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Abstract— Mixed-integer model predictive control (MPC) al-
lows for discrete-valued control decisions, which are a common
feature of industrial processes, to be optimized in combination
with the continuous-valued control decisions typically consid-
ered in MPC. By choosing these decisions comprehensively
and optimally, mixed-integer MPC can produce a significant
improvement in process performance. In this work, we present
a selection of the theoretical and computational advances in
the field of mixed-integer MPC. First, we review the means
by which theoretical results for standard MPC with continuous
actuators are easily extendable to mixed-integer MPC. We then
discuss additional theoretical results that address the robustness
of mixed-integer MPC to both (i) small, persistent and (ii)
large, infrequent disturbances. Next, we review the computa-
tional methods available to solve online these mixed-integer
MPC problems, and discuss a few algorithms to approximate
and solve the resulting mixed-integer nonlinear optimization
problems by leveraging the structure of the MPC problem. We
conclude with a tutorial example of mixed-integer MPC.

I. INTRODUCTION

Discrete-valued actuators, such as on/off decisions, are

pervasive in large-scale industrial processes. Yet the early

MPC literature focused entirely on continuous actuators,

while leaving these discrete decisions to other automation

methods such as heuristics [1], [2]. This preference in both

industrial practice and MPC literature was driven primarily

by the computational complexity incurred when including

integer constraints in the optimization problem. However,

advances in mixed-integer optimization, and computational

power in general, allow these discrete decisions to be in-

cluded directly in many MPC optimization problems.

By including discrete decisions directly in the optimiza-

tion problem, mixed-integer MPC can produce significant

improvements in the operation of these systems by treating

“low-level” continuous actuators (e.g., valves) and “high-

level” discrete decisions (e.g., on/off decisions) in a single

framework. There are a range of potential applications of

mixed-integer MPC including heating, ventilation, and air

conditioning (HVAC) [3], [4], path planning [5], traffic

control [6], and production scheduling [7]. In fact, mixed-

integer MPC is currently deployed to optimize and control

the Stanford campus heating and cooling systems [8] and has

been applied to a solar thermal climate system at Karlsruhe

University of Applied Sciences [9].

While systems with both integer and continuous variables

are sometimes referred to as “hybrid” systems, we reserve

the term hybrid to describe a specific class of systems

that posses both discrete and continuous time dynamics,
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as defined in [10]. These hybrid systems pose a number

of control challenges and subsume the complications of

adding integer constraints to the MPC problem [11]. We

therefore restrict mixed-integer MPC to nonlinear discrete-

time systems with mixed integer and continuous inputs. Note

that this description does include piecewise affine systems

[12], nonlinear switched systems [13], [14], and controllers

that switch modes [15], provided that switches between

dynamic models are determined directly by a controlled input

to the system. In the following sections, we highlight a

selection of the theoretical and computational advances in

the field of mixed-integer MPC.

II. MIXED-INTEGER MPC

We consider discrete-time systems of the form

x+ = f(x, u) (1)

in which x ∈ R
n and u ∈ R

m are the state and input,

and x+ ∈ R
n denotes the subsequent state. For a prediction

horizon of N ∈ I≥1, we use φ̂(k;x,u) to denote the state

solution of (1) at time k ∈ I0:N , given the initial condition

x and the control trajectory u = (u(0), u(1), . . . , u(N −1)).
One of the key strengths of MPC is the ability to enforce

state and input constraints of the form x ∈ X and u ∈ U.

Note that the set U is general enough to enforce integer

constraints on a subset of the inputs. Thus, the formulation

discussed here already includes mixed-integer MPC as a

specific case.

We also use the terminal constraint Xf ⊆ X to ensure

nominal stability of the controller. Using these constraints,

we define the following sets to characterize the admissible

input trajectories and initial states for the MPC optimization

problem.

