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A Suboptimal Economic Model Predictive Control
Algorithm for Large and Infrequent Disturbances

Robert D. McAllister and James B. Rawlings

Abstract—We present a suboptimal economic model predictive
control (MPC) algorithm that combines the strengths of two
common suboptimal MPC approaches, one based on a warm
start and one based on an optimality gap. This algorithm is
specifically designed to address a class of large and infrequent
disturbances that are relevant when considering discrete actua-
tors and production scheduling in control problems. We establish
that this algorithm provides the same nominal performance
guarantee as optimal economic MPC and is inherently robust, in
an economic context, to large and infrequent disturbances. This
inherent robustness guarantee is not attained by either individual
algorithm. We conclude with a small production scheduling
example to demonstrate the benefits of the proposed algorithm
for a practical application.
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I. INTRODUCTION

In economic model predictive control (MPC) formulations,

the controller optimizes a general performance metric that is

not necessarily related to a specific steady-state setpoint for

the process. There are multiple economic MPC formulations

developed to achieve desired closed-loop properties such as

performance guarantees and/or asymptotic stability [3–5, 9].

By extending the theoretical results of economic MPC to

include discrete-valued actuators [15], we can also cast high-

level production planning and scheduling problems as eco-

nomic MPC problems [6, 18, 21].

For problems with discrete-valued actuators, and particu-

larly production scheduling problems, we must also consider

discrete-valued, large, and infrequent disturbances (e.g., task

delays or breakdowns in equipment) that are not typically

discussed in control theory. For economic MPC applications

without strict dissipativity assumptions, [11] establish that

optimal economic MPC provides an economic form of in-

herent robustness to large and infrequent disturbances. These

results, however, assume that an optimal solution to the MPC

problem is used to define the control law. Unfortunately,

solving large-scale and industrially relevant mixed-integer

optimization problems to optimality is often intractable. Thus,

algorithms that ensure desired properties, such as nominal

performance and robustness guarantees, for the closed-loop

system without the need for optimal solutions to the economic

MPC problem are desirable.
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The approaches to suboptimal MPC are divided into two

main categories that we term: warm-start suboptimal MPC

and optimality-gap suboptimal MPC. Warm-start suboptimal

MPC, first presented in [20], requires that a feasible initial

control sequence (warm start), based on the previous open-

loop trajectory computed by the MPC controller, is used to

initialize the optimizer. The optimizer must then compute a

control sequence no worse (in terms of the objective func-

tion) than the warm start. This type of suboptimal MPC

algorithm renders the origin nominally asymptotically stable

and is inherently robust to sufficiently small disturbances

[1, 13, 20]. A critical requirement of warm-start suboptimal

MPC is that disturbances are sufficiently small to ensure

that the warm start input trajectory is feasible. The large

disturbances considered in this work, however, typically render

the warm start infeasible. For example, a delay or breakdown

in a scheduling problem may render the previously computed

schedule infeasible.

In optimality-gap suboptimal MPC, first described in [8],

robustness to disturbances is demonstrated under the condition

that the objective value of the computed solution is within a

specific gap of the global optimum. This type of suboptimal

MPC algorithm also renders the origin robust to disturbances

[8, 14], but requires global optimization solvers that report

bounds on optimality gaps. For large scale nonconvex non-

linear problems, these global solvers are often too slow to

use in real time applications. Fortunately, the mixed-integer

linear/quadratic programs (MILP/MIQPs) that are common

in many economic MPC applications with discrete actuators

can be solved with efficient global optimization solvers that

report bounds on global optimality gaps of the computed

solutions. Nominal asymptotic stability for this suboptimal

MPC algorithm is also established. This result, however,

requires a positive definite stage cost and does not extend to

the nominal performance guarantee that is typically established

for optimal economic MPC.

