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Nonlinear Stochastic Model Predictive Control:
Existence, Measurability, and Stochastic
Asymptotic Stability

Robert D. McAllister

Abstract—In this article, we establish a collection of new
theoretical properties for nonlinear stochastic model pre-
dictive control (SMPC). Based on the concept of stochastic
input-to-state stability (SISS), we define robust asymptotic
stability in expectation (RASIE) and establish that nonlin-
ear SMPC renders the origin of the closed-loop system
RASIE. Moreover, we establish several new foundational
results that have not been addressed in previous research.
Specifically, we verify that, under basic regularity assump-
tions, a solution to the SMPC optimization problem exists
and the closed-loop trajectory is Borel measurable thereby
guaranteeing that all relevant stochastic properties of the
closed-loop system are indeed well-defined. We present a
numerical example to demonstrate the nonintuitive behav-
ior that can arise from nonlinear SMPC.

Index Terms—Stability of nonlinear systems, stochas-
tic systems, stochastic model predictive control (SMPC),
stochastic optimal control.

[. INTRODUCTION

ODEL predictive control (MPC), under appropriate as-
M sumptions, guarantees asymptotic stability of the nomi-
nal closed-loop system, i.e., the system model is perfect and no
disturbances occur [32, ch 2.]. In practice, however, disturbances
and model mismatch are pervasive, and therefore, some degree
of robustness is required for successful industrial implemen-
tation. Although nominal MPC does not consider uncertainty
explicitly in the problem formulation, the inherent robustness
afforded by feedback is often sufficient for successful imple-
mentation of MPC. The inherent robustness of MPC has been
established over the past two decades [1], [11], [17], [27], [41].

Stochastic MPC (SMPC) aims to improve upon the inherent
robustness of nominal MPC by including a probabilistic descrip-
tion of uncertainty in the optimal control problem. In general, the
SMPC optimization problem minimizes the expected value of
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the cost function subject to both deterministic and probabilistic
constraints on the state variables [7], [21], [25]. By defining the
optimal control problem based on stochastic properties of the
system, the complexity of the optimization problem and closed-
loop analysis increases significantly relative to the nominal MPC
problem. Consequently, the majority of results for SMPC are
restricted to linear systems. While there is an extensive body
of literature devoted to approximating and solving SMPC and
stochastic optimal control problems (see [25]), we focus this
article on the closed-loop properties of SMPC.

Primbs and Sung [30] consider linear systems with mul-
tiplicative uncertainty such that the effect of the disturbance
vanishes at the origin. By assuming that the terminal cost is
a global stochastic Lyapunov function, the authors establish
that the origin is asymptotically stable with probability one for
the closed-loop system. Similarly, we can established stabil-
ity in expectation of SMPC for unconstrained linear systems
with additive disturbances [28]. For constrained linear SMPC
subject to bounded disturbances, Cannon, Kouvaritakis, and
coauthors show that we can construct a terminal set and cost
that ensure recursive feasibility and stability in expectation of the
closed-loop system [3]-[5], [13]. Lorenzen et al. [19] propose a
less restrictive constraint tightening approach and establish that
linear SMPC asymptotically stabilizes, with probability one, the
minimal robust positively invariant set for the system. Similar
results are established in other subsequent papers for modified
SMPC algorithms [12], [35].

For nonlinear SMPC, Chatterjee and Lygeros [6] establish, for
unconstrained nonlinear systems, that the expected value of the
optimal cost along the closed-loop trajectory is bounded if the
terminal cost is a global stochastic Lyapunov function. Mayne
and Falugi [22] extend these results to address constrained
nonlinear systems subject to bounded, stochastic disturbances,
and with terminal constraints, require the terminal cost to be only
alocal stochastic Lyapunov function. Under certain viability and
stochastic controllability assumptions, nonlinear SMPC without
terminal conditions is also stabilizing, but these assumptions are
difficult to verify for nonlinear systems [20].

Given its early stage of development, there are naturally many
limitations to the current theory of nonlinear SMPC. All results
for the convergence of the optimal cost, and therefore, closed-
loop state, are restricted to systems that admit an exponential
decrease. Although useful for quadratic stage costs, these bounds
do not admit a general class of nonlinear stage costs. As we
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show in the subsequent sections, the extension of results for an
exponential optimal cost decrease to an asymptotic optimal cost
decrease is nontrivial. Furthermore, the established properties
for nonlinear SMPC are limited to stability in expected value
for the closed-loop system. If we assume that the disturbance
vanishes at the origin, we can recover asymptotic stability in
probability, but this assumption is quite restrictive and omits
even linear systems with additive disturbances. To the best of our
knowledge, there is currently no result establishing any notion
of (robust) asymptotic stability of nonlinear SMPC without
requiring the disturbance to vanish at the origin.

Although the original stochastic stability results developed by
Kushner [15], [16] are frequently cited in the SMPC literature,
there is a noticeable gap between the stability results available
for SMPC and the current state of the nonlinear stochastic stabil-
ity theory. The concepts of stochastic Lyapunov functions and
global asymptotic stability in probability (GASiP) were refined
significantly by Florchinger [8]. Teel and coworkers advanced
these results further by establishing that stochastic Lyapunov
functions ensure a stronger definition of GASiP that requires
uniform convergence and developed converse Lyapunov theo-
rems for this stochastic definition of stability [10], [37]-[39].
Analogous to input-to-state stability (ISS) for deterministic sys-
tems, stochastic input-to-state stability (SISS) was also defined
and established using SISS-Lyapunov functions in [14], [18],
[36], and [40]. These works, however, assume that the effect
of the stochastic disturbance vanishes once the state of the
system reaches the origin (i.e., a multiplicative disturbance)
and typically require the closed-loop system to be continuous
(i.e., defined by a continuous function). SMPC applications, by
contrast, often consider additive disturbances that do not vanish
at the origin. Furthermore, SMPC may define a discontinuous
control law, and therefore, produces a discontinuous closed-loop
system. Consequently, the results from the stochastic stability
theory are not applicable in their current form to the nonlinear
SMPC problem.

For nominal MPC under basic regularity assumptions, we
can establish that the optimal control problem is well-defined,
i.e., the minimum is attained [32, Prop. 2.4]. For nonlinear
SMPC, there are no analogous results in the literature. The
authors either assume explicitly that the “minimization prob-
lem is well-defined” or omit this discussion. Furthermore, the
expected value of the closed-loop system is used in SMPC
analysis without establishing that such a property is in fact
well-defined. Although both of these basic properties may be
considered likely to hold for the SMPC problem, glossing over
the existence question entirely is not ideal. By contrast, these
properties are well-established in the field of stochastic optimal
control [2].

In this article, we establish and refine several foundational
properties for nonlinear SMPC that are currently absent from the
literature. We begin by establishing that, under basic regularity
assumptions, the nonlinear SMPC optimization problem and all
relevant stochastic properties (e.g., expected value of the optimal
cost) are well-defined for the closed-loop system. We then define
a type of SISS-Lyapunov function similar to the definition
used in the nonlinear stochastic stability theory. We establish
that nonlinear SMPC, under suitable assumptions, admits an

SISS-Lyapunov function and renders the origin of the closed-
loop system robustly asymptotically stable in expectation
(RASIE). We conclude with an example that illustrates the
implications of this analysis and demonstrates the nonintuitive
closed-loop behavior that nonlinear SMPC may exhibit.

Preliminary results can be found in [24]. This article, however,
is a more thorough investigation of these topics. Notably, we
address stochastic asymptotic stability instead of stochastic ex-
ponential stability, which for stochastic Lyapunov functions is a
nontrivial extension. We also discuss the fundamental properties
of existence and measurability in greater detail and provide
proofs of these properties in the Appendix. In addition, we derive
performance guarantees for economic applications of SMPC that
do not rely on a lower bound for the stage cost (see Theorem 12)
and provide a detailed discussion of these results in comparison
to previous results for SMPC.

