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Inherent Stochastic Robustness of Model
Predictive Control to Large and Infrequent

Disturbances
Robert D. McAllister and James B. Rawlings , Fellow, IEEE

Abstract—We introduce a new class of large, infrequent
disturbances to complement the small, persistent distur-
bances typically considered in robustness analysis. This
new class of disturbances includes discrete disturbances
that become pertinent when considering discrete actua-
tors and production scheduling in control problems. To
properly account for the infrequent nature of these distur-
bances, we define a stochastic form of robustness. Un-
der suitable assumptions, we prove that certain closed-
loop systems subject to large, infrequent disturbances
admit an SISS-Lyapunov function and are robust in this
stochastic context. We apply these results to economic
model predictive control (MPC) with a strictly dissipative
nominal system and stage cost, which includes tracking
MPC as a special case, and prove that economic MPC
is robust to large, infrequent disturbances. Without dis-
sipativity assumptions, we define and establish robust
asymptotic performance for economic MPC. We present
a simple tracking problem to illustrate the results of this
work, and a production scheduling (economic MPC) prob-
lem, to demonstrate the relevance of this analysis to prac-
tical applications.

Index Terms—Model predictive control, optimal control,
robust stability, stochastic systems, time varying systems.

I. INTRODUCTION

I
N THE absence of disturbances, suitable model predic-

tive control (MPC) formulations ensure nominal stability

[29, Ch. 2]. For practical implementation, however, MPC

must also be robust to disturbances. Inherent robustness of

nominal MPC is typically characterized by robust asymptotic

stability of the closed-loop system and these robustness re-

sults assume that the size of the disturbance is bounded by

some sufficiently small value [1], [13]. For many process con-

trol applications, this assumption is adequate to address the

model mismatch, measurement noise, and small perturbations

anticipated.
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While robust or stochastic MPC algorithms can be used to

directly consider these disturbances, the inherent robustness

of nominal MPC is often sufficient for implementation. In-

herent robustness refers to the robustness of MPC obtained

solely from feedback and without any constraint tightening,

worst case analysis, or stochastic optimization techniques.

Grimm et al. [13] demonstrate that for linear systems with

convex constraints, MPC is inherently robust. Nonlinear MPC

is also inherently robust if the optimal value function satisfies

certain continuity assumptions [27]. These results extend to

systems with compact input constraints, discrete-valued inputs,

and discontinuous optimal value functions if state constraints,

aside from the terminal constraint, are removed [1], [39]. More

general conditions on inherent robustness, input-to-state stabil-

ity (ISS), and their relation to Lyapunov functions are given in

Grimm et al. [14] and Lazar et al. [22].

Recently, theoretical results for MPC have been extended to

discrete actuators [28] and state-space models have been devel-

oped to formulate production scheduling as an economic MPC

problem [15], [31], [32]. With discrete actuators and scheduling

problems, we must now consider discrete disturbances such

as task delays or breakdowns in equipment. While the transi-

tion from continuous to discrete disturbances does not directly

affect the analysis performed in previous work, the argument

that a discrete disturbance can be made “sufficiently small”

is not applicable. For example, breakdowns considered in the

scheduling of a production facility are not, and should not be

considered, small disturbances. Furthermore, if we treat these

disturbances with the current theory, we must bound the worst

deterministic performance possible, e.g., the entire facility is

broken or delayed at every sample time. In practice, however,

these “large” disturbances are also infrequent, e.g., a production

line breaks or is delayed with some probability not equal to

one. Thus, a deterministic bound, if admitted by the underlying

system, is far too conservative and offers little insight for a

system subject to these types of disturbances.

We refer to this class of disturbances as large, because the

disturbances are bounded away from zero and cannot be con-

sidered “sufficiently small,” and infrequent, because the prob-

ability that these disturbances occur is small. This description

applies to a variety of disturbances such as faults, missing mea-

surements, communication failures, breakdowns, large delays,

and large price/demand spikes in economic applications. To

understand the system’s robustness to this class of disturbances,
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we exploit the infrequent nature of these disturbances and pro-

pose a stochastic form of robustness for large and infrequent

disturbances.

Many forms of stochastic stability and robustness are al-

ready present in control theory. Originating in the 1960’s [21],

the notion of stochastic stability for nonlinear systems, i.e.,

global asymptotic stability in probability (GASiP), was refined

more recently in Florchinger [10]. Subsequently, this analysis

was used to design feedback controllers for stochastic systems

[5], [6], [26]. Teel and co-workers constructed and established

stronger definitions of global asymptotic stability, rigorously

demonstrated that stochastic Lyapunov functions provide uni-

form convergence, and developed converse Lyapunov theorems

for this stochastic definition of stability [34]–[36]. Analogous to

ISS for deterministic systems, stochastic input-to-state stability

(SISS) was also defined [19], [24], [33], [37]. Over the past

decade, this SISS framework has been used in the analysis and

control of continuous-time [16], [17], [38], [41] and discrete-

time [8] nonlinear stochastic systems. These works assume that

the impact of the stochastic disturbance vanishes once the state

of the system reaches the origin. However, many applications of

interest violate this assumption. For the current work, the SISS

framework is significantly modified to address large, infrequent

disturbances that do not vanish once the state reaches the origin.

We summarize the subsequent sections as follows. In Sec-

tion II, we introduce MPC and the closed-loop stochastic system.

In Section III, we characterize the class of large and infrequent

disturbances addressed in this article and limit the maximum

size of these large disturbances through a few assumptions. In

Section IV, we present a motivating example and define robust

asymptotic stability in probability (RASiP). We then define an

SISS-Lyapunov function and establish that any closed-loop sys-

tem that admits an SISS-Lyapunov function is RASiP. Further-

more, we establish that the assumptions presented in Sections II

and III are sufficient to guarantee that the closed-loop stochastic

system admits an SISS-Lyapunov function and is therefore

RASiP. In Section V, we focus on economic MPC. We define

and establish robust asymptotic performance in expectation for

this closed-loop system subject to large, infrequent disturbances

by assuming a specific cost evolution bound for the perturbed

system. With additional nominal dissipativity and weak control-

lability assumptions, we prove that economic MPC is RASiP.

In Section VI, we demonstrate the results and implications of

this analysis with a production scheduling, i.e., economic MPC,

example.

Notation: Let I denote integers, R denote reals, and subscripts

on these sets denote restrictions (e.g., I≥0 for nonnegative inte-

gers). The set T ⊆ I≥0 denotes discrete time points. The func-

tion ρ : R≥0 → R≥0 is in class PD if it is continuous, ρ(s) > 0
for all s > 0, and ρ(0) = 0. The function ³ : R≥0 → R≥0 is in

classK if it is continuous, strictly increasing, and³(0) = 0. The

function ³(·) is in class K∞ if it is in class K and unbounded.

A function ´ : R≥0 × I≥0 → R≥0 is in class KL if for fixed

k the function ´(·, k) is in class K and for fixed s the function

´(s, ·) is nonincreasing and limk→∞ ´(s, k) = 0. Let | · | denote

vector norm if applied to a vector and absolute value if applied to

a scalar. We denote distance to a set A as |x|A = infa∈A |x− a|.
Let ⊕ denote set addition. Sequences are denoted in bold face

and subscripts indicate the range (e.g.,wk indicates the sequence

of w’s from w(t) to w(k − 1)). Let IS(x) denote the indicator

function for a set S, i.e., IS(x) = 1 is x ∈ S and IS(x) = 0
otherwise. Let Pr(A) denote the probability of event A.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a discrete, time-varying system of the form

x+ = f(x, u, w, t) (1)

defined for the continuous function f : X × U × W × T → X,

state x ∈ X ⊆ R
n, input u ∈ U ⊆ R

m, and disturbance w ∈
W ⊆ R

p, at the discrete time index t ∈ T . The successor state

at t+ 1 is denoted by x+. The system is subject to time-varying

constraints (Z(t))t∈T , such that at time t ∈ T , (x, u) ∈ Z(t) ⊆
X × U .

