identity functor.

We can do slightly better. Since the above adjunction is monoidal,
the functor O ®g (—) may be used to enhance the enrichment of Mod g
in itself into an enrichment in Modp. Thus for ordinary R-modules
M and N, there exists an O-module (hence a superalgebraic cartesian
set) of homomorphisms between them, given by:

@) QR HOIIlR(M, N)

We will denote this new Modp-enriched category as Modg. It has
the same objects as Modg. The above adjunction now gives rise to a
Modp-enriched functor:

@ KR (—) : MOdR — MOd(g,

which sends an R-module M to the O-module O ®g const(M). Note
that the functor I' will not automatically be an enriched functor.
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Lemma 2.1. Let Mod%g' Pl denote the full subcategory of the Mode-
enriched category Modg consisting of those R-modules which are finitely
generated and projective. Then the restricted Mode-enriched functor

O ®p (=) : Modt? P — Modo
is fully-faithful (in the enriched sense).
Proof. We must show that the canonical map of O-modules
O ®r Homg(M, N) — Hom, (O @ M,0 ®@g N)

is an isomorphism if M and N are finitely generated and projective.
Note that this is certainly the case if both M and N are finitely gener-
ated free R-modules. The modules M = M, and N = N, are finitely
generated and projective if and only if there exist R-modules M; and
N such that both My @ M; and Ny @ N; are finitely generated free R-
modules. Thus the sum of the canonical maps (which is the canonical
map of the sums):

@ O@RHOIHR(MZ‘,N]‘> — @ HOH]O(O Xr Mi,O®R N])

4,7=0,1 4,7=0,1

is an isomorphism. The lemma now follows from the observation that
in an abelian category a finite collection of maps is a collection of
isomorphisms if and only if the direct sum of the collection is an iso-
morphism. 0

Let Pico be the Picard category of O. It is the full subcategory of
Modp consisting of the invertible O-modules, those O-modules M such
that there exists an O-module M’ with the property that M ®o M’ =
M @0 M = O. Let Pico denote the corresponding Modp-enriched
subcategory. Similarly Picg will denote the category of invertible R-
modules and Picg the corresponding Modp-enriched category. Since
O ®pg (—) is a monoidal functor, it sends invertible objects to invertible
objects. Hence we have an induced Modgp-enriched functor:

O ®g (—) : Picg — Pico .
The following theorem is the main result of this section.

Theorem 2.2. The functor O ®g (—) : Picg — Pico induces an equiv-
alence of Modp-enriched symmetric monoidal categories.

We will prove this theorem after a few lemmas.

Lemma 2.3. The objects of Picg and Pico are finitely generated and
projective.
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Proof. This lemma is classical. We will only need the finite generation
in the case of R-modules. A categorical proof of this notes that for an
object M € Picg the functor M ®g (—) is an equivalence of categories.
Any equivalence of categories preserves the finitely generated projective
objects (these are characterized by categorical properties) and moreover
the trivial R-module R is a finitely generated projective module. Hence
the image of R under M ®p (—), that is to say the module M, is also

a finitely generated projective module. 0
Corollary 2.4. The functor O ®g (—) : Picg — Pico is fully-faithful.
O

Lemma 2.5. Let f : O — O be any O-module map. Assume that
I'(f):T(O) = I'(O) is the identity map, then f is the identity map.

Proof. For each S € sA we have a commuting diagram

ro)=r—9 1o =R

l |

O(S) - O(8)

and thus fgsends 1 € O(5) to1 € O(S). As this is a generator of O(5)
as an O(S)-module it follows that fs is the identity for all S € sA. O

Proof of Thm. 2.2. The functor O ®g (—) : Picg — Picp is monoidal
and, by Corollary 2.4, fully-faithful. It remains to show essential sur-
jectivity, i.e. that every invertible module M € Picp is of the form
O ®p L for some invertible R-module L. First note that it is sufficient
to prove this under the assumption that I'(M) = R is the trivial invert-
ible R-module. If M is a general O-module we may instead consider
N =M ®p (0@ (M), if N is in the essential image then so is
M.

Thus without loss of generality assume we have chosen an isomor-
phism of R-modules I'(M) = R. Let M’ be an inverse to M. We may
also choose an isomorphism I'(M’) =2 R. Next we will make a few ob-
servations. First, from the adjunction O®pg(—) 4 T", we have canonical
O-module homomorphisms

020®RF(M)—>M
0=~ 0@yT(M)— M.

Applying I" to either of these yields the identity map of R. Next observe
that we have a canonical map of R-modules in sCart, R =T'(M) — M
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and R = I'(M’) — M’, where the targets of these are viewed as R-
modules via the inclusion R — O. Again these reduce to the identity
maps after applying I'.

Third, we may tensor together the maps

R— M and M % M, over R — O
to get a map of O-modules
M®@rR— M ®o M = O.
Precomposing with the map O — M gives a map of O-modules
O—M—0.

Since this map reduces to the identity map after applying I', Lemma 2.5
implies that this is the identity map of O-modules.

In particular the map O — M is a monomorphism (injective when
evaluated on each S € sA). Tensoring with M’ gives a new map

M/—>M®@M/§O

which remains a monomorphism since M’ is projective (and hence flat).
Again this map reduces to the identity after applying I'. By symmetry,
there exists a monomorphism M — O of O-modules with the same
property (it reduces to the identity after applying I).

Finally we observe that since the O-module map M — O is the iden-
tity after applying I', it follows that for each S € sA the component
M(S) — O(S) contains 1 € O(S) in its image. Since 1 is a gener-
ator of O(S) as an O(S)-module, it follows that M(S) — O(S) is a
surjective map of O(S)-modules. Consequently the map M — O is
both a monomorphism and an epimorphism, hence an isomorphism of
O-modules. In particular M = O ®r R is in the image of Picg. O

Since sets may be regarded as superalgebraic cartesian sets (via the
functor const), we may try to regard the Modp-enriched category Modp
as a category internal to superalgebraic cartesian sets. However Modp
has a large set (or class) of objects, and so is not technically a superal-
gebraic cartesian set. This problem can be avoided for Picy since it is
essentially small. We will tacitly assume that we have chosen a small
set of representative invertible R-modules to serve as the set of objects
of Picp. In particular we will regard Picp as a symmetric monoidal
category internal to superalgebraic cartesian sets.
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3. TiNy OBJECTS AND INTERNAL HoMs

Few inner homs exist in the category of supermanifolds. One impor-
tant one is M(RO“, Y') which exists and is naturally isomorphic to
the odd tangent bundle ©TY (for the purposes of this paper we may
take sMan(R%",Y) as the definition of 77Y). When Y is a manifold
the ring of functions on 7TY is the same as the ring of differential forms
on Y. The same approach can be used to define differential forms on
superalgebraic cartesian sets. In this section we explore some of the
properties of the internal hom functor from Example 1.5. We will see
that in this case the functor sCart(A%' —) admits a further right ad-
joint. This means that for superalgebraic cartesian sets the ring of
differential forms is represented by a specific superalgebraic cartesian
set (2. It also means that computing the ring of differential forms on a
colimit of superalgebraic cartesian sets is straightforward (colimits are
converted to limits of rings).

Lemma 3.1. There is a natural isomorphism

sCart(A%!, Anle) = gntainta,
Proof. Because A™? 2 (A1)*™ x (A°M)9, we need only check this on A'
and Al There are two functors (—)ey, (—)odd : SAlg — Set given by

taking the homogeneous parts. These functors are representable and
in fact represented by O(A!) and O(A%") respectively. Now we have

sCart(A™P sCart(A%, A1) = sCart(A™P x A% AY)
=~ O(A™P x A1),
>~ O(A™P) = AL (A™IP)
and
sCart(A™P sCart (A%, A1) 2 sCart(A™P x A% A1)
O(A™P x A1) 4q
=~ O(A™P) = AT (A™IP), O

Definition 3.2. Let D be a category. An object z € D is called
compact if D(x,—) : D — Set commutes with filtered colimits and
called tiny if D(z, —) : D — Set commutes with all small colimits. Let
D be a cartesian closed category. We call an object x € D cartesian
tiny if D(z,—) : D — D commutes with all small colimits, where
D(x,—) is the internal hom functor.