Notation: Let I and R denote the integers and reals. Let
superscripts and subscripts denote dimensions and restrictions
(e.g., RZ, denotes nonnegative reals of dimension 7). Let
| - | denote the Euclidean norm. For a closed set S C R™ and
xz € R”, |z|g := minyeg |z — y| denotes the Euclidean point-
to-set distance. Let Ig(x) denote the indicator function for a
set 9, ie., Is(x) =1 for all z € S and Ig(x) = 0 otherwise.
A function f:R™ — R is lower semicontinuous if and only
if the set {x € R™ : f(x) < y} is closed for every y € R. The
function o : R>g — R>g isinclass K if it is continuous, strictly
increasing, and «(0) = 0. The function o : R>g — R>q is in
class K if a(-) € K and unbounded, i.e., lims_,», a(s) = oo.
A function 5 : R>g x Is9 = R>g is in class ICL if for every
k € T, the function 3(-, k) isin class K, and for fixed s € R,
the function (s, -) is nonincreasing and limy_,, 5(s, k) = 0.

Let P(£2) denote the power set and B(£2) denote the Borel
field of some set €. A set /' C R™ is Borel measurable if F' €
B(R™). A function f: R™ — R™ is Borel measurable if for
each open set O C R™, the set f1(0) := {z € R": f(x) €
O} is Borel measurable, i.e., f~1(0) € B(R™). For two metric
spaces X and Y, a set-valued mapping denoted S : X =2 Y is
the assignment of each z € X to aset S(z) C Y. A set-valued
mapping S : X =2 Y is Borel measurable if for every open set
O CY, the set S71(O) := {x € X : S(z) N O # 0} is Borel
measurable, i.e., S71(0) € B(X) [33].

Il. STOCHASTIC MODEL PREDICTIVE CONTROL (SMPC)
A. Stochastic System
We consider the following discrete-time system:
= f(z,u,w) X xUxW =X (1)

inwhichx € X C R™isthestate,u € U C R™ is the controlled
input, w € W C RP? is a disturbance (random variable), and ™+
denotes the successor state.

Let (2, F, P) be a probability space for the sequence wo, :
Q — W™ of random variables, i.e., wo := {w(i)};2, for
w(i) : @ — W. We define the subsequence w; : Q2 — W1 as
w; = (w(0),...,w(i —1)).Let (Fp, F1,. .. ) denote the natu-
ral filtration of the sequence w, thatis, F; C F is all sets of the
form {w € Q : w;(w) € F}for F € B(W?*). We also define the
expected value of the Borel measurable function g : W¢ — R
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E [g(ws)] = / o(Wi(@))dP(w).

We make the following standard assumption for the distur-
bance in SMPC.

Assumption 1 (Disturbance): The disturbances w(i) : 2 —
W are independent and identically distributed (i.i.d.) in time,
zero mean (E[w(i)] = 0Vi € I5g), random variables. The sup-
port W is compact and contains the origin. Each random variable
has a known and equivalent probability measure p : B(W) —
[0, 1] defined such that u(F') = P{w € Q : w(i;w) € F}) for
all F' € B(W)andi € 1. The second moment of w(4) is finite
and the covariance matrix is defined as ¥ = E[w(i)w(i)"] for
all 7 € Io.

Note that, as is typical with SMPC formulations, we require
bounded W to allow for compact input (and state) constraints
and ensure that the compact terminal set is robustly positive
invariant [22]. Requiring bounded W is a strong assumption
and a limitation of this approach.

For the i.i.d. random variables (w(i),w(i +1),...,w(i +
N —1)) and N € I, their joint distribution measure p? :
B(WYN) — [0, 1] is defined as

pN(F) = p(F)p(Figa) - p(Fiyn1)

forall F = (F;, Fyyq,. .., Fion_1) € B(W¥). We define con-
ditional expected value such that

E[g(wiy1) | Fi] (w)
= / g(w(0;w), ..., w(i — L;w),w)du(w)
W

for any Borel measurable function g : Wit! — R and all i €
I>o.

B. Nonlinear SMPC Formulation

In the following sections, we drop the term “nonlinear” and
refer to all nonlinear SMPC as simply SMPC, unless we are
discussing key distinctions between linear and nonlinear SMPC.
Although it seems convenient to use the same probability space
defined for the stochastic system to discuss the SMPC formu-
lation, we separate the stochastic system and the stochastic
model of that system used for SMPC. This compartmentalization
allows us to discuss the SMPC problem, at least initially, as
a time-invariant problem instead of one conditioned on the
filtrations JF}, of the stochastic system.

Instead of selecting a trajectory of inputs u, we intend to
solve for a trajectory of control policies. We define the policy 7 :
X x V — U in which x € X is the current state of the system
and v € V C RY are the parameters in the control policy. Thus,
the resulting system of interest is defined as

vt = fr(z,v,w) = f(z,7(z,v),w). 2)

We use é(k, x, v, w) to denote the state solution of (2) at time k,
given the initial condition z, the trajectory of control policy pa-
rameters v = (v(0),v(1),...,v(IN — 1)), and the disturbance
sequence w € W,

We consider the case of hard input and state constraints, i.e.,
(z,u) € Z;, € X x U. In addition, we allow (one step ahead)
probabilistic constraints on the state defined as

Pr(f(x,u,w)EX)zl—e 3)

for a set X C R™ and constant € € [0, 1]. We observe, however,
that this method to represent probabilistic constraints appears
inconsistent with other constraints. Thus, we reformulate this
constraint using the function

G(z,u):=1-— /W I (f(z,u,w)) dp(w)

and the constraint set Z. := {(x,u) : G(x,u) < e}. Note that

(z,u) satisfy (3) if and only if (x,u) € Z.. Then, we define the
combined hard and probabilistic constraints as

(x,u) € Z :=Zy, N Ze.

We note that calculating or approximating 7. is adifficult and
important research problem that we obscure with this reformu-
lation. However, this reformulation is useful for the analysis of
the SMPC problem. We subsequently establish that Z is in fact
closed under basic regularity assumptions.

For SMPC with a horizon of N € [, the mixed constraint
Z, and an additional terminal constraint Xy C X, we have the
set of admissible (z, v) pairs defined as

Zy = {(z,v) e X x V.
(z(k), m(z(k),v(k)) € Z Ywe WN, keljyyq
z(N) € Xy Ywe W}

in which z(k) = ¢(k; 2, v, w). From this set, we define the set
of admissible parameter trajectories given x € X as Vy () :=
{v € VN : (z,v) € Zy} and the set of admissible initial states
as Xy = {z € X : Vn(z) # 0}.

Remark 1: The constraint (3) is enforced in Zx for all
ke ]I[O, N-1]- These one-step ahead constraints, i.e., constrain-
ing Pr(z(k + 1) € X) given z(k), are more restrictive than
the multistep ahead constraints sometimes used in SMPC, i.e.,
constraining Pr(z(k + 1) € X) givenz(0). Using these one-step
ahead constraints, we can ensure recursive feasibility of the op-
timization problem and guarantee that the closed-loop trajectory
satisfies Pr(z(k) € X) <1 — e forall k € I.

To characterize the performance of each feasible parameter
and state trajectory, we define a stage cost £ : X x U — R and
a corresponding terminal cost Vy : X — R> for the SMPC
problem. With these costs, we define the function

N-1
In(e,v,w) =Y Ua(k), m(z(k), v(k)) + Vi((N))
k=0
in which z(k) := ¢(k; z,v,w), (z,v) € Zy, and w € WV,

For SMPC, we define the cost function based on the expected
value of Jy(+), i.e., we define

Vn(z,v) = /WN In(z, v, w)dpN (w).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28,2023 at 19:52:07 UTC from IEEE Xplore. Restrictions apply.



