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Abstract— Mixed-integer model predictive control (MPC) al-
lows for discrete-valued control decisions, which are a common
feature of industrial processes, to be optimized in combination
with the continuous-valued control decisions typically consid-
ered in MPC. By choosing these decisions comprehensively
and optimally, mixed-integer MPC can produce a significant
improvement in process performance. In this work, we present
a selection of the theoretical and computational advances in
the field of mixed-integer MPC. First, we review the means
by which theoretical results for standard MPC with continuous
actuators are easily extendable to mixed-integer MPC. We then
discuss additional theoretical results that address the robustness
of mixed-integer MPC to both (i) small, persistent and (ii)
large, infrequent disturbances. Next, we review the computa-
tional methods available to solve online these mixed-integer
MPC problems, and discuss a few algorithms to approximate
and solve the resulting mixed-integer nonlinear optimization
problems by leveraging the structure of the MPC problem. We
conclude with a tutorial example of mixed-integer MPC.

I. INTRODUCTION

Discrete-valued actuators, such as on/off decisions, are
pervasive in large-scale industrial processes. Yet the early
MPC literature focused entirely on continuous actuators,
while leaving these discrete decisions to other automation
methods such as heuristics [1], [2]. This preference in both
industrial practice and MPC literature was driven primarily
by the computational complexity incurred when including
integer constraints in the optimization problem. However,
advances in mixed-integer optimization, and computational
power in general, allow these discrete decisions to be in-
cluded directly in many MPC optimization problems.

By including discrete decisions directly in the optimiza-
tion problem, mixed-integer MPC can produce significant
improvements in the operation of these systems by treating
“low-level” continuous actuators (e.g., valves) and “high-
level” discrete decisions (e.g., on/off decisions) in a single
framework. There are a range of potential applications of
mixed-integer MPC including heating, ventilation, and air
conditioning (HVAC) [3], [4], path planning [5], traffic
control [6], and production scheduling [7]. In fact, mixed-
integer MPC is currently deployed to optimize and control
the Stanford campus heating and cooling systems [8] and has
been applied to a solar thermal climate system at Karlsruhe
University of Applied Sciences [9].

While systems with both integer and continuous variables
are sometimes referred to as “hybrid” systems, we reserve
the term hybrid to describe a specific class of systems
that posses both discrete and continuous time dynamics,
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as defined in [10]. These hybrid systems pose a number
of control challenges and subsume the complications of
adding integer constraints to the MPC problem [11]. We
therefore restrict mixed-integer MPC to nonlinear discrete-
time systems with mixed integer and continuous inputs. Note
that this description does include piecewise affine systems
[12], nonlinear switched systems [13], [14], and controllers
that switch modes [15], provided that switches between
dynamic models are determined directly by a controlled input
to the system. In the following sections, we highlight a
selection of the theoretical and computational advances in
the field of mixed-integer MPC.

II. MIXED-INTEGER MPC

We consider discrete-time systems of the form
T = f(z,u) e8]

in which € R™ and v € R™ are the state and input,
and T € R™ denotes the subsequent state. For a prediction
horizon of N € Iy, we use ¢(k;x,u) to denote the state
solution of (1) at time k € Iy.y, given the initial condition
2 and the control trajectory u = (u(0), u(1),...,u(N —1)).

One of the key strengths of MPC is the ability to enforce
state and input constraints of the form x € X and v € U.
Note that the set U is general enough to enforce integer
constraints on a subset of the inputs. Thus, the formulation
discussed here already includes mixed-integer MPC as a
specific case.

We also use the terminal constraint Xy C X to ensure
nominal stability of the controller. Using these constraints,
we define the following sets to characterize the admissible
input trajectories and initial states for the MPC optimization
problem.