UN (x) := {u : u(k) ∈ U, φ̂(k;x,u) ∈ X ∀k ∈ I0:N−1,

φ̂(N ;x,u) ∈ Xf}

XN := {x : UN (x) 6= ∅}

The stage cost is defined as ` : Rn × R
m → R and a

corresponding terminal cost is defined as Vf : Rn → R. The

cost function is then

VN (x,u) :=

N−1
∑

k=0

`(φ̂(k;x,u), u(k)) + Vf (φ̂(N ;x,u)) (2)

The MPC optimization problem is defined as

PN (x) : V 0
N (x) = min

u∈UN (x)
VN (x,u) (3)

and the optimal solutions for a given initial state x ∈ XN

are denoted u
0(x) := argminu∈UN (x) VN (x,u). We define



the control law as κN (x) := u0(0;x) in which u0(0;x) is

the first input in u
0(x).1 The resulting closed-loop system is

x+ = f(x, κN (x)) (4)

A. Nominal stability and performance

The first property to address for MPC is the nominal stabil-

ity of a specified steady state, which is usually chosen to be

the origin. There are various results on the stability of MPC

with discrete decisions. Bemporad and Morari [16] establish

convergence to the origin (but not Lyapunov stability) via

certain restrictions on the stage cost. Picasso et al. [17]

establish asymptotic stability for open-loop stable systems

and boundedness for open-loop unstable systems. Baotic et

al. [18] establish asymptotic stability for piecewise affine

systems with a control law derived from an infinite-horizon

optimization problem. By embedding a hybrid Lyapunov

function within the optimal control problem, Di Cairano

et al. [19] ensure asymptotic stability. More generally, [20]

establish that much (if not all) of the theory already available

for MPC is easily extendable to mixed-integer MPC.

To demonstrate the ease with which we can extend MPC

theory to include discrete actuators, we consider the follow-

ing standard assumptions for MPC [21, s. 2].

Assumption 1. The functions f : R
n × R

m → R
n, ` :

R
n × R

m → R, and Vf : R
m → R are continuous and

f(0, 0) = 0, `(0, 0) = 0, Vf (0) = 0. The functions `(·) and

Vf (·) are lower bounded on X× U and Xf , respectively.

Assumption 2. The set U is compact and contains the origin.

The sets X and Xf are closed and contain the origin.

Assumption 3. There exists a terminal control law κf :
Xf → U such that for all x ∈ Xf , f(x, κf (x)) ∈ Xf and

Vf (f(x, κf (x))) ≤ Vf (x)− `(x, κf (x))

Assumption 4. The exist a, c1, c2 > 0 such that

`(x, u) ≥ c1|x|
a ∀(x, u) ∈ X× U

Vf (x) ≤ c2|x|
a ∀x ∈ Xf

Furthermore, Xf contains the origin in its interior.

Under these assumptions, we may establish the exponen-

tial stability of nominal MPC.

Theorem 5. Under Assumptions 1-4, the origin of the

closed-loop system (4) is exponentially stable in any compact

subset of XN .

In addition to the set-point (or reference trajectory) track-

ing problems that typically characterize process control,

economic MPC allows the user to define the stage cost to

directly represent an economic or performance metric for

the system [22], [23], [24]. The key generalization made by

economic MPC is that the stage cost may not be positive

definite w.r.t. x ∈ X (Assumption 4 does not hold). If we

1If there are multiple solutions to PN (x), we assume that some selection
rule is applied to produce a single-valued control law. All subsequent results
hold for any such selection rule.

assume that the system is still strictly dissipative w.r.t. the

stage cost and the steady state (a weaker condition that is

difficult to verify), we can still establish exponential stability

of the nominal system. However, for many emerging appli-

cations of economic MPC with discrete actuators, such as

HVAC central plant optimization and production scheduling,

economic performance is more important than exponential

stability. In these cases, the following theoretical result is of

more interest.

Theorem 6. Under Assumptions 1-3, the closed-loop system

(4) satisfies

lim sup
T→∞

1

T

T−1
∑

k=0

`(x(k), u(k)) ≤ 0

in which x(k) and u(k) are the closed-loop state and input

trajectories for any initial condition x(0) ∈ XN .

Theorem 6 ensures that after an initial transient period the

performance of the closed-loop system is no worse than that

of the prescribed steady state, i.e., (x, u) = (0, 0), used to

construct the terminal cost and constraint in Assumption 3.

Both Theorems 5 and 6 can be extended to time-varying or

periodic systems, stage costs, and constraints [25].

We emphasize that none of these assumptions preclude

enforcing integer-valued constraints on the inputs through the

choice of U. Assumption 2 does not require that the set U

contain the origin in its interior, as is common in the early

MPC literature [2]. Thus, U is already flexible enough to

represent integer-valued constraints on the inputs. This fact

was first articulated in [20] and led to the following notion.

