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Decentralized Multi-Robot Information Gathering from Unknown

Spatial Fields

Abdullah Al Redwan Newaz1, Murtadha Alsayegh2, Tauhidul Alam3, and Leonardo Bobadilla2

Abstract—We present an incremental scalable motion planning
algorithm for finding maximally informative trajectories for
decentralized mobile robots. These robots are deployed to observe
an unknown spatial field, where the informativeness of observa-
tions is specified as a density function. Existing works that are
typically restricted to discrete domains and synchronous planning
often scale poorly depending on the size of the problem. Our
goal is to design a distributed control law in continuous domains
and an asynchronous communication strategy to guide a team of
cooperative robots to visit the most informative locations within
a limited mission duration. Our proposed Asynchronous In-
formation Gathering with Bayesian Optimization (AsyncIGBO)
algorithm extends ideas from asynchronous Bayesian Optimiza-
tion (BO) to efficiently sample from a density function. It
then combines them with decentralized reactive motion planning
techniques to achieve efficient multi-robot information gathering
activities. We provide a theoretical justification for our algorithm
by deriving an asymptotic no-regret analysis with respect to
a known spatial field. Our proposed algorithm is extensively
validated through simulation and real-world experiment results
with multiple robots.

I. INTRODUCTION

THE capabilities of mobile robots to gather critical in-

formation from a large area play pivotal roles in their

applications to monitor several environmental phenomena.

Some of these phenomena are nuclear radiation, greenhouse

gas emission, soil parameters (e.g., nutrient levels and pH)

in precision agriculture, and chemical or oil spills in coastal

areas that have high spatial variability. These phenomena are

generally referred to as spatial fields. To assess and study

unknown spatial fields, the goal is to maximize an informa-

tion gain metric while satisfying robot motion and resource

constraints [1]. However, it is challenging to gather maximum

information by exploring a large geographical space with a

thorough search by planning robot trajectories for a specific

time period. Such an information gathering process involves

the robot physically exploring the environment to collect mea-

surements and is not purely a computational process. Due to

physical constraints of robots, we cannot simply “teleport” the

robot to a random location, and information must be collected
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sequentially along a trajectory. An effective information gath-

ering method using multi-robot systems requires deploying

and collecting samples from a finite number of locations and

predicting the missing values of the field using a statistical

model. Significant existing works [1, 2, 3] focus on sampling

strategies that decide where measurements should be taken

while satisfying constraints on fuel, energy, or time. Most

of these works are typically restricted to discrete high-level

synchronous planning and are often not suitable for large-scale

information gathering problems. Closely related works on

multi-robot coordination [4, 5] leverage Bayesian Optimization

(BO) for estimating unknown spatial fields characterized by

density functions with theoretical guarantees. However, these

works present a synchronous planning mechanism that lacks

optimal resource utilization. In this synchronous planning

mechanism, robots that complete their tasks ahead of others

are left idle until the arrival of new tasks, which entails higher

mission times. Furthermore, they neither consider inter-robot

collisions nor static collisions with obstacles in a continuous

state space while gathering samples for a field estimation.

Large-scale information gathering problems require rea-

soning about realistic planning constraints, e.g., constraints

among resources and constraints among robots’ motion. To

accomplish this task, we propose an Asynchronous Infor-

mation Gathering with Bayesian Optimization (AsyncIGBO)

algorithm that generates a distributed control law in continuous

domains and an asynchronous communication strategy to

guide a team of cooperative robots to visit the most informative

locations within a limited mission duration. Our AsyncIGBO

algorithm extends ideas from asynchronous parallel Bayesian

optimization [6] to select the most informative locations within

a limited mission duration and systematically combines them

with decentralized reactive motion planning techniques [7].

Utilizing our proposed AsyncIGBO algorithm, robots can

independently collect informative samples across a spatial field

and share their information quickly and frequently through

asynchronous communication for global decision-making.

In order to leverage the strength of a team of decentralized

robots for the information gathering task, we first characterize

the informativeness of observations from a spatial field as an

unknown density function. We then need to estimate the den-

sity function from robot sensor measurements. Unfortunately,

realistic sensor measurements from a spatial field are noisy and

do not provide precise field information. Therefore, we utilize

a Gaussian Process (GP) as the surrogate model to estimate an

unknown density function because of its potent approximation

properties and ability to quantify uncertainty from noisy sensor

measurements. This density function is estimated over time

by periodically gathering informative samples with multiple

robots from the spatial field.
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We make the following contributions in this paper: (i) For

fast, frequent updates on the density function, we leverage the

AsyncIGBO algorithm to choose the next informative samples

for robots subject to their observed knowledge; (ii) Our

algorithm learns GP hyperparameters to estimate the unknown

density function from gathered samples with independently

exploring multiple robots; (iii) Our algorithm generates a

distributed control law in continuous domains while consid-

ering realistic robotic resource and motion constraints; (iv)

We theoretically analyze the asymptotic no-regret properties

of our algorithm with regard to a known spatial field; and (v)

We evaluate our algorithm using simulated environments and

hardware-in-the-loop simulations with physical robots.