Uy (z) = {u: u(k) € U,d(k; z,u) € X Vk € lo.ny_1,

o(N;z,u) € Xp}
Xy = {z:Un(z) # 0}

The stage cost is defined as ¢ : R* x R™ — R and a
corresponding terminal cost is defined as V¢ : R™ — R. The
cost function is then

N-1
Vn(z,u) =Y £((k;z,0),u(k)) + Vi((N;2,u)) (2)
k=0

The MPC optimization problem is defined as

Py(z): Vo(r) = min Vy(z,u) 3)
uely (z)

and the optimal solutions for a given initial state x € Xy

are denoted u’(z) := argminyey, () Va (2, u). We define



the control law as xy () := u°(0;x) in which u°(0;z) is
the first input in u®(z).! The resulting closed-loop system is

vt = f(x, kn(7)) 4
A. Nominal stability and performance

The first property to address for MPC is the nominal stabil-
ity of a specified steady state, which is usually chosen to be
the origin. There are various results on the stability of MPC
with discrete decisions. Bemporad and Morari [16] establish
convergence to the origin (but not Lyapunov stability) via
certain restrictions on the stage cost. Picasso et al. [17]
establish asymptotic stability for open-loop stable systems
and boundedness for open-loop unstable systems. Baotic et
al. [18] establish asymptotic stability for piecewise affine
systems with a control law derived from an infinite-horizon
optimization problem. By embedding a hybrid Lyapunov
function within the optimal control problem, Di Cairano
et al. [19] ensure asymptotic stability. More generally, [20]
establish that much (if not all) of the theory already available
for MPC is easily extendable to mixed-integer MPC.

To demonstrate the ease with which we can extend MPC
theory to include discrete actuators, we consider the follow-
ing standard assumptions for MPC [21, s. 2].

Assumption 1. The functions f : R” x R™ — R”, ¢ :
R® x R™ — R, and V; : R™ — R are continuous and
£(0,0) =0, €(0,0) = 0, V¢(0) = 0. The functions ¢(-) and
V() are lower bounded on X x U and Xy, respectively.

Assumption 2. The set U is compact and contains the origin.
The sets X and X are closed and contain the origin.

Assumption 3. There exists a terminal control law ks :
X; — U such that for all € Xy, f(z,k¢(z)) € Xy and

Vi(f(@,k5(2))) < Vi(z) — (z, ks (x))
Assumption 4. The exist a, ¢, co > 0 such that

V(z,u) e Xx U
VZL‘EXf

Uz, u) > c1]z|®
Vi(z) < calz|®

Furthermore, X contains the origin in its interior.

Under these assumptions, we may establish the exponen-
tial stability of nominal MPC.

Theorem 5. Under Assumptions 1-4, the origin of the
closed-loop system (4) is exponentially stable in any compact
subset of Xn.

In addition to the set-point (or reference trajectory) track-
ing problems that typically characterize process control,
economic MPC allows the user to define the stage cost to
directly represent an economic or performance metric for
the system [22], [23], [24]. The key generalization made by
economic MPC is that the stage cost may not be positive
definite w.r.t. x € X (Assumption 4 does not hold). If we

UIf there are multiple solutions to P (z), we assume that some selection
rule is applied to produce a single-valued control law. All subsequent results
hold for any such selection rule.
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assume that the system is still strictly dissipative w.r.t. the
stage cost and the steady state (a weaker condition that is
difficult to verify), we can still establish exponential stability
of the nominal system. However, for many emerging appli-
cations of economic MPC with discrete actuators, such as
HVAC central plant optimization and production scheduling,
economic performance is more important than exponential
stability. In these cases, the following theoretical result is of
more interest.

Theorem 6. Under Assumptions 1-3, the closed-loop system
(4) satisfies

lim sup
T—o0

1 T-1
7 > k), u(k)) <0
k=0

in which x(k) and u(k) are the closed-loop state and input
trajectories for any initial condition x(0) € X.

Theorem 6 ensures that after an initial transient period the
performance of the closed-loop system is no worse than that
of the prescribed steady state, i.e., (z,u) = (0,0), used to
construct the terminal cost and constraint in Assumption 3.
Both Theorems 5 and 6 can be extended to time-varying or
periodic systems, stage costs, and constraints [25].