MCALLISTER AND RAWLINGS: NONLINEAR SMPC: EXISTENCE, MEASURABILITY, AND STOCHASTIC ASYMPTOTIC STABILITY

1527

The SMPC problem for any x € X is defined as

Py(z): V(z) = min Vy(z,v) 4)
veEVN ()
and the optimal solutions for a given initial state are defined
by the set-valued mapping v¥ : Xy = V¥ such that v0(z) :=
arg minyey, () Va (@, v). Note that v°(z) is a set-valued map-
ping because there may be multiple solutions to P (z).

C. Assumptions

We require some basic regularity assumptions for the SMPC
problem.

Assumption 2 (Continuity of system and cost): The func-
tions f:XXUXW =X, 7:XxV->U, £:XxU—
R, and Vy : Xy — Rq are continuous. The function ¢(z, )
is lower bounded for all (x, u) € Zj,. Furthermore, we have that
£(0,0,0) =0, £(0,0) = 0, and V¢(0) = 0.

Assumption 3 (Properties of constraint sets): The sets Zj, and
X are closed and contain the origin. The sets U, V, Xy C X are
compact and contain the origin.

Note that we require V, in addition to U, to be compact.
Since we intend to optimize over the set V() for a nonlinear
(potentially noncoercive) function, compactness of V is required
to ensure P is well-defined.

To ensure that the stochastic optimal control problem remains
(robustly) recursively feasible and achieves certain performance
objectives, we require a terminal control law assumption analo-
gous to the one used in nominal MPC.

Assumption 4 (Terminal control law): There exists a continu-
ous terminal control law ¢ : Xy — U such that forall z € X

fle,kp(z),w) € Xy Ywe W Q)
Vi(f (2, r7(2),0)) < Vi(x) — £z, kp(2)). (6)

Furthermore, (z,%(z)) € Zn, X; CX, and 7(z,0) =
kf(x) forall z € Xy.

In contrast to [22, Assumption 5.2], we require V (+) to satisfy
a cost decrease condition for only the nominal system, i.e.,
w = 0. We also note that by assuming X; C X, and that X is
robustly positive invariant, we ensure that the probabilistic con-
straint is satisfied with probability one for all # € X ¢. The main
difference between the terminal set assumptions for stochastic
and nominal MPC is that we explicitly require robust positive
invariance of the terminal set through (5) for the SMPC problem.
However, robust positive invariance of the terminal region is of-
ten a requirement to establish the inherent robustness of nominal
MPC [1]. Thus, none of the requirements in Assumption 4 are
particularly strong relative to the nominal MPC problem.

To construct this terminal set and cost, we typically define
a terminal control law based on the linear—quadratic regulator
(LQR) solution of the linearized system (at the origin) . We
then define the terminal cost based on the infinite horizon LQR
cost and the terminal set as a level set of the terminal cost (see
[32, Sec. 2.5.5]). This terminal set is robustly positive invariant
for sufficiently small disturbances. For SMPC, we can further
modify this terminal set to be robustly positive invariant for
the specific support W. For sufficiently large W, however, a
robustly positive invariant terminal set may not exist for any

terminal control law. Furthermore, verifying that Assumption
4 holds for a nonlinear system and a specific support W is
nontrivial.

If we are considering a tracking problem, we require the
following assumption. Note that the lower bound on the stage
cost and requirement of X to contain the origin in its interior
are equivalent to the typical requirements to establish asymptotic
stability of nominal MPC [32, Prop. 2.16].

Assumption 5 (Tracking cost bounds): There exists ay(-) €
Ko such that ¢(z,u) > ap(|z|) for all (x,u) € Zj,. Further-
more, X ¢ contains the origin in its interior and X’y is bounded.

Remark 2: Requiring bounded X is a minor restriction.
Assumption 3 combined with the requirement that f~(X) =
{(z,u) e X x U : f(x,u,0) € X}isbounded for any bounded
X ensures that Xy is bounded. For a proof and further discus-
sion, see [32, Prop. 2.10(d)] and note that since 0 € W, the set of
feasible initial states for nominal MPC (i.e., w = 0) is a superset
of Xy for SMPC.

[ll. BAsiC PROPERTIES OF SMPC

Before proceeding to any stability guarantees for SMPC,
we begin by discussing some essential properties required to
properly analyze the closed-loop stochastic system generated
by SMPC. Namely, we establish that a solution to P exists and
verify that relevant stochastic properties (i.e., expected value) for
the closed-loop system are well-defined. We note that presenting
expected value as a Lebesgue integral allows us to establish
many useful properties for SMPC that may remain unclear with
typical SMPC notation. All the proofs of results in the section are
reported in the Appendix and further details can be found in [23].

For nominal MPC, the analogs of Assumptions 2 and 3
are sufficient to guarantee that the minimization problem is
well-defined for all x € Xy, i.e., the minimum is attained [32,
Prop. 2.4]. For SMPC, we demonstrate the same property for
the minimization problem defined as Py (z) forall x € X . We
begin with the following results for the sets Z and Zy.

Lemma 1: Let Assumptions 1-3 hold. Then, the sets Z and
Zp are closed.

Thus, despite the fact that these constraints are defined by a
stochastic nonlinear system, we can still establish that relevant
sets are indeed closed under basic regularity assumptions. Note
that if we directly define Z through an approximation of Z.,
this approximation must be a closed set. Using Lemma 1, we
establish that solutions to the SMPC optimization problem exist.

Proposition 2 (Existence of minima): Let Assumptions 1-3
hold. Then, for each x € X, the function Vy(x,-) : VY — R
is continuous, the set V() is compact, and a solution to P ()
exists.

To properly discuss expected value or probability of stochastic
systems, we must first establish that such properties are indeed
well-defined. We define the control law mapping for SMPC as
Ky () := 7(2,v°(0;2)) in which v°(0;z) is defined as the
first parameter vector in v (z). Note that if there are multiple
solutions to Py (), K (x) may be a set-valued mapping instead
of a single-valued function. Nonetheless, we typically assume
there exists some selection rule that defines a single-valued
control law kx : Xy — U such that ky(z) € Ky(z) for all
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x € Xn. The resulting closed-loop stochastic system is

vt = fu(z,w) = f(x, ky(z),w). @)
We denote the solution to (7) at time k € I given the initial
condition x and disturbance sequence wj, = (w(0), ..., w(k —

1)) as 6(k; 2, w,).

We note, however, that continuity of m(-) does not imply
continuity or measurability of xx (-), since v°(0; z') is not nec-
essarily continuous or Borel measurable. Furthermore, if < x (-)
is not Borel measurable, the system defined in (7) may produce a
nonmeasurable closed-loop system, i.e., ¢(k; x, wy,) is not mea-
surable w.r.t. wj, € W*. For a nonmeasurable stochastic system
with uncountable set €2, Lebesgue integrals are undefined and
all stochastic properties of the system based on these integrals
(e.g., expected value) are also undefined.

Fortunately, the regularity conditions presented in Assump-
tions 2 and 3 are sufficient to ensure that the control law mapping
Ky (x) and the optimal cost function are Borel measurable.
We note that the proof of the subsequent proposition relies on
the excellent work of [2, Prop. 7.33] on the measurability of
stochastic optimal control problems.

Proposition 3: Let Assumptions 1-3 hold. Then, the function
V13 : Xn — Rislower semicontinuous (Borel measurable), the
set X is closed, and the set-valued mapping v¥ : Xy = V¥
is Borel measurable. Furthermore, the optimal control law map-
ping Kn(x) : Xy = U, defined as Ky(z) := 7(x,v°(0;2))
is Borel measurable.

