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Inherent Stochastic Robustness of Model
Predictive Control to Large and Infrequent
Disturbances

Robert D. McAllister

Abstract—We introduce a new class of large, infrequent
disturbances to complement the small, persistent distur-
bances typically considered in robustness analysis. This
new class of disturbances includes discrete disturbances
that become pertinent when considering discrete actua-
tors and production scheduling in control problems. To
properly account for the infrequent nature of these distur-
bances, we define a stochastic form of robustness. Un-
der suitable assumptions, we prove that certain closed-
loop systems subject to large, infrequent disturbances
admit an SISS-Lyapunov function and are robust in this
stochastic context. We apply these results to economic
model predictive control (MPC) with a strictly dissipative
nominal system and stage cost, which includes tracking
MPC as a special case, and prove that economic MPC
is robust to large, infrequent disturbances. Without dis-
sipativity assumptions, we define and establish robust
asymptotic performance for economic MPC. We present
a simple tracking problem to illustrate the results of this
work, and a production scheduling (economic MPC) prob-
lem, to demonstrate the relevance of this analysis to prac-
tical applications.

Index Terms—Model predictive control, optimal control,
robust stability, stochastic systems, time varying systems.

[. INTRODUCTION

N THE absence of disturbances, suitable model predic-
Itive control (MPC) formulations ensure nominal stability
[29, Ch. 2]. For practical implementation, however, MPC
must also be robust to disturbances. Inherent robustness of
nominal MPC is typically characterized by robust asymptotic
stability of the closed-loop system and these robustness re-
sults assume that the size of the disturbance is bounded by
some sufficiently small value [1], [13]. For many process con-
trol applications, this assumption is adequate to address the
model mismatch, measurement noise, and small perturbations
anticipated.
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While robust or stochastic MPC algorithms can be used to
directly consider these disturbances, the inherent robustness
of nominal MPC is often sufficient for implementation. In-
herent robustness refers to the robustness of MPC obtained
solely from feedback and without any constraint tightening,
worst case analysis, or stochastic optimization techniques.
Grimm et al. [13] demonstrate that for linear systems with
convex constraints, MPC is inherently robust. Nonlinear MPC
is also inherently robust if the optimal value function satisfies
certain continuity assumptions [27]. These results extend to
systems with compact input constraints, discrete-valued inputs,
and discontinuous optimal value functions if state constraints,
aside from the terminal constraint, are removed [1], [39]. More
general conditions on inherent robustness, input-to-state stabil-
ity (ISS), and their relation to Lyapunov functions are given in
Grimm et al. [14] and Lazar et al. [22].

Recently, theoretical results for MPC have been extended to
discrete actuators [28] and state-space models have been devel-
oped to formulate production scheduling as an economic MPC
problem [15], [31], [32]. With discrete actuators and scheduling
problems, we must now consider discrete disturbances such
as task delays or breakdowns in equipment. While the transi-
tion from continuous to discrete disturbances does not directly
affect the analysis performed in previous work, the argument
that a discrete disturbance can be made “sufficiently small”
is not applicable. For example, breakdowns considered in the
scheduling of a production facility are not, and should not be
considered, small disturbances. Furthermore, if we treat these
disturbances with the current theory, we must bound the worst
deterministic performance possible, e.g., the entire facility is
broken or delayed at every sample time. In practice, however,
these “large” disturbances are also infrequent, e.g., a production
line breaks or is delayed with some probability not equal to
one. Thus, a deterministic bound, if admitted by the underlying
system, is far too conservative and offers little insight for a
system subject to these types of disturbances.

We refer to this class of disturbances as large, because the
disturbances are bounded away from zero and cannot be con-
sidered “‘sufficiently small,” and infrequent, because the prob-
ability that these disturbances occur is small. This description
applies to a variety of disturbances such as faults, missing mea-
surements, communication failures, breakdowns, large delays,
and large price/demand spikes in economic applications. To
understand the system’s robustness to this class of disturbances,
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we exploit the infrequent nature of these disturbances and pro-
pose a stochastic form of robustness for large and infrequent
disturbances.

Many forms of stochastic stability and robustness are al-
ready present in control theory. Originating in the 1960’s [21],
the notion of stochastic stability for nonlinear systems, i.e.,
global asymptotic stability in probability (GASiP), was refined
more recently in Florchinger [10]. Subsequently, this analysis
was used to design feedback controllers for stochastic systems
[5], [6], [26]. Teel and co-workers constructed and established
stronger definitions of global asymptotic stability, rigorously
demonstrated that stochastic Lyapunov functions provide uni-
form convergence, and developed converse Lyapunov theorems
for this stochastic definition of stability [34]-[36]. Analogous to
ISS for deterministic systems, stochastic input-to-state stability
(SISS) was also defined [19], [24], [33], [37]. Over the past
decade, this SISS framework has been used in the analysis and
control of continuous-time [16], [17], [38], [41] and discrete-
time [8] nonlinear stochastic systems. These works assume that
the impact of the stochastic disturbance vanishes once the state
of the system reaches the origin. However, many applications of
interest violate this assumption. For the current work, the SISS
framework is significantly modified to address large, infrequent
disturbances that do not vanish once the state reaches the origin.

We summarize the subsequent sections as follows. In Sec-
tion II, we introduce MPC and the closed-loop stochastic system.
In Section III, we characterize the class of large and infrequent
disturbances addressed in this article and limit the maximum
size of these large disturbances through a few assumptions. In
Section IV, we present a motivating example and define robust
asymptotic stability in probability (RASiP). We then define an
SISS-Lyapunov function and establish that any closed-loop sys-
tem that admits an SISS-Lyapunov function is RASiP. Further-
more, we establish that the assumptions presented in Sections II
and III are sufficient to guarantee that the closed-loop stochastic
system admits an SISS-Lyapunov function and is therefore
RASIP. In Section V, we focus on economic MPC. We define
and establish robust asymptotic performance in expectation for
this closed-loop system subject to large, infrequent disturbances
by assuming a specific cost evolution bound for the perturbed
system. With additional nominal dissipativity and weak control-
lability assumptions, we prove that economic MPC is RASiP.
In Section VI, we demonstrate the results and implications of
this analysis with a production scheduling, i.e., economic MPC,
example.

Notation: Let [ denote integers, R denote reals, and subscripts
on these sets denote restrictions (e.g., - for nonnegative inte-
gers). The set T C I denotes discrete time points. The func-
tion p : R>¢g — R isin class PD if it is continuous, p(s) > 0
for all s > 0, and p(0) = 0. The function o : R>¢g — R>¢ is in
class K if it is continuous, strictly increasing, and «(0) = 0. The
function «(-) is in class Ko if it is in class K and unbounded.
A function 8 : R>o x I>9 = R is in class KL if for fixed
k the function S3(-, k) is in class C and for fixed s the function
B(s, -) is nonincreasing and limy,_,, 3(s, k) = 0.Let | - | denote
vector norm if applied to a vector and absolute value if applied to
ascalar. We denote distance to a set A as |x| 4 = inf,c 4 |z — al.
Let & denote set addition. Sequences are denoted in bold face

and subscripts indicate the range (e.g., wy, indicates the sequence
of w’s from w(t) to w(k — 1)). Let Is(x) denote the indicator
function for a set S, i.e., Is(z) =11is z € S and Ig(x) =0
otherwise. Let Pr(A) denote the probability of event A.

II. PROBLEM FORMULATION AND PRELIMINARIES
We consider a discrete, time-varying system of the form
zt = f(xauawvt) (M

defined for the continuous function f : X x U x W x T — X,
state x € X C R"”, input v € U C R™, and disturbance w €
W C RP, at the discrete time index ¢t € T. The successor state
att + 1 is denoted by . The system is subject to time-varying
constraints (Z(t))ser, such thatat time ¢t € T, (x,u) € Z(t) C
X xU.

