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Nonlinear Stochastic Model Predictive Control:
Existence, Measurability, and Stochastic

Asymptotic Stability
Robert D. McAllister and James B. Rawlings , Fellow, IEEE

Abstract—In this article, we establish a collection of new
theoretical properties for nonlinear stochastic model pre-
dictive control (SMPC). Based on the concept of stochastic
input-to-state stability (SISS), we define robust asymptotic
stability in expectation (RASiE) and establish that nonlin-
ear SMPC renders the origin of the closed-loop system
RASiE. Moreover, we establish several new foundational
results that have not been addressed in previous research.
Specifically, we verify that, under basic regularity assump-
tions, a solution to the SMPC optimization problem exists
and the closed-loop trajectory is Borel measurable thereby
guaranteeing that all relevant stochastic properties of the
closed-loop system are indeed well-defined. We present a
numerical example to demonstrate the nonintuitive behav-
ior that can arise from nonlinear SMPC.

Index Terms—Stability of nonlinear systems, stochas-
tic systems, stochastic model predictive control (SMPC),
stochastic optimal control.

I. INTRODUCTION

M
ODEL predictive control (MPC), under appropriate as-

sumptions, guarantees asymptotic stability of the nomi-

nal closed-loop system, i.e., the system model is perfect and no

disturbances occur [32, ch 2.]. In practice, however, disturbances

and model mismatch are pervasive, and therefore, some degree

of robustness is required for successful industrial implemen-

tation. Although nominal MPC does not consider uncertainty

explicitly in the problem formulation, the inherent robustness

afforded by feedback is often sufficient for successful imple-

mentation of MPC. The inherent robustness of MPC has been

established over the past two decades [1], [11], [17], [27], [41].

Stochastic MPC (SMPC) aims to improve upon the inherent

robustness of nominal MPC by including a probabilistic descrip-

tion of uncertainty in the optimal control problem. In general, the

SMPC optimization problem minimizes the expected value of
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the cost function subject to both deterministic and probabilistic

constraints on the state variables [7], [21], [25]. By defining the

optimal control problem based on stochastic properties of the

system, the complexity of the optimization problem and closed-

loop analysis increases significantly relative to the nominal MPC

problem. Consequently, the majority of results for SMPC are

restricted to linear systems. While there is an extensive body

of literature devoted to approximating and solving SMPC and

stochastic optimal control problems (see [25]), we focus this

article on the closed-loop properties of SMPC.

Primbs and Sung [30] consider linear systems with mul-

tiplicative uncertainty such that the effect of the disturbance

vanishes at the origin. By assuming that the terminal cost is

a global stochastic Lyapunov function, the authors establish

that the origin is asymptotically stable with probability one for

the closed-loop system. Similarly, we can established stabil-

ity in expectation of SMPC for unconstrained linear systems

with additive disturbances [28]. For constrained linear SMPC

subject to bounded disturbances, Cannon, Kouvaritakis, and

coauthors show that we can construct a terminal set and cost

that ensure recursive feasibility and stability in expectation of the

closed-loop system [3]–[5], [13]. Lorenzen et al. [19] propose a

less restrictive constraint tightening approach and establish that

linear SMPC asymptotically stabilizes, with probability one, the

minimal robust positively invariant set for the system. Similar

results are established in other subsequent papers for modified

SMPC algorithms [12], [35].

For nonlinear SMPC, Chatterjee and Lygeros [6] establish, for

unconstrained nonlinear systems, that the expected value of the

optimal cost along the closed-loop trajectory is bounded if the

terminal cost is a global stochastic Lyapunov function. Mayne

and Falugi [22] extend these results to address constrained

nonlinear systems subject to bounded, stochastic disturbances,

and with terminal constraints, require the terminal cost to be only

a local stochastic Lyapunov function. Under certain viability and

stochastic controllability assumptions, nonlinear SMPC without

terminal conditions is also stabilizing, but these assumptions are

difficult to verify for nonlinear systems [20].

Given its early stage of development, there are naturally many

limitations to the current theory of nonlinear SMPC. All results

for the convergence of the optimal cost, and therefore, closed-

loop state, are restricted to systems that admit an exponential

decrease. Although useful for quadratic stage costs, these bounds

do not admit a general class of nonlinear stage costs. As we
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show in the subsequent sections, the extension of results for an

exponential optimal cost decrease to an asymptotic optimal cost

decrease is nontrivial. Furthermore, the established properties

for nonlinear SMPC are limited to stability in expected value

for the closed-loop system. If we assume that the disturbance

vanishes at the origin, we can recover asymptotic stability in

probability, but this assumption is quite restrictive and omits

even linear systems with additive disturbances. To the best of our

knowledge, there is currently no result establishing any notion

of (robust) asymptotic stability of nonlinear SMPC without

requiring the disturbance to vanish at the origin.

Although the original stochastic stability results developed by

Kushner [15], [16] are frequently cited in the SMPC literature,

there is a noticeable gap between the stability results available

for SMPC and the current state of the nonlinear stochastic stabil-

ity theory. The concepts of stochastic Lyapunov functions and

global asymptotic stability in probability (GASiP) were refined

significantly by Florchinger [8]. Teel and coworkers advanced

these results further by establishing that stochastic Lyapunov

functions ensure a stronger definition of GASiP that requires

uniform convergence and developed converse Lyapunov theo-

rems for this stochastic definition of stability [10], [37]–[39].

Analogous to input-to-state stability (ISS) for deterministic sys-

tems, stochastic input-to-state stability (SISS) was also defined

and established using SISS-Lyapunov functions in [14], [18],

[36], and [40]. These works, however, assume that the effect

of the stochastic disturbance vanishes once the state of the

system reaches the origin (i.e., a multiplicative disturbance)

and typically require the closed-loop system to be continuous

(i.e., defined by a continuous function). SMPC applications, by

contrast, often consider additive disturbances that do not vanish

at the origin. Furthermore, SMPC may define a discontinuous

control law, and therefore, produces a discontinuous closed-loop

system. Consequently, the results from the stochastic stability

theory are not applicable in their current form to the nonlinear

SMPC problem.

For nominal MPC under basic regularity assumptions, we

can establish that the optimal control problem is well-defined,

i.e., the minimum is attained [32, Prop. 2.4]. For nonlinear

SMPC, there are no analogous results in the literature. The

authors either assume explicitly that the “minimization prob-

lem is well-defined” or omit this discussion. Furthermore, the

expected value of the closed-loop system is used in SMPC

analysis without establishing that such a property is in fact

well-defined. Although both of these basic properties may be

considered likely to hold for the SMPC problem, glossing over

the existence question entirely is not ideal. By contrast, these

properties are well-established in the field of stochastic optimal

control [2].

In this article, we establish and refine several foundational

properties for nonlinear SMPC that are currently absent from the

literature. We begin by establishing that, under basic regularity

assumptions, the nonlinear SMPC optimization problem and all

relevant stochastic properties (e.g., expected value of the optimal

cost) are well-defined for the closed-loop system. We then define

a type of SISS-Lyapunov function similar to the definition

used in the nonlinear stochastic stability theory. We establish

that nonlinear SMPC, under suitable assumptions, admits an

SISS-Lyapunov function and renders the origin of the closed-

loop system robustly asymptotically stable in expectation

(RASiE). We conclude with an example that illustrates the

implications of this analysis and demonstrates the nonintuitive

closed-loop behavior that nonlinear SMPC may exhibit.

Preliminary results can be found in [24]. This article, however,

is a more thorough investigation of these topics. Notably, we

address stochastic asymptotic stability instead of stochastic ex-

ponential stability, which for stochastic Lyapunov functions is a

nontrivial extension. We also discuss the fundamental properties

of existence and measurability in greater detail and provide

proofs of these properties in the Appendix. In addition, we derive

performance guarantees for economic applications of SMPC that

do not rely on a lower bound for the stage cost (see Theorem 12)

and provide a detailed discussion of these results in comparison

to previous results for SMPC.

Notation: Let I and R denote the integers and reals. Let

superscripts and subscripts denote dimensions and restrictions

(e.g., R
n
≥0 denotes nonnegative reals of dimension n). Let

| · | denote the Euclidean norm. For a closed set S ⊆ R
n and

x ∈ R
n, |x|S := miny∈S |x− y| denotes the Euclidean point-

to-set distance. Let IS(x) denote the indicator function for a

set S, i.e., IS(x) = 1 for all x ∈ S and IS(x) = 0 otherwise.

