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Abstract In a recent contribution, Shrimali andLopez-
Pamies (Extreme Mech Lett 58, 101944, 2023a) have
shown that the Griffith criticality condition that gov-
erns crack growth in viscoelastic elastomers can be
reduced—from its ordinary form involving a histori-
cally elusive loading-history-dependent critical tearing
energy Tc—to a fundamental form that involves exclu-
sively the intrinsic fracture energy Gc of the elastomer.
The purpose of this paper is to make use of this funda-
mental form to explain one of the most telltale fracture
tests for viscoelastic elastomers, the so-called delayed
fracture test.

Keywords Elastomers · Viscoelasticity · Dissipative
solids · Fracture nucleation · Creep fracture

1 Introduction

It has been long established that the Griffith criticality
condition

− ∂W
∂�0

= Tc (1)
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describes the nucleation of fracture from pre-existing
cracks—as well as the propagation of fracture—in
elastomers subjected to quasi-static mechanical loads
(Rivlin and Thomas 1953; Greensmith and Thomas
1955; Mullins 1959; Lake and Thomas 1967; Ahagon
and Gent 1975; Gent and Tobias 1982; Gent 1996;
Tsunoda et al. 2000; Knauss 2015).

The left-hand side −∂W/∂�0 in expression (1)
stands for the change in total (stored and dissipated)
deformation energy W in the elastomer with respect
to an added surface area to the pre-existing crack �0

under conditions of fixed deformation of those parts of
the boundary that are not traction-free so that nowork is
done by the external forces; note that the added surface
area refers to the undeformed configuration.

The right-hand side Tc is the so-called critical tear-
ing energy. It is a characteristic property of the elas-
tomer. Importantly, it is not a constant. Much like W ,
it is a function of the loading history. More specifically,
experiments have established that Tc can be written in
the general form

Tc = Gc(1 + fc).

In this expression, Gc denotes the intrinsic fracture
energy, or critical energy release rate, associated with
the creation of new surface in the given elastomer. It is a
material constant, independent of time. Its value is typi-
cally in the relatively narrow rangeGc ∈ [10, 100]N/m
for many common elastomers (Ahagon and Gent 1975;
Gent and Tobias 1982; Bhowmick et al. 1983). On the
other hand, fc is a non-negative function of the loading

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10704-023-00700-3&domain=pdf


24 B. Shrimali, O. Lopez-Pamies

history that scales with the viscosity of the elastomer
(Mullins 1959; Gent and Lai 1994; Knauss 1973; Gent
1996). Precisely how fc—and hence Tc—depends on
the loading history for arbitrary loading conditions has
remained an open problem for decades rendering the
Griffith criticality condition in its ordinary form (1) of
limited practical utility.

In a recent contribution, Shrimali and Lopez-Pamies
(2023a) have uncovered a general formula for fc—and
hence Tc—and in so doing they have determined that
(1) can in fact be reduced to a form that involves not the
historically elusive critical tearing energy Tc, but only
the intrinsic fracture energy Gc of the elastomer. The
result hinges on the following two elementary obser-
vations.

i. For any viscoelastic elastomer, the total deforma-
tion energy W in (1) can be partitioned into three
different contributions:

W = WEq + WNEq
︸ ︷︷ ︸

stored

+ Wv
︸︷︷︸

dissipated

. (2)

Here, Wv represents the part of the total energy
that is dissipated by the elastomer via viscous
deformation. On the other hand, the combination
WEq+WNEq represents the part of the total energy
that is stored by the elastomer via elastic deforma-
tion. In this combination,WNEq stands for the part
of the stored elastic energy that will be dissipated
eventually via viscous dissipation as the elastomer
reaches a state of thermodynamic equilibrium. On
the contrary, WEq denotes the part of the stored
elastic energy that the elastomer will retain at ther-
modynamic equilibrium. Rheological representa-
tions of elastomers provide a helpful visualization
of the partition (2). For instance, in the Zener-type
rheological representation depicted in Fig. 1, WEq

and WNEq correspond to the elastic energy stored
in the equilibrium and non-equilibrium springs,
whereasWv corresponds to the viscous energy dis-
sipated by the dashpot.

ii. “Pure-shear” fracture tests of common hydro-
carbon elastomers, as well as of more modern
types of elastomers, consistently show—rather
remarkably—that fracture occurs from the pre-
existing crack in the specimens at a critical stretch
that is independent (to within experimental error)
of the stretch rate at which the test is carried out.

Precisely, by combining the above two observations,
Shrimali and Lopez-Pamies (2023a) have shown that

Fig. 1 A rheological representation of viscoelastic elastomers

the Griffith criticality condition (1) can be reduced to
the fundamental form

− ∂WEq

∂�0
= Gc. (3)

From a physical point of view, the criticality condition
(3) states that whether an elastomer simply deforms
or, on the other hand, creates new surface from a pre-
existing crack is dictated by a competition between its
stored equilibrium elastic energy and its intrinsic frac-
ture energy, irrespective of its viscosity.

From a practical point of view, the criticality condi-
tion (3) is straightforward to employ. This is because it
is based on quantities that can be measured experimen-
tally once and for all by means of conventional tests.
Indeed, on the one hand, conventional experiments suf-
fice to characterize the viscoelasticity of the elastomer
of interest from which the storage of equilibrium elas-
tic energy can then be identified; see, e.g., Sect. 4 in
(Shrimali and Lopez-Pamies 2023a) and also Sect. 4
below. On the other hand, experiments in the spirit of
those carried out, e.g., by Gent and Tobias (1982) are
enough to measure the intrinsic fracture energy Gc of
the elastomer.

What is more, as already noted above, the criticality
condition (3) brings resolution to the decades-old open
problem of how the critical tearing energy Tc depends
on the loading history, as it entails that

Tc = Gc(1 + fc) = Gc − ∂WNEq

∂�0
− ∂Wv

∂�0
, (4)

where the last two terms, ∂WNEq/∂�0 and ∂Wv/ ∂�0,
are to be evaluated at the instance in time at which the
criticality condition (3) is attained along the loading
path of interest.