We emphasize that none of these assumptions preclude
enforcing integer-valued constraints on the inputs through the
choice of U. Assumption 2 does not require that the set U
contain the origin in its interior, as is common in the early
MPC literature [2]. Thus, U is already flexible enough to
represent integer-valued constraints on the inputs. This fact
was first articulated in [20] and led to the following notion.

Folk Theorem 1. Any result that holds for standard MPC
also holds for MPC with discrete actuators.

In this case, “standard” MPC implies MPC without
discrete-valued input decisions. Five years later, this ob-
servation remains valid, and there has been a significant
expansion of the theoretical results and practical applications
of mixed-integer MPC. This result, however, does not mean
that nothing changes when discrete actuators are added to
the MPC problem. By allowing input constraints to be active
at the origin, the terminal ingredients (Assumption 3) must
be carefully constructed (see [26] for such a construction).
Furthermore, the feasible set X for mixed-integer MPC
problems with many integer constraints may consist of many
disconnected and nonconvex regions.

The extension from standard MPC to mixed-integer MPC
is not effortless. Instead, the key observation in [20] is
that the hurdles to including integer constraints in MPC
problems are manageable with the current set of theoretical
and computational tools available. Moreover, there have been
multiple theoretical and computational advances in the field
of mixed-integer MPC in the last decade. On the theoretical
side, we focus on the results characterizing and establishing
the robustness of mixed-integer MPC. We then discuss the
computational challenges and methods proposed for solving
these mixed-integer MPC problems in online applications.



III. INHERENT ROBUSTNESS
A. Small and persistent disturbances

In addition to nominal stability, a control method must en-
sure some margin of robustness to disturbances for successful
implementation. Thus, we consider the plant dynamics

vt = f(z,kn (7)) +w

(&)

in which w € W C RP is a disturbance affecting the system.
We use ¢(k; x, wy,) to denote the closed-loop state trajectory
generated by (5) at time k € I>(, given the initial condition x
and disturbance sequence wy, = (w(0),w(1),...,w(k—1)).
We also define ||wg|| := max;er,,,_, |w(?)|. The function
a : R>g — Rxg is in class K if it is continuous, strictly
increasing, and a(0) = 0.

To discuss robustness, we first define robust positive
invariance and robust exponential stability (RES).

Definition 7 (Robust positive invariance). A set S is robustly
positive invariant for the closed-loop system (5) if z € S
implies z7 € S for all w € W.

Definition 8 (Robust exponential stability). The origin of
the closed-loop system (5) is robustly exponentially stable
(RES) in a robustly positive invariant set S if there exist
p>0, € (0,1), and v(-) € K such that

|6(k; 2, wi)| < X pla| + (|| wil])
forall z € S, k € I>9, and wy, € Wk,

While different researchers may use slightly modified
versions of these definitions (e.g., an extension to robust
asymptotic stability using KL functions), the general notion
of robustness for MPC remains the same: For a compact
subset of the feasible set (S := Xy N {z: VI (z) <7} and
7 > 0), there exists a nonzero margin of robustness (§ > 0)
such that S is robustly positive invariant, the optimization
problem remains feasible (because S C X ), and the origin
is RES for all sufficiently small disturbances (W C {w :
|w| < 6é}). For the nominal MPC formulation defined
in this work, we often refer to this property as inherent
robustness, as we do not consider disturbances directly in
problem formulation as done in stochastic or robust MPC
formulations. Instead, nominal MPC relies on feedback to
address these disturbances. This inherent robustness is often
sufficient in industrial applications.

In closed-loop analysis of MPC, the optimal cost function
VY (z) is (almost) always used as a Lyapunov function for
the closed-loop system. If VJ(z) is continuous, which is true
for a linear dynamic model and convex constraints, inherent
robustness follows immediately from the analysis used to
establish Theorem 5. For nonlinear systems or, in particular,
integer-valued constraints, the optimal cost function for MPC
is not necessarily continuous and establishing the inherent
robustness of MPC is a nontrivial endeavor.

