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Abstract
Harmonic Hilbert spaces on locally compact abelian groups are reproducing kernel
Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of
weighted L2 spaces on the dual group. It is known that for suitably chosen subadditive
weights, every such space is a Banach algebra with respect to pointwise multiplication
of functions. In this paper, we study RKHSs associated with subconvolutive functions
on the dual group. Sufficient conditions are established for these spaces to be symmetric
Banach ∗-algebras with respect to pointwise multiplication and complex conjugation
of functions (here referred to as RKHAs). In addition, we study aspects of the spectra
and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a
compact abelian group G to have the same spectrum as the C∗-algebra of continuous
functions on G. We also consider one-parameter families of RKHSs associated with
semigroups of self-adjoint Markov operators on L2(G), and show that in this setting
subconvolutivity is a necessary and sufficient condition for these spaces to haveRKHA
structure. Finally, we establish embedding relationships between RKHAs and a class
of Fourier–Wermer algebras that includes spaces of dominating mixed smoothness
used in high-dimensional function approximation.
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1 Introduction

The notion of a harmonic Hilbert space on the real line was introduced by Delvos [9],
extending earlier work of Babuška [2, 3] and Práger [39] on periodic Hilbert spaces.
Subsequently, Feichtinger, Pandey, and Werther [18] constructed harmonic Hilbert
spaces on arbitrary locally compact abelian groups (LCAs), and characterized their
properties using the theory of Wiener amalgam spaces [16]. In essence, a harmonic
Hilbert spaceHλ on an LCA G is the image under the Fourier transform of a weighted
L2 space on the dual group, Ĝ, associated with a weight function w ≡ λ−1/2 : Ĝ →
R+, where λ ∈ L1(Ĝ). Harmonic Hilbert spaces are reproducing kernel Hilbert spaces
(RKHSs) of continuous functions, and have a number of useful properties for function
approximation on LCAs [9, 10, 18]. In particular, using results in [15], it has been
shown that if w is subadditive (up to a constant C),

w(γ + γ ′) ≤ C(w(γ ) + w(γ ′)), γ, γ ′ ∈ Ĝ, (1)

then Hλ is a Banach algebra under pointwise function multiplication [18].
In this paper,we studyharmonicHilbert spaces inducedby subconvolutive functions

λ ∈ L1(Ĝ), satisfying

(λ ∗ λ)(γ ) ≤ Cλ(γ ), γ ∈ Ĝ, (2)

along with strict positivity and symmetry conditions (see [15, Satz 3.6] and related
ideas in earlier papers such as [12, 13]). A prototypical example is the class of subex-
ponential weights on the dual group Ĝ = Z

d of G = T
d ,

λ−1(γ ) = eτ |γ |p , τ > 0, p ∈ (0, 1). (3)

One of our main results, Theorem 4, is that on a compact abelian group G every such
space Hλ is a symmetric Banach ∗-algebra under pointwise function multiplication
and complex conjugation. In addition, in Theorem 6 we show that Hλ has the same
spectrum (space of maximal ideals) as the C∗-algebra of continuous functions on G.
We also study one-parameter families of RKHSs associated with self-adjoint Markov
operators on L2(G). In this setting,wefind that subconvolutivity ofλ is a necessary and
sufficient condition for these spaces to have Banach algebra structure under pointwise
function multiplication; see Theorem 11.

We will refer to RKHSs which are simultaneously Banach ∗-algebras with respect
to pointwise function multiplication and complex conjugation as reproducing kernel
Hilbert algebras (RKHAs).

As an application of our results, we discuss connections between RKHAs and a
class of Banach spaces Aw on a compact abelian group G induced from weights
w : Ĝ → R+ such that Aw is a subspace of the Wiener algebra A(G) of continuous
functions with absolutely convergent Fourier series. Spaces in this class have recently
received attention in the context of function approximation in high-dimensional peri-
odic domains,G = T

d with d � 1, where the weight functionw ≡ ws,r is oftentimes
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from the class of dominating mixed smoothness,

ws,r (γ ) =
d∏

i=1

(1 + |γi |r )s/r , r , s ∈ (0,∞), (4)

with γ = (γ1, . . . , γd) ∈ Ĝ = Z
d and a related definition for r = ∞ [31, 35].

Kolomoitsev, Lomako, and Tikhonov [31] refer to the spaces Aw(Td) as weighted
Wiener spaces. In the paper [35], Nguyen, Nguen, and Sickel call Aw(Td) weighted
Wiener algebras, though they do not claim that these spaces are actually algebras
under pointwise multiplication. In Sect. 7, we consider cases where Aw andHλ with
λ = w−2 are both Banach algebras associated with subconvolutive weights (which
include the ws,r family for s ≥ 2), using results from [5, 33] to verify the Banach
algebra structure ofAw. Following a suggestion of Feichtinger [17],we call theBanach
algebras Aw Fourier–Wermer algebras owing to the fact that they are Fourier images
of convolution algebras L1

w(Ĝ) on the dual group Ĝ that were studied in the early
paper of Wermer [48]. We establish embedding relationships between Aw and Hλ

that should be useful in function approximation applications.

1.1 RelatedWork

The study of Banach algebras on LCAs associated with subconvolutive weights was
initiated by Feichtinger [15]. That work established that L∞

w is a Banach convolution
algebra iff w−1 is subconvolutive. It was also shown that if w is subadditive and w−1

lies in L1, then w−1 is subconvolutive. Thus, subadditive weights with integrable
inverses provide a useful route to constructing subconvolutive weights and associated
L∞

w convolution algebras. In general, however, subadditivity and subconvolutivity
are independent notions. Indeed, the subexponential weights w = λ−1 from (3) are
subconvolutive but not subadditive. Another relevant property of weight functions on
LCAs is submultiplicativity,

w(γ + γ ′) ≤ Cw(γ )w(γ ′),

the main result here being that L1
w is a Banach convolution algebra iff w is submulti-

plicative [15].
Besides L1

w and L∞
w , sufficient conditions for L p

w, 1 < p < ∞, to be Banach
convolution algebras are also known. An early reference in that direction is the paper
of Wermer [48], which studies L p

w convolution algebras on the real line, including the
case p = 1. More recently, Kuznetsova [33] has shown (using methods of proof for
sequence spaces from [36]) that for a locally compact group, L p

w with 1 < p < ∞ is
a convolution algebra if

(w−p ∗ w−p)(γ ) ≤ Cw−p(γ ). (5)
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When p = 2, the latter condition is equivalent to (2) with λ = w−2. Related results
for weighted convolution algebras on Rn have been obtained by Kerman and Sawyer
[30].

See [28, 41] for surveys of weight functions in harmonic analysis. Closely related
to weight function theory is the theory of Sobolev spaces and algebras on LCAs, e.g.,
[4, 6, 19, 25, 26].

In the paper [13], Essén studies the spectral properties of Banach convolution alge-
bras on Z orR under subconvolutive weights with additional decay conditions. In [5],
Brandenburg establishes sufficient conditions for the equivalence of the spectrum of
unital commutativeBanach algebra B and a subalgebra S ⊂ B. Using these conditions,
it is shown that for a subadditive weight functionw ≥ 1 on an LCA, the space L1∩L∞

w

(equipped with the norm ‖ f ‖L1 +‖ f ‖L∞
w
) is a Banach convolution algebra which has

the same spectrum as the group convolution algebra L1. The spectral properties of L p
w

convolution algebras on LCAs were studied in [33], where it was shown that every
such algebra is semisimple. In more recent work, Kuznetsova and Molitor-Braun [32]
studied the representation theory for convolution Banach ∗-algebras on locally com-
pact, non-abelian groups, and established sufficient conditions for these algebras to be
symmetric (i.e., the spectra of positive elements are subsets of the positive half-line),
among other results.

A related notion of Banach algebras on locally compact groups with Hilbert space
structure is the class of H∗-algebras proposed by Ambrose [1]. An H∗-algebra H is
required to satisfy the identity

〈 f g, h〉H = 〈g, f ∗h〉H = 〈 f , hg∗〉H , ∀g, h ∈ H , (6)

which implies that for each f ∈ H , the operations of left and right multiplication by
f are norm-preserving, ∗-homomorphisms between H and B(H) (the C∗-algebra of
bounded linear maps on H ). A classical example of an H∗-algebra is the L2 convo-
lution algebra on a compact group. Note that the RKHAs and weighted convolution
algebras on LCAs mentioned above do not, in general, satisfy (6).

