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A Suboptimal Economic Model Predictive Control
Algorithm for Large and Infrequent Disturbances

Robert D. McAllister and James B. Rawlings

Abstract—We present a suboptimal economic model predictive
control (MPC) algorithm that combines the strengths of two
common suboptimal MPC approaches, one based on a warm
start and one based on an optimality gap. This algorithm is
specifically designed to address a class of large and infrequent
disturbances that are relevant when considering discrete actua-
tors and production scheduling in control problems. We establish
that this algorithm provides the same nominal performance
guarantee as optimal economic MPC and is inherently robust, in
an economic context, to large and infrequent disturbances. This
inherent robustness guarantee is not attained by either individual
algorithm. We conclude with a small production scheduling
example to demonstrate the benefits of the proposed algorithm
for a practical application.

Keywords—Suboptimal model predictive control, Stochastic
systems, Stability of nonlinear systems, Constrained control

I. INTRODUCTION

In economic model predictive control (MPC) formulations,
the controller optimizes a general performance metric that is
not necessarily related to a specific steady-state setpoint for
the process. There are multiple economic MPC formulations
developed to achieve desired closed-loop properties such as
performance guarantees and/or asymptotic stability [3-5, 9].
By extending the theoretical results of economic MPC to
include discrete-valued actuators [15], we can also cast high-
level production planning and scheduling problems as eco-
nomic MPC problems [6, 18, 21].

For problems with discrete-valued actuators, and particu-
larly production scheduling problems, we must also consider
discrete-valued, large, and infrequent disturbances (e.g., task
delays or breakdowns in equipment) that are not typically
discussed in control theory. For economic MPC applications
without strict dissipativity assumptions, [11] establish that
optimal economic MPC provides an economic form of in-
herent robustness to large and infrequent disturbances. These
results, however, assume that an optimal solution to the MPC
problem is used to define the control law. Unfortunately,
solving large-scale and industrially relevant mixed-integer
optimization problems to optimality is often intractable. Thus,
algorithms that ensure desired properties, such as nominal
performance and robustness guarantees, for the closed-loop
system without the need for optimal solutions to the economic
MPC problem are desirable.
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The approaches to suboptimal MPC are divided into two
main categories that we term: warm-start suboptimal MPC
and optimality-gap suboptimal MPC. Warm-start suboptimal
MPC, first presented in [20], requires that a feasible initial
control sequence (warm start), based on the previous open-
loop trajectory computed by the MPC controller, is used to
initialize the optimizer. The optimizer must then compute a
control sequence no worse (in terms of the objective func-
tion) than the warm start. This type of suboptimal MPC
algorithm renders the origin nominally asymptotically stable
and is inherently robust to sufficiently small disturbances
[1, 13, 20]. A critical requirement of warm-start suboptimal
MPC is that disturbances are sufficiently small to ensure
that the warm start input trajectory is feasible. The large
disturbances considered in this work, however, typically render
the warm start infeasible. For example, a delay or breakdown
in a scheduling problem may render the previously computed
schedule infeasible.

In optimality-gap suboptimal MPC, first described in [8],
robustness to disturbances is demonstrated under the condition
that the objective value of the computed solution is within a
specific gap of the global optimum. This type of suboptimal
MPC algorithm also renders the origin robust to disturbances
[8, 14], but requires global optimization solvers that report
bounds on optimality gaps. For large scale nonconvex non-
linear problems, these global solvers are often too slow to
use in real time applications. Fortunately, the mixed-integer
linear/quadratic programs (MILP/MIQPs) that are common
in many economic MPC applications with discrete actuators
can be solved with efficient global optimization solvers that
report bounds on global optimality gaps of the computed
solutions. Nominal asymptotic stability for this suboptimal
MPC algorithm is also established. This result, however,
requires a positive definite stage cost and does not extend to
the nominal performance guarantee that is typically established
for optimal economic MPC.

If the economic MPC problem is strictly dissipative, and
therefore asymptotically stabilizes a steady-state target, the
suboptimal algorithms and results for tracking MPC are
expected to extend (with some adjustments) to economic
MPC. However, for many applications of economic MPC,
such as production scheduling, economic performance is more
important than asymptotic stability of a steady state and
strict dissipativity does not hold. Risbeck and Rawlings [17]
discuss a warm-start suboptimal economic MPC algorithm that
provides a nominal performance guarantee. Robustness for this
suboptimal economic MPC algorithm is not discussed.