Folk Theorem 1. Any result that holds for standard MPC

also holds for MPC with discrete actuators.

In this case, “standard” MPC implies MPC without

discrete-valued input decisions. Five years later, this ob-

servation remains valid, and there has been a significant

expansion of the theoretical results and practical applications

of mixed-integer MPC. This result, however, does not mean

that nothing changes when discrete actuators are added to

the MPC problem. By allowing input constraints to be active

at the origin, the terminal ingredients (Assumption 3) must

be carefully constructed (see [26] for such a construction).

Furthermore, the feasible set XN for mixed-integer MPC

problems with many integer constraints may consist of many

disconnected and nonconvex regions.

The extension from standard MPC to mixed-integer MPC

is not effortless. Instead, the key observation in [20] is

that the hurdles to including integer constraints in MPC

problems are manageable with the current set of theoretical

and computational tools available. Moreover, there have been

multiple theoretical and computational advances in the field

of mixed-integer MPC in the last decade. On the theoretical

side, we focus on the results characterizing and establishing

the robustness of mixed-integer MPC. We then discuss the

computational challenges and methods proposed for solving

these mixed-integer MPC problems in online applications.



III. INHERENT ROBUSTNESS

A. Small and persistent disturbances

In addition to nominal stability, a control method must en-

sure some margin of robustness to disturbances for successful

implementation. Thus, we consider the plant dynamics

x+ = f(x, κN (x)) + w (5)

in which w ∈ W ⊆ R
p is a disturbance affecting the system.

We use φ(k;x,wk) to denote the closed-loop state trajectory

generated by (5) at time k ∈ I≥0, given the initial condition x
and disturbance sequence wk = (w(0), w(1), . . . , w(k−1)).
We also define ||wk|| := maxi∈I0:k−1

|w(i)|. The function

α : R≥0 → R≥0 is in class K if it is continuous, strictly

increasing, and α(0) = 0.

To discuss robustness, we first define robust positive

invariance and robust exponential stability (RES).

Definition 7 (Robust positive invariance). A set S is robustly

positive invariant for the closed-loop system (5) if x ∈ S
implies x+ ∈ S for all w ∈ W.

Definition 8 (Robust exponential stability). The origin of

the closed-loop system (5) is robustly exponentially stable

(RES) in a robustly positive invariant set S if there exist

ρ > 0, λ ∈ (0, 1), and γ(·) ∈ K such that

|φ(k;x,wk)| ≤ λkρ|x|+ γ(||wk||)

for all x ∈ S , k ∈ I≥0, and wk ∈ W
k.

While different researchers may use slightly modified

versions of these definitions (e.g., an extension to robust

asymptotic stability using KL functions), the general notion

of robustness for MPC remains the same: For a compact

subset of the feasible set (S := XN ∩ {x : V 0
N (x) ≤ τ} and

τ > 0), there exists a nonzero margin of robustness (δ > 0)

such that S is robustly positive invariant, the optimization

problem remains feasible (because S ⊆ XN ), and the origin

is RES for all sufficiently small disturbances (W ⊆ {w :
|w| ≤ δ}). For the nominal MPC formulation defined

in this work, we often refer to this property as inherent

robustness, as we do not consider disturbances directly in

problem formulation as done in stochastic or robust MPC

formulations. Instead, nominal MPC relies on feedback to

address these disturbances. This inherent robustness is often

sufficient in industrial applications.

In closed-loop analysis of MPC, the optimal cost function

V 0
N (x) is (almost) always used as a Lyapunov function for

the closed-loop system. If V 0
N (x) is continuous, which is true

for a linear dynamic model and convex constraints, inherent

robustness follows immediately from the analysis used to

establish Theorem 5. For nonlinear systems or, in particular,

integer-valued constraints, the optimal cost function for MPC

is not necessarily continuous and establishing the inherent

robustness of MPC is a nontrivial endeavor.

In a significant contribution, Yu et al. [27] establish that

nonlinear MPC is inherently robust to sufficiently small

additive disturbances without the requirement that V 0
N (x) is

continuous. The authors require that hard state constraints

are omitted (X = R
n) to ensure recursive feasibility of the

optimization problem. Instead, these state constraints can be

included in the stage cost as exact penalties [28]. A terminal

cost function and constraint are constructed via the linear-

quadratic regulator (LQR) solution of the linearized system.

