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Decentralized Multi-Robot Information Gathering from Unknown
Spatial Fields

Abdullah Al Redwan Newaz!, Murtadha AlsayeghQ, Tauhidul Alam?3, and Leonardo Bobadilla2

Abstract—We present an incremental scalable motion planning
algorithm for finding maximally informative trajectories for
decentralized mobile robots. These robots are deployed to observe
an unknown spatial field, where the informativeness of observa-
tions is specified as a density function. Existing works that are
typically restricted to discrete domains and synchronous planning
often scale poorly depending on the size of the problem. Our
goal is to design a distributed control law in continuous domains
and an asynchronous communication strategy to guide a team of
cooperative robots to visit the most informative locations within
a limited mission duration. Our proposed Asynchronous In-
formation Gathering with Bayesian Optimization (AsyncIGBO)
algorithm extends ideas from asynchronous Bayesian Optimiza-
tion (BO) to efficiently sample from a density function. It
then combines them with decentralized reactive motion planning
techniques to achieve efficient multi-robot information gathering
activities. We provide a theoretical justification for our algorithm
by deriving an asymptotic no-regret analysis with respect to
a known spatial field. Our proposed algorithm is extensively
validated through simulation and real-world experiment results
with multiple robots.

I. INTRODUCTION

HE capabilities of mobile robots to gather critical in-

formation from a large area play pivotal roles in their
applications to monitor several environmental phenomena.
Some of these phenomena are nuclear radiation, greenhouse
gas emission, soil parameters (e.g., nutrient levels and pH)
in precision agriculture, and chemical or oil spills in coastal
areas that have high spatial variability. These phenomena are
generally referred to as spatial fields. To assess and study
unknown spatial fields, the goal is to maximize an informa-
tion gain metric while satisfying robot motion and resource
constraints [1]. However, it is challenging to gather maximum
information by exploring a large geographical space with a
thorough search by planning robot trajectories for a specific
time period. Such an information gathering process involves
the robot physically exploring the environment to collect mea-
surements and is not purely a computational process. Due to
physical constraints of robots, we cannot simply “teleport” the
robot to a random location, and information must be collected
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sequentially along a trajectory. An effective information gath-
ering method using multi-robot systems requires deploying
and collecting samples from a finite number of locations and
predicting the missing values of the field using a statistical
model. Significant existing works [1, 2, 3] focus on sampling
strategies that decide where measurements should be taken
while satisfying constraints on fuel, energy, or time. Most
of these works are typically restricted to discrete high-level
synchronous planning and are often not suitable for large-scale
information gathering problems. Closely related works on
multi-robot coordination [4, 5] leverage Bayesian Optimization
(BO) for estimating unknown spatial fields characterized by
density functions with theoretical guarantees. However, these
works present a synchronous planning mechanism that lacks
optimal resource utilization. In this synchronous planning
mechanism, robots that complete their tasks ahead of others
are left idle until the arrival of new tasks, which entails higher
mission times. Furthermore, they neither consider inter-robot
collisions nor static collisions with obstacles in a continuous
state space while gathering samples for a field estimation.

Large-scale information gathering problems require rea-
soning about realistic planning constraints, e.g., constraints
among resources and constraints among robots’ motion. To
accomplish this task, we propose an Asynchronous Infor-
mation Gathering with Bayesian Optimization (AsyncIGBO)
algorithm that generates a distributed control law in continuous
domains and an asynchronous communication strategy to
guide a team of cooperative robots to visit the most informative
locations within a limited mission duration. Our AsyncIGBO
algorithm extends ideas from asynchronous parallel Bayesian
optimization [6] to select the most informative locations within
a limited mission duration and systematically combines them
with decentralized reactive motion planning techniques [7].
Utilizing our proposed AsyncIGBO algorithm, robots can
independently collect informative samples across a spatial field
and share their information quickly and frequently through
asynchronous communication for global decision-making.