II. PRIOR WORK

Information gathering has been studied from a number of

different perspectives for various applications. Classically, it

is approached as a problem of geometric mapping via sensor

networks. Several sensor networks utilize Bayesian Optimiza-

tion (BO) for environmental monitoring [8]. However, sensor

networks are neither accurate enough to accommodate large-

scale demands nor cost-effective solutions for the information

gathering process. A variant of BO called PLAyBOOK [6] is

successful in hyperparameter tuning of Convolutional Neural

Networks, where it utilizes asynchronous parallel Bayesian

optimization. We herein extend the ideas from PLAyBOOK

to efficiently sample from a scalar field and combine them

with decentralized reactive motion planning techniques.

The core concept of informative path planning is to select

a set of locations to visit at each time step in such a way that

the missing information can be predicted using a statistical

model. In the literature on informative path planning, random

graph search [9], evolutionary optimization [10], heuristic

search [11], and sampling-based approaches [1, 12] are ap-

plied. A popular statistical model for multi-robot information

gathering algorithms is Gaussian processes (GPs) [13, 14,

15, 16, 17]. However, the majority of these works do not

consider realistic conditions, where information collection and

navigational imperfections for robots are inevitable.

Several prior online learning-enabled methods combine

Bayesian Optimization (BO) [18, 19] with robotic motion

planning algorithms to intelligently gather more samples over

time from an area. These methods are primarily rooted in

centralized coordination, where robots collect samples sequen-

tially through continuous communication. In [4], a team of

coordinated robots estimates and optimizes the coverage of an

initially unknown spatial field characterized by a density func-

tion where robots communicate their locations. An adaptive

learning goal of the density function in the unexplored areas

along with the coverage goal is studied in [5]. However, in

realistic multi-robot settings, there are also limits on resources,

e.g., fuel or battery life. To deal with a limited mission time,

there are some distributed multi-robot information gathering

algorithms [20, 21, 22] that offer strategies to intelligently

select robotic actions to efficiently gather information, but

without theoretical performance guarantees.

Inspired by these works, our AsyncIGBO algorithm plans

realistic robot trajectories in a distributed manner to efficiently

visit informative locations while minimizing the mission com-

pletion time incurred and also provides theoretical perfor-

mance guarantees.

III. PRELIMINARIES AND PROBLEM FORMULATION

We consider a set of n robots A with sensing capability

operating in a ν dimensional bounded domain X ⊂ R
ν . We

refer to this bounded domain as a “search space” over a spatial

field where we define an a-priori unknown information density

function ϕ : X → R based on the measurement model and

sensor constraints. The goal of our multi-robot information

gathering is to perform in situ sensing of the search space

so that the states of the ith robot state xi(t) at time t are

proportional to the unknown spatial field of ϕ(.).

A. Robot Dynamics and Sensing Model

We want to find a batch of promising trajectories of individ-

ual robots in such a way that the statics of robots’ trajectories is

equivalent to the scalar statics of ϕ(.) through an information

metric. Assume the dynamics of the ith robot is governed by

a generic motion model as follows:

ẋi(t) = f(xi(t),ui(t)), (1)

where ui(t) is the control to the ith robot at time t. For the

particular case of a nonholonomic robot that operates in a 2-

D workspace, the robot’s motion model is approximated by a

unicycle system as:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω, (2)

where x and y correspond to the Cartesian coordinates of the

robot, θ is the robot’s orientation, v is the robot’s forward

velocity, and ω is the robot’s angular velocity. Thus, the robot’s

state is defined as x = (x, y, θ)T , and the robot’s control input

is defined as u = (v, ω)T . When the ith robot visits a location

x ∈ X at time t, it can sense the event by obtaining a noisy

measurement of the density function according to the sensing

model as in [4]:

yi = ϕ(xi) + ε, (3)

where ε ∼ N (0, σ2) is the Gaussian white noise with

σ standard deviation, and it is independent and identically

distributed across time and space.