If vO(z) is a single-valued mapping, i.e., there is a unique
minimizer for the optimization problem for each x € Xy,
then the Ky (x) is single-valued and ky(z) = Kn(z), is a
single-valued, Borel measurable function. If instead, v°(z) is
a set-valued mapping, i.e., there are multiple solutions for the
optimization problem for some = € X, then K y(z) may be a
set-valued mapping as well. In this case, we apply a selection
rule to define the single-valued control law ky : Xy — U.

In theory, we could select an exotic selection rule that pro-
duces a nonmeasurable function x () from the Borel measur-
able set-valued mapping Ky (z) (see [23, Appendix A]). We
postulate that unintentionally constructing such a selection rule
for a real system is unlikely. To avoid any potential issues, we
make the following standing assumption.

Standing Assumption 1: We have chosen a Borel measurable
selection rule ¥ : (P(U)\ ) — U such that W(A) € A for
every A € (P(U) \ 0) and defined k() := V(K y(z)).!

With this assumption, we ensure that ky : Xny — U is in-
deed a Borel measurable control law. This fact, combined with
the continuity of f(-), guarantees that f. : X x W — X is
also a Borel measurable function. However, before address-
ing the measurability of ¢(k,z, wy), we must first establish
that ¢(k,x,wy) is well-defined for the iteration in (7). If
o(k;z,wy) ¢ Xn, then ky(p(k;x,wy)) is not defined and
the iteration is no longer defined. We establish that ¢(-) is
well-defined with the following definition and lemma. We note
that Lemma 4 requires Assumption 4 to ensure robust positive
invariance of Xy .

'[2, Lem. 7.18] guarantee that such a selection rule exists for any compact set

Definition 1 (Robust positive invariance): The set X is said
to be robustly positive invariant for the system 27 = F(x, w),
we Wifz € X implies ™ € X.

Lemma 4: Let Assumptions 1-4 hold. Then, X is robustly
positive invariant for the system 2™ = f,;(z, w),w € W and the
function ¢(k; x, wy,) is well-defined for all 2 € Xy, wi, € Wk,
and k € Hzo.

Stochastic properties of interest are defined by Lebesgue
integrals of lower bounded, Borel measurable functions of
o(k; x, wy). Therefore, if ¢(k;x, wy,) is Borel measurable for
all k£ € I, then all the stochastic properties of interest are
well-defined.

Proposition 5: Let Assumptions 1—4 hold. Then, the func-
tions ¢(k; x, wi(w)) for all k& € I are Borel measurable w.r.t.
the measure space (2, F, P). Furthermore, the integral

/Q 9(6(k; 2, Wi () dP(w)

is well-defined forall z € X'y, k € I>(, and any lower bounded,
Borel measurable function g : Xy — R. Note that the functions
VY : Xy — R and {(-,kn(-)) : Xx — R are lower bounded
and Borel measurable.

The proof of Proposition 5 is based on [10, Prop. 4]. Note that
we require Assumption 4 only to ensure that X’ is robustly
positive invariant. Any SMPC (or MPC) algorithm that can
ensure robust positive invariant A’y and satisfies Assumptions
1-3 retains the properties of Proposition 5 as well. With this
result in hand, we next present relevant stochastic properties of
the closed-loop system.

IV. OPTIMAL COST DECREASE IN EXPECTATION

We now establish that the optimal cost for SMPC satisfies a
cost decrease inequality along the closed-loop trajectory based
on the stage cost and the disturbance. We find the following re-
sults (based on [29, Lem. 14]) useful in the subsequent analysis.

Lemma 6: If o(-) € K, then for any b € R, there exists
ay(+) € Ko such that oy, (+) is convex and o, (s) < a(s) for all
s €10,b).

Proof: We define

Immediately, we have that «,(-) is strictly increasing and
unbounded as s — oo since a(s) > 0 for all s > 0. Since «(r)
is continuous, we have that «,(s) is continuous as well [34, Th.
6.20]. Thus, «, € K. The derivative of o, (-), i.e., d(‘;‘; (s) =
a(s)/b, is strictly increasing, and therefore, «v,(-) is a convex
function. Furthermore, we have

a,(s) = ll)/osa(r)dr < Z/Os a(s)dr = —a(s) < a(s)

forall s € [0, b]. O
Corollary 7: Tf a(-) € K, then forany b € R, there exists
ae(+) € K such that a.(+) is concave and «(s) < a.(s) for all
s €[0,b].
Proof: Note that the inverse of a K, function is also a
K+ function. We use Lemma 6 to construct a convex function
. (+) € Ko such that av, (1) < ag ' (r) for all 7 € [0, a5 (b)].
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Therefore, a.(s) = a,1(s) > as(s) for all s € [0,b]. The in-
verse of a continuous, strictly increasing, and convex function is
concave, and therefore, a.(+) € K andis a concave function.[]
We also use a technical result from [1, Prop. 20].
Proposition 8: Let C C D C R™ with C' compact and D
closed. If f: D — R"™ is continuous, there exists a(-) € K
suchthatforallz € Candy € D, wehavethat|f(z) — f(y)| <
a(lz — yl).
We begin with the following result for the terminal region.
Lemma 9: Let Assumptions 1-4 hold. Then, there exists
o(-) € K such that

[ ViltGessta) 0)dutw) < Vy(a)
~ Uy (o) + 0 ()

forall z € Xy.

Proof: Since Vy(-), f(-),and k¢ (-) are continuous and X y and
W are bounded, we have from Proposition 8§ that there exists
a(+) € Ky such that

Vi (f (2, k5 (2),w) = Vi (f (2, 5 p(2),0))] < affw])

forallz € Xy andw € W. We can combine this inequality with
(6) to give

Vi(f(2, kp(2),w)) < Vi(x) =Lz, k55 (2)) + (Jw])

for all x € Xy and w € W. Then, we apply Corollary 7 to
construct a concave function a.(-) € K such that a(jw|) <
ae(|w]) for all w € W since W is bounded. We evaluate the
Lebesgue integral of both sides of the inequality with respect
to the probability space (W, B(W), 1) and apply Jensen’s in-
equality to give

/W Vi (F (@ g (), 0))dpa(w)
< Vi) — Uz, s (@) +ac E o). @

From Jensen’s inequality, we can write E[|w|]? < E[jw|?] =
tr(X). We define o(s) := a.(s'/?) and note that o(-) € K
because av.(-) and s'/2 are K-functions. Thus, we have that
ac(E[Jw]]) = o(E[|w|]?) < o(tr(X)) and substitute this in-
equality into (8) to complete the proof. ]

This result is similar to ISS results for continuous Lyapunov
functions. However, the application to stochastic systems pre-
sented here is novel. In particular, the direct relation between the
bound in Lemma 9 and the variance of the disturbance (tr(X)) is,
to the best of our knowledge, entirely new for nonlinear SMPC.
Typically, for nonlinear SMPC, the term o (tr(X)) is treated as a
fixed constant and any connection to the probability distribution
is ignored [6], [20], [22]. A more familiar result is achieved
using a common choice of the disturbance model and terminal
cost function.

Lemma 10: Let Assumptions 1-4 hold with f(z,u,w) =
g(z,u) +w and Vy(z) := «’ Pz for positive semidefinite P.
Then, for all z € X, we have

/W Vi (f (2 g (), w0))dps(w) < Vy(z)
— Uz, kp(2)) + tr(PX).

The proof of Lemma 10 is simple, and therefore, omitted.
The term tr(P3]) appears in the exact same form for the linear
SMPC problem as well [19]. We also note that for this system
and terminal cost, the bound tr(PY.) is often the tightest bound
possible that is also independent of x (e.g., consider any terminal
control law such that = 0 and £ ¢(0) = 0).

In either case, the implications of this bound are clear: the
distribution of w, specifically the variance of w, determines
the size of this bound. As tr(X) — 0, i.e., the variance of w
approaches zero, we know that o(tr(X)) — 0 and we recover
the nominal cost decrease condition for the terminal region.
Analogous to the nominal MPC problem, we now extend this
result in the terminal region to the entire set X'y for the optimal
cost function VJ(-).