In order to leverage the strength of a team of decentralized
robots for the information gathering task, we first characterize
the informativeness of observations from a spatial field as an
unknown density function. We then need to estimate the den-
sity function from robot sensor measurements. Unfortunately,
realistic sensor measurements from a spatial field are noisy and
do not provide precise field information. Therefore, we utilize
a Gaussian Process (GP) as the surrogate model to estimate an
unknown density function because of its potent approximation
properties and ability to quantify uncertainty from noisy sensor
measurements. This density function is estimated over time
by periodically gathering informative samples with multiple
robots from the spatial field.
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We make the following contributions in this paper: (i) For
fast, frequent updates on the density function, we leverage the
AsyncIGBO algorithm to choose the next informative samples
for robots subject to their observed knowledge; (ii) Our
algorithm learns GP hyperparameters to estimate the unknown
density function from gathered samples with independently
exploring multiple robots; (iii) Our algorithm generates a
distributed control law in continuous domains while consid-
ering realistic robotic resource and motion constraints; (iv)
We theoretically analyze the asymptotic no-regret properties
of our algorithm with regard to a known spatial field; and (v)
We evaluate our algorithm using simulated environments and
hardware-in-the-loop simulations with physical robots.

II. PRIOR WORK

Information gathering has been studied from a number of
different perspectives for various applications. Classically, it
is approached as a problem of geometric mapping via sensor
networks. Several sensor networks utilize Bayesian Optimiza-
tion (BO) for environmental monitoring [8]. However, sensor
networks are neither accurate enough to accommodate large-
scale demands nor cost-effective solutions for the information
gathering process. A variant of BO called PLAyBOOK [6] is
successful in hyperparameter tuning of Convolutional Neural
Networks, where it utilizes asynchronous parallel Bayesian
optimization. We herein extend the ideas from PLAyBOOK
to efficiently sample from a scalar field and combine them
with decentralized reactive motion planning techniques.

The core concept of informative path planning is to select
a set of locations to visit at each time step in such a way that
the missing information can be predicted using a statistical
model. In the literature on informative path planning, random
graph search [9], evolutionary optimization [10], heuristic
search [11], and sampling-based approaches [1, 12] are ap-
plied. A popular statistical model for multi-robot information
gathering algorithms is Gaussian processes (GPs) [13, 14,
15, 16, 17]. However, the majority of these works do not
consider realistic conditions, where information collection and
navigational imperfections for robots are inevitable.

Several prior online learning-enabled methods combine
Bayesian Optimization (BO) [18, 19] with robotic motion
planning algorithms to intelligently gather more samples over
time from an area. These methods are primarily rooted in
centralized coordination, where robots collect samples sequen-
tially through continuous communication. In [4], a team of
coordinated robots estimates and optimizes the coverage of an
initially unknown spatial field characterized by a density func-
tion where robots communicate their locations. An adaptive
learning goal of the density function in the unexplored areas
along with the coverage goal is studied in [5]. However, in
realistic multi-robot settings, there are also limits on resources,
e.g., fuel or battery life. To deal with a limited mission time,
there are some distributed multi-robot information gathering
algorithms [20, 21, 22] that offer strategies to intelligently
select robotic actions to efficiently gather information, but
without theoretical performance guarantees.

Inspired by these works, our AsyncIGBO algorithm plans
realistic robot trajectories in a distributed manner to efficiently

visit informative locations while minimizing the mission com-
pletion time incurred and also provides theoretical perfor-
mance guarantees.

III. PRELIMINARIES AND PROBLEM FORMULATION

We consider a set of n robots A with sensing capability
operating in a v dimensional bounded domain X C R”. We
refer to this bounded domain as a “search space” over a spatial
field where we define an a-priori unknown information density
function ¢ : X — R based on the measurement model and
sensor constraints. The goal of our multi-robot information
gathering is to perform in situ sensing of the search space
so that the states of the i" robot state x;(¢) at time ¢ are
proportional to the unknown spatial field of ¢(.).

A. Robot Dynamics and Sensing Model

We want to find a batch of promising trajectories of individ-
ual robots in such a way that the statics of robots’ trajectories is
equivalent to the scalar statics of ¢(.) through an information
metric. Assume the dynamics of the i robot is governed by
a generic motion model as follows:

x;(t) = f(xi(t), ui(t)), (1)

where u;(t) is the control to the i'" robot at time ¢. For the
particular case of a nonholonomic robot that operates in a 2-
D workspace, the robot’s motion model is approximated by a
unicycle system as:

i =wcos(d), §=vsin(d), = w, (2)

where = and y correspond to the Cartesian coordinates of the
robot, 6 is the robot’s orientation, v is the robot’s forward
velocity, and w is the robot’s angular velocity. Thus, the robot’s
state is defined as x = (x,,6)” , and the robot’s control input
is defined as u = (v,w)”. When the i robot visits a location
r € X at time ¢, it can sense the event by obtaining a noisy
measurement of the density function according to the sensing
model as in [4]:

yi = p(xi) +¢, 3)

where ¢ ~ N(0,0%) is the Gaussian white noise with
o standard deviation, and it is independent and identically
distributed across time and space.