In the subsequent sections, we present a suboptimal eco-
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nomic MPC algorithm designed specifically to ensure inherent
robustness to these large and infrequent disturbances. The key
feature of this algorithm is that it combines the strengths of
warm-start and optimality-gap suboptimal MPC to achieve
both nominal performance and robustness guarantees for large
disturbances. This robustness guarantee is not attained by
solely applying warm-start or optimality-gap suboptimal MPC.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let I denote integers, R denote reals, and
subscripts/superscripts on these sets denote restric-
tions/dimensions (e.g., R%, for n-dimensional nonnegative
reals). We use | - | to denote Euclidean norm.

A. Optimal economic MPC formulation

We consider time-varying, discrete-time systems of the form

vt = f(z,u,w,t) fF:XxUxWxT—X (1)

defined for the state + € X C R”, input v € U C R™,
and disturbance w € W C RRP, at the discrete-time index
t € T := I>o. The successor state at ¢ + 1 is denoted z™.
The system is subject to time-varying constraints (Z(t)):et
such that at time ¢ € T, (z,u) € Z(t) C X x U. For more
discussion of the following MPC formulation see [17] or [16,
s. 2.4.5].

We consider a nominal MPC problem with a horizon
N €154, stage cost £(-,t) : X x U — R, terminal constraints
X¢(t) € X, and terminal cost Vy(-,t) : X — R, defined for
all t € T. The nominal system is

ot = f(z,u,0,t) 2

For the current state x € X and input sequence u :=
(w(t),u(t +1),...,u(ty —1)) € UV at time ¢, the function
qg(k‘; x,u,t) denotes the state of (2) at time k& € I ;4 y_1]. We
define the set of admissible initial state and input trajectory
pairs Zx(t), the set of admissible input trajectories Uy (x, t),
and the set of feasible initial states X (t) as

Zn(t) = {(z,u) e X x UV :
(x(k),u(k)) € Z(k) VE € Ly e n—1]
z(t+ N) e Xf(t+ N)}
Un(z,t) ={ueU: (z,u) € Zn(t)}
Xn(t) ={x e X:Juecly(x,t)}

in which (k) := ¢(k; z,u,t). We define the cost function

t+N-—1

S Uak), ulk), k)

k=t

Vn(z,u,t) =

+ Vi(x(t+ N),t + N)

in which z(k) := é(k;x, u,t).
The optimal control problem for x € Xn(t) at time ¢t € T

is

min

Py (
ueln (x,t)

z,t): Vi(x,t) = Vn(z,u,t) 3)

and u’(x,t) denotes the optimal input trajectory. We denote
the optimal control law as % (z,t) := u%(t;z,t) in which
u®(t;x,t) is the first input vector in u°(z, t).

We consider a time-varying reference trajectory (X, u,) for
the MPC controller.

Assumption 1. The reference trajectory (x,,u,) satisfies
e (t+1) = f(zr(t),ur(t),0,t) and (x.(t),u.(t)) € Z(t)
forall t € T.

The performance of this reference trajectory, in terms of
the stage cost £(-), is also important because all subsequent
theoretical guarantees are established relative to this reference
trajectory. Therefore, this reference trajectory is often chosen
as the solution to a (finite horizon) periodic optimization
problem with the same dynamical model, constraints, and cost
function as the MPC problem.

We define the shifted stage cost as £(x, u,t) := £(x, u,t) —
£z, (t), ur(t),t). We also define the shifted optimal cost as

t+N-—1

Zﬁx,

Assumption 2. The model f : XxUxW x T — X, stage cost
¢(-,t) : X x U — R, and terminal cost V¢(-,t) : X — R are
continuous. The functions £(x, u,t) and Vj(z,t) are bounded
from below for (z,u) € Z(t) and = € Xy(t), respectively,
uniformly for all ¢ € T.

Va(z,t) == Va(z,t) ur(k), k) (4)

Assumption 3. For each ¢ € T, the sets Z(t) and X(t) are
closed. The set U is compact.

Assumption 4. There exists a terminal control law, k¢(-,t) :
X¢(t) = U such that (z,ks(x,t)) € Z(t),

f(x,lﬁf(%t),o,t) € Xf(t j‘ 1)
Vf(f(xv Hf(zvt)a Oat)) < Vf(xvt) - E(I, ’if(xvt)vt)

for all x € X¢(¢t) and ¢t € T. Furthermore, z,(t) € X;(¢) and
Vi(z,(t),t) =0 for all t € T.

