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1 Introduction
In a recent contribution, Shrimali and Lopez-Pamies [1] have

shown that the original form [2,3]

−
∂W
∂Γ0

= Tc (1)

of the Griffith criticality condition that describes the growth of
cracks in elastomers subjected to quasi-static mechanical loads
can be reduced to the fundamental form:

−
∂WEq

∂Γ0
= Gc (2)

In Eq. (1), the left-hand side −∂W/∂Γ0 denotes the change in total
deformation (stored and dissipated) energy W in the bulk with
respect to an added surface area to the pre-existing crack Γ0,
while the right-hand side Tc stands for the critical tearing energy,
a characteristic property of the elastomer that depends on the
loading history. In Eq. (2), on the other hand, −∂WEq/∂Γ0

denotes the change in equilibrium elastic energy WEq stored in
the bulk with respect to an added surface area to the pre-existing
crack Γ0, while Gc stands for the intrinsic fracture energy, a mate-
rial constant of the elastomer. Experiments have shown that its
value is typically in the same relatively narrow range

Gc ∈ [10, 100]N/m (3)

for many common elastomers [4–6].
Historically, the shortcoming of the criticality condition (1) has

been not knowing how the critical tearing energy Tc depends on
the applied loading history for a given elastomer and given geom-
etry of the body of interest. The work of Shrimali and Lopez-Pamies
[1] has brought resolution to this decades-old problem by first rec-
ognizing that the total deformation energy W admits the partition

W =WEq +WNEq︸������︷︷������︸
stored

+ Wv︸︷︷︸
dissipated

(4)

for any viscoelastic elastomer2 and then establishing from experi-
ments that

Tc = Gc −
∂WNEq

∂Γ0
−
∂Wv

∂Γ0
(5)

at fracture. In these expressions, wherein dissipation mechanisms
other than viscous deformation (e.g., strain-induced crystallization)
are assumed absent,Wv represents the part of the total energy that is
dissipated by the elastomer via viscous deformation, while the com-
bination WEq +WNEq represents the part of the total energy that is
stored by the elastomer via elastic deformation. Precisely, WNEq

stands for the part of the stored elastic energy that will be dissipated
eventually via viscous dissipation as the elastomer reaches a state of
thermodynamic equilibrium. On the contrary,WEq denotes the part
of the stored elastic energy that the elastomer will retain at thermo-
dynamic equilibrium.
From a fundamental point of view, the criticality condition (2) is

a strikingly simple and intuitive condition as it states that whether
an elastomer simply deforms or, on the other hand, creates new
surface from a pre-existing crack is dictated by a competition
between its stored equilibrium elastic energy and its intrinsic frac-
ture energy, irrespective of its viscosity.
From a practical point of view, the criticality condition (2) is also

conveniently simple. This is because it is based on two properties of
the elastomer that can be measured experimentally once and for all
by means of conventional tests: (i) its viscoelastic behavior, from
which the storage of equilibrium elastic energy can be identified,
and (ii) its intrinsic fracture energy.
As a first effort to gain precise and quantitative insight into the

fracture behavior of viscoelastic elastomers, Shrimali and Lopez-
Pamies [1,8] have made use of the newly minted fundamental
form (2) of the Griffith criticality condition to explain two types
of popular fracture tests for viscoelastic elastomers, the so-called
pure-shear fracture test and the delayed fracture test. The objective
of this article—which can be viewed as the third instalment of the
series—is to deploy the criticality condition (2) to explain yet
another popular fracture test: the trousers test.
This article is organized as follows. In the same spirit of the pio-

neering global (elastic) analysis provided by Rivlin and Thomas [2],
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2The interested reader is referred to Ref. [7] for a detailed account on the viscoelas-
ticy of elastomers. Here, we merely recall that rheological representations of elastomers
provide a helpful visualization of the energy partition (4). For instance, in the Zener-
type rheological representation depicted in Fig. 2, WEq and WNEq correspond to the
elastic energy stored in the equilibrium and nonequilibrium springs, whereas Wv cor-
responds to the viscous energy dissipated by the dashpot.

Journal of Applied Mechanics JULY 2023, Vol. 90 / 071010-1Copyright © 2023 by ASME

mailto:bshrima2@illinois.edu
mailto:pamies@illinois.edu


we begin in the first part of Sec. 2 by presenting a global analysis of
fracture nucleation in the trousers test for viscoelastic elastomers. In
the same spirit of the global analysis provided by Greensmith and
Thomas [3], we also present in the latter part of Sec. 2 a global anal-
ysis of fracture propagation. In Sec. 3, in preparation to carry out
corresponding full-field analyses, we formulate the initial boundary
value problem of the trousers test per se. In Sec. 4, we present and
discuss full-field solutions for the canonical case of a viscoelastic
elastomer with Gaussian elasticity and constant viscosity. These
results serve to lay bare the key features of the trousers test in the
simplest of settings. We conclude in Sec. 5 by summarizing the
main findings of this work and by recording a number of closing
remarks.