B. Field Characterization and Bayesian Optimization

In an unknown field, we do not have direct access to
the global maximum of the information density function
. Since noisy sensor readings introduce additional uncer-
tainty to the system, we use a Gaussian Process (GP) as
the surrogate model for ¢. We define a GP prior ¢ to be
GP (u(x; p), k(x,2';0)), where p is the mean function, & is
a kernel function, and p, 6 are the hyperparameters of the
mean and kernel functions, respectively. Now, the estimation
of unknown spatial fields can be reduced to the problem of
unknown hyperparameters estimation of GP. The posterior
distribution of GP at an input location = is Gaussian as:

P(6(2)lp,0) = N((x); u(x; p), 0% () 4)
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with mean and variance

p,(ﬂ;‘) = H(JC,X)K(X,X)_IY, )
o?(x) = k(z,2) —r(z, X)K(X,X) 'w(X,2'), (6)

where K is the covariance function, X is a matrix with
an input location in each row z1,z9,--- ,x, and Y is a col-
umn vector of the corresponding observations yi, Y2, - , Yn.
Given observations D = (X,Y’), we can condition our GP
distribution on D as follows:

P(¢(z)|D; p,0) = GP(¢; pgp (23 p), kg p(x, 2':0)).  (7)

To estimate hyperparameters of GP, Bayesian Optimization
(BO) proceeds by maintaining a probabilistic belief about ¢
and designing an acquisition function o to determine where
to evaluate the function next. Although many acquisition
functions can be used in the framework of Bayesian decision,
we use the GP Upper Confidence Bound (UCB) in our
experiments. The UCB is defined as:

a(z|D; p,0) = p(z|D; p) + \/Bo(x|D; ), (8)

where 1 and o are the mean and standard deviation of the GP
posterior and /3 is the exploration constant.

C. Description of Obstacles

We have a set of n robots .4 sharing an environment with
moving robots and/or static obstacles O. Each static obstacle
O, withm € {1,---, N,} is assumed to be an a-priori known
object in the search space. The free space where robots are
allowed to explore in such an occupancy map is defined as

follows:
N,

Xfree = X\ U Om~ (9)
m=1

Next, the articulated robots must avoid inter-robot collisions
which are defined in terms of a velocity obstacle [7]. Let
i € {1,---,n} be one robot that has a current state x;,
a velocity x;, and a radius ¢;, all of which are known to
the robot and can be measured by the other robots in the
environment. Let j be another robot that has a current state
x;, velocity x;, and radius /; and is considered as a dynamic
obstacle moving in the environment. The velocity obstacle for
the robot ¢ presented by a dynamic obstacle j, denoted as
V0i| ;» is the set of all velocities of robot ¢ that will result in
a collision between robot ¢ and j at some future moment in
time, considering the fact that a dynamic obstacle j maintains
a constant velocity x;. Formally, the velocity obstacle for the
i robot presented by a j™ robot is written as follows:

VOZM = {X ‘ It >0: t(Xl—X]) S D(X]‘—Xi,fz‘—f—fj)}’ (10)

where D(x,¢) is an open disc of the radius ¢ centered at x.

D. Behavior Tree

This work uses a Behavior Tree (BT) for multi-robot
coordination purposes. The BT is a directed acyclic graph with
four primary nodes: root nodes, composite nodes (selector,
sequence, parallel), leaf nodes (condition and action), and

decorator nodes. In the BT, the execution starts from a root
node, then selector nodes execute tasks with priority, whereas
sequence nodes execute tasks in a predetermined order. On
the other hand, condition nodes are sensing units for action
nodes since they activate actions when specific conditions are
met, and decorator nodes modify the return value or running
frequency. A detailed explanation of the BT can be found
in [23].

E. Problem Statement

Gathering information from a spatial scalar field us-
ing multi-robot exploration requires making observations
Y1, ,Yn OvVer sequential locations x1, - - - , &, in such a way
that maximizes the information gain, Z. The information gain
over the it robot’s visited locations z\"*") is measured by the

mutual information between ¢ and its gathered observations
(1) .