A function f : R
n → R is lower semicontinuous if and only

if the set {x ∈ R
n : f(x) ≤ y} is closed for every y ∈ R. The

function ³ : R≥0 → R≥0 is in class K if it is continuous, strictly

increasing, and ³(0) = 0. The function ³ : R≥0 → R≥0 is in

class K∞ if ³(·) ∈ K and unbounded, i.e., lims→∞ ³(s) = ∞.

A function ´ : R≥0 × I≥0 → R≥0 is in class KL if for every

k ∈ I≥0, the function´(·, k) is in classK, and for fixed s ∈ R≥0,

the function ´(s, ·) is nonincreasing and limk→∞ ´(s, k) = 0.

Let P(Ω) denote the power set and B(Ω) denote the Borel

field of some set Ω. A set F ⊂ R
n is Borel measurable if F ∈

B(Rn). A function f : R
n → R

m is Borel measurable if for

each open set O ⊂ R
m, the set f−1(O) := {x ∈ R

n : f(x) ∈
O} is Borel measurable, i.e., f−1(O) ∈ B(Rn). For two metric

spaces X and Y , a set-valued mapping denoted S : X ⇒ Y is

the assignment of each x ∈ X to a set S(x) ⊆ Y . A set-valued

mapping S : X ⇒ Y is Borel measurable if for every open set

O ⊆ Y , the set S−1(O) := {x ∈ X : S(x) ∩O 
= ∅} is Borel

measurable, i.e., S−1(O) ∈ B(X) [33].

II. STOCHASTIC MODEL PREDICTIVE CONTROL (SMPC)

A. Stochastic System

We consider the following discrete-time system:

x+ = f(x, u, w) f : X × U × W → X (1)

in whichx ∈ X ⊆ R
n is the state,u ∈ U ⊆ R

m is the controlled

input, w ∈ W ⊆ R
p is a disturbance (random variable), and x+

denotes the successor state.

Let (Ω,F , P ) be a probability space for the sequence w∞ :
Ω → W

∞ of random variables, i.e., w∞ := {w(i)}∞i=0 for

w(i) : Ω → W . We define the subsequence wi : Ω → W
i as

wi := (w(0), . . . , w(i− 1)). Let (F0,F1, . . . ) denote the natu-

ral filtration of the sequencew∞, that is,Fi ⊂ F is all sets of the

form {ω ∈ Ω : wi(ω) ∈ F} forF ∈ B(W i). We also define the

expected value of the Borel measurable function g : W
i → R
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as

E [g(wi)] :=

∫

Ω

g(wi(ω))dP (ω).

We make the following standard assumption for the distur-

bance in SMPC.

Assumption 1 (Disturbance): The disturbances w(i) : Ω →
W are independent and identically distributed (i.i.d.) in time,

zero mean (E[w(i)] = 0∀i ∈ I≥0), random variables. The sup-

port W is compact and contains the origin. Each random variable

has a known and equivalent probability measure μ : B(W ) →
[0, 1] defined such that μ(F ) = P ({ω ∈ Ω : w(i;ω) ∈ F}) for

allF ∈ B(W ) and i ∈ I≥0. The second moment ofw(i) is finite

and the covariance matrix is defined as Σ = E[w(i)w(i)
] for

all i ∈ I≥0.

Note that, as is typical with SMPC formulations, we require

bounded W to allow for compact input (and state) constraints

and ensure that the compact terminal set is robustly positive

invariant [22]. Requiring bounded W is a strong assumption

and a limitation of this approach.

For the i.i.d. random variables (w(i), w(i+ 1), . . . , w(i+
N − 1)) and N ∈ I≥1, their joint distribution measure μN :
B(W N ) → [0, 1] is defined as

μN (F ) = μ(Fi)μ(Fi+1) . . . μ(Fi+N−1)

for allF = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(W N ). We define con-

ditional expected value such that

E [g(wi+1) | Fi] (ω)

:=

∫

W

g(w(0;ω), . . . , w(i− 1;ω), w)dμ(w)

for any Borel measurable function g : W
i+1 → R and all i ∈

I≥0.

B. Nonlinear SMPC Formulation

In the following sections, we drop the term “nonlinear” and

refer to all nonlinear SMPC as simply SMPC, unless we are

discussing key distinctions between linear and nonlinear SMPC.

Although it seems convenient to use the same probability space

defined for the stochastic system to discuss the SMPC formu-

lation, we separate the stochastic system and the stochastic

model of that system used for SMPC. This compartmentalization

allows us to discuss the SMPC problem, at least initially, as

a time-invariant problem instead of one conditioned on the

filtrations Fk of the stochastic system.

Instead of selecting a trajectory of inputs u, we intend to

solve for a trajectory of control policies. We define the policy π :
X × V → U in which x ∈ X is the current state of the system

and v ∈ V ⊆ R
q are the parameters in the control policy. Thus,

the resulting system of interest is defined as

x+ = fπ(x, v, w) = f(x, π(x, v), w). (2)

We use φ̂(k;x,v,w) to denote the state solution of (2) at time k,

given the initial condition x, the trajectory of control policy pa-

rameters v = (v(0), v(1), . . . , v(N − 1)), and the disturbance

sequence w ∈ W
N .

We consider the case of hard input and state constraints, i.e.,

(x, u) ∈ Zh ⊆ X × U . In addition, we allow (one step ahead)

probabilistic constraints on the state defined as

Pr
(

f(x, u, w) ∈ X̃

)

≥ 1− ε (3)

for a set X̃ ⊆ R
n and constant ε ∈ [0, 1]. We observe, however,

that this method to represent probabilistic constraints appears

inconsistent with other constraints. Thus, we reformulate this

constraint using the function

G(x, u) := 1−

∫

W

I
X̃
(f(x, u, w)) dμ(w)

and the constraint set Z̃ε := {(x, u) : G(x, u) ≤ ε}. Note that

(x, u) satisfy (3) if and only if (x, u) ∈ Z̃ε. Then, we define the

combined hard and probabilistic constraints as

(x, u) ∈ Z := Zh ∩ Z̃ε.

We note that calculating or approximating Z̃ε is a difficult and

important research problem that we obscure with this reformu-

lation. However, this reformulation is useful for the analysis of

the SMPC problem. We subsequently establish that Z is in fact

closed under basic regularity assumptions.

For SMPC with a horizon of N ∈ I≥1, the mixed constraint

Z, and an additional terminal constraint Xf ⊆ X, we have the

set of admissible (x,v) pairs defined as

ZN := {(x,v) ∈ X × V
N :

(x(k), π(x(k), v(k))) ∈ Z ∀w ∈ W
N , k ∈ I[0,N−1]

x(N) ∈ Xf ∀w ∈ W
N}

in which x(k) = φ̂(k;x,v,w). From this set, we define the set

of admissible parameter trajectories given x ∈ X as VN (x) :=
{v ∈ V

N : (x,v) ∈ ZN} and the set of admissible initial states

as XN := {x ∈ X : VN (x) 
= ∅}.

Remark 1: The constraint (3) is enforced in ZN for all

k ∈ I[0,N−1]. These one-step ahead constraints, i.e., constrain-

ing Pr(x(k + 1) ∈ X̃) given x(k), are more restrictive than

the multistep ahead constraints sometimes used in SMPC, i.e.,

constraining Pr(x(k + 1) ∈ X̃)givenx(0). Using these one-step

ahead constraints, we can ensure recursive feasibility of the op-

timization problem and guarantee that the closed-loop trajectory

satisfies Pr(x(k) ∈ X̃) ≤ 1− ε for all k ∈ I≥0.

To characterize the performance of each feasible parameter

and state trajectory, we define a stage cost � : X × U → R and

a corresponding terminal cost Vf : X → R≥0 for the SMPC

problem. With these costs, we define the function

JN (x,v,w) =

N−1
∑

k=0

�(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) := φ̂(k;x,v,w), (x,v) ∈ ZN , and w ∈ W
N .

For SMPC, we define the cost function based on the expected

value of JN (·), i.e., we define

VN (x,v) :=

∫

W N

JN (x,v,w)dμN (w).
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The SMPC problem for any x ∈ XN is defined as

PN (x) : V 0
N (x) = min

v∈VN (x)
VN (x,v) (4)

and the optimal solutions for a given initial state are defined

by the set-valued mapping v
0 : XN ⇒ V

N such that v0(x) :=
argmin

v∈VN (x) VN (x,v). Note that v0(x) is a set-valued map-

ping because there may be multiple solutions to PN (x).

