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Abstract—Localization in underwater environments is a fun-
damental problem for autonomous vehicles with important ap-
plications such as underwater ecology monitoring, infrastructure
maintenance, and conservation of marine species. However, sev-
eral traditional sensing modalities used for localization in outdoor
robotics (e.g., GPS, compasses, LIDAR, and Vision) are compro-
mised in underwater scenarios. In addition, other problems such
as aliasing, drifting, and dynamic changes in the environment
also affect state estimation in aquatic environments. Motivated
by these issues, we propose novel state estimation algorithms for
underwater vehicles that can read noisy sensor observations in
spatio-temporal varying fields in water (e.g., temperature, pH,
chlorophyll-A, and dissolved oxygen) and have access to a model
of the evolution of the fields as a set of partial differential
equations. We frame the underwater robot localization in an
optimization framework and formulate, study, and solve the state-
estimation problem. First, we find the most likely position given a
sequence of observations, and we prove upper and lower bounds
for the estimation error given information about the error and
the fields. Our methodology can find the actual location within a
95% confidence interval around the median in over 90% of the
cases in different conditions and extensions.

Index Terms—Marine Robotics, Underwater Localization, Op-
timization, Partial Differential Equations, Spatio-temporal Fields.

I. INTRODUCTION

A central challenge in marine robotics missions is underwa-
ter localization. One significant barrier is that traditional sen-
sor modalities used for state estimation in robotics are affected
by lack of reception (for GPS and compasses), absence of
visual landmarks (for vision), aliasing (for LIDAR), significant
drifting (for IMUs), and dynamic changes in the environment.
Common alternatives for underwater localization are acoustic
sensors such as Doppler Velocity Logs (DVLs). However, in
some scenarios, DVLs can not contact the ocean floor, and it
can also be costly to equip a fleet due to their price range. An-
other and periodic constantly resurfacing to get a GPS reading.
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Fig. 1. Localization in an underwater environment.

However, this process is time and energy-consuming and can
compromise stealth in covert missions. This paper proposes
novel alternative state estimation algorithms for underwater
robots equipped with sensors that can measure varying spatio-
temporal fields in water (e.g., temperature, pH, chlorophyll-A,
and dissolved oxygen). Besides these commonly used sensors,
we also assume that the robot has a model of the evolution of
the phenomena in the form of partial differential equations.
We frame underwater robot localization in an optimization
framework and formulate, study, and solve a state-estimation
problem.

A. Related Work

Most underwater localization approaches rely on Bayesian
filters such as Kalman Filters (and their extensions) and non-
parametric particle filters. A review of these techniques can be
found in [1]. Common modalities include acoustic localization
or visual odometry [2] combined with dead reckoning. This
paper aims to propose alternative state estimation approaches
without an established infrastructure. Our ideas are also con-
nected to state estimation approaches based on signal strength
[3] and the construction of minimalist filters to solve robotics
tasks [1].



Our research is connected to efforts to augment traditional
Terrain-Based Navigation (TBN) methods developed before
satellite-based navigation methods. To enhance the ability to
navigate and localize, we have developed in our previous
work an Augmented TBN (ATBN) that incorporates water
parameter data (e.g., temperature, salinity, pH) to enhance the
topographic scalar field that the vehicle uses to navigate under
the traditional TBN framework [4]—[6]. The hypothesis is that
including physical water data in the terrain map provides
a more robust map. In this paper, we are extending our
Augmented TBN models to be resilient to spatio-temporal
dynamics.

To make the paper self-contained, we will introduce the
mathematical notations and basics used in our methods in this
section.

B. Partial differential equations (PDE)

Recently, the importance of mathematical modeling has
reached crucial levels and PDEs have played a key role due
to their adaptability and interpretability. They have been used
to model different phenomena from socio-economic sciences
[7], biology [8], and oceanography [9]-[11]. Phenomena such
as pH, temperature, and salinity usually have been modeled
using PDEs. Depending on their nature, diffusion, advection,
or combination are used to model each phenomenon [12]-
[14]. Consequently, it is important to examine how those
phenomena behave given certain initial conditions. Here, each
phenomenon is a scalar field f : R? x [0, e2) == R. One of
the most used models for the evolution of these scalar fields is
the advection equation given by

%+ b-Bf = g(x,t), for (x,t) BR? x (0, =)
f(x,0) = h(x), fort=10

(1)

which has the solution
z t
f(x,t) = h(x- tb) + g(x+ (s- t)b,s)ds (2)
0
provided that g(x, t) @ C(R?) and it has a compact support.
Another important model is the diffusion equation, inspired
by the heat diffusion problem, for R2. It is given by

%- Af = g(x, 1), for (x,t) BR? x (0, o)

f(x,0) = h(x), fort= 0.