Assumption 4 can be satisfied by, e.g., the terminal equality
constraint X (¢) := {z,(¢)}. To construct a larger terminal
region, one can extend the methods in [2] to time-varying
systems or use approaches discussed in [12, 17] for specific
applications of economic MPC.

B. A hybrid suboptimal MPC algorithm

We propose a hybrid algorithm that combines features of
both the warm-start and optimality-gap algorithms to address
large and infrequent disturbances. Specifically, we require that
the solution computed by the hybrid algorithm achieves an
optimality gap less than some specified and fixed constant
p 2> 0. In addition, if the warm start generated by extending
the previous input trajectory is feasible, we also require the
computed solution to perform better than this warm start. We
define this algorithm in the following paragraphs.

We first define the warm start by extending the previous
schedule with the terminal control law, i.e.,

C(z,u,t) == (u(t+1),...,ut+N—-1),ks(z(t+N),t+N))
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in which z(t + N) = ¢(t + N;z,u,t). Let ut := ((z,u,t)
denote the warm start at ¢ + 1 given the state x and computed
input trajectory u at time t. We define the set of admissible
inputs for warm-start suboptimal MPC with the warm start u
at time ¢t € T as

Z/v{]l\l/{(x7ﬁ7t) = {u HRVS uN(I7t)a VN(I7u7t) < VN(xaﬁat)}

Note, however, that the set /% (x, @, ) may be empty if @ ¢
Un (z,t). We also define the set of admissible inputs with an
optimality gap less than p > 0 as

U (z,t) = {u:u €Uy (x,t), Vy(z,u,t) < Vy(z,t) + p}

Thus, the hybrid algorithm is defined by the following set of

admissible inputs.
. _ Z/Vlﬁ(z,ﬁ,t)ﬁl;ljgv(z,t) ;€U (z,t)
;0 ¢ Un(x,t)

Note that any input computed by the hybrid algorithm must
satisfy the required optimality gap, i.e., u € U (x, ), even if
u is feasible. We summarize this suboptimal MPC algorithm
as follows.

Z/{N(x,ﬁ,t) = Z;{g(x t)
N\

Algorithm 1. Obtain the initial state * € Xy and any initial
warm start @ € UV, Then repeat

1) Obtain the current estimate of the state x.
2) Compute any u € Uy (x,0,t) via a global optimization
solver.
a) If u is feasible, compute u € Z:{}\“, (z,a,t) N
UL (,t). )
b) If @ is not feasible, compute u € U3, (z,t).
3) Inject the first element of the input sequence u.
4) Compute the next warm start 0 = ((x, u, t).

The suboptimal control law ky (x, 0, t) is a function of the
warm start, which is itself a function of the previous state and
input. We therefore find it convenient to define the extended
state z := (x,01). The extended state evolves according to

et = { (TG0 HY) - ue aN(Z,t)}@

in which w(¢) is the first element of u. We use v (k; z, wy, t) to
denote any solution of (5) with initial extended state z € Z at
time ¢ and the disturbance sequence wy, := (w(t),...,w(k —
1)). We use ¢, (k;z,wg,t) and ¢, (k;z, wi,t) to denote
the corresponding = and wu trajectory, respectively. We also
use ¢y (k; 2z, wg, t) to denote the computed open-loop control
trajectory u at each time k > t. Note that these trajectories
denote a selection from the set of potential solutions for the
closed-loop system defined by (5). All subsequent results are
then established for any selection from the set of potential
feasible solutions.

We assume the random variables w(¢) are independent and
identically distributed (i.i.d.) in time with probability measure
w o B(W) — [0,1] in which B(W) denote the Borel field
of the set W. For the sequence of random variables w, and

measurable function g : WE-t — R, we define expected value
with the following Lebesgue integral.

Blowil)i= [ 0(nn o)) dufen) o)

We use E|. ) [] to denote the expected value conditioned on
z(t). Let Pr(w € W) denote the probability that w is in the
set W C RP.

III. NOMINAL PERFORMANCE
We now establish the following nominal performance guar-
antee for Algorithm 1. This result and the associated proof are
based on Remark 1 and Theorem 1 in [17] and rely on the
warm-start component of Algorithm 1.