C. Assumptions

We require some basic regularity assumptions for the SMPC

problem.

Assumption 2 (Continuity of system and cost): The func-

tions f : X × U × W → X, π : X × V → U , � : X × U →
R, and Vf : Xf → R≥0 are continuous. The function �(x, u)
is lower bounded for all (x, u) ∈ Zh. Furthermore, we have that

f(0, 0, 0) = 0, �(0, 0) = 0, and Vf (0) = 0.

Assumption 3 (Properties of constraint sets): The sets Zh and

X̃ are closed and contain the origin. The sets U , V , Xf ⊆ X are

compact and contain the origin.

Note that we require V , in addition to U , to be compact.

Since we intend to optimize over the set VN (x) for a nonlinear

(potentially noncoercive) function, compactness of V is required

to ensure PN is well-defined.

To ensure that the stochastic optimal control problem remains

(robustly) recursively feasible and achieves certain performance

objectives, we require a terminal control law assumption analo-

gous to the one used in nominal MPC.

Assumption 4 (Terminal control law): There exists a continu-

ous terminal control law κf : Xf → U such that for all x ∈ Xf

f(x, κf (x), w) ∈ Xf ∀w ∈ W (5)

Vf (f(x, κf (x), 0)) ≤ Vf (x)− �(x, κf (x)). (6)

Furthermore, (x, κf (x)) ∈ Zh, Xf ⊆ X̃, and π(x, 0) =
κf (x) for all x ∈ Xf .

In contrast to [22, Assumption 5.2], we requireVf (·) to satisfy

a cost decrease condition for only the nominal system, i.e.,

w = 0. We also note that by assuming Xf ⊆ X̃, and that X̃ is

robustly positive invariant, we ensure that the probabilistic con-

straint is satisfied with probability one for all x ∈ Xf . The main

difference between the terminal set assumptions for stochastic

and nominal MPC is that we explicitly require robust positive

invariance of the terminal set through (5) for the SMPC problem.

However, robust positive invariance of the terminal region is of-

ten a requirement to establish the inherent robustness of nominal

MPC [1]. Thus, none of the requirements in Assumption 4 are

particularly strong relative to the nominal MPC problem.

To construct this terminal set and cost, we typically define

a terminal control law based on the linear–quadratic regulator

(LQR) solution of the linearized system (at the origin) . We

then define the terminal cost based on the infinite horizon LQR

cost and the terminal set as a level set of the terminal cost (see

[32, Sec. 2.5.5]). This terminal set is robustly positive invariant

for sufficiently small disturbances. For SMPC, we can further

modify this terminal set to be robustly positive invariant for

the specific support W . For sufficiently large W , however, a

robustly positive invariant terminal set may not exist for any

terminal control law. Furthermore, verifying that Assumption

4 holds for a nonlinear system and a specific support W is

nontrivial.

If we are considering a tracking problem, we require the

following assumption. Note that the lower bound on the stage

cost and requirement of Xf to contain the origin in its interior

are equivalent to the typical requirements to establish asymptotic

stability of nominal MPC [32, Prop. 2.16].

Assumption 5 (Tracking cost bounds): There exists ³�(·) ∈
K∞ such that �(x, u) ≥ ³�(|x|) for all (x, u) ∈ Zh. Further-

more, Xf contains the origin in its interior and XN is bounded.

Remark 2: Requiring bounded XN is a minor restriction.

Assumption 3 combined with the requirement that f−1(X) =
{(x, u) ∈ X × U : f(x, u, 0) ∈ X} is bounded for any bounded

X ensures that XN is bounded. For a proof and further discus-

sion, see [32, Prop. 2.10(d)] and note that since 0 ∈ W , the set of

feasible initial states for nominal MPC (i.e.,w = 0) is a superset

of XN for SMPC.

III. BASIC PROPERTIES OF SMPC

Before proceeding to any stability guarantees for SMPC,

we begin by discussing some essential properties required to

properly analyze the closed-loop stochastic system generated

by SMPC. Namely, we establish that a solution to PN exists and

verify that relevant stochastic properties (i.e., expected value) for

the closed-loop system are well-defined. We note that presenting

expected value as a Lebesgue integral allows us to establish

many useful properties for SMPC that may remain unclear with

typical SMPC notation. All the proofs of results in the section are

reported in the Appendix and further details can be found in [23].

For nominal MPC, the analogs of Assumptions 2 and 3

are sufficient to guarantee that the minimization problem is

well-defined for all x ∈ XN , i.e., the minimum is attained [32,

Prop. 2.4]. For SMPC, we demonstrate the same property for

the minimization problem defined as PN (x) for all x ∈ XN . We

begin with the following results for the sets Z and ZN .

Lemma 1: Let Assumptions 1–3 hold. Then, the sets Z and

ZN are closed.

Thus, despite the fact that these constraints are defined by a

stochastic nonlinear system, we can still establish that relevant

sets are indeed closed under basic regularity assumptions. Note

that if we directly define Z through an approximation of Z̃ε,

this approximation must be a closed set. Using Lemma 1, we

establish that solutions to the SMPC optimization problem exist.

Proposition 2 (Existence of minima): Let Assumptions 1–3

hold. Then, for each x ∈ XN , the function VN (x, ·) : V
N → R

is continuous, the setVN (x) is compact, and a solution to PN (x)
exists.

To properly discuss expected value or probability of stochastic

systems, we must first establish that such properties are indeed

well-defined. We define the control law mapping for SMPC as

KN (x) := π(x, v0(0;x)) in which v0(0;x) is defined as the

first parameter vector in v
0(x). Note that if there are multiple

solutions to PN (x),KN (x)may be a set-valued mapping instead

of a single-valued function. Nonetheless, we typically assume

there exists some selection rule that defines a single-valued

control law κN : XN → U such that κN (x) ∈ KN (x) for all
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x ∈ XN . The resulting closed-loop stochastic system is

x+ = fcl(x,w) := f(x, κN (x), w). (7)

We denote the solution to (7) at time k ∈ I≥0 given the initial

condition x and disturbance sequence wk = (w(0), . . . , w(k −
1)) as φ(k;x,wk).

We note, however, that continuity of π(·) does not imply

continuity or measurability of κN (·), since v0(0;x) is not nec-

essarily continuous or Borel measurable. Furthermore, if κN (·)
is not Borel measurable, the system defined in (7) may produce a

nonmeasurable closed-loop system, i.e., φ(k;x,wk) is not mea-

surable w.r.t. wk ∈ W
k. For a nonmeasurable stochastic system

with uncountable set Ω, Lebesgue integrals are undefined and

all stochastic properties of the system based on these integrals

(e.g., expected value) are also undefined.

Fortunately, the regularity conditions presented in Assump-

tions 2 and 3 are sufficient to ensure that the control law mapping

KN (x) and the optimal cost function are Borel measurable.

We note that the proof of the subsequent proposition relies on

the excellent work of [2, Prop. 7.33] on the measurability of

stochastic optimal control problems.

Proposition 3: Let Assumptions 1–3 hold. Then, the function

V 0
N : XN → R is lower semicontinuous (Borel measurable), the

set XN is closed, and the set-valued mapping v
0 : XN ⇒ V

N

is Borel measurable. Furthermore, the optimal control law map-

ping KN (x) : XN ⇒ U , defined as KN (x) := π(x, v0(0;x))
is Borel measurable.

If v
0(x) is a single-valued mapping, i.e., there is a unique

minimizer for the optimization problem for each x ∈ XN ,

then the KN (x) is single-valued and κN (x) = KN (x), is a

single-valued, Borel measurable function. If instead, v0(x) is

a set-valued mapping, i.e., there are multiple solutions for the

optimization problem for some x ∈ XN , then KN (x) may be a

set-valued mapping as well. In this case, we apply a selection

rule to define the single-valued control law κN : XN → U .

In theory, we could select an exotic selection rule that pro-

duces a nonmeasurable function κN (x) from the Borel measur-

able set-valued mapping KN (x) (see [23, Appendix A]). We

postulate that unintentionally constructing such a selection rule

for a real system is unlikely. To avoid any potential issues, we

make the following standing assumption.