2 as:

(2

T(209;36) = H (209) = i (2099,

1 (1

=3 log [T+ o ?K|,
where H is the entropy function such that H (N (u, X)) =
%log |2reX|, K is a kernel matrix such that K =
[K(s,s")]s.srestt, and I is an identity matrix. From a high
level perspective, Eqn. (11) quantifies the reduction in uncer-
tainty about ¢ from revealing (). Solving this task in a
distributed and decentralized manner is difficult, which is why
most earlier works [5, 4, 19] solve this sequential decision-
making problem through either planning with centralized algo-
rithms or planning in the discrete domain of the search space,
as mentioned in Section II. In this context, the problem that we
are interested in, however, is decentralized control strategies
for a multi-robot system to collect maximum information Z for
a given period of time 7" such that ¢ € [0, 7] over the spatial
scalar field ¢. Specifically, at each time step ¢, we aim to find
the optimal choice of control wu;(t) for the 7" robot that not
only takes into account our current knowledge over ¢, but also
marginalizes previous observations accumulated over n robot
trajectories. Formally, we formulate our problem of interest as
follows:

Problem. Given a team of n robots, find controls
uy(t), - ,u,(t) at each time step t to drive robots to a
series of states xo(t), -+ ,x,(t) that maximize the sum of
information gained relative to the spatial scalar field ¢ as:

n T
argmax 3" |1 Zp(0) + £ (xi(t) wit) o]

u; (b)), un(t) ;- Jt=1

subject to Egn. (1)-(10).

IV. DECENTRALIZED MULTI-ROBOT INFORMATION
GATHERING ALGORITHM

To address the above problem, this paper proposes a
distributed control law and an asynchronous communication
strategy to guide a team of cooperative robots to visit the most
informative locations within a limited mission duration. To
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deal with unknown parameters, our AsyncIGBO algorithm al-
ternates among (i) the selection of informative batch locations
that are evaluated in parallel, (ii) the estimation of parameters
from collected observations asynchronously, and (iii) Bayesian
inference, assuming that the estimated parameters are true
ones. In this section, the time step from equations has been
dropped for clarity.

A. Informative Location Sampling

Since it is costly to gather information by visiting all loca-
tions of ¢, our algorithm selects a set of informative locations
to visit at some time steps and uses the GP model to predict
the missing values. Inspired by the work [6], we develop an
asynchronous Bayesian optimization strategy to select the next
sample locations while maximizing the following objective
function:

n

xlgoal = argmax { a (a;ZID) H ¢($1|D) s (12)
T € X o j=1

where X, is the @™ robot’s local search space such that

C]
Xnieigh C Xl a is acquisition function, and v is a pe-
nalization function which facilitates the sampling diversity
among the robots. On a high level, Eqn. (12) assigns a goal
location to the i™ robot in the vicinity of its neighboring
locations in such a way that it maximizes information gain
through the acquisition function o and penalizes ;" robots
such that j # i to collect information from these locations. In
the cooperative information gathering context, the penalization
function needs to eliminate the risk of repeating sampling in
the previously gathered informative locations or sampling near
a busy location that is currently being evaluated by another
robot. To develop an exploration algorithm for a team of
decentralized robots, we assume that the unknown density
function ¢ with p(z*) = M is the Lipschitz function over
current gathered observations D with a constant L and a global
optimum value M. For the iM robot, let r; = M%m be
the associated sensing radius to the position z;. To satisfy
cooperative information gathering requirements, we propose a
simple yet effective penalization function as:

||l2s — ;]
E(ry) + VA<
where [ is a positive value such that 8 > 0, and E(r;) is
the expected value of r; over an approximated field ¢ such

that E(r;) = % Section V provides further analysis of
Eqn. (12).

Y(wi|zy,y5) = (13)

B. Generating Collision-free Trajectories

Once we choose informative sampling locations, our next
goal is to generate collision-free trajectories for n robots by
independently choosing their controls. It is important to note
that robots choose their control velocities as local, reactive
navigation strategies in a decentralized fashion without any
communication or central coordination. One inspiring method
we use to implement such navigation strategies is the Hybrid
Reciprocal Velocity Obstacle (HRVO) [7] in the presence of

f_w Robot
—>

A,
Informative . Field
— Sampling Estimation

\ 4 1 Y Move toward
Target

Robot 1
(b) Expanded sub-BT

Robot 2 Robot n

(a) High-level BT

Fig. 1: BT-based distributed multi-robot control architecture.

static obstacles and other dynamic robots in the environment.
In the HRVO method, each robot chooses a new velocity at
each time step to compute a trajectory toward its goal avoiding
collisions with any other robots or static obstacles.