Proposition 11: Let Assumptions 1-4 hold. Then, the set X
is robustly positive invariant for the system 2™ = f,(z, w), w €
W and there exists o(-) € K such that

/W VN (fa(e,w)dp(w) < Vy(z) — Uz, vy (@) + o (t(3))

forall z € Xy.

Proof: If x € Xy, we have that for v° € v%(z) and
all w:= (w(0),w(l),...,w(N —-1)) e WV, z(N,w)=
G(N;x,v0, w) € X; and

fx(N,w),kp(z(N,w)),w(N)) € Xy

forallw(N) € W by Assumption 4. Thus, the candidate trajec-
tory
v = (0°(1),2°(2),...,v°(N —1),0)

satisfies vt € Vy(21) for 27 = f(z,kn(x), w(0)) and all
w(0) € W. Since Vy (z1) is nonempty, 2+ € Xy, and Xy is
robustly positive invariant. Letting

wh = (w(l)vw(Q)v s ,’LU(N - 1),11)(]\7))
and using the definition of Jy (+), we obtain
In (et v W) = Iy (e, v0, W) — Uz, iy ()

+n(z(N,w), w(N)) ©)
in which
n(z,w) = =Vi(x) + £z, i (2)) + Vi (f (2, 55 (2), 0)).
From Lemma 9 and the fact that (N, w) € X, we have that

[ o W) 0N ()i (N) < o (1)
We also have the following equality:
[ e w)di (w)dn(w(V) = Vi (o).
WN+1
And by optimality, we have that

Vy(at) < .. In(zt, v W dp(w(1) ...

dp(w(N)).
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We combine these inequalities with (9) to give
[ VRGdutw(o)
W
<

< / In (@t s dp (w)dp(w(N))
WN+1

< Vy(z) — Uz, iy (@) + o (1(X)) .

Substitute T = f(x, ky(z),w) and let w = w(0) to com-
plete the proof. g

We emphasize that Proposition 11 is valid only if the probabil-
ity distribution (and therefore, 3J) used in the SMPC optimization
problem is identical to the true probability distribution of the
system. If the distribution of the underlying stochastic system is
not identical to the distribution used in the disturbance model,
these results do not necessarily hold.

We may apply the cost decrease of Proposition 11 to establish
the following result.

Theorem 12: Let Assumptions 1-4 hold. Then, for the closed-
loop system 2 = f(x, kn(z),w), w € W, the set Xy is ro-
bustly positive invariant and there exists o(-) € K such that

T-1
lim sup L > E [U(a(k),ulk)] < o(w())  (10)
T—o0 T k=0

for all x € X in which z(k) := ¢(k;x,wy) and u(k) =
kn(x(k)).

Proof: From Lemma 4, we know that X'y is robustly positive
invariant for the closed-loop system. From Proposition 5, we
know that all subsequent integrals are well-defined.

For any z € Xy, let x(k) := ¢(k;x,wy) and wu(k) :=
£y (x(k)). From Proposition 11 and the definition of conditional
expectation, we have that

E [Vy(z(k +1)) | Fi] < Vy((k))
—l(z(k),u(k)) + o (r((X)) .
By the law of total expectation, we have
E [Vy(z(k+1))] <E [Vy(a(k))] - E [ (k), u(k))]
+o (tr(X2)).

We take the summation of each side from k = Oto7 — 1 and
divide by T to give

T

LS E f(a(k), u(k))] < o (1(X))
k=0

el

Va(z) — E [Vy (2(T))]
= :

Since £(-) is lower bounded, we have that there exists M €
R such that Vi (z,v) > M for all (z,v) € Zx. Therefore,
—E,[VY(2(T))] < =M as well. We apply this bound and
evaluate the lim sup,_, ., of each side to give (10). U

Note that lim sup is used instead of lim, as the limit may not
exist. From Lemma 10, we can replace o (tr(X)) with tr(PX) if
we have an additive disturbance model and a quadratic terminal
cost function.

V. STOCHASTIC ASYMPTOTIC STABILITY OF SMPC

In this section, we specialize SMPC to tracking problems
(with Assumption 5) and establish RASIE for the closed-loop
system.

A. Robust Asymptotic Stability in Expectation (RASIE)

Definition 2 (RASIE): The origin is RASIE for the stochastic
system 2T = f(z,w), w € W on the robustly positive invari-
ant set Xy if there exist 5(-) € KL and (+) € K such that the
closed-loop trajectory satisfies

Efl¢(k; z, wi)l] < B(|lzl, k) + v (r(2)) (1n

forall x € Xy and k € I>o.

In contrast to robust asymptotic stability or ISS for determin-
istic closed-loop systems, RASIE bounds the expected value of
the norm of the closed-loop state based on the initial condition
x and variance of the disturbance, i.e., tr(3). Clearly, this upper
bound implies the typical notion of stability in expectation that
[22] establish. We note, however, that RASIE also ensures that
the effect of the initial condition |z| on the upper bound decays
toward zero as k — oo.

To establish that a closed-loop system satisfies this condi-
tion, we use an SISS-Lyapunov function similar to the SISS-
Lyapunov functions in the nonlinear stochastic stability theory.
Note that we do not require continuity of f(-) or an exponential
cost decrease. Furthermore, o5(+) and o3(-) are both functions
of tr(X).

Definition 3 (SISS-Lyapunov Function): The Borel measur-
able function V' : Xy — R5¢ is an SISS-Lyapunov function on
the robustly positive invariant set X for the stochastic system
T = fa(z,w),w € W, if there exist oy (+), a2 (+), a3(-) € K
and 05(+), 03(-) € K such that

ar(fz]) < V(z) < as(|z]) + o2 (r(%))

/W V(falr, w))dp(w) < V(z) — as(ja]) + o3 ((S))

forall x € Xy.

We can establish the following result for SISS-Lyapunov
functions.

Proposition 13: If a system 27 = fy(z,w), w € W admits
an SISS-Lyapunov function on the robustly positive invariant
and bounded set X, then the origin is RASIE.

Proof: To streamline notation, we define d := tr(X) and note
that d is a constant for the stochastic system. Define a4 (s) :=
as(ay*(s/2)) and note that ay(-) € Ko and ay(s) < s for all
5 € Rsg because a3(s) < as(s) for all s € R-g.2 We have the
following inequality:

as(V(2)) < aa(az(|z]) + o2(d))
< au(2a2(|2])) + aa(202(d))
= as(|z]) + a4 (202(d)).

2If this inequality does not hold, we simply construct a new a(+) € Ko such
that az(s) < as(s) forall s € Rxq.
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By rearranging, we have —as(|z]) < -—ayu(V(x))+
a4(202(d)).
Choose x € X and let z(k) :=

Then, we have
E[V(z(k+1)) | Fiu] < V(x(k)) — as(V(z(k))) + oa(d)

in which o4(d) := a4(202(d)) + 03(d) and o4(-) € K. Since
X is compact and V () < aa(|z]) 4+ o2(d), there exists b > 0
such that V(z) < b for all € X. From Lemma 6, we can
construct o, € Ko such that o, (+) is convex and o, (V (2)) <
ay4(V(x)) for all x € Xy. Therefore, we can replace ay(-)
with a, (+), apply the law of total expectation, and use Jensen’s
inequality to give

E[V(z(k+1))] <

(;S(k;:r,wk) for all k € ]IZU'

E[V(z(K)] - a(E [V(z(k))]) + 0a(d).