Standing Assumption 1: We have chosen a Borel measurable

selection rule Ψ : (P(U) \ ∅) → U such that Ψ(A) ∈ A for

every A ∈ (P(U) \ ∅) and defined κN (x) := Ψ(KN (x)).1

With this assumption, we ensure that κN : XN → U is in-

deed a Borel measurable control law. This fact, combined with

the continuity of f(·), guarantees that fcl : X × W → X is

also a Borel measurable function. However, before address-

ing the measurability of φ(k, x,wk), we must first establish

that φ(k, x,wk) is well-defined for the iteration in (7). If

φ(k;x,wk) /∈ XN , then κN (φ(k;x,wk)) is not defined and

the iteration is no longer defined. We establish that φ(·) is

well-defined with the following definition and lemma. We note

that Lemma 4 requires Assumption 4 to ensure robust positive

invariance of XN .

1[2, Lem. 7.18] guarantee that such a selection rule exists for any compact set
U .

Definition 1 (Robust positive invariance): The set X is said

to be robustly positive invariant for the system x+ = F (x,w),
w ∈ W if x ∈ X implies x+ ∈ X .

Lemma 4: Let Assumptions 1–4 hold. Then, XN is robustly

positive invariant for the systemx+ = fcl(x,w),w ∈ W and the

function φ(k;x,wk) is well-defined for all x ∈ XN , wk ∈ W
k,

and k ∈ I≥0.

Stochastic properties of interest are defined by Lebesgue

integrals of lower bounded, Borel measurable functions of

φ(k;x,wk). Therefore, if φ(k;x,wk) is Borel measurable for

all k ∈ I≥0, then all the stochastic properties of interest are

well-defined.

Proposition 5: Let Assumptions 1–4 hold. Then, the func-

tions φ(k;x,wk(ω)) for all k ∈ I≥0 are Borel measurable w.r.t.

the measure space (Ω,F , P ). Furthermore, the integral
∫

Ω

g(φ(k;x,wk(ω)))dP (ω)

is well-defined for all x ∈ XN , k ∈ I≥0, and any lower bounded,

Borel measurable function g : XN → R. Note that the functions

V 0
N : XN → R and �(·, κN (·)) : XN → R are lower bounded

and Borel measurable.

The proof of Proposition 5 is based on [10, Prop. 4]. Note that

we require Assumption 4 only to ensure that XN is robustly

positive invariant. Any SMPC (or MPC) algorithm that can

ensure robust positive invariant XN and satisfies Assumptions

1–3 retains the properties of Proposition 5 as well. With this

result in hand, we next present relevant stochastic properties of

the closed-loop system.

IV. OPTIMAL COST DECREASE IN EXPECTATION

We now establish that the optimal cost for SMPC satisfies a

cost decrease inequality along the closed-loop trajectory based

on the stage cost and the disturbance. We find the following re-

sults (based on [29, Lem. 14]) useful in the subsequent analysis.

Lemma 6: If ³(·) ∈ K, then for any b ∈ R≥0, there exists

³v(·) ∈ K∞ such that ³v(·) is convex and ³v(s) ≤ ³(s) for all

s ∈ [0, b].
Proof: We define

³v(s) :=
1

b

∫ s

0

³(r)dr.

Immediately, we have that ³v(·) is strictly increasing and

unbounded as s → ∞ since ³(s) > 0 for all s > 0. Since ³(r)
is continuous, we have that ³v(s) is continuous as well [34, Th.

6.20]. Thus, ³v ∈ K∞. The derivative of ³v(·), i.e., dαv

ds (s) =
³(s)/b, is strictly increasing, and therefore, ³v(·) is a convex

function. Furthermore, we have

³v(s) =
1

b

∫ s

0

³(r)dr ≤
1

b

∫ s

0

³(s)dr =
s

b
³(s) ≤ ³(s)

for all s ∈ [0, b]. �

Corollary 7: If³(·) ∈ K∞, then for any b ∈ R≥0, there exists

³c(·) ∈ K∞ such that ³c(·) is concave and ³(s) ≤ ³c(s) for all

s ∈ [0, b].
Proof: Note that the inverse of a K∞ function is also a

K∞ function. We use Lemma 6 to construct a convex function

³v(·) ∈ K∞ such that ³v(r) ≤ ³−1
2 (r) for all r ∈ [0, ³−1

2 (b)].
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Therefore, ³c(s) = ³−1
v (s) ≥ ³2(s) for all s ∈ [0, b]. The in-

verse of a continuous, strictly increasing, and convex function is

concave, and therefore,³c(·) ∈ K∞ and is a concave function.�

We also use a technical result from [1, Prop. 20].

Proposition 8: Let C ⊆ D ⊆ R
n with C compact and D

closed. If f : D → R
n is continuous, there exists ³(·) ∈ K∞

such that for allx ∈ C and y ∈ D, we have that |f(x)− f(y)| ≤
³(|x− y|).

We begin with the following result for the terminal region.

Lemma 9: Let Assumptions 1–4 hold. Then, there exists

σ(·) ∈ K such that
∫

W

Vf (f(x, κf (x), w))dμ(w) ≤ Vf (x)

− �(x, κf (x)) + σ (tr(Σ))

for all x ∈ Xf .

Proof: SinceVf (·),f(·), andκf (·) are continuous and Xf and

W are bounded, we have from Proposition 8 that there exists

³(·) ∈ K∞ such that

|Vf (f(x, κf (x), w))− Vf (f(x, κf (x), 0))| ≤ ³(|w|)

for all x ∈ Xf andw ∈ W . We can combine this inequality with

(6) to give

Vf (f(x, κf (x), w)) ≤ Vf (x)− �(x, κf (x)) + ³(|w|)

for all x ∈ Xf and w ∈ W . Then, we apply Corollary 7 to

construct a concave function ³c(·) ∈ K∞ such that ³(|w|) ≤
³c(|w|) for all w ∈ W since W is bounded. We evaluate the

Lebesgue integral of both sides of the inequality with respect

to the probability space (W ,B(W ), μ) and apply Jensen’s in-

equality to give
∫

W

Vf (f(x, κf (x), w))dμ(w)

≤ Vf (x)− �(x, κf (x)) + ³c (E [|w|]) . (8)

From Jensen’s inequality, we can write E[|w|]2 ≤ E[|w|2] =
tr(Σ). We define σ(s) := ³c(s

1/2) and note that σ(·) ∈ K
because ³c(·) and s1/2 are K-functions. Thus, we have that

³c(E[|w|]) = σ(E[|w|]2) ≤ σ(tr(Σ)) and substitute this in-

equality into (8) to complete the proof. �

This result is similar to ISS results for continuous Lyapunov

functions. However, the application to stochastic systems pre-

sented here is novel. In particular, the direct relation between the

bound in Lemma 9 and the variance of the disturbance (tr(Σ)) is,

to the best of our knowledge, entirely new for nonlinear SMPC.

Typically, for nonlinear SMPC, the term σ(tr(Σ)) is treated as a

fixed constant and any connection to the probability distribution

is ignored [6], [20], [22]. A more familiar result is achieved

using a common choice of the disturbance model and terminal

cost function.

Lemma 10: Let Assumptions 1–4 hold with f(x, u, w) :=
g(x, u) + w and Vf (x) := x′Px for positive semidefinite P .

Then, for all x ∈ Xf , we have
∫

W

Vf (f(x, κf (x), w))dμ(w) ≤ Vf (x)

− �(x, κf (x)) + tr(PΣ).

The proof of Lemma 10 is simple, and therefore, omitted.

The term tr(PΣ) appears in the exact same form for the linear

SMPC problem as well [19]. We also note that for this system

and terminal cost, the bound tr(PΣ) is often the tightest bound

possible that is also independent ofx (e.g., consider any terminal

control law such that x = 0 and κf (0) = 0).

In either case, the implications of this bound are clear: the

distribution of w, specifically the variance of w, determines

the size of this bound. As tr(Σ) → 0, i.e., the variance of w
approaches zero, we know that σ(tr(Σ)) → 0 and we recover

the nominal cost decrease condition for the terminal region.

Analogous to the nominal MPC problem, we now extend this

result in the terminal region to the entire set XN for the optimal

cost function V 0
N (·).

Proposition 11: Let Assumptions 1–4 hold. Then, the set XN

is robustly positive invariant for the systemx+ = fcl(x,w),w ∈
W and there exists σ(·) ∈ K such that

∫

W

V 0
N (fcl(x,w))dμ(w) ≤ V 0

N (x)− �(x, κN (x)) + σ(tr(Σ))

for all x ∈ XN .