2 Global Analysis of the Trousers Test
2.1 Fracture Nucleation. Consider the trousers test schemati-

cally depicted in Fig. 1. The specimen, which is taken to be made
of an isotropic incompressible viscoelastic elastomer, is such that
its thickness is much smaller than its height (B≪H), its height
is smaller than its length (H< L), and the initial length of the
pre-existing crack is larger than the height of the specimen but,
obviously, smaller than its length (H <A <L). In experiments, one
typically encounters the ranges of ratios L/H∈ [2, 4], A/H∈
[1, 2], and H/B∈ [20, 40].
The two legs of the trousers are bent opposite to one another and

brought to lie in the same plane, their bottom ends are held firmly
by stiff grips, and these are then pulled apart. In experiments, the
pulling is done either by applying a force P(t) or by applying a defor-
mation l(t) over a time interval t∈ [0, T ]; see, e.g., Fig. 2 in Ref. [3].
For the former case, a force is typically ramped up over an initial time
interval [0, t0] and then held constant.When a deformation is applied,
on the other hand, the grips are typically separated at a constant rate l̇0
so that the current distance between the grips is given by the relation
l(t) = l0 + l̇0t, where l0≈ 2A since B≪A.
Because of the special geometry of the specimen, at any given

time t∈ (0, T ), there are four different regions of deformation; see
Fig. 1. In keeping with the same type of region labeling used by
Rivlin and Thomas [2]—see Fig. 7 in their work—the region D is
substantially undeformed, the crack front region C and the grip
region A are in a complex state of deformation (highly nonuniform
in space), while region B is substantially in a state of spatially
uniform uniaxial tension, and this provided that the deformation

l(t) between the grips is not exceedingly large. Large deformations
l(t) lead to significant twisting of the specimen, which in turn results
in region B also exhibiting a state of deformation that is not uniform.
In the remaining of this section, we tacitly assume that l(t) is small
enough and hence that the state of deformation in region B is one of
uniform uniaxial tension.
Now, for the case when the test is carried out by applying a force

P(t), consider an increase in the crack surface of amount dΓ0=BdA
at time t. This increase in crack surface does not alter the complex
states of deformation in A and C. Instead, it simply shifts the region
C in the direction of the added crack, resulting in the growth of
region B at the expense of region D. In other words, an added
crack dΓ0 at constant applied force P(t) results in the transferring
of a volume HdΓ0 of the specimen from an undeformed state to a
state of uniaxial tension under the same force P(t). Making use of
this observation, we can immediately deduce that

∂WEq

∂Γ0

∣∣∣∣
P

=HψEq
ut (λ(t)) (6)

where the suffix P denotes differentiation at fixed force P(t), λ(t) is
the stretch that results by subjecting the elastomer to uniform uniax-
ial tension with a force P(t), and ψEq

ut stands for the equilibrium
elastic energy density stored at that state of deformation.
By definition, the derivative in the Griffith criticality condition

(2) is to be taken at fixed deformation l(t), and not at fixed force
P(t). It follows from a result of Shrimali and Lopez-Pamies [8]
that these two derivatives are related to one another according to
the equality

−
∂WEq

∂Γ0

∣∣∣∣
l

= PEq ∂l
∂Γ0

∣∣∣∣
P

−
∂WEq

∂Γ0

∣∣∣∣
P

(7)

with

PEq :=
∂WEq

∂l

∣∣∣∣
Γ0

(8)

Upon recognizing from the geometry of the test that

∂l
∂Γ0

∣∣∣∣
P

=
2
B
λ(t)

and making direct use of the result (6), it follows from (7) that

−
∂WEq

∂Γ0
=
2
B
PEqλ(t) − HψEq

ut (λ(t)) (9)

where we have reverted back to omitting the suffix l in the deriva-
tive −∂WEq/∂Γ0, since there is no longer risk of confusion.
This last relation is the result that we are after. It reveals that the

computation of the energy release rate −∂WEq/∂Γ0 in the Griffith
criticality condition (2) for a trousers fracture test—regardless of
whether the test is carried out by prescribing a force P(t) or a defor-
mation l(t)—amounts to determining two quantities:

Fig. 1 Schematic of the trousers test for a viscoelastic elasto-
mer. The dimensions in the undeformed configuration are such
that B≪H<A< L. The two bottom ends of the “trousers” are
held firmly by stiff grips and then pulled apart either by an
applied force P(t) or by an applied deformation l(t). Provided
that the deformation l(t) is not too large, the region B in the speci-
men is essentially in a state of spatially uniform uniaxial tension.
For this reason, this test is also sometimes referred to as a
“simple-extension” fracture test.

Fig. 2 The rheological representation of the viscoelastic model
(15)–(16)
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• the stretch λ(t) that results in the elastomer by subjecting it to
uniaxial tension with the same force P(t) that is prescribed or
measured, if l(t) is prescribed, in the test and

• the equilibrium elastic force PEq, as defined by Eq. (8).

While the stretch λ(t) can be readily determined from a separate uni-
axial tension test, the determination of PEq would appear to require,
in principle, having access to the local deformation field in the trou-
sers specimen at hand, which is only possible by solving in full the
pertinent initial boundary value problem making use of an appropri-
ate viscoelastic model for the elastomer. Fortunately, in practice, the
equilibrium elastic force PEq can be determined directly in terms of
a global measurement from the trousers test itself. This is because of
two distinguishing properties of PEq, which we outline next.
Remark 1. PEq is the dominant term in Eq. (9). In practice, as
already noticed by Rivlin and Thomas [2] from their own experi-
mental results, fracture in trousers specimens with sufficiently
large height H nucleates when the stretch in region B is negligible,
that is, when λ(t)≈ 1. This allows to simplify relation (9) to

−
∂WEq

∂Γ0
=
2
B
PEq (10)

▪
Remark 2. PEq is substantially only a function of the global stretch
l(t)/l0 between the grips. For typical trousers specimens, for which
relation (10) applies, the full-field analysis presented in Sec. 4.3
reveals that—rather remarkably—the equilibrium elastic force PEq

is de facto only a function of the current value of the global
stretch l(t)/l0 between the grips, and hence, in particular, indepen-
dent of the length A of the pre-existing crack and of the loading
rate. With a slight abuse of notation, we write

PEq = PEq l(t)
l0

( )
(11)