12

In a presheaf category the tiny objects are precisely those presheaves
which are retracts of representables [BD86, Prop.2].
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Proposition 3.3. If C is a (small) category with finite products, then
every tiny object of Pre(C) is a cartesian tiny object.

Proof. We will show this for representable presheaves. Let a and b be
objects of C' (also viewed as representable objects of Pre(C')) and let
I — Pre(C) be a small diagram in Pre(C') mapping i € I to z;.

Colimits in Pre(C') are computed objectwise, and so we can show that
the internal hom out of a commutes with arbitrary (small) colimits by
evaluation on an object b:

Pre(C)(a, colim ;)(b) = Pre(C)(a x b, colim zi)
collim zi(a X b)

= collim Pre(C)(a x b, ;)
= colim Pre(C)(a, z;)(b).

The second isomorphism uses the fact that the object a x b € C' is
representable. O

Corollary /Definition 3.4. The internal hom sCart(A%', —) functor
admits a further right adjoint, which we denote }(_. 0

For any superalgebraic cartesian set Y, the superalgebraic cartesian
set {2y has an elementary description:

sCart(A”‘q, Qy) = sCart(sCart(Ao‘l, A”'q), Y) Y(Anﬂlqu)_

In general we will denote the mapping set sCart(X,Qy) =: Q(X;Y).
The case Y = O is especially important for this paper and in this case
we will drop the O from our notation; Q := Q¢ (see also Example 1.9).
Another example that will be important later is Q(X; M) for M an
invertible O-module. Recall that M may be viewed as an invertible
R-module due to Theorem 2.2. In this case we have the isomorphism

QX; M) = Q(X;0)®r M.

To prove this it suffices to check it on representables for which it is
clear.

Corollary 3.5. For any superalgebraic cartesian set X there is an
isomorphism of supercommutative rings

O(sCart (A", X)) = sCart(X, Q). O
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4. Tue ActioN OF THE ENDOMORPHISMS OF THE SUPER POINT

As we recently recalled, for a manifold Y the ring of functions on
7TY = sMan(R%!Y) is the ring of differential forms on Y. However
the ring of differential forms has additional structure. It has a differ-
ential and a grading making it a supercommutative differential graded
algebra (super cdga). It is well-known that these extra structures arise
geometrically from the action by the endomorphisms of the super point
RO', In this case End(R%") = RO x R, with the first factors corre-
sponding to the differential and the second factor corresponding to the
grading. This fact was first realized by Kontsevich [Kon03] and made
explicit in [KS03, Sect. 3.2]. In this section we will develop the analog
for superalgebraic cartesian sets. A very general and closely related
version appears in the context of super Fermat theories [CR12]. Our
treatment is heavily influenced by [Sto12] and [HKST11].

In more detail, the superalgebraic cartesian set End(A°!) is an inter-
nal monoid and consequently O(End(A°1)) is a coalgebra. We begin
this section by describing this coalgebra explicitly with generators and
relations. After this we describe it qualitatively by showing that a
coaction by this coalgebra on a supercommutative ring is the same
information as a connective super cdga structure on the ring. This
is a supercommutative algebra which is equipped with an additional
grading by the natural numbers together with an odd, degree-one dif-
ferential.

For a finite dimensional manifold Y, the action of End(R°") on 7TY
induces a coaction by this coalgebra, giving the ring of differential forms
the structure of a super cdga. It is natural to ask for which superal-
gebraic cartesian sets their rings of differential forms admit a natural
coaction (such superalgebraic cartesian sets are analogs of finite dimen-
sional manifolds). The superalgebraic cartesian set End(A°") of endo-
morphisms of the superpoint A’ is a monoid object which naturally
acts on the internal mapping superalgebraic cartesian set sCart (AOU, X)
for any superalgebraic cartesian set X. In the second part of this sec-
tion we provide conditions on X under which this action leads to a
coaction by O(End(A°1)).

The most direct approach to the monoid structure on End(A°!) is
via the S-point formalism. Here S € sA is some unspecified repre-
sentable superalgebraic cartesian set. The S-points of End(A%') =
sCart (A%, A%') are, by construction, the maps S x A" — A%, This,
in turn, is equivalent to a map S x A% — S x A’ which commutes
with the projection to S. This latter description is convenient, as the
monoid structure on End(A%") is given by composition. Since S and
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S x A% are representable, we may equivalently describe such data by
passing to the rings of global functions. We see that an S-point of
End(A°) is given by an O(S)-algebra map

O(5)[e] = O(9)[e]

E > Sev ' €+ Sodd-

where se, and s.qq are even, respectively odd, elements of O(S). This
description makes explicit the identification sCart(A°", AO) = Al
from Lemma 3.1. Moreover we have

O(sCart (A%, A1) x sCart(A% AOTY)
>~ O(sCart (A%, A')) @5 O(sCart (A, AOY)

and hence the monoid structure of sCart(A%*, A°) induces a comonoid
structure for O(sCart (A, A1),

It follows immediately from the formula for composition of affine
transformations in one variable that the global functions of the multi-
plication map for the monoid End(A°!) are given by the map

Rz, €] AN Rz, 29, €1, €3]
T = 122

€ — €1 + T1€9.
This implies:

Proposition 4.1. There is an isomorphism of monoidal superalgebraic
cartesian sets

End(A%") = A% 5 A,

where A" acts on A by scalar multiplication.

Definition 4.2. A supercommutative differential graded algebra (super
cdga) is a supercommutative algebra A equipped with

e a grading, i.e. a collection of R-module direct summands A,, C
A for each n € Z such that A, - A, C A,.,, and as R-modules
A=, A,; and

e a differential, i.e. an odd derivation d : A — A, which squares
to zero, d? = 0.

We require that the derivation has degree one, which means d(A,) C
Apti1. A super cdga is connective it A, =0 for p < 0.

A weakly graded super cdga B is defined identically to a super cdga
except that we require B = [] B,, the direct product of isotypical
factors, rather than the direct sum.
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Proposition 4.3. Let A be a supercommutative algebra (such as O(Y')).
A coaction by O(AY x Al is equivalent to a connective super cdga
structure on A.

Proof. The semidirect product A°" x Al admits a canonical section
A — A% AT — AL

which allows us to break the action into its constituent parts.

A coaction of O(A') = R[z] is equivalent to a connective grading by
N, with the elements a € A of degree k being those where the coaction
map sends a — a ® z*. Here by a grading we mean, as above, that
A= DA, the direct sum of factors, and not the direct product.

A coaction of O(A) is equivalent to an odd differential. Again, for
a € A the coaction map sends a — a + a;e. We set da = a;. The fact
that d is a differential follows from the associativity of the action.