Proof: If x ∈ XN , we have that for v
0 ∈ v

0(x) and

all w := (w(0), w(1), . . . , w(N − 1)) ∈ W
N , x(N,w) =

φ̂(N ;x,v0,w) ∈ Xf and

f(x(N,w), κf (x(N,w)), w(N)) ∈ Xf

for all w(N) ∈ W by Assumption 4. Thus, the candidate trajec-

tory

ṽ
+ =

(

v0(1), v0(2), . . . , v0(N − 1), 0
)

satisfies ṽ
+ ∈ VN (x+) for x+ = f(x, κN (x), w(0)) and all

w(0) ∈ W . Since VN (x+) is nonempty, x+ ∈ XN , and XN is

robustly positive invariant. Letting

w̃
+ = (w(1), w(2), . . . , w(N − 1), w(N))

and using the definition of JN (·), we obtain

JN (x+, ṽ+, w̃+) = JN (x,v0,w)− �(x, κN (x))

+ η(x(N,w), w(N)) (9)

in which

η(x,w) := −Vf (x) + �(x, κf (x)) + Vf (f(x, κf (x), w)).

From Lemma 9 and the fact that x(N,w) ∈ Xf , we have that

∫

W N+1

η(x(N,w), w(N))dμN (w)dμ(w(N)) ≤ σ (tr(Σ)) .

We also have the following equality:

∫

W N+1

JN (x,v0,w)dμN (w)dμ(w(N)) = V 0
N (x).

And by optimality, we have that

V 0
N (x+) ≤

∫

W N

JN (x+, ṽ+, w̃+)dμ(w(1)) . . . dμ(w(N)).
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We combine these inequalities with (9) to give
∫

W

V 0
N (x+)dμ(w(0))

≤

∫

W N+1

JN (x+, ṽ+, w̃+)dμN (w)dμ(w(N))

≤ V 0
N (x)− �(x, κN (x)) + σ (tr(Σ)) .

Substitute x+ = f(x, κN (x), w) and let w = w(0) to com-

plete the proof. �

We emphasize that Proposition 11 is valid only if the probabil-

ity distribution (and therefore,Σ) used in the SMPC optimization

problem is identical to the true probability distribution of the

system. If the distribution of the underlying stochastic system is

not identical to the distribution used in the disturbance model,

these results do not necessarily hold.

We may apply the cost decrease of Proposition 11 to establish

the following result.

Theorem 12: Let Assumptions 1–4 hold. Then, for the closed-

loop system x+ = f(x, κN (x), w), w ∈ W , the set XN is ro-

bustly positive invariant and there exists σ(·) ∈ K such that

lim sup
T→∞

1

T

T−1
∑

k=0

E [�(x(k), u(k))] ≤ σ(tr(Σ)) (10)

for all x ∈ XN in which x(k) := φ(k;x,wk) and u(k) :=
κN (x(k)).

Proof: From Lemma 4, we know that XN is robustly positive

invariant for the closed-loop system. From Proposition 5, we

know that all subsequent integrals are well-defined.

For any x ∈ XN , let x(k) := φ(k;x,wk) and u(k) :=
κN (x(k)). From Proposition 11 and the definition of conditional

expectation, we have that

E
[

V 0
N (x(k + 1)) | Fk

]

≤ V 0
N (x(k))

− �(x(k), u(k)) + σ (tr(Σ)) .

By the law of total expectation, we have

E
[

V 0
N (x(k + 1))

]

≤ E
[

V 0
N (x(k))

]

− E [�(x(k), u(k))]

+ σ (tr(Σ)) .

We take the summation of each side from k = 0 to T − 1 and

divide by T to give

1

T

T−1
∑

k=0

E [�(x(k), u(k))] ≤ σ (tr(Σ))

+
V 0
N (x)− E

[

V 0
N (x(T ))

]

T
.

Since �(·) is lower bounded, we have that there exists M ∈
R such that VN (x,v) ≥ M for all (x,v) ∈ ZN . Therefore,

−E|x[V
0
N (x(T ))] ≤ −M as well. We apply this bound and

evaluate the lim supT→∞ of each side to give (10). �

Note that lim sup is used instead of lim, as the limit may not

exist. From Lemma 10, we can replace σ(tr(Σ)) with tr(PΣ) if

we have an additive disturbance model and a quadratic terminal

cost function.

V. STOCHASTIC ASYMPTOTIC STABILITY OF SMPC

In this section, we specialize SMPC to tracking problems

(with Assumption 5) and establish RASiE for the closed-loop

system.

A. Robust Asymptotic Stability in Expectation (RASiE)

Definition 2 (RASiE): The origin is RASiE for the stochastic

system x+ = fcl(x,w), w ∈ W on the robustly positive invari-

ant set XN if there exist ´(·) ∈ KL and γ(·) ∈ K such that the

closed-loop trajectory satisfies

E [|φ(k;x,wk)|] ≤ ´(|x|, k) + γ (tr(Σ)) (11)

for all x ∈ XN and k ∈ I≥0.

In contrast to robust asymptotic stability or ISS for determin-

istic closed-loop systems, RASiE bounds the expected value of

the norm of the closed-loop state based on the initial condition

x and variance of the disturbance, i.e., tr(Σ). Clearly, this upper

bound implies the typical notion of stability in expectation that

[22] establish. We note, however, that RASiE also ensures that

the effect of the initial condition |x| on the upper bound decays

toward zero as k → ∞.

To establish that a closed-loop system satisfies this condi-

tion, we use an SISS-Lyapunov function similar to the SISS-

Lyapunov functions in the nonlinear stochastic stability theory.

Note that we do not require continuity of fcl(·) or an exponential

cost decrease. Furthermore, σ2(·) and σ3(·) are both functions

of tr(Σ).
Definition 3 (SISS-Lyapunov Function): The Borel measur-

able function V : XN → R≥0 is an SISS-Lyapunov function on

the robustly positive invariant set XN for the stochastic system

x+ = fcl(x,w),w ∈ W , if there exist³1(·), ³2(·), ³3(·) ∈ K∞

and σ2(·), σ3(·) ∈ K such that

³1(|x|) ≤ V (x) ≤ ³2(|x|) + σ2 (tr(Σ))
∫

W

V (fcl(x,w))dμ(w) ≤ V (x)− ³3(|x|) + σ3 (tr(Σ))

for all x ∈ XN .

We can establish the following result for SISS-Lyapunov

functions.

Proposition 13: If a system x+ = fcl(x,w), w ∈ W admits

an SISS-Lyapunov function on the robustly positive invariant

and bounded set XN , then the origin is RASiE.

Proof: To streamline notation, we define d := tr(Σ) and note

that d is a constant for the stochastic system. Define ³4(s) :=
³3(³

−1
2 (s/2)) and note that ³4(·) ∈ K∞ and ³4(s) ≤ s for all

s ∈ R≥0 because ³3(s) ≤ ³2(s) for all s ∈ R≥0.2 We have the

following inequality:

³4(V (x)) ≤ ³4(³2(|x|) + σ2(d))

≤ ³4(2³2(|x|)) + ³4(2σ2(d))

= ³3(|x|) + ³4(2σ2(d)).

2If this inequality does not hold, we simply construct a newα2(·) ∈ K∞ such
that α3(s) ≤ α2(s) for all s ∈ R≥0.
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By rearranging, we have −³3(|x|) ≤ −³4(V (x)) +
³4(2σ2(d)).

Choose x ∈ XN and let x(k) := φ(k;x,wk) for all k ∈ I≥0.

Then, we have

E [V (x(k + 1)) | Fk] ≤ V (x(k))− ³4(V (x(k))) + σ4(d)

in which σ4(d) := ³4(2σ2(d)) + σ3(d) and σ4(·) ∈ K. Since

XN is compact and V (x) ≤ ³2(|x|) + σ2(d), there exists b ≥ 0
such that V (x) ≤ b for all x ∈ XN . From Lemma 6, we can

construct ³v ∈ K∞ such that ³v(·) is convex and ³v(V (x)) ≤
³4(V (x)) for all x ∈ XN . Therefore, we can replace ³4(·)
with ³v(·), apply the law of total expectation, and use Jensen’s

inequality to give

E [V (x(k + 1))] ≤ E [V (x(k))]− ³v(E [V (x(k))]) + σ4(d).