Define 7(d) := 2max{a,*(04(d)),04(d)} and note that
A() € K. IFE[V (2(k))] < A(d)/2, then
EV(z(k+1))] <3(d)/2+ 04(d)
<A(d)/2+5(d)/2 = 3(d).
I£5(d)/2 <E[V(2(F))] < (d), then
E[V(z(k+1))] <E[V(z(k))] - oy (7(d)/2) + 04(d)
<E[V(z(k))] <(d).
Thus, for E[V (x(k))] < 4(d), we know that E[V (x(k +
1))} < 5(d).
IfE[V ( (k)] > A(d), we have
]E[ (k+1))]
E [V (2(F))] = au(E [V(z(k))]) + o (B [V (2(F))] /2)
SM( [V (z(k))])

in which A1(s) := s — a,(s) + a,(s/2). We have that 14 (+) is
continuous, A1(0) = 0,and A (s) < sforall s > 0. By the same
process used in [32, Th. B.15], we construct () € K, such that
r(s) < A(s) < sfor s > 0. Thus, we have

E[V(z(k +1))] < AE[V (z(k))])-

Repeated application of the aforementioned equation and the
fact that E[V (2(0))] = V() gives

E[V(x(k +1))] < B(V(2), k) = 2"(V(x))

in which A*(-) is the composition of A(-) with itself & times. Us-
ing the same approach as [32, Th. B.15], we conclude that 3(-) €
KL. We have that E[V (x(k))] < B(V (z), k) if E[V (2(k))] >
A(d)andE[V (z(k + 1))] < A(d)ifE[V (x(k))] < A(d). There-
fore, for all x € X, we have

E [V (z(k))] < max{B(V(2), k),7(d)}.

Using Lemma 6 and the fact that X is compact, we can
construct a convex function a1 ,,(+) € Koo such that oy o, (|z]) <
aq(Jz|) < V(z) for all z € Xy. Thus, we may apply Jensen’s
inequality to give

Eflz(®)[]) <Elar(lz(k))] < E [V (z(k))].

(12)

al,'u(

Therefore, we have
Eflo(k)]) < max{ai}, (3(V(2),k)) a1} (3(d) }
< Bu(V (@), k) + a7}, (3(d)

in which £;(-) := al’)}) o B(-) € KL. We use the upper bound
for V(z) to give

E[lz(k)[] < Bi(az(|z]) + 02(d), k) + agy, (7(d))
< B1(2az(|z)), k) + B1(202(d), k) + a1, (7(d))
< B(lzl k) +~(d)

in which f(s, k) := 51(2a2(s), k) € KL, and ~(d) :=
B1(202(d), 0) + a7, (3(d)) € K. U

B. RASIE of SMPC

Analogous to the stability analysis for nominal MPC, we
intend to use the optimal cost of the SMPC problem as an
SISS-Lyapunov function. We already established the desired
cost decrease bound in Proposition 11 and the stage cost bound
from Assumption 5 provides a lower bound for the optimal cost
function. Therefore, we focus on constructing the upper bound
for V3 (-).

Lemma 14: Let Assumptions 1-5 hold. Then, there ex-
ist as(-) € Ky and o2(+) € K such that VY (z) < as(|z|) +
oa(tr(X)) for all x € X.

Proof: We choose x € X and consider the trajectory gener-
ated by repeated application of the terminal control law, i.e.,
z(k) := ¢(k;x,0,w) since m(z,0) = kf(x). The set Xy is
robustly positive invariant for this control law due to Assump-
tion 4, and therefore, x(k) € X for all k € Io. We define
d := tr(X). From Assumption 4 and Proposition 11, we have
forall k € I 1) that

/WN (Vi(w(k+1)) = Vi(x (k) du™ (w)

<= [ tal). s 0))dn (w) + o).
WN

We sum both sides of the inequality fromk = Otok = N — 1
to give
[ i) = Vi (a(o) di ()
N-1
<= [ 3 talk) s (w0))dn® (w) + No(d),
k=0

By rearranging and substituting in the definition of J (-) and
x(0) = x, we have

/WN In(x,0,w)du™ (w) < Vi(z) + No(d)

for all z € X . By optimality, we know that V{ (z) < Vy(z) +
No(d). From Assumption 2 and [31, Prop. 14], there exists
af(-) € K such that Vy(z) < ay(|z]), and therefore, V3 (z) <
as(|z]) + No(d) forall z € Xy.
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We now establish that V9 () is locally bounded on X . Let X
be any arbitrary compact subset of X’x. The function Jy : X x
VY x W is continuous, and therefore, has an upper and lower
bound on the compactset X x V¥ x W¥ . Since Vy(z) C V¥
forallz € Xy, VY : Xy — R must satisfy the same upper and
lower bound on X . Therefore, V() is locally bounded on Xy

To extend this upper bound, we define a new function
W (x) := max{Vy(z) — No(d),0} and note that W (z) >0
and W(z) < ay(|z|) for all x € X;. Since X contains the
origin in its interior, W (x) is continuous at = 0. Furthermore,
we know that W(0) = 0, Xy is closed (Proposition 3), and
W (x) is locally bounded (since V3 (z) is locally bounded).
Therefore, [31, Prop. 14] applies and there exists s (+) € Ky
such that W (z) < as(|x|) for all z € Xy. We have that

Vi (z) = No(d) < W(z) < as(|z])

and we define 02 (d) = No(d) to give the desired upper bound.[J
Note that this upper bound increases with the horizon length
of the optimization problem. As an alternative to Lemma 14,
we may assume that V\(+) is continuous at the origin. With this
alternate assumption, we can find a3 (+) € K such that

Vy(z) < as(|2]) + VR(0).

Note, however, that VJQ, (0) is not necessarily zero for SMPC if
the stage cost is positive definite (as required by Assumption 5).
Only in specific situations, e.g., multiplicative disturbance mod-
els, is V¥ (0) = 0. Furthermore, we expect the value of V(0) to
also increase with increasing NV similar to the bound we derived
in Lemma 14. We propose, however, that this increase with the
horizon length is not a weakness of the analysis approach, but
an underlying characteristic of SMPC, particularly, for nonlinear
systems.

Next, we establish the main result of this article.

Theorem 15: Let Assumptions 1-5 hold. Then, the origin is
RASIE for the stochastic system 2z = f(z,w), w € W on the
robustly positive invariant set X .

Proof: We establish this result by showing that V{ (z) is an
SISS-Lyapunov function. From Assumption 5, we have that
ae(|z]) < l(z,u) < V(x). From Lemma 14, we have the up-
per bound. From Proposition 11, we have the cost decrease con-
dition. Thus, we apply Proposition 13 to complete the proof. [J

C. Discussion

Although similar to the results of [20] and [22], we note a few
key differences. Most significantly, the proof of Theorem 15 does
not require an exponential decrease in the expected value of the
optimal cost along the closed-loop trajectory. Instead, we use
Jensen’s inequality to move the expected value operator within
the IC-functions. We also note that RASIE provides a specific
upper bound for the expected value of the norm of the state. In
the definition of RASIE, the effect of the initial condition on the
upper bound asymptotically (and uniformly) decreases to zero as
k — o0. The remaining term is independent of k£ and depends on
the distribution of the disturbance w (i.e., tr(X)). In particular, if
tr(¥) = 0, i.e., a nominal MPC algorithm applied to a nominal

closed-loop system, we recover the asymptotic stability result
typical of nominal MPC.

‘We note the (intentional) similarity between this result and the
results in [ 1] for the inherent robustness of nominal MPC. There
is, however, a key distinction; the result for SMPC requires that
we have exact knowledge of the disturbance that is affecting the
system. Consequently, if the plant follows the model in (1), but
with a disturbance probability distribution other than what is
assumed in the SMPC optimization problem, then the bound in
(11) does not necessarily hold for the variance of either probabil-
ity distribution. For example, if we design an SMPC algorithm
assuming tr(X) = 1 and the disturbances actual distribution has
a value of tr(X) = 0.5, it is not clear how the bound in (11)
changes. The robustness of nonlinear SMPC to unmodeled or
incorrectly modeled disturbances is an open question.