Now we combine these actions in a twisted way in A% x A'. We
can check that this tells us that the differential increases degree. The
associativity diagram for the coaction is the following:

*

A s A O(AI x Al

,u*l ll ®m*
A® O(AOH x Al) ﬁ A® O(AOH x Al ® O(AO|1 x Ab).
L

Now if a € A is degree k, we have

al az® + (da)z"e

|

azbzk + (da)zbake, — (da)zhTake,

Y

which is completely determined by the formula for m*. Going around
the other way we discover that there must be an equality p*(da) =
(da)z**1. That is, the differential increases degree by 1. O

Corollary 4.4. There is an equivalence of categories between the cate-
gory of supercommutative algebras with coactions by O(AY x A') and
the category of super cdga’s. O

Now we calculate the effect of O(—) on the action map

1o End(A%) x sCart(A A™9) — sCart(A%, A7),
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Note that, since everything involved is affine, this gives a coaction of
O(End(A°Y)) on O(sCart (A%, A7), We write

O(sCart (A%, A™9)) = Ry, ... 20, €1, € iy ooy Ty €1, - -+ €4,
where x; and €; are even and 7; and ¢; are odd. We use this notation
because T; is induced by z; € O(A™9) and € is induced by ¢; € O(A").
Proposition 4.5. The coaction of O(End(A)) 2 Rz, €] on O(sCart(A%, A"7))
maps

€T; — XT; + T€

€ — €

T;— T;T

€, — €; + €e.
Proof. Since A™a = (AN" x (A°")7 it suffices to check this on Al
and A’ We prove this for A', the case of A" having already been
treated during our explicit description of the coalgebra structure of

O(End(A°Y)). Let T be a Z/2-graded commutative R-algebra. Using
the functor of points a map

Rlz,e] — T
mapping z — t, and € — t. corresponds to the map
Tle] — Tle| : € — tye +t..
Now O(sCart(A% A')) = R[z,,7,]. A map
Rlxy, 7] — T
mapping x; — t,, and T; — tz corresponds to the map
Tx] — Tle| : ¢ = ty, + tz €.

Composing these gives the map

Tlx] — Tle| : x — (ty, + tz,te) + tz, tee.
Thus the coaction is the map

Rlz1,71] — Rz, €] ®p R[z1, 7]

mapping z; — 1 + 1€ and T — T12. U

The super cdga structure on O(sCart(A%", A"l9)) thus has x; even of
degree 0, T; odd of degree 1, ¢; odd of degree 0, and €; even of degree
1.

Now let Y be a superalgebraic cartesian set with an action of End(A°"):

End(A"M xY £ Y.
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Applying global functions gives a map
pOY) = OEnd(A%) x V).
When Y is representable, the codomain decomposes as a tensor product
O(End(A"") x Y) = O(End(A°")) @5 O(Y),

and hence in this case O(Y) becomes a supercomodule for the super-
coalgebra R[x,¢€| described above. In general taking global functions
fails to turn products into tensor products, and so we would not gen-
erally expect such a coaction. We begin by analyzing the general case
in order to see just how bad things can get. Then we show that for a
superalgebraic cartesian set X that is a finite colimit of representables
there is a genuine coaction on

O(sCart(A", X)).

Also we show that in the case when there exists N € N such that X
is a colimit of representables of the form A™? where n < N there is an
induced coaction on O(sCart (A% X)).

Let Y be a superalgebraic cartesian set with an action by End(A°!).
Then Y = ColIim A™? and we have the sequence of isomorphisms

O(End(A") x Y) = O(End(A"") x colim Anla)
= O(colim (End(A%1) x A"l9))
= lim O((End(A"") x A™7)).

Since the action map s is natural in Y and O(A™9) admits an coac-
tion map, this implies that the map of rings

O(Y) 4% O(End(4°") x V)
is a limit of coaction maps

lim O(A™1) — lim O((End(A°") x A"7))

Thus Proposition 4.5 provides a formula for this map. An element of
the ring O(Y') is a compatible family of polynomials in O(A"%) as n
and ¢ vary. Let x = {x1,...,2,} and € = {e1, ..., ¢, }. If (fi(x,€))ier
is a compatible family then

w((fi(x, €))ier) = (1" fi(x, €))ier,

where the y* on the right is the coaction of O(End(A°")) on O(A™9).
Now we explain two cases in which the limit of coaction maps induces
a coaction by O(End(A%")).
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Proposition 4.6. Let X = coljim A" where I is a finite category.
Then there is an isomorphism

O(End(A°")) ®p O(sCart(A™, X)) = O(End(A"") x sCart(A™, X)).

This implies that the ring of functions applied to the action map gives
a coaction for “finite” superalgebraic cartesian sets.

Proof. The key point here is that O(End(A1)) is flat as an R-module.
The underlying module is an (infinitely generated) free R-module.
Now we have the sequence of isomorphisms

O(End(A”") x sCart(A", X))
=~ O(End(A"") x sCart(A°", colim A""))
=~ O(End(AM) x colim sCart (A", A™0))
= O(colim (End(A”") x sCart(A"", A™1%)))
= lim O(End(A%") x sCart (A", A"7))
= lim O(End(A°")) @5 O(sCart(A", A™%))
=~ O(End(A”")) @ lim O(sCart (A", A™"))
>~ O(End(A°")) @r O(sCart(A", X)).

The second isomorphism follows from the fact that A% is cartesian
tiny. The third is because colimits distribute with products in a topos.
The fifth is because the objects are affine and the sixth uses the fact
that O(End(A°1)) is flat. O

Proposition 4.7. Assume that there exists N € N such that X =
col]im A0 with n < N. Then the ring of functions on the action map

factors through the tensor product. Thus the action map of End(A%")
on sCart(A°", X) induces a coaction on global functions.

Proof. The functor O(—) applied to the action map gives
lim O(sCart(A", A"%) — lim O(End(A”") x sCart(A°, A"?)),

which is an inverse limit of coactions. We see from Proposition 4.5
that the action of End(A%") on sCart(A%!, A"l°) induces a grading on
O(sCart (A% A™l0)) =2 O(A™"). The maximal element in the grading
has degree n. We claim that this implies that there is a factorization
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of the map above through
lim O(sCart(A", A"°) — O(End(A°"))@r (li}n 0<scart(A0“,A”|°))) .

Since O(End(A°1)) is a polynomial ring (and not a power series ring), a
factorization exists as long as there is no element in lim sCart (A% Anl0)

that has unbounded degree. U

Example 4.8. Consider the superalgebraic cartesian set [[ A"°, which
n>0

is the disjoint union of (non-super) affine spaces, one of each dimension.

There is an isomorphism

O(sCart(A"", TTA™")) = JJo(a"m)
n>0 n

and so this ring has unbounded degree. In particular it contains the

element (1,e1,e169,€169¢3,...). Thus no factorization as above could

exist for this ring and so the action of End(A%") on sCart (A%, JT A™°)

n>0
does not induce a coaction after taking the ring of functions.

For a superalgebraic cartesian set X satisfying the hypotheses of
either of the propositions above, let Q*(X') be the super cdga associated
to O(sCart(A°, X)) with the coaction by O(A% x A'). So if u is
the forgetful functor from super cdga’s to sAlg we have uQ*(X) =
O(sCart(A%, X)) = Q(X).

5. POLYNOMIAL FORMS VIA SUPERALGEBRAIC CARTESIAN SETS

In [Sul77], Sullivan introduced a simplicial commutative differential
graded algebra (cdga) called Qf. It is defined on n-simplices by the
formula

sSet(A,, Q) = Rlxy, ..., xp,dxy, . .. dxy],
where |z;] = 0. This is the cdga of Kéhler differential forms on the
polynomial algebra R[z,...,x,,]. The simplicial maps are built just
as in the functor ¢ introduced in Subsection 1.4.

The n-simplices of the simplicial cdga in fact have the structure of a
super cdga (a cdga with a Z/2 grading and an odd degree 1 differential).
The elements z; are even of degree 0 and the elements dx; are odd of
degree 1.

For any simplicial set X the set of maps sSet(X, ) =: Q5 (X) is a
commutative differential graded R-algebra, which is only weakly graded
if X is infinite dimensional (c.f. Def. 4.2). This cdga has a concrete
description. An element consists of a compatible choice {wy}sex of
polynomial Kahler differential forms for each simplex ¢ of X. This
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collection is required to be compatible with restriction maps in the
obvious way.