Remark 1 So as to provide a modicum of historical
perspective, it is appropriate to make explicit mention
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of the various attempts at describing the critical tearing
energy Tc of elastomers that have been reported in the
literature prior to the discovery of the general result (4).
A representative but non-exhaustive list includes the
works of Knauss (1973), Schapery (1975), Schapery
(1984), Christensen (1979), de Gennes (1996), and
Persson and Brener (2005). Invariably, all of these
attempts are based on derivations that are centered
around tearing (or peeling) experiments where a crack
is propagated at a constant velocity. Save for an excep-
tion (Schapery 1975), all of them restrict attention to
linear viscoelasticity. Moreover, all of them make use
either of a cohesive zone or of an equivalent cutoff
region around the crack front, a constitutive assump-
tion that further muddies their theoretical standing. By
contrast, as already recalled above, the discovery of the
general formula (4) was made possible by centering
its derivation around nucleation of fracture in “pure-
shear” fracture experiments, in particular, around the
seemingly universal fact that fracture nucleation in such
experiments takes places at critical stretches that are
independent of the applied stretch rate. What is more,
given its general status, the formula (4) applies to any
nonlinear viscoelastic solid and is free of the constitu-
tive restriction of having to explicitly identify a special
region (the “fracture process zone”) around the crack
front.

The object of this paper is to make use of the newly-
minted fundamental form (3) of the Griffith criticality
condition in order to explain in a detailed and quanti-
tative manner one of the most distinctive fracture tests
for viscoelastic elastomers: the so-called delayed frac-
ture test. In a typical delayed fracture test, a sheet of the
elastomer of interest containing a pre-existing crack is
subjected to a load that is applied rapidly over a very
short time interval [0, t0] and then held constant. Nucle-
ation of fracture from the pre-existing crack occurs at
a critical time tc > t0, hence the name of the test. The
existence of such a time delay is a telltale of the validity
of (3). This is because a time delay implies that it is the
increase ofWEq in time at the expense of the decrease
ofWNEq due to the creeping of the elastomer that leads
to the attainability of the criticality condition (3). In this
work, consistent with the setup used by Knauss (1970)
in his pioneering experiments, we will focus on the
configuration depicted in Fig. 2, where the pre-existing
crack is located in the center of the specimen and the
load is applied in a uniaxial fashion.

Fig. 2 Schematic of a typical delayed fracture test for a vis-
coelastic elastomer. The specimen is held firmly by stiff grips.
A load is applied rapidly from t = 0 to t = t0 and then held
constant. For a sufficiently large load, the nucleation of fracture
from the pre-existing crack (of initial length A here) may occur
at a critical time tc > t0, hence the name of the test

The organization of the paper is as follows.We begin
in Sect. 2 by formulating the pertinent initial-boundary-
value problem. In Sect. 3, with the objective of expos-
ing the chief characteristics of the delayed fracture test
in the most basic of settings, we present and discuss
sample generic results for the canonical case of a vis-
coelastic elastomer with Gaussian elasticity and con-
stant viscosity. In Sect. 4, we explain the experiments of
Knauss (1970) on Solithane 113, a polyurethane elas-
tomer with non-Gaussian elasticity and nonlinear vis-
cosity. We conclude by recording a number of final
comments in Sect. 5.

2 Formulation of the initial-boundary-value
problem for the delayed fracture test

2.1 Initial configuration and kinematics

Consider the rectangular specimens depicted in Fig. 2
of length L = 101.6 mm and height H = L = 101.6
mm in the e3 and e1 directions and constant thickness
B = 0.7938 mm in the e2 direction. The specimens
contain a pre-existing central crack of five different
lengths

A = 2.5, 5.08, 10, 15, 20 mm

in the e3 direction. As alluded to above, these specific
values for L , H , B, A are chosen because they include
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those utilized by Knauss (1970) in his original delayed
fracture experiments. Here, {ei } stands for the labo-
ratory frame of reference1. We place its origin at the
geometric center of the specimens so that, in their ini-
tial configuration at time t = 0, the specimens occupy
the domain

�0 = {X : X ∈ P0 \ �0},
where

P0 =
{

X : |X1| ≤ H

2
, |X2| ≤ B

2
, |X3| ≤ L

2

}

and

�0 =
{

X : X1 = 0, |X2| ≤ B

2
, |X3| ≤ A

2

}

.

At a later time t ∈ (0, T ], due to the applied boundary
conditions described below, the position vector X of
a material point in the specimens will move to a new
position specified by

x = y(X, t),

where y is a mapping from �0 to the current configu-
ration �(t). We consider only invertible deformations,
and write the deformation gradient field at X and t as

F(X, t) = ∇y(X, t) = ∂y
∂X

(X, t).

2.2 Constitutive behavior of the elastomer

The specimens are taken to be made of an isotropic
incompressible elastomer. Making use of the two-
potential formalism (Kumar and Lopez-Pamies 2016),
we describe its constitutive behavior by two thermody-
namic potentials, the free energy

ψ(F,Fv) =
{

ψEq(I1) + ψNEq(I e1 ) if J = 1
+∞ otherwise

(5)

that describes how the elastomer stores energy through
elastic deformation and the dissipation potential

φ(F,Fv, Ḟv) =

⎧

⎪
⎨

⎪
⎩

1

2
ḞvFv−1 · [

2 η(I e1 ,

I e2 , I v
1 )K ḞvFv−1] if tr(ḞvFv−1) = 0

+∞ otherwise

(6)

that describes how the elastomer dissipates energy
through viscous deformation. In these expressions, the

1 This particular choice of laboratory frame of reference is
selected here for consistencywith that used in the two companion
papers (Shrimali and Lopez-Pamies 2023a, b).

second-order tensor Fv is an internal variable of state
that describes roughly the “viscous part” of the defor-
mation gradient F, the “dot” notation stands for the
Lagrangian time derivative (i.e., with X held fixed),

I1 = trC, J = √
detC,

I v
1 = trCv, I e1 = tr(CCv−1

),

I e2 = 1

2

[
(

C · Cv−1
)2 − Cv−1C · CCv−1

]

,

whereC = FTFdenotes the rightCauchy-Greendefor-
mation tensor, Cv = FvTFv , Ki jkl = 1

2 (δikδ jl +
δilδ jk − 2

3δi jδkl) stands for the standard deviatoric
orthogonal projection tensor, andψEq,ψNEq, η are any
(suitably well-behaved) non-negative material func-
tions of their arguments.