B. Field Characterization and Bayesian Optimization

In an unknown field, we do not have direct access to

the global maximum of the information density function

ϕ. Since noisy sensor readings introduce additional uncer-

tainty to the system, we use a Gaussian Process (GP) as

the surrogate model for ϕ. We define a GP prior φ to be

GP (µ(x; ρ), κ(x, x′; θ)), where µ is the mean function, κ is

a kernel function, and ρ, θ are the hyperparameters of the

mean and kernel functions, respectively. Now, the estimation

of unknown spatial fields can be reduced to the problem of

unknown hyperparameters estimation of GP. The posterior

distribution of GP at an input location x is Gaussian as:

P(φ(x)|ρ, θ) = N (φ(x);µ(x; ρ), σ2(x; θ)) (4)
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with mean and variance

µ(x) = κ(x,X)K(X,X)−1Y, (5)

σ2(x) = κ(x, x′)− κ(x,X)K(X,X)−1κ(X,x′), (6)

where K is the covariance function, X is a matrix with

an input location in each row x1, x2, · · · , xn and Y is a col-

umn vector of the corresponding observations y1, y2, · · · , yn.

Given observations D = (X,Y ), we can condition our GP

distribution on D as follows:

P(φ(x)|D; ρ, θ) = GP(φ;µφ|D(x; ρ), κφ|D(x, x′; θ)). (7)

To estimate hyperparameters of GP, Bayesian Optimization

(BO) proceeds by maintaining a probabilistic belief about φ
and designing an acquisition function α to determine where

to evaluate the function next. Although many acquisition

functions can be used in the framework of Bayesian decision,

we use the GP Upper Confidence Bound (UCB) in our

experiments. The UCB is defined as:

α(x|D; ρ, θ) = µ(x|D; ρ) +
√

βσ(x|D; θ), (8)

where µ and σ are the mean and standard deviation of the GP

posterior and
√
β is the exploration constant.

C. Description of Obstacles

We have a set of n robots A sharing an environment with

moving robots and/or static obstacles O. Each static obstacle

Om with m ∈ {1, · · · , No} is assumed to be an a-priori known

object in the search space. The free space where robots are

allowed to explore in such an occupancy map is defined as

follows:

Xfree = X\
No
⋃

m=1

Om. (9)

Next, the articulated robots must avoid inter-robot collisions

which are defined in terms of a velocity obstacle [7]. Let

i ∈ {1, · · · , n} be one robot that has a current state xi,

a velocity ẋi, and a radius `i, all of which are known to

the robot and can be measured by the other robots in the

environment. Let j be another robot that has a current state

xj , velocity ẋj , and radius `j and is considered as a dynamic

obstacle moving in the environment. The velocity obstacle for

the robot i presented by a dynamic obstacle j, denoted as

V Oi|j , is the set of all velocities of robot i that will result in

a collision between robot i and j at some future moment in

time, considering the fact that a dynamic obstacle j maintains

a constant velocity ẋj . Formally, the velocity obstacle for the

ith robot presented by a jth robot is written as follows:

V Oi|j = {ẋ | ∃t > 0 : t(ẋi−ẋj) ∈ D(xj−xi, `i+`j)}, (10)

where D(x, `) is an open disc of the radius ` centered at x.

D. Behavior Tree

This work uses a Behavior Tree (BT) for multi-robot

coordination purposes. The BT is a directed acyclic graph with

four primary nodes: root nodes, composite nodes (selector,

sequence, parallel), leaf nodes (condition and action), and

decorator nodes. In the BT, the execution starts from a root

node, then selector nodes execute tasks with priority, whereas

sequence nodes execute tasks in a predetermined order. On

the other hand, condition nodes are sensing units for action

nodes since they activate actions when specific conditions are

met, and decorator nodes modify the return value or running

frequency. A detailed explanation of the BT can be found

in [23].

E. Problem Statement

Gathering information from a spatial scalar field us-

ing multi-robot exploration requires making observations

y1, · · · , yn over sequential locations x1, · · · , xn in such a way

that maximizes the information gain, I. The information gain

over the ith robot’s visited locations x
(1:t)
i is measured by the

mutual information between φ and its gathered observations

y
(1:t)
i as:

I
(

x(1:t);φ
)

= H
(

x(1:t)
)

−H
(

x(1:t)|φ
)

