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Ferroelectricity is promising in emulating the synaptic characteristics of human brains. Utilizing ferro-
electricity for brain-inspired computing is proposed as a feasible route to address technical challenges in
memory and computing. Here, we demonstrate the use of a ferroelectric van der Waals (vdW) halide
perovskite for synaptic emulation. The two-terminal ferroelectric synapse based on the vdW mate-
rial (R)-(−)-1-cyclohexylethylammonium)PbI3 (R-CYHEAPbI3) exhibits voltage-pulse-dependent weight
modulation with a total on:off ratio of 50 and good endurance up to 107 cycles. The energy consumption
per synaptic operation for both short-term plasticity and long-term plasticity reaches the picojoule level.
The device also shows reasonable write linearity and small cycle-to-cycle variation, as well as promis-
ing spike-timing-dependent plasticity and a paired-pulse-facilitation function. Numerical simulations with
the R-CYHEAPbI3-synapse-based neural network suggest the potential of R-CYHEAPbI3 synapses for
pattern recognition. Ferroelectric vdW halide perovskites provide opportunities for exploiting their dimen-
sionality, superior optoelectronic properties, and mild material-processing conditions for engineering of
the synaptic device performance.
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I. INTRODUCTION

Artificial synapses, as one of essential building blocks in
neuromorphic circuits, mimic the way biological synapses
memorize and learn in the human brain [1–6]. In neu-
romorphic circuits, learning is achieved by the tuning
of the weight of each synaptic device following certain
mathematical algorithms [1]. To realize efficient paral-
lel learning and inference in neuromorphic computing,
synaptic devices must carry attributes of linear and sym-
metric weight-excitation relationships, a large number of
nonvolatile states, and a fast switching speed [1,7,8].

Among extensive demonstrations of synaptic devices
[9–11], the ferroelectricity-enabled multistate memristive
synapse has recently attracted attention [11–15]. In a ferro-
electric synapse, nonvolatile synaptic weights are encoded
in ferroelectric polarization. The multilevel polarization
states of ferroelectrics are mainly due to the multiple-
domain structure. So far, the most studied ferroelectric
materials for synapses have been oxide ferroelectrics. They

*sunc@whu.edu.cn
†shij4@rpi.edu
‡These authors contributed equally to this work.

show a large polarization, reasonable number of synap-
tic states, good endurance, and good retention. However,
material processability and defects (e.g., vacancies) have
been issues for their scalability and reliable operation [16].
Expanding the materials space beyond oxides for synap-
tic applications may provide opportunities for address-
ing some issues that oxide ferroelectrics suffer from.
van der Waals (vdW) halide perovskites exhibit superior
electrical and optical properties with great feasibility in
material processing and device miniaturization [17–21].
The demonstration of ferroelectric synapse in halide per-
ovskites would provide us with an alternative material
platform to design synapses with required characteristics
[20,22–25].

Herein, we demonstrate the use of a one-dimensional
(1D) vdW halide perovskite, [(R)-(−)-1-cyclohexylethyl-
ammonium]PbI3 (R-CYHEAPbI3), for ferroelectric
synapses. As shown in Fig. 1(a), in our ferroelectric
R-CYHEAPbI3, Pb-I atoms crystallize as 1D face-sharing
octahedral chains loosely bound by organic ligands. The
inorganic lead iodine octahedra dominate the semicon-
ducting properties, while organic molecules are respon-
sible for switchable ferroelectric polarization [26]. The
vdW nature of this material allows structural flexibility
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to enable both band transport (PbI6) and ferroelectric-
ity (organic groups). We successfully achieve synaptic
plasticity in the R-CYHEAPbI3 ferroelectric diode, which
features a reasonable number of nonvolatile states, pulse-
dependent weight update, good endurance, nearly linear
weight updates, small cycle-cycle variances, and nonde-
structive read operations. Based on such a device, we
further demonstrate short- and long-term plasticity (STP
and LTP, respectively), spike-timing-dependent plasticity
(STDP), and a paired-pulse-facilitation (PPF) function.
With the experimental synaptic characteristics, parallel
training with a back-propagation algorithm is executed in
a crossbar-based two-layer neural network, which achieves
a high classification accuracy.