Each robot i has a goal state x2°' and a preferred velocity
%P which are unknown to the other robots. The preferred
velocity is the velocity that a robot takes regardless of other
robots’ velocities or obstacles to direct itself toward its goal.
Formally, a preferred velocity for each robot ¢ toward its goal
centered at x5 is defined as:

< Xgoal
. pref . pref i Ay
X, =X; aoal (14)

[x; — x5 2

where X" is the constant preferred speed of that robot.

The combined hybrid reciprocal velocity obstacle, denoted
as HRVO;, for a robot i presented by all other robots
and static obstacles in the environment is the union of all
hybrid reciprocal velocity obstacles presented by the other
robots individually and all velocity obstacles generated by the
obstacles that can be written as

HRVO; = | J HRVO,; U | VOy;. (15)
j,if_l jeo
17#]

Therefore, each robot 7 selects its next control u; outside of
the combined hybrid reciprocal velocity obstacle that is closest
to its preferred velocity X' as:

ul = arg min|| f(x;,u;) — Xfrefﬂg sit. f(xi,u;) € HRVO,;.
u;
(16)

C. Asynchronous Information Gathering with Bayesian Opti-
mization (AsyncIGBO) Algorithm

We utilize the Behavior Tree (BT) to capture the teaming
and coordination of decentralized robots to collectively ob-
serve an unknown spatial field. The BT’s inherent hierarchical
and modular structure allows us to combine the informative
sampling strategy with asynchronous BO and a systematic
way of generating collision-free trajectories through HRVO.
We now propose the AsyncIGBO algorithm which can si-
multaneously plan and control using the BT by mapping the
high-level sampling of informative locations, which describes
which locations to visit, onto a low-level control model, which
defines how to generate trajectories for robots.
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Fig. 1 shows our BT-based distributed control architecture,
where all robots are connected through a parallel node of the
BT. Each robot behavior is defined as a sub-BT and shown
separately in Fig. 1(b). Each robot performs three sequential
actions: 1) sampling of informative locations from a spatial
field ¢, 2) moving toward a target location assigned by the
informative sampler, and 3) estimating the field from gathered
observations. First, the reactivity of BTs enables a robot to
reason about the maximum informative location based on
the current knowledge over ¢. Once a high-level informative
location, xfoal, is planned for the i" robot, the modularity
of the BT enables generating low-level controls using HRVO
to make progress toward the z£" location without needing
to plan collision-free trajectories for others. Asynchronous
communication among robots is established using a selector
node. As it is illustrated in Fig. 1(b), the selector nodes of
sub-BTs need to return success to update the field estimation
through communication. However, the selector node returns
success when a robot reaches its target destination or the
budgeted time for executing the assigned task is exceeded.
Otherwise, the selector node returns the running status due to
the move toward the target node. Finally, when the i robot
accomplishes its task by either visiting the assigned location or
exceeding the time budget for that assignment, the reactivity
of the BT enables asynchronously updating of the surrogate
model ¢ through its current observation y; and sharing this
observation y; with others through communication. This way
robots progressively learn the latent phenomena by updating
GP parameters from gathered observations. Formally, after the
desired number of robots ¢ < n complete their tasks, we
assign new tasks to them without waiting for the remaining
b = (n — c) busy robots to finish their tasks by estimating GP

parameters as:
n b

(p7 9) = argmaXH Hp(yu yl|$i7$l7 D7 Db7 D7,7p7 9),
s i=11=1

a7

where the set D contains the locations associated with obser-
vations that robots have gathered so far, the set D, contains the
busy locations and corresponding observations which are not
accessible during the time of decision-making, and the set D;
contains the current locations and corresponding observations
obtained through communication among all robots. Thus,
the interleaved plan-and-control process of the BT enables
decentralized mobile robots to find maximally informative
trajectories.

V. ALGORITHM ANALYSIS

In this section, first, we assume that the unknown density
function ¢ can be modeled as the realization of GP [4]. Sec-
ond, we also assume that ¢ holds Lipschitz continuity [24] and
then theoretically analyze the asymptotic no-regret properties
of our proposed AsyncIGBO algorithm with respect to a true
density function, ¢. Using the Lipschitz continuity property, at
each step, the i robot selects a sample from its neighboring
locations that eliminates the largest possible portion of the
input space while guaranteeing, with high probability, that

the eliminated part does not include the maximizer of the
function [24].