Define γ̃(d) := 2max{³−1
v (σ4(d)), σ4(d)} and note that

γ̃(·) ∈ K. If E[V (x(k))] ≤ γ̃(d)/2, then

E [V (x(k + 1))] ≤ γ̃(d)/2 + σ4(d)

≤ γ̃(d)/2 + γ̃(d)/2 = γ̃(d).

If γ̃(d)/2 ≤ E[V (x(k))] ≤ γ̃(d), then

E [V (x(k + 1))] ≤ E [V (x(k))]− ³v (γ̃(d)/2) + σ4(d)

≤ E [V (x(k))] ≤ γ̃(d).

Thus, for E[V (x(k))] ≤ γ̃(d), we know that E[V (x(k +
1))] ≤ γ̃(d).

If E[V (x(k))] ≥ γ̃(d), we have

E [V (x(k + 1))]

≤ E [V (x(k))]− ³v(E [V (x(k))]) + ³v(E [V (x(k))] /2)

≤ λ1 (E [V (x(k))])

in which λ1(s) := s− ³v(s) + ³v(s/2). We have that λ1(·) is

continuous, λ1(0) = 0, and λ1(s) < s for all s > 0. By the same

process used in [32, Th. B.15], we construct λ(·) ∈ K∞ such that

λ1(s) ≤ λ(s) < s for s > 0. Thus, we have

E[V (x(k + 1))] ≤ λ(E[V (x(k))]). (12)

Repeated application of the aforementioned equation and the

fact that E[V (x(0))] = V (x) gives

E[V (x(k + 1))] ≤ ˜́(V (x), k) := λ
k(V (x))

in which λ
k(·) is the composition of λ(·) with itself k times. Us-

ing the same approach as [32, Th. B.15], we conclude that ˜́(·) ∈
KL. We have that E[V (x(k))] ≤ ˜́(V (x), k) if E[V (x(k))] ≥
γ̃(d) and E[V (x(k + 1))] ≤ γ̃(d) if E[V (x(k))] ≤ γ̃(d). There-

fore, for all x ∈ XN , we have

E [V (x(k))] ≤ max{ ˜́(V (x), k), γ̃(d)}.

Using Lemma 6 and the fact that XN is compact, we can

construct a convex function ³1,v(·) ∈ K∞ such that ³1,v(|x|) ≤
³1(|x|) ≤ V (x) for all x ∈ XN . Thus, we may apply Jensen’s

inequality to give

³1,v(E [|x(k)|]) ≤ E [³1,v(|x(k)|)] ≤ E [V (x(k))] .

Therefore, we have

E [|x(k)|] ≤ max
{

³−1
1,v

(

˜́(V (x), k)
)

, ³−1
1,v (γ̃(d))

}

≤ ´1(V (x), k) + ³−1
1,v (γ̃(d))

in which ´1(·) := ³−1
1,v ◦

˜́(·) ∈ KL. We use the upper bound

for V (x) to give

E [|x(k)|] ≤ ´1(³2(|x|) + σ2(d), k) + ³−1
1,v (γ̃(d))

≤ ´1(2³2(|x|), k) + ´1(2σ2(d), k) + ³−1
1,v (γ̃(d))

≤ ´(|x|, k) + γ(d)

in which ´(s, k) := ´1(2³2(s), k) ∈ KL, and γ(d) :=
´1(2σ2(d), 0) + ³−1

1,v(γ̃(d)) ∈ K. �

B. RASiE of SMPC

Analogous to the stability analysis for nominal MPC, we

intend to use the optimal cost of the SMPC problem as an

SISS-Lyapunov function. We already established the desired

cost decrease bound in Proposition 11 and the stage cost bound

from Assumption 5 provides a lower bound for the optimal cost

function. Therefore, we focus on constructing the upper bound

for V 0
N (·).

Lemma 14: Let Assumptions 1–5 hold. Then, there ex-

ist ³2(·) ∈ K∞ and σ2(·) ∈ K such that V 0
N (x) ≤ ³2(|x|) +

σ2(tr(Σ)) for all x ∈ XN .

Proof: We choose x ∈ Xf and consider the trajectory gener-

ated by repeated application of the terminal control law, i.e.,

x(k) := φ̂(k;x,0,w) since π(x, 0) = κf (x). The set Xf is

robustly positive invariant for this control law due to Assump-

tion 4, and therefore, x(k) ∈ Xf for all k ∈ I≥0. We define

d := tr(Σ). From Assumption 4 and Proposition 11, we have

for all k ∈ I[0,N−1] that

∫

W N

(Vf (x(k + 1))− Vf (x(k))) dμ
N (w)

≤ −

∫

W N

�(x(k), κf (x(k)))dμ
N (w) + σ(d).

We sum both sides of the inequality from k = 0 to k = N − 1
to give

∫

W N

(Vf (x(N))− Vf (x(0))) dμ
N (w)

≤ −

∫

W N

N−1
∑

k=0

�(x(k), κf (x(k)))dμ
N (w) +Nσ(d).

By rearranging and substituting in the definition of JN (·) and

x(0) = x, we have
∫

W N

JN (x, 0,w)dμN (w) ≤ Vf (x) +Nσ(d)

for all x ∈ Xf . By optimality, we know that V 0
N (x) ≤ Vf (x) +

Nσ(d). From Assumption 2 and [31, Prop. 14], there exists

³f (·) ∈ K such that Vf (x) ≤ ³f (|x|), and therefore, V 0
N (x) ≤

³f (|x|) +Nσ(d) for all x ∈ Xf .
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We now establish thatV 0
N (x) is locally bounded onXN . LetX

be any arbitrary compact subset of XN . The function JN : X ×
V

N × W
N is continuous, and therefore, has an upper and lower

bound on the compact setX × V
N × W

N . SinceVN (x) ⊆ V
N

for all x ∈ XN , V 0
N : XN → R must satisfy the same upper and

lower bound on X . Therefore, V 0
N (·) is locally bounded on XN .

To extend this upper bound, we define a new function

W (x) := max{V 0
N (x)−Nσ(d), 0} and note that W (x) ≥ 0

and W (x) ≤ ³f (|x|) for all x ∈ Xf . Since Xf contains the

origin in its interior, W (x) is continuous at x = 0. Furthermore,

we know that W (0) = 0, XN is closed (Proposition 3), and

W (x) is locally bounded (since V 0
N (x) is locally bounded).

Therefore, [31, Prop. 14] applies and there exists ³2(·) ∈ K∞

such that W (x) ≤ ³2(|x|) for all x ∈ XN . We have that

V 0
N (x)−Nσ(d) ≤ W (x) ≤ ³2(|x|)

and we defineσ2(d) = Nσ(d) to give the desired upper bound.�

Note that this upper bound increases with the horizon length

of the optimization problem. As an alternative to Lemma 14,

we may assume that V 0
N (·) is continuous at the origin. With this

alternate assumption, we can find ³2(·) ∈ K∞ such that

V 0
N (x) ≤ ³2(|x|) + V 0

N (0).

Note, however, thatV 0
N (0) is not necessarily zero for SMPC if

the stage cost is positive definite (as required by Assumption 5).

Only in specific situations, e.g., multiplicative disturbance mod-

els, is V 0
N (0) = 0. Furthermore, we expect the value of V 0

N (0) to

also increase with increasing N similar to the bound we derived

in Lemma 14. We propose, however, that this increase with the

horizon length is not a weakness of the analysis approach, but

an underlying characteristic of SMPC, particularly, for nonlinear

systems.

Next, we establish the main result of this article.

Theorem 15: Let Assumptions 1–5 hold. Then, the origin is

RASiE for the stochastic system x+ = fcl(x,w),w ∈ W on the

robustly positive invariant set XN .

Proof: We establish this result by showing that V 0
N (x) is an

SISS-Lyapunov function. From Assumption 5, we have that

³�(|x|) ≤ �(x, u) ≤ V 0
N (x). From Lemma 14, we have the up-

per bound. From Proposition 11, we have the cost decrease con-

dition. Thus, we apply Proposition 13 to complete the proof. �

C. Discussion

Although similar to the results of [20] and [22], we note a few

key differences. Most significantly, the proof of Theorem 15 does

not require an exponential decrease in the expected value of the

optimal cost along the closed-loop trajectory. Instead, we use

Jensen’s inequality to move the expected value operator within

the K-functions. We also note that RASiE provides a specific

upper bound for the expected value of the norm of the state. In

the definition of RASiE, the effect of the initial condition on the

upper bound asymptotically (and uniformly) decreases to zero as

k → ∞. The remaining term is independent of k and depends on

the distribution of the disturbance w (i.e., tr(Σ)). In particular, if

tr(Σ) = 0, i.e., a nominal MPC algorithm applied to a nominal

closed-loop system, we recover the asymptotic stability result

typical of nominal MPC.