We consider a nominal MPC problem with a horizon
N € T4, stage cost £(-,t) : X x U — R, terminal constraints
Xs(t) € X, and terminal cost Vy(-,t): X,(t) - R for all
t € T. The nominal system is described by

" = f(z,u,0,t). 2)
For the current state z € X and input sequence u:=
(u(t),u(t +1),...,u(t+ N —1)) € UV at time ¢, the func-
tion ¢(k;x,u,t) € X denotes the open-loop state solution to
the nominal system (2) at time k € I[; ;4 n). We define the set
of admissible inputs (4), admissible states (5), and objective
function (6) by

Zn(t) == {(z,0) | (x(k),u(k)) € Z(k)

Vk €l iynay

z(t+ N) € X;(t+ N)} 3)
Un(z,t) :={u| (z,u) € Zn(t)} 4)
Xn(t) :={x e X(t) | Un(z,t) # 0} Q)
t+N-—-1
Vn(z,ut) = Y k), ulk), k)
k=t
+ Vi(z(t+ N),t + N) (6)

in which 2(k) := ¢(k; 2, u, t).
The optimal control problem for x € Xx(¢) at time ¢ is
defined as

Vy(z,t) := min

ueldy (x,t)

VN (.’L', u, t) (7)

and the optimal input trajectory is defined as u®(z, t). The MPC
control law kx (x,t) := u®(t; 2, t) is defined as the first input in
u’(z,t).! For the controlled system, the state evolves according
to

2t = fo(z,w,t) == f(z, kn(x,t),w,1). ®)

Note that, even if f(-) is continuous, f.(-) may be discon-
tinuous in x since xn(-) may be discontinuous. We define the

'If there are multiple solutions to the optimization problem, we assume that
some selection rule is applied, such that k() is a single-valued mapping.
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solution to (8) at time k >t given the initial condition z= at
time ¢ and the disturbance sequence wy, := (wy, ..., wi_1) as
o(k; z, wi, t) € X.

We now introduce a probabilistic description of the dis-
turbance w. We assume that the random variables w; for all
t € T are independent and identically distributed (i.i.d.) with
the probability measure p: B(W) — [0,1] in which B(W)
denotes the Borel field of the set W . For the sequence of random
variables wj, and a measurable function g : WhEt 5 R, we
define probability that g(wy,) € S for a measurable set S with
the following Lebesgue integral.

Pr(g(wg) € S)

= / Is (g ((whn - 1)) dia(r) -~ dps(wp )
Wk,ft

in which ¢ € T and k € I>;. For a sequence of random vari-
ables wj and a measurable function g : Wkt 5 R, we define
expected value with the following Lebesgue integral

Elywe)] = |

kat

g (Wi, - -y wr-1)) dp(wy) - - - dp(wi—1)
in which t € T and k € I>;. Furthermore, for a measurable
function g : X — R and z(k) := ¢(k; z, Wi, t) we define con-
ditional expected value as

E oo [9(2(8)] = Epy [9(Fo(m,w, k — 1))]
- / o(folar, 0,k — 1))dpa(w).
w

Remark 1: To ensure that stochastic properties of interest
(e.g., probability and expected value) are well defined for the
closed-loop stochastic system, we require that ¢(-) is a measur-
able function. For discontinuous control laws, and therefore dis-
continuous f.(-), measurability is not guaranteed. Fortunately,
optimization-based control laws, under suitable regularity con-
ditions, are Borel measurable functions and thereby guarantee
measurability of ¢(-) [12, Proposition 4, Remark 3]. Thus, we
implicitly assume for the rest of this article that all stochastic
properties are indeed well defined.

We define positive invariance and robust positive invariance
for the time-varying system.

Definition 1 (Positive invariance): The sequence (X (t))eT
is positive invariant for the nominal system z* = f.(z,0,1), if
z(t) € X(t) implies z™ € X(t + 1) forallt € T.

Definition 2 (Robust positive invariance): The sequence
(X(t))ser is robustly positive invariant for the perturbed sys-
tem 2t = f.(z,w,t); we W, if z(t) € X(t) implies 2T €
X(t+1)forallwe Wandt e T.

‘We consider the following assumption for the nominal system.

Assumption 1 (Nominal system properties): The function
fe(+) is locally bounded.? The sequence (X (t));e is positive
invariant for 2™ = f.(x,0,t). There exists a Lyapunov function

2A function f : X — Y is locally bounded if, for every zo € X, there exists
aneighborhood \ of zg, such that f () is bounded, i.e., for some M > 0, we
have | f(z)| < M forallz € NV.

V(1) : Xn(t) — Rsg and functions o (), aa(+), az() € Koo
that satisfy

(7l < V(o) <aslzl) O
V(folw,0,6),t+1) < Via,t) —aglle)  (10)

for all x € X'y (t) and ¢t € T, i.e., the origin is asymptotically
stable on the sets (X (t))seT for the nominal system.

Assumption 1 is satisfied for tracking MPC and economic
MPC with suitable dissipativity assumptions [7], [29, Ch. 2.8].
In fact, with properly constructed terminal conditions, the op-
timal value of the MPC problem satisfies Assumption 1 with
V(z,t) := V9 (z,t). The assumption of nominal asymptotic
stability is minimal and achieved by any acceptable control
algorithm.

I1l. LARGE AND INFREQUENT DISTURBANCES
A. Characterization

In this section, we characterize the class of large and infre-
quent disturbances addressed in the subsequent analysis. We
introduce this class of disturbances by discussing them in con-
trast to the class of small and persistent disturbances addressed
by the deterministic definition of inherent robustness, i.e., robust
asymptotic stability.

Definition 3 (Robust asymptotic stability): Suppose that the
sequence (X (t))ser is robustly positive invariant for the sys-
tem 2t = fo(z,w,t); w € W in which gy := sup-, |w(k)|.
The origin of the system x* = f.(z,w,t); w € W is robustly
asymptotically stable if there exists o > 0, 3(-) € KL, and
~(+) € K, such that

(b(k;xawkvt)‘ < 5("%‘71{7 _t) +’Y(€0)

foralleg < dg, x € Xn(t),t € T,and k € I>;.

Note that ¢ is defined as the maximum size (Euclidean norm)
of all disturbances in the trajectory. Thus, robust asymptotic
stability guarantees that there exists a §y > 0, such that for
disturbances of sufficiently small size (9 < dy), the closed-loop
system is ISS, i.e., the bound in (11) holds. Nominal MPC
is robust in this deterministic context for sufficiently small
disturbances [1].

We characterize the set of disturbances addressed by this
definition as Wy with [Wy| := sup,,cw, |w| < do in which we
have chosen the scalar &g from the deterministic definition of
inherent robustness. Therefore, (11) holds for any realization
of wy, such that w, € Wy for all k£ € ;. This deterministic
definition is a strong form of robustness in that any probability
distribution on the set W, is permitted.

In this article, we are interested in the following question. If
the disturbance w is not small, i.e., w ¢ Wy, what happens to
the robustness of the nominal MPC controller? To address this
question, we introduce a set of large disturbances and assign a
probability to this set. Let W be, such thatinf,,cwy, |w|is strictly
great than zero, i.e., we have bounded the large disturbances
“away from zero.” We denote the probability that the disturbance
takes a value in this set as € := Pr(w € W;). Furthermore, we
can define Wy, such that the intersection of Wy and W, is empty.

(1)
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Fig. 1. Three probability distributions for the disturbance w depict-
ing the small, frequent disturbances (W) and large, infrequent distur-
bances (W;).