When R is a Q-algebra, the simplicial cdga 2} has the property that,
for a simplical set X,

H*(sSet(X,Q5)) 2 H (X, R),

where H*(X, R) is the singular cohomology of X with coefficients in the
ring R (c.f. [Sul77, Thm 7.1]). The cdga Q5 (X) is Sullivan’s rational
polynomial differential forms.

There is a forgetful functor v from the category of super cdga’s to
sAlg. The simplicial supercommutative algebra

udt s AP — sAlg

will play an in important role in this section. We will prove that for any
simplicial set X there is a natural isomorphism of supercommutative
algebras

O(sCart(A% i, X)) = usSet(X, Q).
We begin by studying the relationship between ) and €27.

Proposition 5.1. There is a natural isomorphism of simplicial super-
commutative algebras (where Q) is the superalgebraic cartesian set from
Ezxample 1.9)

uldy =i,

Proof. Evaluating on A" gives

2

sSet(A",i*Q) = sCart (i, A", )
sCart(A", Q)
O(sCart(A0", A™))

=~ O(A"")

= Rlxy, .. Ty €1,y €

~ uQr(A™).

1%

1%

As a special case we get the following corollary:
Corollary 5.2. For any simplicial set X there is an isomophism

O(sCart (A", 1, X)) = usSet (X, Q).
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Proof. There are isomorphisms
usSet(X, Q) = sSet (X, ufy)
= sSet(X,i"Q2)
= sCart (i1 X, 2)
= (’)(sC_art(Ao‘l,igX)).
The last isomorphism is an application of Corollary 3.5. l

In other words, for any simplicial set X the supercommutative al-
gebra underlying the commutative differential graded algebra Q7% (X)
of polynomial differential forms over the ring R on X is naturally

isomorphic to the ring of functions on the internal mapping object
sCart (A% 4, X).

Proposition 5.3. For X a simplicial set, there is an isomorphism of
(weakly graded) super cdga’s

OF (i, X) = sSet(X, Q).

Proof. We will first consider the case of X a finite dimensional simplicial
set. In Corollary 3.5, we showed that the above is an isomorphism of
the underlying supercommutative algebras. Here we lift this to the
category of super cdga’s.

The forgetful functor u creates limits and ¢, preserves colimits. This

implies that X = cc}:limAk satisfies the conditions of Proposition 4.7.
AF—=X
Now there are isomorphisms

Q (11 X) =2 Q*( colim i,A")
ZI(AkHX)

>~ *( colim AF)
i(Ak—X)
>~ lim QF(AY).
Zl(Ak—>X)
Thus it suffices to prove the result for A* = §;A*. Now this follows
from Proposition 4.5. Thus ¥; corresponds to dz;.
Now let X be an infinite dimensional simplicial set. We may write
it as a colimit of its finite dimensional skeleta. This implies that Q(X)
admits a sequential inverse limit of coactions. We have

QX)) = [[2/(x).
ieN
This fails to have a super cdga structure only in that it is the direct

product over isotypical factors, rather than the direct sum. Hence it is
weakly graded. 0
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6. GEOMETRIES ON THE SUPERPOINT

In the last two sections we showed that the action of End(A%!) on
sCart(A%) X) gives the ring of differential forms on X the structure
of a super cdga when X is reasonably well-behaved. Any submonoid
of End(A%") also acts on sCart(A°", X). In this section we will study
several submonoids of End(A%') and understand the structure that
each of these submonoids puts on the ring of differential forms on X.

Looking ahead, our goal is to understand supersymmetric 0| 1-dimensional
quantum field theories in the sense of [HKST11] over rational commu-
tative base rings other than R. Following the lead of [HKST11], we will
define a geometry in the spirit of Felix Klein’s Erlangen program. That
is to say a geometry is completely specified by its group symmetries,
which is a subgroup of Aut(A%"). In fact the most natural thing which
acts on A% is the monoid of endomorphisms; we don’t see a compelling
reason to limit ourselves to subgroups. Each of these geometries will
give rise to a slightly different breed of supersymmetric 0|1-dimensional
quantum field theory.

Definition 6.1. A geometry on A% is a submonoid M of the monoid
End(A%") of endomorphisms (in superalgebraic cartesian sets).

There are five geometries that we will explore below:

(1) M = End(A%) 22 A% x A is the full endomorphism monoid.
We call this geometry pre-topological.

(2) M = Aut(A%) = A% x G,, is the maximal subgroup. We call
this geometry topological.

(3) M = A% x Z/27Z. Following HKST we call this geometry Eu-
clidean.

(4) M = A% x 1. We call this geometry oriented Euclidean.

(5) M = 1. We call this geometry fully-rigid.

The geometries (submonoids) include into each other in the following
way:
1Cc A% x1c A %7Z/2Z c A %G, c A% x A,
where we have abused notation and written G,, for O*(G,,). On global

functions these inclusions correspond to the maps of supercommutative
bialgebras

Rla,d 23 Rlz, 2, "5 (R x R)[d = Rl 3 R.

Corollary 6.2. The following are consequences of the proof of Propo-
sition 4.3:
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(1) A supercommutative algebra with a coaction by O(A" 1 G,,) is
a Z-graded super cdga.

(2) A supercommutative algebra with a coaction by O(A%! x Z,/2)
is a Z/2-graded super cdga.

(3) A supercommutative algebra with a coaction by O(AY) is a
supercommutative algebra with an odd differential.

Next we define the notion of M-structure on a superalgebraic carte-
sian set that is abstractly isomorphic to the superpoint.

Definition 6.3. Let X be a superalgebraic cartesian set that is ab-
stractly isomorphic to the superpoint A°'. An M-prestructure on X is
a subfunctor
' C sCart(A", X)
with the property that I' is closed under the action of M:
r-M=T.

An M-isometry between two superalgebraic cartesian sets equipped
with M-prestructures, (X,I") and (X’,I"), is a map X L X' such
that f.I' C I". Thus (X,I') is isomorphic to (X’,I") if there is an
isomorphism X .y X' such that fil =T
Example 6.4. The superpoint A’ has a canonical M-prestructure
given by

M C sCart(A%, A%1).
Definition 6.5. An M-prestructure (X,I") is an M-structure if there
exists an isomorphism

(X,T) = (A%, M).
There is an action of M on the superalgebraic cartesian set
sCart(A%!, X)

given by precomposition. We may consider the (categorical) quotient
superalgebraic cartesian set

sCart(A°) X)) /M.

When M is a group and thus a subgroup of A" x G,,,, we may consider
its normalizer in A’ x G,,, defined by the formula

N(M)(A") = {g € (A™" % G (A7) |gM(A"1)g ™" = M(A™).

In each of the above cases the normalizer is the whole of A’ x G,,,.
It is clear that N (M) acts on

sCart(A°, X)) /M.
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When M is normal in N(M), the action factors through N (M)/M.

Example 6.6. The most interesting example of this is the Euclidean
geometry
M =AM % Z/2.

We have N(M) = A x G,, and when 2 € R*, Z/2 = G,,[2], and
hence

NM)/M = G,,/G,[2] = Gyp.
Note that an action of G,, on Spec(R) that factors through G,,/G,, 2]
is equivalent to a grading by the even integers.

Remark 6.7. For each of the other geometries this is quite elementary.
When M = 1, there is an action of A% x G,,. When M = A%, there
is an action of Gy,,.

7. BORDISM CATEGORIES AND QUANTUM FIELD THEORIES

We are now ready to move on to the second goal of this paper, which
is to define supersymmetric 0| 1-dimensional quantum field theories over
an arbitrary superalgebraic cartesian set. For each geometry M (dis-
cussed in the last section) and each superalgebraic cartesian set X, we
construct Bord?& X the symmetric monoidal category consisting of
0|1-dimensional bordisms equipped with M-structures and maps to X.
It is a symmetric monoidal category internal to superalgebraic carte-
sian sets, and supersymmetric 0|1-dimensional quantum field theories
will be internal functors to a target category.