Ergo, given an elastomer of interest, in order to determine PEq in
practice, it would suffice to carry out a trousers test at a slow
enough rate that viscous dissipation is negligible, measure both
P(t) and l(t)/l0, and then use these measurements to determine the
function (11), sincePEq = P(t) in the absence of viscous dissipation.▪
A unique critical global stretch lc/l0-. When combined with the

Griffith criticality condition (2), the facts that the energy release
rate −∂WEq/∂Γ0 is given exclusively in terms of PEq and that
PEq is only a function of the global stretch l(t)/l0 imply that, for a
given elastomer of interest, there is a unique critical global stretch

lc
l0

at which fracture nucleates in a trousers test, irrespective of the
length of the pre-existing crack and of the loading rate.
Interestingly, the aforementioned is the same type of unique crit-

icality result that occurs in “pure-shear” fracture tests [1].
Regrettably, virtually none of the experimental studies that have

been reported in the literature for trousers fracture tests include mea-
surements of the critical deformation lc at which fracture nucleation
takes place. The sole exception that we are aware of is the original
data of Rivlin and Thomas [2], which pertains to natural rubber
specimens that contained pre-existing cracks of various different
lengths A, but that were loaded at the same (slow) rate; see Figs.
2(ii) and 4(ii) in their work. Their results indicate (to within exper-
imental error) that fracture nucleation occurs at a critical stretch lc/l0
that is indeed independent of the length of the pre-existing crack.

2.2 Fracture Propagation. The analysis presented in the pre-
ceding subsection pertains to the nucleation of fracture, that is, the
first instance at which new surface is created from the pre-existing
crack. As first recognized by Greensmith and Thomas [3], trousers
fracture tests are also particularly useful to study fracture propaga-
tion in viscoelastic elastomers. This is because under the often sat-
isfied twofold premise,

• λ(t)≈ 1 and
• crack propagation is a smooth process in time,

the rate of crack propagation dΓ(t)/dt is given in terms of the rate
dl(t)/dt of separation between the grips by the simple relation:

dΓ
dt

(t) =
B

2
dl
dt
(t)

or, equivalently, using the identity dΓ(t)=Bda(t), by the relation

da
dt

(t) =
1
2
dl
dt
(t) (12)

in terms of the current (undeformed) length a(t) of the crack.
The experimentally prominent case of applied deformation l(t) at

a constant rate. For the case when the test is carried out by separat-
ing the grips at a constant rate l̇0, so that, again, l(t) = l0 + l̇0t, it
follows immediately from (12) that

a(t) = A +
l̇0
2
t (13)

Granted the crack evolution (13), note that

l(t)
2a(t)

=
2A + l̇0t

2 A + l̇02t
( ) = 1 =

lc
l0

(14)

for all t> 0, where we have made critical use of the inequality B≪
A.
The string of equalities (14) reveals that the propagation (13) of

the crack in a trousers fracture test carried out by pulling the grips
apart at a constant rate of deformation is such that the current global
stretch l(t)/2 a(t) between the grips is always at the critical global
stretch lc/l0. In other words, the Griffith criticality condition (2) is
constantly satisfied. It is for this reason that what is typically
observed in experiments—whenever the crack propagation
happens to be smooth in time—is that the crack length evolves
according to Eq. (13) and that it does so at a constant force P(t),
of different values for different applied deformation rates l̇0; see,
e.g., Refs. [3,9,10].
Remark 3. Lack of smoothness/continuity of crack propagation in
time. Already in their early pioneering experiments, Greensmith
and Thomas [3] noticed that crack propagation in trousers tests
may not be smooth or even continuous in time. They referred to
such a type of propagation as “stick-slip”; see Fig. 3(a) in their
work. For noncrystallizable elastomers—in particular, for various
types of styrene-butadiene rubber (SBR)—they observed that
crack propagation is mostly smooth in time, except possibly at
high rates of deformation and low temperatures. For natural
rubber, the most prominent crystallizable elastomer, on the other
hand, they observed that crack propagation is mostly discontinuous
in time, irrespective of the loading rate and temperature. ▪

3 Formulation of the Initial Boundary Value Problem
for the Trousers Test
Having analyzed the trousers fracture test from a global perspec-

tive, we now turn to its full-field analysis.

3.1 Initial Configuration. Consider the rectangular specimens
depicted in Fig. 1 of length L= 150 mm and height H= 40 mm in
the e3 and e1 directions and constant thickness B= 1 mm in the e2
direction. The specimens contain a pre-existing edge crack of five
different lengths:

A = 49, 49.5, 50, 50.5, 51mm

in the e3 direction. These specific values for L, H, B, and A are
chosen here because they are representative of those typically
used in experiments; see, in particular, the classical experiments
of Greensmith and Thomas [3]. Here, {ei} stands for the laboratory
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frame of reference. We place its origin at the specimens’ midplane
along the bottom edge so that, in their initial configuration, the
specimens occupy the domain

Ωi
0 = {X :X ∈ Pi

0∖Γi
0}

where

Pi
0 = X : |X1| ≤ H

2
, |X2| ≤ B

2
, − L ≤ X3 ≤ 0

{ }

Γi
0 = X :X1 = 0, |X2| ≤ B

2
, − L ≤ X3 ≤ A − L

{ }

3.2 Reference Configuration and Kinematics. As already
noted in the preceding global analysis of the problem, in an
actual trousers fracture test, the specimen is mounted in the
testing machine by bending in opposite directions the two legs of
the trousers until they are brought to lie in the same plane, at

which point their bottom ends are firmly gripped and the specimen
is ready to be loaded. For this reason, it proves convenient not to use
the initial configuration as the reference configuration to carry out
the analysis, but to use, instead, the configuration as initially
mounted in the testing machine.
Remark 4. Residual stresses in the reference configuration. In the
reference configuration identified earlier, there are residual stresses
due to the bending of the legs of the trousers. Numerical simulations
show that these have no significant impact on the response of the
specimen when the grips are pulled apart and hence that they can
be neglected altogether; this is hardly surprising, since the speci-
mens are very thin (H/B= 40). ▪
In our analysis, granted that residual stresses can be neglected, we

therefore take the reference configuration to be both undeformed
and stress free. Specifically, at time t= 0, in their reference config-
uration, we consider that the specimens occupy the domain