If the economic MPC problem is strictly dissipative, and

therefore asymptotically stabilizes a steady-state target, the

suboptimal algorithms and results for tracking MPC are

expected to extend (with some adjustments) to economic

MPC. However, for many applications of economic MPC,

such as production scheduling, economic performance is more

important than asymptotic stability of a steady state and

strict dissipativity does not hold. Risbeck and Rawlings [17]

discuss a warm-start suboptimal economic MPC algorithm that

provides a nominal performance guarantee. Robustness for this

suboptimal economic MPC algorithm is not discussed.

In the subsequent sections, we present a suboptimal eco-
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nomic MPC algorithm designed specifically to ensure inherent

robustness to these large and infrequent disturbances. The key

feature of this algorithm is that it combines the strengths of

warm-start and optimality-gap suboptimal MPC to achieve

both nominal performance and robustness guarantees for large

disturbances. This robustness guarantee is not attained by

solely applying warm-start or optimality-gap suboptimal MPC.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let I denote integers, R denote reals, and

subscripts/superscripts on these sets denote restric-

tions/dimensions (e.g., R
n
≥0 for n-dimensional nonnegative

reals). We use | · | to denote Euclidean norm.

A. Optimal economic MPC formulation

We consider time-varying, discrete-time systems of the form

x+ = f(x, u, w, t) f : X× U×W× T → X (1)

defined for the state x ∈ X ⊆ R
n, input u ∈ U ⊆ R

m,

and disturbance w ∈ W ⊆ R
p, at the discrete-time index

t ∈ T := I≥0. The successor state at t + 1 is denoted x+.

The system is subject to time-varying constraints (Z(t))t∈T

such that at time t ∈ T, (x, u) ∈ Z(t) ⊆ X × U. For more

discussion of the following MPC formulation see [17] or [16,

s. 2.4.5].

We consider a nominal MPC problem with a horizon

N ∈ I≥1, stage cost `(·, t) : X×U → R, terminal constraints

Xf (t) ⊆ X, and terminal cost Vf (·, t) : X → R, defined for

all t ∈ T. The nominal system is

x+ = f(x, u, 0, t) (2)

For the current state x ∈ X and input sequence u :=
(u(t), u(t + 1), . . . , u(tN − 1)) ∈ U

N at time t, the function

φ̂(k;x,u, t) denotes the state of (2) at time k ∈ I[t,t+N−1]. We

define the set of admissible initial state and input trajectory

pairs ZN (t), the set of admissible input trajectories UN (x, t),
and the set of feasible initial states XN (t) as

ZN (t) := {(x,u) ∈ X× U
N :

(x(k), u(k)) ∈ Z(k) ∀k ∈ I[t,t+N−1]

x(t+N) ∈ Xf (t+N)}

UN (x, t) := {u ∈ U : (x,u) ∈ ZN (t)}

XN (t) := {x ∈ X : ∃u ∈ UN (x, t)}

in which x(k) := φ̂(k;x,u, t). We define the cost function

VN (x,u, t) :=

t+N−1
∑

k=t

`(x(k), u(k), k)

+ Vf (x(t+N), t+N)

in which x(k) := φ̂(k;x,u, t).
The optimal control problem for x ∈ XN (t) at time t ∈ T

is

PN (x, t) : V 0
N (x, t) = min

u∈UN (x,t)
VN (x,u, t) (3)

and u
0(x, t) denotes the optimal input trajectory. We denote

the optimal control law as κ0N (x, t) := u0(t;x, t) in which

u0(t;x, t) is the first input vector in u
0(x, t).

We consider a time-varying reference trajectory (xr,ur) for

the MPC controller.

Assumption 1. The reference trajectory (xr,ur) satisfies

xr(t + 1) = f(xr(t), ur(t), 0, t) and (xr(t), ur(t)) ∈ Z(t)
for all t ∈ T.

The performance of this reference trajectory, in terms of

the stage cost `(·), is also important because all subsequent

theoretical guarantees are established relative to this reference

trajectory. Therefore, this reference trajectory is often chosen

as the solution to a (finite horizon) periodic optimization

problem with the same dynamical model, constraints, and cost

function as the MPC problem.