II. METHODS AND CHARACTERIZATION

Figures 1(b) and 1(c) show the atomic crystal struc-
tures of R-CYHEAPbI3. R-CYHEAPbI3 belongs to the
P21 space group and has lattice constants a = 8.628 Å,

b = 8.211 Å, c = 22.994 Å, and β = 89.5121° at room tem-
perature [26,27]. Compared with most conventional ferro-
electrics of BaTiO3 and Pb(ZrxTi1−x)O3 [28], the halide
perovskite R-CYHEAPbI3 features large lattice constants
and a low processing temperature due to the existence
of large organic groups and vdW gaps [Fig. 1(a)]. We
employ a solution method to synthesize mm-sized bulk
crystals of R-CYHEAPbI3 and apply a standard spin-
coating approach to synthesize the thin-film form (see
Experimental Section in the Supplemental Material [29]).
For the spin-coating method, briefly, a saturated solution of
R-CYHEAPbI3 is spin-coated on the substates and then the
film is crystallized. Figure 1(d) shows the x-ray diffraction
(XRD) patterns of both R-CYHEAPbI3 powder (ground
from their single crystals) and the spin-coated film on sili-
con substrate with an Au electrode deposited on top. With
the simulated XRD result for an ideal R-CYHEAPbI3 crys-
tal from our previous research [26], we can confirm the
synthesis and deposition of the expected polar P21 phase
(Experimental Section in the Supplemental Material [29]).
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FIG. 1. Ferroelectric 1D soft vdW halide perovskite R-CYHEAPbI3. (a) Schematic of R-CYHEAPbI3 crystal structure consisting of
lead halogen octahedra (PbI6) and chiral organic groups. Helixes represent the chiral organic groups and arrows represent the direction
of ferroelectric polarization (b direction). Atomic structures of the R-CYHEAPbI3 crystal: (b) side view from a direction and (c) side
view from b direction. (d) Experimental XRD results of ground powder form of R-CYHEAPbI3 and spin-coating film compared to the
simulated one. Au (111) peak rises from the top Au electrode.
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In the spin-coated film with an Au electrode, the XRD
result shows the presence of the Au (111) peak. The simple
spin-coating approach for fabricating the R-CYHEAPbI3

thin film makes it easily to integrate into many technolog-
ically important substrates.

The ferroelectric property of R-CYHEAPbI3 for both
the single-crystal and thin-film forms is reported in our
previous work [26]. More information about the intrinsic
properties of R-CYHEAPbI3 can be found in our previous
work [26]. It is shown that the polar axis of R-CYHEAPbI3

is the b direction. Similar to many other vdW materials
[30], when the thin-film form is developed, most grains
align their nonpolar axes (the axes that are perpendicular
to the vdW-gap planes) along the out-of-plane direction
of the film and only a small portion of grains with their
polar axes are aligned with the out-of-plane direction of
the film [26]. Under a vertical device configuration, the
ferroelectric polarization of the device is thus proportional

to the percentage of grains with the b axis aligned along
the out-of-plane direction of the film. Such a relationship
was experimentally confirmed in our previous work [26].
Based upon our current and former understanding of the
ferroelectric property of the R-CYHEAPbI3 material, we
further fabricate a synaptic device and explore the synap-
tic behavior [Fig. 2(a)] based on the thin-film structure of
R-CYHEAPbI3. A schematic and the morphology of the
two-terminal ferroelectric diode is shown in Figs. S1(a)
and S1(b) within the Supplemental Material [29], in
which the R-CYHEAPbI3 thin film is sandwiched between
the top Au electrode and the bottom n-type Si (n-Si).
The polarization-electric field measurement [Fig. S1(c) in
the Supplemental Material [29] ] shows that the magnitude
of ferroelectric polarization of our thin film is consistent
with previously reported ones. Figure S1(d) within the
Supplemental Material [29] confirms the stable I-V curves
with applied voltages from −0.6 to 0.6 V for 50 loops.