The authors, however, require that the origin lies in the

interior of U and thereby exclude integer constraints.

Leveraging some of these results, [29] establish that sub-

optimal MPC, i.e., an MPC algorithm that does not require

optimal solutions to the proposed optimal control problem,

is inherently robust without requiring U to have an interior.

Thus, suboptimal and optimal MPC with integer decision

variables are inherently robust. Given the computational

burden of nonlinear and mixed-integer optimization, the

ability to use potentially suboptimal solutions is particularly

important for the online implementation of MPC.

B. Large and infrequent disturbances

By extending MPC theory to include problems with dis-

crete decisions, “higher-level” scheduling or planning prob-

lems are now within the purview of MPC theory and appli-

cation [7], [30], [31]. These additional applications of MPC,

however, introduce their own unique complications. With

discrete decisions and, in particular, scheduling problems,

we must now consider the possibility of discrete disturbances

such as delays or breakdowns in equipment. Typically, we

cannot treat these discrete disturbances as sufficiently small

and bounding the worst deterministic trajectory possible, e.g.,

all units are broken, leads to an excessively conservative

and uninformative bound. Instead, we leverage the fact that

these disturbances, although large, are also infrequent, e.g.,

a breakdown occurs with small probability. We refer to this

class of disturbances as large and infrequent.

We define this class of disturbances in contrast to the

small and persistent disturbances considered in the previous

section. We denote the set of sufficiently small disturbances

as W0 with supw∈W0
|w| ≤ δ0 in which δ0 > 0 is the

margin of robustness discussed in the previous section. Large

(discrete) disturbances are then defined by the set W1 such

that infw∈W1
|w| > 0, i.e., the disturbances are bounded

away from zero. We assume that W1 and W0 are disjoint

and define ε := Pr(ε ∈ W1). Note that W1 includes the

discrete-valued disturbances that may not be included in W0.

This class also includes large disturbances such as faults,

communication failures, and large price/demand spikes in

economic applications. In this work, we restrict our attention

to systems in which only large disturbances or nominal

behavior occur, i.e., W0 = 0 and W := W1 ∪ {0}. For

this class of disturbances, we consider a different, stochastic

notion of robustness.

Definition 9 (Robust exponential stability in expectation).

The origin of the closed-loop system (5) with ε := Pr(w ∈
W1) is robustly exponentially stable in expectation (RESiE)

in a robustly positive invariant set S for some δ > 0 if there

exist ρ > 0, λ ∈ (0, 1), and γ(·) ∈ K such that

E [|φ(k;x,wk)|] ≤ λkρ|x|+ γ(ε) (6)



for all x ∈ S , ε ∈ [0, δ], and k ∈ I≥0.

As shown in [32], MPC is RESiE to this class of large

disturbances, under specific assumptions, provided these

disturbance are sufficiently infrequent, i.e., there exists δ >
0 such that the origin is RESiE in XN for all ε ≤ δ.

These results can be extended to asymptotic stability and

confidence (probabilistic) bounds for the state trajectory [33].

Furthermore, we can establish for economic MPC problems

(without Assumption 4) that MPC is robust to these large

and infrequent disturbances in an economic context: For

sufficiently infrequent disturbances, ε ≤ δ, there exists

γ̂(·) ∈ K such that the closed-loop system satisfies:

lim sup
T→∞

1

T

T−1
∑

k=0

E [`(x(k), u(k))] ≤ γ̂(ε) (7)

for x(k) = φ(k;x,wk), u(k) = κN (x(k)), and all x ∈ XN .

In either case, these definitions of robustness bound a

stochastic property of the closed-loop system (expected

value) based on a stochastic property of the disturbance

(ε = Pr(w ∈ W1)). These bounds imply that the closed-loop

system can, on average, recover from a large disturbance

before another disturbance occurs provided the disturbances

are sufficiently infrequent (unlikely). The economic form

of robustness in (7) is particularly relevant to production

scheduling problems [34].