In a significant contribution, Yu et al. [27] establish that
nonlinear MPC is inherently robust to sufficiently small
additive disturbances without the requirement that Vi (z) is
continuous. The authors require that hard state constraints
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are omitted (X = R"™) to ensure recursive feasibility of the
optimization problem. Instead, these state constraints can be
included in the stage cost as exact penalties [28]. A terminal
cost function and constraint are constructed via the linear-
quadratic regulator (LQR) solution of the linearized system.
The authors, however, require that the origin lies in the
interior of U and thereby exclude integer constraints.

Leveraging some of these results, [29] establish that sub-
optimal MPC, i.e., an MPC algorithm that does not require
optimal solutions to the proposed optimal control problem,
is inherently robust without requiring U to have an interior.
Thus, suboptimal and optimal MPC with integer decision
variables are inherently robust. Given the computational
burden of nonlinear and mixed-integer optimization, the
ability to use potentially suboptimal solutions is particularly
important for the online implementation of MPC.

B. Large and infrequent disturbances

By extending MPC theory to include problems with dis-
crete decisions, “higher-level” scheduling or planning prob-
lems are now within the purview of MPC theory and appli-
cation [7], [30], [31]. These additional applications of MPC,
however, introduce their own unique complications. With
discrete decisions and, in particular, scheduling problems,
we must now consider the possibility of discrete disturbances
such as delays or breakdowns in equipment. Typically, we
cannot treat these discrete disturbances as sufficiently small
and bounding the worst deterministic trajectory possible, e.g.,
all units are broken, leads to an excessively conservative
and uninformative bound. Instead, we leverage the fact that
these disturbances, although large, are also infrequent, e.g.,
a breakdown occurs with small probability. We refer to this
class of disturbances as large and infrequent.

We define this class of disturbances in contrast to the
small and persistent disturbances considered in the previous
section. We denote the set of sufficiently small disturbances
as Wo with sup,,cy, [w| < o in which dp > 0 is the
margin of robustness discussed in the previous section. Large
(discrete) disturbances are then defined by the set W; such
that inf,ew, [w| > 0, i.e., the disturbances are bounded
away from zero. We assume that W; and W, are disjoint
and define £ := Pr(e € Wy). Note that W includes the
discrete-valued disturbances that may not be included in Wy,.
This class also includes large disturbances such as faults,
communication failures, and large price/demand spikes in
economic applications. In this work, we restrict our attention
to systems in which only large disturbances or nominal
behavior occur, i.e., Wy = 0 and W := W; U {0}. For
this class of disturbances, we consider a different, stochastic
notion of robustness.

Definition 9 (Robust exponential stability in expectation).
The origin of the closed-loop system (5) with ¢ := Pr(w €
W) is robustly exponentially stable in expectation (RESIiE)
in a robustly positive invariant set S for some § > 0 if there
exist p > 0, A € (0,1), and () € K such that

E[|¢(k; z, wi)[] < Nep|z| + v(e) (©6)



forall x € S, e € [0,6], and k € I>o.

As shown in [32], MPC is RESIE to this class of large
disturbances, under specific assumptions, provided these
disturbance are sufficiently infrequent, i.e., there exists & >
0 such that the origin is RESIiE in Xy for all ¢ < §.
These results can be extended to asymptotic stability and
confidence (probabilistic) bounds for the state trajectory [33].
Furthermore, we can establish for economic MPC problems
(without Assumption 4) that MPC is robust to these large
and infrequent disturbances in an economic context: For
sufficiently infrequent disturbances, ¢ < J, there exists
4(+) € K such that the closed-loop system satisfies:

)

lim sup
T—o0

T-1
% 3" El(a(k), ulk))] < 4(e)
k=0

for (k) = ¢(k; z, wy), u(k) = kn(z(k)), and all x € Xy.

In either case, these definitions of robustness bound a
stochastic property of the closed-loop system (expected
value) based on a stochastic property of the disturbance
(¢ = Pr(w € Wy)). These bounds imply that the closed-loop
system can, on average, recover from a large disturbance
before another disturbance occurs provided the disturbances
are sufficiently infrequent (unlikely). The economic form
of robustness in (7) is particularly relevant to production
scheduling problems [34].