Theorem 1. Let Assumptions 1-4 hold. Then, starting from
any z(t) € Zn(t) and t € T, we have that

t+T 1

hmbup— Z Uz

T—o0

k),k) <0 ©)

for the nominal closed-loop evolution in (5) in which x(k) =
¢z (k; 2,0,t) and u(k) = ¢ (k; 2,0, ).

Proof. From Assumption 4, we have that Uy (z, ) is invariant
under the update ¢(-). Thus, 0t = ((x,u) € Uy (2T, t+1) for
zt = f(z,u(t),0,t), and 2t € Zx(t+1) for any 2z € Zn(t)
and t € T. Since u is a feasible warm start, we have that
the computed input trajectory u satisfies u € Z]}{f(z, t) for all
z€ Zy(t)and t € T.

Given the selected control trajectory u € Uy (z,t), let
u be the first element of u, x5 := qAS(N;:c,u,t), uf
wp(zp,t + N), and 2 = f(xys,uyp,0,t). From the update
¢(-) and Assumption 4, we have that

Vn(zTt+1) = VN(I’ w,t) — l(z,u,t) — Vi(zs,t+ N)
(xf,uf,t—i-N)—FVf(:cf,t—i-N—Fl)
< Vn(z,u,t) — l(z,u,t)
< Vn(z,t) — (z,u,t) (7

in which the last inequality holds because u € U (z, ).
Note that (7) holds for all subsequent time k& > ¢. Thus, we
rearrange and sum this bound for 7" time steps to give

t+T—1

Zz

in which z(k) = v¥(k;2,0,t), z(k) = ¢.(k;2,0,t), and
u(k) = ¢u(k;2,0,t). By Assumption 2, there exists some
c € R such that Viy(z(t + T),t +T) > c. We use this bound
in the previous equation and divide by T to give

Vn(2(t),t) —c
T

k) < Vn(z(t),t) — Vn(z(t+T),t +1T)

t+T 1

r 2 lelh

We take the limsup of (8) for T — oo to give the desired
bound. O

k), k) <

®)

Since the warm start remains feasible for the nominal sys-
tem, we always use the warm-start suboptimal MPC method
and thereby achieve the desired cost decrease condition in
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(7) and nominal performance guarantee. We are interested,
however, in a class of large disturbances that typically render
the warm start infeasible. Thus, the optimality-gap algorithm
is added to warm-start suboptimal MPC specifically to address
this class of disturbances.

We note that if optimality-gap suboptimal MPC algorithm
is used without the addition of the warm-start algorithm, the
bound in Theorem 1 is weakened based on the value of the
optimality gap p. Without the requirement that u € U (z,t),
(7) is now

Vn(zt,t+1) < Vn(z,u,t) — l(z,u,t)
For all u € U, (z,1), the best bound we can construct is

because we may have Vy(z,t) = V¥ (z,t), i.e., the warm-start
is optimal. We therefore have

Vn(ztt+1) < Vy(z,t) — l(z,ut) +p 9)

If we apply the remaining steps in the Proof of Theorem 1 to
(9), we observe that the right hand side of the inequality in
(6) is replaced by p.

I'V. ROBUSTNESS TO LARGE AND INFREQUENT
DISTURBANCES

An important class of disturbances for economic MPC
problems with discrete actuators, such as scheduling problems,
are large and infrequent disturbances. We consider the same
class of large and infrequent disturbances addressed in [11].
We define these disturbances by discussing them in contrast to
the class of small persistent disturbances typically considered
in robustness analysis. We denote the set of small persistent
disturbances as Wq with sup,, cyy, [w| < do in which §g > 0 is
sufficiently small. Large disturbances are then defined by the
set Wy such that inf,,ew, |w| > dp. We denote the probability
that the disturbance takes a value in this set as ¢ := Pr(w €
Wy). The disturbances in Wy are small. The disturbances in
W, are large and include discrete-valued disturbances that
may not be included in Wy. As shown in [11], MPC is
inherently robust to this class of large disturbances provided
these disturbances are sufficiently infrequent, i.e., € < § for
some sufficiently small 6 > 0. This description includes many
kinds of large disturbances such as faults, communications
failures, breakdowns, large delays, and large price/demand
spikes in economic applications.