We consider a nominal MPC problem with a horizon

N ∈ I≥1, stage cost �(·, t) : X × U → R, terminal constraints

Xf (t) ⊆ X, and terminal cost Vf (·, t) : Xf (t) → R for all

t ∈ T . The nominal system is described by

x+ = f(x, u, 0, t). (2)

For the current state x ∈ X and input sequence u :=
(u(t), u(t+ 1), . . . , u(t+N − 1)) ∈ U

N at time t, the func-

tion φ̂(k;x,u, t) ∈ X denotes the open-loop state solution to

the nominal system (2) at time k ∈ I[t,t+N ]. We define the set

of admissible inputs (4), admissible states (5), and objective

function (6) by

ZN (t) := {(x,u) | (x(k), u(k)) ∈ Z(k)

∀ k ∈ I[t,t+N−1]

x(t+N) ∈ Xf (t+N)} (3)

UN (x, t) := {u | (x,u) ∈ ZN (t)} (4)

XN (t) := {x ∈ X(t) | UN (x, t) 	= ∅} (5)

VN (x,u, t) :=
t+N−1
∑

k=t

�(x(k), u(k), k)

+ Vf (x(t+N), t+N) (6)

in which x(k) := φ̂(k;x,u, t).
The optimal control problem for x ∈ XN (t) at time t is

defined as

V 0
N (x, t) := min

u∈UN (x,t)
VN (x,u, t) (7)

and the optimal input trajectory is defined as u0(x, t). The MPC

control law κN (x, t) := u0(t;x, t) is defined as the first input in

u
0(x, t).1 For the controlled system, the state evolves according

to

x+ = fc(x,w, t) := f(x, κN (x, t), w, t). (8)

Note that, even if f(·) is continuous, fc(·) may be discon-

tinuous in x since κN (·) may be discontinuous. We define the

1If there are multiple solutions to the optimization problem, we assume that
some selection rule is applied, such that κN (·) is a single-valued mapping.
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solution to (8) at time k ≥ t given the initial condition x at

time t and the disturbance sequence wk := (wt, . . . , wk−1) as

φ(k;x,wk, t) ∈ X.

We now introduce a probabilistic description of the dis-

turbance w. We assume that the random variables wt for all

t ∈ T are independent and identically distributed (i.i.d.) with

the probability measure μ : B(W ) → [0, 1] in which B(W )
denotes the Borel field of the set W . For the sequence of random

variables wk and a measurable function g : W
k−t → R, we

define probability that g(wk) ∈ S for a measurable set S with

the following Lebesgue integral.

Pr (g(wk) ∈ S)

:=

∫

W k−t

IS (g ((ωt, . . . , ωk−1))) dμ(ωt) · · · dμ(ωk−1)

in which t ∈ T and k ∈ I≥t. For a sequence of random vari-

ables wk and a measurable function g : W
k−t → R, we define

expected value with the following Lebesgue integral

E [g(wk)] :=

∫

W k−t

g ((ωt, . . . , ωk−1)) dμ(ωt) · · · dμ(ωk−1)

in which t ∈ T and k ∈ I≥t. Furthermore, for a measurable

function g : X → R and x(k) := φ(k;x,wk, t) we define con-

ditional expected value as

E|x(k−1) [g(x(k))] = E|x [g(fc(x,w, k − 1))]

=

∫

W

g(fc(x, ω, k − 1))dμ(ω).

Remark 1: To ensure that stochastic properties of interest

(e.g., probability and expected value) are well defined for the

closed-loop stochastic system, we require that φ(·) is a measur-

able function. For discontinuous control laws, and therefore dis-

continuous fc(·), measurability is not guaranteed. Fortunately,

optimization-based control laws, under suitable regularity con-

ditions, are Borel measurable functions and thereby guarantee

measurability of φ(·) [12, Proposition 4, Remark 3]. Thus, we

implicitly assume for the rest of this article that all stochastic

properties are indeed well defined.

We define positive invariance and robust positive invariance

for the time-varying system.

Definition 1 (Positive invariance): The sequence (X (t))t∈T

is positive invariant for the nominal system x+ = fc(x, 0, t), if

x(t) ∈ X (t) implies x+ ∈ X (t+ 1) for all t ∈ T .

Definition 2 (Robust positive invariance): The sequence

(X (t))t∈T is robustly positive invariant for the perturbed sys-

tem x+ = fc(x,w, t); w ∈ W , if x(t) ∈ X (t) implies x+ ∈
X (t+ 1) for all w ∈ W and t ∈ T .

We consider the following assumption for the nominal system.

Assumption 1 (Nominal system properties): The function

fc(·) is locally bounded.2 The sequence (XN (t))t∈T is positive

invariant for x+ = fc(x, 0, t). There exists a Lyapunov function

2A function f : X → Y is locally bounded if, for every x0 ∈ X , there exists
a neighborhood N of x0, such that f(N ) is bounded, i.e., for some M > 0, we
have |f(x)| ≤ M for all x ∈ N .

V (·, t) : XN (t) → R≥0 and functions³1(·), ³2(·), ³3(·) ∈ K∞

that satisfy

³1(|x| ≤ V (x, t) ≤ ³2(|x|) (9)

V (fc(x, 0, t), t+ 1) ≤ V (x, t)− ³3(|x|) (10)

for all x ∈ XN (t) and t ∈ T , i.e., the origin is asymptotically

stable on the sets (XN (t))t∈T for the nominal system.

Assumption 1 is satisfied for tracking MPC and economic

MPC with suitable dissipativity assumptions [7], [29, Ch. 2.8].

In fact, with properly constructed terminal conditions, the op-

timal value of the MPC problem satisfies Assumption 1 with

V (x, t) := V 0
N (x, t). The assumption of nominal asymptotic

stability is minimal and achieved by any acceptable control

algorithm.

III. LARGE AND INFREQUENT DISTURBANCES

A. Characterization

In this section, we characterize the class of large and infre-

quent disturbances addressed in the subsequent analysis. We

introduce this class of disturbances by discussing them in con-

trast to the class of small and persistent disturbances addressed

by the deterministic definition of inherent robustness, i.e., robust

asymptotic stability.

Definition 3 (Robust asymptotic stability): Suppose that the

sequence (XN (t))t∈T is robustly positive invariant for the sys-

tem x+ = fc(x,w, t); w ∈ W in which ε0 := supk≥t |w(k)|.
The origin of the system x+ = fc(x,w, t); w ∈ W is robustly

asymptotically stable if there exists δ0 > 0, ´(·) ∈ KL, and

γ(·) ∈ K, such that

|φ(k;x,wk, t)| ≤ ´(|x|, k − t) + γ(ε0) (11)

for all ε0 ≤ δ0, x ∈ XN (t), t ∈ T , and k ∈ I≥t.

Note that ε0 is defined as the maximum size (Euclidean norm)

of all disturbances in the trajectory. Thus, robust asymptotic

stability guarantees that there exists a δ0 > 0, such that for

disturbances of sufficiently small size (ε0 ≤ δ0), the closed-loop

system is ISS, i.e., the bound in (11) holds. Nominal MPC

is robust in this deterministic context for sufficiently small

disturbances [1].

We characterize the set of disturbances addressed by this

definition as W0 with |W0| := supw∈W0
|w| ≤ δ0 in which we

have chosen the scalar δ0 from the deterministic definition of

inherent robustness. Therefore, (11) holds for any realization

of wk, such that wk ∈ W0 for all k ∈ I≥t. This deterministic

definition is a strong form of robustness in that any probability

distribution on the set W0 is permitted.

In this article, we are interested in the following question. If

the disturbance w is not small, i.e., w /∈ W0, what happens to

the robustness of the nominal MPC controller? To address this

question, we introduce a set of large disturbances and assign a

probability to this set. Let W1 be, such that infw∈W1
|w| is strictly

great than zero, i.e., we have bounded the large disturbances

“away from zero.” We denote the probability that the disturbance

takes a value in this set as ε := Pr(w ∈ W1). Furthermore, we

can define W1, such that the intersection of W0 and W1 is empty.
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Fig. 1. Three probability distributions for the disturbance w depict-
ing the small, frequent disturbances (W0) and large, infrequent distur-
bances (W1).

The disturbances in W0 are small. The disturbances in W1 are

large. In particular, we note that W1 includes discrete-valued

disturbances that may not be included in W0.

For example, consider the truncated normal distribution in

the top plot of Fig. 1. Although the probability distribution of

w admits large disturbances that exceed δ0, these disturbances

are infrequent in that Pr(w ∈ W1) = ε is small. This description

also applies to many other probability distributions as shown in

the middle and bottom plots of Fig. 1.

We restrict the maximum size of W1 through assumptions

introduced later in this section, e.g., the disturbance cannot be

so large as to render the MPC optimization problem infeasible.