,

=
1

2
log |I+ σ−2

K|,
(11)

where H is the entropy function such that H (N (µ,Σ)) =
1
2 log |2πeΣ|, K is a kernel matrix such that K =
[K(s, s′)]s,s′∈s1:t , and I is an identity matrix. From a high

level perspective, Eqn. (11) quantifies the reduction in uncer-

tainty about φ from revealing y(1:t). Solving this task in a

distributed and decentralized manner is difficult, which is why

most earlier works [5, 4, 19] solve this sequential decision-

making problem through either planning with centralized algo-

rithms or planning in the discrete domain of the search space,

as mentioned in Section II. In this context, the problem that we

are interested in, however, is decentralized control strategies

for a multi-robot system to collect maximum information I for

a given period of time T such that t ∈ [0, T ] over the spatial

scalar field φ. Specifically, at each time step t, we aim to find

the optimal choice of control ui(t) for the ith robot that not

only takes into account our current knowledge over φ, but also

marginalizes previous observations accumulated over n robot

trajectories. Formally, we formulate our problem of interest as

follows:

Problem. Given a team of n robots, find controls

u1(t), · · · ,un(t) at each time step t to drive robots to a

series of states x0(t), · · · ,xn(t) that maximize the sum of

information gained relative to the spatial scalar field φ as:

argmax
ui(t),··· ,un(t)

n
∑

i=1

∫ T

t=1

I [xi(0) + f (xi(t),ui(t)) dt;φ] ,

subject to Eqn. (1)-(10).

IV. DECENTRALIZED MULTI-ROBOT INFORMATION

GATHERING ALGORITHM

To address the above problem, this paper proposes a

distributed control law and an asynchronous communication

strategy to guide a team of cooperative robots to visit the most

informative locations within a limited mission duration. To
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deal with unknown parameters, our AsyncIGBO algorithm al-

ternates among (i) the selection of informative batch locations

that are evaluated in parallel, (ii) the estimation of parameters

from collected observations asynchronously, and (iii) Bayesian

inference, assuming that the estimated parameters are true

ones. In this section, the time step from equations has been

dropped for clarity.

A. Informative Location Sampling

Since it is costly to gather information by visiting all loca-

tions of ϕ, our algorithm selects a set of informative locations

to visit at some time steps and uses the GP model to predict

the missing values. Inspired by the work [6], we develop an

asynchronous Bayesian optimization strategy to select the next

sample locations while maximizing the following objective

function:

xgoal
i = argmax

xi∈X i
neigh







α (xi|D)

n
∏

j=1

ψ(xi|D)







, (12)

where X i
neigh is the ith robot’s local search space such that

X i
neigh ⊂ X i

free, α is acquisition function, and ψ is a pe-

nalization function which facilitates the sampling diversity

among the robots. On a high level, Eqn. (12) assigns a goal

location to the ith robot in the vicinity of its neighboring

locations in such a way that it maximizes information gain

through the acquisition function α and penalizes jth robots

such that j 6= i to collect information from these locations. In

the cooperative information gathering context, the penalization

function needs to eliminate the risk of repeating sampling in

the previously gathered informative locations or sampling near

a busy location that is currently being evaluated by another

robot. To develop an exploration algorithm for a team of

decentralized robots, we assume that the unknown density

function ϕ with ϕ(x∗) = M is the Lipschitz function over

current gathered observations D with a constant L and a global

optimum value M . For the ith robot, let ri = M−ϕ(xi)
L

be

the associated sensing radius to the position xi. To satisfy

cooperative information gathering requirements, we propose a

simple yet effective penalization function as:

ψ(xi|xj , yj) =
||xi − xj ||

E(ri) +
√
β σ(xi)

L

, (13)

where β is a positive value such that β > 0, and E(ri) is

the expected value of ri over an approximated field φ such

that E(ri) =
M−φ(xi)

L
. Section V provides further analysis of

Eqn. (12).

B. Generating Collision-free Trajectories

Once we choose informative sampling locations, our next

goal is to generate collision-free trajectories for n robots by

independently choosing their controls. It is important to note

that robots choose their control velocities as local, reactive

navigation strategies in a decentralized fashion without any

communication or central coordination. One inspiring method

we use to implement such navigation strategies is the Hybrid

Reciprocal Velocity Obstacle (HRVO) [7] in the presence of

Robot 2 Robot n....Robot 1

Root

(a) High-level BT

Informative

Sampling

Field

Estimation

Robot

?

Move toward

Target
Destination? Time Exceeds?

(b) Expanded sub-BT

Fig. 1: BT-based distributed multi-robot control architecture.

static obstacles and other dynamic robots in the environment.

In the HRVO method, each robot chooses a new velocity at

each time step to compute a trajectory toward its goal avoiding

collisions with any other robots or static obstacles.

Each robot i has a goal state x
goal
i and a preferred velocity

ẋ
pref
i which are unknown to the other robots. The preferred

velocity is the velocity that a robot takes regardless of other

robots’ velocities or obstacles to direct itself toward its goal.