The disturbances in Wy are small. The disturbances in W, are
large. In particular, we note that W; includes discrete-valued
disturbances that may not be included in W.

For example, consider the truncated normal distribution in
the top plot of Fig. 1. Although the probability distribution of
w admits large disturbances that exceed g, these disturbances
are infrequent in that Pr(w € W;) = ¢ is small. This description
also applies to many other probability distributions as shown in
the middle and bottom plots of Fig. 1.

We restrict the maximum size of W; through assumptions
introduced later in this section, e.g., the disturbance cannot be
so large as to render the MPC optimization problem infeasible.
However, neither the nominal MPC controller nor sometimes
any controller will have deterministic robustness to the large
disturbances included in W;. But the question remains: Is there
any form of inherent robustness for the nominal MPC controller
outside of what is already established for the set W ?

We show that the answer to this question is yes, provided
that the large disturbances are also infrequent. This assumption
is reasonable as it models many kinds of large disturbances
such as faults, missing measurements, communication failures,
breakdowns, large delays, and large price/demand spikes in
economic applications. If these kinds of large faults are suffi-
ciently frequent in nature, indeed no controller is expected to be
robust in any sense against them. To model the infrequent nature
of these disturbances we introduce the small parameter § > 0
and require that ¢ = Pr(w € W;) < 4. So these disturbances
are large in magnitude but infrequent in terms of sampling
them as random variables. Furthermore, if Wy N W; = 0, we
also have Pr(w € W) = 1 — ¢, and we recover the usual small
disturbance case in the limit € — 0.

Note that we have assumed that the random variables are i.i.d.
and therefore the value of ¢ is not time-varying. We can, how-
ever, extend the subsequent results to time-varying probability
distributions by introducing a time-varying ¢, i.e., (k).

For clarity in this introductory article, we shall restrict at-
tention to the case Wy = {0}, e.g., the middle and bottom
plots of Fig. 1, so that we have only two possibilities: The

nominal behavior occurs with probability 1 — ¢ and the large
disturbance occurs with probability €. We then analyze what
kind of robustness, if any, can we expect from the nominal MPC
controller in this situation.

B. Assumptions

As noted in the previous subsection, we consider the case of
only large disturbances and nominal behavior.

Assumption 2 (Only large disturbances): The disturbance set
satisfies W = Wy U W; and we restrict Wy = {0}.

Although we classify these disturbances as large, we do not
allow disturbances of arbitrary size. We restrict the size of
W, through the following assumptions. We begin by requiring
that the MPC problem remains well defined for the closed-loop
trajectory.

Assumption 3 (Recursive feasibility): The sequence
(XN (t))ser is robustly positive invariant for the system
2t = f.(z,w,t); w € W, ie., the optimal control problem is
recursively feasible.

Note that assuming recursive feasibility for MPC is sometimes
inappropriate. MPC requires solving an optimization problem in
real time, potentially subject to state constraints, and therefore
a feasible solution is not always guaranteed. In Allan et al.
[1], recursive feasibility is proven for the structure of the MPC
formulation and by constraining the disturbance size to be suf-
ficiently small. For large disturbances, we lose this capability
and must be careful about enforcing constraints in the optimiza-
tion problem. For a problem with state and input constraints,
there exists a sufficiently large disturbance that creates an
infeasible optimization problem. In general, if we want to con-
sider large disturbances, the control algorithm must be recur-
sively feasible by design.

For production scheduling applications of MPC,
Assumption 3 is often reasonable. The input and state
constraints only exist to enforce realistic decisions, e.g., no
negative inventory. Thus, disturbances cannot force violations
of these constraints. Furthermore, sufficiently long horizons and
reasonable terminal conditions in scheduling problems ensure
that any current state of the plant can be driven to the terminal
set in N moves.

MPC implementations without state or terminal constraints,
ie., X(t) = X;(¢t) = R", easily satisfy Assumption 3. These
MPC formulations have seen significant theoretical progress
in recent years and, with suitable dissipativity assumptions
and terminal costs, can ensure nominal (practical) asymp-
totic stability [11], [23], [40]. Therefore, there already exists
a significant class of MPC implementations that satisfy both
Assumptions 1 and 3.

In addition to feasibility, we also require a bound on the
Lyapunov function increase due to a disturbance.

Assumption 4 (Maximum Lyapunov function increase): For
the perturbed system x+ = f.(x, w, t), there exist finite by, by €
R>g, such that the functions V(-) and as(-) in Assumption 1

satisfy
Vfelz,w,t),t+1) < V(z,t) + bras(|z]) + b2 (12)

forallz € Xy (t), w € Wy,andt € T.
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Note that this bound is significantly weaker than the typical
ISS-Lyapunov function bound for a disturbance. The Lyapunov
function value may increase based on the size of |z| and some
finite constants. In fact, the increase between ¢ and ¢ 4+ 1 may
even grow as |x| increases for an equivalent disturbance. This
growth, however, is limited by the size of the nominal Lyapunov
function decrease, i.e., a3 (|x|). As we show in subsequent exam-
ples, there exists a class of systems and disturbances that satisfy
Assumptions 1-4 and are not robust in the usual deterministic
context.

Although Assumption 4 is difficult to verify for a time-varying
Lyapunov function, this assumption provides an important limit
on the class of disturbances admitted by this article. For example,
Assumption 4 excludes systems such as + = z tanh(z) + w
in which the rate of nominal convergence decreases as the state
of the system grows. The disturbance, however, influences the
state at the same rate (additive) as the state grows.

If the composite set X := [J,c An(t) is bounded, As-
sumption 4 is satisfied for by = 0 and some large, finite by > 0.
However, a bounded X'y that satisfies Assumption 3 may not
exist for certain systems and disturbances. We note an important
case in which Assumption 4 is satisfied without assuming that
Xy is bounded.

Lemma 1: Let Assumptions 1 and 3 hold with a, ¢, ¢o, c5 >
0, such that oy (s) = ¢1 8%, aa(s) = ¢ %, and ag(s) = c3 8%,
i.e., the nominal system is exponentially stable. If there exists
e1, ez > 0, such that

|f(x,u,w,t)ff(z,u70,t)| §€1|I|+62 (13)

for all (z,u) € Z(t), t € T, and w € W, then Assumption 4
holds.

Proof: Letthe x € X (¢) be the state and w € W, be the dis-
turbance at time ¢. We have from (9) the bound V' ( f.(x, w, t),t +
1) < ea|fe(x, w, t)|*. We apply the triangle inequality and (13).

|fe(@,w, 0)|* < (|fe(x,0,)]
+ [ fe(z,w,t) — fo(x,0,1)])"
< (|fe(z,0,8)] + e1]z] + e2)*

< 2%fe(2,0,1)[" + (der|z])* + (4e2). (14)
Using both (9) and (10) gives
1
|fc(xa Oa t)|a § ;V(fc(xa Oa t)a t+ 1)
1
1 —
< —V(a,t) - Zlaft < ZBlge. 5)
C1 &1

We substitute (15) into (14) to get
V(fe(x,w,t),t+1)

o —¢
< 022“%|m|a + ca(der)|x]® 4 co(de)?.
1
We substitute |2|* < ag(]z|)/c1 into this equation to give
V(fc(wivt)vt + 1) < b1a3(|$|) + b2

in which by := (ca/c1)(2%(c2 — ¢3)/c1 + (4de1)®) and by :=
co(4e3)®. Thus, Assumption 4 is satisfied.

Remark 2: MPC formulations with suitable terminal condi-
tions and quadratic costs produce exponentially stable nominal
systems [29, Ch. 2.4]. Unfortunately, constructing a bounded
terminal set and cost that satisfy Assumption 3 is not neces-
sarily possible with input constraints. Ideally, we want a global
quadratic control Lyapunov function for the terminal cost, but
constructing this function is only obvious for stable linear sys-
tems with input constraints [29, Ch. 2.5.3].