(3)

It has the solution

f(x,t) = O(x -y, t)h(y)dy
%z, (4)
+ O(x - y,t- s)h(y, s)dyds
0 R
where @O(x, t) is called the fundamental solution for the heat
equation and it is given by
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II. PROBLEM FORMULATION

Our problem is motivated by a scenario in which a robot
moves in an underwater 2-dimensional plane and needs
to localize. In our formulation, we have one robot, which is
moving in a two-dimensional open and bounded space D
R2. The robot does not have access to traditional sensors
used for localization (e.g., GPS), but it has sensors capable
of measuring different water parameters, such as pH,
temperature, and salinity at a given time . Each of those
is a known scalar function fx(x,t) : D = R, which is a
solution of (1). This feature provides physical and realistic
modeling of a spatio-temporal field. Also, 1< k< m and m
are the numbers of those characteristics which the robot can
measure. Therefore, the robot at each time t returns a set of
observations y® = (y%,...,yt )" @R™ at the point where it s
located. This motivates our problem of interest.

Robot localization in spatio-temporal fields problem

Given a set of (likely noisy) observations yt and a set of
functions {f1(x, ©), ..., fm(x, t)} modeling each phenomenon
find the current location of the robot in the domain D.

I1l. METHODS
To address the problem of localizing in spatio-
temporal fields we define the function F(x,€) =

(fl(X, t’\)l sy fm(x; f))
problem can be posed as:

for a fixed time %. Hence, the

F(x, f) =yt

6
st. x@D. (6)

Nevertheless, solving this equation using some method (e.g.,
Newton) has several problems. First, if we consider Newton’s
method, it uses the inverse of the Jacobian function to compute
the solution x. Usually, it is necessary to restrict the number of
functions to the number the variables (2 in this case). Second,
since solving this non-linear equation requires an iterative
method, the method tends to diverge if the starting point is far
from one solution. Third, it is not possible to handle corrupted
observations using this approach. Therefore, if the Jacobian
has a high condition number, it leads to inaccurate system
solutions.

Therefore, to handle these problems, we propose an opti-
mization formulation. First, using a metric d defined on R™,
the aim is to solve the minimization problem

min  d(F(x, ), y")

XBR
st. x@D.

(7)

This approximation provides a manner to soften the direct
approach given in (6). Those methods, namely regularization
methods have become popular in handling ill-posed problems
and converting them into optimization problems. Here, the
metric determines the priorities in the optimization problem. it



determines the nature and some properties of the optimization
problem solution. The most used metric is the L2 norm
because of its derivative properties. It is possible to use a
different biased metric toward one measure. This optimization
problem includes (6) problem, if there is any x @ D solving
(6), therefore, x solves the problem (7). Also, the problem al-
lows having approximated locations to the given observations.

Also, we are interested in studying the scope of this
approach through bounding the error if we consider noisy
observations. The following section aims to give bounds and
approximations of the optimal solutions, considering sensor
noise in the measurements (i.e. corrupted data or sensor
deficiencies). For this reason, we will define the notation used
henceforth.

« We will refer to the functions f(x,f) and F(x, ) as
f(x) and F (x) keeping in mind that those phenomena
are considered in the fixed time t and that therefore they
are modeling spatio-temporal phenomena. In addition, the
gradient and the Hessian matrix, given a scalar function
f(x) will be named Bf(x) and H¢ (x) respectively. In
the case of a vectorial function F(x, t), we name the
Jacobian matrix as J ¢ (x). Lastly, we rename y*! and ytas
yi and vy. '

- In this case, d(x,y) = Bx - y@ with x,y B R" is theL?
norm. Furthermore, if A is a matrix then, BAR is the
matrix subordinate norm defined as

BAE = sup BAXE = Omax(A). (8)

BxE=1
Where omax(A) is the largest singular value of A.