Ω0 = ΩL
0 ∪ ΩR

0 ∪ ΩB
0

with ΩL
0 = ΩLs

0 ∪ ΩLf

0 and ΩR
0 =ΩRs

0 ∪ ΩRf

0 , where

ΩLs
0 = X : −

H

2
≤ X1 < 0, − A −

3B
2

≤ X2 ≤ −
3B
2
, A − L − 2B ≤ X3 ≤ A − L − B

{ }
,

ΩLf

0 = X : −
H

2
≤ X1 < 0, −

3B
2

≤ X2, X3 ≤ A − L,
{

B ≤

������������������������������
X2 +

3B
2

( )2

+(X3 + L − A)2

√
≤ 2B

⎫⎬
⎭,

ΩRs
0 = X : 0 < X1 ≤

H

2
, B ≤ X2 ≤ A + B, A − L − 2B ≤ X3 ≤ A − L − B

{ }
,

ΩRf

0 = X : 0 < X1 ≤
H

2
, X2 ≤

3B
2
, X3 ≤ A − L, B ≤

������������������������������
X2 −

3B
2

( )2

+(X3 + L − A)2

√
≤ 2B

⎧⎨
⎩

⎫⎬
⎭,

ΩB
0 = X : −

H

2
≤ X1 ≤

H

2
, −

B

2
≤ X2 ≤

B

2
, A − L ≤ X3 ≤ 0

{ }

Remark 5. The fillet in the reference configuration. In the reference
configuration defined by the aforementioned domains, the pre-
existing crack has been assumed to feature a circular fillet of
inner radius B= 1 mm, and so its initial inner length is not simply
A but A+ πB. Numerical simulations show that the specifics of
the fillet have no significant impact on the response of the

specimens. Again, this is because B≪H<A. For notational simpli-
city, in the sequel, we will continue referring to A as the initial
length of the pre-existing crack with the understanding that its
actual initial length contains a correction of order B. ▪
At a later time t∈ [0, T ], in response to the applied boundary con-

ditions described below, the position vector X of a material point in

Fig. 3 Force–deformation response of trousers specimens with nonequilibrium shear modulus ν=2 MPa, viscosity η=
5 MPa s, and pre-existing cracks of various lengths A. Results for deformations applied at the constant rates:
(a) l̇0 = 2 × 10−3 mm/s−1, (b) l̇0 = 2 × 10−1 mm/s−1, and (c) l̇0 = 100mm/s−1.
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the specimens will move to a new position specified by

x = y(X, t)

where y is a mapping from Ω0 to the current configuration Ω(t). We
consider only invertible deformations, and write the deformation
gradient field at X and t as follows:

F(X, t) = ∇y(X, t) =
∂y
∂X

(X, t)

3.3 Constitutive Behavior of the Elastomer. The specimens,
again, are taken to be made of an isotropic incompressible elasto-
mer. So as to uncover the key features of the trousers fracture test
within the simplest of settings, the viscoelastic behavior of this elas-
tomer is taken to be canonical in the sense that its elasticity is
Gaussian and its viscosity is constant. Precisely, making use of
the formulation of Kumar and Lopez-Pamies [7], the first Piola-
Kirchhoff stress tensor S at any material point X∈Ω0 and time t
∈ [0, T ] is given by the following relation:

S(X, t) = μF + νFCv−1 − pF−T (15)

where the internal variableC v is defined implicitly as the solution of
the evolution equation:

Ċ
v
(X, t) =

ν

η
C −

1
3

C · Cv−1( )
Cv

[ ]
(16)

where p stands for the arbitrary hydrostatic pressure associated
with the incompressibility constraint J = detF = 1, C=FTF
denotes the right Cauchy-Green deformation tensor, the “dot”
notation stands for the Lagrangian time derivative (i.e., with X
held fixed), and μ≥ 0, ν≥ 0, and η≥ 0 are three material constants.
Specifically, μ denotes the initial shear modulus associated with
the Gaussian elasticity of the elastomer at states of thermodynamic
equilibrium, ν denotes the initial shear modulus associated with its

additional Gaussian elasticity at nonequilibrium states, and η
stands for its viscosity.
For later reference, beyond the preceding brief description, it is

also appropriate to recall that the constitutive models (15) and
(16) correspond to a generalization of the classical Zener or stan-
dard solid model [11] to the setting of finite deformations. Specifi-
cally, as schematically depicted by its rheological representation in
Fig. 2, the viscoelastic models (15) and (16) describe a solid that
stores equilibrium and nonequilibrium elastic energy according to
the free energy

ψ =

μ

2
I1 − 3[ ]︸����︷︷����︸
ψEq(I1)

+
ν

2
Ie1 − 3
[ ]

︸����︷︷����︸
ψNEq Ie1( )

if J = 1

+∞ otherwise

⎧⎪⎪⎨
⎪⎪⎩ (17)

where I1= tr C and Ie1 = tr(CCv−1), and dissipates energy according
to the dissipation potential