In this paper, we focus on the setting of compact abelian groups, which allows us
to approach the problem of constructing RKHAs usingMercer theory. In particular, in
this setting the valuesλ(γ ) correspond to the eigenvalues of a compact integral operator
on L2(G) associated with the reproducing kernel of Hλ, and the characters γ ∈ Ĝ,
γ : G → S1 ⊂ C, form a corresponding orthogonal eigenbasis. This structure allows
us to deduce that Hλ is a Banach algebra if λ ∈ L1(Ĝ) is subconvolutive, which is
more general than the subconvolutivity implied by subadditivity of λ−1 = w2. Mercer
theory also facilitates the characterization of the associatedmaximal ideal spaces using
kernel integral operators.

1.2 Plan of the Paper

We introduce our notation in Sect. 2, and give an overview of relevant results from
RKHS theory in Sect. 3. In Sect. 4, we describe the construction of RKHAs on com-
pact abelian groups associated with subconvolutive functions. In Sect. 5, we study
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the spectra and state spaces of RKHAs (not necessarily associated with subconvo-
lutive functions). In Sect. 6 we study one-parameter families of RKHAs associated
with Markov semigroups. Sect. 7 discusses aspects of Fourier–Wermer algebras asso-
ciated with subconvolutive weights and their embedding relationships with RKHAs.
Appendix A contains the proof of an auxiliary result, Lemma 2, on integral operators
associated with translation-invariant kernels on LCAs.

2 Notation and Preliminaries

2.1 Locally Compact Abelian Groups

Consider an LCA G equipped with a Haar measure μ. In most instances, we will
assume that G is compact, in which case μ will be normalized to a probability mea-
sure. We let Ĝ denote the dual group of G, i.e., the abelian group of continuous
homomorphisms γ : G → S1, equipped with its dual measure, μ̂ [34, 42]. We iden-
tify each element of Ĝ with a continuous, complex-valued function onG, taking values
in the unit circle S1 ⊂ C, and acting on C multiplicatively as a unitary character. The
trivial character in Ĝ will be denoted by 0Ĝ . When there is no risk of confusion with

scalar multiplication of functions, the inverse of γ ∈ Ĝ will be denoted by −γ . We
recall that if G is compact, Ĝ has a discrete topology and μ̂ is a weighted counting
measure.

In what follows, C0(G) (resp. C0(Ĝ)) will denote the Banach space of complex-
valued, continuous functions on an LCA G (resp. its dual Ĝ) vanishing at infinity,
equipped with the uniform norm. Moreover,F : L1(G) → C0(Ĝ) and F̂ : L1(Ĝ) →
C0(G) will denote the Fourier and inverse Fourier transforms, respectively, i.e.,

F f (γ ) :=
∫

G
f (x)γ (−x) dμ(x), F̂ f̂ (x) :=

∫

Ĝ
f̂ (γ )γ (x) dμ̂(γ ).

We also use ∗ and � to denote the convolution (algebraic product) and antilinear
involution operations on the group algebra L1(G), respectively, i.e.,

( f ∗ g)(x) =
∫

G
f (x − y)g(y) dμ(y), f �(x) = f (−x),

and a similar notation for the corresponding operations on L1(Ĝ). When working
with Hilbert spaces such as L2(G) orHλ, we will adopt the convention that the inner
product is antilinear in the first argument, e.g., 〈 f , g〉L2(G) = ∫

G f̄ g dμ.
Throughout the paper, Sx will denote the (left) shift operator by group element

x ∈ G, i.e., Sx f (y) = f (x + y) for any element y ∈ G and function f : G → C.
The collection {Sx }x∈G forms a strongly continuous group of isometries on any of the
spaces L p(G) with 1 ≤ p < ∞ and C0(G). We also recall the standard property of
Fourier transforms that

F(Sx f )(γ ) = γ (x)(F f )(γ ), ∀ f ∈ L1(G), ∀x ∈ G, ∀γ ∈ Ĝ. (7)
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Reusing notation, we shall let F : L2(G) → L2(Ĝ) denote the unitary extension
of the Fourier operator. Similarly, we will continue to use ∗ to denote the convolu-
tion operator on L2(G). Note that for any f , g ∈ L2(G), f ∗ g lies in C0(G) [21,
Proposition 2.40], and we have

( f ∗ g)(x) = 〈 f̂ �, Sx g〉L2(G). (8)

We will let Ŝγ be the shift operator on the dual group Ĝ, defined analogously to Sx

on G and satisfying the corresponding relations in (7) and (8).
We say that a function f : G → C on an LCA is uniformly continuous if for every

ε > 0 there is a neighborhood U of the identity element of G, such that for every
x ∈ G and y ∈ x + U , | f (x) − f (y)| < ε. This notion is equivalent to uniform
continuity of functions on uniform spaces [29, Definition 7.6].

2.2 Reproducing Kernel Hilbert Algebras

Let λ be a positive-valued function in L1(Ĝ). In this paper, our focus is on RKHSs on
the group G with translation-invariant kernels k : G × G → C induced by λ, viz.

k(x, y) = l(x − y), l := F̂λ ∈ C0(G). (9)

By Bochner’s theorem for LCAs [42, Section 1.4.2], k is the reproducing kernel of an
RKHS Hλ of continuous functions; that is,

f (x) = 〈k(x, ·), f 〉Hλ
, ∀ f ∈ Hλ, ∀x ∈ G,

which expresses the fact that pointwise evaluation functionals on Hλ are continuous.
Note that Hλ is a harmonic Hilbert space associated with the weight function w =
λ−1/2.

Wewill say thatHλ is a reproducing kernelHilbert algebra (RKHA) if it is aBanach∗-algebra with respect to pointwise function multiplication and complex conjugation,
i.e.,

‖ f g‖Hλ
≤ C‖ f ‖Hλ

‖g‖Hλ
, ‖ f ∗‖Hλ

≡ ‖ f̄ ‖Hλ
= ‖ f ‖Hλ

, ∀ f , g ∈ Hλ. (10)

If Hλ is unital, we will use the symbol 1G to denote the unit of Hλ, i.e., the function
equal to 1 at every point in G. Note that we do not require that the norm of 1G is equal
to 1. We will also let σλ( f ) denote the spectrum of f ∈ Hλ, i.e., the set of complex
numbers z such that f − z does not have a multiplicative inverse in Hλ. We recall
thatHλ is symmetric as a unital Banach ∗-algebra if σλ( f ∗ f ) is a subset of [0,∞) for
every element f ∈ Hλ.

Remark 1 We have stated the Banach algebra condition ‖ f g‖Hλ
≤ C‖ f ‖Hλ

‖g‖Hλ

allowing a general constant C , as opposed to the more conventional definition
‖ f g‖Hλ

≤ ‖ f ‖Hλ
‖g‖Hλ

. This choice does not affect any of the results presented
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below, as C can be absorbed in a redefinition of the reproducing kernel k of Hλ to a
scaled kernel k̃ := C2k. The corresponding RKHA, H̃λ, has the same elements asHλ,
and satisfies ‖ f g‖H̃λ

≤ ‖ f ‖H̃λ
‖g‖H̃λ

, so we can view ‖·‖H̃λ
as an equivalent norm

to ‖·‖Hλ
. That being said, it should be kept in mind that a number of standard results

on Banach algebras require appropriate modification when C > 1. For example, the
fact that a state on a unital Banach ∗-algebra with isometric involution has unit oper-
ator norm does not necessarily hold when C > 1. In the present work, it is natural to
allow a general C , as this enables a direct identification of the reproducing kernels of
certain RKHAs with Markov transition kernels without having to employ additional
normalization factors.

3 Results from Reproducing Kernel Hilbert Space Theory

In this section, we collect results from RKHS theory that will be useful in the analysis
that follows.

First, consider a locally compact Hausdorff space X . We use P(X) to denote the
set of Borel probability measures on X and Eν(·) = ∫

X (·) dν the expectation operator
with respect to ν ∈ P(X).