We note the (intentional) similarity between this result and the

results in [1] for the inherent robustness of nominal MPC. There

is, however, a key distinction; the result for SMPC requires that

we have exact knowledge of the disturbance that is affecting the

system. Consequently, if the plant follows the model in (1), but

with a disturbance probability distribution other than what is

assumed in the SMPC optimization problem, then the bound in

(11) does not necessarily hold for the variance of either probabil-

ity distribution. For example, if we design an SMPC algorithm

assuming tr(Σ) = 1 and the disturbances actual distribution has

a value of tr(Σ) = 0.5, it is not clear how the bound in (11)

changes. The robustness of nonlinear SMPC to unmodeled or

incorrectly modeled disturbances is an open question.

Goulart and Kerrigan [9] establish that for linear systems

with additive disturbances, SMPC produces an ISS closed-loop

system. Thus, if the true system experiences w = 0, SMPC

stabilizes the origin regardless of the probability distribution

used in constructing the SMPC controller. But this result relies

on many properties of the linear problem that do not extend to

the nonlinear case (e.g., convexity and optimality of the terminal

control law). For nonlinear SMPC, if we assume that tr(Σ) > 0
and the closed-loop system is in fact nominal (i.e., w = 0 and

tr(Σ) = 0), the resulting stochastic controller may not stabilize

the origin.

Even if we have exact knowledge of the disturbance distri-

bution, there are still clear differences between the strength of

results for nonlinear and linear stochastic MPC. Lorenzen et al.

[19] establish that linear SMPC, under suitable assumptions,

stabilizes the terminal region with probability one. For nonlin-

ear SMPC, however, this property simply does not hold (see

subsequent example). Indeed, nonlinear SMPC may converge in

expected value to a point outside of the terminal region even if we

initiate the system within the terminal region. In the subsequent

section, we demonstrate these characteristics of nonlinear SMPC

through an example.

VI. EXAMPLE

Consider the following nonlinear discrete-time system:
[

x+
1

x+
2

]

=

[

x2
1x2 + x1(1− x2)

0.9x2

]

+

[

u1

u2

]

+

[

w

0

]

in which the probability distribution of the disturbance is

given by Pr(w = 0.5) = Pr(w = −0.5) = 0.25 and Pr(w =
0) = 0.5. We consider the constraints

[

−3

−0.1

]

≤ x ≤

[

3

1

] [

−20

−0.1

]

≤ u ≤

[

20

0.1

]

and stage cost �(x, u) = x′Qx+ u′Ru with Q = R =
diag([10, 0.1]).

To construct the terminal cost/constraint, we linearize at

(xs, us) = (0, 0) and find the LQR cost P and gain K assuming

the inflated stage cost QLQR = 1.1Q and RLQR = R. We define

the terminal cost as Vf (x) := x′Px and terminal control law as
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Fig. 1. Expected value of each state variable, i.e., E[x1] and E[x2] for
each closed-loop stochastic trajectory. The points for each line corre-
spond to different time steps starting with x(0) = [2, 0]′.

Fig. 2. State for each closed-loop trajectory if w = 0. The points for
each line correspond to different time steps starting with x(0) = [2, 0]′.

κf (x) = Kx. We select the terminal constraint
[

−1

−0.1

]

≤ x ≤

[

1

0.1

]

.

We confirm both requirements of Assumption 4 for this ter-

minal region. We parameterize the control policy as π(x, v) :=
Kx+ v and select V such that for all (x, u) ∈ Z, there exists

v ∈ V such that π(x, v) = u. Note that Assumptions 1–3 and 5

are also satisfied by this formulation.

We simulate the closed-loop response of this stochastic sys-

tem subject to nominal MPC and SMPC controllers with varying

horizon lengths. We initialize the system at x(0) = [2, 0]′. Be-

cause the disturbance can take only three possible values, all

expected values in the subsequent plots are calculated exactly

through a scenario tree approach and are not based on sample

averages.

We plot the expected value of the state in Fig. 1. We note that

SMPC with a horizon length of N = 1 drives the expected value

of the state to the origin. However, as we increase the horizon

length of SMPC, the value of E[x2] leaves the terminal region

and increases with the increasing horizon length. Nonlinear

SMPC with N ≥ 2 does not stabilize the terminal region (with

probability one) as we might expect for linear SMPC or ISS

nonlinear stochastic systems [19], [26]. In Fig. 2, we plot the

closed-loop trajectory for each algorithm if the realized system is

in fact nominal (i.e., w = 0). For nonlinear SMPC with N ≥ 2,

Fig. 3. Expected value of the norm of the state, i.e., E[|x(k)|], for each
closed-loop stochastic system.

Fig. 4. Expected value of the stage cost, i.e., E[�(x(k), u(k))], for each
closed-loop stochastic system.

the origin and/or the terminal set are in fact not asymptotically

stable for the nominal closed-loop system.

In Fig. 3, we plot the values of E[|x(k)|] for the closed-loop

stochastic system. We observe for all values ofN that the SMPC

algorithm produces results consistent with Theorem 15. How-

ever, we note that the value of E[|x(k)|] as k → ∞ increases

with increasing N . Thus, the dependence of σ2(·) in Lemma

14 on the horizon length N appears to indicate an underlying

characteristic of nonlinear SMPC and is not necessarily a short-

coming of the analysis approach used in this article.

In Fig. 4, we plot the expected value of the stage cost at

each iteration of the closed-loop system. We observe that the

performance of SMPC, in terms of the stage cost, improves

with increasing horizon length. Thus, driving the system toward

larger values of x2 improves the expected cost of the closed-loop

system after an initial transient. The reason for this behavior is

that larger values of x2 produce a system that is more robust

to the disturbance. Since we apply a significantly larger cost to

x1, u1 than x2, u2, using larger values of x2 to guard against

the disturbance is advantageous from a stochastic perspective.

Therefore, the closed-loop behavior of SMPC for N ≥ 2, al-

though undesirable from the perspective of a tracking problem, is

appropriate based on the chosen stage costs. Choosing different

values for Q and R can result in significantly different behavior

of the closed-loop system. For example, selecting Q = R = I
results in significantly smaller values of E[|x(k)|] as k → ∞
and E[x(k)] enters and remains in the terminal region.
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VII. CONCLUSION

In this article, we established several basic properties of the

nonlinear SMPC problem including existence of optimal solu-

tions and measurability of the closed-loop trajectory. We used an

SISS-Lyapunov function to establish that SMPC, under suitable

assumptions, is robustly asymptotically stable in expectation.

In particular, we established that the bound on expected value

of the closed-loop state is directly related to the variance of

the disturbance. Thus, as the variance approaches zero, we

recover the nominal asymptotic stability guarantee typical of

MPC. This result is informative, but is also significantly weaker

than the extent of results available for linear SMPC. We present

an example to illustrate that nonlinear SMPC, at least under

this set of assumptions, does not guarantee that the closed-loop

system is ISS or that the state converges to the terminal region.

Furthermore, increasing the horizon length for nonlinear SMPC,

may actually increase the value of E[|x(k)|] as k → ∞.

If economic performance objectives are used and track-

ing/stability is not required, SMPC appears to offer an excellent

method to include available stochastic information in the opti-

mization problem. If tracking/stability of a setpoint (origin) is

desired, nonlinear SMPC may produce nonintuitive, and in some

cases undesirable, closed-loop systems despite satisfaction of

reasonable assumptions. This nonintuitive behavior, however, is

primarily the result of optimizing a stochastic property of the

tracking cost function, i.e., E[JN (·)], and not the probabilistic

constraints. Therefore, using stochastic information to construct

the set ZN and optimizing over a nominal cost function, i.e.,

JN (x,v,0), may offer a desirable compromise between the

benefits of SMPC and the more intuitive behavior of nominal

MPC.

APPENDIX

Here, we present the proofs omitted from Section III.

Throughout the Appendix, we find the following technical result

useful.

Lemma 16: Let f : X × S → R be a Borel measurable func-

tion defined for X ⊆ R
n and the probability space (S,Σ, μ).