IV. ROBUSTNESS TO LARGE AND INFREQUENT
DISTURBANCES

A. Motivating Example

We begin this section with a motivating example. Con-
sider the scalar system zt =z 4+ u + 2w with x € R and
u € [—1, 1]. We define the state cost (', u) = x? + u?, terminal
cost V¢ (z) = 2%, and omit the terminal constraint, i.e., Xy = R.
For an MPC problem with a horizon of N = 2, the optimal
control law is kv () := —sat(3z/5) [29, p. 104]. To streamline
notation, we denote x(k) := ¢(k; x(0), wy,0).

If w is assumed to be a continuous random variable with |w| <
0.5, then the closed-loop system is ISS and therefore robust in
the usual deterministic sense. However, if w € W := {0, 1},
ie., Wy := {1} is a large (discrete-valued) disturbance, then
there exists a worst-case scenario in which w = 1 at every time
and the system moves further away from x = 0 at each step.
The system is not robust to this discrete-valued disturbance in
the usual deterministic sense.

However, we can establish that this system satisfies Assump-
tions 1-4 for w € W := {0, 1}. Choose the Lyapunov function
V(x) = 2% We define

210,12
=z vl <
as(|z) :——{25| |  lzl

2z[ =1 5 |z| >

wlor wlut

to satisfy Assumption 1. If w =1

Vi) < {<§x| +2)? ; Ja] <

wlot wlut

(2] +1)* 5 fa| >

and we can bound this piecewise function by V (z+) < 2% +
a3 (|z]) + & Therefore, Assumption 4 is satisfied with by = 1,
by = %4. Assumption 3 is satisfied because « y () is defined for
allz € R.

We now consider that this large (discrete-valued) disturbance
is infrequent in that Pr(w = 1) = ¢ forsome ¢ € (0, 1). We then
conduct a simulation study of this system starting from z:(0) =
30 for € = 0.4. The results for 50 trials are plotted in Fig. 2.
Note that each individual trial does not have a deterministic
upper bound for |z (k)| as k — oo. Given a sufficient number of
time steps, the probability that |z (k)| violates any finite bound
is nonzero.

Instead, we propose a stochastic metric of robustness that
captures the infrequent nature of the disturbance better than
a deterministic metric. We define the p-confidence trajectory
cp(Jz(k)|) at each k as the minimum bound for |z (k)| that holds
for at least p% of trials for the system. We then evaluate the
95%-confidence trajectory of this closed-loop system for 1000
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Fig. 2. Trajectories for 50 trials of the system 2 = = + ky(x) + 2w
in which Pr(w = 1) = 0.4. The 95% confidence bound (cg5¢ (|z(k)])) of
the closed-loop trajectory for 1000 trials is plotted in black.
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Fig. 3. 95% confidence bound of the closed-loop trajectory for 1000

trials of the system 2t =z + sy () + 2w with Pr(w = 1) = ¢ for mul-
tiple values of «.
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Fig. 4. Plot of 4950, (¢). We evaluate Jg5¢ (¢) as the maximum value

of cg59, (|z(k)|) for k € [800,1000].

trials and plot the resulting trajectory in Fig. 2. We observe that
this 95%-confidence trajectory converges to a region around
x =0 as k — oo and appears to admit a finite upper bound
for all £.

In Fig. 3, we consider multiple values of e for which Pr(w =
1) =e. For £ < 0.5, all 95%-confidence trajectories exhibit
similar behavior to ¢ = 0.4 and converge to some region around
x = 0as k — oo. For ¢ < 0.5, we denote the maximum value
of cg59, (|z(k)|) for the last 200 time points as §g59 (¢) and plot
this bound in Fig. 4. Note that §g59 (¢) increases with increasing
¢ and approaches zero as ¢ — 0.

All of these observations suggest that an ISS-type bound for
the 95%-confidence trajectory is a reasonable characterization
of this systems behavior. Thus, we postulate that there exists
Bosn(+) € KL and vo5%(+) € K, such that

cos5% ([ (k)]) < Bosw (|2(0)], k) + vo5%(€) (16)

for all z(0) € R, k € >0, and € < 0.5. Equivalently, we can
write (16) as

Pr(|z(k)| < Bose (|2(0)], k) + v95%(e)) > 0.95

i.e., for each k € I the closed-loop system satisfies this ISS-
type bound with a probability of 95%.

This ISS-type bound, however, is not expected to hold for
disturbances that occur with sufficient frequency. We note that
for ¢ = 0.52, the 95%-confidence trajectories in Fig. 3 diverges
as k — oo and therefore does not admit any ISS-type bound.
Thus, we presume that there exists some d < 0.5, such that if
€ > 0, the closed-loop system does not admit a stochastic ISS-
type bound.

7)

B. Robust Asymptotic Stability in Probability

The robustness of MPC is typically characterized through ISS
in which the “input” to the closed-loop system is the disturbance.
These robustness results are based on the size of disturbance and
apply only for disturbances of sufficiently small size [1], [13].
Thus, a closed-loop system, and by extension the control law,
is deemed robustly asymptotically stable if there exists some
nonzero margin dp > 0, such that the closed-loop system is ISS
for all disturbances that satisfying |w| < o [1].

For large, infrequent disturbances, we instead consider the
probability of the disturbance occurring, not the vector norm of
the disturbance, as the description of the disturbance “size” and
assume that the set W is fixed. The stochastic (infrequent) na-
ture of these disturbances implies that a stochastic description of
robustness is appropriate. Specifically, we leverage the concept
of SISS and modify this definition for large, infrequent distur-
bances. We define RASiP for large, infrequent disturbances as
follows.

Definition 4 (RASIP for large, infrequent disturbances): Sup-
pose that the sequence (X (t))ser is robustly positive invari-
ant for the system xt = f.(x,w,t); w € W and we denote
¢ = Pr(w € Wy). The origin of the closed-loop system z+ =
fe(z,w,t); w e W is RASIP if there exists ¢ € (0, 1] and for
eachp € [0, 1) there exists 8, (-) € KL and 7,(-) € K, such that
the closed-loop system satisfies

Pr([o(k; 2, Wi, 1)| < Bp(|a], k=) +7,(€)) 2 p

foralle € [0,6], x € Xn(t),t € T,and k € I5;.

RASIP implies that for sufficiently infrequent disturbances,
i.e.,e <, we can construct the bound in (18) for any confidence
level p € (0,1). The bound inside the probability statement
in (18), analogous to the standard ISS bound, contains two
components. The first is a function 3,(-) € CL that captures
the effect of the initial condition and the decay of this effect as
k — oo. The second is a function 7, (-) € K that captures the
effect of the disturbance, through the value of ¢, that persists for
all k € HZt'

Note that the definition of RASIP for large, infrequent dis-
turbances captures the behavior observed in the motivating
example. Indeed, (18) with p = 0.95 is identical to the ISS-type
bound proposed in (17). As observed in the motivating example,
however, we do not expect the closed-loop system to satisfy (18)

(18)
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for large ¢, i.e., sufficiently frequent disturbances. Analogous to
the definition of robust asymptotic stability, we only require
that there exists some nonzero margin ¢ > 0, such that the
closed-loop system satisfies (18) for e < 4.