Lemma 1. Let the unknown objective function be a Lipschitz
continuous function with a constant L which has a global
optimum value M. Let r; be the associated penalization radius
of the ith robot to the location x; such that r; = M
and let E(r;) be the expected value of r; such that E(r;) =

7“““127]”‘ . Then,

2e2 2
Plr; <E(r;) + ¢ <exp (— ‘ 3 >7
o

holds for e = /B2,

Sketch of Proof. We assume the unknown objective function
is Lipschitz continuous with a constant L and has a global
optimum value M. Hence, the following relationship holds
as:

|¢(zi) — M| < Llx; —2]|. (18)

This implies * cannot lie within the circular region centered
on x; with a radius r;. In the remainder of the proof, we first
recall a result from [4, Lemma IV.5] which states that if p is
an approximation of the true density function, ¢, then

|6(as) — plai)| < V/Bo(x:)

holds for any x; any ¢t > 1 with probability at least 1 — 6.
Now, adding and subtracting M in Eqn. (19), we have

M + ¢(x;) — M — p(as)| < v/Bo(x;)
=M — ¢(x;)| < |u(z:) — M|+ /Bo(z;)
_ M _L¢($i)| < |/1'(-73i)L_ M| +\/B@
=r; <E(r;) + \/B#

19)

Since ¢(r;) is a normal random variable N (u,0?), using
Hoeffding inequality for all € > 0, we can then say from [24]
that

272
Plr; <E(r;) + €] <exp (—26 2L ) .

g O
Thus, the penalization function in (12) guides the i robot to
sample the next asynchronous locations by reducing the value
of the acquisition function at those locations centered on z;
with an expected radius E(r;).

We now show that, under the assumptions of discrete
observation set D and a known field ¢ with respect to hyperpa-
rameters, the regret between the optimal locational utility and
the utility efficiently obtained through the proposed algorithm
is sub-linear in 7. Since our locational utility function is a
combination of acquisition and penalization functions, we start
with the recent regret analysis results in [4, Lemma IV.5] to
illustrate a sub-linear property of the acquisition function (8),
and then we combine the Lemma 1 to provide a precise bound
over the penalization function. At a high level, knowing a
penalization region allows us to reduce regrets by avoiding
redundant sampling.
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Theorem 1. Let R be the regret at stage t € [1,T). If the field
¢ is the realization of a GP with mean . and covariance K,
our proposed algorithm ensures that

T
v/ B —1)(
/ Ryt < [ o VB0 — @)
t=1 t=1 exp( 2(*;71;)2)
where B(t) = 2log(|D|m/0), and 3~ m

Sketch of Proof. We can rewrite Eqn. (12) as:
xgoal

= 1,7Tt > 0.

= argmax Y (¢, x;),
T, EX"

neigh

where T is the locational utility that captures the need for the
robots to collectively move toward some locations in order
to obtain the maximum information based on the current
estimation of field ¢, as:

n

(bt mz H

Jj=

T(¢taxi) = ¢ (leyz .’I}l|.'IIj, Y; = ¢t(‘rj>)a

Let T* = maxxlexmmh Y(¢,zF) be the optimal locational
utility and x} = argmax, . X Y(¢,x;) be the optimal
choice of a sample location with respect to a known density
function ¢. The regret R(t) at time ¢ is then the difference
between the locational utility with the current approximation

of the field and the optimal locational utility that is written as:
R(t) = Y(¢¢, ;) — T*, such that

(d)ta'r’t) < T(¢7 ) < T
From Eqns. (13) and (12), we get:
R(t) = Y(¢, i) = T* < T(¢, x;) — T(gy, ;)  (20)
=22 2D Tz—(lE(n)Jl‘f/%l"(‘i)(mi)> (a(z) — ag(x))21)

Eqn. (21) shows two primary sources of regrets: estimation
error due to field approximation, and penalization error due
to approximation of the penalization radius. From [4, Lemma
IV.5], we can replace the error in the field approximation as:

R <3Sl — x|

i xeD
VDot~ 1))
rlt) — (E(ra(t) + /B LD

Let ¢o = |D|maxy o, Y ;> .cp ||z — xi]|. From Lemma 1,
we can replace the penalization error as:

R(t) \/ to(t —1)(x;)

2¢2[.2
exp( o(t—1)2 )

Hence,
o(t —1)(x(
\/ (z:(¢)) it

T
/ R(t)dt < —
t=1 t:l exp ( 2(2 Ii)2) D

Remark 1. Since the global Lipschitz constant L of the
objective function is unknown, we can approximate L locally
for each busy location of robots. In addition, the global
optimum M is unknown in practice and this can also be
approximated by the best observed function value.