The target of a field theory is another symmetric monoidal category,
which in this 0-dimensional case means the target should be a sym-
metric monoidal O-category. In other words a commutative monoid
internal to superalgebraic cartesian sets. The target of a quantum field
theory (as opposed to a classical field theory or other variety of field
theory) should have some further mechanism implementing the phys-
ical concept of superposition. This can be accomplished by requiring
the target category to have not just a multiplicative (i.e. monoidal)
structure, but to also have an additive structure. In the classical con-
text of the Atiyah-Segal axioms this is the direct sum operation on the
target category of vector spaces. In the case at hand it means that
our target should be a ring (or at least a rig). A natural choice is the
ring O = A", A supersymmetric 0|1-dimensional M-quantum field
theory over a superalgebraic cartesian set X is then defined to be a
homomorphism

A Bord?&x) —- 0

of commutative monoids in superalgebraic cartesian sets.
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7.1. The bordism category. IfY is a superalgebraic cartesian set and
M is a superalgebraic cartesian monoid acting on Y, let Y//M denote
the action category, internal to superalgebraic cartesian sets, whose ob-
jects are Y and morphisms are Y x M. The source and target maps
are given by projection and the action and the composition is given by
the monoid structure of M.

The bordism category Bord?& x)
sists of 0]1-dimensional bordisms equipped with M-structures and maps
to X. These 0|1-dimensional bordisms are simply finite disjoint unions

that we are about to describe con-

of the superpoint A%'. Thus Bord?leL x) decomposes as a disjoint union
of categories where each factor corresponds to bordisms that are a dis-
joint union of k-many superpoints.

The maps from these bordisms to X are parametrized by the internal
hom superalgebraic cartesian set:

sCart(H A X) = H sCart(A) X).
k k

The M-isometries of [ ], A% are the group M %y, the wreath product
of the symmetric group and M. This group naturally acts on the above
mapping space. Putting these observations together we arrive at our

definition of Bord?l‘vh x)-

Definition 7.1. The category internal to superalgebraic cartesian sets,
Bord%'MlL X is given by

Bord((]llv}l’X) = H (H sCart(A°) X)) /M) Zk> :

keN k

In other words Bord%‘MlI x) is the free symmetric monoidal category,

internal to superalgebraic cartesian sets, generated by the category
sCart(A%, X) //M.

7.2. Supersymmetric 0|1-dimensional quantum field theories.
Supersymmetric 0|1-dimensional quantum field theories are defined to
be symmetric monoidal functors

Z : Bord(yy ¢, — O.

These correspond to functors from sCart (A%, X)//M to O. Since O is
a 0-category, these functors are simply M-invariant O-valued functions
on sCart(A% X).
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Corollary 7.2. The supersymmetric 0|1-dimensional M-quantum field
theories over a superalgebraic cartesian set X (with values in O) are in
natural bijection with the set of M-invariant functions on sCart(A%, X).

Note that this implies that the field theories naturally have the struc-
ture of a commutative ring. Using the description from this last corol-
lary and our previous calculations, we may now identify the super-
symmetric 0|1-dimensional M-quantum field theories over a simplicial
set.

Theorem 7.3. Let X be a finite dimensional simplicial set. Then
the set of supersymmetric 0|1-dimensional M-quantum field theories
over iyX is naturally isomorphic (as supercommutative algebras with a

coaction of O(N(M)/M)) to...
(1) M = End(A°) 22 A% 5 Al (pre-topological)
0[1-pTFT(X) = Q2 (X)
closed, degree zero polynomaial differential forms on X over R.
(2) M = Aut(A°) =2 A% % G,, (topological)
0]1-TFT(X) = Q%,CZ(X)
closed, degree zero polynomaial differential forms on X over R.
(3) M = A% % Z/27 (Euclidean)
O[1-EFT(X) = QF ,(X)
closed polynomial differential forms on X over R of even degree.
(4) M = A% x 1 (oriented Euclidean)
O‘ 1_EFTOT(X) = Q*R,CZ(X)
closed polynomial differential forms on X over R of arbitrary
degree.
(5) M =1 (fully-rigid)
0[1-QF T, (X) = Qp(X)
all polynomial differential forms on X over R.
Remark 7.4. When X is an infinite dimensional simplicial set we
may write it as the colimit over finite dimensional skeleta and then the
theorem still holds as long as Q% (X) means the product over even

closed polynomial forms instead of the sum (and likewise for the last
two cases).

Proof. Recall that Proposition 4.3 gives an explicit description of the
coaction of O(End(A%')) on the supercommutative algebra of rational
differential forms uQ5(X). In all of the cases above we compute the
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coinvariants for the respective coaction. For all of the following, let
a € ufdi(X).
(1) Let a be a k-form, then

a s ar® + (da)ze.

To be coinvariant k£ = 0 and da = 0.
(2) This follows from 1.
(3) Let a be a k-form, then

a v a(l,—1)" 4 (da)(1, —1)%e.

To be coinvariant, k € 2Z and da = 0.
(4) Let a be any form, then

a+— a+ (da)e.

To be coinvariant, da = 0.
(5) This is Corollary 5.2.

8. TwISTED FIELD THEORIES

In Section 7 we saw that O-valued functions on the category sCart (A%, X)//M
(i.e. M-invariant functions on sCart(A%" X)) correspond to various
classes of differential forms on X depending on the choice of geometry
M. Furthermore, we saw that these functions could be interpreted as
0|1-dimensional supersymmetric M-quantum field theories over X. In
this section we aim to generalize from functions, i.e. sections of the
trivial O-line bundle, to sections of non-trivial line bundles. The cor-
responding quantum field theoretic interpretation is in terms of twisted
field theories, as per [ST11, §5].

Specifically, working over a manifold Y, Stolz and Teichner define
a category of twist functors as supersymmetric quantum field theories
valued in the category of lines. A twisted field theory is defined to be a
natural transformation from the trivial functor to a target twist functor.
These have an interpretation in terms of line bundles. The category
of twist functors is equivalent to the category of line bundles on the
groupoid 7TY// Aut(R1). The twisted field theories for a given twist
functor are the same data as invariant sections of the corresponding
line bundle.

Following this, we define twist functors to be functors of symmet-
ric monoidal categories internal to superalgebraic cartesian sets from
the bordism category defined in the previous section to the symmetric
monoidal category Pico introduced in Section 2. A twisted field theory
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is a natural transformation between these twist functors, taken in the
internal sense.

8.1. Twisted field theories.

Definition 8.1. A twist for 0|1-dimensional supersymmetric M-quantum
field theories over X is a functor

T Bordm1

(M, X) — PiC(f)

of internal symmetric monoidal categories.

The tensor product in Picp induces a tensor product of twists. Together
with the internal natural transformations of twists, the twists form
a symmetric monoidal category. Moreover this symmetric monoidal
category is contravariantly functorial in X (since the bordism category
is covariantly functorial in X).

Example 8.2. The trivial twist m : Bord%@ x Picop is the constant
symmetric monoidal functor with value the unit object of Picy. This
is the unit object in the symmetric monoidal category of twists.

Definition 8.3. Let 7 be a twist for 0|1-dimensional supersymmetric
M-quantum field theories over X. A 7-twisted field theory is an internal
natural transformation Z between internal functors:

70

/\

Bordyyy, 2 Pico

~_

p
from the trivial twist 7y to the twist 7.

Example 8.4 (c.f. [ST11, Lma 5.7]). A 7p-twisted field theory is an in-
ternal natural endo-transformation of the constant twist. Since O may
be identified with the endomorphisms of the unit object of Picp, such
natural transformations amounts to an M-invariant O-valued function
on sCart(A°", X). Hence 7o-twisted field theories are precisely the
quantum field theories from Section 7.