We recall that a positive-definite kernel k on X whose corresponding RKHS H is
dense in C0(X) is known as C0-universal [7], or C-universal if X is compact [47]. If
the map R : P(X) → H with

R(ν) =
∫

X
k(x, ·) dν(x) (11)

is well-defined and injective, the kernel k is called characteristic [23]. In that case, R
is referred to as a kernel mean embedding of probability measures [44]. Moreover, for
any f ∈ H and ν ∈ P(X), we have

Eν f = 〈R(ν), f 〉H.

Thus, we can evaluate expectation values of elements ofH by means of Hilbert space
inner products. For a characteristic kernel, the feature map F : X → H with F(x) =
k(x, ·) is injective, and has linearly independent range [47].

On a compact Hausdorff space X , a C-universal kernel k is strictly positive-
definite and characteristic [27, 46]. Moreover, the kernel mean embedding induced
by k metrizes the weak-∗ topology of P(X) [45]. That is, a sequence of measures
ν j ∈ P(X) converges to ν ∈ P(X) weak-∗ sense iff R(ν j ) converges to R(ν) in the
norm of H. See [22] for a study of characteristic kernels on LCAs.

The following are standard results fromMercer theory [20, 37, 46], which we state
without proof.

Lemma 1 Let X be a compact Hausdorff space, μ a finite Borel measure with full
support in X, and k : X×X → Capositive-definite, continuous kernelwith associated
RKHS H. Then, the following hold.
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(i) H is a subspace of C(X), and the inclusion H ↪→ C(X) is compact.
(ii) K : L2(G) → H with K f = ∫

X k(·, x) f (x) dμ(x) is a well-defined, compact
integral operator with dense range.

(iii) The adjoint K ∗ : H → L2(X) is equal to the restriction of the inclusion map
C(X) ↪→ L2(X) on H; that is, K ∗ f = f , μ-a.e.

(iv) K := K ∗K is a positive, self-adjoint Hilbert-Schmidt operator on L2(X), with
eigenvalues λ0 ≥ λ1 ≥ · · · ↘ 0 and a corresponding orthonormal basis
{φ0, φ1, . . .} of eigenfunctions. Moreover, if k is positive-valued, K is of trace
class.

(v) The set {ψ j = λ
−1/2
j Kφ j : λ j > 0} is an orthonormal basis of H, satisfying

K ∗ψ j = λ
1/2
j φ j .

(vi) The kernel admits the Mercer series expansion

k(x, y) =
∑

j :λ j>0

ψ j (x)ψ j (y),

which converges uniformly for (x, y) ∈ X × X.
(vii) If the λ j are strictly positive, k is C-universal (and thus strictly positive-definite

and characteristic).

Next, we state certain properties of integral operators associated with translation-
invariant kernels on LCAs.

Lemma 2 Let λ ∈ L1(Ĝ) be an absolutely integrable, positive-valued function on the
dual group Ĝ of an LCA G, with absolutely integrable Fourier transform l = F̂λ ∈
L1(G) and let k : G×G → C be the corresponding translation-invariant reproducing
kernel from (9). Then:

(i) k is uniformly continuous, and Hλ is a subspace of C0(G).
(ii) The integral operator

K : f �→
∫

G
k(·, x) f (x) dμ(x)

maps L∞(G) into the Banach space of bounded functions on G. Moreover, K
maps L2(G) and L1(G) into the space of uniformly continuous functions on G.

(iii) For every x ∈ G and γ ∈ Ĝ,

Kγ (x) = λ(γ )γ (x).

Proof See Appendix A. ��
Recall that if G is compact, then Ĝ has a discrete topology. By Lemmas 1 and

2 (iii), when G is compact we can identify the eigenfunctions φ j of the (compact)
integral operatorK : L2(G) → L2(G)with the characters of G, φ j ≡ φγ ≡ γ . Using
� ⊆ Ĝ to denote the set {γ ∈ Ĝ : λ(γ ) > 0}, and defining ξ(γ ) := √

λ(γ ), the
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corresponding basis functions ψ j ≡ ψγ ofHλ are

ψγ := 1

ξ(γ )
Kγ = ξ(γ )γ, γ ∈ �. (12)

As a result, the elements of Hλ can be explicitly characterized as

Hλ =
⎧
⎨

⎩ f =
∑

γ∈�

f̂γ γ =
∑

γ∈�

f̂γ ψγ /ξ(γ ) :
∑

γ∈�

| f̂γ |2/λ(γ ) < ∞
⎫
⎬

⎭ .

In the above, the coefficients f̂γ coincide with the values of the Fourier transform
of the continuous function f ∈ Hλ ⊆ C(G) on �, i.e., f̂γ = F f (γ ). Moreover,
the condition

∑
γ∈�| f̂γ |2/λ(γ ) < ∞ is equivalent to the statement that the function

û : Ĝ → C with

û(γ ) =
{
f̂γ /ξ(γ ), γ ∈ �,

0, otherwise,

lies in L2(Ĝ). Together, these facts imply:

Lemma 3 The following statements are equivalent:

(i) f is an element of Hλ.
(ii) There exists û ∈ L2(Ĝ) with ‖ f ‖Hλ

= ‖û‖L2(Ĝ)
such that F f = ξ û.

Moreover, û is unique, and can be explicitly constructed as û = ξ+F f , where

ξ+(γ ) =
{
1/ξ(γ ), γ ∈ �,

0, γ ∈ Ĝ \ �.

4 Reproducing Kernel Hilbert Algebras from Subconvolutive
Functions

Unless otherwise stated, throughout this section we will assume that G is compact.
One of our main results is the following.

Theorem 4 Suppose that λ ∈ L1(Ĝ) is:

(i) Strictly positive-valued, λ(γ ) > 0;
(ii) Subconvolutive, (λ ∗ λ)(γ ) ≤ Cλ(γ );
(iii) Symmetric, λ(−γ ) = λ(γ ).

Then,Hλ is a unital, symmetric Banach ∗-algebra with respect to pointwise multipli-
cation and complex conjugation of functions, and lies dense in C(G).
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Proof See Sect. 4.1. ��

Remark 2 The fact that underAssumption (ii) of Theorem4Hλ is aBanach algebra can
be readily deduced from [33, Theorem1], which came to our attention after completion
of this work. In particular, [33, Theorem 1] establishes that under Assumption (ii)
L2

w(Ĝ)withw = λ−1/2 is a convolution algebra, and taking Fourier transforms yields
theBanach algebra property ofHλ under pointwisemultiplication. See also [30, 32, 36]
for related work. In Sect. 4.1, we include a proof tailored to the Hilbert space setting,
which uses Cauchy-Schwarz inequalities and the representation of convolution as an
L2(Ĝ) inner product (rather than, e.g., Hölder inequalities employed in [32]).

As mentioned in Sect. 1.1, a useful way of constructing subconvolutive functions
on Ĝ through positive-valued functions λ ∈ L1(Ĝ) with subadditive inverses,

λ−1(γ + γ ′) ≤ C(λ−1(γ ) + λ−1(γ ′)).

By [15, Corollary 3.8], every such function λ is subconvolutive. If, in addition, λ

is strictly positive-valued and symmetric, then by Theorem 4 Hλ is an RKHA. The
subexponential weights λ−1 in (3) also satisfy the assumptions of Theorem 4, but in
this case λ−1 is not subadditive. Another example mentioned in Sect. 1.1 is that of
an LCA G (not necessarily compact) with a function λ ∈ L1(Ĝ) such that λ−1/2

is subadditive. In that case, too, Hλ is a Banach algebra with respect to pointwise
multiplication [18]. To make contact with that result in the compact case, we note the
following fact.

Lemma 5 Suppose that G is compact and ξ ∈ L2(Ĝ) is positive-valued, self-adjoint
with respect to convolution (ξ� = ξ), and subconvolutive. Then, λ = ξ2 ∈ L1(Ĝ) is
also subconvolutive.