Then, the functionF : X → R defined by the Lebesgue integral

F (x) :=

∫

S

f(x, s)dμ(s)

satisfies the following:

1) if f(x, s) is lower bounded and lower semicontinuous

w.r.t. x ∈ X , then F (x) is lower semicontinuous;

2) if f(x, s) is continuous w.r.t. x ∈ X and uniformly

bounded for all (x, s) ∈ X × S, then F (x) is finite and

continuous.

Proof: Fix x ∈ X and let (xn)
∞
n=1 be any sequence of real

numbers that converges to x, i.e., limn→∞ xn = x. We define

the corresponding sequence of functions (fn)
∞
n=1 such that

fn(s) := f(xn, s) for all s ∈ S.

1) If f(x, s) is lower semicontinuous w.r.t. x, we have that

lim infn→∞ fn(s) ≥ f(x, s). If f(·) is nonnegative, we apply

Fatou’s Lemma to give

lim inf
n→∞

F (xn) = lim inf
n→∞

∫

S

fn(s)dμ(s)

≥

∫

S

lim inf
n→∞

fn(s)dμ(s)

≥

∫

S

f(x, s)dμ(s) = F (x).

Since the choice of x ∈ X and the sequence (xn)
∞
n=1 was

arbitrary, we have that

lim inf
t→x

F (t) ≥ F (x)

and therefore, F (x) is lower semicontinuous.

If f(·) is lower bounded, we define c ∈ R, such that f(x, s) ≥
c for all (x, s) ∈ X × S. Next, we define h(x, s) := f(x, s)−
c and note that h(·) is nonnegative and lower semicontinuous

because f(·) is lower semicontinuous. Thus

H(x) :=

∫

S

h(x, s)dμ(s)

is lower semicontinuous and F (x) = c+H(x) is also lower

semicontinuous.3

2) If instead f(x, s) is continuous w.r.t. x, we know that

limn→∞ fn(s) = f(x, s). If f(x, s) is also uniformly bounded,

we have from the dominated convergence theorem that F (x) is

finite and

lim
n→∞

F (xn) = lim
n→∞

∫

S

fn(s)dμ(s)

=

∫

S

lim
n→∞

fn(s)dμ(s) =

∫

S

f(x, s)dμ(s) = F (x).

Since the choice of x ∈ X and the sequence (xn)
∞
n=1 was

arbitrary, we have that F (x) is continuous. �

Proof of Lemma 1: We begin by establishing that G : X ×
U → R≥0 is a lower semicontinuous function. Since X̃ is closed,

we know that I
X̃
: X → {0, 1} is upper semicontinuous. There-

fore, the function h : X → {0, 1} defined as h(x) := 1− I
X̃
(x)

is lower semicontinuous. Since f(·) is continuous, the compo-

sition g(x, u, w) := h(f(x, u, w)) is lower semicontinuous as

well. We have that

G(x, u) =

∫

W

g(x, u, w)dμ(w)

and since g(·) is lower semicontinuous, we have from Lemma

16 that G(·) is lower semicontinuous.

Since G(·) is lower semicontinuous, the set Z̃ε = {(x, u) :
G(x, u) ≤ ε} is closed for all ε ∈ [0, 1] by the definition of a

lower semicontinuous function. Therefore, Z := Zh ∩ Z̃ε is the

intersection of two closed sets and is also closed.

From Assumption 3, we also know that X and V are closed

sets. We define the set-valued mapping ZN : W
N ⇒ X × V

N

3We can define F (x) = c+H(x), because (S,Σ, μ) is a probability space,

i.e.,
∫

S
cdμ(s) = c.
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such that

ZN (w) := {(x,v) ∈ X × V
N :

ηk(x,v,w) ≤ 0 ∀k ∈ I[0,N ]}

in which

ηk(x,v,w) :=
∣

∣

∣
(φ̂(k;x,v,w), π(φ̂(k;x,v,w), v(k))

∣

∣

∣

Z

for all k ∈ I[0,N−1] and ηN (x,v,w) := |φ̂(N ;x,v,w)|Xf
.

Since f(·) and π(·) are continuous functions, so is their com-

position. For each k, φ̂(k;x,v,w) is the composition of a finite

number of continuous functions and is, therefore, continuous

[32, Prop. 2.1]. Since φ̂(k;x,v,w) and point-to-set distance for

the closed sets Z and Xf are continuous functions, ηk(·) is also

continuous for each k ∈ I[0,N ]. The inequality ηk(x,v,w) ≤ 0,

therefore, defines a closed set for each k ∈ I[0,N ]. Thus, for each

w ∈ W
N , the set ZN (w) is the intersection of a finite number

of closed sets and is, therefore, closed. By the definition of ZN ,

we have that

ZN =
⋂

w∈W N

ZN (w).

Since the intersection of an arbitrary collection of closed sets

is a closed set, ZN is a closed set. �

Proof of Proposition 2: From the previous proof, we know

that for each k, φ̂(k;x,v,w) is continuous. Thus, JN (x,v,w)
is a continuous function since it is the composition of a finite

number of continuous functions. For each x ∈ XN , we have

that JN (x, ·) : V
N × W

N → R is continuous and uniformly

bounded because V and W are compact. Thus, from Lemma 16,

we know that for eachx ∈ XN , the functionVN (x, ·) : V
N → R

is continuous.

From Lemma 1, we know that ZN is closed and the func-

tion |(x,v)|ZN
is continuous. Therefore, the set VN (x) = {v ∈

V
N : |(x,v)|ZN

≤ 0} is closed for any x ∈ XN ⊆ X. Since

VN (x) ⊆ V
N and V is bounded, we know that VN (x) is also

bounded. Thus, VN (x) is compact.

For each x ∈ XN , the function VN (x, ·) is continuous and

VN (x) is compact. By Weierstrass’s theorem, a solution to

PN (x) exists for all x ∈ XN [32, Prop. A.7]. �

Proof of Proposition 3: From Assumption 3, we have that

X is closed and V
N is compact. From Lemma 1, we have

that ZN is closed. We know that JN (x,v,w) is continuous

and lower bounded (because the stage and terminal costs are

lower bounded). Since continuity implies lower semicontinuity,

by Lemma 16, we know that the function VN : ZN → R is

lower semicontinuous and lower bounded. Thus, from [2, Prop.

7.33], we have that V 0
N : XN → R is lower semicontinuous and

the mapping v
0 : XN ⇒ V

N is Borel measurable. We define

KN : XN ⇒ V such that KN (x) = {h(x,v) : v ∈ v
0(x)} in

which h(x,v) := π(x, v(0)). Since h(·) is a continuous func-

tion, KN : XN ⇒ U is also Borel measurable. �

Proof of Lemma 4: From Proposition 11, we have that XN is

robustly positive invariant for the system x+ = f(x, κN (x), w),
w ∈ W . Since x+ ∈ XN , we know that κN (x+) is well-defined

and the subsequent iteration fcl(x
+, w+), w+ ∈ W is defined

as well. By induction, we can establish that φ(k;x,wk) ∈ XN

is well-defined for all x ∈ XN , wk ∈ W
k, and k ∈ I≥0. �

Proof of Proposition 5: Adapted from [10, Prop. 4]. From

Proposition 3 and Standing Assumption 1, we have that

κN : XN → U is Borel measurable. Since f(·) is continuous,

fc(x,w) = f(x, κN (x), w) is Borel measurable. From Lemma

4, we know that φ(k;x,wk) is well-defined for all x ∈ XN ,

wk ∈ W
k, and k ∈ I≥0.

We proceed by induction. For some k ∈ I≥0 let φ(k;x,wk)
be Borel measurable. Then,

φ(k + 1;x,wk+1) = fc(φ(k;x,wk), w(k))

is also Borel measurable. Since φ(1;x,w1) = fc(x,w(0)) is

Borel measurable, we have that for all k ∈ I≥0, φ(k;x,wk) is

Borel measurable. By definition,wk(ω) is measurable w.r.t.ω ∈
Ω, and therefore, φ(k;x,wk(ω)) is also Borel measurable w.r.t.

ω ∈ Ω.

For lower bounded, real-valued, Borel measurable functions,

Lebesgue integrals are well-defined. From Assumption 2, we

have that � : X × U → R and VN : X × V
N → R are lower

bounded and continuous. Thus,V 0
N : XN → R is lower bounded

as well. From Proposition 3 and Standing Assumption 1, we

know that V 0
N (·) and κN (·) are Borel measurable. Therefore,

�(x, κN (x)) and V 0
N (x) are lower bounded and Borel measur-

able functions. �
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