Since Bord?llMlI x) 1 free, a twist is determined by an (internal) functor

7 : sCart (A", X)//M — Pico .

General twists over a general space X can be quite interesting (see
[SPST] for computation of general twists in the related context of 0]1-
field theories in the sense of [HKST11].)
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In the remainder of this work we will only consider the simplest
twists, which are pulled back from the case X = pt. We will call such
twists basic. They are easy to classify:

Lemma 8.5. The basic twists are classified (up to isomorphism) by

(1) an object L € obPico = ob Picg, and
(2) a representation p : M — Hom(L, £) = O.

The tensor product of basic twists tensors these two pieces of data.

Proof. When X = pt we have sCart(A%', X) ~ pt, and hence a basic
twist is the same as an internal functor pt//M — Picp. Such a functor
consists of exactly the claimed data. 0

Theorem 8.6. If X is a finite dimensional simplicial set, the (L, p)-
twisted field theories over X are in bijection with the O(M)-coinvariants
of QR(X; L).

Proof. Recall that £ may be viewed as an invertible O-module or as
an invertible R-module. Recall the isomorphisms

Q(X; L) = Qp(X) @5 £ = Q(X; L).

The natural coaction of O(M) on O(sCart(A%!, X)) from Proposition
4.7 extends to a coaction on %(X; L) by tensoring up to £ and using
the isomorphisms above.

Let 7 be the basic twist associated to (£, p) via Lemma 8.5. A nat-
ural transformation 75 = 7 of symmetric monoidal functors (internal
to sCart) is determined by a natural transformation of functors (in-
ternal to sCart) 7p = 7. Thus an internal natural transformation is
determined by a map of superalgebraic cartesian sets

sCart(A", X) = Hom, (O, L) = L
such that the following diagram commutes:

Xn

M x sCart(A%, X) Hom, (L, £) x Hom, (O, £)

tl lt

sCart (A%, X) . Hom,(0, £),

where t is the action map. But the action of Hom, (£, £) on Hom, (O, £)
is the action of O on L, so the square becomes
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pXxXN

M x sCart(AN, X) OxL
tl Jt
sCart (A%, X) - L.

But this exactly means that n is p-coinvariant for the coaction discussed
above. O

Remark 8.7. When X is infinite dimensional then we consider it as a
colimit of its finite skeleta. The theorem provides a bijection for each
finite skeleton and thus a bijection in the inverse limit.

8.2. Calculation of all twists. We will first consider the case of pre-
topological structures M =2 A% s A'. We need to calculate all of the
actions of A’ x A on A, Such an action consists of a map

pw:Mx0O—0

which is unital and satisfies three properties:

(1) it is associative with respect to the multiplication of M
(2) it distributes over the addition of O;
(3) it commutes with the scalar multiplication of O on O.

This is the same as a unital function:
Rly,d > Rly, e, z,4]

satisfying the three conditions.
An arbitrary map p* is described by a pair of values:

y = folz,y) + fi(z,y)de
and
€= go(z,y)e + g1(z,y)o.

and each of the commutative squares give restrictions on the allowed
functions fo, fi, go, and ¢;.
The first condition gives the commutative square:

R[ya €7, 5] L®1> R[yv €, 71, 617 X2, 52]

w* T T 1®@m*
ll,*

Rly, €] Rly, €, x,0].
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Going around the diagram the two ways for y gives

(1) folwi@e,y) + e(fi(z172, ¥) 2102 + f1(T172,9)01)
= folza, folx1,y) + efi(z1,y)d1)+

(90($1> y)e + gi(x, Z/)(Sl)(fl(l"m fo(l"b y) + efi(1, 9)51))52-
While for € we get

(2)  go(z1m2,¥)e + g1(@122, y) (2102 + 1)
= go(z2, fo(w1,y) + fi(z1,y)edr)(go(x1, y)e + gi1(1,y)01)
+ g1(w2, fo(w1,y) + fi(w1,y)€d1)ds.

This puts strong restrictions on the possible p*.

Similarly, each of the other two conditions put restrictions on p*.
Compatibility with respect to the additive structure of O forces fy, f1,
Jgo, and ¢, to have the following form:

Jo(z,y) = p(x)y
filz,y) = q(z)
go(w,y) = r(z)

g(z,y) = s(x)y.
While further requiring 1* to commute with the scalar O-multiplication
forces

p(z) =r(z) and q(z) = s(z).

Returning to Equations (1) and (2), we see that u* defines a unital

M-action on the O-module O if and only if
q(z) =0, p(z122) = p(x1)p(22), and p(1) = 1.
Lemma 8.8. Let R be a connected ring of characteristic 0 and p(z) €
Rz, z71). If
p(r122) = p(1)p(22)

then either p(z) =0 or p(z) = " for some n.

Proof. This implies that

px)* = p(z?).
Since R is connected we have that p(1) =1 or p(1) = 0.
Assume that p(1) = 0. Then we see immediately that

p(x) = 0.
Assume that p(1) = 1. Let

w(z) = 2" p(x),



SINGULAR COHOMOLOGY FROM SUPERSYMMETRIC FIELD THEORIES 43

then
w(z)w(zs) = w(xixs).
By choosing m large enough, w(x) has the form

ra" + lower degree terms,

where n > 0, r # 0, and the lower degree terms are in positive degree.
The equality w(z;)w(zs) = w(zi22) implies that r2 = r, sor = 1. Now
we may take the derivative with respect to x; n-times in order to get
the equality

w™ (z122) 28 = w(wy)w™ (z),

but this is just the statement that
(nl) - w(ae) = a5 - (nl),

which is equivalent to w(x) = z™ since we are in characteristic zero.
This implies the result for p(x) by the definition of w(x). O

This completely determines the basics twists for the pre-topological
geometry in characteristic zero. If R is connected, then for each n € N
there is a degree n twist

y =ty

€ e
A similar calculation determines the possible basic twists for the
remaining geometries. Below is a table containing the forms of the O-

linear actions of M on A'l* for each of the geometries M = A x Z /2
and M = A1,

] Geometry \ Coaction ‘
A 5 7./2 Yy
R[z,0]/(z% —1,6%) | e €

yr—=ay

€ — x€
A0 Yy

€€

We will refer to these as the degree n twists, where in the pre-
topological geometry n € N, in the topological geometry n € Z, in the
Euclidean geometry n € {odd, even}, and in the oriented Euclidean
geometry there is only one twist.

Translating this to twisted field theories yields:
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Theorem 8.9. Over a ring R of characteristic zero, for each geometry
and each degree n basic twist, the twisted field theories are given in
Table 1. In the case of the pretopological geometry these pick out closed
forms w € QF (with even super grading) and o € QF (with odd super
grading), k € N. When Q* = Q5(X, L) is the cdga of differential forms
on a simplicial set X, there are only forms of odd super grading in odd
degrees and only forms of even super grading in even degrees. Thus
fizing k picks out precisely the forms of degree k (one of w or o must
be zero).

The topological geometry behaves in precisely the same way and, of
course, there are only forms in nonnegative degrees when the cdga con-
sists of the forms on a simplicial set.

In the case of the Fuclidean geometry taking both w and o to be even
gives the even forms on X and taking both to be odd gives the odd forms
on X.

We will denote the collection of degree n twisted field theories with a
geometry by a superscript n. Thus 0|1-pTFT"(X) denotes the degree
n pretopological field theories.