IV. COMPUTATION

One of the key complications introduced by the addition

of discrete decisions to the MPC problem, is the transfor-

mation of the original optimization problem with continuous

decisions (linear, quadratic, or nonlinear) to its correspond-

ing mixed-integer counterpart. The presence of these inte-

ger constraints renders the optimization problem nonconvex

and requires solution methods that subsume typical linear,

quadratic, or nonlinear solvers. As the field of mixed-integer

optimization is large and not the primary focus of this

paper, we do not attempt to review contributions to this field

in detail. For more information, we suggest a few review

articles on mixed-integer linear programming (MILP) [35],

[36] and mixed-integer nonlinear programming (MINLP)

[37], [38], [39]. Instead, we offer a general overview of these

different mixed-integer optimization problems in the context

of optimal control and focus on a few contributions that

specifically address mixed-integer optimal control problems.

In general, these mixed-integer problems are solved by

iterating between solving the continuous relaxation of the

mixed-integer problem, i.e., the optimization problem with-

out integer constraints, and a branch and bound combinatorial

optimization problem. Thus, the properties and structure

of this continuous relaxation are significant to the solution

method and algorithmic efficiency. Mixed-integer linear and

quadratic programs (MILPs/MIQPs) can often be efficiently

solved, at significant scale, through available optimization

packages such as Gurobi. Open-source packages, such as

Cbc/Bonmin, are also available. Thus, mixed-integer MPC

problems with linear system models (f(x, u) = Ax + Bu),

linear or quadratic stage and terminal costs (e.g., `(x, u) =
x′Qx+ u′Ru), and linear constraints aside from the integer

constraints (e.g., X := {x : Ax ≤ b}), are readily solvable

with available optimization methods. In fact, the optimal

control package CasADi already includes functionality to

enforce integer constraints and solves these problems with

Bonmin [40]. As MIQPs are particularly important to MPC

applications (linear systems with quadratic costs), there are

also multiple methods to improve computational efficiency

of the MIQP by exploiting the structure of the MPC problem

and using warm starts for the optimizer [41], [42], [43], [44].

For nonlinear systems, however, the continuous relaxation

of the mixed-integer MPC problem is a nonlinear and typi-

cally nonconvex optimization problem. Although significant

improvements have been made in the field of mixed-integer

nonlinear optimization, these global optimization solvers are

often too slow for online implementation and therefore MPC.

Nonetheless, mixed-integer MPC for nonlinear systems is

still tractable. Suboptimal, but feasible, solutions to the

MINLP that can be computed within the available sample

time are sufficient in many applications of MPC.

One strategy to solve these MINLPs with more com-

putationally attractive methods is through piecewise affine

approximations. By approximating nonlinear system models,

costs, and constraints via piecewise affine functions, we can

reduce the original MINLP to a MILP with additional integer

(binary) variables for these piecewise regions [45], [4]. The

accuracy of this approximation improves with the number of

regions considered in the piecewise approximation, but so

does the computational complexity of the resulting MILP.

Another option is to approximately solve the MINLP by

leveraging the structure of the optimal control problem. One

such method is the combinatorial integral approximation

(CIA) [46]. The motivation for this approximation is that the

state of the system, if the binary inputs enter the dynamic

system linearly, is influenced more by the integral (average)

of the control inputs than their pointwise values.

For the CIA algorithm, the integer variables are assumed,

without loss of generality, to be binary variables and we

divide the input trajectory u = (uc,ub) into continuous (uc)

and binary variables (ub ∈ B). We use the specialized norm:

||ub||CIA := max
i,k′≤N

∣

∣

∣

∑k′−1
k=0 ub,i(k)

∣

∣

∣

The CIA algorithm is characterized by three steps:

1) Solve the relaxed MINLP, i.e., an NLP, to find a

solution u
∗
c and u

∗
b , possibly with u

∗
b /∈ B.

2) Solve for a binary trajectory u
∗∗
b :=

argminub∈B ||ub − u
∗
b ||CIA, which is an MILP.

3) Solve the MINLP with a fixed binary trajectory u
∗∗
b ,

i.e., an NLP, to find the continuous inputs u
∗∗
c .

The trajectory of inputs (u∗∗
c ,u∗∗

b ) is feasible for the original

MINLP, but typically not optimal. Further details are avail-

able in [47] and there is an open-source tool, pycombina, for

solving the CIA problem [48].

Versions of both the piecewise approximation and CIA

algorithm have been successfully deployed, in real time, on
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