Granted the two thermodynamic potentials (5) and
(6), it follows that the first Piola-Kirchhoff stress tensor
S at any material point X ∈ �0 and time t ∈ [0, T ] is
expediently given by the relation (Kumar and Lopez-
Pamies 2016)

S(X, t) = ∂ψ

∂F
(F,Fv),

whereFv is implicitly defined by the evolution equation

∂ψ

∂Fv
(F,Fv) + ∂φ

∂Ḟv
(F,Fv, Ḟv) = 0.

Making use of the specific isotropic incompressible
forms (5) and (6), this relation can be rewritten more
explicitly as

S(X, t) = 2ψEq
I1
F + 2ψNEq

I e1
FCv−1 − pF−T , (7)

where p stands for the arbitrary hydrostatic pressure
associated with the incompressibility constraint J = 1
of the elastomer,Cv is defined implicitly as the solution
of the evolution equation

Ċv(X, t) =
2ψNEq

I e1

η(I e1 , I e2 , I v
1 )

[

C − 1

3

(

C · Cv−1
)

Cv

]

,(8)

and where we have made use of the notation ψ
Eq
I1

=
dψEq(I1)/dI1 and ψ

NEq
I e1

= dψNEq (I e1 )/dI e1 . Note

that the dependence on the internal variable Fv ends
up entering (7) and (8) only through the symmetric
combination Cv = FvTFv .

For a detailed account of the constitutive relation
(7)-(8) and its physical interpretation, the interested
reader is referred to (Kumar and Lopez-Pamies 2016).
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Here, we remark that the constitutive relation (7)-(8)
corresponds to a generalization of the classical Zener
or standard solid model (Zener 1948) to the setting
of finite deformations. Accordingly, as schematically
depicted by the rheological representation in Fig. 1, the
function ψEq in (5) characterizes the elastic energy
storage in the elastomer at states of thermodynamic
equilibrium,whereasψNEq characterizes the additional
elastic energy storage at non-equilibrium states (i.e.,
again, the part of the energy that gets dissipated even-
tually). In other words, ψEq describes the elasticity of
the elastomer in its “rubbery” state, while ψEq +ψNEq

describes its elasticity in the “glassy” state.On the other
hand, the function η in (6) characterizes the viscosity
of the elastomer.

In the results that are presented in Sects. 3 and 4
below,wewill make use of the following specific forms
for the equilibrium and non-equilibrium free-energy
functions in (5) and viscosity function in (6):
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ψEq(I1) =
N

∑

r=1

31−αr

2αr
μr

(

I αr
1 − 3αr

)

ψNEq(I e1 ) =
N

∑

r=1

31−βr

2βr
νr

(

I e1
βr − 3βr

)

η(I e1 , I e2 , I v
1 ) = η∞ + η0 − η∞ + K1

[

I v
1

γ1 − 3γ1
]

1 +
(

K2J NEq
2

)γ2

(9)

with J NEq
2 = (I e1

2/3 − I e2 )
(
∑N

r=1 3
1−βr νr I e1

βr−1
)2

and N = 1, 2, which result in the constitutive relation

S(X, t) =
N

∑

r=1

31−αr μr I
αr−1
1 F+

N
∑

r=1

31−βr νr I
e
1

βr−1FCv−1 − pF−T (10)

with evolution equation

Ċv(X, t) =

N
∑

r=1
31−βr νr I e1

βr−1

η∞ + η0−η∞+K1[I v
1

γ1−3γ1 ]
1+

(

K2J NEq
2

)γ2

[

C − 1

3
×

(

C · Cv−1
)

Cv
]

. (11)

The constitutive prescription (10)–(11) includes sev-
eral fundamental constitutive relations as special cases.

For instance, it includes the case of a Neo-Hookean
solid (N = 1, ν1 = 0, α1 = 1, η0 = η∞ = 0,
K1 = K2 = 0), that of a Newtonian fluid (N = 1,
μ1 = 0, ν1 = +∞, η∞ = 0, K1 = K2 = 0), as well
as that of a viscoelastic elastomer with Gaussian elas-
ticity and constant viscosity (N = 1, α1 = β1 = 1,
η∞ = 0, K1 = K2 = 0). What is more, the pre-
scription (10)–(11) has been shown to be accurately
descriptive and predictive of a wide range of elas-
tomers, which typically exhibit non-Gaussian elastic-
ity as well as nonlinear viscosity of shear-thinning
type (Lopez-Pamies 2010; Kumar and Lopez-Pamies
2016; Ghosh and Lopez-Pamies 2021; Chockalingam
et al. 2021; Chen and Ravi-Chandar 2022; Ricker et al.
2023). In all, note that the constitutive prescription
(10)–(11) contains 4N + 6 material parameters. 2N
of them, μr and αr (r = 1, . . . , N ), serve to charac-
terize the non-Gaussian elasticity of the elastomer at
states of thermodynamic equilibrium. Another 2N , νr
and βr (r = 1, . . . , N ), characterize the non-Gaussian
elasticity at non-equilibrium states. Finally, the last six
parameters, η0, η∞, K1, K2, γ1, γ2, serve to character-
ize the nonlinear shear-thinning viscosity.

