Journal of Fourier Analysis and Applications (2023) 29:12
https://doi.org/10.1007/500041-023-09992-4

n

Check for
updates

On Harmonic Hilbert Spaces on Compact Abelian Groups

Suddhasattwa Das'® - Dimitrios Giannakis?2

Received: 27 October 2021/ Revised: 29 December 2022 / Accepted: 29 December 2022
© The Author(s) 2023

Abstract

Harmonic Hilbert spaces on locally compact abelian groups are reproducing kernel
Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of
weighted L? spaces on the dual group. It is known that for suitably chosen subadditive
weights, every such space is a Banach algebra with respect to pointwise multiplication
of functions. In this paper, we study RKHSs associated with subconvolutive functions
on the dual group. Sufficient conditions are established for these spaces to be symmetric
Banach *-algebras with respect to pointwise multiplication and complex conjugation
of functions (here referred to as RKHAS). In addition, we study aspects of the spectra
and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a
compact abelian group G to have the same spectrum as the C*-algebra of continuous
functions on G. We also consider one-parameter families of RKHSs associated with
semigroups of self-adjoint Markov operators on L?(G), and show that in this setting
subconvolutivity is a necessary and sufficient condition for these spaces to have RKHA
structure. Finally, we establish embedding relationships between RKHAs and a class
of Fourier—Wermer algebras that includes spaces of dominating mixed smoothness
used in high-dimensional function approximation.
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1 Introduction

The notion of a harmonic Hilbert space on the real line was introduced by Delvos [9],
extending earlier work of Babuska [2, 3] and Prager [39] on periodic Hilbert spaces.
Subsequently, Feichtinger, Pandey, and Werther [18] constructed harmonic Hilbert
spaces on arbitrary locally compact abelian groups (LCAs), and characterized their
properties using the theory of Wiener amalgam spaces [16]. In essence, a harmonic
Hilbert space H;, on an LCA G is the image under the Fourier transform of a weighted
L? space on the dual group, G, associated with a weight function w = A~1/2 : 16—
Ry, where A € L! (G). Harmonic Hilbert spaces are reproducing kernel Hilbert spaces
(RKHSs) of continuous functions, and have a number of useful properties for function
approximation on LCAs [9, 10, 18]. In particular, using results in [15], it has been
shown that if w is subadditive (up to a constant C),

wy +y) < Cwy)+wy)), v,y €6, (1)

then H,, is a Banach algebra under pointwise function multiplication [18].
In this paper, we study harmonic Hilbert spaces induced by subconvolutive functions
L € L'(G), satisfying

(L xM)(y) < Ciy), y e, 2)

along with strict positivity and symmetry conditions (see [15, Satz 3.6] and related
ideas in earlier papers such as [12, 13]). A prototypical example is the class of subex-
ponential weights on the dual group G=2790fG="T¢,

“lyy=e", >0, pe(1). (3)

One of our main results, Theorem 4, is that on a compact abelian group G every such
space H, is a symmetric Banach *-algebra under pointwise function multiplication
and complex conjugation. In addition, in Theorem 6 we show that 7, has the same
spectrum (space of maximal ideals) as the C*-algebra of continuous functions on G.
We also study one-parameter families of RKHSs associated with self-adjoint Markov
operators on L?(G). In this setting, we find that subconvolutivity of A is a necessary and
sufficient condition for these spaces to have Banach algebra structure under pointwise
function multiplication; see Theorem 11.

We will refer to RKHSs which are simultaneously Banach *-algebras with respect
to pointwise function multiplication and complex conjugation as reproducing kernel
Hilbert algebras (RKHAS).

As an application of our results, we discuss connections between RKHAs and a
class of Banach spaces .4,, on a compact abelian group G induced from weights
w:6 —> R such that A, is a subspace of the Wiener algebra A(G) of continuous
functions with absolutely convergent Fourier series. Spaces in this class have recently
received attention in the context of function approximation in high-dimensional peri-
odic domains, G = T¢ with d > 1, where the weight function w = wj , is oftentimes
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from the class of dominating mixed smoothness,

d
wer () =[[A+ )", r.s €0 00), )

i=1

with y = (y1,...,%4) € G = 74 and a related definition for r = oo [31, 35].
Kolomoitsev, Lomako, and Tikhonov [31] refer to the spaces A, (']I‘d) as weighted
Wiener spaces. In the paper [35], Nguyen, Nguen, and Sickel call A, (T%) weighted
Wiener algebras, though they do not claim that these spaces are actually algebras
under pointwise multiplication. In Sect. 7, we consider cases where .4,, and H, with
A = w2 are both Banach algebras associated with subconvolutive weights (which
include the w; , family for s > 2), using results from [5, 33] to verify the Banach
algebra structure of 4,,. Following a suggestion of Feichtinger [17], we call the Banach
algebras A,, Fourier—Wermer algebras owing to the fact that they are Fourier images
of convolution algebras Lbj(é) on the dual group G that were studied in the early
paper of Wermer [48]. We establish embedding relationships between .A4,, and H,,
that should be useful in function approximation applications.

1.1 Related Work

The study of Banach algebras on LCAs associated with subconvolutive weights was
initiated by Feichtinger [15]. That work established that L{)’ is a Banach convolution
algebra iff w~! is subconvolutive. It was also shown that if w is subadditive and w !
lies in L1, then w™! is subconvolutive. Thus, subadditive weights with integrable
inverses provide a useful route to constructing subconvolutive weights and associated
LS convolution algebras. In general, however, subadditivity and subconvolutivity
are independent notions. Indeed, the subexponential weights w = A~! from (3) are
subconvolutive but not subadditive. Another relevant property of weight functions on
LCAs is submultiplicativity,

w(y +¥) < Cwy)w(y),

the main result here being that L} is a Banach convolution algebra iff w is submulti-
plicative [15].

Besides L. and LS, sufficient conditions for L, 1 < p < oo, to be Banach
convolution algebras are also known. An early reference in that direction is the paper
of Wermer [48], which studies LY, convolution algebras on the real line, including the
case p = 1. More recently, Kuznetsova [33] has shown (using methods of proof for
sequence spaces from [36]) that for a locally compact group, L} with 1 < p < oo is
a convolution algebra if

(W™ xw ) (y) = Cw P(y). (&)
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When p = 2, the latter condition is equivalent to (2) with A = w2, Related results
for weighted convolution algebras on R” have been obtained by Kerman and Sawyer
[30].

See [28, 41] for surveys of weight functions in harmonic analysis. Closely related
to weight function theory is the theory of Sobolev spaces and algebras on LCAs, e.g.,
[4, 6,19, 25, 26].