ϕ =
η
4 tr Ċ

v
Cv−1Ċ

v
Cv−1( )

if det Cv = 1
+∞ otherwise

{

3.4 Initial and Boundary Conditions. As assumed from the
outset in Sec. 3.2, the reference configuration is undeformed and
stress free. Therefore, we have the initial conditions

y(X, 0) = X
p(X, 0) = μ + ν
Cv(X, 0) = I

⎧⎨
⎩ , X ∈ Ω0 (18)

for the deformation field y(X, t), the pressure field p(X, t), and the
internal variable C v(X, t).
Save for the left grip boundary

∂ΩL
0 = X : −

H

2
< X1 < 0, X2 = −A −

3B
2
, A − L − 2B ≤ X3 ≤ A − L − B

{ }
and the right grip boundary

∂ΩR
0 = X : 0 < X1 ≤

H

2
, X2 = A +

3B
2
, A − L − 2B ≤ X3 ≤ A − L − B

{ }

the entire boundary ∂Ω0 of the specimens is traction free. The left
and right grip boundaries are separated in the e2 direction at the
constant rate l̇0 so that, as a function of time t∈ [0, T ], the
current separation between the grips is given by the relation
l(t) = l0 + l̇0t, where l0= 2A+ 3B. Precisely, by making use of the
notation s(X, t)= SN, we have that the boundary conditions in
full read

y1(X, t)=X1, (X, t) ∈ ∂ΩL
0 × [0, T]

y2(X, t)=X2 − l̇0
2 t, (X, t) ∈ ∂ΩL

0 × [0, T]

y3(X, t)=X3, (X, t) ∈ ∂ΩL
0 × [0, T]

y1(X, t)=X1, (X, t) ∈ ∂ΩR
0 × [0, T]

y2(X, t)=X2 + l̇0
2 t, (X, t) ∈ ∂ΩR

0 × [0, T]

y3(X, t)=X3, (X, t) ∈ ∂ΩR
0 × [0, T]

s= 0, (X, t) ∈ ∂Ω0∖ ∂ΩL
0 ∪ ∂ΩR

0

( )
× [0, T]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where N stands for the outward unit normal to the boundary ∂Ω0.

3.5 Governing Equations. At this stage, we are in a posi-
tion to put all the aforementioned ingredients together into a
complete set of governing equations that describes the

mechanical response of the specimens. In the absence of
inertia and body forces, the resulting governing equations are
nothing more than the equilibrium and incompressibility con-
straint equations:

Div S = 0, (X, t) ∈ Ω0 × [0, T]
det∇y = 1, (X, t) ∈ Ω0 × [0, T]

{
(20)

subject to the initial and boundary conditions (18)1,2 and (19),
where S(X, t) = μ∇y + ν∇yCv−1 − p∇y−T , coupled with the evo-
lution equation:

Ċ
v
=
ν

η
∇yT∇y −

1
3

∇yT∇y · Cv−1( )
Cv

[ ]
(21)

subject to the initial condition (18)3, for the deformation field
y(X, t), the pressure field p(X, t), and the internal variable
Cv(X, t).
In general, the initial boundary value problems (20) and (21)

with (18) and (19) do not admit analytical solutions and hence
must be solved numerically. All the results that we present below
are generated by a variant of the numerical scheme introduced by
Ghosh et al. [12], which is based on a Crouzeix-Raviart

Journal of Applied Mechanics JULY 2023, Vol. 90 / 071010-5



finite-element discretization of space and a high-order explicit
Runge-Kutta discretization of time.

4 Results for a Canonical Elastomer With Gaussian
Elasticity and Constant Viscosity
In this section, we present solutions for the initial boundary value

problems (20) and (21) with (18) and (19) describing the trousers
fracture test of a canonical elastomer with equilibrium initial
shear modulus

μ = 1MPa

three different nonequilibrium initial shear moduli

ν = 2, 5, 10MPa

and three different viscosities

η = 5, 25, 100MPa s

These ranges of values are chosen here because they are prototyp-
ical of standard elastomers. Note, in particular, that they correspond
to elastomers with relaxation times τ= η/ν= 0.5, 1, 2.5, 5, 10, 12.5,
20, 50 s.
The solutions pertain to deformation rates in the range

l̇0 ∈ [2 × 10−4, 100]mm/s

spanning more than five orders of magnitude. This ensures that the
entire spectrum of behaviors—from elasticity dominated to viscos-
ity dominated—is probed.

4.1 The Force–Deformation Response. Figure 3 presents
results for the total force P(t) required to deform the specimens
with nonequilibrium shear modulus ν= 2 MPa, viscosity η= 5
MPa s, and pre-existing cracks of length A= 49, 50, 51 mm at
three constant deformation rates l̇0. The results are shown for P(t)
as a function of the applied deformation l(t) for l̇0 = 2 ×
10−3 mm/s−1 in Fig. 3(a), l̇0 = 2 × 10−1 mm/s−1 in Fig. 3(b), and
l̇0 = 100mm/s−1 in Fig. 3(c).
There are three observations worth pointing out. First, specimens

with larger cracks require smaller forces to reach the same deforma-
tion. Second, larger forces are required to reach a given deformation
applied at a higher deformation rate. Finally, all force–deformation
responses exhibit some nonlinearity at the beginning of the loading
process, whereas they are mostly linear at larger deformations.