We define the shifted stage cost as ¯̀(x, u, t) := `(x, u, t)−
`(xr(t), ur(t), t). We also define the shifted optimal cost as

V̄ 0
N (x, t) := V 0

N (x, t)−

t+N−1
∑

k=t

`(xr(k), ur(k), k) (4)

Assumption 2. The model f : X×U×W×T → X, stage cost

`(·, t) : X × U → R, and terminal cost Vf (·, t) : X → R are

continuous. The functions ¯̀(x, u, t) and Vf (x, t) are bounded

from below for (x, u) ∈ Z(t) and x ∈ Xf (t), respectively,

uniformly for all t ∈ T.

Assumption 3. For each t ∈ T, the sets Z(t) and Xf (t) are

closed. The set U is compact.

Assumption 4. There exists a terminal control law, κf (·, t) :
Xf (t) → U such that (x, κf (x, t)) ∈ Z(t),

f(x, κf (x, t), 0, t) ∈ Xf (t+ 1)

Vf (f(x, κf (x, t), 0, t)) ≤ Vf (x, t)− ¯̀(x, κf (x, t), t)

for all x ∈ Xf (t) and t ∈ T. Furthermore, xr(t) ∈ Xf (t) and

Vf (xr(t), t) = 0 for all t ∈ T.

Assumption 4 can be satisfied by, e.g., the terminal equality

constraint Xf (t) := {xr(t)}. To construct a larger terminal

region, one can extend the methods in [2] to time-varying

systems or use approaches discussed in [12, 17] for specific

applications of economic MPC.

B. A hybrid suboptimal MPC algorithm

We propose a hybrid algorithm that combines features of

both the warm-start and optimality-gap algorithms to address

large and infrequent disturbances. Specifically, we require that

the solution computed by the hybrid algorithm achieves an

optimality gap less than some specified and fixed constant

ρ ≥ 0. In addition, if the warm start generated by extending

the previous input trajectory is feasible, we also require the

computed solution to perform better than this warm start. We

define this algorithm in the following paragraphs.

We first define the warm start by extending the previous

schedule with the terminal control law, i.e.,

ζ(x,u, t) := (u(t+1), . . . , u(t+N−1), κf (x(t+N), t+N))
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in which x(t + N) = φ̂(t + N ;x,u, t). Let ũ+ := ζ(x,u, t)
denote the warm start at t+1 given the state x and computed

input trajectory u at time t. We define the set of admissible

inputs for warm-start suboptimal MPC with the warm start ũ

at time t ∈ T as

Ǔw
N (x, ũ, t) := {u : u ∈ UN (x, t), VN (x,u, t) ≤ VN (x, ũ, t)}

Note, however, that the set Ǔw
N (x, ũ, t) may be empty if ũ /∈

UN (x, t). We also define the set of admissible inputs with an

optimality gap less than ρ ≥ 0 as

Ǔg
N (x, t) := {u : u ∈ UN (x, t), VN (x,u, t) ≤ V 0

N (x, t) + ρ}

Thus, the hybrid algorithm is defined by the following set of

admissible inputs.

ǓN (x, ũ, t) :=

{

Ǔw
N (x, ũ, t) ∩ Ǔg

N (x, t) ; ũ ∈ UN (x, t)

Ǔg
N (x, t) ; ũ /∈ UN (x, t)

Note that any input computed by the hybrid algorithm must

satisfy the required optimality gap, i.e., u ∈ Ǔg
N (x, t), even if

ũ is feasible. We summarize this suboptimal MPC algorithm

as follows.

Algorithm 1. Obtain the initial state x ∈ XN and any initial

warm start ũ ∈ U
N . Then repeat

1) Obtain the current estimate of the state x.

2) Compute any u ∈ ǓN (x, ũ, t) via a global optimization

solver.

a) If ũ is feasible, compute u ∈ Ǔw
N (x, ũ, t) ∩

Ǔg
N (x, t).

b) If ũ is not feasible, compute u ∈ Ǔg
N (x, t).