The physical significance of RASiP is best illustrated with the
motivating example. Consider the behaviorin Fig. 3. Fore < 0.5
the closed-loop system can, on average, recover from the distur-
bance before another disturbance occurs and at each k € I>,
the closed-loop trajectory satisfies the ISS-type bound with
95% probability. For ¢ = 0.52, however, the 95%-confidence
trajectory diverges as k — oo. Thus, we cannot define a finite
bound, with any confidence level, as £ — oc. For the motivating
example, € must exceed 0.5 for this behavior to occur. However,
if there exists no margin of robustness, i.e., the closed-loop
system is not RASiP, then the confidence trajectory diverges for
a large disturbance that occurs with any nonzero probability. By
contrast, a closed-loop system that is RASiP can recover from
large disturbances provided the probability of that disturbance
occurring is small.

Remark 3: As noted in Kozin [18], there are nuanced dif-
ferences in stochastic stability definitions that have significant
implications. In particular, including the condition V &k € I,
inside the probability statement in (18) is a stronger property
than placing it outside. Since the effect of the random variable
on the process does not vanish as z — 0, we can establish RASiP
only when V k € I>, is outside the probability statement.

C. SISS-Lyapunov Functions and Main Results

To establish RASiP for large, infrequent disturbances, we
define an SISS-Lyapunov function.

Definition 5 (SISS-Lyapunov Function): The function
V(-,t) : Xn(t) — Rsg is an SISS-Lyapunov function on the
robust positive invariant sets (X (t))¢cr for the system xt =
fe(z,w,t); w € W in which € = Pr(w € Wy) if there exists
0 € (0,1], an(+), a2(+), aa(+) € Ko, o(+) € K, such that

ay(|z]) < V(2,t) < as(|z]) (19)

Ejo [V(fe(z,w, 1), t + D] < V(2,t) — as(|z]) + () (20)

foralle € [0,6], z € Xn(t)and ¢t € T.

In comparison to a typical ISS-Lyapunov function, we note
two differences. First, the Lyapunov function evolution inequal-
ity is no longer a deterministic bound and considers the expected
value of the subsequent Lyapunov function. This bound on
conditional expectation is typical of other versions of SISS-
Lyapunov functions in the literature [8], [19], [33], [35]. Sec-
ond, the input to the X function o(-) is the probability of the
disturbance occurring, not the size of the disturbance. This type
of input is distinct from other SISS-Lyapunov functions in the
literature. Subsequently, we use this SISS-Lyapunov function to
establish RASIP for a perturbed closed-loop system. To establish
this result, however, we also require a stochastic Lyapunov
function and the following proposition.

Definition 6 (Stochastic Lyapunov Function): The function
V(1) : Xn(t) = Rsgissaid to be a stochastic Lyapunov func-
tion on the robustly positive invariant sets (X (t))er for the

system zt = f.(z,w,t); w € W if there exists a1 (+), aa(+) €
K and p(-) € PD satisfying

a(|z]) < V(z,t) < aa(lz))
E\x [V(fc(xawvt)vt + 1)} < V(.’L‘,t) - p(|fE|)

forallz € Xy(t)andt € T.

Proposition 2: If the system x+ = f.(z,w,t); w € W ad-
mits a stochastic Lyapunov function on the robustly positive
invariant sets (X (t)).eT, then the origin is ASiP, i.e., for each
p € [0, 1), there exists 3, (-) € KL, such that

Pr(|p(k; 2, wi, t)] < Bp(lzl, k= 1)) = p

forallz € Xn(t),t € T, and k € I4.

There are many versions of Proposition 2 and associated
proofs throughout stochastic stability literature since the first
example in Kushner [20]. For a proof of this specific version of
this proposition, see [25]. Using Proposition 2, we establish the
following result.

Proposition 3: If asystem 27 = f.(z,w,t); w € W admits
an SISS-Lyapunov function on the robustly positive invariant
sets (Xn(t))¢eT, then the origin is RASIP.

Proof: We use an approach analogous to Theorem 4.2
in Krstic and Deng [19]. Choose t € T, x € Xx(t) and let
x(k) := ¢(k;z, wy, t) for all k € I5;. Define a5 := ag 0 ay '
We note that ey (s) < az(s) because E[V (+)] > 0 and (20) must
hold for € = 0. Therefore, 0 < V(z,t) — as(|z]) < as(|z]) —
ay(|z]). Since ay(s) < as(s), we also know that as(s) < s
for s > 0 because ay (a5 (s)) < an(ayt(s)) = s. Let 7 € Iy
denote the (stopping) time at which the trajectory first enters
the set defined by V (z(k), k) < J(g) := 2a5 ' (0 (¢)), ie., T =
inf{k >t | V(z(k),k) <)}

For k € I}; -y, we have that V (z(k), k) > 2a; " (o(€)) and

Epoo[V(z(k+1),k+1)

V(x(k), k) — as(ay ' (V(a(k), k))) + o(e)

V(x(k), k) — as(V(x(k), k) + as(V(z(k), k) /2)
V(z(k), k) — p(V(x(k), k)) 2D
in which p(s) := as(s) — as(s/2) € PD. Thus, for k € I}; ),
V'(+) is a stochastic Lyapunov function for the closed-loop sys-

tem. By Proposition 2 and (21), the system is ASiP for k € I|; ),
i.e., for each p € [0, 1) there exists 5, (-) € KL, such that

Pr(|z(k)| < Bp(lzl, k =) = p

forall k € I .

For k € I-,, we proceed by induction. We assume that
E[V(xz(k), k)] < A(e) for some k € I-,. However, the deter-
ministic value of V' (z(k), k) is unknown. If V (z(k), k) > (e),
we have

<
<

(22)

Ejpgy[V(z(k+1),k+1)] < V(z(k), k)
from (21) and the fact that p(-) > 0. Therefore

E [Ejo[V(@(k+ 1),k +1)]] <E[V(x(k), k)] < 7).
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If5(e)/2 < V(x(k), k) <
Epo [V (@(k + 1),k + 1)]
x(k

(k) k) =
(k) k) =
(k) k) <
(e

~(g), we have

k) +o(e)

(?( )/2) +a(e)

7(e)-

If V(z(k), k) )/2, we have
Eppm[V(z(k+ 1),k + 1)]

< V(x(k), k) — as(V(z(k), k) +o(e)

Y(e)/2+ o(e)
< (e)/24 as(7(e)/2) <

in which the last inequality is because «
V(z(k), k) < F(e), we have

E [Epp [V (2(k + 1),k +1)] [Y(e)] < A(e).
(z

I
Thus, we have that E[V (z(k), k)] < A(e) implies E[V (x(k +
1),k +1)] <4(e). By definition, E[V(z(7),7)] <E[y(e)]
< #(e). So by induction, we have

E[V(x(k), k)] <7(e)

IN A
8

i%

<V(
V(
V(
<

/\

(€)

5(s) < s. Therefore, if

for all k € I-,. By applying Markov’s inequality for each
p € [0,1) we have

Pr (V(x(k), k) <

Define 7, (e) := a7 (5()/(1 —p)
a7 (V(x(k), k)) we have

Pr(Ja(k)] < (&)
> (o (Ve <o (2)) 25 @

and since |z(k)| <

1
for all £ € I . Finally, we combine (22) and (23) as follows:

Pr(|z(k)| < max{By(|z[,k — 1), (e)}) = p

which holds for all £ € I5;.

We can now establish the main result of this work.

Theorem 4 (Robustness to large, infrequent disturbances):
Let Assumptions 1—4 hold. Then the origin is RASiP on the sets
(XN (t))ser for the system 2 = f.(z,w,t); w € W.

Proof: We consider the evolution of the system with and
without a disturbance. Choose x € X (t) at time ¢ and denote
2 = f.(x,w,t). If there is no disturbance, then the standard
Lyapunov function decrease applies from (10). If w € Wy, then
we apply the Lyapunov function bound from (12). We combine
these two cases using the indicator function for W; so that
E[Iw, (w)] = Pr(w € W;) = ¢ and

V(" t+1) < V(z,t) — (1= Iw, (w))os(|z))
+ Iw, (w) (bras(|2]) + b2) -
Taking the expected value and combining terms give

Ej [V, t+1)] < V(x,t) — (1 —e—bie)as(|z]) + ebs.