In the paper [13], Essén studies the spectral properties of Banach convolution alge-
bras on Z or R under subconvolutive weights with additional decay conditions. In [5],
Brandenburg establishes sufficient conditions for the equivalence of the spectrum of
unital commutative Banach algebra B and a subalgebra S C B. Using these conditions,
it is shown that for a subadditive weight function w > 1 on an LCA, the space L'n LS
(equipped with the norm || || .1 + || f1ILee) is a Banach convolution algebra which has
the same spectrum as the group convolution algebra L!. The spectral properties of LY,
convolution algebras on LCAs were studied in [33], where it was shown that every
such algebra is semisimple. In more recent work, Kuznetsova and Molitor-Braun [32]
studied the representation theory for convolution Banach *-algebras on locally com-
pact, non-abelian groups, and established sufficient conditions for these algebras to be
symmetric (i.e., the spectra of positive elements are subsets of the positive half-line),
among other results.

A related notion of Banach algebras on locally compact groups with Hilbert space
structure is the class of H*-algebras proposed by Ambrose [1]. An H*-algebra H is
required to satisfy the identity

(fe.hym =g f*hyu =(f. hg")u, Vg heH, (6)

which implies that for each f € H, the operations of left and right multiplication by
f are norm-preserving, *-homomorphisms between H and B(H) (the C*-algebra of
bounded linear maps on H). A classical example of an H*-algebra is the L> convo-
lution algebra on a compact group. Note that the RKHAs and weighted convolution
algebras on LCAs mentioned above do not, in general, satisfy (6).

In this paper, we focus on the setting of compact abelian groups, which allows us
to approach the problem of constructing RKHAs using Mercer theory. In particular, in
this setting the values A(y) correspond to the eigenvalues of a compactintegral operator
on L?(G) associated with the reproducing kernel of ;, and the characters y € G,
y : G — S! c C, form a corresponding orthogonal eigenbasis. This structure allows
us to deduce that H, is a Banach algebra if 1 € Ll(é) is subconvolutive, which is
more general than the subconvolutivity implied by subadditivity of A~! = w?. Mercer
theory also facilitates the characterization of the associated maximal ideal spaces using
kernel integral operators.

1.2 Plan of the Paper
We introduce our notation in Sect. 2, and give an overview of relevant results from
RKHS theory in Sect. 3. In Sect. 4, we describe the construction of RKHAs on com-

pact abelian groups associated with subconvolutive functions. In Sect. 5, we study
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the spectra and state spaces of RKHAs (not necessarily associated with subconvo-
lutive functions). In Sect. 6 we study one-parameter families of RKHAs associated
with Markov semigroups. Sect. 7 discusses aspects of Fourier—Wermer algebras asso-
ciated with subconvolutive weights and their embedding relationships with RKHAs.
Appendix A contains the proof of an auxiliary result, Lemma 2, on integral operators
associated with translation-invariant kernels on LCAs.

2 Notation and Preliminaries
2.1 Locally Compact Abelian Groups

Consider an LCA G equipped with a Haar measure . In most instances, we will
assume that G is compact, in which case u will be normalized to a probability mea-
sure. We let G denote the dual group of G, i.e., the abelian group of continuous
homomorphisms y : G — S!, equipped with its dual measure, /i [34, 42]. We iden-
tify each element of G with a continuous, complex-valued function on G, taking values
in the unit circle S!  C, and acting on C multiplicatively as a unitary character. The
trivial character in G will be denoted by 0. When there is no risk of confusion with

scalar multiplication of functions, the inverse of y € G will be denoted by —y. We
recall that if G is compact, G has a discrete topology and [i is a weighted counting
measure.

In what follows, Co(G) (resp. Co(é)) will denote the Banach space of complex-
valued, continuous functions on an LCA G (resp. its dual G) vanishing at infinity,
equipped with the uniform norm. Moreover, F : LY(G) —» Co(é) and F : Ll(é) —
Co(G) will denote the Fourier and inverse Fourier transforms, respectively, i.e.,

Ffly):= /G FOy(x)dux), Ffx):= /G Fyye dity).

We also use * and * to denote the convolution (algebraic product) and antilinear
involution operations on the group algebra L!(G), respectively, i.e.,

(f x&)x) = /G fx=»gMduy), [ (x)=f(=x),

and a similar notation for the corresponding operations on L'(G). When working
with Hilbert spaces such as L?(G) or H;,, we will adopt the convention that the inner
product is antilinear in the first argument, e.g., (f, &) 12(G) = fG fedu.

Throughout the paper, S* will denote the (left) shift operator by group element
x € G,ie., S*f(y) = f(x + y) for any element y € G and function f : G — C.
The collection {S*} g forms a strongly continuous group of isometries on any of the
spaces L?(G) with 1 < p < oo and Cy(G). We also recall the standard property of
Fourier transforms that

FS*H) =y@OFN), Vfel'G), VxeG, Vyed. @)
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Reusing notation, we shall let F : L*(G) — Lz(é) denote the unitary extension
of the Fourier operator. Similarly, we will continue to use * to denote the convolu-
tion operator on L?(G). Note that for any f,g € L%(G), f *x g lies in Co(G) [21,
Proposition 2.40], and we have

(f x©) @) = (f*. 5" 8)126)- (8)

We will let S be the shift operator on the dual group G, defined analogously to S*
on G and satisfying the corresponding relations in (7) and (8).

We say that a function f : G — C on an LCA is uniformly continuous if for every
€ > 0 there is a neighborhood U of the identity element of G, such that for every
x € Gandy € x + U, |f(x) — f(y)| < €. This notion is equivalent to uniform
continuity of functions on uniform spaces [29, Definition 7.6].

2.2 Reproducing Kernel Hilbert Algebras

Let A be a positive-valued function in L' (G). In this paper, our focus is on RKHSs on
the group G with translation-invariant kernels k : G x G — C induced by 2, viz.

k(x,y) =1(x —y), l:=Fxre Co(G). 9)

By Bochner’s theorem for LCAs [42, Section 1.4.2], k is the reproducing kernel of an
RKHS H,, of continuous functions; that is,

f(x) = (k(x1 ')v f)H)n Vf € H)u V)C [S G,

which expresses the fact that pointwise evaluation functionals on H, are continuous.
Note that H, is a harmonic Hilbert space associated with the weight function w =
A2,

We will say that H,, is a reproducing kernel Hilbert algebra (RKHA) if itis a Banach
*-algebra with respect to pointwise function multiplication and complex conjugation,
ie.,

Ifellr, < CUANm NN, 150 = U F s, = 1f3,, Vf.g € Ha. (10)

If H,, is unital, we will use the symbol 15 to denote the unit of H,, i.e., the function
equal to 1 at every point in G. Note that we do not require that the norm of 1 is equal
to 1. We will also let 0, (f) denote the spectrum of f € H,, i.e., the set of complex
numbers z such that f — z does not have a multiplicative inverse in H;. We recall
that H is symmetric as a unital Banach *-algebra if o, (f* f) is a subset of [0, co) for
every element f € H),.