3) Inject the first element of the input sequence u.

4) Compute the next warm start ũ+ = ζ(x,u, t).

The suboptimal control law κN (x, ũ, t) is a function of the

warm start, which is itself a function of the previous state and

input. We therefore find it convenient to define the extended

state z := (x, ũ). The extended state evolves according to

z+ ∈ H(z, w, t) :=

{(

f(x, u(t), w, t)
ζ(x,u, t)

)

: u ∈ ǓN (z, t)

}

(5)

in which u(t) is the first element of u. We use ψ(k; z,wk, t) to

denote any solution of (5) with initial extended state z ∈ ZN at

time t and the disturbance sequence wk := (w(t), . . . , w(k−
1)). We use φx(k; z,wk, t) and φu(k; z,wk, t) to denote

the corresponding x and u trajectory, respectively. We also

use φu(k; z,wk, t) to denote the computed open-loop control

trajectory u at each time k ≥ t. Note that these trajectories

denote a selection from the set of potential solutions for the

closed-loop system defined by (5). All subsequent results are

then established for any selection from the set of potential

feasible solutions.

We assume the random variables w(t) are independent and

identically distributed (i.i.d.) in time with probability measure

µ : B(W) → [0, 1] in which B(W) denote the Borel field

of the set W. For the sequence of random variables wk and

measurable function g : Wk−t → R, we define expected value

with the following Lebesgue integral.

E [g(wk)] :=

∫

Wk−t

g ((ωt, . . . , ωk−1)) dµ(ωt) · · · dµ(ωk−1)

We use E|z(t) [·] to denote the expected value conditioned on

z(t). Let Pr(w ∈ W ) denote the probability that w is in the

set W ⊆ R
p.

III. NOMINAL PERFORMANCE

We now establish the following nominal performance guar-

antee for Algorithm 1. This result and the associated proof are

based on Remark 1 and Theorem 1 in [17] and rely on the

warm-start component of Algorithm 1.

Theorem 1. Let Assumptions 1-4 hold. Then, starting from

any z(t) ∈ ZN (t) and t ∈ T, we have that

lim sup
T→∞

1

T

t+T−1
∑

k=t

¯̀(x(k), u(k), k) ≤ 0 (6)

for the nominal closed-loop evolution in (5) in which x(k) =
φx(k; z,0, t) and u(k) = φu(k; z,0, t).

Proof. From Assumption 4, we have that UN (x, t) is invariant

under the update ζ(·). Thus, ũ+ = ζ(x,u) ∈ UN (x+, t+1) for

x+ = f(x, u(t), 0, t), and z+ ∈ ZN (t+1) for any z ∈ ZN (t)
and t ∈ T. Since ũ is a feasible warm start, we have that

the computed input trajectory u satisfies u ∈ Ǔw
N (z, t) for all

z ∈ ZN (t) and t ∈ T.

Given the selected control trajectory u ∈ ǓN (z, t), let

u be the first element of u, xf := φ̂(N ;x,u, t), uf =
κf (xf , t + N), and x+f = f(xf , uf , 0, t). From the update

ζ(·) and Assumption 4, we have that

V̄N (z+, t+ 1) = V̄N (x,u, t)− ¯̀(x, u, t)− Vf (xf , t+N)

+ ¯̀(xf , uf , t+N) + Vf (x
+
f , t+N + 1)

≤ V̄N (x,u, t)− ¯̀(x, u, t)

≤ V̄N (z, t)− ¯̀(x, u, t) (7)

in which the last inequality holds because u ∈ Ǔw
N (z, t).