However, neither the nominal MPC controller nor sometimes

any controller will have deterministic robustness to the large

disturbances included in W1. But the question remains: Is there

any form of inherent robustness for the nominal MPC controller

outside of what is already established for the set W0?

We show that the answer to this question is yes, provided

that the large disturbances are also infrequent. This assumption

is reasonable as it models many kinds of large disturbances

such as faults, missing measurements, communication failures,

breakdowns, large delays, and large price/demand spikes in

economic applications. If these kinds of large faults are suffi-

ciently frequent in nature, indeed no controller is expected to be

robust in any sense against them. To model the infrequent nature

of these disturbances we introduce the small parameter δ > 0
and require that ε = Pr(w ∈ W1) ≤ δ. So these disturbances

are large in magnitude but infrequent in terms of sampling

them as random variables. Furthermore, if W0 + W1 = ∅, we

also have Pr(w ∈ W0) = 1− ε, and we recover the usual small

disturbance case in the limit ε → 0.

Note that we have assumed that the random variables are i.i.d.

and therefore the value of ε is not time-varying. We can, how-

ever, extend the subsequent results to time-varying probability

distributions by introducing a time-varying ε, i.e., ε(k).
For clarity in this introductory article, we shall restrict at-

tention to the case W0 = {0}, e.g., the middle and bottom

plots of Fig. 1, so that we have only two possibilities: The

nominal behavior occurs with probability 1− ε and the large

disturbance occurs with probability ε. We then analyze what

kind of robustness, if any, can we expect from the nominal MPC

controller in this situation.

B. Assumptions

As noted in the previous subsection, we consider the case of

only large disturbances and nominal behavior.

Assumption 2 (Only large disturbances): The disturbance set

satisfies W = W0 , W1 and we restrict W0 = {0}.

Although we classify these disturbances as large, we do not

allow disturbances of arbitrary size. We restrict the size of

W1 through the following assumptions. We begin by requiring

that the MPC problem remains well defined for the closed-loop

trajectory.

Assumption 3 (Recursive feasibility): The sequence

(XN (t))t∈T is robustly positive invariant for the system

x+ = fc(x,w, t); w ∈ W , i.e., the optimal control problem is

recursively feasible.

Note that assuming recursive feasibility for MPC is sometimes

inappropriate. MPC requires solving an optimization problem in

real time, potentially subject to state constraints, and therefore

a feasible solution is not always guaranteed. In Allan et al.

[1], recursive feasibility is proven for the structure of the MPC

formulation and by constraining the disturbance size to be suf-

ficiently small. For large disturbances, we lose this capability

and must be careful about enforcing constraints in the optimiza-

tion problem. For a problem with state and input constraints,

there exists a sufficiently large disturbance that creates an

infeasible optimization problem. In general, if we want to con-

sider large disturbances, the control algorithm must be recur-

sively feasible by design.

For production scheduling applications of MPC,

Assumption 3 is often reasonable. The input and state

constraints only exist to enforce realistic decisions, e.g., no

negative inventory. Thus, disturbances cannot force violations

of these constraints. Furthermore, sufficiently long horizons and

reasonable terminal conditions in scheduling problems ensure

that any current state of the plant can be driven to the terminal

set in N moves.

MPC implementations without state or terminal constraints,

i.e., X(t) = Xf (t) = R
n, easily satisfy Assumption 3. These

MPC formulations have seen significant theoretical progress

in recent years and, with suitable dissipativity assumptions

and terminal costs, can ensure nominal (practical) asymp-

totic stability [11], [23], [40]. Therefore, there already exists

a significant class of MPC implementations that satisfy both

Assumptions 1 and 3.

In addition to feasibility, we also require a bound on the

Lyapunov function increase due to a disturbance.

Assumption 4 (Maximum Lyapunov function increase): For

the perturbed system x+ = fc(x,w, t), there exist finite b1, b2 ∈
R≥0, such that the functions V (·) and ³3(·) in Assumption 1

satisfy

V (fc(x,w, t), t+ 1) ≤ V (x, t) + b1³3(|x|) + b2 (12)

for all x ∈ XN (t), w ∈ W1, and t ∈ T .
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Note that this bound is significantly weaker than the typical

ISS-Lyapunov function bound for a disturbance. The Lyapunov

function value may increase based on the size of |x| and some

finite constants. In fact, the increase between t and t+ 1 may

even grow as |x| increases for an equivalent disturbance. This

growth, however, is limited by the size of the nominal Lyapunov

function decrease, i.e.,³3(|x|). As we show in subsequent exam-

ples, there exists a class of systems and disturbances that satisfy

Assumptions 1–4 and are not robust in the usual deterministic

context.

Although Assumption 4 is difficult to verify for a time-varying

Lyapunov function, this assumption provides an important limit

on the class of disturbances admitted by this article. For example,

Assumption 4 excludes systems such as x+ = x tanh(x) + w
in which the rate of nominal convergence decreases as the state

of the system grows. The disturbance, however, influences the

state at the same rate (additive) as the state grows.

If the composite set XN :=
⋃

t∈T
XN (t) is bounded, As-

sumption 4 is satisfied for b1 = 0 and some large, finite b2 > 0.

However, a bounded XN that satisfies Assumption 3 may not

exist for certain systems and disturbances. We note an important

case in which Assumption 4 is satisfied without assuming that

XN is bounded.

Lemma 1: Let Assumptions 1 and 3 hold with a, c1, c2, c3 >
0, such that ³1(s) = c1 s

a, ³2(s) = c2 s
a, and ³3(s) = c3 s

a,

i.e., the nominal system is exponentially stable. If there exists

e1, e2 ≥ 0, such that

|f(x, u, w, t)− f(x, u, 0, t)| ≤ e1|x|+ e2 (13)

for all (x, u) ∈ Z(t), t ∈ T , and w ∈ W1, then Assumption 4

holds.

Proof: Let the x ∈ XN (t) be the state andw ∈ W1 be the dis-

turbance at time t. We have from (9) the boundV (fc(x,w, t), t+
1) ≤ c2|fc(x,w, t)|

a. We apply the triangle inequality and (13).

|fc(x,w, t)|
a ≤ (|fc(x, 0, t)|

+ |fc(x,w, t)− fc(x, 0, t)|)
a

≤ (|fc(x, 0, t)|+ e1|x|+ e2)
a

≤ 2a|fc(x, 0, t)|
a + (4e1|x|)

a + (4e2)
a. (14)

Using both (9) and (10) gives

|fc(x, 0, t)|
a ≤

1

c1
V (fc(x, 0, t), t+ 1)

≤
1

c1
V (x, t)−

c3
c1

|x|a ≤
c2 − c3

c1
|x|a. (15)

We substitute (15) into (14) to get

V (fc(x,w, t), t+ 1)

≤ c22
a c2 − c3

c1
|x|a + c2(4e1)

a|x|a + c2(4e2)
a.

We substitute |x|a ≤ ³3(|x|)/c1 into this equation to give

V (fc(x,w, t), t+ 1) ≤ b1³3(|x|) + b2

in which b1 := (c2/c1)(2
a(c2 − c3)/c1 + (4e1)

a) and b2 :=
c2(4e2)

a. Thus, Assumption 4 is satisfied.

Remark 2: MPC formulations with suitable terminal condi-

tions and quadratic costs produce exponentially stable nominal

systems [29, Ch. 2.4]. Unfortunately, constructing a bounded

terminal set and cost that satisfy Assumption 3 is not neces-

sarily possible with input constraints. Ideally, we want a global

quadratic control Lyapunov function for the terminal cost, but

constructing this function is only obvious for stable linear sys-

tems with input constraints [29, Ch. 2.5.3].

IV. ROBUSTNESS TO LARGE AND INFREQUENT

DISTURBANCES

A. Motivating Example

We begin this section with a motivating example. Con-

sider the scalar system x+ = x+ u+ 2w with x ∈ R and

u ∈ [−1, 1]. We define the state cost �(x, u) = x2 + u2, terminal

cost Vf (x) = x2, and omit the terminal constraint, i.e., Xf = R.

For an MPC problem with a horizon of N = 2, the optimal

control law is κN (x) := −sat(3x/5) [29, p. 104]. To streamline

notation, we denote x(k) := φ(k;x(0),wk, 0).
Ifw is assumed to be a continuous random variable with |w| <

0.5, then the closed-loop system is ISS and therefore robust in

the usual deterministic sense. However, if w ∈ W := {0, 1},

i.e., W1 := {1} is a large (discrete-valued) disturbance, then

there exists a worst-case scenario in which w = 1 at every time

and the system moves further away from x = 0 at each step.