Goulart and Kerrigan [9] establish that for linear systems
with additive disturbances, SMPC produces an ISS closed-loop
system. Thus, if the true system experiences w = 0, SMPC
stabilizes the origin regardless of the probability distribution
used in constructing the SMPC controller. But this result relies
on many properties of the linear problem that do not extend to
the nonlinear case (e.g., convexity and optimality of the terminal
control law). For nonlinear SMPC, if we assume that tr(2) > 0
and the closed-loop system is in fact nominal (i.e., w = 0 and
tr(3) = 0), the resulting stochastic controller may not stabilize
the origin.

Even if we have exact knowledge of the disturbance distri-
bution, there are still clear differences between the strength of
results for nonlinear and linear stochastic MPC. Lorenzen et al.
[19] establish that linear SMPC, under suitable assumptions,
stabilizes the terminal region with probability one. For nonlin-
ear SMPC, however, this property simply does not hold (see
subsequent example). Indeed, nonlinear SMPC may converge in
expected value to a point outside of the terminal region even if we
initiate the system within the terminal region. In the subsequent
section, we demonstrate these characteristics of nonlinear SMPC
through an example.

VI. EXAMPLE

Consider the following nonlinear discrete-time system:

|
2

in which the probability distribution of the disturbance is
given by Pr(w = 0.5) = Pr(w = —0.5) = 0.25 and Pr(w =
0) = 0.5. We consider the constraints

o=l S =l

and stage cost f(x,u) =2'Qxr+uRu with Q=R=
diag([10,0.1]).

To construct the terminal cost/constraint, we linearize at
(zs,us) = (0,0) and find the LQR cost P and gain K assuming
the inflated stage cost QLor = 1.1Q) and Rigr = R. We define
the terminal cost as V¢ (z) := &’ Pz and terminal control law as

2339 + 21 (1 — 29)
0.9332

Uy w

+
0

+

U2
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0.6
—e— MPC, N =3
—#— SMPC, N =1
0.4 7 —— SMPC, N =2
—%— SMPC, N =3
IE [$2] I:l

E [z4]

Fig. 1. Expected value of each state variable, i.e., E[z1] and E[z2] for
each closed-loop stochastic trajectory. The points for each line corre-
spond to different time steps starting with z(0) = [2,0]'.

0.6 :
| —— MPC, N =3
04 - i —%— SMPC, N =1
' i —— SMPC, N =2
—%— 3

—

1

Fig. 2. State for each closed-loop trajectory if w = 0. The points for
each line correspond to different time steps starting with z(0) = [2,0]'.

ky(x) = Kx. We select the terminal constraint

—1 1
<zx< .
[—0.1‘| - 0.1]

We confirm both requirements of Assumption 4 for this ter-
minal region. We parameterize the control policy as 7(x, v) :=
Kz + v and select V such that for all (x,u) € Z, there exists
v € V such that 7(z, v) = u. Note that Assumptions 1-3 and 5
are also satisfied by this formulation.

We simulate the closed-loop response of this stochastic sys-
tem subject to nominal MPC and SMPC controllers with varying
horizon lengths. We initialize the system at 2:(0) = [2,0]’. Be-
cause the disturbance can take only three possible values, all
expected values in the subsequent plots are calculated exactly
through a scenario tree approach and are not based on sample
averages.

We plot the expected value of the state in Fig. 1. We note that
SMPC with a horizon length of N = 1 drives the expected value
of the state to the origin. However, as we increase the horizon
length of SMPC, the value of E[z5] leaves the terminal region
and increases with the increasing horizon length. Nonlinear
SMPC with N > 2 does not stabilize the terminal region (with
probability one) as we might expect for linear SMPC or ISS
nonlinear stochastic systems [19], [26]. In Fig. 2, we plot the
closed-loop trajectory for each algorithm if the realized system is
in fact nominal (i.e., w = 0). For nonlinear SMPC with N > 2,

207 —e— MPC, N =3
—— SMPC, N =1
1.5 - —— SMPC, N =2
,f\ —>»— SMPC, N =3
E 1.0 -
=
0.5
0.0 T T T T T
0 1 2 3 4 5 6
k
Fig. 3. Expected value of the norm of the state, i.e., E[|z(k)|], for each

closed-loop stochastic system.

] —e— MPC, N =3

1 —#— SMPC, N =1
/f\ | —— SMPC, N =2
= —— SMPC, N =3
Sﬁ 101 4
s ]
< ]
= ]

T T T T
0 1 2 3 4 5
k

Fig. 4. Expected value of the stage cost, i.e., E[¢(z(k), u(k))], for each

closed-loop stochastic system.

the origin and/or the terminal set are in fact not asymptotically
stable for the nominal closed-loop system.

In Fig. 3, we plot the values of E[|z(k)|] for the closed-loop
stochastic system. We observe for all values of NV that the SMPC
algorithm produces results consistent with Theorem 15. How-
ever, we note that the value of E[|x(k)|] as k& — oo increases
with increasing N. Thus, the dependence of oo(-) in Lemma
14 on the horizon length N appears to indicate an underlying
characteristic of nonlinear SMPC and is not necessarily a short-
coming of the analysis approach used in this article.

In Fig. 4, we plot the expected value of the stage cost at
each iteration of the closed-loop system. We observe that the
performance of SMPC, in terms of the stage cost, improves
with increasing horizon length. Thus, driving the system toward
larger values of x5 improves the expected cost of the closed-loop
system after an initial transient. The reason for this behavior is
that larger values of o produce a system that is more robust
to the disturbance. Since we apply a significantly larger cost to
x1, up than x9, us, using larger values of x5 to guard against
the disturbance is advantageous from a stochastic perspective.
Therefore, the closed-loop behavior of SMPC for N > 2, al-
though undesirable from the perspective of a tracking problem, is
appropriate based on the chosen stage costs. Choosing different
values for () and R can result in significantly different behavior
of the closed-loop system. For example, selecting ) = R =1
results in significantly smaller values of E[|z(k)|] as kK — oo
and E[z(k)] enters and remains in the terminal region.
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VIl. CONCLUSION

In this article, we established several basic properties of the
nonlinear SMPC problem including existence of optimal solu-
tions and measurability of the closed-loop trajectory. We used an
SISS-Lyapunov function to establish that SMPC, under suitable
assumptions, is robustly asymptotically stable in expectation.
In particular, we established that the bound on expected value
of the closed-loop state is directly related to the variance of
the disturbance. Thus, as the variance approaches zero, we
recover the nominal asymptotic stability guarantee typical of
MPC. This result is informative, but is also significantly weaker
than the extent of results available for linear SMPC. We present
an example to illustrate that nonlinear SMPC, at least under
this set of assumptions, does not guarantee that the closed-loop
system is ISS or that the state converges to the terminal region.
Furthermore, increasing the horizon length for nonlinear SMPC,
may actually increase the value of E[|x(k)|] as k — oo.

If economic performance objectives are used and track-
ing/stability is not required, SMPC appears to offer an excellent
method to include available stochastic information in the opti-
mization problem. If tracking/stability of a setpoint (origin) is
desired, nonlinear SMPC may produce nonintuitive, and in some
cases undesirable, closed-loop systems despite satisfaction of
reasonable assumptions. This nonintuitive behavior, however, is
primarily the result of optimizing a stochastic property of the
tracking cost function, i.e., E[Jn ()], and not the probabilistic
constraints. Therefore, using stochastic information to construct
the set Zx and optimizing over a nominal cost function, i.e.,
Jn(z,v,0), may offer a desirable compromise between the
benefits of SMPC and the more intuitive behavior of nominal
MPC.

APPENDIX

Here, we present the proofs omitted from Section III.
Throughout the Appendix, we find the following technical result
useful.