Proof Since G is compact, we have L1(Ĝ) ⊆ L2(Ĝ) and ‖·‖L2(Ĝ)
≤ ‖·‖L1(Ĝ)

(since
the dual measure μ̂ is a normalized counting measure). Thus, using (8) and the facts
that ξ� = ξ and ξ ∗ ξ ≤ Cξ , we get

λ ∗ λ(γ ) = 〈λ, Sγ λ〉L2(Ĝ)
= 〈ξ2, Sγ ξ2〉L2(Ĝ)

= 〈ξ Sγ ξ, ξ Sγ ξ 〉L2(Ĝ)
= ‖ξ Sγ ξ‖2

L2(Ĝ)

≤ ‖ξ Sγ ξ‖2
L1(Ĝ)

= 〈ξ, Sγ ξ 〉2
L2(Ĝ)

= (ξ ∗ ξ(γ ))2

≤ C2ξ2(γ ) = C2λ(γ ). ��

If G is compact and ξ ∈ L1(Ĝ) ⊆ L2(Ĝ) has a subadditive inverse, then by
[15, Corollary 3.9], ξ is subconvolutive. As a result, by Lemma 5, λ = ξ2 is also
subconvolutive. Thus, under the additional constraint λ1/2 ∈ L1(Ĝ), the subadditivity
assumption on λ−1/2 underlying the construction of the Banach algebra Hλ in [18]
implies the subconvolutivity assumption in Theorem 4. Note that the subexponential
weights in (3) satisfy λ1/2 ∈ L1(Ĝ).



Journal of Fourier Analysis and Applications            (2023) 29:12 Page 11 of 26    12 

4.1 Proof of Theorem 4

Consider two elements f , g ∈ Hλ. By Lemma 3, to show that the continuous function
f g lies in Hλ it is enough to show that the function ŵ : Ĝ → C defined as ŵ =
ξ+F( f g) lies in L2(Ĝ). To that end, letting û = ξ+F f and v̂ = ξ+Fg be the L2(Ĝ)

representatives of f and g from Lemma 3, we obtain

F( f g)(γ ) = (F f ∗ Fg)(γ ) = ((ξ û) ∗ (ξ v̂))(γ ) = 〈(ξ û)�, Ŝγ (ξ v̂)〉L2(Ĝ)
.

Then, using standard properties of shift operators and L2 inner products, as well as
the fact that ξ is real and L1(Ĝ)-self-adjoint, we get

|F( f g)(γ )|2 = |〈(ξ û)�, Ŝγ (ξ v̂)〉L2(Ĝ)
|2 = |〈ξ û�, (Ŝγ ξ)(Ŝγ v̂)〉L2(Ĝ)

|2
= |〈ξ Sγ ξ, û∗ Ŝγ v̂〉L2(Ĝ)

|2 ≤ 〈ξ Sγ ξ, ξ Sγ ξ 〉L2(Ĝ)
〈û∗ Ŝγ v, û∗ Ŝγ v〉L2(Ĝ)

= 〈λ, Ŝγ λ〉L2(Ĝ)
〈|û�|2, Sγ |v̂|2〉L2(Ĝ)

= [(λ ∗ λ)(γ )][(|û�|2 ∗ |v̂|2)(γ )]
≤ Cλ(γ )[(|û�|2 ∗ |v̂|2)(γ )],

wherewe used the subconvolutivity ofλ to arrive at the last line. Thus, sinceλ is strictly
positive-valued, we have ξ+(γ ) = 1/

√
λ(γ ), and |ŵ(γ )|2 ≤ C(|û�|2 ∗ |v̂|2)(γ ).

Therefore,

‖ŵ‖L2(Ĝ)
≤ C‖|û�|2 ∗ |v̂|2‖L1(Ĝ)

,

and it follows that ŵ lies in L2(Ĝ) since |û�|2 ∗ |v̂|2 is the convolution of the L1(Ĝ)

elements |û�|2 and |v̂|2.
We thus conclude that Hλ is a Banach algebra with respect to pointwise function

multiplication. The fact that Hλ is a dense subspace of C(G) follows from the strict
positivity of λ in conjunction with Lemma 1(vii).

Next, we verify that f ∗(x) = f (x) is an isometric, antilinear involution on Hλ.
Since λ(γ ) = λ(−γ ) for every γ ∈ Ĝ, the orthonormal basis elements ψγ from (12)
satisfy

ψγ (x) = λ1/2(γ )γ (x) = λ1/2(−γ )γ (x) = λ1/2(−γ )γ −1(x) = ψ−γ (x),

so ‖ψ∗
γ ‖ = ‖ψ−γ ‖Hλ

= 1. Therefore, ∗ preserves the norm of orthonormal basis
vectors of Hλ. Moreover, it is clearly antilinear and involutive, so Hλ is a Banach
∗-algebra satisfying (10).

The RKHA Hλ is also unital and satisfies ‖1G‖Hλ
= 1 since the unit basis vector

ψ0 is equal to the trivial character in Ĝ, and thus everywhere equal to 1 on G.
Finally, the symmetry of Hλ follows from Corollary 8 in Sect. 5 below. ��



   12 Page 12 of 26 Journal of Fourier Analysis and Applications            (2023) 29:12 

5 Spectra and States of Reproducing Kernel Hilbert Algebras

In general, an RKHA Hλ on a compact abelian group G does not satisfy the C∗
identity, ‖ f ∗ f ‖C(G) = ‖ f ‖2C(G), holding for the C∗-algebra of continuous functions
on G under pointwise multiplication and complex conjugation, nor does it satisfy
the H∗-identity in (6) enjoyed by the L2(G) convolution algebra. Failure to meet, in
particular, the last property means that the regular representation ofHλ into B(Hλ) is
not a ∗-representation.

Yet, by virtue of their RKHS structure, RKHAs possess continuous evaluation
functionals δx : Hλ → C at every x ∈ G,

δx f = f (x) = 〈k(x, ·), f 〉Hλ
, ‖δx‖H′

λ
= √

k(x, x), (13)

satisfying

δx ( f g) = (δx f )(δx g), δx f
∗ = δx f , ∀ f , g ∈ Hλ,

where ‖·‖H′
λ
is the operator norm of functionals in the dual spaceH′

λ. Every nonzero
evaluation functional δx is an element of the spectrum of Hλ, i.e., the set of nonzero
homomorphisms of Hλ into C, denoted by σ(Hλ). In addition, as we will see below,
under appropriate conditions on the kernel, the δx provide an abundance of states on
Hλ, and also induce a set of states on the non-abelian C∗-algebra B(Hλ).

Recall now that for a compact Hausdorff space G, the spectrum of the C∗-algebra
C(G) consists precisely of the evaluation functionals δx at every x ∈ G [11].Moreover,
the map β : G → σ(C(G)) with β(x) = δx and the Gelfand transform � : C(G) →
C(σ (C(G)))with (� f )(δx ) = f (x) are homeomorphisms with respect to the weak-∗
topology of σ(C(G)).

The following theoremcharacterizes analogously the spectra ofRKHAson compact
abelian groups and the associated Gelfand transforms.

Theorem 6 LetHλ be an RKHA on a compact abelian group associated with a strictly
positive function λ ∈ L1(Ĝ). Then, the following hold.

(i) The map βλ : G → σ(Hλ) with βλ(x) = δx is a homeomorphism with respect
to the weak-∗ topology on σ(Hλ) inherited as a subset ofH′

λ.
(ii) Under the identification G � σ(C(G)) induced by β, the Gelfand transform

�λ : Hλ → C(σ (Hλ)) with (�λ f )(δx ) = f (x) coincides with the inclusion
map ι : Hλ ↪→ C(G). In particular, the operator norm of �λ is equal to

√
l(0G).

Proof See Sect. 5.1. ��
Theorem 6 establishes thatHλ has the same spectrum as C(G). Analogous results

were found in the paper [5] for convolution algebras on LCAs. In particular, a class of
convolution algebras associated with subadditive weight functions was shown to have
the same spectrum as the group convolution algebra L1(G). Theorem 6 addresses the
case of algebras with respect to pointwise function multiplication that are simultane-
ously RKHSs. In particular, our method of proof in Sect. 5.1 makes explicit use of the
RKHSs structure of Hλ.
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The following are corollaries of Theorem 6.

Corollary 7

(i) Every non-vanishing function f ∈ Hλ has a multiplicative inverse in Hλ.
(ii) Every strictly positive function f ∈ Hλ has a square root inHλ, i.e., there exists

a (strictly positive) g ∈ Hλ such that f = g2.
(iii) The spectrum σλ( f ) of any f ∈ Hλ is equal to the range of f .