Note that (7) holds for all subsequent time k ≥ t. Thus, we

rearrange and sum this bound for T time steps to give

t+T−1
∑

k=t

¯̀(x(k), u(k), k) ≤ V̄N (z(t), t)− V̄N (z(t+ T ), t+ T )

in which z(k) = ψ(k; z,0, t), x(k) = φx(k; z,0, t), and

u(k) = φu(k; z,0, t). By Assumption 2, there exists some

c ∈ R such that V̄N (z(t+ T ), t+ T ) ≥ c. We use this bound

in the previous equation and divide by T to give

1

T

t+T−1
∑

k=t

¯̀(x(k), u(k), k) ≤
V̄N (z(t), t)− c

T
(8)

We take the lim sup of (8) for T → ∞ to give the desired

bound.

Since the warm start remains feasible for the nominal sys-

tem, we always use the warm-start suboptimal MPC method

and thereby achieve the desired cost decrease condition in
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(7) and nominal performance guarantee. We are interested,

however, in a class of large disturbances that typically render

the warm start infeasible. Thus, the optimality-gap algorithm

is added to warm-start suboptimal MPC specifically to address

this class of disturbances.

We note that if optimality-gap suboptimal MPC algorithm

is used without the addition of the warm-start algorithm, the

bound in Theorem 1 is weakened based on the value of the

optimality gap ρ. Without the requirement that u ∈ Ǔw
N (z, t),

(7) is now

V̄N (z+, t+ 1) ≤ V̄N (x,u, t)− ¯̀(x, u, t)

For all u ∈ Ǔg
N (x, t), the best bound we can construct is

V̄N (x,u, t) ≤ V̄N (z, t) + ρ

because we may have V̄N (z, t) = V̄ 0
N (x, t), i.e., the warm-start

is optimal. We therefore have

V̄N (z+, t+ 1) ≤ V̄N (z, t)− ¯̀(x, u, t) + ρ (9)

If we apply the remaining steps in the Proof of Theorem 1 to

(9), we observe that the right hand side of the inequality in

(6) is replaced by ρ.

IV. ROBUSTNESS TO LARGE AND INFREQUENT

DISTURBANCES

An important class of disturbances for economic MPC

problems with discrete actuators, such as scheduling problems,

are large and infrequent disturbances. We consider the same

class of large and infrequent disturbances addressed in [11].

We define these disturbances by discussing them in contrast to

the class of small persistent disturbances typically considered

in robustness analysis. We denote the set of small persistent

disturbances as W0 with supw∈W0
|w| ≤ δ0 in which δ0 > 0 is

sufficiently small. Large disturbances are then defined by the

set W1 such that infw∈W1
|w| > δ0. We denote the probability

that the disturbance takes a value in this set as ε := Pr(w ∈
W1). The disturbances in W0 are small. The disturbances in

W1 are large and include discrete-valued disturbances that

may not be included in W0. As shown in [11], MPC is

inherently robust to this class of large disturbances provided

these disturbances are sufficiently infrequent, i.e., ε < δ for

some sufficiently small δ > 0. This description includes many

kinds of large disturbances such as faults, communications

failures, breakdowns, large delays, and large price/demand

spikes in economic applications.

In [11], however, all results are derived for the optimal

control law, i.e., these results require that the MPC problem

is solved to optimality in the allotted computation time. We

establish in this section that Algorithm 1 is robust in the same

economic context presented in [11, Theorem 6].

A. Assumptions

We consider the case of only large disturbances and nominal

behavior.

Assumption 5. The disturbance set satisfies W = W0 ∪W1

and we restrict W0 = {0}.

Although we consider these disturbances to be large, we do

not allow disturbances of arbitrary size. If we want to consider

large disturbances, the control algorithm must be recursively

feasible by design.

Assumption 6. If x ∈ XN (t), then f(x, u, w, t) ∈ XN (t +
1) for all (x, u) ∈ Z(t), w ∈ W, and t ∈ T, i.e., the sets

(XN (t))t∈T are robustly positive invariant.

In addition, we require a bound on the cost increase due to

a disturbance.