A. Main results

Now, we present the main results (and contributions) of this
work. The first two results are considered negative results.
However, the third result is a way to “fix” those negative
results into an upper and a lower bound. We consider a model of
the sensors where each observation can be perturbed by cap-ture
noise or sensor limitations or deficiencies. Therefore, each
collection of measurements y is modeled as y = F(x®?) + E
where F(x?) is the real measurement at the real location
and E N (0, 2) is the multivariate normal distribution and
2 a diagonal covariance matrix to take into account the
perturbations over the measurements described before.

Proposition 1. Let x? the real location, y = F(x?) + Ethe
corrupted set of observations, where y = (y1,...,ym)? F =
(fe(xB), ..., fm(XE))%, E = (€1,...,em)? and yi = fi(xB) +
€; the corrupted observation of the phenomenon i. Also, let

x? the solution of (7) with and D a convex and compact set.
Then,

( )
|&i |

< x - x%a. (9)
BE (X

maxe
x@D

Proof. We consider the best case of (7), that is, when the dif-
ference is precisely y - F(x®?) = E. Therefore, the functional

achieves the value ||E||. In consequence, we have that

fi(x2) = fi(x?) + . (10)

By the mean value theorem there is a ; [ (0, 1) such that

fi(x2) - fi(x") = Bfi((1- 4)x" @+ 4ix®) - (x® = x7) (11)

and the Cauchy-Schwartz inequality
[fi(xE) - fi(x")]| <B Bi((1- 3)x"+ 4x")B BX” ¢ x"0

<maxB B(x)B Bx”- x"E.
xBD

(12)
Then,
&l pe_ g, (13)
max@ B (x)& E
x@D
Since this occurs for each i, we have that
( " )
&
_— £ -
=1 max@ B(x)E Bxe - x°0 (14)
xBD
as desired. O

This deterministic result allows us to estimate the error
between the noisy solution and the actual location if we know a
bound for the noise in each phenomenon. On the other hand, if
we consider the random nature of each €;, we are interested in
bounding E[Ex? - xP@], and therefore we can state the
following derived result for random variables.

® xZ, E, F(x) and D as in the

Proposition 2. Let x £/
Proposition 1 with E N (W, Z2), & N (ui, 02) .and m;

= max@ B (x)a, then,
xE@D

(s ! 1)

i=T__a_)'(m %{ exp _2:2'2 +ui erf ﬁ% < E[x—x]
' (15)
where erf(x) is the error function defined by
2 Z x 2
erf(x) = ¥-— e " dt (16)
T o

Proof. Starting from the inequality (13) we use the property of
the injegrals preserving inequalities. That is, if f(x) < g(x),

then, f(x)dx < g(x)dx. We obtain
Rn .
l&i |
e e P yeeey <
om maxi B (x)E (e1 €m)der - - - dem
Z x@D
Bxy - X"Bp(e1, ..., em)des - - - dem = E[BX} - X"E]
Rm
(17)

for each i. By virtue of Fubini’s Theorem (here, we are
assuming that the expected value exists i.e. the integral (17)
converges) we can reorder (17) as the nested “double” integral
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gm Maxa ] (x)& (e1 €m)des - - - dem
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Ell p(e1, ..., em)d& de;
1

“maxB B (x)B 4
x@D

RmM-

where d§, = dey---dgj-1d€i+1 - - - dem. The inner term of
(18) is the marginal probability of €; i.e. its probability density
function p(gj). So, we have that the right hand term of (18) is
E[|&i|] multiplied by a factor. Joining (17) and (18) we have
the inequality

[leil] < E[BX"— x7a]. (19)

—
max@ B (x)a
x@D
The random variable |g| follows a folded normal distribu-
tion |s| FN(ui,ozi) [15]. Writing its expectation value
explicitly we obtain the bound

s ! !
2 2
%Iz- exp _Z%IZI + W erf p% < E[ExE - x7@)
| (20)
i =1,...,m. Using the argument as before to obtain (14)
from (13) we have the desired result. L]