IV. COMPUTATION

One of the key complications introduced by the addition
of discrete decisions to the MPC problem, is the transfor-
mation of the original optimization problem with continuous
decisions (linear, quadratic, or nonlinear) to its correspond-
ing mixed-integer counterpart. The presence of these inte-
ger constraints renders the optimization problem nonconvex
and requires solution methods that subsume typical linear,
quadratic, or nonlinear solvers. As the field of mixed-integer
optimization is large and not the primary focus of this
paper, we do not attempt to review contributions to this field
in detail. For more information, we suggest a few review
articles on mixed-integer linear programming (MILP) [35],
[36] and mixed-integer nonlinear programming (MINLP)
[37], [38], [39]. Instead, we offer a general overview of these
different mixed-integer optimization problems in the context
of optimal control and focus on a few contributions that
specifically address mixed-integer optimal control problems.

In general, these mixed-integer problems are solved by
iterating between solving the continuous relaxation of the
mixed-integer problem, i.e., the optimization problem with-
out integer constraints, and a branch and bound combinatorial
optimization problem. Thus, the properties and structure
of this continuous relaxation are significant to the solution
method and algorithmic efficiency. Mixed-integer linear and
quadratic programs (MILPs/MIQPs) can often be efficiently
solved, at significant scale, through available optimization
packages such as Gurobi. Open-source packages, such as
Cbc/Bonmin, are also available. Thus, mixed-integer MPC
problems with linear system models (f(z,u) = Az + Bu),
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linear or quadratic stage and terminal costs (e.g., {(z,u) =
7'Qx + v’ Ru), and linear constraints aside from the integer
constraints (e.g., X := {z : Az < b}), are readily solvable
with available optimization methods. In fact, the optimal
control package CasADi already includes functionality to
enforce integer constraints and solves these problems with
Bonmin [40]. As MIQPs are particularly important to MPC
applications (linear systems with quadratic costs), there are
also multiple methods to improve computational efficiency
of the MIQP by exploiting the structure of the MPC problem
and using warm starts for the optimizer [41], [42], [43], [44].

For nonlinear systems, however, the continuous relaxation
of the mixed-integer MPC problem is a nonlinear and typi-
cally nonconvex optimization problem. Although significant
improvements have been made in the field of mixed-integer
nonlinear optimization, these global optimization solvers are
often too slow for online implementation and therefore MPC.
Nonetheless, mixed-integer MPC for nonlinear systems is
still tractable. Suboptimal, but feasible, solutions to the
MINLP that can be computed within the available sample
time are sufficient in many applications of MPC.

One strategy to solve these MINLPs with more com-
putationally attractive methods is through piecewise affine
approximations. By approximating nonlinear system models,
costs, and constraints via piecewise affine functions, we can
reduce the original MINLP to a MILP with additional integer
(binary) variables for these piecewise regions [45], [4]. The
accuracy of this approximation improves with the number of
regions considered in the piecewise approximation, but so
does the computational complexity of the resulting MILP.

Another option is to approximately solve the MINLP by
leveraging the structure of the optimal control problem. One
such method is the combinatorial integral approximation
(CIA) [46]. The motivation for this approximation is that the
state of the system, if the binary inputs enter the dynamic
system linearly, is influenced more by the integral (average)
of the control inputs than their pointwise values.

For the CIA algorithm, the integer variables are assumed,
without loss of generality, to be binary variables and we
divide the input trajectory u = (u., us) into continuous (u.)
and binary variables (u, € B). We use the specialized norm:

'—1

k
llupl|cra == ZIIB%V Zk:o up,i(k)

The CIA algorithm is characterized by three steps:

1) Solve the relaxed MINLP, i.e., an NLP, to find a
solution u} and uj, possibly with uj ¢ B.

2) Solve for a binary trajectory u;*
arg ming, eg ||up — uj||cra, which is an MILP.

3) Solve the MINLP with a fixed binary trajectory u;*,
i.e., an NLP, to find the continuous inputs u}*.

The trajectory of inputs (u}*, u;*) is feasible for the original
MINLP, but typically not optimal. Further details are avail-
able in [47] and there is an open-source tool, pycombina, for
solving the CIA problem [48].