In [11], however, all results are derived for the optimal
control law, i.e., these results require that the MPC problem
is solved to optimality in the allotted computation time. We
establish in this section that Algorithm 1 is robust in the same
economic context presented in [11, Theorem 6].

A. Assumptions
We consider the case of only large disturbances and nominal
behavior.

Assumption 5. The disturbance set satisfies W = Wy U W,
and we restrict Wy = {0}.

Although we consider these disturbances to be large, we do
not allow disturbances of arbitrary size. If we want to consider
large disturbances, the control algorithm must be recursively
feasible by design.

Assumption 6. If ©z € Xy(¢), then f(x,u,w,t) € Xn(t +
1) for all (xz,u) € Z(t), w € W, and t € T, ie., the sets
(Xn(t))ier are robustly positive invariant.

In addition, we require a bound on the cost increase due to
a disturbance.

Assumption 7. There exist b1, by € R>q such that

Vzg(f(ac, /i?\,(x,t),w,t),t—i— 1)
< Vn(@,t) + by [z, 63 (2, 1), 1)] + ba

for all x € Xn(t), w € Wy, and t € T.

Note that we require this bound for only the optimal control
law. A further discussion of these assumptions is available in
[11]. For production scheduling problems, Assumptions 6 and
7 are satisfied with a careful choice of the terminal constraint
and cost [12]. Under specific conditions, Assumption 7 can
be verified without explicit knowledge of the optimal cost
function or control law [11, Lemma 7].

In addition to the assumptions required in [11], we also
require that the stage cost satisfies the following condition.

Assumption 8. There exists d > 0 such that
[0(x,uy,t) — (x,uz,t)| < d
for all (z,u1) € Z(t), (z,u2) € Z(t), and t € T.

This assumption is satisfied for all linear stage costs and
quadratic stage costs that do not include any bilinear combina-
tions of the unbounded modes of x. Since many applications
of economic MPC use linear or quadratic stage costs, this
assumption still admits many relevant problems. Assumption
8 is needed to address the fact that Assumption 7 applies for
only the optimal control law.

B. Main result

With these assumptions, we can established that the pro-
posed hybrid suboptimal MPC algorithm is economically
robust to large and infrequent disturbances.

Theorem 2. Let Assumptions 1-8 hold. Then for the closed-
loop system evolution in (5) in which € := Pr (w € W), there
exist § € (0,1] and 5 > 0 such that for all initial z € X (t) X
UN, t €T, and ¢ € [0, 6] we have that

t+T—-1

limsup E % > Ua(k),ulk), k)| <5 (10)
k=t

T—o0
in which x(k) = ¢, (k;x, wg, t) and u(k) = ¢, (k; z, w, t).
Proof. Choose any z € Xn(t) x UN and t € T. Choose an
input trajectory based on Algorithm 1, i.e., u € Un(z,t), and
denote the first input of this trajectory as u.
If w = 0, we have that 27 = f(x,u,0,t) and 07 =
¢(z,u,t) is a feasible control trajectory from = because of
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Assumption 4, ie, zt = (z,u") € Zx(t + 1). Thus, we
can apply the same approach as in the proof of Theorem 1 to
conclude that

VN(Z+7t+ 1) < VN(ajyu)t) - Z(JE,’U,, t)

We denote the input trajectory selected at t + 1 as ut €
Uy (zt,t + 1) and note that ut € U¥(z*,t + 1) because
w = 0 and therefore ut is a feasible warm start. Thus, if
w = 0, we have

Vy(zT,ut t+1) < Vy(z,u,t) — £(z,u,t)

If w € Wy, we have x+ = f(x,u, w,t) and note that u™ is
not necessarily a feasible warm start for z+. Nonetheless, we
have that the subsequent computed input trajectory satisfies
ut € U (zF,t + 1) and therefore

V@@t ut,t+1) <Vt t+1) +p

We combine this inequality with the inequality in Assumption
7 and by optimality we have

V(@ ut, t4+1) < Viv(z,u,t)+b1 |0z, 6% (2, 1), £)|[+b2+p

From Assumption 2, there exists m € R such that /(z, u, )

m for all (z,u) € Z and t € T. Therefore, |[{(z,u,t)|

0(x,u,t) + 2|/m| and

IN IV

V@t ut t+1) < Viv(z,u,t) + bil(a, 53 (2, 1),t) + ba
in which by := by + P+ 2m. We apply Assumption 8 to give
Vy(zt,ut t+1) < V(z,u,t) + b1 l(z,u,t) + bs

in which by = byd + by.