The system is not robust to this discrete-valued disturbance in

the usual deterministic sense.

However, we can establish that this system satisfies Assump-

tions 1–4 for w ∈ W := {0, 1}. Choose the Lyapunov function

V (x) = x2. We define

³3(|x|) :=

{

21
25 |x|

2 ; |x| < 5
3

2|x| − 1 ; |x| ≥ 5
3

to satisfy Assumption 1. If w = 1

V (x+) ≤

{

( 25 |x|+ 2)2 ; |x| < 5
3

(|x|+ 1)2 ; |x| ≥ 5
3

and we can bound this piecewise function by V (x+) ≤ x2 +
³3(|x|) +

64
9 . Therefore, Assumption 4 is satisfied with b1 = 1,

b2 = 64
9 . Assumption 3 is satisfied because κN (x) is defined for

all x ∈ R.

We now consider that this large (discrete-valued) disturbance

is infrequent in that Pr(w = 1) = ε for some ε ∈ (0, 1). We then

conduct a simulation study of this system starting from x(0) =
30 for ε = 0.4. The results for 50 trials are plotted in Fig. 2.

Note that each individual trial does not have a deterministic

upper bound for |x(k)| as k → ∞. Given a sufficient number of

time steps, the probability that |x(k)| violates any finite bound

is nonzero.

Instead, we propose a stochastic metric of robustness that

captures the infrequent nature of the disturbance better than

a deterministic metric. We define the p-confidence trajectory

cp(|x(k)|) at each k as the minimum bound for |x(k)| that holds

for at least p% of trials for the system. We then evaluate the

95%-confidence trajectory of this closed-loop system for 1000
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Fig. 2. Trajectories for 50 trials of the system x+ = x+ κN (x) + 2w
in which Pr(w = 1) = 0.4. The 95% confidence bound (c95%(|x(k)|)) of
the closed-loop trajectory for 1000 trials is plotted in black.

Fig. 3. 95% confidence bound of the closed-loop trajectory for 1000
trials of the system x+ = x+ κN (x) + 2w with Pr(w = 1) = ε for mul-
tiple values of ε.

Fig. 4. Plot of γ̂95%(ε). We evaluate γ̂95%(ε) as the maximum value
of c95%(|x(k)|) for k ∈ [800, 1000].

trials and plot the resulting trajectory in Fig. 2. We observe that

this 95%-confidence trajectory converges to a region around

x = 0 as k → ∞ and appears to admit a finite upper bound

for all k.

In Fig. 3, we consider multiple values of ε for which Pr(w =
1) = ε. For ε < 0.5, all 95%-confidence trajectories exhibit

similar behavior to ε = 0.4 and converge to some region around

x = 0 as k → ∞. For ε < 0.5, we denote the maximum value

of c95%(|x(k)|) for the last 200 time points as γ̂95%(ε) and plot

this bound in Fig. 4. Note that γ̂95%(ε) increases with increasing

ε and approaches zero as ε → 0.

All of these observations suggest that an ISS-type bound for

the 95%-confidence trajectory is a reasonable characterization

of this systems behavior. Thus, we postulate that there exists

´95%(·) ∈ KL and γ95%(·) ∈ K, such that

c95%(|x(k)|) ≤ ´95%(|x(0)|, k) + γ95%(ε) (16)

for all x(0) ∈ R, k ∈ I≥0, and ε < 0.5. Equivalently, we can

write (16) as

Pr (|x(k)| ≤ ´95%(|x(0)|, k) + γ95%(ε)) ≥ 0.95 (17)

i.e., for each k ∈ I≥0 the closed-loop system satisfies this ISS-

type bound with a probability of 95%.

This ISS-type bound, however, is not expected to hold for

disturbances that occur with sufficient frequency. We note that

for ε = 0.52, the 95%-confidence trajectories in Fig. 3 diverges

as k → ∞ and therefore does not admit any ISS-type bound.

Thus, we presume that there exists some δ < 0.5, such that if

ε > δ, the closed-loop system does not admit a stochastic ISS-

type bound.

B. Robust Asymptotic Stability in Probability

The robustness of MPC is typically characterized through ISS

in which the “input” to the closed-loop system is the disturbance.

These robustness results are based on the size of disturbance and

apply only for disturbances of sufficiently small size [1], [13].

Thus, a closed-loop system, and by extension the control law,

is deemed robustly asymptotically stable if there exists some

nonzero margin δ0 > 0, such that the closed-loop system is ISS

for all disturbances that satisfying |w| ≤ δ0 [1].

For large, infrequent disturbances, we instead consider the

probability of the disturbance occurring, not the vector norm of

the disturbance, as the description of the disturbance “size” and

assume that the set W1 is fixed. The stochastic (infrequent) na-

ture of these disturbances implies that a stochastic description of

robustness is appropriate. Specifically, we leverage the concept

of SISS and modify this definition for large, infrequent distur-

bances. We define RASiP for large, infrequent disturbances as

follows.

Definition 4 (RASiP for large, infrequent disturbances): Sup-

pose that the sequence (XN (t))t∈T is robustly positive invari-

ant for the system x+ = fc(x,w, t); w ∈ W and we denote

ε = Pr(w ∈ W1). The origin of the closed-loop system x+ =
fc(x,w, t); w ∈ W is RASiP if there exists δ ∈ (0, 1] and for

each p ∈ [0, 1) there exists ´p(·) ∈ KL and γp(·) ∈ K, such that

the closed-loop system satisfies

Pr (|φ(k;x,wk, t)| ≤ ´p(|x|, k − t) + γp(ε)) ≥ p (18)

for all ε ∈ [0, δ], x ∈ XN (t), t ∈ T , and k ∈ I≥t.

RASiP implies that for sufficiently infrequent disturbances,

i.e., ε ≤ δ, we can construct the bound in (18) for any confidence

level p ∈ (0, 1). The bound inside the probability statement

in (18), analogous to the standard ISS bound, contains two

components. The first is a function ´p(·) ∈ KL that captures

the effect of the initial condition and the decay of this effect as

k → ∞. The second is a function γp(·) ∈ K that captures the

effect of the disturbance, through the value of ε, that persists for

all k ∈ I≥t.

Note that the definition of RASiP for large, infrequent dis-

turbances captures the behavior observed in the motivating

example. Indeed, (18) with p = 0.95 is identical to the ISS-type

bound proposed in (17). As observed in the motivating example,

however, we do not expect the closed-loop system to satisfy (18)
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for large ε, i.e., sufficiently frequent disturbances. Analogous to

the definition of robust asymptotic stability, we only require

that there exists some nonzero margin δ > 0, such that the

closed-loop system satisfies (18) for ε ≤ δ.

The physical significance of RASiP is best illustrated with the

motivating example. Consider the behavior in Fig. 3. For ε < 0.5
the closed-loop system can, on average, recover from the distur-

bance before another disturbance occurs and at each k ∈ I≥0,

the closed-loop trajectory satisfies the ISS-type bound with

95% probability. For ε = 0.52, however, the 95%-confidence

trajectory diverges as k → ∞. Thus, we cannot define a finite

bound, with any confidence level, as k → ∞. For the motivating

example, ε must exceed 0.5 for this behavior to occur. However,

if there exists no margin of robustness, i.e., the closed-loop

system is not RASiP, then the confidence trajectory diverges for

a large disturbance that occurs with any nonzero probability. By

contrast, a closed-loop system that is RASiP can recover from

large disturbances provided the probability of that disturbance

occurring is small.

Remark 3: As noted in Kozin [18], there are nuanced dif-

ferences in stochastic stability definitions that have significant

implications. In particular, including the condition ∀ k ∈ I≥t

inside the probability statement in (18) is a stronger property

than placing it outside. Since the effect of the random variable

on the process does not vanish asx → 0, we can establish RASiP

only when ∀ k ∈ I≥t is outside the probability statement.

C. SISS-Lyapunov Functions and Main Results

To establish RASiP for large, infrequent disturbances, we

define an SISS-Lyapunov function.