Proof If f is non-vanishing, then δx f �= 0 for any x ∈ G, and thus by Theorem 6(i)
f does not lie in any maximal ideal of Hλ. As a result, f is invertible. This proves
Claim (i).

Turning to Claim (iii), let f ∈ Hλ be arbitrary. It is clear that ran f ⊆ σλ( f ) (since
f − z has a zero whenever z ∈ ran f , and thus cannot have a multiplicative inverse).
If z ∈ σλ( f ) and z /∈ ran f , then f − z is a nowhere-vanishing non-invertible element
of Hλ, which contradicts Claim (i). Thus, we have σλ( f ) ⊆ ran f , and we conclude
that σλ( f ) = ran f .

Finally, to verify Claim (ii), we recall that every element of a unital Banach-∗
algebra with strictly positive spectrum has a square root, which can be chosen to also
have strictly positive spectrum; e.g., [43, §10.30]. Since, by Claim (iii), f > 0 has
σλ( f ) = ran f ⊂ (0,∞), it follows that there exists g ∈ Hλ with σλ(g) ∈ (0,∞)

such that f = g2. Again by Claim (iii), ran g = σλ(g), and thus g is strictly positive.
��

Corollary 8 The RKHA Hλ is (i) semisimple; and (ii) symmetric.

Proof Claim (i) follows from the fact that the Gelfand transform �λ has trivial kernel
(by Theorem 6(ii)). For Claim (ii) we use Corollary 7(iii) in conjunction with the fact
that f ∗ f ≡ f̄ f ≥ 0 to conclude that σλ( f ∗ f ) = ran( f ∗ f ) ⊆ [0,∞). ��

Next, we consider the state space, S(Hλ), of a unital RKHA Hλ, i.e., the set of
(automatically continuous) positive functionals ϕ : Hλ → C, normalized such that
ϕ(1G) = 1. By (13), for a unital RKHAHλ with reproducing kernel k, each nonzero
evaluation functional is a state with operator norm equal to

√
k(x, x). It should be

noted that because we allow continuity constants C different from 1 in our definition
of Banach algebras in (10), the elements of S(Hλ) need not have unit operator norm
(which would be the case if C = 1).

Suppose now that the evaluation functional δx at every x ∈ G is nonzero (a condition
that holds iff λ > 0). Then, viewing δx as a Dirac probability measure in P(G) leads
to the identity

δx = 〈R(δx ), ·〉Hλ
, ∀x ∈ G, (14)

where R : P(G) → Hλ is the kernelmean embedding of probabilitymeasures defined
in (11). By continuity of the feature map x �→ F(x) ≡ k(x, ·) as a map from G into
Hλ, (14) extends to a map P : P(G) → S(Hλ) such that

(Pν) f =
∫

G
δx f dν(x) = 〈R(ν), f 〉Hλ

. (15)
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Similarly, to each Dirac probability measure δx ∈ P(G), we can assign a state
ρx ∈ S(B(Hλ)) of the C∗-algebra B(Hλ) given by

ρx = tr(�x ·), (16)

where �x : Hλ → Hλ is the rank-1 projection operator

�x f = 〈k(x, ·), f 〉Hλ
k(x, ·)

k(x, x)
= f (x)k(x, ·)

k(x, x)
.

The assignment δx �→ ρx in (16) extends to a map Q : P(G) → S(B(Hλ)) with

(Qν)A =
∫

G
ρx A dν(x).

Intuitively, we can think of states of the non-abelian C∗-algebra B(Hλ) in the
range of Q as “classical” states induced by Borel probability measures on G (which
are states of the abelian Banach ∗-algebra Hλ). Letting π : Hλ → B(Hλ) denote the
regular representation ofHλ with π( f )g = f g, the following proposition justifies the
interpretation of states in ran Q as classical states, in the sense of acting consistently
on regular representatives of Hλ with expectation operators.

Proposition 9 With notation as above and under the assumptions of Theorem 6, the
following hold.

(i) The maps P and Q are injective and weak-∗ continuous.
(ii) For every ν ∈ P(G) and f ∈ Hλ the compatibility relations

Eν f = P(ν)( f ) = Q(ν)(π( f ))

hold. In particular, we have Q(ν)(π( f ∗)) = Q(ν)(π( f )), even though π need
not be a ∗-homomorphism.

Proof SinceG is compact andHλ is a dense subspace ofC(G), the reproducing kernel
ofHλ isC-universal and thus characteristic. It follows that R is injective, and therefore
so is P since R(ν) is the Riesz representative of P(ν) according to (15).

For every ν ∈ P(G) and f ∈ H we get

Q(ν)(π( f )) =
∫

G
tr(�xπ( f )) dν(x)

=
∫

G

∑

γ∈Ĝ

f (x)〈ψγ , k(x, ·)〉H〈k(x, ·), ψγ 〉H
k(x, x)

dν(x)

=
∫

G
f (x)

∑
γ∈Ĝ ψγ (x)ψγ (x)

k(x, x)
dν(x)

=
∫

G
f (x) dν(x) = Eν f = P(ν)( f ),
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where {ψγ = √
λ(γ )γ : γ ∈ Ĝ} is the orthonormal basis ofHλ from (12). The above

proves the compatibility relations in Claim (ii), and also implies that Q is injective by
the injectivity of P . We also have

Q(ν)(π( f ∗)) = Eν f
∗ = Eν f = Q(ν)(π( f )),

verifying the ∗-compatibility relation in Claim (ii).
SinceHλ is a subspace of C(G), the weak-∗ continuity of P follows directly from

the fact that Pν f = Eν f . Similarly, to deduce weak-∗ continuity of Q, note that for
any A ∈ B(Hλ), we have

(Qν)A = Eν f A,

where the function f A : x �→ ρx A is continuous. ��
The map G � x �→ �x can be interpreted in an RKHS context as an operator-

valued feature map. This feature map along with the corresponding embedding Q of
probability measures on G generalize the standard RKHS feature maps and kernel
mean embeddings of probability measures to the operator-valued setting of B(Hλ).
In other work [24], we have found these constructions to be useful in the context of
quantum computation.

5.1 Proof of Theorem 6

We begin with the following observation about maximal ideals of unital RKHAs.

Lemma 10 With the assumptions of Theorem 6, every maximal ideal I inHλ is orthog-
onal to the unit 1G.

Proof Let 1G = u + v with u ∈ I and v ∈ I⊥. Since I is a proper, closed subspace
ofHλ, the unit 1G does not lie in I , and v is nonzero, i.e., 0 < ‖v‖Hλ

≤ 1. We claim
that, in fact, ‖v‖Hλ

= 1.
To verify this, by rescaling the kernel ofHλ, we assume without loss of generality

that the multiplicative constant C in (10) is equal to 1 (see Remark 1).
Next, following standard techniques for unital Banach algebras, we equipHλ with

an equivalent norm, |||·|||, induced from the operator norm of B(Hλ) and the regular
representation π , viz.

||| f ||| = ‖π( f )‖B(Hλ).

This norm is a Banach algebra norm satisfying

||| f g||| ≤ ||| f ||||||g|||, |||1G ||| = 1, ||| f ||| ≤ ‖ f ‖Hλ
.

In particular, |||v||| ≤ ‖v‖Hλ
, so if

‖v‖Hλ
< 1 = |||1G |||,
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then |||v||| < 1 and u = 1 − v is invertible.
The latter, implies that I contains an invertible element, contradicting the fact that

it is a maximal, and thus proper, ideal in H. It follows that ‖v‖Hλ
= 1 and u = 0,

proving that 1G lies in I⊥. ��
We now continue with the proof of Theorem 6.

Claim (i)

For every f ∈ Hλ, x ∈ G, and net (xi ) converging to x , we have

βλ(xi )( f ) = f (xi ) → f (x) = βλ(x)( f ),

so βλ is weak-∗ continuous. In addition, βλ is injective since βλ(x) = δx =
〈k(x, ·), ·〉Hλ

, and k(x, ·) is the image of x under the feature map F : G → Hλ

(which is injective since k is characteristic). Therefore, since G and σ(Hλ) are com-
pact Hausdorff spaces, to show that βλ is a homeomorphism it suffices to show that it
is surjective.

To prove the latter by contradiction, suppose that there existsψ ∈ σ(Hλ)\ran βHλ
.