Remark 1 We have stated the Banach algebra condition || fgllx, < CIl fll#;, lIgll#,
allowing a general constant C, as opposed to the more conventional definition
Il fgllr, =< llfll#;llglln, - This choice does not affect any of the results presented
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below, as C can be absorbed in a redefinition of the reproducing kernel k of H; to a
scaled kernel k := C2k. The corresponding RKHA, H 1, has the same elements as H,
and satisfies || fgll,, < IIfll;7, 187, . so we can view |-[| 7, as an equivalent norm
to |||l 7, - That being said, it should be kept in mind that a number of standard results
on Banach algebras require appropriate modification when C > 1. For example, the
fact that a state on a unital Banach *-algebra with isometric involution has unit oper-
ator norm does not necessarily hold when C > 1. In the present work, it is natural to
allow a general C, as this enables a direct identification of the reproducing kernels of
certain RKHAs with Markov transition kernels without having to employ additional
normalization factors.

3 Results from Reproducing Kernel Hilbert Space Theory

In this section, we collect results from RKHS theory that will be useful in the analysis
that follows.

First, consider a locally compact Hausdorff space X. We use P(X) to denote the
set of Borel probability measures on X and E, (-) = f x (+) dv the expectation operator
with respect to v € P(X).

We recall that a positive-definite kernel k on X whose corresponding RKHS H is
dense in Co(X) is known as Co-universal [7], or C-universal if X is compact [47]. If
the map R : P(X) — H with

R(v) = / k(x, ) dv(x) (11)
X

is well-defined and injective, the kernel k is called characteristic [23]. In that case, R
is referred to as a kernel mean embedding of probability measures [44]. Moreover, for
any f € Hand v € P(X), we have

Eyf = (RW), f)n-

Thus, we can evaluate expectation values of elements of H by means of Hilbert space
inner products. For a characteristic kernel, the feature map F : X — H with F(x) =
k(x, -) is injective, and has linearly independent range [47].

On a compact Hausdorff space X, a C-universal kernel k is strictly positive-
definite and characteristic [27, 46]. Moreover, the kernel mean embedding induced
by k metrizes the weak-* topology of P(X) [45]. That is, a sequence of measures
v; € P(X) converges to v € P(X) weak-* sense iff R(v;) converges to R(v) in the
norm of H. See [22] for a study of characteristic kernels on LCAs.

The following are standard results from Mercer theory [20, 37, 46], which we state
without proof.

Lemma 1 Let X be a compact Hausdorff space, 1 a finite Borel measure with full

supportin X, andk : X x X — Capositive-definite, continuous kernel with associated
RKHS H. Then, the following hold.
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(i) H is a subspace of C(X), and the inclusion H — C(X) is compact.
(ii) K : L*(G) - Hwith Kf = fx k(-, x) f(x)du(x) is a well-defined, compact
integral operator with dense range.
(iii) The adjoint K* : H — L?(X) is equal to the restriction of the inclusion map
C(X) < L%*(X) onH; that is, K* f = f, p-a.e.
(iv) K := K*K is a positive, self-adjoint Hilbert-Schmidt operator on L*(X), with

eigenvalues Ly > A1 > --- \¢ 0 and a corresponding orthonormal basis
{bo, 1, ...} of eigenfunctions. Moreover, if k is positive-valued, K is of trace
class.

(v) The set {y; = A;l/thﬁj : Aj > 0} is an orthonormal basis of 'H, satisfying
Ky =),

(vi) The kernel admits the Mercer series expansion

kG, y) = > ¥i0w;0),

J:Aj>0

which converges uniformly for (x,y) € X x X.
(vii) Ifthe A j are strictly positive, k is C-universal (and thus strictly positive-definite
and characteristic).

Next, we state certain properties of integral operators associated with translation-
invariant kernels on LCAs.

Lemma2 Let X € Ll(é) be an absolutely integrable, positive-valued function on the
dual group G of an LCA G, with absolutely integrable Fourier transform | = Fhe
L' (G)andletk : GxG — C be the corresponding translation-invariant reproducing
kernel from (9). Then:

(i) k is uniformly continuous, and 'H,, is a subspace of Co(G).
(ii) The integral operator

KifoGk(nx)f(X)du(x)

maps L*°(G) into the Banach space of bounded functions on G. Moreover, K
maps L*(G) and L' (G) into the space of uniformly continuous functions on G.
(iii) Foreveryx € Gandy € G,

Ky(x) =A(y)yx).

Proof See Appendix A. O

Recall that if G is compact, then G has a discrete topology. By Lemmas 1 and
2 (iii), when G is compact we can identify the eigenfunctions ¢; of the (compact)
integral operator /C : L2%(G) — L?*(G) with the characters of G, ¢ ;i = ¢, = y. Using
A C G to denote the set {y € G : A(y) > 0}, and defining £(y) := /A(y), the

Birkhduser



Journal of Fourier Analysis and Applications (2023) 29:12 Page 9 of 26 12

corresponding basis functions ¥; = v, of H,, are

1
= — Ky = A.
Yy 50) y=§&60)y, vE€

As a result, the elements of H,, can be explicitly characterized as

Ha={F=> Fv=2_ [ /W) : D IfHP/Ay) <oo

yeA yeA yeA

(12)

In the above, the coefficients fy coincide with the values of the Fourier transform
of the continuous function f € H; € C(G) on A, i.e., f, = F f(y). Moreover,
the condition Zye Al fy |2/1(y) < oo is equivalent to the statement that the function

i: G — Cwith
X L IEW), v €A,
iy = |5 v €A
0, otherwise,
lies in L2(G). Together, these facts imply:

Lemma 3 The following statements are equivalent:

(i) [ is an element of H,.
(ii) There exists it € L*(G) with I flin, = ”ﬁHLZ(G) such that F f = &u.

Moreover, ii is unique, and can be explicitly constructed as it = ETF f, where

1/8(y), vy € A,

(1) —
1= 0, yeé\A.

4 Reproducing Kernel Hilbert Algebras from Subconvolutive
Functions

Unless otherwise stated, throughout this section we will assume that G is compact.

One of our main results is the following.

Theorem 4 Suppose that A € LY(G) is:

(i) Strictly positive-valued, A(y) > 0;
(ii) Subconvolutive, (A x L)(y) < CA(y);
(iii) Symmetric, L(—y) = A(y).