Definition 5 (SISS-Lyapunov Function): The function

V (·, t) : XN (t) → R≥0 is an SISS-Lyapunov function on the

robust positive invariant sets (XN (t))t∈T for the system x+ =
fc(x,w, t); w ∈ W in which ε = Pr(w ∈ W1) if there exists

δ ∈ (0, 1], ³1(·), ³2(·), ³4(·) ∈ K∞, Ã(·) ∈ K, such that

³1(|x|) ≤ V (x, t) ≤ ³2(|x|) (19)

E|x [V (fc(x,w, t), t+ 1)] ≤ V (x, t)− ³4(|x|) + Ã(ε) (20)

for all ε ∈ [0, δ], x ∈ XN (t) and t ∈ T .

In comparison to a typical ISS-Lyapunov function, we note

two differences. First, the Lyapunov function evolution inequal-

ity is no longer a deterministic bound and considers the expected

value of the subsequent Lyapunov function. This bound on

conditional expectation is typical of other versions of SISS-

Lyapunov functions in the literature [8], [19], [33], [35]. Sec-

ond, the input to the K function Ã(·) is the probability of the

disturbance occurring, not the size of the disturbance. This type

of input is distinct from other SISS-Lyapunov functions in the

literature. Subsequently, we use this SISS-Lyapunov function to

establish RASiP for a perturbed closed-loop system. To establish

this result, however, we also require a stochastic Lyapunov

function and the following proposition.

Definition 6 (Stochastic Lyapunov Function): The function

V (·, t) : XN (t) → R≥0 is said to be a stochastic Lyapunov func-

tion on the robustly positive invariant sets (XN (t))t∈T for the

system x+ = fc(x,w, t); w ∈ W if there exists ³1(·), ³2(·) ∈
K∞ and ρ(·) ∈ PD satisfying

³1(|x|) ≤ V (x, t) ≤ ³2(|x|)

E|x [V (fc(x,w, t), t+ 1)] ≤ V (x, t)− ρ(|x|)

for all x ∈ XN (t) and t ∈ T .

Proposition 2: If the system x+ = fc(x,w, t); w ∈ W ad-

mits a stochastic Lyapunov function on the robustly positive

invariant sets (XN (t))t∈T , then the origin is ASiP, i.e., for each

p ∈ [0, 1), there exists ´p(·) ∈ KL, such that

Pr (|φ(k;x,wk, t)| ≤ ´p(|x|, k − t)) ≥ p

for all x ∈ XN (t), t ∈ T , and k ∈ I≥t.

There are many versions of Proposition 2 and associated

proofs throughout stochastic stability literature since the first

example in Kushner [20]. For a proof of this specific version of

this proposition, see [25]. Using Proposition 2, we establish the

following result.

Proposition 3: If a system x+ = fc(x,w, t); w ∈ W admits

an SISS-Lyapunov function on the robustly positive invariant

sets (XN (t))t∈T , then the origin is RASiP.

Proof: We use an approach analogous to Theorem 4.2

in Krstic and Deng [19]. Choose t ∈ T , x ∈ XN (t) and let

x(k) := φ(k;x,wk, t) for all k ∈ I≥t. Define ³5 := ³4 ◦ ³
−1
2 .

We note that³4(s) ≤ ³2(s) because E[V (·)] ≥ 0 and (20) must

hold for ε = 0. Therefore, 0 ≤ V (x, t)− ³4(|x|) ≤ ³2(|x|)−
³4(|x|). Since ³4(s) ≤ ³2(s), we also know that ³5(s) ≤ s
for s ≥ 0 because ³4(³

−1
2 (s)) ≤ ³2(³

−1
2 (s)) = s. Let Ä ∈ I≥t

denote the (stopping) time at which the trajectory first enters

the set defined by V (x(k), k) ≤ γ̃(ε) := 2³−1
5 (Ã(ε)), i.e., Ä =

inf{k ≥ t | V (x(k), k) ≤ γ̃(ε)}.

For k ∈ I[t,τ), we have that V (x(k), k) ≥ 2³−1
5 (Ã(ε)) and

E|x(k)[V (x(k + 1), k + 1)]

≤ V (x(k), k)− ³4(³
−1
2 (V (x(k), k))) + Ã(ε)

≤ V (x(k), k)− ³5(V (x(k), k)) + ³5(V (x(k), k)/2)

= V (x(k), k)− ρ(V (x(k), k)) (21)

in which ρ(s) := ³5(s)− ³5(s/2) ∈ PD. Thus, for k ∈ I[t,τ),

V (·) is a stochastic Lyapunov function for the closed-loop sys-

tem. By Proposition 2 and (21), the system is ASiP for k ∈ I[t,τ),

i.e., for each p ∈ [0, 1) there exists ´p(·) ∈ KL, such that

Pr (|x(k)| ≤ ´p(|x|, k − t)) ≥ p (22)

for all k ∈ I[t,τ).

For k ∈ I≥τ , we proceed by induction. We assume that

E[V (x(k), k)] ≤ γ̃(ε) for some k ∈ I≥τ . However, the deter-

ministic value of V (x(k), k) is unknown. If V (x(k), k) > γ̃(ε),
we have

E|x(k)[V (x(k + 1), k + 1)] ≤ V (x(k), k)

from (21) and the fact that ρ(·) ≥ 0. Therefore

E
[

E|x(k)[V (x(k + 1), k + 1)]
]

≤ E [V (x(k), k)] ≤ γ̃(ε).
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If γ̃(ε)/2 ≤ V (x(k), k) ≤ γ̃(ε), we have

E|x(k)[V (x(k + 1), k + 1)]

≤ V (x(k), k)− ³5(V (x(k), k)) + Ã(ε)

≤ V (x(k), k)− ³5(γ̃(ε)/2) + Ã(ε)

= V (x(k), k) ≤ γ̃(ε).

If V (x(k), k) ≤ γ̃(ε)/2, we have

E|x(k)[V (x(k + 1), k + 1)]

≤ V (x(k), k)− ³5(V (x(k), k)) + Ã(ε)

≤ γ̃(ε)/2 + Ã(ε)

≤ γ̃(ε)/2 + ³5(γ̃(ε)/2) ≤ γ̃(ε)

in which the last inequality is because ³5(s) ≤ s. Therefore, if

V (x(k), k) ≤ γ̃(ε), we have

E
[

E|x(k)[V (x(k + 1), k + 1)]
]

≤ E [γ̃(ε)] ≤ γ̃(ε).

Thus, we have that E[V (x(k), k)] ≤ γ̃(ε) implies E[V (x(k +
1), k + 1)] ≤ γ̃(ε). By definition, E[V (x(Ä), Ä)] ≤ E[γ̃(ε)]
≤ γ̃(ε). So by induction, we have

E [V (x(k), k)] ≤ γ̃(ε)

for all k ∈ I≥τ . By applying Markov’s inequality for each

p ∈ [0, 1) we have

Pr

(

V (x(k), k) ≤
γ̃(ε)

1− p

)

≥ p.

Define γp(ε) := ³−1
1 (γ̃(ε)/(1− p)) and since |x(k)| ≤

³−1
1 (V (x(k), k)) we have

Pr (|x(k)| ≤ γp(ε))

≥ Pr

(

³−1
1 (V (x(k), k)) ≤ ³−1

1

(

γ̃(ε)

1− p

))

≥ p (23)

for all k ∈ I≥τ . Finally, we combine (22) and (23) as follows:

Pr (|x(k)| ≤ max{´p(|x|, k − t), γp(ε)}) ≥ p

which holds for all k ∈ I≥t.

We can now establish the main result of this work.

Theorem 4 (Robustness to large, infrequent disturbances):

Let Assumptions 1–4 hold. Then the origin is RASiP on the sets

(XN (t))t∈T for the system x+ = fc(x,w, t); w ∈ W .

Proof: We consider the evolution of the system with and

without a disturbance. Choose x ∈ XN (t) at time t and denote

x+ = fc(x,w, t). If there is no disturbance, then the standard

Lyapunov function decrease applies from (10). If w ∈ W1, then

we apply the Lyapunov function bound from (12). We combine

these two cases using the indicator function for W1 so that

E[IW1
(w)] = Pr(w ∈ W1) = ε and

V (x+, t+ 1) ≤ V (x, t)− (1− IW1
(w))³3(|x|)

+ IW1
(w) (b1³3(|x|) + b2) .

Taking the expected value and combining terms give

E|x[V (x+, t+ 1)] ≤ V (x, t)− (1− ε− b1ε)³3(|x|) + εb2.