4.2 The Total Deformation EnergyW and Its Partition Into
WEq,WNEq, andWv. The areas under the curves in the results pre-
sented in Fig. 3 correspond to the total work done externally by the
grips and, consequently, they correspond as well to the total

deformation energy stored and dissipated by the elastomer. We
thus have

W =
∫l0+l̇0 t
l0

P dl

Given that the elastomer is a Gaussian elastomer with constant vis-
cosity, we also have that

WEq =
∫
Ω0

ψEq(I1) dX =
∫
Ω0

μ

2
trC − 3[ ] dX, (22)

WNEq =
∫
Ω0

ψNEq(Ie1) dX =
∫
Ω0

ν

2
tr(CCv−1) − 3
[ ]

dX, (23)

Wv =W −WEq −WNEq (24)

in terms of the equilibrium and nonequilibrium parts of the free
energy (17).
Figure 4 shows results for WEq, WNEq, and Wv—as computed

from expressions (22)–(24) and the pertinent numerical solutions
for the deformation field y(X, t) and internal variable C v(X, t)
—at the deformation l(t)= 105.743 mm, plotted as functions of
the initial crack surface Γ0=A ×B and the deformation rate l̇0.
The results at other fixed values of the deformation l(t) are not fun-
damentally different from those shown in Fig. 4 for l(t)=
105.743 mm, which therefore can be viewed as representative of
those at any deformation l(t).
The following comments are in order. With the sole exception of

the dependence of the equilibrium elastic energyWEq on the rate l̇0
of the applied deformation, all three parts of the deformation energy
appear to depend nonlinearly on both the crack surface Γ0 and l̇0.
Distinctly, with respect to l̇0, both the nonequilibrium energy
WNEq and the viscous dissipated energy Wv appear to be
bounded, but whereas WNEq increases monotonically with increas-
ing l̇0, Wv exhibits a Γ0-dependent local maximum away from
which Wv becomes vanishingly small.

4.3 The Derivative −∂WEq/∂Γ0. From the type of the 3D plot
presented in Fig. 4(a), we can compute numerically the energy
release rate −∂WEq/∂Γ0 entering the Griffith criticality condition
(2). Figure 5 reports such a computation of −∂WEq/∂Γ0 in terms
of the applied deformation rate l̇0 for specimens with nonequilib-
rium shear modulus ν= 2 MPa, viscosity η= 5 MPa s, and pre-
existing cracks of length A= 49, 50, 51 mm at the same fixed defor-
mation l(t)= 105.743 mm considered in Fig. 4(a). For direct com-
parison, the results produced by the approximate formula (10) are
also included in the figure (dotted lines).
We remark that, much like the results presented in Fig. 4(a) are

representative of any fixed value of l(t), the results for −∂WEq/∂Γ0

Fig. 4 Computed values from (22) to (24) of (a) the equilibrium elastic energy WEq, (b) the nonequilibrium elastic energy WNEq,
and (c) the dissipated viscous energy Wv in trousers specimens with nonequilibrium shear modulus ν=2 MPa, viscosity η=
5 MPa s, deformed at l(t)= 105.743mm, plotted as functions of the initial crack surface Γ0=A×B and the applied deformation
rate l̇0
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at other fixed values of the deformation l(t) are qualitatively the same
as those shown in Fig. 5 for l(t)= 105.743 mm.
A key observation from Fig. 5 is that the energy release rate

−∂WEq/∂Γ0 is essentially independent of the rate l̇0 at which the
grips are separated. On the other hand, −∂WEq/∂Γ0 does depend
on the length A of the pre-existing crack, in particular, it increases
with decreasing A. Another key observation from Fig. 5 is that
Eq. (10) provides a good approximation for −∂WEq/∂Γ0.
To gain further insight into the energy release rate −∂WEq/∂Γ0

and its approximate representation (10), Fig. 6 presents the results
for the equilibrium elastic force PEq as a function of the global
stretch l(t)/l0 between the grips for trousers specimens with non-
equilibrium shear modulus ν= 2 MPa, viscosity η= 5 MPa s, and
pre-existing cracks of length A= 49, 50, 51 mm. The results are
shown for (a) l̇0 = 2 × 10−3 mm/s−1 and (b) l̇0 = 100mm/s−1,
that is, the slowest and fastest deformation rates l̇0 considered in
Fig. 5.
Foremost, as announced in Remark 2, the results in Fig. 6 show

that the equilibrium elastic force PEq—and hence, as per Eq. (10),
the energy release rate −∂WEq/∂Γ0—is de facto only a function
of the global stretch l(t)/l0 and hence, in particular, independent

of the length A of the pre-existing crack as well as of the rate l̇0
at which the deformation is applied.
A unique critical global stretch lc/l0. When combined with the

Griffith criticality condition (2)—consistent with the conclusion
established from the global analysis in Sec. 2—the full-field
results presented in Figs. 5 and 6 for a canonical elastomer imply
that, indeed, there is a unique critical global stretch

lc
l0

at which fracture nucleates in a trousers test and that this critical
global stretch is independent of the length of the pre-existing
crack and of the deformation rate.
To see this via an example, consider that the viscoelastic behavior

of the elastomer being tested can be described by the canonical
behavior assumed in this section, with equilibrium shear modulus
μ= 1 MPa, nonequilibrium shear modulus ν= 2 MPa, and viscosity
η= 5 MPa s. Consistent with the standard range (3) for common
elastomers, consider further that the intrinsic fracture energy of
the elastomer being tested is Gc= 100 N/m. Then, according to
the Griffith criticality condition (2) and Eq. (10), fracture nucleation
will occur whenever PEq=B Gc/2= (10−3 m) × (100 N/m)/2=
0.05 N. In turn, according to the results shown in Fig. 6, fracture
nucleation will occur at the critical global stretch lc/l0= 1.0071, irre-
spective of the length A of the pre-existing crack and of the defor-
mation rate l̇0 used to carry out the test.