Then, H,, is a unital, symmetric Banach *-algebra with respect to pointwise multipli-

cation and complex conjugation of functions, and lies dense in C(G).
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Proof See Sect. 4.1. O

Remark 2 The fact that under Assumption (ii) of Theorem 4 7, is a Banach algebra can
be readily deduced from [33, Theorem 1], which came to our attention after completion
of this work. In particular, [33, Theorem 1] establishes that under Assumption (ii)
L%] (G) with w = 2~'/2 is a convolution algebra, and taking Fourier transforms yields
the Banach algebra property of H; under pointwise multiplication. See also [30, 32, 36]
for related work. In Sect. 4.1, we include a proof tailored to the Hilbert space setting,
which uses Cauchy-Schwarz inequalities and the representation of convolution as an
L%(G) inner product (rather than, e.g., Holder inequalities employed in [32]).

As mentioned in Sect. 1.1, a useful way of constructing subconvolutive functions
on G through positive-valued functions A € L!(G) with subadditive inverses,

Ay +y) < ey 47T,

By [15, Corollary 3.8], every such function A is subconvolutive. If, in addition, A
is strictly positive-valued and symmetric, then by Theorem 4 H, is an RKHA. The
subexponential weights 2! in (3) also satisfy the assumptions of Theorem 4, but in
this case A~ is not subadditive. Another example mentioned in Sect. 1.1 is that of
an LCA G (not necessarily compact) with a function A € L! (é) such that A~1/2
is subadditive. In that case, too, H; is a Banach algebra with respect to pointwise
multiplication [18]. To make contact with that result in the compact case, we note the
following fact.

Lemma5 Suppose that G is compact and & € L2(G) is positive-valued, self-adjoint
with respect to convolution (§* = &), and subconvolutive. Then, A = £> € L(G) is
also subconvolutive.

Proof Since G is compact, we have Ll(é) - LZ(G) and ”'||L2(G) < ”'”Ll(é) (since
the dual measure (i is a normalized counting measure). Thus, using (8) and the facts
that §* =& and & x & < C§&, we get

Ak (y) = (0, 870) 2y = (67, 878%) 126y = (ESVE.6878) 126 = 157817, 4,
< IESENT, ) = (€. SE) o) = E %))’

< C?8%(y) = C?A(y). :

If G is compact and & € Ll(é) C Lz(é) has a subadditive inverse, then by
[15, Corollary 3.9], & is subconvolutive. As a result, by Lemma 5, A = & 2 is also
subconvolutive. Thus, under the additional constraint A1/2 € L! (G), the subadditivity
assumption on A~!/2 underlying the construction of the Banach algebra #; in [18]
implies the subconvolutivity assumption in Theorem 4. Note that the subexponential
weights in (3) satisfy A1/2 € L1(G).
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4.1 Proof of Theorem 4

Consider two elements f, g € H,. By Lemma 3, to show that the continuous function
fg lies in ‘H;, it is enough to show that the function  : G — C defined as & =
£t F(fg) liesin L2(G). To that end, letting i = £ F f and © = £+ Fg be the L2(G)
representatives of f and g from Lemma 3, we obtain

F(fOy) = (FfxFy) = (i) = D) (y) = (ED)*, §V(§ﬁ))Lz(@).

Then, using standard properties of shift operators and L? inner products, as well as
the fact that £ is real and L!(G)-self-adjoint, we get

IFDWNP = HED*, 87 ED) 261 = 1E1%, 87E(S D) 26,
= [(ESVE, 0*S7D) a5 ° < (ESVE ESVE) 2 g, (@*8 v, %57 v) 2 )
= (b S 1) 12y A1, STID1) 12 gy = L0 % MGOILIE™ # 1917 ()]
< AR * 15 ()],

where we used the subconvolutivity of A to arrive at the last line. Thus, since A is strictly
positive-valued, we have £ (y) = 1/+/A(y), and |W(y)|> < C(a*|?> = |92 (p).
Therefore,

A A2 ~12
”w”LZ(é) SC|||M*| *|v| ||L1(G)’

and it follows that o lies in L2(G) since [i*|2  |9|? is the convolution of the L!(G)
elements |4*|2 and |9|2.

We thus conclude that H, is a Banach algebra with respect to pointwise function
multiplication. The fact that 7, is a dense subspace of C(G) follows from the strict
positivity of A in conjunction with Lemma 1(vii).

Next, we verify that f*(x) = f(x) is an isometric, antilinear involution on H;,.
Since A(y) = A(—y) forevery y € G, the orthonormal basis elements Y, from (12)
satisfy

Uy () = M2y (x) = A2 =)y ) = A2 =)y ) = v, (),

SO ||1ﬂ;f|| = |-, lln, = 1. Therefore, * preserves the norm of orthonormal basis
vectors of H,. Moreover, it is clearly antilinear and involutive, so 7, is a Banach
*-algebra satisfying (10).
The RKHA H), is also unital and satisfies || 15||7, = 1 since the unit basis vector
Yo is equal to the trivial character in G, and thus everywhere equal to 1 on G.
Finally, the symmetry of H; follows from Corollary 8 in Sect. 5 below. O
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5 Spectra and States of Reproducing Kernel Hilbert Algebras

In general, an RKHA 7, on a compact abelian group G does not satisfy the C*
identity, | f* fllcc) = II.f ||2C(G)’ holding for the C*-algebra of continuous functions
on G under pointwise multiplication and complex conjugation, nor does it satisfy
the H*-identity in (6) enjoyed by the L>(G) convolution algebra. Failure to meet, in
particular, the last property means that the regular representation of H, into B () is
not a *-representation.

Yet, by virtue of their RKHS structure, RKHAs possess continuous evaluation
functionals 8, : H; — C atevery x € G,

Scf = fx) = (k(x, ), Flr,s N8xllpg = Vk(x, x), (13)
satisfying
85:(f8) = (5: f)(6:8), Sxf*=08:f, Vf.g €M,

where |- ||7_[/A is the operator norm of functionals in the dual space 7, . Every nonzero
evaluation functional §y is an element of the spectrum of H,, i.e., the set of nonzero
homomorphisms of H,, into C, denoted by o (H,). In addition, as we will see below,
under appropriate conditions on the kernel, the §, provide an abundance of states on
H,., and also induce a set of states on the non-abelian C*-algebra B(H,,).

Recall now that for a compact Hausdorff space G, the spectrum of the C*-algebra
C(G) consists precisely of the evaluation functionals 6, atevery x € G [11]. Moreover,
the map 8 : G — o (C(G)) with B(x) = &, and the Gelfand transform I' : C(G) —
C (o (C(G))) with (T f)(8x) = f(x) are homeomorphisms with respect to the weak-*
topology of o (C(G)).

The following theorem characterizes analogously the spectra of RKHAs on compact
abelian groups and the associated Gelfand transforms.

Theorem 6 Let H) be an RKHA on a compact abelian group associated with a strictly
positive function A € L'(G). Then, the following hold.

(i) The map B, : G — o (H,) with By (x) = 8, is a homeomorphism with respect
to the weak-* topology on o (H,,) inherited as a subset of H,.