We choose δ ∈ (0, 1], such that δ < 1/(1 + b1). Therefore

E|x[V (x+, t+ 1)] ≤ V (x, t)− ³4 (|x|) + Ã(ε) (24)

for all ε ∈ [0, δ] in which ³4(s) := (1− (1 + b1)δ)³3(s) and

Ã(ε) := b2ε. Note that³4(·), Ã(·) ∈ K∞. Thus, V (·) is an SISS-

Lyapunov function and by Proposition 3 the proof is complete.

V. TIME-VARYING ECONOMIC MPC

A. Robust Performance

In economic MPC, the stage cost is not necessarily a positive

definite tracking objective and asymptotic stability is not guar-

anteed by the problem formulation. In some economic MPC

applications, stability is secondary to closed-loop economic

performance. Thus, for nominal economic MPC, an important

result is the average asymptotic performance bound presented

by Angeli et al. [2, Th. 1]. This result ensures that at long time

the performance, defined as the sum of stage costs, of economic

MPC is no worse than the reference trajectory used to construct

the terminal region. We consider the following assumptions for

the economic MPC problem similar to Risbeck and Rawlings

[30].

Assumption 5: The functions f(·), �(·), and Vf (·) are con-

tinuous. The reference trajectory (xr,ur) satisfies xr(t+ 1) =
f(xr(t), ur(t), 0, t).

Assumption 6: For each t ∈ T , the set Z(t) is closed and

(xr(t), ur(t)) ∈ Z(t). The set U is compact.

We define the shifted stage cost as �̄(x, u, t) := �(x, u, t)−
�(xr(t), ur(t), t). We also define

V̄ 0
N (x, t) := V 0

N (x, t)−
N+t−1
∑

k=t

�(xr(k), ur(k), k).

Assumption 7: For each t ∈ T and x ∈ Xf (t), the set

κf (x, t) := {u ∈ U(t) | x+ := f(x, u, 0, t) ∈ Xf (t+ 1),

Vf (x
+, t+ 1) ≤ Vf (x, t)− �̄(x, u, t)}

is nonempty and Vf (xr(t), t) = 0.

Assumption 8: The functions �̄(x, u, t) and Vf (x, t) are uni-

formly bounded from below for (x, u) ∈ Z(t) and x ∈ Xf (t),
respectively, for all t ∈ T .

Risbeck and Rawlings [30] establish the following result.

Theorem 5 (Asymptotic performance of economic MPC):

If Assumptions 5–8 hold, then the nominal system x+ =
fc(x, 0, t) satisfies

lim sup
T→∞

1

T

t+T−1
∑

k=t

�̄(x(k), u(k), k) ≤ 0

in which x(k) = φ(k;x(t),0, t) and u(k) = κN (x(k), k), for

all x(t) ∈ XN (t) and t ∈ T .

Proof: See Risbeck and Rawlings [30, Appendix A]

We seek an analogous performance result for the perturbed

system. We require the following assumption.

Assumption 9: For the perturbed system x+ = fc(x,w, t),
there exists finite b1, b2 ∈ R≥0, such that

V̄ 0
N (fc(x,w, t), t+ 1) ≤ V̄ 0

N (x, t) + b1|�̄(x, κN (x, t), t)|+ b2
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for all x ∈ XN (t), w ∈ W1, and t ∈ T .

Note the similarities to Assumption 4. The cost relative to

the reference trajectory may increase based on the stage cost at

the current state and some arbitrary constants. We observe an

analogous requirement: The cost increase due to a disturbance

cannot grow faster than the cost decrease without a disturbance.

Furthermore, if �̄(x, u, t) ≥ ³3(|x− xr(t)|), e.g., is a tracking

cost, Assumption 4 forV (x, t) := V̄ 0
N (x, t) implies Assumption

9. With this assumption we establish the following result.

Theorem 6 (Robust asymptotic performance of economic

MPC): Let Assumptions 2, 3, and 5–9 hold. Then for the closed-

loop system x+ = fc(x,w, t); w ∈ W in which ε = Pr(w ∈
W1) there exists δ ∈ (0, 1] and γ̄(·) ∈ K, such that

lim sup
T→∞

E|x

[

1

T

t+T−1
∑

k=t

�̄(x(k), u(k), k)

]

≤ γ̄(ε) (25)

in which x(k) = φ(k;x,wk, t) and u(k) = κN (x(k), k), for all

ε ∈ [0, δ], x ∈ XN (t), and t ∈ T .

Proof: Choose x ∈ XN (t), t ∈ T and denote x+ =
fc(x,w, t). If there is no disturbance (w = 0), then the

standard cost decrease applies (See Risbeck and Rawlings [30,

Appendix A]), i.e.,

V̄ 0
N (x+, t+ 1) ≤ V̄ 0

N (x, t)− �̄(x, κN (x, t), t).

We combine this bound with Assumption 9 using the indicator

function of W1 (same as Theorem 4), giving

V̄ 0
N (x+, t+ 1) ≤ V̄ 0

N (x, t)− (1− IW1
(w))�̄(x, κN (x, t), t)

+ IW1
(w)

(

b1|�̄(x, κN (x, t), t)|+ b2
)

.

From Assumption 8, there exists m ∈ R, such that

�(x, u, t) ≥ m for all (x, u) ∈ Z(t) and t ∈ T . Therefore,

|�̄(x, u, t)| ≤ �̄(x, u, t) + 2|m|. Taking the expected value and

combining terms gives

E|x[V̄
0
N (x+, t+ 1)]− V̄ 0

N (x, t)

≤ −(1− ε− b1ε)�̄(x, κN (x, t), t) + b3ε

in which b3 := b2 + 2b1|m|. We choose δ < 1/(1 + b1) and

note δ ∈ (0, 1], which gives

E|x[V̄
0
N (x+, t+ 1)]− V̄ 0

N (x, t)

≤ −b4�̄(x, κN (x, t), t) + b3ε (26)

with b4 := (1− (1 + b1)δ). Note that the choice of x and t was

arbitrary. and thus. (26) holds for any x ∈ XN (t) and t ∈ T .

From x(t) ∈ XN (t) and t ∈ T , we define the closed-loop

trajectory as x(k) := φ(k;x(t),wk, t) and the input u(k) :=
κN (x(k), k) for all k ∈ I≥t. By (26) and the properties of

iterated expectations [9, p. 35] we may write

E|x(t)[V̄
0
N (x(k + 1), k + 1)]− E|x(t)[V̄

0
N (x(k), k)]

≤ −b4E|x(t)[�̄(x(k), u(k), k)] + b3ε

for all k ∈ I≥t. We take the sum from t to t+ T − 1 with T ∈
I≥1, divide by T , and rearrange

E|x(t)

[

b4
T

T+t−1
∑

k=t

�̄(x(k), u(k), k)

]

≤
V̄ 0
N (x(t), t)− E|x[V̄

0
N (x(T ), T )]

T
+ b3ε.

By Assumption 8, there exists some finite M ∈ R, such that

V̄ 0
N (x(T ), T ) ≥ M and we have

E|x(t)

[

1

T

T+t−1
∑

k=t

�̄(x(k), u(k), k)

]

≤
V̄ 0
N (x(t), t)−M

b4 T
+ γ̄(ε)

with γ̄(ε) := b3
b4
ε ∈ K. If we take the lim sup of this equation

as T → ∞ the initial cost and M vanish and we have (25).

As the probability of the disturbance occurring becomes

larger, the expected average cost can become worse than the ref-

erence trajectory. Conversely, as ε → 0 we return to the nominal

guarantee for the system (in expected value). We note similarities

of the left-hand side to the results in Chatterjee and Lygeros [4]

for stochastic MPC and Bayer et al. [3] for robust economic

MPC. However, the nominal MPC algorithm presented in this

article does not require any stochastic information about the

disturbance and yet still provides a stochastic form of robustness

to these disturbances.

Remark 4: The assumptions for Theorem 6 admit systems

with integrality constraints3 on inputs, discontinuous optimal

value functions (even along the reference trajectory), and state

constraints provided they do not affect Assumption 3. We also

require no assumptions of dissipativity. As such, the conditions

for this result are mild and the performance guarantee is partic-

ularly relevant to production scheduling applications.

Satisfying Assumptions 3 and 7 simultaneously, however,

may require long horizons and modifications to the problem

formulation. In addition, verifying Assumption 9 is nontrivial.

Again, if XN is bounded, Assumption 9 holds for b1 = 0 and a

sufficiently large value of b2. However, a bounded XN that satis-

fies Assumption 3 may not exist for certain systems. Therefore,

we consider a set of conditions for which Assumption 9 holds

without a bounded XN .