Versions of both the piecewise approximation and CIA
algorithm have been successfully deployed, in real time, on
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Fig. 1. Left: Input constraint set (U) in the example. Note U is disconnected
and does not have an interior. Right: Illustration of the example.

industrial size applications [8], [9]. While there is still room
for improvement in MINLP solvers, the current capabilities
of optimization solvers appear to be within the requirements
for deploying mixed-integer MPC in industrial practice.

V. TUTORIAL EXAMPLE

We consider a small scheduling and inventory control
example to demonstrate the potential applications of mixed-
integer MPC and illustrate some of the robustness results
discussed in this work. Two batch reactors deliver product to
a single holding tank from which product may be withdrawn
at the start of each hour. The goal of the controller is to
maintain the level in the tank at 10 while withdrawing 8
every hour. The discrete-time dynamic model is

=z +u (1 +wy) +uz(l+ws) +ug

in which x € [0,20] is the tank level, u;,us are the volume
of product produced by reactors 1 and 2, and uz € [0, 10]
is the outlet flow/delivery rate from the tank. To enforce
minimum capacity requirements on each reactor, we use
the binary variables w4, us to denote if reactors 1 and 2,
respectively, are “on.” The input constraints are shown in
Figure 1. We consider the disturbances wi,w, € R that
represent a proportional loss/gain of material production,
ie., if wy; = —0.1 the reactor 1 produces only 90% of the
intended production level. We also require u3 < x to ensure
that we do not withdraw more material than is available at
the start of each time step.

The steady state target is x5 = 10, uss = [4,4,8,1,1]
and we define the stage cost £(x,u) = |7 — 45| +|u—uss|?.
To construct the terminal cost, we fix uq, usg, uyg, us at their
steady state values and use the LQR solution with us as
the only available input. The LQR solution P is used as the
terminal cost Vy(x) := 2/Px and the terminal constraint is
defined as the level set X; := {z : 2’ Px < 1}. We choose
N = 6 to ensure robust recursive feasibility. Note that the
open-loop optimization problem is an MIQP. We use CasADi
and MPCTools with the MINLP solver Bonmin to formulate
and solve the open-loop optimization problem [40], [49].

We consider two options for the disturbance: (i) w,ws €
[—0.1,0.1] (sampled uniformly) is a small persistent distur-
bance that represents up to a 10% loss/gain in production
or (i) wy,ws € {0,—1} is a large infrequent disturbance
that represents a reactor breakdown for a given time step
with Pr(w; = —1) = Pr(we = —1) = 0.1. We simulate the
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Fig. 2. Top left and right are closed-loop trajectories for 100 simulations
of (i) small persistent and (ii) large infrequent disturbances. Bottom left is
the maximum distance over all disturbance realizations of the closed-loop
trajectory to the setpoint at each k. Bottom right is the sample average
distance of the closed-loop trajectory to the setpoint at each k.

closed-loop trajectory for either small persistent or large in-
frequent disturbances for 100 realizations of the disturbance
trajectory and plot the state trajectories in Figure 2. For small
persistent disturbances, we plot the maximum distance of the
closed-loop trajectory to the setpoint at each % in the bottom
left of Figure 2. For large infrequent disturbances, we plot
the sample average distance of the closed-loop trajectory to
the setpoint at each k in the bottom right of Figure 2. These
plots are consistent with RES and RESIE, respectively.

VI. CONCLUSIONS

Mixed-integer MPC is both theoretically sound and com-
putationally viable. Potential applications of mixed-integer
MPC range from traditional process control problems to
higher-level scheduling and planning problems. Many of the
theoretical results presented can be extended to time-varying
systems [25], [33] and the improvements in optimization
algorithms and computational power continue to expand the
scope of problems that can be addressed with mixed-integer
MPC. Potential directions for future research include: addi-
tional methods to approximate/solve mixed-integer nonlinear
MPC problems, the robustness of economic mixed-integer
MPC to small persistent disturbances, and novel applications
of mixed-integer MPC.
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