Then, I := kerψ is a maximal ideal inHλ, which is distinct from ker δx for all x ∈ G.
We claim that I is a dense subspace of C(G).

To verify this claim, observe first that the closure Ī of I inC(G) is an ideal. Indeed,
if that were not the case, there would exist f ∈ C(G) and g ∈ Ī such that f g /∈ Ī . But
since Hλ is a dense subspace of C(G), there exists a sequence fn ∈ Hλ converging
to f in C(G) norm, and similarly there exists gn ∈ I such that gn → g in C(G).
Defining hn = fngn , it follows that hn is a sequence in I (since fn ∈ Hλ, gn ∈ I ,
and I is an ideal in Hλ) with a C(G)-norm limit h ∈ Ī . The latter is equal to f g,
contradicting the assertion that f g /∈ Ī .

Now suppose that Ī were contained in a maximal ideal inC(G). Since the maximal
ideal space of C(G) is in bijective correspondence with the spectrum σ(C(G)), there
would exist an x ∈ G such that Ī ⊆ ker δx (with δx understood here as an evaluation
functional on C(G)), contradicting the fact that I is distinct from the kernels of all
evaluation functionals on Hλ. We therefore conclude that Ī is an ideal distinct from
any maximal ideal of C(G), so it must be equal to the whole space C(G). We have
thus verified that I is dense in C(G).

Next, since I is a maximal ideal in Hλ, every f ∈ I is Hλ-orthogonal to 1G by
Lemma 10. Moreover, since c := λ(0Ĝ) > 0, the integral operator K : L2(G) → Hλ

associated with k satisfies c−1K1G = 1G , and we get

0 = 〈1G , f 〉Hλ
= c〈1G , f 〉Hλ

= 〈K1G , f 〉Hλ
= 〈1G , K ∗ f 〉L2(G).

As a result,

‖1G − f ‖2C(G) ≥ ‖1G − K ∗ f ‖2L2(G)
= 1 + ‖K ∗ f ‖2L2(G)

≥ 1,

which contradicts the assertion that I is dense in C(G), proving Claim (i).
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Claim (ii)

The fact that �λ coincides with the inclusion map ι follows directly from the definition
of the former and the fact that Hλ is a subspace of C(G), viz.,

(�λ f )(δx ) = f (x) = (ι f )(x).

To verify the claim on the operator norm of �λ, we use the reproducing property
of Hλ to get

|(�λ f )(δx )| = | f (x)| = |〈k(x, ·), f 〉Hλ
‖

≤ ‖k(x, ·)‖Hλ
‖ f ‖Hλ

= √
k(x, x)‖ f ‖Hλ

= √
l(0G)‖ f ‖Hλ

.

Setting f to the unit vector f = k(x, ·)/‖k(x, ·)‖Hλ
(which is well defined since

δx is nonzero at any x ∈ G) then saturates the inequality, proving the claim and the
theorem. ��

6 Reproducing Kernel Hilbert Algebras andMarkov Semigroups

In this section, we study 1-parameter families of RKHAs associated with ergodic
Markov semigroups on L2(G). We assume throughout that G is compact and the Haar
measure μ is normalized to a probability measure.

Deferring additional details on the relevant theory to one of the many references
in the literature, e.g., [40], we recall that a strongly continuous semigroup {Mτ }τ≥0
of operators on L2(G) is a Markov semigroup if for every τ ≥ 0, Mτ is positivity-
preserving (i.e., Mτ f ≥ 0, μ-a.e., whenever f ≥ 0, μ-a.e.), Mτ1G = 1G , and∫
G Mτ f dμ = ∫

G f dμ for all f ∈ L2(G). Moreover, {Mτ }τ≥0 is said to be ergodic
if Mτ f = f for all π implies that f is constant μ − a.e.

With these definitions, consider a family {λτ ∈ L1(Ĝ)}τ>0 of functions on the dual
group satisfying the conditions

λτ (0Ĝ) = 1, ∀τ > 0,

0 < λτ (γ ) < 1, λτ (γ )λτ ′(γ ) = λτ+τ ′(γ ), ∀τ, τ ′ > 0, ∀γ ∈ Ĝ \ {0Ĝ},
λτ (γ ) = λτ (−γ ), ∀τ > 0, ∀γ ∈ Ĝ. (17)

We let lτ = F̂λτ and kτ (x, y) = lτ (x − y) be the kernel functions defined as in (9),
and Hτ ≡ Hλτ the corresponding RKHSs. We also let Kτ : L2(G) → L2(G) be the
corresponding kernel integral operators on L2(G) from Lemma 1. Note that lτ and kτ

are real since λτ is real and symmetric (i.e., λ�
τ = λτ ).

By (17), for each γ ∈ Ĝ, τ �→ λτ (γ ) is a continuous function, increasing mono-
tonically to 1 as τ → 0+. Consequently, the operators Kτ converge pointwise to
the identity on L2(G), i.e., limτ→0+ Kτ f = f for all f ∈ L2(G). Moreover,
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‖Kτ‖ = λτ (0Ĝ) = 1, so {Kτ }τ>0 ∪ K0 with K0 := Id is a strongly continuous
contraction semigroup, consisting of self-adjoint compact operators.

By the Hille-Yosida theorem, there exists a positive, self-adjoint operator D such
that, for all τ ≥ 0, Kτ = e−τD. This operator is diagonal in the character basis of
L2(G), i.e.,Dγ = η(γ )γ , where η(γ ) = −τ−1 log λτ for any τ > 0. In particular,D
has a simple eigenvalue η(0Ĝ) = 0 corresponding to the constant eigenfunction 1G .
It then follows from results on Markov semigroups (e.g., [8, Chapter 14, Theorem 2])
that −D is the infinitesimal generator of an ergodic Markov semigroup, {e−τD}τ≥0.

By construction, the operators Kτ are identical to e−τD , which implies that for
τ > 0, kτ (x, ·) is a transition probability density with respect to Haar measure. That
is, we have

kτ (x, ·) ≥ 0,
∫

G
kτ (x, ·) dμ = 1, ∀τ > 0, ∀x ∈ G.

The following theorem provides necessary and sufficient conditions for the spaces
Hτ to have RKHA structure.

Theorem 11 Suppose that the functions λτ ∈ L1(Ĝ) satisfy the Markov properties
in (17). Then, the corresponding RKHSsHτ are RKHAs iff the λτ are subconvolutive
for each τ > 0, i.e.,

(λτ ∗ λτ )(γ ) ≤ Cτ λτ (γ ).

Proof See Sect. 6.1. ��
The subexponential functions from (3),

λτ (γ ) = e−τ |γ |p ,

are a concrete example satisfying the assumptions of Theorem 11 for the d-torus,
G = T

d , Ĝ = Z
d . In the case of the circle, T1, the Markov generatorD is a fractional

diffusion operator given by the p/2-th power of the Laplacian, D = �p/2.

6.1 Proof of Theorem 11

The “if” part of the theorem follows directly from Theorem 4. To prove the “only
if” part, suppose that {Hτ }τ>0 is a 1-parameter family of RKHAs associated with the
functions {λτ }τ>0 satisfying (17). We show that the λτ are subconvolutive. To that
end, letting ξτ = λ

1/2
τ = λτ/2, we make use of the following result.

Lemma 12 If Hτ is a Banach algebra under pointwise multiplication of functions,
then for every û, v̂ ∈ L2(Ĝ) there exists (a unique) ŵ ∈ L2(Ĝ) such that

ξτ ŵ = (ξτ û) ∗ (ξτ v̂).
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Proof By Lemma 3, there exist (unique) f , g ∈ Hτ such that F f = ξτ û and Fg =
ξτ v̂. Moreover, f g lies inHτ , so again by Lemma 3 there exists ŵ ∈ L2(Ĝ) such that
F( f g) = ξτ ŵ. The claim follows from the fact that F( f g) = (F f ) ∗ (Fg). ��

Since G is compact, for any ε > 0 we have ξε ∈ L1(Ĝ) ⊆ L2(Ĝ), so setting
û = v̂ = ξε in Lemma 12, it follows that there exist ŵε ∈ L2(Ĝ) such that

ξτ ŵε = ξτ+ε ∗ ξτ+ε .

In particular, we have

F̂(ξτ+ε ∗ ξτ+ε) = (F̂ξτ+ε)(F̂ξτ+ε) = l2(τ+ε)/2.