] Geometries \ Twisted Field Theories ‘

AT 5 Al weNk aeQkF

Pretopological dw=0,da=0,keN

A % G,, weQkF aecQF

Topological dw=0,da=0,keZ

AO|1 X Z/2 w € Qeven or odd a € Qeven or odd
Euclidean dw=0,da=0

A0 weN, ae

oriented Euclidean | dw =0, dao =0

Here the super grading of w is even, while that of « is odd.
TABLE 1. General form of basic twists

9. CONCORDANCE

Theorems 7.3 and 8.9 and Table 1 show that the twisted superalge-
braic cartesian quantum field theories with a geometry over a simplicial
set X correspond to important subsets of Sullivan’s rational differential
forms on X. To recover the rational cohomology groups of X from the
field theories we study a notion of equivalence of field theories called
concordance. In this algebraic setting we uncover three notions of con-
cordance. We prove that they are all equivalent. In each case two closed
differential forms are concordant if and only if they are cohomologous.
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Given a simplicial set X, we may consider the two inclusions
fo, fi: X — X x A
induced by the coface maps of A'. Now, using the the canonical map
(X x AY) — i) X x A

and the canonical map Q*(41X) ® Q*(A!) — Q*(4,X x A') we build
the commutative diagram:

O (LX) ® QF (A

|

O (i!X X Al)

|

Q*(ZI(X X Al))
/ x
Q*(1,X) Q* (i X).
Note that the downward arrows need not be isomorphisms. We use

this diagram to describe the three notions of concordance for two dif-
ferential forms wp, w; € Q% (41.X). They fit nicely into a table:

Cohomologous da, wy — w1 = da

Cochain Concordance | 3w € Q0 X) ® Q4 (AY), fiw=w;
Algebraic Concordance | 3w € Q5 (0 X x Al), fw = w;
Simplicial Concordance | Jw € Q(i1(X x Al)), fiw = w;

It is immediate that Cochain Concordance implies Algebraic Con-
cordance implies Simplicial Concordance.

Proposition 9.1. Cohomologous implies Cochain Concordance.

Proof. The element wit +wo(1 —¢) + adt € Q5 (0 X) ® Q5 (A) does the
job. 0

Proposition 9.2. Let R be a Q-algebra, then Simplicial Concordance
implies Cohomologous.

Proof. Tt suffices to take w € Q*(4)(X x A')) such that fow = 0 and
fiw = w;. We must show that there exists a such that da = w;.
However, because X x A! ~ X by Sullivan’s theorem [Sul77] f, and
f1 are quasi-isomorphisms. Thus the cohomology class of w, equals the
cohomology class of 0. U
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We use square brackets to denote the set of twisted field theories
with a given geometry taken up to concordance. Thus 0|1-pTFT"[X]
denotes the degree n pretopological field theories up to concordance.

Theorem 9.3. Let R be a Q-algebra, HR be cohomology with coeffi-
cients in R, and X be a simplicial set. There are natural isomorphisms

0[1-pTFT"[X] = 0|1-TFT"[X] & HR"(X)

and
0|]1-EFT"[X]| = PHR"(X),
where PH R is periodic cohomology with coefficients in R.

Remark 9.4. Because periodic cohomology is defined using the prod-
uct, X may be taken to be an infinite dimensional simplicial set.

10. A VARIATION FOR COHOMOLOGY OVER ANY RING

In this final section we will describe a variant of the above results that
allows one to recover the cohomology of a simplicial set over any ring
as concordance classes of degree n-field theories over that simplicial set.

In the world of superalgebraic Cartesian sets (over R) the functions
on the space A"l are the supercommutative ring R[71, . .., Ty, €1, - - -, €]
In short the functions on affine space are only those functions on (n|q)-
variables obtainable from standard algebraic operations for rings. In
the closely related context of supermanifolds the functions on R™9 are
given by C*(R")[ey, ..., €,]. This corresponds to functions on (n|q)-
variables obtainable using C'*-operations (see [Law79, MR13] for dis-
cussions of the algebraic theory of C*°-rings). We will now describe an
intermediate theory which includes not only standard algebraic opera-
tions for rings but also divided power operations.

Let R be a ring and fix an ideal I C R. Recall that a divided powers
structure on (R, I) is a collection of maps 7, : I — Rforn=0,1,2,...
such that

(1) vo =1 and v (z) = « for x € I, while v,(z) € I for n > 0;

(2) Yz +y) = i Yai(2)vly) for z,y € I;

(3) Yu(Ax) = Ny, (x) for N € R, x € [;

(4) Y (@)7n(2) = (") Yimgn (@) for z € I

(5) (@) = 2 ()
A homomorphism of rings with divided powers structure (R,I) —
(R',I') is a ring homomorphism R — R’ sending I into I’ and com-
muting with the maps ~,.

Now fix a ring S. On a first reading the reader might wish to focus
on the case S = Z. The base ring that our spaces will be defined over
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is not S but the ring R = I's(t), the free divided powers algebra over S
on one variable t. As an S-module R is free with basis 1, y"(¢), r > 1
and has multiplication:

=" ).

r

The element 7" (¢) should be thought of as the formal expression ‘%’.

The ideal supporting the divided powers structure on R is (7, (t)|n >
1). When S = Z this ring may be defined as the smallest subring of
Q[t] containing Z and each of the monomials L. Note that R is flat
over §S. .

In our new theory of spaces over R, the functions on the affine spaces
A™7 are given by the divided powers algebra

O(AMQ) = FS(taxla cee 73:71)[617 tee ,€q]-

That is, we take the free divided powers algebra on the variables
t,21,..., %, and tensor with the exterior algebra on the variables ey, .. ., ;.
This is naturally a divided powers algebra where 7, (¢;) = 0 for n > 1.
The ideal supporting the divided powers structure on O(A™IP) is

TO(A™P) i= (o (8), (i), 5 | n > 1,1 < i <my 1 < j < p).

The morphisms from A™P to A" are defined to be the R-algebra
homomorphisms

O(A™7) — O(A™P)

that are also homomorphisms of divided powers algebras.

For the purposes of this section, let sA be the category with objects
the affine spaces A"l with functions O(A™9) = Tg(t, zy, ..., 2,)[e1, - - -, €]
and morphisms the maps of divided powers algebras over R. The cate-
gory sA is a full subcategory of the category of divided powers algebras
(over R). This leads to the following modification of the definition of
a superalgebraic cartesian set that we will use in this section.

Definition 10.1. The category of superalgebraic cartesian sets (now
with divided power operations) is the category of presheaves sCart :=
Pre(sA). A superalgebraic cartesian set is an object of sCart.

Superalgebraic cartesian sets (with divided power operations) have
many of the same properties as the superalgebraic cartesian sets con-
sidered before. In particular,

AP s Anla — pAmtnlpta



48 CHRISTOPHER SCHOMMER-PRIES AND NATHANIEL STAPLETON

One difference is that the functor O(—) is no longer represented by the
object A", We have:

sA(A™P ANO) = TO(A™P),,
SA(A™P A1) = TO(A™P), 4q.
In light of this, Lemma 3.1 must be replaced with:

Lemma 10.2. We have natural isomorphisms sCart(A, AM0) = Al
and sCart(A%1 A1) =~ O,

Proof. We have
sCart(A™P sCart (A%, A1) = sCart(A™P x A% A0)
= O(4™"),,
=~ JO(A™P) = At (A™IP)
and
sCart(A™P sCart(A%, A%1)) = sCart(A™P x AOL A0
>~ JO(A™PHY) g
=~ O(A™P), O
The object A% remains cartesian tiny, and so Cor. 3.4, which defines

the functor €2, is still valid.
Similarly to before we also have an isomorphism of algebras

O(A™0) = Ty(t, zo, 21, ..., )/ (t — Z:c)

which makes it clear that the assignment [n] — A" defines a cosim-
plicial object. Using this cosimplicial object, every simplicial set gives
rise to a superalgebraic Cartesian set with divided power operations.
We have Q(A™0) = Tg(t,21,...,2,)[€1,- - , €], but we may think of
this simplicially as the ring

Q(A"®) = Tg(t, 20, 1, . .., xp)[dxg, - - -, dxp]/(t — Z T, Z dx;).
This is similar to Sullivan’s ring of polynomial differential forms on the
n-simplex but also includes the divided powers z¥/k!. As before if X
is a simplicial set, then Q(X) is a commutative dga which we will call
the S-divided power differential forms on X. We will let Q(X) be the
closed forms, the kernel of the differential d.
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It is worth pointing out that Q(A%) 2 O(A%9), that is, Corollary
3.5 does not hold for arbitrary superalgebraic Cartesians sets. How-
ever, the formulas above imply that it does hold for superalgebraic
Cartesians sets of the form #,.X, where X is a simplicial set.