2.3 Initial and boundary conditions

In their initial configuration, we consider that the spec-
imens are undeformed and stress-free. Therefore, we
have the initial conditions
⎧

⎪
⎨

⎪
⎩

y(X, 0) = X
p(X, 0) = 2ψEq

I1
(3) + 2ψNEq

I e1
(3)

Cv(X, 0) = I

, X ∈ �0. (12)

The top

∂�T
0 =

{

X : X1 = H

2
, |X2| ≤ B

2
, |X3| ≤ L

2

}

and the bottom boundary

∂�B
0 =

{

X : X1 = −H

2
, |X2| ≤ B

2
, |X3| ≤ L

2

}

of the specimens are held firmly by stiff grips on which
a force of magnitude

P(t) =
⎧

⎨

⎩

2σ0(B × L)t0t

t20 + t2
if 0 ≤ t ≤ t0

σ0(B × L) if t0 < t ≤ T
(13)

is applied in the±e1 directions resulting in a separation
h(t) between the grips; see Fig. 2. In the results that are
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presented in Sects. 3 and 4, consistent, once more, with
the experiments of Knauss (1970), we make use of the
values

t0 = 0.01 s and σ0 ∈ [0, 0.3]MPa, (14)

which correspond to a force P0 = σ0(B × L) that is
applied rapidly over the very short time interval [0, t0]
and then held constant. The rest of the boundary ∂�0
of the specimens is traction free. Precisely, making use
of the notation s(X, t) = SN, we have that
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

y1(X, t) = h(t)

2
, (X, t) ∈ ∂�T

0 × [0, T ]
y3(X, t) = X3, (X, t) ∈ ∂�T

0 × [0, T ]
∫

∂�T
0
s1(X, t)dX = P(t), (X, t) ∈ ∂�T

0 × [0, T ]
s2(X, t) = 0, (X, t) ∈ ∂�T

0 × [0, T ]
y1(X, t) = −h(t)

2
, (X, t) ∈ ∂�B

0 × [0, T ]
y3(X, t) = X3, (X, t) ∈ ∂�B

0 × [0, T ]
∫

∂�B
0
s1(X, t)dX = −P(t), (X, t) ∈ ∂�B

0 × [0, T ]
s2(X, t) = 0, (X, t) ∈ ∂�B

0 × [0, T ]
s = 0, (X, t) ∈ ∂�0 \

(

∂�T
0

∪∂�B
0

)

× [0, T ]

,(15)

where N stands for the outward unit normal to the
boundary ∂�0.

Remark 2 In experiments, specimens like the ones of
interest here are typically gripped in a way that com-
plex triaxial stresses develop near the grips. Numerical
experiments indicate that these localized stresses have
practically no effect on the response of the specimens,
thus our idealized choice of zero traction (15)4,8 at the
top and bottom boundaries.

Remark 3 In all the numerical solutions that are pre-
sented below, the mixed boundary conditions (15)1,5
with (15)3,7 are enforced by modeling explicitly the
grips holding the specimens as nonlinear elastic mate-
rials with a stiffness 6 orders of magnitude larger than
the elastomer being tested; see Fig. 5.

2.4 Governing equations

Uponputting all the above ingredients together, neglect-
ing inertia and body forces, the mechanical response
of the specimens is governed by the equilibrium and
incompressibility constraint equations
{

Div S = 0, (X, t) ∈ �0 × [0, T ]
det∇y = 1, (X, t) ∈ �0 × [0, T ] (16)

subject to the initial and boundary conditions (12)1,2
and (15),whereS(X, t) = 2ψEq

I1
∇y+2ψNEq

I e1
∇yCv−1−

p∇y−T , coupled with the evolution equation

Ċv =
2ψNEq

I e1

η(I e1 , I e2 , I v
1 )

[

∇yT∇y − 1

3

(

∇yT∇y · Cv−1
)

Cv

]

,

(17)

subject to the initial condition (12)3, for the deforma-
tion field y(X, t), the pressure field p(X, t), and the
internal variable Cv(X, t).

In the next two sections, we present numerical solu-
tions for the initial-boundary-value problem (16)–(17)
with (12)–(15) and (9) for two sets of material parame-
ters. First, in Sect. 3, we generate results for the canon-
ical case of an elastomer with Gaussian elasticity and
constant viscosity. In Sect. 4, we generate results for
the polyurethane elastomer studied by Knauss (1970).
All the results that we present in the sequel are gener-
ated by a plane-stress variant of the numerical scheme
introduced by Ghosh et al. (2021), which is based
on a Crouzeix–Raviart finite-element discretization
of space and a high-order explicit Runge–Kutta dis-
cretization of time.

2.5 The computation of the energy release rate
−∂WEq/∂�0 under boundary conditions of
traction

In the present setting, the equilibrium elastic energy
WEq in the Griffith criticality condition (3) is given by

WEq(h(t), �0) =
∫

�0

ψEq(I1) dX, (18)

where we have made explicit the fact thatWEq can be
thought of as a function of the deformation history h(t)
between the grips and the initial surface area �0 of the
pre-existing crack.

In the present problem, however, the deformation
history h(t) between the grips is not prescribed and
hence it is not known explicitly. It is only known implic-
itly in terms of the applied force P(t) and the solution
of the initial-boundary-value problem (16)–(17) with
(12)–(15) and (9) for a given �0. With some abuse of
notation, we write
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WEq(h(t), �0) = WEq(h(P(t), �0), �0). (19)

By definition, the derivative −∂WEq/∂�0 in (3) is to
be carried out at fixed h(t). In view of the arguments
in the functional description (19) of the equilibrium
elastic energy, this can be accomplished as follows.

Given a specimen with initial surface area �0 of the
pre-existing crack and given an applied force P(t), con-
sider the additionof an increment d�0 to�0, this at fixed
P(t). On use of the condition dP = 0, the associated
incremental change in the equilibrium elastic energy
WEq reads

dWEq =∂WEq

∂h

[

∂h

∂P
dP + ∂h

∂�0
d�0

]

+ ∂WEq

∂�0
d�0

=∂WEq

∂h

∂h

∂�0
d�0 + ∂WEq

∂�0
d�0.