Note now that for each γ ∈ Ĝ, ε �→ (ξτ+ε ∗ ξτ+ε)(γ ) is a continuous function that
increases monotonically as ε → 0+ to (ξτ ∗ ξτ )(γ ). As a result, the family {ŵε}ε>0
is bounded in L2(Ĝ) norm and thus in L∞(Ĝ) norm (since ‖·‖L∞(Ĝ)

≤ ‖·‖L2(Ĝ)
by

compactness of G) by ‖ξτ ∗ ξτ‖L2(Ĝ)
.

By the above, for every τ > 0, there exists a constant C̃τ such that for every ε > 0
and γ ∈ Ĝ we have

ŵε(γ ) = (ξτ+ε ∗ ξτ+ε)(γ )

ξτ (γ )
≤ C̃τ .

Taking the limit ε → 0+, we obtain

(ξτ ∗ ξτ )(γ ) ≤ C̃τ ξτ (γ ),

and since ξτ = λτ/2 and τ was arbitrary, we conclude that

(λτ ∗ λτ )(γ ) ≤ Cτ λτ (γ ),

where Cτ = C̃2τ . This verifies the subconvolutive property of the λτ . ��

7 Fourier–Wermer Algebras

Motivated by applications to high-dimensional function approximation, we end the
paper with a discussion on the inclusion relationships between RKHAs and Fourier–
Wermer algebras on compact abelian groups associated with subconvolutive weights.

Given a positive weight w : Ĝ → R+, consider the space

Aw =
⎧
⎨

⎩ f ∈ L1(G) :
∑

γ∈Ĝ
w(γ )|F f (γ )| < ∞

⎫
⎬

⎭ ,
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equipped with the norm ‖ f ‖Aw
= ∑

γ∈Ĝ w(γ )|F f (γ )|. As mentioned in Sect. 1, in

the case G = T
d , spaces in the classAw are Fourier–Wermer algebras that have been

employed in high-dimensional (d � 1) function approximation methods [31, 35].
In more detail, assuming (as we will henceforth do) that w is bounded away from 0,
every space Aw embeds continuously into the Wiener algebra A(G), i.e., the Banach
algebra of functions on G with absolutely convergent Fourier series,

A(G) =
⎧
⎨

⎩ f ∈ L1(G) :
∑

γ∈Zd

|F f (γ )| < ∞
⎫
⎬

⎭ , ‖ f ‖A(Td ) := ‖F f ‖L1(Zd ).

In particular,Aw may be identified with the image of L1
w(Ĝ) under the inverse Fourier

operator, Aw = F̂(L1
w(Ĝ)), and can thus be understood as a Banach space of con-

tinuous functions whose regularity depends on the weight function w. Here, and in
what follows, we let L p

w(Ĝ), p ∈ (1,∞), be the Banach space on Ĝ equipped with
the norm ‖ f̂ ‖L p

w(Ĝ)
= (

∑
γ∈Ĝ(w(γ )| f̂ (γ )|)p)1/p.

An important problem in numerical analysis is the approximation of functions f
in an input space X such asAw(Td) by elements fn in subspaces of finite dimension,
such that for a given n the residual f − fn has low norm, uniformly over X , with respect
to a target space Y into which X is continuously embedded (e.g., L∞(Td), L2(Td),
or A(Td)). Typically, the error of such approximations is measured using s-numbers
for the embedding ι : X ↪→ Y [38], which can be thought of as generalizations of
the singular values of ι when X and Y are Hilbert spaces and ι is compact. In high-
dimensional applications, of particular interest is the dependence of the s-numbers on
d � 1. Intuitively, one seeks to take advantage of the regularity properties of X to
alleviate the “curse of dimension” suffered by finite-rank approximation of arbitrary
elements of the target space Y .

The recent paper [35] has shown that forweightsw = ws,r in the class of dominating
mixed smoothness (4) the optimal approximation error from X = Aw(Td) scales as
n−s(log n)s(d−1) when the output space is Y = A(Td). However, the question of
whether Aw(Td) has Banach algebra structure is left open. An affirmative answer to
that question would present additional opportunities to build approximation schemes
that leverage algebra structure; see, e.g., [14] for an example in the setting of harmonic
Hilbert spaces.

7.1 Algebra Structure ofAw

Recall the subconvolutivity condition (5) that implies [33] that L p
w(Ĝ) is a convolution

algebra on the dual group. Requiring that this condition holds for p = 1,

(w−1 ∗ w−1)(γ ) ≤ Cw−1(γ ), ∀γ, γ ′ ∈ Ĝ, (18)

and using the inverse Fourier operator to pass to the primal groupG, we can deduce that
Aw = F̂(L1

w(Ĝ)) is a Banach algebra under pointwise multiplication. This algebra
is a dense subalgebra of the Wiener algebraA(G). Moreover, the spectrum of L1

w(Ĝ)
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contains a homeomorphic image of G [33, Theorem 4], which implies that σ(Aw) has
the same property.

Note that theweightsws,r satisfy (18) for any s ≥ 2 and r > 0. Indeed, in dimension
d = 1 the weight w̃s,r (γ ) := (1 + |γ |r )s/r , γ ∈ Z, is subadditive and w̃−1

s,r lies in
L1(Z), so w−1

s,r is subconvolutive (see [15]). Since, in any dimension d ∈ N, w−1
s,r is

built up as the product w−1
s,r (γ ) = ∏d

i=1 w̃−1
s,r (γi ) with γ = (γ1, . . . , γd), it follows

that ws,r satisfies (18), so Awr ,s is a Banach algebra on T
d .

For completeness,we note that the algebra property ofAw also holds for subadditive
weights (without requiring that w−1 lies in L1(Ĝ)). In this case, we can additionally
deduce that the spectrum σ(Aw) is homeomorphic to G.

Recall Theorems 3 and 4 in [5], which collectively imply that if Ĝ is discrete
(which is the case here since G is compact), and w : Ĝ → R satisfies w ≥ 1
and (1), then L1(Ĝ) ∩ L∞

w (Ĝ) is a Banach convolution algebra with a homeomorphic
spectrum to G. It has been pointed out to us by Feichtinger [17] that this result readily
generalizes toLp

w(Ĝ) := L1(Ĝ)∩L p
w(Ĝ)with p ∈ [1,∞] and the norm ‖ f ‖Lp

w(Ĝ)
:=

‖ f ‖L1(Ĝ)
+ ‖ f ‖L p

w(Ĝ)
. Indeed, for a discrete group Ĝ, the subadditivity property (1)

implies

w(γ ) ≤ C(w(γ ′) + w(γ − γ ′)), ∀γ, γ ′ ∈ Ĝ,

leading to the pointwise estimate

|w( f ∗ g)|(γ ) ≤ C
∫

Ĝ
(w(γ ′) + w(γ − γ ′))| f (γ ′)g(γ − γ ′)| dγ ′

≤ C ((|w f | ∗ |g|)(γ ) + (| f | ∗ |wg|)) (γ ),

which holds for every f , g ∈ Lp
w(Ĝ) and γ ∈ Ĝ. From the above, we get

‖ f ∗ g‖L p
w(Ĝ)

≤ C ‖|w f | ∗ |g| + | f | ∗ |wg|‖L p(Ĝ)

≤ C
(
‖w f ‖L p(Ĝ)

‖g‖L∞(Ĝ)
+ ‖ f ‖L∞(Ĝ)

‖wg‖L p(Ĝ)

)

≤ C
(
‖ f ‖L p

w(Ĝ)
‖g‖L1(Ĝ)

+ ‖ f ‖L1(Ĝ)
‖g‖L p

w(Ĝ)

)
, (19)

and thus ‖ f ∗ g‖L p
w(Ĝ)

≤ 2C‖ f ‖Lp
w(Ĝ)

‖g‖Lp
w(Ĝ)

. Moreover, since ‖ f ∗ g‖L1(Ĝ)
≤

‖ f ‖L1(Ĝ)
‖g‖L1(Ĝ)

, we have,

‖ f ∗ g‖Lp
w(Ĝ)

≤ (2C + 1)‖ f ‖Lp
w(Ĝ)

‖g‖Lp
w(Ĝ)

,

and we conclude that Lp
w(Ĝ) is a Banach convolution algebra (cf. [5, Theorem 3]).