The arguments from Sections 7 and 8 carry over identically and
yield the following theorem, which we only state for topological and
Euclidean geometries for brevity. Analogous results hold for all geome-
tries.

Theorem 10.3. Let X be a simplicial set. Then the set of supersym-
metric 0|1-dimensional degree n M-quantum field theories over 1,X is
naturally isomorphic (as supercommutative algebras with a coaction of

O(N(M)/M)) to...
(1) M = Aut(A°) =2 A% x G,, (topological)

0[1-TFT"(X) = Q"(X)

cl

closed, degree n divided powers differential forms on X over R.

(2) M = A % Z/2Z (Buclidean)

Q(X) n even
0]1-EFT"(X) =< ¢
| (X {ledd(X) n odd

closed divided powers differential forms on X over R of the
specified parity.

O

Unlike in the previous case, concordance classes of field theories are not
simply in bijection with cohomology classes in H*(X;'s(¢)). Indeed it
is not a priori clear that the four different notions of concordance agree
in the current setup. What is clear are the implications

Cohomologous = Cochain Concordance
= Algebraic Concordance

= Simplicial Concordance.

In fact, as a consequence of work of Cartan [Car76, Section 7| and
Miller [Mil78] all four notions of concordance do agree and we may
identify concordance classes of field theories with a specific subalgebra
of H*(X;T's(t)). Our treatment will follow Cartan.

As we have just observed, the S-divided power differential forms on
X correspond to supersymmetric 0|1-dimensional quantum field theo-
ries over X, but they have another useful description. For each n we
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can consider the chain complex:

O (A™) =Ts(t, o, 21, - ., Tn)[dxo, - -+, dxy,]/(t — Zmi, Z5x,)
Letting n vary these assemble into a simplicial commutative dga €27.
Here * denotes the differential grading while e denotes the simplicial

degree. For a simplicial set X the S-divided power differential forms on
X are given by the complex of simplicial mapping spaces sSet(X,, 2}):

sSet(X,, Q20) < sSet(X,, Q1) K

The cohomology of this complex is the cohomology of Q*(X).

Following Cartan we may consider a generalization of this situation.
Suppose that A} is a simplicial dga (which we no-longer assume to be
commutative). Then for any simplicial set X we may form a dga A*(X)
via the assignment

AY(X) = sSet(X., A?).

The cohomology H*(A*(X)) is defined to be the cohomology of this
dga. Given such an A}, we let ZA? denote the kernel of

§: AT — ATTL
Cartan considers simplicial dga’s A} which satisfy two key properties:

(A) There is a long exact sequence
0— ZAY 5 A0 % AL 5 42 5% .
and ZAY is a discrete simplicial set (i.e. it is constant); and
(B) The simplicial homotopy group m,(A?) = 0 is null if p # ¢ and
we have a surjection

mp(ZAY) = mp(AL)-

In this case we set R = Z A?O], the set of zero simplices. For each ¢ we
have a short exact sequence

0 — ZAY — A7 2 ZAT! 5 0,

which is necessarily a fibration sequence of Kan complexes. The long
exact sequence of homotopy groups then gives rise to a chain of inclu-
sions

v M (ZATTY) — m (ZAD) — -+ — mp(ZAY) = R.

The image of ,(ZA?) defines the ¢ part of a filtration F,R C R. We
also observe that ZA? is an Eilenberg-Mac Lane space (simplicial set)
K(F,R,q).
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Example 10.4. For any ring R we have a simplicial dga A7 = Cg,
given by the assignment

Ch, = CUA"R)
of the degree ¢ simplicial cochains on AP with coefficients in R. This
satisfies both properties (A) and (B). In the case of (B) we have
T.(CRo) = 0 so that FyR = R is the trivial filtration and ZC7%, is
a K(R, q).

Example 10.5. Take A; = QF, which corepresents S-divided power
differential forms. [Car76, Section 7] implies that this example satisfies
properties (A) and (B). In this case m,(Q2?) = S is non-zero and so
we get a non-trivial filtration of Z Q[OO] = R = T'4(t), the free divided

powers S-algebra on the generator ¢t. We have [Car76, Section 7] that
Fls(t) =T5°(t)
consists of the divided powers of weight at least ¢ (i.e. the S-submodule
spanned by ~"(t) for r > q).
Theorem 10.6 (Cartan-Miller [Car76, Mil78]). Let A be a simplicial
dga satisfying properties (A) and (B) above and let R = ZA([)O] and the
filtration F;R C R be as above. Suppose that in addition A satisfies
(C) A% =0 for q > p.
Then there is a unique integration map of simplicial chain complexes
I:Ay— Ch.
that restricts to the identity R = ZA?O} — ZC%[O] = R. Moreover
we have natural isomorphisms HI(A*(X)) = [X., ZAl] = HY(X; F,R)
(where the middle term represents simplicial homotopy classes) and
under this isomorphism I agrees with the map induced by the inclusion
F,(R) CR.
Further, suppose that R is a flat k-algebra (over some ring k) and
that ZA'[JP} 1s k-flat for all q,p. Then the induced map

H(I): H(A*(X)) - H*(X; R)
is multiplicative (it’s a homomorphism of graded k-algebras). U

Property (C) is satisfied by both Examples 10.4 and 10.5. The iso-
morphism HY(Q*(X)) = [X,, ZQ¢] shows that the simplical concor-
dance agrees with the cohomologous relation, and hence all four notions
of concordance of field theory agree. Because I'g(t) is a free module
over S, the flatness condition in the last part of the theorem is also
satisfied in Example 10.5 if we take £ = S. We have the following
immediate corollary:
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Corollary 10.7. Let X be a simplicial set. Then we have a natural
1somorphism
01-TFT"[X] = H"(X;T3"(t))

between the set of concordance classes of supersymmetric 0|1-dimensional
degree n topological field theories over X and the cohomology of X in the
T's(t)-module T3"(t). Letting n-vary, this isomorphism is multiplica-
tive, where the right-hand-side is viewed as a summand of the graded
ring H*(X;Ts(t)). O

Since T'g"(t) is a flat S-module we have an isomorphism
H*(X;T5"(t) = H*(X;5) @5 5" (%)

Thus H*(X;T'3"(t)) can be obtained from H*(X;S) by base-change.
It follows that we can recover the additive S-cohomology of X from
the concordance classes of topological field theories 0|1-TFT"[X]. For
example we can identify H™(X;S) with the summand H"(X;I4(¢t)) C
H*(X;T35"(t)) = 0[1-TFT"[X] corresponding to degree n-forms with
coefficients of weight exactly n. Under this identification, however, the
natural pairing

0[1-TFT™[X] x O[1-TFT"[X] — 0[1-TFT™""[X]
sends a € H™(X;S) and 5 € H"(X;S) to

(m:") LaUB € H™M(X;S).

In particular the natural multiplication for TFTs only sees multiples of
the cup product structure on H*(X;S). We end with a final question.

Question 10.8. Is there a natural quantum field theoretic construction
that would allow one to recover the full structure of H*(X;S) as a
graded ring from the concordance classes of topological field theories
0[1-TFT*[X]?
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