We choose § € (0,1], such that < 1/(1 + by). Therefore
E [V(zt,t+1)] < V(z,t) — as(|z]) + o(e) (24)

for all € € [0, 6] in which ay(s) := (1 — (1 + b1)d)as(s) and
o(e) := bge.Note that oy (+), o () € Ko. Thus, V(-) is an SISS-
Lyapunov function and by Proposition 3 the proof is complete.

V. TIME-VARYING EcoNomic MPC
A. Robust Performance

In economic MPC, the stage cost is not necessarily a positive
definite tracking objective and asymptotic stability is not guar-
anteed by the problem formulation. In some economic MPC
applications, stability is secondary to closed-loop economic
performance. Thus, for nominal economic MPC, an important
result is the average asymptotic performance bound presented
by Angeli et al. [2, Th. 1]. This result ensures that at long time
the performance, defined as the sum of stage costs, of economic
MPC is no worse than the reference trajectory used to construct
the terminal region. We consider the following assumptions for
the economic MPC problem similar to Risbeck and Rawlings
[30].

Assumption 5: The functions f(-), £(-), and V(-) are con-
tinuous. The reference trajectory (x,, u,.) satisfies x,.(t + 1) =
f(zr(t), ur(t),0,1).

Assumption 6: For each ¢t € T, the set Z(t) is closed and
(xr(t),ur(t)) € Z(t). The set U is compact.

We define the shifted stage cost as £(z,u,t) := £(z,u,t) —
(2, (t), ur(t),t). We also define

N+t-1

Z Uz, (k

Assumption 7: Foreacht € T and x € X(t), the set

kp(x,t) :={ueU(t) |zt = f(x,u,0,t) € Xp(t + 1),
Vi@t t+1) < Vya,t) — l(z,u,0)}

Vi (z,t) == Vy(x,t)

(), k).

is nonempty and Vy(z,(t),t) = 0.

Assumption 8: The functions /(z,u,t) and Vj(x,t) are uni-
formly bounded from below for (x,u) € Z(t) and = € X;(t),
respectively, forall ¢t € T.

Risbeck and Rawlings [30] establish the following result.

Theorem 5 (Asymptotic performance of economic MPC):
If Assumptions 5-8 hold, then the nominal system z =
fe(x,0,t) satisfies

| T
li — 0z ), k) <0
mow g 3 4 )<

in which x(k) = ¢(k; x(t),0,t) and u(k) = ky(x(k), k), for

all z(t) € Xy(t)andt € T.

Proof: See Risbeck and Rawlings [30, Appendix A]

We seek an analogous performance result for the perturbed
system. We require the following assumption.

Assumption 9: For the perturbed system z+ =
there exists finite b1, ba € R, such that

Vi (felz,w, t),t +1) < Vi(z,t) + bi|l(z, iy (2, 1), )| + by

felz,w,t),
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forallz € Xn(t), w e Wy,andt € T.

Note the similarities to Assumption 4. The cost relative to
the reference trajectory may increase based on the stage cost at
the current state and some arbitrary constants. We observe an
analogous requirement: The cost increase due to a disturbance
cannot grow faster than the cost decrease without a disturbance.
Furthermore, if £(x, u,t) > asz(|z — 2,.(t)|), e.g., is a tracking
cost, Assumption 4 for V' (x, t) := V(x, ) implies Assumption
9. With this assumption we establish the following result.

Theorem 6 (Robust asymptotic performance of economic
MPC): Let Assumptions 2, 3, and 5-9 hold. Then for the closed-
loop system 2 = f.(z,w,t); w € W in which ¢ = Pr(w €
W) there exists 6 € (0, 1] and 5(-) € K, such that

1 t+7T-1
limsup E|; | > Ua(k),u(k), k)| <5(e)  (25)
T—o0 —t

in which z(k) = ¢(k; z, wy, t) and u(k) = sn (z(k), k), for all
e€0,0],z € Xy(t),andt € T.

Proof: Choose x € Xn(t), t€T and denote at =
fe(z,w,t). If there is no disturbance (w = 0), then the
standard cost decrease applies (See Risbeck and Rawlings [30,
Appendix A)), i.e.,

Vﬁ(nﬁ,t—i— 1)< VI(\)[(CE,t) — Z(me(%t),t).

‘We combine this bound with Assumption 9 using the indicator
function of W; (same as Theorem 4), giving

Vﬁ,(w*,t +1) < Vlg(x,t) — (1 — Iw, (w)l(z, kn(z,1),1)
+ Iy, (w) (b1 |0(z, ki (,t),8)| + b2) .

From Assumption 8, there exists m € R, such that
l(x,u,t) >m for all (z,u)€ Z(t) and ¢t € T. Therefore,
|6(x,u,t)| < €(x,u,t) + 2|m|. Taking the expected value and
combining terms gives

Eo[Va(a™ ¢+ 1)] = Va(z,1)
< —(1—¢e—be)l(z, kn(x,t),t) + bze

in which b3 := by + 2by|m|. We choose § < 1/(1+ b;) and
note ¢ € (0, 1], which gives

E‘x[vj\o,(x+7t+ )] — Ve(z,t)

< —byl(z, Ky (w,t),t) + bze (26)

with by := (1 — (1 + b1)J). Note that the choice of = and ¢ was
arbitrary. and thus. (26) holds for any x € Xy (t) andt € T.

From z(t) € Xn(t) and ¢t € T, we define the closed-loop
trajectory as x(k) := ¢(k; x(t), wg, t) and the input u(k) :=
kn(xz(k), k) for all k € I, By (26) and the properties of
iterated expectations [9, p. 35] we may write

< by [U(a(k), u(k), k)] + bae

for all k£ € I>,. We take the sum fromtto¢t +7 — 1 withT" €
I, divide by 7', and rearrange

T+t-1

Ez) b% Z E(l‘(k)»u(k)a/f)]
o=t

_ Wn@®):8) — B[V (2(T),T)]
- T
By Assumption 8, there exists some finite M/ € R, such that
VY (z(T),T) > M and we have

+ bg&‘.

Ejo )

1 T+t—1 B

7 ]; é(x(km(k),k)]
S
SW 5(e)

with ¥(e) = Z—ie € K. If we take the lim sup of this equation
as T' — oo the initial cost and M vanish and we have (25).

As the probability of the disturbance occurring becomes
larger, the expected average cost can become worse than the ref-
erence trajectory. Conversely, as ¢ — 0 we return to the nominal
guarantee for the system (in expected value). We note similarities
of the left-hand side to the results in Chatterjee and Lygeros [4]
for stochastic MPC and Bayer et al. [3] for robust economic
MPC. However, the nominal MPC algorithm presented in this
article does not require any stochastic information about the
disturbance and yet still provides a stochastic form of robustness
to these disturbances.

Remark 4: The assumptions for Theorem 6 admit systems
with integrality constraints® on inputs, discontinuous optimal
value functions (even along the reference trajectory), and state
constraints provided they do not affect Assumption 3. We also
require no assumptions of dissipativity. As such, the conditions
for this result are mild and the performance guarantee is partic-
ularly relevant to production scheduling applications.

Satisfying Assumptions 3 and 7 simultaneously, however,
may require long horizons and modifications to the problem
formulation. In addition, verifying Assumption 9 is nontrivial.
Again, if X'y is bounded, Assumption 9 holds for b; = 0 and a
sufficiently large value of by. However, a bounded X that satis-
fies Assumption 3 may not exist for certain systems. Therefore,
we consider a set of conditions for which Assumption 9 holds
without a bounded X .