Lemma 16: Let f : X x .S — R be a Borel measurable func-
tion defined for X C R™ and the probability space (S, %, u).
Then, the function ' : X — R defined by the Lebesgue integral

aﬂ=Af@$W@

satisfies the following:

1) if f(z,s) is lower bounded and lower semicontinuous
w.r.t. z € X, then F(x) is lower semicontinuous;

2) if f(xz,s) is continuous w.rt. x € X and uniformly
bounded for all (z,s) € X x S, then F(z) is finite and
continuous.

Proof: Fix x € X and let (z,,)%° ; be any sequence of real
numbers that converges to z, i.e., hrn,HOO x, = x. We define
the corresponding sequence of functions (f,)5_; such that
fn(s) = f(zp,s) forall s € S.

1) If f(x,s) is lower semicontinuous w.r.t. z, we have that
liminf, o fn(s) > f(z,s). If f(-) is nonnegative, we apply

Fatou’s Lemma to give

liminf F(x,) = liminf
n—oo n—0o0

.
zéﬂaww$

Since the choice of x € X and the sequence (z,)%°_; was
arbitrary, we have that

/fn )dp(s)

lim inf f,,(s)du(s)

n—0o0

= F(z).

hrtnﬁlacnf F(t) > F(x)

and therefore, F'(x) is lower semicontinuous.

If f(-) is lower bounded, we define ¢ € R, such that f(x, s) >
cforall (z,s) € X x S. Next, we define h(z,s) := f(z,s) —
¢ and note that h(-) is nonnegative and lower semicontinuous
because f(+) is lower semicontinuous. Thus

H(x) ::/Sh(:r,s)d,u(s)

is lower semicontinuous and F'(x) = ¢+ H(x) is also lower
semicontinuous.’

2) If instead f(x,s) is continuous w.r.t. x, we know that
lim,, o0 fn(s) = f(x,s). If f(x,s) is also uniformly bounded,
we have from the dominated convergence theorem that F'(z) is
finite and

lim F(z,) = lim fn() 1(s)
:/M 0= [ S 9duts) = Flo)

Since the choice of x € X and the sequence (z,)%° ; was
arbitrary, we have that F'(x) is continuous. O

Proof of Lemma 1: We begin by establishing that G : X x
U — R isalower semicontinuous function. Since Xis closed,
we know that I : X — {0, 1} is upper semicontinuous. There-
fore, the function & : X — {0, 1} defined as h(z) := 1 — Ig(x)
is lower semicontinuous. Since f(-) is continuous, the compo-
sition g(x, u, w) := h(f(zr,u,w)) is lower semicontinuous as
well. We have that

G@MZLﬂ@%M@W)

and since g(-) is lower semicontinuous, we have from Lemma
16 that G(-) is lower semicontinuous.

Since G(-) is lower semicontinuous, the set Z. = {(z, ) :
G(z,u) < e} is closed for all € € [0, 1] by the definition of a
lower semicontinuous function. Therefore, Z := Z; N Z c isthe
intersection of two closed sets and is also closed.

From Assumption 3, we also know that X and V are closed
sets. We define the set-valued mapping Zy : WV = X x V¥

3We can define F'(x) = ¢ + H(x), because (S, 3, 1) is a probability space,
ie., fS cdu(s) =
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such that
Zn(w) == {(z,v) e X x VV:
nk(z,v,w) <0 Vk € ljpn}
in which

(0(k; 2, v, w), m(d(k; z, v, W), v(k))

ne(x, v, w) = ’

for all k € Ijgxy_1) and ny(x,v,w) 1= |6(N; 2, v, w)lx, -
Since f(-) and 7(-) are continuous functions, so is their com-
position. For each k, zjs(k, x, v, w) is the composition of a finite
number of continuous functions and is, therefore, continuous
[32, Prop. 2.1]. Since é(k, x, v, w) and point-to-set distance for
the closed sets Z and X ; are continuous functions, 7 (+) is also
continuous for each &k € Iy n7. The inequality ny (z, v, w) <0,
therefore, defines a closed set for each k € ]I[07 NJ- Thus, for each
w € WP, the set Zx(w) is the intersection of a finite number
of closed sets and is, therefore, closed. By the definition of Zy,
we have that

ZN: ﬂ ZN(W)

weWN

Since the intersection of an arbitrary collection of closed sets
is a closed set, Z is a closed set. O

Proof of Proposition 2: From the previous proof, we know
that for each k, ¢(k; 2, v, w) is continuous. Thus, Jy (z, v, w)
is a continuous function since it is the composition of a finite
number of continuous functions. For each z € X, we have
that Jy(z,-) : VN x WY — R is continuous and uniformly
bounded because V and W are compact. Thus, from Lemma 16,
we know thatforeach x € Xy, the function Vy (, -) : VN 5 R
is continuous.

From Lemma 1, we know that Z is closed and the func-
tion |(z, v)|z, is continuous. Therefore, the set Vi (z) = {v €
VN (2, v)|zy <0} is closed for any z € Xy C X. Since
Vn(z) € VN and V is bounded, we know that Vy (z) is also
bounded. Thus, V() is compact.

For each = € Xy, the function Vi (z,-) is continuous and
Vn(z) is compact. By Weierstrass’s theorem, a solution to
P (z) exists for all x € X [32, Prop. A.7]. O

Proof of Proposition 3: From Assumption 3, we have that
X is closed and V¥ is compact. From Lemma 1, we have
that Zy is closed. We know that Jy(z,v,w) is continuous
and lower bounded (because the stage and terminal costs are
lower bounded). Since continuity implies lower semicontinuity,
by Lemma 16, we know that the function Vi : Zy — R is
lower semicontinuous and lower bounded. Thus, from [2, Prop.
7.33], we have that VI(\), : Xy — R is lower semicontinuous and
the mapping v° : Xy = V¥ is Borel measurable. We define
Ky : Xy =V such that Ky (z) = {h(z,v) : v € v(z)} in
which h(z,v) := 7(z,v(0)). Since h(-) is a continuous func-
tion, Ky : Xy == U is also Borel measurable. U

Proof of Lemma 4: From Proposition 11, we have that Xy is
robustly positive invariant for the system 2+ = f(z, kn(2), w),
w € W.Since 2zt € Xy, we know that r y () is well-defined
and the subsequent iteration f(z ™, w™), wt € W is defined

as well. By induction, we can establish that ¢(k; x, wi) € Xy
is well-defined for all € X, w;, € WP, and k € I>o. O

Proof of Proposition 5: Adapted from [10, Prop. 4]. From
Proposition 3 and Standing Assumption 1, we have that
kn : Xy — U is Borel measurable. Since f(-) is continuous,
fe(x,w) = f(z, ky(x),w) is Borel measurable. From Lemma
4, we know that ¢(k;z, wy) is well-defined for all = € Xy,
w, € Wk and k € Io.

We proceed by induction. For some k € I>q let ¢(k; x, wy)
be Borel measurable. Then,

¢(k +1; wik+1) = fc(¢(k;x,wk),w(k))

is also Borel measurable. Since ¢(1;z, wy) = f.(z,w(0)) is
Borel measurable, we have that for all k& € I, ¢(k; 2, wy) is
Borel measurable. By definition, wy (w) is measurable w.r.t.w €
(2, and therefore, ¢(k; x, wy,(w)) is also Borel measurable w.r.t.
w € .

For lower bounded, real-valued, Borel measurable functions,
Lebesgue integrals are well-defined. From Assumption 2, we
have that /: X x U — R and Viy : X x VY — R are lower
bounded and continuous. Thus, V]E), : XN — Rislowerbounded
as well. From Proposition 3 and Standing Assumption 1, we
know that VY (+) and ky(-) are Borel measurable. Therefore,
{(z,kn(z)) and V() are lower bounded and Borel measur-
able functions. ]
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