To streamline notation, we define y = (x,u) and y* =
(zT,u™). Note that y represents the current state x and the
computed input trajectory u (not the warm start u). We then
combine the bounds with and without the disturbance through
the indicator function of Wy .

Vn(y" t+1) < Vn(y,t) — (1= Iw, (w))l(z, u, )

+ Iyy, (w)(blg(x, U, t) + bg)
in which Iy, (w) =1 if w € Wy and zero otherwise. Taking
expected value and combining terms gives,

]E\z [VN(y+7t+ 1)] 7VN(y7t) < 7(17571715) (I,U,t)+b3€
We choose 6 < 1/(1+ by) and note § € (0, 1], which gives
Ep. [Vn(y*t+1)] = Vn(y:t) < —bal(w,u,t) + bse (1)

with by := (1 — (1 + bl)d) > 0.

From z(t) € Xn(t) x UN and t € T, we denote the
closed-loop trajectories x(k) = ¢,.(k; z(t), wg,t) and u(k) =
oo (k; 2(t), W, t). We also denote u(k) = ¢u(k; 2(t), Wi, t)
and therefore y(k) = (x(k),u(k)). By (11) and the properties
of iterated expectations, we have

Ep.q) [Vn(y(k+1),k+1)] —Ei. [V (y(k), k)]
< —byEpLp [0(z(k), u(k), k)] + bse

for all k£ € I>;. We take the sum from ¢ to ¢t + 7 — 1 with
T € I>4, divide by T, and rearrange to give

1 T+t—1 B
baE) (1) T Z Uz (k), u(k), k‘)]
k=t
< Vn(y(t),t) = Epq) [Va(y(t +T),t+T)] +bse

T

By Assumption 2, there exists ¢ € R such that Vy(y(t +
T),t +T) > c and we have

T+t—1

% g (k) uk), k) | < @@ =c | o

E
(0 buT e

in which ¥ := b3 /bs. We take the lim sup of this inequality as
T — o0 so that the initial cost and ¢ vanish to give (10). [

Theorem 2 ensures that the the closed-loop system is able
to, on average, recover from large, but sufficiently infrequent
disturbances. The calculated bound in (10), however, is often
too conservative to provide useful quantitative information.
Similar to Theorem 1, if optimality-gap suboptimal MPC
is used without a warm start, the bound in Theorem 2 is
weakened by the value of p. Specifically, the right hand side
of (10) becomes e + p.

V. PRODUCTION SCHEDULING EXAMPLE

We consider a simple production scheduling example. The
goal is to meet demand of product 1 (M1) by converting raw
material (assumed to be in abundant supply) to M1 through
task 1 (T1) carried out on unit 1 (Ul). We can also produce
product 2 (M2) with task 2 (T2) also carried out on Ul. T1
and T2 have processing times of 2 and 3 hours, respectively,
and a batch size between 10 and 20 kgs. We can store up to
100 kg of each product at a cost of $1(/kg/hr). The demand for
M1 is 50 kg every 6 hours. If demand is not met, the facility
accumulates backlog that must be offset at later times. The
penalty for maintaining backlog is $50(/kg/hr). We can sell
up to 5 kg of M2 for a profit of $20(/kg) at any time. Thus,
the optimal schedule is one that produces enough M1 to meet
demand while producing and selling as much M2 as possible.

We model this system using the state-space scheduling
model developed in [21]. We define the binary decision vari-
ables Wy, W, that are unity if T1, T2 start at time ¢. We also
define the continuous inputs B;, By that represent the batch
size assigned to T1, T2. To track these decisions in the state of
the system, we lift W; and B; with the state variables W, B
forn € {0,1,...,7;} in which 7; is the processing time of task
1. The value of n represents the progress of the task (e.g., at
n = 1, the task is n/7; complete). We consider 1 hour delays
on Ul (Y). For a one hour delay, Y = 1 and the active task’s
progression does not advance. Note that this disturbance is an
inherently discrete-valued (large) disturbance, i.e., Y € {0,1}.