Lemma 7: Let Assumptions 3, 5, 6, and 8 hold. Assume there
exists a set A C X, such that:

1) there exists e1, es > 0 satisfying
|f(a:,u,w,t)|A S 61|I‘A+€2 (27)

forall (z,u) € Z(t),w e W,andt € T,
2) there exists ¢y, co,a > 0 and dy, de > 0 satisfying

c1lzl — di < 0w, u,t)| < eolz|% + do

Vi(z,t) < cala| + do

3Constraints that require a variable to be an integer, e.g., u € {0, 1}.
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for all (z,u) € Z(t) and x € X(t), respectively, for all
teT.
Then Assumption 9 holds.
Proof: Forall x € Xn(t) and t € T, we have from (27) that
forall k € Tj; ny,

k—t

(k2w t) 4 < el Malat e el < eslrfat e
=0

in which e3 := max{e;, e} and e4 := Neses. We bound the
optimal value as follows:

t+N—-1

Ve(z,t) < > Ua(k),u(k), k) + V(x(t + N),t + N)
k=t
t+N

<Y colw(B)| + dy
k=t

< Nea(eslxla + eq)® + Nda

with z(k) := ¢(k, z,u’(z, t),t). Choose z € Xn(t), w € W,
and t € T. Define 7+ := f.(x,w,t). We bound the optimal
value at 1 and ¢ + 1 as follows:

Va(zt,t+1) < Nea(esla|a+ eq)® + Nda
< Neg(eser|r|a + ezex +eq) + Ndo
§ NCQ(26361)G‘$|:14+d3

in which d3 := Nco(2e3eq + 2e4)* + Nds. Then, we use the
lower bound on the stage cost

V(e t +1) < by|l(w, sy (z,t), 1) + bidy + d3

with by := Nca(2e3e1)?/cy. From Assumption 8, we know that
there exists some M € R satisfying M < V3 (z,t). Thus

Va (@t t+1) <Vy(z,t) + bill(z, kn (2, 1), )] + by

with by := max{b;d; + ds — M, 0}.

The cost bound requirements for Lemma 7 are analogous to
the exponential cost bounds employed in Lemma 1. However,
the constants dq,d> > 0 can be used to address the cost of all
bounded modes of the state. We can use the set .A to remove or
ignore modes of the state that incur bounded or zero cost from the
power-law bounds of condition 2). Thus, the power-law bounds
in condition 2) need to apply to only the unbounded modes of
the state that incur unbounded cost on the set X. If /(z, u,t)
and V(x,t) are linear or quadratic functions of the unbounded
modes of x these cost bounds hold. Thus, the bound in (27)
requires that the size of unbounded modes in the successor state
are bounded by an affine function of the unbounded modes in
the current state. In particular, the bounds in Lemma 7 apply to
linear systems with linear cost functions, which are a common
feature in closed-loop scheduling problems [32].

B. Robust Stability

If robust stability is desirable, we require the system to be
strictly dissipative. We define time-varying dissipativity with
respect to the reference trajectory x,. as follows.

Definition 7 (Strict dissipativity): The time-varying system
xt = f(z,u,0,t)is strictly dissipative with respect to the refer-
ence trajectory x, and supply rate s(x, u,t) : X x U x T — R
if there exists a storage function A(z,t) : X x T — R satisfying
Mz (t),t) = 0and &y (-) € Ko, such that

)‘(f(mvuvoat)’t"_ 1) - )\(l‘,t) < s(x,u,t) - 641(|$ - xT(t)D

forall (z,u) € Z(t)and t € T.

Assumption 10 (Strict dissipativity): The nominal system (2)
is strictly dissipative with respect to the reference trajectory x,
and the supply rate s(z,u,t) = (z,u,t) — L(z.(t), u.(1),1t).

Assumption 11 (Uniform weak controllability): There exists
a2(+) € K, such that the optimal value function and storage
function satisfy V3 (z,t) + A(wz,t) < aa(|z — 2,(t)]) for all
x € Xy(t)andt € T.

These assumptions are typically required, in some form, to en-
sure nominal stability of economic MPC. Note that the optimiza-
tion problem we are solving in economic MPC is stated in (7)
and does not require any knowledge of the storage function A(+).
Next, we redefine the system of interest in terms of deviation
from the reference trajectory. We define the deviation variables
y(t) = z(t) — . (t), sets Yn(t) := Xn(t) ® {—x,(t)}, and
system

y* = fely,w,t) = fe(y + 2,(),w,t) —z.(t+1) (28)

forallt € T.Thus,ify(t) = 0, then z(t) = x,.(t). Furthermore,
we define the rotated optimal value function as

V(Y. 1) = VR (y + 2 (1), 8) + Ay + 2. (t), 1).

Using these assumptions, we state a nominal stability theorem
modified from Risbeck and Rawlings [30, Th. 2].

Theorem 8: Let Assumptions 5-7, 10, and 11 hold. Then the
sets (Vn(t))ier and nominal system y* = f.(y,0,t) satisfy
Assumption 1 with V(z, ) as the Lyapunov function, o (s) =
as(s) = ai1(s), and as(s) = aa(s), i.e., the origin of the devi-
ation system is asymptotically stable on the sets (Y (t))¢eT for
the system y+ = f.(y,0,1).

Proof: See Risbeck and Rawlings [30, Appendix B].

Since our Lyapunov function for this system is now f/[(\), (z,t),
Assumption 4 must hold for V (z,t) := V3 (x,t). As an alter-
native, we may use the following assumption.

Assumption 12: There exists a, ci,co > 0, such that &;(s)
and & (s) from Assumptions 10 and 11 satisfy ¢; s* < &y (s)
and co s* > @s(s). Furthermore, there exists ej, ea > 0, such
that | f(z,u, w,t) — f(x,u,0,t)] <eplz|+ e forall (z,u) €
Z(t),t € T,andw € W.

Remark 5: Tf £(z,u,t) is a tracking cost with respect to the
reference trajectory x,, then we satisfy Assumption 10 with
A(-) = 0. Thus, tracking MPC is a special case of (dissipa-
tive) economic MPC. More detail on the nominal stability of
tracking MPC can be found in [29, Ch. 2]. Furthermore, if we
use quadratic stage and terminal tracking costs we satisfy the
exponential cost function bounds required by Assumption 12.

The reference trajectory for the closed-loop system is robustly
stable in probability under these assumptions.

Theorem 9 (Robustness of economic MPC to large, infrequent
disturbances): Let Assumptions 2, 3, 5-7,and 10-12 hold. Then

(29)
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the origin is RASiP on the sets (Y (t)) e for the system y™ =
f_c(y,w,t); we W.

Proof: From Theorem 8, Assumption 1 is satisfied with
a1(s) = az(s) = ¢1 s* and as(s) = ¢z s*. From Assumption
12 and Lemma 1 we can establish that Assumption 4 is satisfied.
Therefore, applying Theorem 4 completes the proof.

VI. PRODUCTION SCHEDULING EXAMPLE

We consider a simple scheduling example to illustrate the
relevance of this analysis approach to an industrial application.
The goal is to meet demand of the product 1 (P1) by converting
raw material (assumed to be in abundant supply) to P1 through
task 1 (T1) carried out on a single available unit. Task 1 may
have a batch size between 5 and 16 kgs of P1 and has a nominal
processing time of 2 h. The demand for P1 is 4 kgs per hour
and storing P1 costs $10(/kg/hr). If the demand is not met, the
facility accumulates backlog that must be offset at later times.
The penalty for maintaining backlog is $100(/kg/hr).