Proposition 2 gives a probabilistic approach to our problem,
but it seems to be ignoring the covariances between random
variables. However, it is not since the results are in terms of the
maximum and the maximum values of the semi-positive matrix
> are found on its diagonal. Actually, using the Cauchy-
Schwartz inequality the variances outweigh the covariances
Covlei, g] = Zij £ = ZiiZj; = 0ioj. Similarly, regarding
to F and f; we can change the term max@ B (x)& by the
term rrlaxl |Je (x)] |, nevertheless the firstxeDrm gives us a more
narr0\)/(v[t))ound for the error, so it is better for our purposes.

Now, we can assume that the random variables have zero
mean if we know them beforehand because we can correct
the measurements by the mean of random variable €;, which
models the measurement i. Therefore, the study case when
the random variables have zero mean is a corollary from
Proposition 2.

Corollary 1. Let x?, x? and D, E, F (x) as in the Proposition
1with E@N(0, Z), & BN (0, g?) and m; = maxB B(x)E,
xB@D

then, (s _ )
207 < E[@x] - x"@).

i=1,...,m r[mi2

(21)

We have proven two negative results since both are lower
error bounds. However, we would like to have an upper bound
of the error. This can be very difficult if we have large level
sets for the functions fi;. Therefore, to simplify the analysis,
we show an approximate upper bound of the error.

Proposition 3. Let x?, x%, g, fi(x) B C?(D) and D as in
the Proposition 1, then,

Bx? - x"@ = C(E) < KRER. (22)

Where K depends on F (x?), J¢ (x®) and x2.

Proof. We notice that x is a solution of (7) if and only if x
is a solution of the following problem

min

1
ZBF (x) - yE*
xBD 2

(23)
The problem (23) is easier to work than (7), since we are

avoiding the square root derivative in the origin. Therefore,

any solution xZ of (23) satisfies the first order conditions

I ODF (D) TF(x7) - §)= 0. 24

—
-y
Let G,H : D - R? defined as G(x) = J¢ (x)2(F(x) -
F(x?)) and H(x) = J¢ (x)%E, so, (24) can be written as

G(xf) - H(xf) =0 (25)

with G(x?) = 0. Keeping this in mind, we expand G(x) -
H(x) in its Taylor series

G(x%) - H(x%) = G(x") - H(x")

+ (Je(x®) = Ju(x") (x%- x")  (26)
+ o(x - x°@%).
Using (25) and discarding the residual term we have that
x2 - xT= (Jo(x®) - Ju(x®))"TH(x®) = C(E). (27)

We bound K (E ) using the consistency property of the induced
matrix norm (see [16])
BC(E)E = B(Je(x”) = Ju(x")) "' H(x")B
< Be(x?) - Ju(x?)) @ BH (x%)B
B(Je(x") = Ju(x"))"'@ BJF (x")ED
B(Ja(x®) - Ju(x?))7 1@ BJF (xP)B BER.

(28)

IN

Then, we have one upper bound for C(E). Also, it is possible to
discard the term Jy (x?) if BEE is small enough compared to
By (x?)B and @G (x?)E leading to the bound approximation

BK(E)B < Bl6(x?) 1@ BJf (x%)B BER. (29)

We notice that if a matrix A has inverse, the eigenvalues
of the matrix A-2A-1" = (APA)"1 = (AAP)"! are the
multiplicative inverse of the eigenvalues of the matrix AAP.
Hence, the maximum singular value of A~1 is the inverse of
the lowest eigenvalue of A, leading to the bound

AC(E)E < Blg(x?)™ '@ @J¢ (x%)2 BED
- Cmax(JF(X))
Omin(ie(x))

I 1

RED (30)

K

as desired. O



In practice, propositions 1, 2, and 3 can be used to estimate
error bounds once our method is applied. It allows some
control and knowledge about the magnitude of the possible
discrepancies due to the corrupted or noisy observations with
the actual locations.

IV. EXPERIMENTAL RESULTS

We present several computational experiments of the pro-
posed method using different noise levels. The simulation
scheme is composed of a selection of a random time %
[0,100] and the domain D = [0,200] x [0, 200]. Then, a
random real location x? @ D is selected. Here, we modeled
three phenomena fi(x, f) using functions that satisfy the
advection equation 1.