Lemma 7: Let Assumptions 3, 5, 6, and 8 hold. Assume there

exists a set A ⊆ X, such that:

1) there exists e1, e2 ≥ 0 satisfying

|f(x, u, w, t)|A ≤ e1|x|A + e2 (27)

for all (x, u) ∈ Z(t), w ∈ W , and t ∈ T ;

2) there exists c1, c2, a > 0 and d1, d2 ≥ 0 satisfying

c1|x|
a
A − d1 ≤ |�̄(x, u, t)| ≤ c2|x|

a
A + d2

Vf (x, t) ≤ c2|x|
a
A + d2

3Constraints that require a variable to be an integer, e.g., u ∈ {0, 1}.
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for all (x, u) ∈ Z(t) and x ∈ Xf (t), respectively, for all

t ∈ T .

Then Assumption 9 holds.

Proof: For all x ∈ XN (t) and t ∈ T , we have from (27) that

for all k ∈ I[t,N ],

|φ(k;x,u, t)|A ≤ ek−t
1 |x|A + e2

k−t
∑

i=0

ei1 ≤ e3|x|A + e4

in which e3 := max{e1, e
N
1 } and e4 := Ne3e2. We bound the

optimal value as follows:

V̄ 0
N (x, t) ≤

t+N−1
∑

k=t

�̄(x(k), u(k), k) + Vf (x(t+N), t+N)

≤
t+N
∑

k=t

c2|x(k)|
a
A + d2

≤ Nc2(e3|x|A + e4)
a +Nd2

with x(k) := φ̂(k, x,u0(x, t), t). Choose x ∈ XN (t), w ∈ W ,

and t ∈ T . Define x+ := fc(x,w, t). We bound the optimal

value at x+ and t+ 1 as follows:

V̄ 0
N (x+, t+ 1) ≤ Nc2(e3|x

+|A + e4)
a +Nd2

≤ Nc2(e3e1|x|A + e3e2 + e4)
a +Nd2

≤ Nc2(2e3e1)
a|x|aA + d3

in which d3 := Nc2(2e3e2 + 2e4)
a +Nd2. Then, we use the

lower bound on the stage cost

V̄ 0
N (x+, t+ 1) ≤ b1|�̄(x, κN (x, t), t)|+ b1d1 + d3

with b1 := Nc2(2e3e1)
a/c1. From Assumption 8, we know that

there exists some M ∈ R satisfying M ≤ V̄ 0
N (x, t). Thus

V̄ 0
N (x+, t+ 1) ≤ V̄ 0

N (x, t) + b1|�̄(x, κN (x, t), t)|+ b2

with b2 := max{b1d1 + d3 −M, 0}.

The cost bound requirements for Lemma 7 are analogous to

the exponential cost bounds employed in Lemma 1. However,

the constants d1, d2 ≥ 0 can be used to address the cost of all

bounded modes of the state. We can use the set A to remove or

ignore modes of the state that incur bounded or zero cost from the

power-law bounds of condition 2). Thus, the power-law bounds

in condition 2) need to apply to only the unbounded modes of

the state that incur unbounded cost on the set X. If �̄(x, u, t)
and Vf (x, t) are linear or quadratic functions of the unbounded

modes of x these cost bounds hold. Thus, the bound in (27)

requires that the size of unbounded modes in the successor state

are bounded by an affine function of the unbounded modes in

the current state. In particular, the bounds in Lemma 7 apply to

linear systems with linear cost functions, which are a common

feature in closed-loop scheduling problems [32].

B. Robust Stability

If robust stability is desirable, we require the system to be

strictly dissipative. We define time-varying dissipativity with

respect to the reference trajectory xr as follows.

Definition 7 (Strict dissipativity): The time-varying system

x+ = f(x, u, 0, t) is strictly dissipative with respect to the refer-

ence trajectory xr and supply rate s(x, u, t) : X × U × T → R

if there exists a storage function λ(x, t) : X × T → R satisfying

λ(xr(t), t) = 0 and ³̃1(·) ∈ K∞, such that

λ(f(x, u, 0, t), t+ 1)− λ(x, t) ≤ s(x, u, t)− ³̃1(|x− xr(t)|)

for all (x, u) ∈ Z(t) and t ∈ T .

Assumption 10 (Strict dissipativity): The nominal system (2)

is strictly dissipative with respect to the reference trajectory xr

and the supply rate s(x, u, t) = �(x, u, t)− �(xr(t), ur(t), t).
Assumption 11 (Uniform weak controllability): There exists

³̃2(·) ∈ K∞, such that the optimal value function and storage

function satisfy V̄ 0
N (x, t) + λ(x, t) ≤ ³̃2(|x− xr(t)|) for all

x ∈ XN (t) and t ∈ T .

These assumptions are typically required, in some form, to en-

sure nominal stability of economic MPC. Note that the optimiza-

tion problem we are solving in economic MPC is stated in (7)

and does not require any knowledge of the storage function λ(·).
Next, we redefine the system of interest in terms of deviation

from the reference trajectory. We define the deviation variables

y(t) := x(t)− xr(t), sets YN (t) := XN (t)⊕ {−xr(t)}, and

system

y+ = f̄c(y, w, t) := fc(y + xr(t), w, t)− xr(t+ 1) (28)

for all t ∈ T . Thus, if y(t) = 0, thenx(t) = xr(t). Furthermore,

we define the rotated optimal value function as

Ṽ 0
N (y, t) := V̄ 0

N (y + xr(t), t) + λ(y + xr(t), t). (29)

Using these assumptions, we state a nominal stability theorem

modified from Risbeck and Rawlings [30, Th. 2].

Theorem 8: Let Assumptions 5–7, 10, and 11 hold. Then the

sets (YN (t))t∈T and nominal system y+ = f̄c(y, 0, t) satisfy

Assumption 1 with Ṽ 0
N (z, t) as the Lyapunov function, ³1(s) =

³3(s) = ³̃1(s), and ³2(s) = ³̃2(s), i.e., the origin of the devi-

ation system is asymptotically stable on the sets (YN (t))t∈T for

the system y+ = f̄c(y, 0, t).
Proof: See Risbeck and Rawlings [30, Appendix B].

Since our Lyapunov function for this system is now Ṽ 0
N (x, t),

Assumption 4 must hold for V (x, t) := Ṽ 0
N (x, t). As an alter-

native, we may use the following assumption.

Assumption 12: There exists a, c1, c2 > 0, such that ³̃1(s)
and ³̃2(s) from Assumptions 10 and 11 satisfy c1 s

a ≤ ³̃1(s)
and c2 s

a ≥ ³̃2(s). Furthermore, there exists e1, e2 ≥ 0, such

that |f(x, u, w, t)− f(x, u, 0, t)| ≤ e1|x|+ e2 for all (x, u) ∈
Z(t), t ∈ T , and w ∈ W .

Remark 5: If �̄(x, u, t) is a tracking cost with respect to the

reference trajectory xr, then we satisfy Assumption 10 with

λ(·) = 0. Thus, tracking MPC is a special case of (dissipa-

tive) economic MPC. More detail on the nominal stability of

tracking MPC can be found in [29, Ch. 2]. Furthermore, if we

use quadratic stage and terminal tracking costs we satisfy the

exponential cost function bounds required by Assumption 12.

The reference trajectory for the closed-loop system is robustly

stable in probability under these assumptions.

Theorem 9 (Robustness of economic MPC to large, infrequent

disturbances): Let Assumptions 2, 3, 5–7, and 10–12 hold. Then
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the origin is RASiP on the sets (YN (t))t∈T for the system y+ =
f̄c(y, w, t); w ∈ W .

Proof: From Theorem 8, Assumption 1 is satisfied with

³1(s) = ³3(s) = c1 s
a and ³2(s) = c2 s

a. From Assumption

12 and Lemma 1 we can establish that Assumption 4 is satisfied.

Therefore, applying Theorem 4 completes the proof.

VI. PRODUCTION SCHEDULING EXAMPLE

We consider a simple scheduling example to illustrate the

relevance of this analysis approach to an industrial application.

The goal is to meet demand of the product 1 (P1) by converting

raw material (assumed to be in abundant supply) to P1 through

task 1 (T1) carried out on a single available unit. Task 1 may

have a batch size between 5 and 16 kgs of P1 and has a nominal

processing time of 2 h. The demand for P1 is 4 kgs per hour

and storing P1 costs $10(/kg/hr). If the demand is not met, the

facility accumulates backlog that must be offset at later times.