VI. SIMULATIONS AND EXPERIMENTS

In this section, we describe our simulations and real-world
experiments deploying our AsyncIGBO algorithm in a variety
of spatial fields for information gathering purposes. Our exper-
iments compare the AsyncIGBO algorithm to a synchronous
IGBO algorithm, evaluate their performance with different
sizes of teams, and study their regrets in various environments.

a) Simulation Results: We simulate a team of coopera-
tive robots in a large-scale environmental monitoring setting.
We conduct our simulations in a geographic area which is
50 m long on the z-axis and 20 m long on the y-axis. The
environment consists of several static obstacles as shown with
black circles in Fig. 2. Inspired by [20], the scalar field is
generated according to a sum of Gaussian functions as:

e )

where I'; values are set to {0.33,0.33,0.33}, A; values are
set to {(—35,3.0), (—16.5,—2.3),(0,2.3)}, and €; values are
set to {(20.7,20.7), (15.0,15.0),(9.9,9.9)}, for [ € {1,2,3},
respectively. The resultant scalar field is shown with a gray
scale background image in Fig. 2. For this simulation, three
robots are initiated with random states as shown in Fig. 2(a),
and their sensing radii are set to 3 m. Our AsyncIGBO algo-
rithm generates the next best sample location in the proximity
of each robot based on the current observations over the field.
Each robot asynchronously accomplishes its task by visiting
the assigned location and obtaining the sensor measurements
from respective locations. Therefore, the AsyncIGBO algo-
rithm utilizes this information without waiting for other robots
to finish their tasks. The implementation of the HRVO method
helps to generate realistic motions for decentralized robots by
avoiding static obstacles and inter-robot collisions, as shown in
Fig. 2(b). Finally, each robot tries to minimize the cumulative
regrets by visiting the most informative locations first. As we
can see from Fig. 2(c), robots prioritize visiting the light gray
regions where information gains are higher than in the dark
gray regions.

b) Physical Experiment Results: We utilize two au-
tonomous mobile robots to validate our algorithm. Due to the
limited space and the size of the robot platform (shown in
Fig. 3), these experiments are conducted without any static
obstacles in an indoor laboratory environment.

In this experiment, we utilize a real-world ROMS water
salinity dataset [25] to generate a spatial scalar field. We then
project this scalar field to a 2 m x 2 m workspace as illustrated
in Fig. 3(b). Thus, a query is made with a two-dimensional lo-
cation as an input to obtain a scalar measurement (output). The
three major components that drive our decentralized robots
are (a) an Async-BO probabilistic model with the information
gain objective, (b) an HRVO for local trajectory planning, and
(c) a BT for global coordination. Our Async-BO takes two-
dimensional sampling locations as inputs and predicts the next
best sampling location based on a robot’s current position.
Next, our local trajectory planner generates a collision-free
trajectory to drive the robot to its current destination. Unlike
existing works which only focus on point-based information

(22)
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Fig. 2: Decentralized multi-robot information gathering simulation: Three robots starting with random initial states are
visiting the most informative regions on a spatial field while avoiding not only static obstacles but also inter-robot collisions.

Fig. 3: Physical experiment with multiple robots: Two robots are collecting information from a projected spatial field.

gathering [4, 1], our work considers a realistic safe motion
model to collect information from a given area. In some cases,
an informative sample location from the Async-BO might not
be feasible to explore, due to inter-robot collisions. Therefore,
we introduce a time-budget in our robotic information gath-
ering procedure using the BT-based coordination mechanism.
Once the robot reaches its destination or the robot gets stuck in
a loop when it tries to satisfy collision avoidance requirements,
the robot communicates its current measurement and location
information with others using the BT.