Formally, a preferred velocity for each robot i toward its goal

centered at x
goal
i is defined as:

ẋ
pref
i = ẋ

pref
i

xi − x
goal
i

‖xi − x
goal
i ‖2

, (14)

where ẋ
pref
i is the constant preferred speed of that robot.

The combined hybrid reciprocal velocity obstacle, denoted

as HRV Oi, for a robot i presented by all other robots

and static obstacles in the environment is the union of all

hybrid reciprocal velocity obstacles presented by the other

robots individually and all velocity obstacles generated by the

obstacles that can be written as

HRV Oi =
⋃

j∈A
i 6=j

HRV Oi|j ∪
⋃

j∈O

V Oi|j . (15)

Therefore, each robot i selects its next control u∗
i outside of

the combined hybrid reciprocal velocity obstacle that is closest

to its preferred velocity ẋ
pref
i as:

u
∗
i = argmin

ui

‖f(xi,ui)− ẋ
pref
i ‖2 s.t. f(xi,ui) /∈ HRV Oi.

(16)

C. Asynchronous Information Gathering with Bayesian Opti-

mization (AsyncIGBO) Algorithm

We utilize the Behavior Tree (BT) to capture the teaming

and coordination of decentralized robots to collectively ob-

serve an unknown spatial field. The BT’s inherent hierarchical

and modular structure allows us to combine the informative

sampling strategy with asynchronous BO and a systematic

way of generating collision-free trajectories through HRVO.

We now propose the AsyncIGBO algorithm which can si-

multaneously plan and control using the BT by mapping the

high-level sampling of informative locations, which describes

which locations to visit, onto a low-level control model, which

defines how to generate trajectories for robots.
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Fig. 1 shows our BT-based distributed control architecture,

where all robots are connected through a parallel node of the

BT. Each robot behavior is defined as a sub-BT and shown

separately in Fig. 1(b). Each robot performs three sequential

actions: 1) sampling of informative locations from a spatial

field φ, 2) moving toward a target location assigned by the

informative sampler, and 3) estimating the field from gathered

observations. First, the reactivity of BTs enables a robot to

reason about the maximum informative location based on

the current knowledge over φ. Once a high-level informative

location, xgoal
i , is planned for the ith robot, the modularity

of the BT enables generating low-level controls using HRVO

to make progress toward the xgoal
i location without needing

to plan collision-free trajectories for others. Asynchronous

communication among robots is established using a selector

node. As it is illustrated in Fig. 1(b), the selector nodes of

sub-BTs need to return success to update the field estimation

through communication. However, the selector node returns

success when a robot reaches its target destination or the

budgeted time for executing the assigned task is exceeded.

Otherwise, the selector node returns the running status due to

the move toward the target node. Finally, when the ith robot

accomplishes its task by either visiting the assigned location or

exceeding the time budget for that assignment, the reactivity

of the BT enables asynchronously updating of the surrogate

model φ through its current observation yi and sharing this

observation yi with others through communication. This way

robots progressively learn the latent phenomena by updating

GP parameters from gathered observations. Formally, after the

desired number of robots c < n complete their tasks, we

assign new tasks to them without waiting for the remaining

b = (n− c) busy robots to finish their tasks by estimating GP

parameters as:

(ρ, θ) = argmax
ρ,θ

n
∏

i=1

b
∏

l=1

P(yi, yl|xi, xl, D,Db, Di; ρ, θ),

(17)

where the set D contains the locations associated with obser-

vations that robots have gathered so far, the set Db contains the

busy locations and corresponding observations which are not

accessible during the time of decision-making, and the set Di

contains the current locations and corresponding observations

obtained through communication among all robots. Thus,

the interleaved plan-and-control process of the BT enables

decentralized mobile robots to find maximally informative

trajectories.

V. ALGORITHM ANALYSIS

In this section, first, we assume that the unknown density

function ϕ can be modeled as the realization of GP [4]. Sec-

ond, we also assume that ϕ holds Lipschitz continuity [24] and

then theoretically analyze the asymptotic no-regret properties

of our proposed AsyncIGBO algorithm with respect to a true

density function, φ. Using the Lipschitz continuity property, at

each step, the ith robot selects a sample from its neighboring

locations that eliminates the largest possible portion of the

input space while guaranteeing, with high probability, that

the eliminated part does not include the maximizer of the

function [24].