After a simple algebraic manipulation, it follows that

−∂WEq

∂�0
d�0 =PEqdh − dWEq

=dWEq∗ − [h − H ]dPEq, (20)

where we have made use of the relation dh = (∂h/

∂�0) d�0 and, for convenience, have introduced the
notation

PEq(P(t), �0) := ∂WEq

∂h
(h(P(t), �0), �0) (21)

and

WEq∗(P(t), �0) :=PEq(P(t), �0) [h(P(t), �0) − H ]

− WEq (h(P(t), �0), �0) . (22)

It follows immediately from (20) that

−∂WEq

∂�0
=∂WEq∗

∂�0
(P(t), �0)−

[h(P(t), �0) − H ]∂P
Eq

∂�0
(P(t), �0), (23)

which is precisely the result that we are after. Indeed,
given the applied force (13) in the delayed fracture
tests of interest here, the result (23) allows us to
expediently determine the resulting energy release rate
−∂WEq/∂�0 in the Griffith criticality condition (3) in

terms of three readily computable quantities: the defor-
mation h(t) between the grips and the derivatives with
respect to �0 at fixed P(t)—or, equivalently, at fixed
time t—of the equilibrium elastic force (21) and the
complementary equilibrium elastic energy (22).

3 Results for a canonical elastomer with Gaussian
elasticity and constant viscosity

In this section, we present solutions for the initial-
boundary-value problem (16)–(17) with (12)–(15) and
(9) for the basic case when the specimen is made of a
canonical elastomer with Gaussian elasticity and con-
stant viscosity. Specifically, we present solutions for
the case when N = 1, α1 = β1 = 1, η∞ = 0,
K1 = K2 = 0, equilibrium and non-equilibrium initial
shear moduli

μ1 = 0.2 MPa and ν1 = 2 MPa,

and viscosity

η0 = 500 MPa s.

These values are chosen here because they are compa-
rable with those that describe the elastomer analyzed in
the next section; see Table 1. Note that these material
parameters correspond to an elastomer with constant
relaxation time τ = η0ν

−1
1 = 250 s and constant creep

time τ ∗ = η0(μ
−1
1 + ν−1

1 ) = 2750 s. The critical time
tc at which delayed fracture occurs scales with τ ∗ in
conjunction, of course, with the applied global stress
σ0.

3.1 The force-deformation and deformation-time
responses

Figures 3 and 4 present solutions for the deformation
h(t) between the grips that results from the applied
force (13)–(14)1 with global stress σ0 = 0.3 MPa and
total time of applied loading T = 20,000 s in specimens
with pre-existing cracks of lengths A = 2.5 and 20mm.
Specifically, the results are shown for the applied force
P(t) as a function of h(t) in Fig. 3 and for the evolution
of h(t) in time t in Fig. 4. To aid in the visualization
of the results, Fig. 5 also shows contour plots over the
deformed configuration of the component F11(X, t) of
the local deformation gradient at the samefinal time t =
T = 20000 s of the applied load for both specimens.
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Fig. 3 Force-deformation response of specimens with pre-
existing cracks of lengths A = 2.5 and 20 mm for the applied
force (13)–(14)1 with global stress σ0 = 0.3 MPa and total time
of applied loading T = 20,000 s

Fig. 4 Evolution in time t of the deformation h(t) between the
grips in specimens with pre-existing cracks of lengths A = 2.5
and 20 mm subjected to the applied force (13)–(14)1 with global
stress σ0 = 0.3MPa and total time of applied loading T = 20,000
s

As expected, the specimen with the larger crack
leads to a larger deformation between the grips for the
same applied force. It is also interesting to note that by
approximately t = 10, 000 s—at which point h ≈ 178
mm in the specimenwith crack length A = 2.5mmand
h ≈ 183 mm in that with A = 20 mm—the creeping
process has all but concluded, this for both specimens.
Finally, we remark that the results for other values of
global stress σ0 in the range (14)2 are not fundamen-
tally different from those shown in Figs. 3, 4 and 5 for
σ0 = 0.3 MPa.

Fig. 5 Contour plots over the deformed configuration of the
component F11(X, t) of the local deformation gradient in speci-
menswith pre-existing cracks of lengths A = 2.5 and20mmsub-
jected to the applied force (13)–(14)1 with global stress σ0 = 0.3
MPa. Both plots are shown at the same final time t = T = 20,000
s of the applied load

3.2 The total deformation energy W and its partition
into WEq, WNEq, and Wv

The areas under the curves in the results presented in
Fig. 3 correspond to the total work done by the applied
loads. By the same token, they correspond to the total
deformation stored and dissipated by the elastomer.We
thus have

W =
∫ h(t)

H
P dh.

Since for this case the elastomer is a canonical elas-
tomer with Gaussian elasticity and constant viscosity,
we also have that

WEq =
∫

�0

μ1

2
[trC − 3] dX, (24)

WNEq =
∫

�0

ν1

2

[

tr(CCv−1
) − 3

]

dX, (25)

and

Wv =W − WEq − WNEq. (26)

Figures6 and 7 show results for WEq, WNEq, and
Wv—as computed from expressions (24)–(26) and
the pertinent numerical solutions for the deformation
field y(X, t) and the internal variable Cv(X, t)—for
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Fig. 6 Computed values from (24)–(26) of a the equilibrium
elastic energyWEq, b the non-equilibrium elastic energyWNEq,
and c the dissipated viscous energy Wv in specimens subjected
to the applied force (13)–(14)1, with global stress σ0 = 0.3
MPa and total time of applied loading T = 20, 000 s, plotted as
functions of the initial crack surface �0 = A × B and time t

Fig. 7 Zoom of the time interval t ∈ [0, 0.015] s in Fig. 6,
focusing on the ramping of the applied force (13)–(14)1 and
immediately afterwards
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Fig. 8 Equilibrium elastic energy WEq in specimens subjected
to the applied force (13)–(14)1, with global stress σ0 = 0.3
MPa and total time of applied loading T = 20, 000 s, plotted
as a function of the initial crack surface �0 = A × B and the
deformation h(t) between the grips

the same applied force (13)–(14)1, with global stress
σ0 = 0.3 MPa and total time of applied loading
T = 20000 s, considered in Figs. 3, 4 and 5. The
results are plotted as functions of the initial crack sur-
face �0 = A × B and time t . While Fig. 6 shows
results for the entire duration of the loading process
t ∈ [0, T ], Fig. 7 shows results that focus on the ramp-
ing of the applied force and immediately afterwards,
over the time interval t ∈ [0, 0.015] s.