(a) (b)

(c)

(d)

(e)

FIG. 2. Characterization of a two-terminal R-CYHEAPbI3 ferroelectric diode. (a) Our proposed ferroelectric synaptic device mimics
the biological synapse, the weight of which is modified by presynaptic and postsynaptic potentials. (b) I -V curves of R-CYHEAPbI3

ferroelectric device at different poling voltages following a poling sequence of “virgin” → 8 V for 30 s → −4 V for 30 s → −6 V for
30 s. (c) Variable EPSCs of R-CYHEAPbI3 ferroelectric device with different Au-electrode diameters of 1 mm, 100 μm, and 50 μm.
Write voltage (Vw) is 3 V with a duration of 500 μs, and read voltage (Vr) is 0.5 V. (d),(e) Varying resistances after positive and
negative write voltage (Vw) with a pulse of 0.5 s. Read voltage (Vr) is 0.5 V, and read length is almost 20 s.
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III. RESULTS AND DISCUSSION

The weight of the R-CYHEAPbI3 synapse is emulated
by the resistance of the ferroelectric diode, which is a func-
tion of the relative fraction of aligned ferroelectric domains
[31]. External write-voltage pulses applied to the device
are expected to modify the fraction of aligned domains,
thus causing resistance to change [32]. Figure 2(b) shows
the I -V curves of our Au/R-CYHEAPbI3/Si device, with
an Au-electrode diameter of 1 mm, after different write-
voltage (Vw) pulses (Au electrode is the positive termi-
nal) with a duration of 30 s. For each Vw, the follow-
ing sequence is used: the virgin state (0 V) → first pulse
(8 V) → second pulse (−4 V) → third pulse (−6 V). A
large dynamic window of the forward current (at 0.5-V
read voltage, Vr) of 2 orders of magnitude is observed.
With the designed voltage-poling sequence, we observe
that a positive voltage leads to a drop in resistance, while a
negative voltage pulse gives a rise. Since our film is rel-
atively thick beyond the tunneling regime, the transport
behavior of our ferroelectric diode can be understood from
a thermionic model involving potential barriers modified
by ferroelectric polarization. The observation in Fig. 2(b)
thus shows that voltage-tuned ferroelectric polarization

can change the synaptic weight of our device. We adopt
a pulsed Vw on the R-CYHEAPbI3 synapses with three dif-
ferent electrode diameters of 1 mm, 100 μm, and 50 μm to
study the synaptic characteristics. As shown in Fig. 2(c), a
Vw of 3 V with a pulse duration of 500 μs as the presynap-
tic spikes applied to the Au electrode can bring the variable
excitatory postsynaptic currents (EPSCs). The EPSCs of
R-CYHEAPbI3 synapses increase under a positive presy-
naptic spike (or Vw). Investigations of the voltage-pulse-
dependent weight update at a constant-voltage duration
per pulse are also conducted, with the results shown in
Figs. 2(d) and 2(e), in which Vr is fixed at 0.5 V and six
different voltage pulses are employed. It is shown that pos-
itive or negative Vw pulses with increasing voltage magni-
tudes and the same pulse duration of 0.5 s lead to varying
degrees of change in resistance. When the magnitudes of
positive or negative Vw are bigger than 2 V, the resistances
of the ferroelectric diode can change significantly.