4.4 The Critical Tearing Energy Tc. Following in the foot-
step of Greensmith and Thomas [3], the majority of data that
have been reported in the literature from trousers fracture tests
focus on fracture propagation. Precisely, the data amount to a plot
of the critical tearing energy Tc as a function of the rate of propaga-
tion ȧ(t) of the current length of the crack a(t). In truth, it is a plot of

2
B
P(t) versus

l̇0
2

under the assumptions that Tc= 2P(t)/B and ȧ(t) = l̇0/2. In the
sequel, we present such a plot for the canonical elastomer under
investigation here.
As a first step, note that from the type of 3D plots presented in

Figs. 4(b) and 4(c), we can compute numerically the derivatives
−∂WNEq/∂Γ0 and −∂Wv/∂Γ0 entering Eq. (5) for the critical
tearing energy Tc. Figure 7 presents the results obtained from this
computation in terms of the applied deformation rate l̇0 for a speci-
men with nonequilibrium shear modulus ν= 2 MPa, viscosity η=

Fig. 5 Computed values from Fig. 4(a) of the energy release rate
−∂WEq/∂Γ0 for trousers specimens with nonequilibrium shear
modulus ν=2 MPa, viscosity η=5 MPa s, and pre-existing
cracks of length A=49, 50, 51 mm deformed at l(t)=
105.743 mm, plotted as functions of the applied deformation
rate l̇0. For direct comparison, the results obtained with the
approximate formula (10) are also plotted (dotted lines).

Fig. 6 The equilibrium elastic force (8) as a function of the global stretch l(t)/l0 between the
grips for trousers specimens with nonequilibrium shear modulus ν=2 MPa, viscosity η=
5 MPa s, and pre-existing cracks of various lengths A. Results for deformations applied at
the constant rates: (a) l̇0 = 2 × 10−3 mm/s−1 and (b) l̇0 = 100mm/s−1.
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5 MPa s, and a pre-existing crack of length A= 51 mm at the same
fixed deformation l(t)= 105.743 mm considered in Figs. 4(b) and
4(c).
As expected on physical grounds, contrary to the derivative

−∂WEq/∂Γ0 of the equilibrium elastic energy, note that both deriv-
atives −∂WNEq/∂Γ0 and −∂Wv/∂Γ0 depend strongly on l̇0. In par-
ticular, −∂WNEq/∂Γ0 is bounded from below (by zero) and
from above and increases monotonically with increasing l̇0. By con-
trast, −∂Wv/∂Γ0 is also bounded from below (by zero) and from
above, but is not monotonically increasing in l̇0, instead it exhibits
a single local maximum at some value of l̇0 (in the present case,
around l̇0 = 2 × 10−1 mm/s).
Now, making direct use of the type of results presented in Fig. 7,

we can readily determine the critical tearing energy (5).
To see this via an example, consider once more that the viscoelas-

tic behavior of the elastomer being tested can be described by the
canonical behavior assumed in this section, with equilibrium
shear modulus μ= 1 MPa, nonequilibrium shear modulus ν=
2 MPa, and viscosity η= 5 MPa s. Consider as well that its intrinsic
fracture energy is Gc= 100 N/m. For this choice of material con-
stants, as established earlier, the Griffith criticality condition (2) is
satisfied when the global stretch between the grips is lc/l0=
1.0071. This is precisely the global stretch (l(t)/l0= 105.743 mm/
105 mm= 1.0071) that the results in Fig. 7 pertain to. Then, accord-
ing to Eq. (5), the computation of Tc in this case simply amounts to
summing the constant Gc= 100 N/m to the results in Figs. 7(a) and
7(b). Figure 8 reports such a computation of Tc in terms of the rate
of crack propagation ȧ(t), as defined by ȧ(t) = l̇0/2.
An immediate observation from Fig. 8 is that the critical tearing

energy Tc exhibits the “S” shape that is the hallmark of trousers frac-
ture tests for viscoelastic elastomers; see, e.g., Fig. 6 in Ref. [3],
Fig. 2 in Ref. [9], and Fig. 6 in Ref. [10]. Specifically, as ȧ ↘ 0,
for sufficiently slow crack propagation rates, Tc ↘ Gc. As ȧ
increases, so does Tc monotonically. As ȧ ↗ +∞, for sufficiently
fast crack propagation rates, Tc approaches an asymptotic
maximum, Tmax say. The transition of Tc from its minimum value
Gc to its maximum value Tmax is controlled by both the nonequilib-
rium elasticity of the elastomer and its viscosity.
The effect of the nonequilibrium elasticity. Specifically, for the

canonical elastomer under investigation here, the nonequilibrium
shear modulus ν controls the maximum value Tmax of Tc and, by
the same token, how fast Tc increases from Gc to Tmax. Figure 9
illustrates this effect by presenting results of Tc as a function of
ȧ(t) for three different nonequilibrium shear moduli, ν= 2, 5,
10 MPa. Save for the value η= 25 MPa s of the viscosity, the
values of the remaining material constants are the same as shows
in Fig. 8.

Fig. 7 Computed values from Figs. 4(b) and 4(c) of (a) the derivative −∂WNEq/∂Γ0 of the non-
equilibrium elastic energy and (b) the derivative −∂Wv/∂Γ0 of the dissipated viscous energy in
a trousers specimen with nonequilibrium shear modulus ν=2 MPa, viscosity η=5 MPa s, and
a pre-existing crack of length A=51 mm deformed at l(t)=105.743 mm, plotted as functions of
the applied deformation rate l̇0

Fig. 8 The critical tearing energy Tc as a function of the rate of
crack propagation ȧ(t) in a trousers fracture test for a canonical
elastomer with intrinsic fracture energy Gc=100 N/m, equilib-
rium shear modulus μ=1 MPa, nonequilibrium shear modulus
ν=2 MPa, and viscosity η=5 MPa s

Fig. 9 The critical tearing energy Tc as a function of the rate of
crack propagation ȧ(t) in a trousers fracture test for a canonical
elastomer with intrinsic fracture energy Gc=100 N/m, equilib-
rium shear modulus μ=1 MPa, viscosity η=25 MPa s, and
three different nonequilibrium shear moduli ν