Lemma 1. Let the unknown objective function be a Lipschitz

continuous function with a constant L which has a global

optimum value M . Let ri be the associated penalization radius

of the ith robot to the location xi such that ri =
|φ(xi)−M |

L

and let E(ri) be the expected value of ri such that E(ri) =
|µ(xi)−M |

L
. Then,

P [ri ≤ E(ri) + ε] ≤ exp

(

−2ε2L2

σ2

)

,

holds for ε =
√
β σ(xi)

L
.

Sketch of Proof. We assume the unknown objective function

is Lipschitz continuous with a constant L and has a global

optimum value M . Hence, the following relationship holds

as:

|φ(xi)−M | ≤ L||xi − x∗||. (18)

This implies x∗ cannot lie within the circular region centered

on xi with a radius ri. In the remainder of the proof, we first

recall a result from [4, Lemma IV.5] which states that if µ is

an approximation of the true density function, φ, then

|φ(xi)− µ(xi)| ≤
√

βσ(xi) (19)

holds for any xi any t > 1 with probability at least 1 − δ.

Now, adding and subtracting M in Eqn. (19), we have

|M + φ(xi)−M − µ(xi)| ≤
√

βσ(xi)

=|M − φ(xi)| ≤ |µ(xi)−M |+
√

βσ(xi)

=
|M − φ(xi)|

L
≤ |µ(xi)−M |

L
+
√

β
σ(xi)

L

=ri ≤ E(ri) +
√

β
σ(xi)

L

Since φ(xi) is a normal random variable N (µ, σ2), using

Hoeffding inequality for all ε > 0, we can then say from [24]

that

P [ri ≤ E(ri) + ε] ≤ exp

(

−2ε2L2

σ2

)

.

Thus, the penalization function in (12) guides the ith robot to

sample the next asynchronous locations by reducing the value

of the acquisition function at those locations centered on xi
with an expected radius E(ri).

We now show that, under the assumptions of discrete

observation set D and a known field φ with respect to hyperpa-

rameters, the regret between the optimal locational utility and

the utility efficiently obtained through the proposed algorithm

is sub-linear in T . Since our locational utility function is a

combination of acquisition and penalization functions, we start

with the recent regret analysis results in [4, Lemma IV.5] to

illustrate a sub-linear property of the acquisition function (8),

and then we combine the Lemma 1 to provide a precise bound

over the penalization function. At a high level, knowing a

penalization region allows us to reduce regrets by avoiding

redundant sampling.
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Theorem 1. Let R be the regret at stage t ∈ [1, T ]. If the field

φ is the realization of a GP with mean µ and covariance κ,

our proposed algorithm ensures that
∫ T

t=1

R(t)dt ≤
∫ T

t=1

c0

√

β(t)σ(t− 1)(xi)

exp
(

− 2ε2L2

σ(t−1)2

) dt,

where β(t) = 2 log(|D|πt/δ), and
∑

t≥1 π
−1
t = 1, πt > 0.

Sketch of Proof. We can rewrite Eqn. (12) as:

xgoal
i = argmax

xi∈X i
neigh

Υ(φt, xi),

where Υ is the locational utility that captures the need for the

robots to collectively move toward some locations in order

to obtain the maximum information based on the current

estimation of field φt as:

Υ(φt, xi) = αt (xi|yi = φt(xi))

n
∏

j=1

Ψt(xi|xj , yj = φt(xj)),

Let Υ∗ = maxxi∈X i
neigh

Υ(φ, x∗i ) be the optimal locational

utility and x∗i = argmaxxi∈X i
neigh

Υ(φ, xi) be the optimal

choice of a sample location with respect to a known density

function φ. The regret R(t) at time t is then the difference

between the locational utility with the current approximation

of the field and the optimal locational utility that is written as:

R(t) = Υ(φt, xi)−Υ∗, such that

Υ(φt, xi) ≤ Υ(φ, x∗i ) ≤ Υ∗.

From Eqns. (13) and (12), we get:

R(t) = Υ(φ, xi)−Υ∗ ≤ Υ(φ, xi)−Υ(φt, xi) (20)

=
∑

i

∑

x∈D
||x−xi||

ri−
(

E(ri)+
√

β(t)
σ(t−1)(xi)

L

) (α(x)− αt(x)) .(21)

Eqn. (21) shows two primary sources of regrets: estimation

error due to field approximation, and penalization error due

to approximation of the penalization radius. From [4, Lemma

IV.5], we can replace the error in the field approximation as:

R(t) ≤
∑

i

∑

x∈D

||x− xi||
√

β(t)σ(t− 1)(xi)

ri(t)−
(

E(ri(t)) +
√

β(t)σ(t−1)(xi)
L

)

.