We conduct this experiment multiple times and report the
average results. The AsynlGBO quickly identifies the most
informative locations with few samples collected by our de-
centralized robot team, leading to faster convergence in the
regret metric. The spatial field is represented with a colored
image projected over the geometric space, where yellowish
colors represent the most informative regions and bluish colors
indicate the least informative regions. We observe that the
robots using the AsynlGBO algorithm effectively navigate
to the most informative locations to minimize cumulative
regrets while generating a good approximation of the field.
A video related to this experiment can be found at https:
/lyoutu.be/I86su28mdJc.

c) Performance Analysis: In this paragraph, we address
two questions: (i) the scalability of our proposed AsyncIGBO
algorithm and (ii) a comparison between asynchronous and
synchronous IGBO algorithms. We evaluate the performance
of our algorithm with global optimization of Eqn. (22). In this
setting, we are interested in computing regrets with respect to
the global optimum value. To facilitate this comparison, we
consider a measure of seconds for performing the same task
with different numbers of robots. For each experiment, robots

are initialized at random states, and then the experiment is
repeated 10 times.

T
—— 2 Robots
60 - ——— 4 Robots ||
—— 6 Robots
—— 8 Robots
s 40 f
°
®
(=2
20 + f
0 |- .
| | | |
0 10 20 30

Simulation Time (seconds)

Fig. 4: Cumulative regrets of the AsynIGBO algorithm de-
crease with an increase in the number of robots.

Fig. 4 shows the regrets of robots with respect to simulation
times for teams of 2,4,6, and 8 robots, respectively. As
illustrated in Fig. 4, a team of 2 robots takes the longest time
to reach a convergence level. Hence, cumulative regrets for
a team of 2 robots are higher. On the other hand, a team
of 8 robots takes the shortest time to reach a convergence
level. Hence, cumulative regrets for a team of 8 robots are
lower. Thus, cumulative regrets of the AsyncIGBO algorithm
decrease with an increase in the number of robots, which
shows that our algorithm is scalable for a large team of robots.
To predict a complex spatial field using our AsyncIGBO
algorithm, we need to choose a suitable GP kernel to efficiently
collect samples over the target area. Table I demonstrates
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Matérn Kernel RBF Kernel
# robots - -
# evaluations | mean regret | # evaluations | mean regret
3 79 0.528 72 2.52
5 29 0.093 16 0.54
7 48 2.818 51 4.26

TABLE I. Sample efficiency comparison: Matérn Kernel is
more sample efficient — requires fewer numbers of evaluations
to converge, than the RBF Kernel.

2 robots 4 robots 6 robots 8 robots
SyncIGBO 685+49 | 179+4.1 | 3.7+£21 | 22+1.8
AsyncIGBO | 3.6 £2.3 2.3+1.3 28+1.8 | 1.4+1.0

TABLE II: Performance comparison: Our AsyncIGBO out-
performs a SyncIGBO in terms of lower mean regrets.

a comparison between two popular GP kernels, Matérn and
Radial Basis Function (RBF) kernels. As it is obvious from
Table I, the Matérn kernel requires fewer sample evaluations
to reach convergence and also achieves lower mean regrets
than the RBF kernel. Thus, we utilize the Matérn kernel in all
of our experiments.

The recent closest work to our algorithm has utilized a syn-
chronous IGBO (SyncIGBO) algorithm in a discrete domain
setting [4]. We compare asynchronous and synchronous IGBO
algorithms by performing head-to-head regret comparisons
with different numbers of robots. To maximize information
gain within a limited mission time, we need to reason about
(i) how much cumulative area should be covered by all
robots collectively and (ii) how much traffic congestion will
be introduced by increasing the number of robots. Although
information gathering using multiple robots benefits from our
distributed control architecture, inter-robot collision avoidance
needs to be taken into account for safe deployments of
robots. Our mean regrets do not monotonically decrease with
an increase in the number of robots since robots may take
longer trajectories to safely collect information. However, our
asyncIGBO algorithm outperforms the syncIGBO algorithm
in every scenario, as demonstrated in Table II.

VII. CONCLUSION

This paper presents a scalable planning algorithm to find tra-
jectories for decentralized robots used for gathering the max-
imum information from unknown spatial fields. The informa-
tiveness of observations from the spatial field is characterized
as a density function. Our proposed AsyncIGBO algorithm
efficiently chooses the next best informative location for a
team of decentralized robots. We then present a distributed
reactive planning and control technique to generate continuous
motions for robots to safely visit the informative locations
within a limited mission period. We evaluate our algorithm
by theoretically analyzing its asymptotic no-regret properties
with respect to a known spatial field. Finally, we validate our
algorithm through several simulation and physical experiments
with multiple robots. We can conclude from our results that
our AsyncIGBO algorithm is scalable to an increasing number
of robots and outperforms the SyncIGBO algorithm in terms
of mean regrets.
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