Several comments are in order. All three parts of
the deformation energy appear to depend nonlinearly
on both the crack surface �0 and time t . Distinctly,
with respect to t , both the equilibrium energy WEq

and the non-equilibrium energy WNEq are seen to
increase sharply, while the viscous dissipated energy
Wv remains negligibly small, over the short duration
of the ramping of the applied force P(t) up to its final
constant value P(t) = σ0(B × L). Beyond the ramp-
ing process, when t > t0 = 0.01 s, the non-equilibrium
energy WNEq decreases monotonically in time result-
ing in the increase of Wv and the further increase of
WEq. Consistent with Fig. 4, the values ofWEq,WNEq,
and Wv remain practically invariant after t = 10000
s, since the creeping process has all but concluded by
then.

3.3 The derivative −∂WEq/∂�0

The type of results presented in Figs. 4 and 6a for the
deformation h(t) between the grips and for the equilib-

Fig. 9 Equilibrium elastic force PEq in specimens subjected to
the applied force (13)–(14)1, with global stress σ0 = 0.3 MPa
and total time of applied loading T = 20000 s, plotted as a
function of the initial crack surface �0 = A × B and time t

rium elastic energy WEq can be directly used to work
out the corresponding results for the equilibrium elas-
tic force (21) and, in turn, those for the complementary
equilibrium elastic energy (22) in order to ultimately
compute the energy release rate −∂WEq/∂�0 by mak-
ing use of the identity (23). The relevant computations
go as follows.

As a first step, for the same applied force (13)–(14)1,
with global stress σ0 = 0.3 MPa and total time of
applied loading T = 20, 000 s, considered in the fig-
ures above, we replot in Fig. 8 the equilibrium elas-
tic energy WEq, this time around, in terms of the ini-
tial crack surface �0 = A × B and the deformation
h(t) between the grips. From this type of 3D plot, we
can readily compute the derivative (21) that defines the
equilibrium elastic force PEq. The results for PEq from
such a computation are presented in Fig. 9 as a func-
tion of �0 = A × B and time t . Having determined
PEq, we can then compute the complementary equilib-
rium elastic energy WEq∗

directly from its definition
(22). Figure10 plots the results also as a function of
�0 = A × B and time t .

Next, from the type of 3D plots presented in
Figs. 9 and 10, we can readily compute the derivatives
∂PEq/∂�0 and ∂WEq∗

/∂�0 at fixed P(t)—which,
again, it is equivalent to fixed time t—and, finally,
making use of the identity (23), the energy release rate
−∂WEq/∂�0. Figure11 reports such a computation of
−∂WEq/∂�0 for specimens with a pre-existing crack
of length A = 20 mm subjected to the global stresses
σ0 = 0.1, 0.2, 0.3 MPa. While part (a) of the figure
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Fig. 10 Complementary equilibrium elastic energy WEq∗
in

specimens subjected to the applied force (13)–(14)1, with global
stress σ0 = 0.3 MPa and total time of applied loading T =
20, 000 s, plotted as a function of the initial crack surface
�0 = A × B and time t

shows the results as functions of time for the entire
duration of the loading process t ∈ [0, T ], part (b)
shows results that focus on the first 1000 s.

3.3.1 Main observations

There are two crucial observations to be made from
Fig. 11 that lay bare the key features of the phenomenon
of delayed fracture in elastomers. First, irrespective
of the applied global stress, the energy release rate
−∂WEq/∂�0 is bounded from above and increases
monotonically in time until reaching an asymptotic
maximum. Second, specimens subjected to larger
global stresses lead to larger values of −∂WEq/∂�0

at the same instance in time t .
According to the Griffith criticality condition (3),

the first observation entails that delayed fracture will
occur—that is, the condition −∂WEq/∂�0 = Gc will
be reached at some t ∈ (t0, T )—if the applied load
is between two threshold values, say σmax

0 and σmin
0 .

If the applied load is above the upper threshold σmax
0 ,

fracture will take place during the ramping process of
the load at some t ∈ (0, t0], without delay. If it is below
the lower threshold σmin

0 , fracture will never occur.
On the other hand, the second observation entails

that, for the same size of the pre-existing crack, spec-
imens subjected to larger global stresses will exhibit a
shorter delay for fracture to take place. The next sub-
section details this behavior.

Fig. 11 The energy release rate −∂WEq/∂�0 for specimens
with a pre-existing crack of length A = 20 mm subjected to the
applied force (13)–(14)1 with global stresses σ0 = 0.1, 0.2, 0.3
MPa and total time of applied loading T = 20000 s, plotted as
functions of time t . aResults for the entire duration of the loading
process t ∈ [0, T ]. b Results in the interval t ∈ [0, 1000] s

3.4 The critical time tc at fracture

Having generated the type of results presented in
Fig. 11 for the energy release rate−∂WEq/∂�0 vs. time
t—assuming that we also have knowledge of the intrin-
sic fracture energyGc of the elastomer—we can readily
determine from the Griffith criticality condition (3) the
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Fig. 12 The critical time tc at which fracture nucleates in spec-
imens with a pre-existing crack of length A = 20 mm subjected
to the applied force (13)–(14)1. The results are shown as func-
tions of the global stress σ0 for three representative values of the
intrinsic fracture energy Gc of the elastomer

critical time tc at which fracture will nucleate from the
pre-existing crack in the specimens. This amounts to
identifying the intercept of the curve −∂WEq/∂�0 vs.
t with the line Gc vs. t .

For specimens with a pre-existing crack of length
A = 20 mm, Fig. 12 presents results for tc as a func-
tion of the applied global stress σ0 for three repre-
sentative values of the intrinsic fracture energy, Gc =
100, 200, 500 N/m.