Let c0 = |D|maxx,xi

∑

i

∑

x∈D ||x − xi||. From Lemma 1,

we can replace the penalization error as:

R(t) ≤ c0

√

β(t)σ(t− 1)(xi)

exp
(

− 2ε2L2

σ(t−1)2

) .

Hence,
∫ T

t=1

R(t)dt ≤
∫ T

t=1

c0

√

β(t)σ(t− 1)(xi(t))

exp
(

− 2ε2L2

σ(t−1)2

) dt.

Remark 1. Since the global Lipschitz constant L of the

objective function is unknown, we can approximate L locally

for each busy location of robots. In addition, the global

optimum M is unknown in practice and this can also be

approximated by the best observed function value.

VI. SIMULATIONS AND EXPERIMENTS

In this section, we describe our simulations and real-world

experiments deploying our AsyncIGBO algorithm in a variety

of spatial fields for information gathering purposes. Our exper-

iments compare the AsyncIGBO algorithm to a synchronous

IGBO algorithm, evaluate their performance with different

sizes of teams, and study their regrets in various environments.

a) Simulation Results: We simulate a team of coopera-

tive robots in a large-scale environmental monitoring setting.

We conduct our simulations in a geographic area which is

50 m long on the x-axis and 20 m long on the y-axis. The

environment consists of several static obstacles as shown with

black circles in Fig. 2. Inspired by [20], the scalar field is

generated according to a sum of Gaussian functions as:

ϕ(x) =
3

∑

l=1

Γl exp

(

−||Λl − x||
Ωl

)

, (22)

where Γl values are set to {0.33, 0.33, 0.33}, Λl values are

set to {(−35, 3.0), (−16.5,−2.3), (0, 2.3)}, and Ωl values are

set to {(20.7, 20.7), (15.0, 15.0), (9.9, 9.9)}, for l ∈ {1, 2, 3},

respectively. The resultant scalar field is shown with a gray

scale background image in Fig. 2. For this simulation, three

robots are initiated with random states as shown in Fig. 2(a),

and their sensing radii are set to 3 m. Our AsyncIGBO algo-

rithm generates the next best sample location in the proximity

of each robot based on the current observations over the field.

Each robot asynchronously accomplishes its task by visiting

the assigned location and obtaining the sensor measurements

from respective locations. Therefore, the AsyncIGBO algo-

rithm utilizes this information without waiting for other robots

to finish their tasks. The implementation of the HRVO method

helps to generate realistic motions for decentralized robots by

avoiding static obstacles and inter-robot collisions, as shown in

Fig. 2(b). Finally, each robot tries to minimize the cumulative

regrets by visiting the most informative locations first. As we

can see from Fig. 2(c), robots prioritize visiting the light gray

regions where information gains are higher than in the dark

gray regions.

b) Physical Experiment Results: We utilize two au-

tonomous mobile robots to validate our algorithm. Due to the

limited space and the size of the robot platform (shown in

Fig. 3), these experiments are conducted without any static

obstacles in an indoor laboratory environment.

In this experiment, we utilize a real-world ROMS water

salinity dataset [25] to generate a spatial scalar field. We then

project this scalar field to a 2 m × 2 m workspace as illustrated

in Fig. 3(b). Thus, a query is made with a two-dimensional lo-

cation as an input to obtain a scalar measurement (output). The

three major components that drive our decentralized robots

are (a) an Async-BO probabilistic model with the information

gain objective, (b) an HRVO for local trajectory planning, and

(c) a BT for global coordination. Our Async-BO takes two-

dimensional sampling locations as inputs and predicts the next

best sampling location based on a robot’s current position.

Next, our local trajectory planner generates a collision-free

trajectory to drive the robot to its current destination. Unlike

existing works which only focus on point-based information
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Fig. 2: Decentralized multi-robot information gathering simulation: Three robots starting with random initial states are

visiting the most informative regions on a spatial field while avoiding not only static obstacles but also inter-robot collisions.

Fig. 3: Physical experiment with multiple robots: Two robots are collecting information from a projected spatial field.

gathering [4, 1], our work considers a realistic safe motion

model to collect information from a given area. In some cases,

an informative sample location from the Async-BO might not

be feasible to explore, due to inter-robot collisions. Therefore,

we introduce a time-budget in our robotic information gath-

ering procedure using the BT-based coordination mechanism.

Once the robot reaches its destination or the robot gets stuck in

a loop when it tries to satisfy collision avoidance requirements,

the robot communicates its current measurement and location

information with others using the BT.