Assumption 7. There exist b1, b2 ∈ R≥0 such that

V̄ 0
N (f(x, κ0N (x, t), w, t), t+ 1)

≤ V̄ 0
N (x, t) + b1|¯̀(x, κ

0
N (x, t), t)|+ b2

for all x ∈ XN (t), w ∈ W1, and t ∈ T.

Note that we require this bound for only the optimal control

law. A further discussion of these assumptions is available in

[11]. For production scheduling problems, Assumptions 6 and

7 are satisfied with a careful choice of the terminal constraint

and cost [12]. Under specific conditions, Assumption 7 can

be verified without explicit knowledge of the optimal cost

function or control law [11, Lemma 7].

In addition to the assumptions required in [11], we also

require that the stage cost satisfies the following condition.

Assumption 8. There exists d ≥ 0 such that

|`(x, u1, t)− `(x, u2, t)| ≤ d

for all (x, u1) ∈ Z(t), (x, u2) ∈ Z(t), and t ∈ T.

This assumption is satisfied for all linear stage costs and

quadratic stage costs that do not include any bilinear combina-

tions of the unbounded modes of x. Since many applications

of economic MPC use linear or quadratic stage costs, this

assumption still admits many relevant problems. Assumption

8 is needed to address the fact that Assumption 7 applies for

only the optimal control law.

B. Main result

With these assumptions, we can established that the pro-

posed hybrid suboptimal MPC algorithm is economically

robust to large and infrequent disturbances.

Theorem 2. Let Assumptions 1-8 hold. Then for the closed-

loop system evolution in (5) in which ε := Pr (w ∈ W1), there

exist δ ∈ (0, 1] and γ̄ > 0 such that for all initial z ∈ XN (t)×
U

N , t ∈ T, and ε ∈ [0, δ] we have that

lim sup
T→∞

E

[

1

T

t+T−1
∑

k=t

¯̀(x(k), u(k), k)

]

≤ γ̄ε (10)

in which x(k) = φx(k;x,wk, t) and u(k) = φu(k;x,wk, t).

Proof. Choose any z ∈ XN (t) × U
N and t ∈ T. Choose an

input trajectory based on Algorithm 1, i.e., u ∈ ǓN (z, t), and

denote the first input of this trajectory as u.

If w = 0, we have that x+ = f(x, u, 0, t) and ũ
+ =

ζ(x,u, t) is a feasible control trajectory from x+ because of
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Assumption 4, i.e, z+ = (x+, ũ+) ∈ ZN (t + 1). Thus, we

can apply the same approach as in the proof of Theorem 1 to

conclude that

V̄N (z+, t+ 1) ≤ V̄N (x,u, t)− ¯̀(x, u, t)

We denote the input trajectory selected at t + 1 as u
+ ∈

ǓN (z+, t + 1) and note that u
+ ∈ Ǔw

N (z+, t + 1) because

w = 0 and therefore ũ
+ is a feasible warm start. Thus, if

w = 0, we have

V̄N (x+,u+, t+ 1) ≤ V̄N (x,u, t)− ¯̀(x, u, t)

If w ∈ W1, we have x+ = f(x, u, w, t) and note that ũ+ is

not necessarily a feasible warm start for x+. Nonetheless, we

have that the subsequent computed input trajectory satisfies

u
+ ∈ Ǔg

N (x+, t+ 1) and therefore

V̄N (x+,u+, t+ 1) ≤ V 0
N (x+, t+ 1) + ρ

We combine this inequality with the inequality in Assumption

7 and by optimality we have

V̄N (x+,u+, t+1) ≤ V̄N (x,u, t)+b1|¯̀(x, κ
0
N (x, t), t)|+b2+ρ

From Assumption 2, there exists m ∈ R such that ¯̀(x, u, t) ≥
m for all (x, u) ∈ Z and t ∈ T. Therefore, |¯̀(x, u, t)| ≤
¯̀(x, u, t) + 2|m| and

V̄N (x+,u+, t+ 1) ≤ V̄N (x,u, t) + b1 ¯̀(x, κ
0
N (x, t), t) + b̃2

in which b̃2 := b2 + ρ+ 2m. We apply Assumption 8 to give

V̄N (x+,u+, t+ 1) ≤ V̄N (x,u, t) + b1 ¯̀(x, u, t) + b3

in which b3 = b1d+ b̃2.