As foretold in the general conclusions established
above, note that, for a given Gc, fracture takes shorter
to nucleate in specimens subjected to larger global
stresses. By the same token, for a given σ0, fracture
takes shorter to nucleate in specimens made of elas-
tomers with smaller intrinsic fracture energies.

4 Comparisons with the experiments of Knauss
(1970) on Solithane 113

We finally turn to deploying the Griffith criticality
condition (3) to explain the delayed fracture experi-
ments of Knauss (1970) on the polyurethane elastomer
Solithane 113; since the elastomer was prepared from
equal amounts by volume of resin and catalyst, it is
also referred to as Solithane 50/50. As noted above,
these appear to be the first experiments reported in
the literature that showed that elastomers can exhibit
delayed fracture. The focus is on the results for spec-
imens with the same geometry considered in the two

preceding sections (L = 101.6 mm, H = L = 101.6
mm, B = 0.7938 mm), featuring a pre-existing central
crack of length A = 5.08 mm, subjected to the applied
global stresses2 σ0 = 0.10, 0.12, 0.13, 0.15 MPa at a
temperature of 0 ◦C; see Fig. 9 in (Knauss 1970).

4.1 The viscoelastic behavior and intrinsic fracture
energy of Solithane 113

As emphasized in the Introduction, the use of the Grif-
fith criticality condition (3) requires knowledge of only
two fundamental properties of the elastomer of interest:
(i) its viscoelastic behavior, from which the storage of
equilibrium elastic energy can be identified, and (ii) its
intrinsic fracture energy. Both of these properties can
be measured experimentally once and for all by means
of conventional tests.

4.1.1 The viscoelastic behavior

A few years before Knauss (1970) published his find-
ings on delayed fracture, as part of his PhD thesis
work, Mueller (1968) reported a range of experimen-
tal results on the mechanical behavior of the same
Solithane 113 tested by Knauss (1970). Most of these
restricted attention to small deformations, but Mueller
(1968) did include a handful of results involving finite
deformations for the viscoelastic response of Solithane
113 under uniaxial tension applied at various constant
stretch rates at a temperature of −5 ◦C; see Fig. 16 in
(Mueller 1968) and also Fig. 4 in (Mueller and Knauss
1971).

Specializing the constitutive relation (10)–(11) to
such loadings—that is, to deformation gradients of the
form F = diag(λ, λ−1/2, λ−1/2) with λ = 1 + λ̇0t
and first Piola-Kirchhoff stresses of the form S =
diag(S, 0, 0)—and then fitting (by least squares) its
material constants to the admittedly scarce experimen-
tal data of Mueller (1968) yields the values listed
in Table 1. As seen from the comparisons presented
in Fig. 13, the constitutive relation (10)–(11) with
such material constants describes reasonably well the

2 There is some uncertainty about the precise values of the
global stress σ0 applied in the experiments, since the data
in Fig. 9 of (Knauss 1970) is presented normalized by a fac-
tor (σg∞) that was not spelled out fully explicitly. The values
σ0 = 0.10, 0.12, 0.13, 0.15 MPa that we use here are our best
estimate based on the information provided.
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Table 1 Values of the material constants in the viscoelastic
model (10)–(11) for the polyurethane elastomer Solithane 113

μ1 = 0.2099 MPa μ2 = 2.040 × 10−5 MPa
α1 = 1.941 α2 = 9.344
ν1 = 2.300 MPa ν2 = 4.147 × 10−2 MPa
β1 = 0.5353 β2 = 7.108
η0 = 150 MPa s η∞ = 0 MPa s
K1 = 2.653 MPa s K2 = 0 MPa−2

γ1 = 7.977 γ2 = 1

Fig. 13 Comparison between the stress-stretch response (solid
line) predicted by the viscoelastic model (10)–(11), with the
material constants in Table 1, and the experimental data (solids
circles) reported byMueller (1968) for Solithane 113 subjected to
uniaxial tension applied at three different constant stretch rates,
λ̇0 = 3 × 10−4, 3 × 10−3, 3 × 10−2 s−1

viscoelastic data (solid circles) reported by Mueller
(1968).

Remark 4 Thematerial constants listed in Table 1 indi-
cate that, at −5 ◦C, Solithane 113 is an elastomer with
non-Gaussian elasticity and nonlinear viscosity. This
falls squarely within the behavior of the vast majority
of elastomers.

Remark 5 In the sequel, because of the absence of
experimental data at temperatures other than −5 ◦C,
we make use of the constitutive relation (10)-(11) with
the material constants listed in Table 1—which, again,
strictly apply to the behavior of Solithane 113 at −5
◦C—to describe the viscoelastic behavior of Solithane
113 in the delayed fracture experiments of Knauss
(1970) at 0 ◦C. This 5 ◦C difference in temperature
should not be taken as negligible, since the viscosity of
elastomers can change rapidly near their glass transi-
tion temperature Tg and the glass transition temperature

for Solithane 113 happens to be about−20 ◦C (Mueller
and Knauss 1971).

4.1.2 The intrinsic fracture energy

In his PhD thesis work, Mueller (1968) also carried out
experiments aimed at measuring the intrinsic fracture
energy Gc of Solithane 113. A summary of these was
later reported inMueller andKnauss (1971). The exper-
iments consisted in carrying out “pure-shear” fracture
tests at various constant global stretch rates in the range
[1.7×10−4, 8.3×10−3] s−1 and various constant tem-
peratures in the range [0, 50] ◦Con specimens that have
been swollen with the solvent Toluene. The presence
of the solvent led to the minimization of viscous dissi-
pation. From the results of such “pure-shear” fracture
tests, it was concluded that the intrinsic fracture energy
of the swollen Solithane 113 was Gsw

c = 28 ± 7 N/m
and that this value was independent of temperature. By
making use of an argument similar to that put forth
by Lake and Thomas (1967), that the intrinsic frac-
ture energy is essentially a measure of the chain-bond
strength only, Mueller and Knauss (1971) then esti-
mated that the intrinsic fracture energy of Solithane
113 in its unswollen state is

Gc = 41 ± 8N/m,

this estimate also being independent of temperature.
This value falls squarely within the range Gc ∈
[10, 100] N/m for many common elastomers.