Figure 3(a) shows resistance-Vw hysteresis loops
with the resistance measured at a Vr of 0.5 V.
In characterizing the resistance–write-voltage loop, Vw

pulses are continuously applied following the path
of 0 V → 9.2 V → (−6.4 V) → 0 V. It is found that
R-CYHEAPbI3 synapses can switch between a
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FIG. 3. Tunable resistance of two-terminal R-CYHEAPbI3 synapses. (a) Resistance hysteresis loops versus pulse Vw (each pulse is
10 s). Vr is 0.5 V. Starting from the initial state of the R-CYHEAPbI3 device (central orange point), two loops are collected. Schematics
of polarization states are shown in the bottom right (Pdown) and top left (Pup). Illustrations of ferroelectric-polarization-modified
carrier distributions and band diagrams: (b) ferroelectric polarization points to n-Si interface (Pdown) after applying positive Vw; (c)
ferroelectric polarization points to Au electrode (Pup) after applying negative Vw. EF , Ec, and Ev represent Fermi level, conduction-
band minimum, and valence-band maximum, respectively. (d) Comparisons of I -V curves of as-written and after-24-h LRS and HRS.
(e) Retention performance of synaptic devices at HRS and LRS with 1000-s-duration read. (f) Fatigue endurance tests of remanent
polarization.
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high-resistance state (HRS, Rmax ∼ 3 × 109 �) and a low-
resistance state (LRS, Rmin ∼ 6 × 107 �) continuously. A
higher Vw leads to a larger change of resistance, as implied
by the slope of the resistance–write-voltage curves. When
Vw is above 8 V or below −5.6 V, the resistance change
pauses, suggesting that the polarization may reach its sat-
uration value. Overall, the resistance change follows a
multiple-state transition with a resistance span of almost
50 times.

Figures 3(b) and 3(c) illustrate the proposed resistance-
switching mechanism. The observed resistance switching
can be explained by the tuning of the height of the
potential barrier and the width of the depletion region
at the R-CYHEAPbI3-electrode interface [33–35]. When
current flows from Au to Si, the barrier height at the
R-CYHEAPbI3-electrode interface determines its value
[32,34–36]. Specifically, after applying a positive Vw,
some ferroelectric dipoles point to n-Si (Pdown). Positive
bound charges at the interface between R-CYHEAPbI3

and n-Si result in a reduced barrier height [34,35]. In
this case, under a small positive Vr, the device exhibits
a relatively lower resistance than that before the posi-
tive write pulse is applied [Fig. 3(b)]. In contrast, when
some of the dipoles are flipped towards the Au electrode
(Pup) under negative Vw, as shown in Fig. 3(c), the neg-
ative ferroelectric bound charges at the interface between
R-CYHEAPbI3 and n-Si increase the barrier height. In this
case, a higher resistance is expected.

As shown in Fig. 3(d), the LRS and HRS of the synaptic
devices are obtained after applying a Vw of 10 and −6.4 V,
respectively, with a duration of 30 s. The I -V characteris-
tics of the device right after writing and after it is exposed
to air for 24 h are almost identical, suggesting a good reten-
tion time of the analog states for our device. Figure 3(e)
shows the retention performance of synaptic devices at the
HRS and LRS, in which no obvious deterioration is found
within the 1000-s-duration read. The Rmax:Rmin ratio of
this synaptic device with the 100-nm-thick R-CYHEAPbI3

film is close to 50. Furthermore, we fabricate two-terminal
R-CYHEAPbI3 synapses with two different thickness of
160 nm [Fig. S2(a) within the Supplemental Material [29] ]
and 60 nm [Fig. S2(b) within the Supplemental Material
[29] ] with Rmax:Rmin ratios of 33 and 65, respectively. The
dependence of the Rmax/Rmin ratio on the film thickness
can contribute to the relative percentile of the width of
the depletion region over the whole film thickness [33–
35]. The polarization switching of the R-CYHEAPbI3 film
is tested by using the positive up negative down (PUND)
method (Experimental Section in the Supplemental Mate-
rial [29]). After 107 bipolar-switching cycles, the remanent
polarization remains almost the same as the initial value of
the poled R-CYHEAPbI3 film [Fig. 3(f), P0 is the remanent
polarization at the first poling cycle].