A. Noise

To assess the proposed model, we computed the real obser-
vations F(xZ, t). Next, there are computed corrupted obser-
vations yf = F(xZ, ) + E. Lastly, we solve the optimization
problem (7). We used a fixed time t and 1000 random locations
to test the performance of the presented method.

B. Support of the functions

A hypothesis in this work is that the measurements should
be close to the support of the function, we should have mea-
surements far from zero in absolute value, and we addressed
this part in the results section. This makes sense since the
super-level sets L?(f) defined as L*(f) = {x R2
f(x) = c} tend to be smaller for higher values for exponential
functions, in addition, the sub-level sets L_(f) defined as
Lo (f) = {x R2 : f(x) < c} are big when they contain
values close to zero.

Therefore, we performed tests constraining different por-
tions of the support. Namely, we are considering those mea-
sures that are bigger than § {20, 50} in absolute value.
Essentially, we are considering values lying within the inter-
section

Ly (fi) BL G (fi) . (31)

i=1
C. Direction and magnitude of the advection

Lastly, the models we are considering are solutions to
the advection equation (1), which have the shapes derived
from the fundamental diffusion equation solution (3). Keeping
in mind that the transport direction is a key part of the
advection equation, we tested two types of motion, changing
the directions in which the functions are moving to. First,
three vectors separated by 7. radians starting by the vector
[1,0] in the counterclockwise direction i.e.: [1,0], [1,1] and
[0, 1]. Second, vectors pointing the same direction [1, 1] but
with different magnitudes.

Surface examples

Level sets, real and predicted points

100 150 200 0 E) i 50

Fig. 2. Qualitative results. Top shows examples of surfaces representing the
phenomena, solutions to Eq. (1) in a fixed time . The bottom presents the
level sets of the surfaces with the predicted and real points.

D. Qualitative and quantitative results

Fig 2 presents qualitative results from our simulation. The
proposed method is tested using functions that solve (1) and
have similar shapes to the fundamental solutions for the heat
equation (3).

Although these are qualitative results, we can observe that
the most accurate predictions are made when the observations
are close to the support of the three functions (see Fig. 2).
This is important because points far from the support can be
confused with points in the surroundings, which have similar
values for the observations. Also, we observe that using this
methodology it is possible to combine different sources of
information to estimate the current location. Even, if necessary it
is possible to change the functional F(x, t) defined in (7) to
weight the uncertainty or precision of each phenomenon.

The results show in Fig 3 that localization performance is
better closer to the support of the function. Also, it reflects
that as long as the level sets (and therefore the support) the
problem may become less accurate. Furthermore, it is possible
to appreciate that the direction of the advection process
considerably affects the performance. A possible explanation
for this is that the distance between supports becomes bigger as
time passes, reducing the search area.
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Fig. 3. Quantitative results of Problem 1 using different directions (top) and
same direction (bottom), noises, and supports for the functions. The orange
line corresponds to the median, the whisker to the interquartile range, and the
notches determine the interval of 95% confidence around the median.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new method to localize a robotin
an environment where it is impossible to get accurate GPS
signals or bathymetry measures using environment-modeled
spatio-temporal data collected by the robot. We studied the
implications of the presented method theoretically, giving
bounds of the estimation errors given noisy observations.

PDEs posed considering different domains can be quite
difficult to deal with. Unfortunately, to solve each problem, it
is necessary to define a function that depends on the
domain and the equation itself. This function is called Green’s
function, and it takes advantage of Duhamel’s principle [12],
[13] to give a closed solution form. Nevertheless, this function
has more theoretical purposes than practical ones. In this sense, it
is reasonable to think that the solutions in different domains
may have similar forms to the fundamental solutions.

In the near term, we will consider different PDE models to
consider richer and more dynamic environments. Also, PDEs
perform well when the initial condition h(x) and the param-
eters governing its behavior b, g(x,t) are known. However,
those parameters should be calculated or estimated beforehand
and updated if possible. We would like to explore the usage of
satellite data, more models, and regularization techniques

to estimate these parameters.
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