The penalty for maintaining backlog is $100(/kg/hr).

To model this system, we use a state space scheduling model

developed by Subramanian et al. [32]. We define a binary

decision variable W that is unity if T1 starts at time t. We also

define the continuous input B that represents the batch size. To

track these decisions in the state of the system, we lift W and B
with the state variables W̄n, B̄n for n ∈ {0, 1, 2}. The value of

n represents the number of hours the task has progressed (e.g.,

at n = 2, the task is complete). We also consider disturbances

in the form of 1-h delays (Y ). Note that this is an inherently

discrete-valued (large) and infrequent disturbance in this model,

i.e., Y ∈ {0, 1}.4

The dynamics for this part of the system are represented in

the following equations:

W̄+
0 =

(

W + W̄0

)

Y

W̄+
1 =

(

W + W̄0

)

(1− Y ) + W̄1Y

W̄+
2 = W̄1(1− Y )

B̄+
0 =

(

B + B̄0

)

Y

B̄+
1 =

(

B + B̄0

)

(1− Y ) + B̄1Y

B̄+
2 = B̄1(1− Y ).

Note that if Y = 1, the progress of the task does not move

forward. Inventory and backlog (unmet demand) of P1, S, and

U , respectively, are integrators influenced by the batch size of

task 1 ending, shipments to meet demand (H), and demand ξ(t).
We also allow up to 1 kg of backlog to be outsourced or canceled

each hour with the decision variable C

S+ = S + B̄2 −H

U+ = U + ξ(t)− C −H.

In general, demand varies with time, but we have ξ(t) = 4.

Next, we require certain constraints to enforce the realism of

this scheduling model. Specifically, U ≥ 0, S ∈ [0, 20], W ∈

4The discrete-time representation of the scheduling model results in discrete-
valued delays.

Fig. 5. Closed-loop trajectory for production facility. The top figure is a
Gantt chart with blue blocks representing T1 being executed and gray
blocks representing 1-h task delays. The inventory, backlog, sales, and
canceled orders at each hour are shown in the lower plots. The control
horizon, or schedule, for the next 8 h is shown in faded colors.

{0, 1}, C ∈ [0, 1], H ∈ [0, 20], and the constraint W̄0 + W̄1 +
W ≤ 1 prevents T1 from being run twice at the same time. We

also constrain B to be within the batch size constraints if T1 is

starting and zero otherwise, i.e., 5W ≤ B ≤ 16W .

Now we have a discrete-time, state-space representation of

the system with x = [W̄0, W̄1, W̄2, B̄0, B̄1, B̄2, S, U ]�, u =
[W,B,C,H]�, w = [Y ] and a dynamic evolution equation,

x+ = f(x, u, w, t). We have state and input constraints (x, u) ∈
Z that also enforce discreteness of W . We define the stage cost

as �(x, u, t) := 10(S) + 100(U) + 800(C).
In the nominal case, the facility can meet the demand while

operating at 50% capacity. For an 8-h horizon, the optimal

periodic solution to this scheduling problem is to run T1 every

two hours at a batch size of 8 kg. Demand is met every hour

and an inventory of 4 kg is retained every other hour. For

economic MPC, we consider an 8-h horizon and use this periodic

solution as the reference trajectory. We enforce an exact terminal

constraint for all state variables except backlog. For backlog, the

terminal region includes any nonnegative real number, R≥0, and

we use Vf (x) = 900(U) + 100(U2).
Note that by allowing backlog to take any nonnegative value,

the set XN (t) is now robustly positive invariant and Assumption

3 is satisfied. Assumptions 5, 6, and 8 are satisfied by the

problem setup. Assumption 7 is satisfied by the terminal cost

and constraint combination.5 We can establish that Assumption

9 is satisfied by using Lemma 7 and the integrator dynamics of

backlog.

Clearly, if a one hour task delay occurs every hour, no P1 is

ever produced. A more realistic scenario includes task delays

that occur infrequently. Hence, we restrict Pr(Y = 1) = ε and

consider 100 trials for multiple values of ε. Each trial starts with

an initial backlog of 40 kgs.

An example closed-loop trajectory is shown in Fig. 5 for ε =
0.3. As the closed-loop trajectory evolves, the backlog decreases

despite a few task delays. Once the backlog reaches a region

around zero, infrequent task delays force the backlog to increase

5We establish this fact using the terminal control law κf (x, t) := ur(t) +

[0, 0,min{U, 1}, 0]�.
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Fig. 6. Sample confidence interval for the closed-loop trajectory of 100
trials with different values of Pr(Y = 1) = ε.

Fig. 7. Sample average ∆(T ) for the closed-loop trajectory of 100
trials with different values of Pr(Y = 1) = ε.

but, on average, the facility can recover before another delay

occurs.

In Fig. 6, the backlog 95% confidence bound for 100 trials

is plotted for multiple values of ε. For ε ≤ 0.45, we observe

convergence of the confidence bound to a region around zero.

The size of this region increases with increasing ε. For ε = 0.5,

the sample average backlog diverges and we presume that

0.45 < δ < 0.5. Again, the qualitative results of our simulation

correspond exactly to the theory for large, infrequent distur-

bances. However, we do not claim that this system is strictly

dissipative, and this result does not hold for all state variables.

In general, dissipativity of the stage cost is not a requirement

or achieved for closed-loop scheduling formulations. Instead,

the main concern is closed-loop economic performance. To

quantify this performance, we define the average cost from 0

to T as follows:

∆(T ) :=
1

T

T−1
∑

k=0

�̄(x(k), u(k), k).

Note that ∆(T ) is identical to the average cost considered

in Theorem 6. In Fig. 7, we plot the sample average of ∆(T )
as a function of T for different values of ε. As T increases,

the sample average of ∆(T ) decays toward some nonnegative

constant specific to each value of ε. As ε is increased, this

constant increases, until at ε = 0.5 the sample average diverges.

In short, the system exhibits behavior identical to Theorem 6. As

expected from the previous discussion for backlog, we presume

0.45 < δ < 0.5.

VII. CONCLUSION

In this article, we developed robustness results for closed-loop

systems subject to a class of large, infrequent disturbances not

typically considered in robustness analysis. In particular, we

considered disturbances sufficiently large to exclude nominal

robustness results, but, due to their infrequent nature, still ad-

mit stochastic descriptions of robustness. For recursively fea-

sible and nominally stabilizing (economic) MPC controllers,

we demonstrate that a specific upper bound on the (rotated)

optimal value increase of the perturbed system is sufficient to

guarantee robust asymptotic stability in probability for large,

infrequent disturbances. In the absence of dissipative stage costs,

we establish a performance bound in expectation for economic

MPC subject to large, infrequent disturbances. We demonstrated

the relevance of this analysis to practical problems through an

application of economic MPC to production scheduling.

We emphasize that these stochastic robustness results are

achieved by nominal MPC formulations without the need to

include stochastic information in the optimization problem. Al-

though stochastic MPC implementations may improve upon the

robustness achieved by nominal MPC, in the form of larger δ and

smaller γp(·), the results in this work suggest that nominal MPC

formulations provide adequate stochastic robustness for large

but sufficiently infrequent disturbances. Indeed, the inherent

robustness of nominal MPC to this new class of disturbances

may be sufficient in many applications.

There exist numerous future directions for this work. First, we

intend to combine these results with typical robustness results

for small, persistent disturbances and develop a more compre-

hensive theory of robustness for MPC. An additional future

direction is to expand the set of systems and disturbances that

are guaranteed to satisfy Assumptions 4 and 9 without bounded

XN . We presented two examples that satisfy these assumptions,

despite not satisfying the requirements of Lemma 1 or 7. There

are likely additional versions of Lemma 1 and 7, particularly

for neutrally stable systems with input constraints. To consider

large, infrequent disturbances, Assumption 3 requires that the

optimal control problem remains feasible subject to any real-

ization of these large disturbances. In practice, this requires that

the optimal control problem be designed for recursive feasibility

subject to these disturbances. We accomplish this goal in the

production scheduling example by careful selection of state

constraints and terminal conditions. Thus, an important avenue

of research involves ensuring recursive feasibility of MPC ap-

plied to practical problems, particularly through well-designed

terminal conditions.
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