4.2 Computation of the derivative −∂WEq/∂�0

Having established the pertinent deformation and
fracture properties of Solithane 113, we proceed by
repeating the same type of full-field analysis pre-
sented in Sect. 3 in order to compute the derivative
−∂WEq/∂�0 entering the Griffith criticality condition
(3).

Before presenting and discussing the results, the fol-
lowing technical remarks are in order. Since the exper-
iments of Knauss (1970) pertain to specimens with a
pre-existing crack of length A = 5.08mm, we perform
the simulations for specimens with three crack lengths,
A = 2.5, 5.08, 10 mm. This suffices to be able to take
the required derivative −∂WEq/∂�0 at �0 = A× B =
5.08 × 0.7938 mm2. Much like the loads used in the
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Fig. 14 The energy release rate −∂WEq/∂�0 at A = 5.08
mm computed from the simulations of delayed fracture tests on
Solithane 113. The results correspond to applied global stresses
σ0 = 0.10, 0.12, 0.13, 0.15 MPa and are plotted as functions of
time t

experiments, we carry out simulations at four differ-
ent global stresses, σ0 = 0.10, 0.12, 0.13, 0.15 MPa.
Accordingly, in all, we carry out 3 × 4 = 12 simula-
tions of the delayed fracture tests. Furthermore, since
the experiments indicate that fracture nucleates from
the pre-existing crack at critical times tc < 20000 s,
we use T = 20,000 s for the total time of applied load-
ing in each of these simulations.

Analogous to Fig. 11, Fig. 14 presents results for the
energy release rate −∂WEq/∂�0 computed from the
simulations of the delayed fracture tests on Solithane
113, at the applied global stresses σ0 = 0.10, 0.12,
0.13, 0.15 MPa. Much like the results in Fig. 11 for the
canonical case of an elastomer with Gaussian elastic-
ity and constant viscosity, the results in Fig. 14 show
that, irrespective of the applied global stress σ0, the
energy release rate −∂WEq/∂�0 increases monotoni-
cally in time towards an asymptotic maximum value.
The results also show that specimens subjected to larger
σ0 lead to larger values of −∂WEq/∂�0 at the same
instance in time t .

4.3 The critical time tc at fracture

At this stage, we are in a position to deploy the Griffith
criticality condition (3) to explain the delayed fracture
experiments of Knauss (1970).

Figure15 confronts the theoretical predictions obtained
from the results in Fig. 14—specifically, again, the

Fig. 15 Comparison between the critical time tc at which frac-
ture nucleates, according to the Griffith criticality condition (3),
and the corresponding experimental results reported by Knauss
(1970) for Solithane 113 at 0 ◦C. The results are presented as a
function of the applied global stress σ0

intercepts of the curves−∂WEq/∂�0 vs. t with the line
Gc vs. t—with the corresponding experimental results
(solid circles) for the critical time tc at which fracture
nucleates. The results are presented as a function of
the applied global stress σ0. For the theoretical predic-
tions, we include two results. The first one corresponds
to using the average value Gc = 41 N/m estimated by
Mueller and Knauss (1971) for the intrinsic fracture
energy. The second corresponds to using the somewhat
larger value Gc = 107 N/m. The experimental data
falls within these two results.

Two comments are in order. First and foremost, tak-
ing into account the various sources of uncertainties (on
the precise values of the applied global stress σ0 and
on the viscoelastic response of Solithane 113 at 0 ◦C),
the Griffith criticality condition (3) appears, indeed, to
determine when delayed fracture occurs. The results
in Fig. 15 also make it plain that having robust experi-
mental data for the viscoelasticity and the intrinsic frac-
ture energy of the elastomer of interest is essential to
be able to predict its delayed fracture. This is because
small variations in either property may result in large
changes in the critical time tc at fracture, especially
when dealing with small forces that lead to long creep-
ing processes.
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5 Final comments

Adding to the validation results presented by Shrimali
and Lopez-Pamies (2023a), who made use of the Grif-
fith criticality condition (3) to explain “pure-shear”
fracture experiments carried out over a wide range of
constant stretch rates on an acrylic elastomer (VHB
4905 from the company 3M), the comparisons with
the delayed fracture experiments on a polyurethane
elastomer presented in the preceding section provide
further direct evidence that the Griffith criticality con-
dition (3) may indeed be the universal condition that
governs crack growth in elastomers undergoing finite
deformations in response to quasi-static mechanical
loads.

In this context, given the recently demonstrated abil-
ity (Kumar et al. 2018a, b; Kumar and Lopez-Pamies
2020; Kumar et al. 2020; Kumar and Lopez-Pamies
2021) of the phase-field theory of fracture initiated by
Kumar et al. (2018a) to describe fracture nucleation
and propagation in nominally elastic brittle materials
at large and given the “seamless” mathematical gener-
alization that the Griffith criticality condition (3) pro-
vides of the classical Griffith criticality for elastic brit-
tle materials, a next series of sensible steps would be
to successively follow in the footsteps of Francfort and
Marigo (1998), Bourdin et al. (2000), and Kumar et al.
(2018a) in order to:

i. turn the Griffith criticality condition (3) into a com-
plete mathematical description of fracture nucle-
ation from pre-existing cracks and of fracture prop-
agation in viscoelastic elastomers,

ii. regularize such a description into numerically
tractable phase-field-type PDEs (partial differential
equations), and

iii. generalize those PDEs to account for nucleation of
fracture at large (not just from large pre-existing
cracks, but also from the bulk, smooth and non-
smooth boundary points, and small pre-existing
cracks)

so as to formulate a complete and numerically tractable
mathematical description of the nucleation and propa-
gation of fracture in viscoelastic materials subjected to
arbitrary quasi-static mechanical loads.
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