(ii) Under the identification G ~ o (C(G)) induced by B, the Gelfand transform
Iyt Hy — C(o(Hy)) with (T f)(6x) = f(x) coincides with the inclusion
map t : 'H) — C(G). In particular, the operator norm of Ty is equal to \/1(0g).

Proof See Sect. 5.1. O

Theorem 6 establishes that H; has the same spectrum as C(G). Analogous results
were found in the paper [5] for convolution algebras on LCAs. In particular, a class of
convolution algebras associated with subadditive weight functions was shown to have
the same spectrum as the group convolution algebra L' (G). Theorem 6 addresses the
case of algebras with respect to pointwise function multiplication that are simultane-
ously RKHSs. In particular, our method of proof in Sect. 5.1 makes explicit use of the
RKHSs structure of H;,.
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The following are corollaries of Theorem 6.

Corollary 7

(i) Every non-vanishing function f € H, has a multiplicative inverse in H,,.
(ii) Every strictly positive function f € H) has a square root in 'H,, i.e., there exists
a (strictly positive) g € H;, such that f = g°.
(iii) The spectrum o, (f) of any f € H, is equal to the range of f.

Proof If f is non-vanishing, then &, f # O for any x € G, and thus by Theorem 6(i)
f does not lie in any maximal ideal of H,. As a result, f is invertible. This proves
Claim (i).

Turning to Claim (iii), let f € H, be arbitrary. It is clear thatran f C o, (f) (since
f — z has a zero whenever z € ran f, and thus cannot have a multiplicative inverse).
Ifz € 03 (f) and z ¢ ran f, then f — z is a nowhere-vanishing non-invertible element
of 'H,;,, which contradicts Claim (i). Thus, we have o, (f) C ran f, and we conclude
that o, (f) =ran f.

Finally, to verify Claim (ii), we recall that every element of a unital Banach-*
algebra with strictly positive spectrum has a square root, which can be chosen to also
have strictly positive spectrum; e.g., [43, §10.30]. Since, by Claim (iii), f > 0 has
o)(f) =ran f C (0, 00), it follows that there exists g € H, with 0;(g) € (0, 00)
such that f = g2. Again by Claim (iii), ran g = 07 (g), and thus g is strictly positive.

O

Corollary 8 The RKHA 'H,, is (i) semisimple; and (ii) symmetric.

Proof Claim (i) follows from the fact that the Gelfand transform I, has trivial kernel
(by Theorem 6(ii)). For Claim (ii) we use Corollary 7(iii) in conjunction with the fact
that f* f = f f > 0to conclude that oy, (f* f) = ran(f*f) C [0, o0). O

Next, we consider the state space, S(H, ), of a unital RKHA H,, i.e., the set of
(automatically continuous) positive functionals ¢ : H; — C, normalized such that
¢(1g) = 1. By (13), for a unital RKHA H, with reproducing kernel k, each nonzero
evaluation functional is a state with operator norm equal to +/k(x, x). It should be
noted that because we allow continuity constants C different from 1 in our definition
of Banach algebras in (10), the elements of S(H, ) need not have unit operator norm
(which would be the case if C = 1).

Suppose now that the evaluation functional §, atevery x € G is nonzero (acondition
that holds iff A > 0). Then, viewing §, as a Dirac probability measure in P(G) leads
to the identity

8y = (R(6x), )H,, Vx €G, (14)
where R : P(G) — 'H,, is the kernel mean embedding of probability measures defined

in (11). By continuity of the feature map x — F(x) = k(x, -) as a map from G into
‘H;., (14) extends to amap P : P(G) — S(H;) such that

(Pv)f=/65xde(x)= (RW). f)r,. (15)
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Similarly, to each Dirac probability measure 6, € P(G), we can assign a state
px € S(B(H;)) of the C*-algebra B(H,) given by

px = tr(Il,-), (16)

where IT, : H; — H, is the rank-1 projection operator

k(x, ). k@) fOkG, )

Mef = k(x, x) T k(x,x)

The assignment 8, — py in (16) extends to a map Q : P(G) — S(B(H,)) with

(QV)A=/ pxAdv(x).
G

Intuitively, we can think of states of the non-abelian C*-algebra B(H,) in the
range of Q as “classical” states induced by Borel probability measures on G (which
are states of the abelian Banach *-algebra H;). Letting 7w : H; — B(H,) denote the
regular representation of H; with(f)g = fg, the following proposition justifies the
interpretation of states in ran Q as classical states, in the sense of acting consistently
on regular representatives of 7, with expectation operators.

Proposition 9 With notation as above and under the assumptions of Theorem 6, the
following hold.

(i) The maps P and Q are injective and weak-* continuous.

(ii) For every v € P(G) and f € H, the compatibility relations

Evf =PO)(f) = QW) (f))

hold. In particular, we have Q(V)( (f*)) = Q) (T (f)), even though w need
not be a *-homomorphism.

Proof Since G is compact and H,, is a dense subspace of C (G), the reproducing kernel
of 'H,, is C-universal and thus characteristic. It follows that R is injective, and therefore
so is P since R(v) is the Riesz representative of P (v) according to (15).

For every v € P(G) and f € H we get

oW () = fG (M () dv(x)

Z F OOy, k(x, ) lk(x, ), ¥y )n dv(x)
G — k(x, x)
yeG
/f yeGWy( YWy (x) b(x)
X, X)

= /G f@dvx) =E,f = Pw)(f),
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where {{, = V/A(y)y : v € é} is the orthonormal basis of H; from (12). The above
proves the compatibility relations in Claim (ii), and also implies that Q is injective by
the injectivity of P. We also have

QW (f*N =E,f*=Evf =0 (x(f)),

verifying the *-compatibility relation in Claim (ii).

Since H, is a subspace of C(G), the weak-* continuity of P follows directly from
the fact that P, f = E, f. Similarly, to deduce weak-* continuity of Q, note that for
any A € B(H,), we have

(Qv)A =E, fa,
where the function f4 : x — pyx A is continuous. O

The map G > x +— Il can be interpreted in an RKHS context as an operator-
valued feature map. This feature map along with the corresponding embedding Q of
probability measures on G generalize the standard RKHS feature maps and kernel
mean embeddings of probability measures to the operator-valued setting of B ().
In other work [24], we have found these constructions to be useful in the context of
quantum computation.

5.1 Proof of Theorem 6

We begin with the following observation about maximal ideals of unital RKHAs.

Lemma 10 With the assumptions of Theorem 6, every maximal ideal I in 'H,, is orthog-
onal to the unit 1.

Proof Let 1 = u + v withu € I and v € I'*. Since I is a proper, closed subspace
of H;,, the unit 1 does not lie in 7, and v is nonzero, i.e., 0 < [|v], < 1. We claim
that, in fact, ||v|ly, = 1.