071010-8 / Vol. 90, JULY 2023 Transactions of the ASME



The effect of the viscosity. On the other hand, for the canonical
elastomer under investigation here, the viscosity η controls the
range of crack propagation rates ȧ(t) over which Tc increases
from Gc to Tmax. Figure 10 illustrates this effect by presenting
results of Tc as a function of ȧ(t) for three different viscosities,
η = 5, 25, 100 MPa s. The values of the remaining material con-
stants are the same as shown in Fig. 8.
The results in Figs. 9 and 10 make it plain that the critical tearing

energy Tc, as measured from trousers fracture tests carried out at
constant deformation rates l̇0, is primarily a direct manifestation
of the viscoelastic behavior—and not of the fracture behavior, as
commonly portrayed in the literature—of the elastomer at hand.
More specifically, it is a manifestation of the nonequilibrium elas-
ticity and the viscosity of the elastomer.

4.5 The Local Fields in the Regions A, B, C, and D. For com-
pleteness, we close this section by reporting in Fig. 11 a represen-
tative contour plot of the equilibrium elastic part ψEq(I1) of the
free energy (17) in a trousers specimen deformed at l(t)=
105.743 mm at a deformation rate l̇0 = 100mm/s. The result per-
tains to an elastomer with nonequilibrium shear modulus ν=
2 MPa, viscosity η= 5 MPa s, pre-existing crack of length A=
51 mm, and is shown over the deformed configuration.
The plot allows to identify the precise locations of the so-called

regions A, B, C, and D in the global analysis of the problem; see
Fig. 1. In particular, the plot shows that regions A, B, and D are sub-
stantially undeformed, while the crack front region C concentrates
all the deformation around the crack front.

5 Summary and Final Comments
Since the celebrated works of Rivlin and Thomas [2] and Green-

smith and Thomas [3], experimental studies of nucleation and prop-
agation of fracture from large pre-existing cracks in elastomers
subjected to quasi-static mechanical loads have been centered on
three types of tests:

• the “pure-shear” fracture test,
• the delayed fracture test, and
• the trousers fracture test.

In the first two installments of this series—devoted to deriving the
Griffith criticality condition (2) and making use of it to explain
these three archetypal fracture tests—Shrimali and Lopez-Pamies
[1,8] have explained the “pure-shear” and delayed fracture tests.

In this article, the third and final installment, we have made use
of the Griffith criticality condition (2) to explain the trousers frac-
ture test.
One of three main results that we have established in this work

is that there is a critical global stretch lc/l0—that is, a critical
separation between the grips normalized by their initial separa-
tion—at which fracture nucleates from the pre-existing crack in
a trousers test, irrespective of the length of the pre-existing
crack and of the loading rate at which the test is carried out.
The existence of such a critical global stretch appears to have
gone unnoticed until now.
Since the early pioneering experiments of Greensmith and

Thomas [3], it has been well documented that in a trousers test
carried out at a constant deformation rate l̇0, whenever the crack
propagates steadily, the resulting force P(t) at the grips is constant.
As a second main result, we have established that this behavior is
nothing more than a manifestation of the fact noted earlier that
the Griffith criticality condition (2) in a trousers fracture test
happens to be satisfied at a critical global stretch lc/l0 that is inde-
pendent of the crack length and of the loading rate.
As a third main result, we have provided quantitative insight into

the effects that the nonequilibrium elasticity and the viscosity of the
elastomer have on the critical tearing energy Tc obtained from a
trousers fracture test carried out at a constant deformation rate.
This result makes it clear that Tc is essentially a measure of the capa-
bility of the elastomer to dissipate energy through viscous deforma-
tion and not a measure of its fracture properties. We hope that this
result will encourage future experimental studies centered on trou-
sers fracture tests to include separate measurements of the finite vis-
coelastic behavior of the elastomer being investigated. Regrettably,
virtually none of the plethora of experimental studies that have been
reported to date in the literature include such measurements.
In conclusion, when viewed collectively, the results presented in

this work, together with those presented by Shrimali and Lopez-
Pamies [1,8] for the “pure-shear” and delayed fracture tests,
provide broad evidence that the Griffith criticality condition (2)
may indeed be the universal condition that governs crack growth
in elastomers undergoing finite deformations in response to quasi-
static mechanical loads.
Accordingly, as suggested in Ref. [8], given the “seamless”

mathematical generalization that the Griffith criticality condition
(2) provides of the classical Griffith criticality for elastic brittle
materials [13], the next sensible step would be to follow in the foot-
step of Francfort and Marigo [14] in order to turn the Griffith

Fig. 10 The critical tearing energy Tc as a function of the rate of
crack propagation ȧ(t) in a trousers fracture test for a canonical
elastomer with intrinsic fracture energy Gc=100 N/m, equilib-
rium shear modulus μ=1 MPa, nonequilibrium shear modulus
ν=2 MPa, and three different viscosities η

Fig. 11 Contour plot over the deformed configuration of the
equilibrium elastic part ψEq of the free energy (17) in a trousers
specimen with nonequilibrium shear modulus ν=2 MPa, viscos-
ity η=5 MPa s, and pre-existing crack of length A=51 mm
deformed at l(t)=105.743 mm at a deformation rate
l̇0 = 100mm/s. The inset provides a closeup of the region
around the crack front, where the deformation concentrates.
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criticality condition (2) into a complete mathematical description of
the growth of cracks in viscoelastic elastomers.
What is more, as suggested in Ref. [1], it would also behoove us

to investigate whether the alluringly simple and intuitive form (2) is
in fact universally valid for all dissipative solids, not just viscoelas-
tic elastomers.
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