Inventory and backlog (unmet demand) are denoted Sy, S5
and U;. We also allow for up to 1 kg of M1 to be moved to a
long-term storage facility at a cost of $20(/kg). We denote this
action D7 and note that this action is used to construct a valid
terminal cost for the scheduling problem [12]. The inventory
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and backlog dynamics are integrators influenced by the batch
size of ending tasks (B]"), shipments to long-term storage
(D7), shipments of M1 to meet demand (H;), shipments of
M2 for profit (V3), and demand for M1 (&;(t)). We also
impose constraints to enforce one-task-per-unit requirements,
batch size requirements, and appropriate upper/lower bounds
on variables. The general equations for these dynamics and
constraints can be found in [12] or [10, s. 6.2.1].

To streamline notation, we define each variable
without subscripts to indicate a column vector
containing the variable at each subscript, e.g.,
W= [(Wrvie{1,2},ne{0,...,7})]. We define
the state, input, and disturbance as

= [W,B,8,U]", u=[W,B,V,H,D), w=Y]

and the dynamic evolution equation is then ™+ = f(z,u, w, ).
We have state and input constraints (z,u) € Z that also
enforce discreteness of W. We define the stage cost as

g(.ﬁ, u,t) =51 + S5 4+ 50U; — 20V; + 20D,

Note that this stage cost satisfies Assumption 8.

We use the procedures detailed in [12] to construct a
reference trajectory, terminal constraint, and terminal cost that
satisfy the required assumptions. Specifically, we solve for
an optimal 72 hour periodic schedule with the requirement
that we overproduce M1 with a margin ¢ = 0.1 per hour.
That is, we constrain D; > o and solve a 72 hour opti-
mization problem with a periodic constraint on the state, i.e.,
2(0) = x(72). This optimal periodic schedule is used as the
reference trajectory and has the form

2 (t) = [Wr(6), By (1), Sr1(£), Sr,2(8), Ura (8)]
From this reference trajectory, we define the parameter

100 — S,.1(t)

w1 =
571}

min
te{0,1,..

to be used in the construction of the terminal constraint. We
also define ASi(t) := S; — S,1(t) and AUL(¢) = Uy —
U,1(t). We then define the terminal constraint as

X()_{xEXW W, (t), B = B.(t),
AS1(t) € [0,w1], AUL(t) > 0,52 = Sy 2(t)}
We define the terminal control law as
W.(t)
B(t)
Kr(z,t) := Via(t)

H, 1 (t) + min{AU,(t),0}
D, (t) + min{AS;(t),0.5} — min{AU,(t),0}

and the terminal cost as
Vi(x,t) == 21AS; (£)+(AS1 ()2 +30AU, (t)+250(AUL (t))*

We note that these terminal conditions satisfy Assumptions
4 and ensure that Assumption 6 holds for this problem.
Furthermore, we can establish that Assumption 7 is satisfied
[12].

Let p denote the allowed optimality gap and ¢ := Pr(Y =
1), i.e., the probability that a 1 hour delay occurs for Unit 1.

(m 11 T2 [ Y|
07 | Iz
100 I

[+ S1 So —h— Ul]

0 B e

100 I
[+ H,y Vo -—== 52]

JLARE LTI L]

R e e L S e e
0 6 12 18 24 30 36 42 48 54 60 66 72

t (hr)

Fig. 1. An example closed-loop trajectory with € = 0.1 and p = 200. The

closed-loop schedule is drawn in solid colors and the open-loop schedule is
drawn in faded colors. The top plot is a Gantt chart, the middle plot shows
the inventory and backlog for each material, and the bottom plot shown the
shipments of M1 to meet demand (H1), sale of M2 (V2), and demand for
M1 (&)

= 100 - .‘...‘ ...... p—

< NOL e =0.05

= 0 ez —— e=0.1
T T T T T T

0 24 48 72 96
t (hr)

120 144

Fig. 2. The sample averages of A(t) for 30 realizations of the closed-loop
trajectory for multiple values of € and p = 200.

Note that the optimizer may report an optimality gap of greater
than zero even if the current solution is, in fact, optimal. We
use a 48 hour open-loop horizon (N = 48). We use Gurobi
to solve these optimization problems [7]. In Figure 1, we plot
an example closed-loop trajectory for p = 200 and ¢ = 0.1.
The closed-loop trajectory is shown in the solid colors while
the computed open-loop trajectory (schedule) is shown in the
faded colors. Note that three delays occur (in a row) after

= 14 and cause the closed-loop trajectory to accumulate
backlog. Furthermore, the warm start is infeasible after each
of these disturbances occurs.