To verify this, by rescaling the kernel of H, , we assume without loss of generality
that the multiplicative constant C in (10) is equal to 1 (see Remark 1).

Next, following standard techniques for unital Banach algebras, we equip H; with
an equivalent norm, [||-|||, induced from the operator norm of B(H,) and the regular
representation 7, viz.

AN =l (N BH;) -

This norm is a Banach algebra norm satisfying

(A < MANme, Mgl =1, WA < 1 flln,-

In particular, [[[v]| < [[v]l#;, so if
lvllz, < 1T=II1gll.
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then |||v||| < 1 and u = 1 — v is invertible.

The latter, implies that / contains an invertible element, contradicting the fact that
it is a maximal, and thus proper, ideal in H. It follows that ||v||, = 1 and u = 0,
proving that 16 lies in 1. O

We now continue with the proof of Theorem 6.

Claim (i)
For every f € H;, x € G, and net (x;) converging to x, we have

B.(xi)(f) = f(xi) = f(x) = Br(x)(f),

so B, is weak-* continuous. In addition, 8, is injective since B (x) = 8§, =
(k(x,-), )#,, and k(x, -) is the image of x under the feature map F : G — H,,
(which is injective since k is characteristic). Therefore, since G and o (H,) are com-
pact Hausdorff spaces, to show that 8, is a homeomorphism it suffices to show that it
is surjective.

To prove the latter by contradiction, suppose that there exists ¥ € o (H;) \ran By, .
Then, I := ker ¢ is a maximal ideal in H; , which is distinct from ker §, forall x € G.
We claim that 7 is a dense subspace of C(G).

To verify this claim, observe first that the closure TofIinC (G) is an ideal. Indeed,
if that were not the case, there would exist f € C(G) and g € I such that fg ¢ I.But
since H, is a dense subspace of C(G), there exists a sequence f,, € H, converging
to f in C(G) norm, and similarly there exists g, € I such that g, — g in C(G).
Defining h, = f,gn, it follows that h,, is a sequence in [ (since f, € Hy, gn € I,
and [ is an ideal in ;) with a C(G)-norm limit & € I. The latter is equal to fg,
contradicting the assertion that fg ¢ I.

Now suppose that I were contained in a maximal ideal in C (G). Since the maximal
ideal space of C(G) is in bijective correspondence with the spectrum o (C(G)), there
would exist an x € G such that I C ker 8, (with 8, understood here as an evaluation
functional on C(G)), contradicting the fact that [ is distinct from the kernels of all
evaluation functionals on ;. We therefore conclude that 7 is an ideal distinct from
any maximal ideal of C(G), so it must be equal to the whole space C(G). We have
thus verified that / is dense in C(G).

Next, since I is a maximal ideal in H,, every f € [ is H,-orthogonal to 15 by
Lemma 10. Moreover, since ¢ := A(Oé) > 0, the integral operator K : L*(G) - H,
associated with k satisfies c 'K 1g = 1, and we get

0= (lg, fin, = cll, fin, = (Klg, fir, = (16, K* f)126)-
As aresult,
G = flig@) = 16 = K* fliag = 1+ IK*Flif2g = 1.
which contradicts the assertion that I is dense in C(G), proving Claim (i).
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Claim (ii)

The fact that ", coincides with the inclusion map ¢ follows directly from the definition
of the former and the fact that ), is a subspace of C(G), viz.,

()G = fx) = @f)(x).

To verify the claim on the operator norm of I'y, we use the reproducing property
of H, to get

(T2 )G = 1f O] = [k(x, ), [l
< ke, i 1Lf Ml

= vk, ) fll#, = VIO f I, -

Setting f to the unit vector f = k(x,-)/[lk(x, )|l%, (which is well defined since
8x 1s nonzero at any x € G) then saturates the inequality, proving the claim and the
theorem. O

6 Reproducing Kernel Hilbert Algebras and Markov Semigroups

In this section, we study 1-parameter families of RKHAs associated with ergodic
Markov semigroups on L?(G). We assume throughout that G is compact and the Haar
measure p is normalized to a probability measure.

Deferring additional details on the relevant theory to one of the many references
in the literature, e.g., [40], we recall that a strongly continuous semigroup {M:}:>0
of operators on L2(G) is a Markov semigroup if for every t > 0, M, is positivity-
preserving (i.e., M. f > 0, n-a.e., whenever f > 0, u-ae.), M;1g = 1g, and
JoM:fdu= [ fduforall f € L*(G). Moreover, {M;},=0 is said to be ergodic
if M, f = f for all = implies that f is constant u — a.e.

With these definitions, consider a family {A; € L! (é)},>0 of functions on the dual
group satisfying the conditions

A (0g) =1, V>0,
0<ic() <1, A(Wre(y) =Aepr(¥), Vr,7/ >0, Vy e G\{0g),
Ae(¥) = Ae(—y), VT >0, VyeG. (17)

Weletl, = F Az and k¢ (x, y) = [ (x — y) be the kernel functions defined as in (9),
and H, = H,, the corresponding RKHSs. We also let K; : LZ(G) — LZ(G) be the
corresponding kernel integral operators on L2(G) from Lemma 1. Note that /, and k,
are real since A; is real and symmetric (i.e., A} = A¢).

By (17), for each y € G, 1 Ar(y) is a continuous function, increasing mono-
tonically to 1 as © — 0T. Consequently, the operators ; converge pointwise to
the identity on L?(G), ie., lim;,_o+ K. f = f for all f € L*(G). Moreover,
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Kl = Az(0g) = 1, so {K¢}eso U Ko with Ko := 1d is a strongly continuous
contraction semigroup, consisting of self-adjoint compact operators.

By the Hille-Yosida theorem, there exists a positive, self-adjoint operator D such
that, forall T > 0, K; = e "D This operator is diagonal in the character basis of
L?*(G),i.e., Dy = n(y)y, where n(y) = —t ' log A, for any T > 0. In particular, D
has a simple eigenvalue n(0z) = O corresponding to the constant eigenfunction 1.
It then follows from results on Markov semigroups (e.g., [8, Chapter 14, Theorem 2])
that —D is the infinitesimal generator of an ergodic Markov semigroup, {e‘TD}rzo.

By construction, the operators K, are identical to e~ ™D, which implies that for
T > 0, k7 (x, -) is a transition probability density with respect to Haar measure. That
is, we have

ke(x, ) >0, /k,(x,-)d,u:l, V>0, VxeG.
G

The following theorem provides necessary and sufficient conditions for the spaces
‘H; to have RKHA structure.