The STP and LTP are the basis synaptic functionali-
ties executing neural computation [37,38]. Typical STP

behaviors of our Au/R-CYHEAPbI3/Si synapses can be
obtained by applying small Vw pulses. As shown in
Figs. S3(a) and S3(b) within the Supplemental Material
[29] EPSCs are trigged by a small Vw of 1 V with a dura-
tion of 500 μs and the magnitude of the EPSC decays
rapidly to the initial states, which indicates that only a
temporal-enhanced connection exists between two adja-
cent neurons [39]. Figure 4(a) shows the characteristic of
the PPF, which reflects the activity-dependent enhance-
ment of the EPSC evoked by the second pulse [40]. The
inset in Fig. 4(a) is the PPF performance with a pulse inter-
val of 180 μs. The plasticity of the PPF is calculated as
the increased proportion of the second peak current com-
pared with the first peak current [37]. Under a paired pulse
with a magnitude of 1.5 V and duration of 500 μs each,
the plasticity of the PPF is near to zero, indicating that
the influence of the first EPSC is effectively eliminated
when stimuli with pulse intervals larger than 280 μs are
applied. In neurobiology, STP can be converted into LTP
by applying an enhanced magnitude or duration of external
stimulation [11]. Figures S3(c) and S3(d) within the Sup-
plemental Material [29] show increasing EPSCs under a
Vw of 4 V with a duration of 500 μs, suggesting the charac-
teristic of long-term memory in R-CYHEAPbI3 synapses.
Using the stimulus signals shown in Fig. S3 within the
Supplemental Material [29], the calculated energy con-
sumption per spike of R-CYHEAPbI3 synapses with an
Au-electrode diameter of 1 mm is 27 and 70 pJ, respec-
tively, when conducting STP and LTP processing [2]. As
the Au-electrode diameter decreases to 50 μm, the energy
consumption per spike is 0.25 and 6.6 pJ for STP and LTP
processing, respectively. The electrode-area dependence
of energy consumption per synaptic operation suggests
that one may further reduce the power consumption by
reducing the electrode area.

STDP, as a form of Hebbian learning, is closely related
to the information processing and synaptic characteristics
[2,37,38]. Changes to the synaptic weight and the perfor-
mance of long-term potentiation or depression depend on
�t, which is defined as the relative time interval of the
pre- and postsynaptic spikes. To emulate the STDP func-
tionality of R-CYHEAPbI3 synapses, the Au electrode, as
the presynaptic neurons, is connected to a multiplexer and
the Si electrode is earthed [Fig. S4(a) in the Supplemen-
tal Material [29] ]. The multiplexer is used to convert the
time difference between pre- and postsynaptic spikes, and
details of the circuitry and logic of the multiplexer can
be found in Figs. S4(b) and S4(c) within the Supplemen-
tal Material [29] [6,41]. As shown in Fig. S4(b) within
the Supplemental Material [29], the adopted asymmetric
STDP is conducted with the principle that the voltage
pulse with a duration of 500 μs is proportional to �t.
Figure 4(b) shows the measured nonvolatile modifications
of the synaptic weight (the conductance of R-CYHEAPbI3

synapses) with different initial resistance states. When

014014-5



YAO CAI et al. PHYS. REV. APPLIED 18, 014014 (2022)

160 200 240 280 320 360

0

20

40

60

80

100

P
la

st
ic

it
y
 (

%
)

Pulse interval (µs)

–30 –20 –10 0 10 20 30

–40

–20

0

20

40
4.76×108

Ω

1.91×108
Ω

∆
W

 (
 %

)

∆t (ms)

W ij W jk

i
Input neurons

j
Hidden neurons

k
Output neurons

Synapses
Synapses(e) (f)

0 50 100 150 200

60

80

100

120

140  Depression   Potentiation

R
es

is
ta

n
ce

 (
M
Ω

)

Pulse number 

 Depression  PPotentiation

Scheme 2

(d)

V
w

= 6.2 V

V
r
= 0.5 V

V
w

= –3.6 V

V
r
= 0.5 V

V
w

= –3.4 V

V
w

= 5.8 V

0 50 100 150 200
50

60

70

80

90

100

110

R
e
si

st
a
n
c
e
 (

M
Ω

)
A

d
 =

 0
.4

5
0
3

Pulse number 

 Depression   Potentiation

V
r

VV = 0.5 V

V
w

VV = –3.4

V
w

VV

 Depres

VV

4 V

w
= 5.8 V

ssion  PPotentiation

Scheme 1

(c)