To model this system, we use a state space scheduling model
developed by Subramanian et al. [32]. We define a binary
decision variable W that is unity if T1 starts at time ¢. We also
define the continuous input B that represents the batch size. To
track these decisions in the state of the system, we lift W and B
with the state variables W,,, B,, for n € {0, 1,2}. The value of
n represents the number of hours the task has progressed (e.g.,
at n = 2, the task is complete). We also consider disturbances
in the form of 1-h delays (Y). Note that this is an inherently
discrete-valued (large) and infrequent disturbance in this model,
ie,Y €{0,1}.4

The dynamics for this part of the system are represented in
the following equations:

Wi = (W +Wo)Y

Wit = (W + o)
Wy =Wi(1-Y)
BO+ = (B + Bo) Y

Bf =(B+By)(1-Y)+ BY

1-Y)+ WY

Bf =Bi(1-Y).

Note that if Y = 1, the progress of the task does not move
forward. Inventory and backlog (unmet demand) of P1, S, and
U, respectively, are integrators influenced by the batch size of
task 1 ending, shipments to meet demand (H ), and demand &£(¢).
We also allow up to 1 kg of backlog to be outsourced or canceled
each hour with the decision variable C'

St=S+By— H
Ut =U+¢&(t) - C—H.

In general, demand varies with time, but we have £(t) = 4.
Next, we require certain constraints to enforce the realism of
this scheduling model. Specifically, U > 0, S € [0,20], W €

4The discrete-time representation of the scheduling model results in discrete-
valued delays.

+ [N |
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Inventory Tasks
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0 50

Sales

Time (hr)

Fig. 5. Closed-loop trajectory for production facility. The top figure is a
Gantt chart with blue blocks representing T1 being executed and gray
blocks representing 1-h task delays. The inventory, backlog, sales, and
canceled orders at each hour are shown in the lower plots. The control
horizon, or schedule, for the next 8 h is shown in faded colors.

{0,1}, C € [0,1], H € [0,20], and the constraint Wy + Wy +
W < 1 prevents T1 from being run twice at the same time. We
also constrain B to be within the batch size constraints if T1 is
starting and zero otherwise, i.e., 5SW < B < 16 W.

Now we have a discrete-time, state-space representation of
the system with o = [Wy, Wy, Wo, By, By, B2, S, U], u =
[W,B,C,H|", w=[Y] and a dynamic evolution equation,
zt = f(x,u,w,t). We have state and input constraints (z, u) €
Z that also enforce discreteness of . We define the stage cost
as £(z, u,t) := 10(S) + 100(U) + 800(C).

In the nominal case, the facility can meet the demand while
operating at 50% capacity. For an 8-h horizon, the optimal
periodic solution to this scheduling problem is to run T1 every
two hours at a batch size of 8 kg. Demand is met every hour
and an inventory of 4 kg is retained every other hour. For
economic MPC, we consider an 8-h horizon and use this periodic
solution as the reference trajectory. We enforce an exact terminal
constraint for all state variables except backlog. For backlog, the
terminal region includes any nonnegative real number, R >, and
we use Vi (x) = 900(U) + 100(U?).

Note that by allowing backlog to take any nonnegative value,
the set X' () is now robustly positive invariant and Assumption
3 is satisfied. Assumptions 5, 6, and 8 are satisfied by the
problem setup. Assumption 7 is satisfied by the terminal cost
and constraint combination.> We can establish that Assumption
9 is satisfied by using Lemma 7 and the integrator dynamics of
backlog.

Clearly, if a one hour task delay occurs every hour, no P1 is
ever produced. A more realistic scenario includes task delays
that occur infrequently. Hence, we restrict Pr(Y = 1) = ¢ and
consider 100 trials for multiple values of €. Each trial starts with
an initial backlog of 40 kgs.

An example closed-loop trajectory is shown in Fig. 5 for e =
0.3. As the closed-loop trajectory evolves, the backlog decreases
despite a few task delays. Once the backlog reaches a region
around zero, infrequent task delays force the backlog to increase

SWe establish this fact using the terminal control law r s (z,t) == u,(£) +
[0,0, min{U,1},0]".
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Fig. 7. Sample average A(T) for the closed-loop trajectory of 100

trials with different values of Pr(Y = 1) = e.

but, on average, the facility can recover before another delay
occurs.

In Fig. 6, the backlog 95% confidence bound for 100 trials
is plotted for multiple values of €. For ¢ < 0.45, we observe
convergence of the confidence bound to a region around zero.
The size of this region increases with increasing €. For e = 0.5,
the sample average backlog diverges and we presume that
0.45 < ¢ < 0.5. Again, the qualitative results of our simulation
correspond exactly to the theory for large, infrequent distur-
bances. However, we do not claim that this system is strictly
dissipative, and this result does not hold for all state variables.

In general, dissipativity of the stage cost is not a requirement
or achieved for closed-loop scheduling formulations. Instead,
the main concern is closed-loop economic performance. To
quantify this performance, we define the average cost from 0
to 7" as follows:

1 T-1 B
A(T) = > l(x(k),uk), k).
k=0

Note that A(T) is identical to the average cost considered
in Theorem 6. In Fig. 7, we plot the sample average of A(T")
as a function of 1" for different values of . As T increases,
the sample average of A(T') decays toward some nonnegative
constant specific to each value of €. As ¢ is increased, this
constant increases, until at ¢ = 0.5 the sample average diverges.
In short, the system exhibits behavior identical to Theorem 6. As
expected from the previous discussion for backlog, we presume
0.45 < 6 < 0.5.

VIl. CONCLUSION

In this article, we developed robustness results for closed-loop
systems subject to a class of large, infrequent disturbances not

typically considered in robustness analysis. In particular, we
considered disturbances sufficiently large to exclude nominal
robustness results, but, due to their infrequent nature, still ad-
mit stochastic descriptions of robustness. For recursively fea-
sible and nominally stabilizing (economic) MPC controllers,
we demonstrate that a specific upper bound on the (rotated)
optimal value increase of the perturbed system is sufficient to
guarantee robust asymptotic stability in probability for large,
infrequent disturbances. In the absence of dissipative stage costs,
we establish a performance bound in expectation for economic
MPC subject to large, infrequent disturbances. We demonstrated
the relevance of this analysis to practical problems through an
application of economic MPC to production scheduling.

We emphasize that these stochastic robustness results are
achieved by nominal MPC formulations without the need to
include stochastic information in the optimization problem. Al-
though stochastic MPC implementations may improve upon the
robustness achieved by nominal MPC, in the form of larger § and
smaller v, (+), the results in this work suggest that nominal MPC
formulations provide adequate stochastic robustness for large
but sufficiently infrequent disturbances. Indeed, the inherent
robustness of nominal MPC to this new class of disturbances
may be sufficient in many applications.

There exist numerous future directions for this work. First, we
intend to combine these results with typical robustness results
for small, persistent disturbances and develop a more compre-
hensive theory of robustness for MPC. An additional future
direction is to expand the set of systems and disturbances that
are guaranteed to satisfy Assumptions 4 and 9 without bounded
X . We presented two examples that satisfy these assumptions,
despite not satisfying the requirements of Lemma 1 or 7. There
are likely additional versions of Lemma 1 and 7, particularly
for neutrally stable systems with input constraints. To consider
large, infrequent disturbances, Assumption 3 requires that the
optimal control problem remains feasible subject to any real-
ization of these large disturbances. In practice, this requires that
the optimal control problem be designed for recursive feasibility
subject to these disturbances. We accomplish this goal in the
production scheduling example by careful selection of state
constraints and terminal conditions. Thus, an important avenue
of research involves ensuring recursive feasibility of MPC ap-
plied to practical problems, particularly through well-designed
terminal conditions.
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