Theorem 11 Suppose that the functions A, € L' (G) satisfy the Markov properties

in (17). Then, the corresponding RKHSs H, are RKHAs iff the A are subconvolutive
foreacht > 0, ie.,

(A *A0) () = Cehe(y).
Proof See Sect. 6.1. ]
The subexponential functions from (3),
he(y) =,
are a concrete example satisfying the assumptions of Theorem 11 for the d-torus,

G="T9, G = 7. In the case of the circle, T!, the Markov generator D is a fractional
diffusion operator given by the p/2-th power of the Laplacian, D = AP/2.

6.1 Proof of Theorem 11

The “if” part of the theorem follows directly from Theorem 4. To prove the “only
if” part, suppose that {H;};~0 is a 1-parameter family of RKHAs associated with the
functions {A;};~0 satisfying (17). We show that the A, are subconvolutive. To that

end, letting & = A;'” = A2, we make use of the following result.

Lemma 12 If’H, is a Banach algebra under pomthse multiplication of functions,
then for every ii, v € LZ(G) there exists (a unique) W € L2(G) such that

0 = (&cit) * (§7D).
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Proof By Lemma 3, there exist (unique) f, g € H; such that F f = &; ﬁA and Fg =
£.0. Moreover, fg lies in H., so again by Lemma 3 there exists w € L?(G) such that
F(fg) = & w. The claim follows from the fact that F(fg) = (F f) x (Fg). O

Since G is compact, for any € > 0 we have & € Ll((A;)Ag Lz(é), SO setting
i = 0 = & in Lemma 12, it follows that there exist e € L?(G) such that

ExWe = Erye * Erqe.

In particular, we have
FErve %) = (Feoy) Fbord) = 1o o

Note now that for each y € G, e (Er4e * Er4¢)(y) is a continuous function that
increases monotonically as € — 0% to (&; * £&;)(y). As a result, the family {i¢}e=o
is bounded in Lz(é) norm and thus in Loo(é) norm (since ”'”LOO(G) < ”'”L2(G) by
compactness of G) by ||&; * &; ||L2(é)'

By the above, for every T > 0, there exists a constant C; such that for every € > 0
and y € G we have

Crre ¥ )

< C,.
&(y) -

We(y) =

Taking the limit ¢ — O, we obtain

(Er xE0)(y) < Cokr(p),

and since &; = A2 and T was arbitrary, we conclude that

(Ar * A0)(¥) < Crhe(y),

where C; = C 2. This verifies the subconvolutive property of the A;. O

7 Fourier-Wermer Algebras

Motivated by applications to high-dimensional function approximation, we end the

paper with a discussion on the inclusion relationships between RKHAs and Fourier—

Wermer algebras on compact abelian groups associated with subconvolutive weights.
Given a positive weight w : G — R, consider the space

Ap=1{feL'(G): Y wIFfy) <oot,

yeG
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equipped with the norm || f|| 4, = ZyeG w(y)|F f(y)]. As mentioned in Sect. 1, in

the case G = T¢, spaces in the class A,, are Fourier—Wermer algebras that have been
employed in high-dimensional (d > 1) function approximation methods [31, 35].
In more detail, assuming (as we will henceforth do) that w is bounded away from 0,
every space 4,, embeds continuously into the Wiener algebra A(G), i.e., the Banach
algebra of functions on G with absolutely convergent Fourier series,

AG)={Fel G): Y IFf@I<oop, IIfllams = IFFlpza.

yezd

In particular, 4,, may be identified with the image of L}” (G) under the inverse Fourier
operator, A,, = F (L1 (G)) and can thus be understood as a Banach space of con-
tinuous functions whose regularity depends on the weight function w. Here, and in
what follows, we let LY (G), p € (1, 00), be the Banach space on G equipped with
the norm || £l ) = (3, e wIF (D).

An important problem 1n numerical analysis is the approximation of functions f
in an input space X such as A, (T¢) by elements f, in subspaces of finite dimension,
such that for a given n the residual f — f, has low norm, uniformly over X, with respect
to a target space Y into which X is continuously embedded (e.g., L>(T¢), L>(T%),
or A(T%)). Typically, the error of such approximations is measured using s-numbers
for the embedding ¢ : X < Y [38], which can be thought of as generalizations of
the singular values of ¢ when X and Y are Hilbert spaces and ¢ is compact. In high-
dimensional applications, of particular interest is the dependence of the s-numbers on
d > 1. Intuitively, one seeks to take advantage of the regularity properties of X to
alleviate the “curse of dimension” suffered by finite-rank approximation of arbitrary
elements of the target space Y.

The recent paper [35] has shown that for weights w = wy , in the class of dominating
mixed smoothness (4) the optimal approximation error from X = A, (T?) scales as
n~*(logn)*“=D when the output space is ¥ = .A(T?). However, the question of
whether A, (T%) has Banach algebra structure is left open. An affirmative answer to
that question would present additional opportunities to build approximation schemes
that leverage algebra structure; see, e.g., [ 14] for an example in the setting of harmonic
Hilbert spaces.

7.1 Algebra Structure of A,

Recall the subconvolutivity condition (5) that implies [33] that L%, (G) is a convolution
algebra on the dual group. Requiring that this condition holds for p = 1,

w ' xw ) <Ccwl(y), Vy.y €q, (18)

and using the inverse Fourier operator to pass to the primal group G, we can deduce that
Ay = F (LIIU(G)) is a Banach algebra under pointwise multiplication. This algebra
is a dense subalgebra of the Wiener algebra .A(G). Moreover, the spectrum of L}U (é)
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contains a homeomorphic image of G [33, Theorem 4], which implies that o (A,,) has
the same property.

Note that the weights wy - satisfy (18) forany s > 2andr > 0.Indeed, in dimension
d = 1 the weight iy ,(y) := (1 + |y|")*/", y € Z, is subadditive and zD;rl lies in
LY(Z), so ws_r1 is subconvolutive (see [15]). Since, in any dimension d € N, wg’ ,1 is
built up as the product w;,l(y) = ]_[lf‘i=1 &);} (yi) with y = (v1, ..., V4), it follows
that wy , satisfies (18), so .Awm_ is a Banach algebra on T,

For completeness, we note that the algebra property of A,, also holds for subadditive
weights (without requiring that w~ ! lies in L! (G)). In this case, we can additionally
deduce that the spectrum o (A,,) is homeomorphic to G.