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

C
u
rr

en
t 

(n
A

)
Time (ms)

(a)

(b) 1

Read output

1

2

2 N

R-CYHEAPbI3

synapse

Word line

Bit line

A/D A/D A/D

M

Pulse interval = 180 µs 

0

1

9

X
n

S|f

S|f

S|f

S|f

S|f

S|f

X
3

X
2

X
1

S|f

A d
 =

 0
.4

50
3

A
p  =

 –0.4992

A
p  =

 –
0
.6

2
5
8A d

 =
 1

.0
13
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schemes start from initial Rmin state. Ad ,p represents the write linearity. (e) Schematic of our proposed two-layer neural network. Wij

and Wjk represent weight matrices. (f) Sigmoidal nonlinear activation function. (f) Our proposed crossbar structure with M input rows
(word lines) and N output columns (bit lines) based on R-CYHEAPbI3 synapses for performing analog matrix operations.

a postsynaptic spike is fired before a presynaptic spike
(�t < 0), a negative voltage pulse is applied to the Au
electrode, leading to a synaptic depression, while synap-
tic potentiation occurs if �t > 0. Moreover, with a shorter
�t, a larger change of the synaptic weight is obtained.

Figures 4(c) and 4(d) demonstrate synaptic potentia-
tion and depression of LTP using R-CYHEAPbI3 synapses.
We adopt different write schemes: scheme 1 includes a
depressing voltage of −3.4 V and a potentiating volt-
age of 5.8 V; scheme 2 includes a depressing voltage of
−3.6 V and a potentiating voltage of 6.2 V; three other
write schemes (3–5) can be seen in Fig. S5 within the Sup-
plemental Material [29]. Each Vw pulse lasts for 0.5 s. Both
write schemes 1 and 2 lead to 50 resistance states (Vr is
0.5 V). Following the definition of linearity of a synaptic
device [14,42], we find that, using scheme 1, the linear-
ity of depression, Ad,1, is 0.4503 and potentiation, Ap ,1,
is −0.4992. In write scheme 2, the linearity of depres-
sion, Ad,2, is 1.013 and potentiation, Ap ,2, is −0.6258. A
larger absolute value of Ad,p implies a better linearity for
potentiation or depression (Experimental Section in Sup-
plemental Material [29]) [39,42]. Such a linearity value
is comparable to some of the best-performing artificial

synapses (see Table S1 within the Supplemental Material
[29]). We also find that scheme 2 leads to a larger dynamic
range, which is reasonable, as scheme 2 uses a higher write
voltage [31].

To evaluate the potential of the R-CYHEAPbI3 synapse
in a neural network for learning tasks like pattern recog-
nition, as shown in Figs. 4(e) and 4(f), we design
R-CYHEAPbI3 synapses in a two-layer neural network
(one hidden layer) based on two crossbar arrays. In
Fig. 4(e), Wij and Wjk represent the weight matrices
connecting the input layer to the hidden layer (the first
crossbar array) and the hidden layer to the output layer
(the second crossbar array), respectively. As illustrated in
Fig. 4(f), the crossbar array with M input rows (word
lines) and N output columns (bit lines) is used to carry
out parallel read and write operations. Individual synapses
ij and jk can be reached from the ith-word line and j th-
bit line and j th-word line and kth-bit line, respectively
[43]. With this, we conduct supervised learning with a
back-propagation algorithm and sigmoidal nonlinear acti-
vation function (details in Fig. S6 within the Supplemental
Material [29]) [43–45]. This artificial neural network is
trained with two data sets: an 8 × 8-pixel-image version of
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handwritten digits [46] and a 28 × 28-pixel-image version
of handwritten digits [47]. The training and classification
information associated with 8 × 8 and 28 × 28 image sets
is summarized in Table S2 within the Supplemental Mate-
rial [29]. A learning rate of η = 0.1 is used to train both
image sets.