To streamline notation, we define y = (x,u) and y+ =
(x+,u+). Note that y represents the current state x and the

computed input trajectory u (not the warm start ũ). We then

combine the bounds with and without the disturbance through

the indicator function of W1.

V̄N (y+, t+ 1) ≤ V̄N (y, t)− (1− IW1
(w))¯̀(x, u, t)

+ IW1
(w)(b1 ¯̀(x, u, t) + b3)

in which IW1
(w) = 1 if w ∈ W1 and zero otherwise. Taking

expected value and combining terms gives,

E|z

[

V̄N (y+, t+ 1)
]

−V̄N (y, t) ≤ −(1−ε−b1ε)¯̀(x, u, t)+b3ε

We choose δ < 1/(1 + b1) and note δ ∈ (0, 1], which gives

E|z

[

V̄N (y+, t+ 1)
]

− V̄N (y, t) ≤ −b4 ¯̀(x, u, t) + b3ε (11)

with b4 := (1− (1 + b1)δ) > 0.

From z(t) ∈ XN (t) × U
N and t ∈ T, we denote the

closed-loop trajectories x(k) = φx(k; z(t),wk, t) and u(k) =
φu(k; z(t),wk, t). We also denote u(k) = φu(k; z(t),wk, t)
and therefore y(k) = (x(k),u(k)). By (11) and the properties

of iterated expectations, we have

E|z(t)

[

V̄N (y(k + 1), k + 1)
]

− E|z(t)

[

V̄N (y(k), k)
]

≤ −b4E|z(t)

[

¯̀(x(k), u(k), k)
]

+ b3ε

for all k ∈ I≥t. We take the sum from t to t + T − 1 with

T ∈ I≥1, divide by T , and rearrange to give

b4E|z(t)

[

1

T

T+t−1
∑

k=t

¯̀(x(k), u(k), k)

]

≤
V̄N (y(t), t)− E|z(t)

[

V̄N (y(t+ T ), t+ T )
]

T
+ b3ε

By Assumption 2, there exists c ∈ R such that V̄N (y(t +
T ), t+ T ) ≥ c and we have

E|z(t)

[

1

T

T+t−1
∑

k=t

¯̀(x(k), u(k), k)

]

≤
V̄N (y(t), t)− c

b4T
+ γ̄ε

in which γ̄ := b3/b4. We take the lim sup of this inequality as

T → ∞ so that the initial cost and c vanish to give (10).

Theorem 2 ensures that the the closed-loop system is able

to, on average, recover from large, but sufficiently infrequent

disturbances. The calculated bound in (10), however, is often

too conservative to provide useful quantitative information.

Similar to Theorem 1, if optimality-gap suboptimal MPC

is used without a warm start, the bound in Theorem 2 is

weakened by the value of ρ. Specifically, the right hand side

of (10) becomes γ̄ε+ ρ.

V. PRODUCTION SCHEDULING EXAMPLE

We consider a simple production scheduling example. The

goal is to meet demand of product 1 (M1) by converting raw

material (assumed to be in abundant supply) to M1 through

task 1 (T1) carried out on unit 1 (U1). We can also produce

product 2 (M2) with task 2 (T2) also carried out on U1. T1

and T2 have processing times of 2 and 3 hours, respectively,

and a batch size between 10 and 20 kgs. We can store up to

100 kg of each product at a cost of $1(/kg/hr). The demand for

M1 is 50 kg every 6 hours. If demand is not met, the facility

accumulates backlog that must be offset at later times. The

penalty for maintaining backlog is $50(/kg/hr). We can sell

up to 5 kg of M2 for a profit of $20(/kg) at any time. Thus,

the optimal schedule is one that produces enough M1 to meet

demand while producing and selling as much M2 as possible.