We simulate 30 realizations of the closed-loop trajec-
tory for ¢ € {0,0.05,0.1} and optimality gaps of p €
{0,50,100,200}." We use the first state in the periodic ref-
erence as the initial state for each of these simulations. We
define the running average economic cost for the closed-loop
trajectory relative to the reference trajectory as A(t).

A(t) = HtZe k), k)

Note that A(¢) for large ¢ is the finite horizon approximation of
the performance metric used in Theorems 1 and 2. We denote
the sample average of A(t) as K [A(t)].

We plot & [A(t)] for multiple values of ¢ and p = 200 in
Figure 2. For the nominal system (¢ = 0), we see that the

1200 is approximately 25% of cost for the 72 hour periodic schedule.
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Fig. 3. The value of Je for multiple values of € and different optimality gaps
p € {0,50,100, 200} as well as optimal MPC without a warm start (labeled
“No WS”).

closed-loop trajectory is better than the reference trajectory
(E[A(t)] < 0). If we implemented only the warm start, with-
out any additional optimization, we would expect E [A(t)] = 0
as t — oo. Including even a small number of iterations of the
optimization solver (until the guaranteed optimality gap is less
than 200) is sufficient to improve the closed-loop trajectory
even if the warm start is feasible. For ¢ = 0.05,0.1, we see
that the disturbances drive [ [A(t)] away from zero. Both of
these trajectories, however, appear to approach an asymptotic
limit as ¢ — oo.

We treat the value of I [A(t)] for t = 164 as an approxima-
tion of the infinite limit in Theorem 2 and denote this value
as J.. We plot the value of J. in Figure 3 for each value of
p € {0,50,100,200}. We also plot the value of J. for the
closed-loop system if no warm start is provided (labeled “No
WS”). Note that the algorithms with and without a warm start
with zero optimality gap may produce different results because
the MIQP has multiple solutions. In fact, we observe that jo_og,
is larger for the algorithm without a warm start than for the
algorithms with a warm start and p < 100.

The results in Figure 3 are consistent with Theorem 2. The
value of J; is less than zero for ¢ = 0 and increases with
increasing €. We also observe that, by increasing the value
of p, the performance is nearly equivalent for ¢ = 0 and
degrades slightly for € > 0 (15% and 6.5% for € = 0.05,0.1,
respectively, with p = 200). We emphasize, however, that an
optimality gap of p = 200 is large for this example. A more
reasonable gap of p = 50,100 results in performance that is
very close to the performance for p = 0. Note that an optimal
solution to the finite horizon open-loop optimization problem
does not guarantee superior closed-loop performance, e.g., the
closed-loop performance of p = 50 is better than p = 0 at
e =0.1.

In Figure 4, we plot the number of iterations required for
each open-loop optimization problem and all 30 simulations
for each algorithm considered. By providing the optimizer with
a warm start, we observe a significant improvement in both the
average (decrease of 27%) and maximum (decrease of 36%)
number of iterations required. For this problem, increasing
the optimality gap to p = 50,100 does not significantly
reduce the computational burden or produce a noticeable

7
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Fig. 4. Histograms of the number of iterations for each open-loop optimization
problem and all 30 simulations. From top to bottom, we have the results for
the algorithm without a warm start, p = 0, p = 50, p = 100, and p = 200.
The black dashed line is the mean and the solid black line is the maximum
number of iterations.

degradation in performance. For large-scale and more complex
problems, however, this additional optimality gap can produce
a significant difference in the computational burden [19].
If we further increase the optimality gap to p = 200, we
observe another significant decrease in the average (decrease
of 30%) and maximum (decrease of 30%) number of iterations
compared to p = 100.

VI. CONCLUSIONS

We proposed a suboptimal economic MPC algorithm that
combines the strengths of two common suboptimal MPC
algorithms. We then established that this suboptimal MPC
algorithm is economically robust to large and infrequent
disturbances. For a small production scheduling example,
we demonstrated that the proposed suboptimal MPC algo-
rithm achieves similar (and in some cases superior) economic
performance compared to optimal MPC (without a warm
start) while reducing the average and maximum number of
iterations required for the open-loop optimization problems.
This algorithm is readily applicable to large-scale economic
MPC problems that are solved as MILPs/MIQPs.
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