Next, it follows from (19) that for any n ∈ N

‖ f ∗2n‖L p
w(Ĝ)

≤ 2C‖ f ∗n‖L1(Ĝ)
‖ f ∗n‖L p

w(Ĝ)
≤ 2C‖ f ∗n‖L1(Ĝ)

‖ f ∗n‖Lp
w(Ĝ)

. (20)
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By [5, Theorem 2], the above is a sufficient condition for Lp
w(Ĝ) and L1(Ĝ) to have

equal spectra,

σ(Lp
w(Ĝ)) = σ(L1(Ĝ)). (21)

Therefore, setting p = 1 in (21) (in which case L1
w(Ĝ) = L1

w(Ĝ) since w ≥ 1), and
passing to the primal group by Fourier transforms, we obtain

σ(Aw) = σ(F̂L1
w(Ĝ)) = σ(F̂L1(Ĝ)) = σ(C(G)). (22)

Thus, we can conclude that the Fourier–Wermer algebras Aw associated with subad-
ditive weights have the same spectra as C(G), analogously to the result in Theorem 6
for RKHAS Hλ associated with subconvolutive weights.

7.2 Embedding Relationships with RKHAs

We now consider the case where w and λ = w−2 satisfy (18) and the assumptions of
Theorem 4 , respectively, so that Aw and Hλ are both Banach algebras. This will be
the case, for instance, for w = ws,r with s ≥ 2, as well as the weights w = λ

−1/2
τ

obtained from Markov semigroups as in Sect. 6 (which include the subexponential
weights w = λ−1/2 from (3) as a special case). Inclusion relationships between Aw

and Hλ are particularly interesting when both of these spaces are algebras, as they
induce algebra representations via the corresponding multiplication operators.

First, it is straightforward to deduce that Aw embeds continuously into Hλ, and
the operator norm of the embedding is equal to 1 [35]. Indeed, defining the linear
operators A : Aw → L1(Ĝ) and B̃ : Hλ → L2(Ĝ) such that

A f (γ ) = w(γ )F f (γ ), B̃ f̂ (x) =
∑

γ∈Ĝ
w−1(γ )γ (x) f̂ (γ ),

it follows by direct calculation that the following diagram commutes,

Aw Hλ

L1(Ĝ) L2(Ĝ)

Id

A

ι

B̃ ,

where Id is the identity map on functions and ι is the inclusion map. One also verifies
that A and B̃ have unit operator norm (in fact, B̃ is unitary), and since ‖1G‖Aw

=
‖1G‖Hλ

= 1, the embedding Aw ↪→ Hλ has unit operator norm. It then follows that
the map π : Aw → B(Hλ), where π f is the multiplication operator by f , provides
a strongly continuous, faithful representation of Aw into B(Hλ).

Next, turning to embeddings of the opposite direction, in general we cannot expect
a continuous embedding of Hλ into Aw since, unless G is finite, L1(Ĝ) is a strict
subspace of L2(Ĝ). Nevertheless, under appropriate assumptions, giving up a small
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amount of regularity ε is sufficient to obtain a continuous embedding of Hλ1+ε into
Aw. Here, we assume that the weight w is chosen such that λε = w−2ε satisfies
the assumptions of Theorem 4 for any ε > 0. This will hold, for instance, for the
“semigroup” weights w = λ

−1/2
τ from Sect. 6 but not the ws,r family (4).

For any ε > 0 let us define the linear map Dε : L2(Ĝ) → L1(Ĝ) such that

Dε f̂ = w−ε f̂ ;

this map has operator norm ‖Dε‖ ≤ ‖w−ε‖L1(Ĝ)
. Defining also Ã : L1(Ĝ) → Aw

and Bε : Hλ1+ε → L2(Ĝ) as

Ã f̂ (x) =
∑

γ∈Ĝ
w−1(γ )γ (x)ξ(γ ), Bε f (γ ) = w1+ε(γ )F f (γ ),

where ‖ Ã‖ = ‖Bε‖ = 1 and Bε is unitary, leads to the following commutative
diagram:

Hλ1+ε Aw

L2(Ĝ) L1(Ĝ)

Id

Bε

Dε

Ã .

We thus conclude that the embedding Hλ1+ε ↪→ Aw is continuous for any ε > 0.
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Appendix A. Proof of Lemma 2

Claim (i)

To show that k is uniformly continuous, note first that the kernel shape function l
lies in C0(G), and is thus uniformly continuous. As a result, for every ε > 0 and
(x, x ′) ∈ G ×G there exists a neighborhoodU of the identity element of G such that

|l(x − x ′) − l(z)| < ε, ∀z ∈ (x − x ′) +U .

http://creativecommons.org/licenses/by/4.0/
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Therefore, defining the open neighborhood V = {(y, y′) ∈ G × G : y − y′ ∈ U } of
the identity of G × G, we get

|l(x − x ′) − l(y − y′)| = |k(x, x ′) − k(y, y′)| < ε, ∀(y, y′) ∈ (x, x ′) + V ,

which proves that k is uniformly continuous.
To show that Hλ is a subspace of C0(G), note that every f ∈ Hλ is the Hλ-norm

limit of finite linear combinations of kernel sections of the form fn = ∑n−1
j=0 c j k(x j , ·),

where k(x j , ·) lies in C0(G). Moreover, proceeding similarly to [20, Lemma 2.1], we
have

| f (x)| = ∣∣〈k(x, ·), f 〉Hλ

∣∣ ≤ ‖k(x, ·)‖Hλ
‖ f ‖Hλ

= √
k(x, x) ‖ f ‖Hλ

≤ ‖l‖1/2C0(G)‖ f ‖Hλ
,

and thus

‖ f ‖sup ≤ ‖l‖1/2C0(G)
‖ f ‖Hλ

.

The above implies that the Cauchy sequence fn ∈ Hλ ∩C0(G) converging to f ∈ Hλ

is also Cauchy with respect to C0(G) norm, so f lies in C0(G). This proves Claim (i).

Claim (ii)

Since λ ∈ L1(G) and l = F̂λ ∈ L1(G), we have l ∈ L1(G) ∩ C0(G), which implies
that for every x ∈ G, k(x, ·) = Sxl lies in L1(G) ∩ C0(G) Therefore, for every
f ∈ L∞(G), K f (x) = ∫

G k(x, ·) f dμ exists for every x ∈ G, and we have

|K f (x)| =
∣∣∣∣
∫

G
k(x, ·) f dμ

∣∣∣∣ ≤ ‖Sxl‖L1(G)‖ f ‖L∞(G) = ‖l‖L1(G)‖ f ‖L∞(G).

This shows that K is well-defined as a bounded linear map from L∞(G) to the space
of bounded functions on G, as claimed.

Next, we have ‖l‖2
L2(G)

≤ ‖l‖C0(G)‖l‖L1(G), which implies that l lies in L2(G).

Thus, for every f ∈ L2(G) we can express K f (x) as the inner product

K f (x) = 〈k(x, ·), f 〉L2(G) = 〈Sxl, f 〉L2(G).

Therefore, for any x, y ∈ G, we obtain

|K f (x) − K f (y)|2 ≤ ‖Sxl − Syl‖C0(G)‖Sxl − Syl‖L1(G)‖ f ‖2L2(G)

≤ 2‖Sxl − Syl‖C0(G)‖l‖L1(G)‖ f ‖2L2(G)
,

The uniform continuity of K f then follows by the strong continuity of Sx , using a
neighborhood of the identity of G × G analogous to V in the proof of Claim (i).
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Finally, the uniform continuity of K f for f ∈ L1(G) follows from a similar
argument using the bound

|K f (x) − K f (y)| ≤ ‖k(x, ·) − k(y, ·)‖C0(G)‖ f ‖L1(G).

This completes the proof of Claim (ii).

Claim (iii)

The claim is a direct consequence of (7) and the definition of k in (9), viz.

Kγ (x) =
∫

G
k(x, y)γ (y) dμ(y)

=
∫

G
Sxl(−y)γ (y) dμ(y) =

∫

G
Sxl(y)γ (−y) dμ(y)

= F(Sxl)(γ ) = γ (x)(Fl)(γ ) = γ (x)λ(γ ).
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