We model this system using the state-space scheduling

model developed in [21]. We define the binary decision vari-

ables W1,W2 that are unity if T1, T2 start at time t. We also

define the continuous inputs B1, B2 that represent the batch

size assigned to T1, T2. To track these decisions in the state of

the system, we lift Wi and Bi with the state variables W̄n
i , B̄n

i

for n ∈ {0, 1, . . . , τi} in which τi is the processing time of task

i. The value of n represents the progress of the task (e.g., at

n = 1, the task is n/τi complete). We consider 1 hour delays

on U1 (Y ). For a one hour delay, Y = 1 and the active task’s

progression does not advance. Note that this disturbance is an

inherently discrete-valued (large) disturbance, i.e., Y ∈ {0, 1}.

Inventory and backlog (unmet demand) are denoted S1, S2

and U1. We also allow for up to 1 kg of M1 to be moved to a

long-term storage facility at a cost of $20(/kg). We denote this

action D1 and note that this action is used to construct a valid

terminal cost for the scheduling problem [12]. The inventory
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control with self-tuning terminal cost. Eur. J. Control, 19(5):408–416,
2013.

[10] R. D. McAllister. The Stochastic Robustness of Model Predictive Control

and Closed-Loop Scheduling. PhD thesis, University of California,
Santa Barbara, August 2022. URL https://engineering.ucsb.edu/∼jbraw/
jbrweb-archives/theses/mcallister.pdf.

[11] R. D. McAllister and J. B. Rawlings. Inherent stochastic robustness
of model predictive control to large and infrequent disturbances. IEEE

Trans. Auto. Cont., 67(10):5166–5178, 2022. doi: https://10.1109/TAC.
2021.3122365.

[12] R. D. McAllister, J. B. Rawlings, and C. T. Maravelias. The inherent
robustness of closed-loop scheduling. Comput. Chem. Eng., 159:107678,
2022. doi: https://doi.org/10.1016/j.compchemeng.2022.107678.

[13] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under
which suboptimal nonlinear MPC is inherently robust. Sys. Cont. Let.,
60:747–755, 2011.

[14] B. Picasso, D. Desiderio, and R. Scattolini. Robust stability analysis of
nonlinear discrete-time systems with application to MPC. IEEE Trans.

Auto. Cont., 57(1):185–191, Jan 2012. ISSN 0018-9286. doi: 10.1109/
TAC.2011.2163363.

[15] J. B. Rawlings and M. J. Risbeck. Model predictive control with discrete
actuators: Theory and application. Automatica, 78:258–265, 2017.

[16] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive

Control: Theory, Design, and Computation. Nob Hill Publishing, Santa
Barbara, CA, 2nd, paperback edition, 2020. 770 pages, ISBN 978-0-
9759377-5-4.

[17] M. J. Risbeck and J. B. Rawlings. Economic MPC for time-varying cost
and peak demand charge optimization. IEEE Trans. Auto. Cont., 65(7):
2957–2968, Jul 2019. doi: 10.1109/TAC.2019.2939633.

[18] M. J. Risbeck, C. T. Maravelias, and J. B. Rawlings. Unification of
closed-loop scheduling and control: State-space formulations, terminal
constraints, and nominal theoretical properties. Comput. Chem. Eng.,
129:106496, 2019.

[19] M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D. Turney.
Mixed-integer optimization methods for online scheduling in large-scale
HVAC systems. Optim. Lett., 14(4):889–924, 2020.

[20] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model
predictive control (feasibility implies stability). IEEE Trans. Auto. Cont.,
44(3):648–654, Mar 1999.

[21] K. Subramanian, C. T. Maravelias, and J. B. Rawlings. A state-space
model for chemical production scheduling. Comput. Chem. Eng., 47:
97–110, Dec 2012.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3285854

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2023 at 16:51:57 UTC from IEEE Xplore.  Restrictions apply. 