Recall Theorems 3 and 4 in [5], which collectively imply that if G is discrete
(which is the case here since G is compact), and w : G — R satisfies w > 1
and (1), then L! (é) N Lf(é) is a Banach convolution algebra with a homeomorphic
spectrum to G. It has been pointed out to us by Feichtinger [17] that this result readily
generalizes to £, (G) := LY(G)NLE (G) with p € [1, o] and the norm Ifllzr g =

(NI & T Wall LG Indeed, for a discrete group G, the subadditivity property (1)
implies
w(y) < Cwy) +wly —y). Vr.y' €G,
leading to the pointwise estimate
w( *910) =€ [ w6+l — DI er - vl
G

= C((wfl=*1gD ) + (1 f1*wgD) (¥),

which holds for every f, g € L] (G) andy € G. From the above, we get

1 # 8l g6 < C Iwfl* g1+ £ % lwglll o e,
< € (I0f o N8l + 1wy l0gl o ey )

= C (Il lsle +I1flne ). (9

and thus || f * gl » @) < 2CIflizp g I8ll p (- Moreover, since || f * gll 15y <
1/ 18l 1) we have,

1f *8llzp 6 < @C+ DIFlp gl 2o -

and we conclude that Lg,(é) is a Banach convolution algebra (cf. [5, Theorem 3]).
Next, it follows from (19) that for any n € N

12 g6y < 2C0 U 1™ 1@y < 2C1 N 1 2o G- 20)
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By [5, Theorem 2], the above is a sufficient condition for Lk (G) and LI(G) to have
equal spectra,

o (LP(G)) = o (LY(G)). 1)

Therefore, setting p = 1 in (21) (in which case £} (G) = L} (G) since w > 1), and
passing to the primal group by Fourier transforms, we obtain

o(Ay) =0 (FLL(G) = o (FLYU(G)) = o (C(G)). (22)

Thus, we can conclude that the Fourier—Wermer algebras .4,, associated with subad-
ditive weights have the same spectra as C(G), analogously to the result in Theorem 6
for RKHAS H,, associated with subconvolutive weights.

7.2 Embedding Relationships with RKHAs

We now consider the case where w and A = w2 satisfy (18) and the assumptions of
Theorem 4 , respectively, so that 4,, and H, are both Banach algebras. This will be
the case, for instance, for w = w; , with s > 2, as well as the weights w = A; ;12
obtained from Markov semigroups as in Sect. 6 (which include the subexponential
weights w = A~!/2 from (3) as a special case). Inclusion relationships between Ay,
and H, are particularly interesting when both of these spaces are algebras, as they
induce algebra representations via the corresponding multiplication operators.

First, it is straightforward to deduce that 4,, embeds continuously into 7, and
the operator norm of the embedding is equal to 1 [35]. Indeed, defining the linear
operators A : A,, — L! (G) and B : 'H; — L2(G) such that

Af) =wWFf(y), Bf@ =) w oy /io),

yeG

it follows by direct calculation that the following diagram commutes,

AwL)H)L

b

LY(G) - LXG)

where Id is the identity map on functions and ¢ is the inclusion map. One also verifies
that A and B have unit operator norm (in fact, B is unitary), and since ||1g|l 4, =
I1gllx, = 1, the embedding A,, — H, has unit operator norm. It then follows that
the map n : A, — B(H,), where 7 f is the multiplication operator by f, provides
a strongly continuous, faithful representation of .A4,, into B(H,).

Next, turning to embeddings of the opposite direction, in general we cannot expect
a continuous embedding of H,, into A, since, unless G is finite, L! (é) is a strict
subspace of L2(G). Nevertheless, under appropriate assumptions, giving up a small
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amount of regularity € is sufficient to obtain a continuous embedding of 1+ into
Au. Here, we assume that the weight w is chosen such that A€ = w™2¢ satisfies
the assumptions of Theorem 4 for any ¢ > 0. This will hold, for instance, for the

“semigroup” weights w = A /2 from Sect. 6 but not the wy » family (4).
For any € > 0 let us define the linear map D : L%(G) — LY(G) such that

Dcf =w™°f;

this map has operator norm || D¢| < [Jlw™¢ ||L1((~;). Defining also A Ll(é) - Ay
and B, : Hyi+e — L%(G) as

Af@) =Y wly@EW). Befy) =w' T MFf¥),

veG

where ||A|| = ||B¢|]| = 1 and B is unitary, leads to the following commutative
diagram:

H}Ll+s I—d> Aw
Al

L2(6) 25 L1(6)

We thus conclude that the embedding H; 1+c < .A,, is continuous for any € > 0.
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Appendix A. Proof of Lemma 2

Claim (i)

To show that k is uniformly continuous, note first that the kernel shape function /
lies in Co(G), and is thus uniformly continuous. As a result, for every ¢ > 0 and
(x,x") € G x G there exists a neighborhood U of the identity element of G such that

Hx—=x)=I1@)| <€, Vzex—-x)+U.
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Therefore, defining the open neighborhood V = {(y,y) € G x G : y — y' € U} of
the identity of G x G, we get

[ = x") =1y = YD = 1k(x, x') —k(y, )] <€, ¥, ¥) €, x)+V,
which proves that k is uniformly continuous.

To show that H,, is a subspace of Cy(G), note that every f € H, is the H;-norm
limit of finite linear combinations of kernel sections of the form f,, = Z’;;(l) cjk(xj,-),

where k(x, -) lies in Co(G). Moreover, proceeding similarly to [20, Lemma 2.1], we
have

IF ] = [k, Frr| < 1@ )l 1l = Ve ) 1 g, < 1y 117,
and thus
1 lsup < W2 1S g, -

The above implies that the Cauchy sequence f;, € H; N Co(G) converging to f € H,
is also Cauchy with respect to Co(G) norm, so f lies in Co(G). This proves Claim (i).

Claim (ii)
Since A € L'(G) and I = FA € L1(G), we have | € L'(G) N Cy(G), which implies

that for every x € G, k(x,-) = S*I lies in L'(G) N Co(G) Therefore, for every
feL®G),Kf(x)= fG k(x, ) f du exists for every x € G, and we have

= IS* U fllize@ = Il flieee)-

Kf()| = ‘ka(x, ) fdp

This shows that K is well-defined as a bounded linear map from L°°(G) to the space
of bounded functions on G, as claimed.

Next, we have ||l||i2(G) < llllco(c) 1l 21 Gy which implies that / lies in L*(G).

Thus, for every f € L?(G) we can express K f(x) as the inner product

Kf(x) = (k(x7 ')9 f)Lz(G) = (le, f>L2(G)'

Therefore, for any x, y € G, we obtain

Kf (@) = K2 < 1551 = SLlco@ 1™ = S 1)1 F 1226,
< 20I5°1 = Sy 1l 1) 1 122

The uniform continuity of K f then follows by the strong continuity of S*, using a
neighborhood of the identity of G x G analogous to V in the proof of Claim (i).
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Finally, the uniform continuity of Kf for f € L'(G) follows from a similar

argument using the bound

IKf(x) = KfODI = llk(x, ) =k, ey 1 f L)

This completes the proof of Claim (ii).

Claim (iii)

The claim is a direct consequence of (7) and the definition of k in (9), viz.

Ky(r) = /G k(x y)y () dp(y)

_ /G ST(—y)y () du(y) = fG S 1)y (=) du(y)
=F S D) =y @) (FDH(y) =y x)ry).
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