Figures 5(a)–5(f) show the weight patterns and dis-
tributions of synapses connecting the input layer to the
hidden layer at different training epochs (for 8 × 8 image
set) [48,49]. The corresponding matrix is 64 (input ele-
ments) × 36 (output elements). The weight-pattern and
distribution evolution for the 28 × 28 image set are pre-
sented in Figs. S7 and S8 within the Supplemental Material
[29]. The initial weights (0th epoch) of the R-CYHEAPbI3

synapses are generated randomly [Fig. 5(a) and Fig. S7(a)
within the Supplemental Material [29] ]. To minimize
the negative impact of synaptic nonlinearity and write
(read) noise, and to prevent potential weight saturation,
the weights of the R-CYHEAPbI3 synapses are set to stay
within 25% to 75% of the whole conductance range dur-
ing training [43]. It can be seen that, after training, the
weight-distribution profile exhibits multiple peaks span-
ning a relatively reasonable range, as shown in Figs. 5(e)
and 5(f) and Fig. S8 within the Supplemental Material
[29]. From the probability density of synaptic conduc-
tance [Figs. 5(d)–5(f) and Fig. S8 within the Supplemental
Material [29] ], we can see that the weights are updated

rapidly after the first-few training epochs and then remain
relatively stable. This indicates that highly efficient train-
ing is achieved within a few iterations.

Figure 5(g) shows that reasonable classification accura-
cies can be reached very rapidly during training. For exam-
ple, for the 8 × 8 image set, after five epochs, for training
scheme 1, the classification accuracy reaches 85.1%. For
training scheme 2, it is 91.5%. The better performance
of scheme 2 is likely to be due to its better synaptic lin-
earity [1]. Figure 5(h) shows a similar observation, in
which the training data set is the 28 × 28 image set. Com-
pared with the classification accuracy of an ideal numeric
from the floating-point-based neural-network performance
[1,37], the classification accuracies of both schemes 1 and
2 are slightly lower for the 8 × 8 image set [43]. Figure
S9(a) within the Supplemental Material [29] shows the
classification accuracies of the 8 × 8 image set obtained
using 0% to 100% and 25% to 75% of the weight ranges
of schemes 1 and 2. It can be seen that the classifica-
tion accuracies using 25% to 75% of the weight range
indeed reach a higher value. Comparisons of the classi-
fication accuracies using schemes 1 to 2 can also prove
that better linearity is helpful for achieving good com-
puting results. A comparison of the performance of our
R-CYHEAPbI3 synapse with several typical memristive
devices is shown in Table S1 within the Supplemental
Material [29] [37,39,50–55]. From Table S1 within the
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Supplemental Material [29], it can be seen that the energy
consumption per synaptic operation for our vdW system
is comparable to or better than that of several synaptic
systems, making it a promising candidate for brainlike
computing. Although the dynamic range of weights in
our synapses is smaller than some of the former devices
[14,37,50,52], the R-CYHEAPbI3 device still exhibits a
good linearity and small cycle-to-cycle variation, which
seem to contribute more to receiving better accuracies.

IV. CONCLUSION

We propose and experimentally demonstrate a vdW
halide-perovskite-based ferroelectric synapse. We show
that individual devices exhibit a promising synaptic lin-
earity and low cycle-to-cycle variation. By optimizing
the voltage-pulse parameters, the R-CYHEAPbI3 synapses
can process with a switching speed within hundreds of
microseconds and an energy consumption per spike at the
picojoule level for STP and LTP operations. Crossbar-
structured two-layer neural-network simulations based
on R-CYHEAPbI3 synapses with back-propagation algo-
rithms show that our synaptic device and circuit can per-
form efficient learning and reach a reasonable classification
accuracy (92%) with a low number of training epochs.
Our work suggests the prospective potential of a ferroelec-
tric vdW halide perovskite for energy-efficient information
processing and computing.

Data and code are available from the corresponding
authors upon reasonable request.
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