We conduct this experiment multiple times and report the

average results. The AsynIGBO quickly identifies the most

informative locations with few samples collected by our de-

centralized robot team, leading to faster convergence in the

regret metric. The spatial field is represented with a colored

image projected over the geometric space, where yellowish

colors represent the most informative regions and bluish colors

indicate the least informative regions. We observe that the

robots using the AsynIGBO algorithm effectively navigate

to the most informative locations to minimize cumulative

regrets while generating a good approximation of the field.

A video related to this experiment can be found at https:

//youtu.be/I86su28mdJc.

c) Performance Analysis: In this paragraph, we address

two questions: (i) the scalability of our proposed AsyncIGBO

algorithm and (ii) a comparison between asynchronous and

synchronous IGBO algorithms. We evaluate the performance

of our algorithm with global optimization of Eqn. (22). In this

setting, we are interested in computing regrets with respect to

the global optimum value. To facilitate this comparison, we

consider a measure of seconds for performing the same task

with different numbers of robots. For each experiment, robots

are initialized at random states, and then the experiment is

repeated 10 times.
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Fig. 4: Cumulative regrets of the AsynIGBO algorithm de-

crease with an increase in the number of robots.

Fig. 4 shows the regrets of robots with respect to simulation

times for teams of 2, 4, 6, and 8 robots, respectively. As

illustrated in Fig. 4, a team of 2 robots takes the longest time

to reach a convergence level. Hence, cumulative regrets for

a team of 2 robots are higher. On the other hand, a team

of 8 robots takes the shortest time to reach a convergence

level. Hence, cumulative regrets for a team of 8 robots are

lower. Thus, cumulative regrets of the AsyncIGBO algorithm

decrease with an increase in the number of robots, which

shows that our algorithm is scalable for a large team of robots.

To predict a complex spatial field using our AsyncIGBO

algorithm, we need to choose a suitable GP kernel to efficiently

collect samples over the target area. Table I demonstrates
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# robots
Matérn Kernel RBF Kernel

# evaluations mean regret # evaluations mean regret

3 79 0.528 72 2.52

5 29 0.093 16 0.54

7 48 2.818 51 4.26

TABLE I: Sample efficiency comparison: Matérn Kernel is

more sample efficient – requires fewer numbers of evaluations

to converge, than the RBF Kernel.

2 robots 4 robots 6 robots 8 robots

SyncIGBO 68.5± 4.9 17.9± 4.1 3.7± 2.1 2.2± 1.8

AsyncIGBO 3.6± 2.3 2.3± 1.3 2.8± 1.8 1.4± 1.0

TABLE II: Performance comparison: Our AsyncIGBO out-

performs a SyncIGBO in terms of lower mean regrets.

a comparison between two popular GP kernels, Matérn and

Radial Basis Function (RBF) kernels. As it is obvious from

Table I, the Matérn kernel requires fewer sample evaluations

to reach convergence and also achieves lower mean regrets

than the RBF kernel. Thus, we utilize the Matérn kernel in all

of our experiments.

The recent closest work to our algorithm has utilized a syn-

chronous IGBO (SyncIGBO) algorithm in a discrete domain

setting [4]. We compare asynchronous and synchronous IGBO

algorithms by performing head-to-head regret comparisons

with different numbers of robots. To maximize information

gain within a limited mission time, we need to reason about

(i) how much cumulative area should be covered by all

robots collectively and (ii) how much traffic congestion will

be introduced by increasing the number of robots. Although

information gathering using multiple robots benefits from our

distributed control architecture, inter-robot collision avoidance

needs to be taken into account for safe deployments of

robots. Our mean regrets do not monotonically decrease with

an increase in the number of robots since robots may take

longer trajectories to safely collect information. However, our

asyncIGBO algorithm outperforms the syncIGBO algorithm

in every scenario, as demonstrated in Table II.

VII. CONCLUSION

This paper presents a scalable planning algorithm to find tra-

jectories for decentralized robots used for gathering the max-

imum information from unknown spatial fields. The informa-

tiveness of observations from the spatial field is characterized

as a density function. Our proposed AsyncIGBO algorithm

efficiently chooses the next best informative location for a

team of decentralized robots. We then present a distributed

reactive planning and control technique to generate continuous

motions for robots to safely visit the informative locations

within a limited mission period. We evaluate our algorithm

by theoretically analyzing its asymptotic no-regret properties

with respect to a known spatial field. Finally, we validate our

algorithm through several simulation and physical experiments

with multiple robots. We can conclude from our results that

our AsyncIGBO algorithm is scalable to an increasing number

of robots and outperforms the SyncIGBO algorithm in terms

of mean regrets.
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