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On The Inherent Distributional Robustness of
Stochastic and Nominal Model Predictive Control

Robert D. McAllister and James B. Rawlings

Abstract—We define a notion of distributional robustness, via
the Wasserstein metric, for closed-loop systems subject to errors
in the disturbance distribution used to construct the controller.
We then establish sufficient conditions for stochastic model pre-
dictive control (SMPC) to satisfy this definition of distributional
robustness and establish a similar notion of distributional robust-
ness for economic applications of SMPC. These results address
incorrectly or unmodeled disturbances, demonstrate the efficacy
of scenario optimization as a means to approximate and solve
the SMPC problem, and unify the descriptions of robustness for
stochastic and nominal model predictive control. This definition
of distributional robustness for closed-loop systems is general and
can be applied to other stochastic optimal control algorithms and,
potentially, the developing field of distributionally robust control.

Index Terms—Model predictive control, stochastic optimal
control, distributional robustness, stochastic systems

I. INTRODUCTION

In practice, a control algorithm must ensure some degree of
robustness to disturbances and modeling errors for successful
industrial implementation. By virtue of feedback, nominal
model predictive control (MPC) is known to be inherently
robust to sufficiently small disturbances [1, 11, 30]. We use
the term inherent robustness to indicate that this robustness is
achieved through feedback and without explicitly considering
the disturbances in the problem formulation.

Stochastic MPC (SMPC) offers a means to improve on the
inherent robustness of nominal MPC by including a stochastic
description of the disturbance directly in the problem formu-
lation. In general, the SMPC optimization problem minimizes
the expected value of the cost function subject to deterministic
and probabilistic constraints [8, 16, 20]. Using the same
rolling horizon approach as MPC, this stochastic optimization
problem is solved at each sample time, with an updated state
estimate, to determine the control action at that time. We focus
this article on the closed-loop properties of nonlinear SMPC.

We briefly review some contributions to the study of closed-
loop properties of SMPC. Primbs and Sung [21] use a global
stochastic Lyapunov function as the terminal cost to establish
that the origin is asymptotically stable with probability one
for linear systems with multiplicative disturbances that vanish
as the origin. Cannon, Kouvaritakis, and co-authors use a
terminal constraint and local Lyapunov function to ensure
recursive feasibility and stability in expectation for linear
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systems with bounded disturbances (that do not vanish at the
origin) and input/state constraints [4-6, 14]. Lorenzen et al.
[15] propose a less restrictive constraint tightening approach
and establish that linear SMPC asymptotically stabilizes, with
probability one, the minimal robust positive invariant set of
the system. For nonlinear SMPC, Chatterjee and Lygeros [7]
uses a global stochastic Lyapunov function to establish, for
unconstrained systems, that the expected value of the optimal
cost is bounded along the closed-loop trajectory. Mayne and
Falugi [17] use a terminal constraint and a local Lyapunov
function to extend the results in [7] to systems with bounded
inputs and disturbances. In [19], the authors establish that
SMPC renders the closed-loop system robustly asymptotic
stable in expectation (RASIE).

Although these results are interesting and instructive, the
key assumption made in SMPC closed-loop analysis, and
indeed much of stochastic optimal control in general, is that
the stochastic description of uncertainty used in the SMPC
optimization problem is exact and comprehensive. While this
assumption is a reasonable starting point, it does not hold for
any practical implementation of SMPC. Much like the nominal
model identified for nominal MPC, we cannot expect that a
stochastic model, typically identified from data, is exact.

In this work, we remove this assumption of exact dis-
turbance models and distributions. Specifically, we address
an open question in the field of SMPC that is of signifi-
cant practical concern: What, if any, robustness does SMPC
confer for unmodeled or incorrectly modeled disturbances?
This question is asking about the distributional robustness of
SMPC, i.e., the robustness of SMPC to errors in the probability
distribution used in the problem formulation. The unwritten
hypothesis is that feedback provides some margin of inherent
distributional robustness to SMPC and thereby addresses any
small discrepancies in the disturbance model. This hypothesis,
however, has never been established for SMPC.

To address this question of distributional robustness, we
require a notion of distance between probability measures, i.e.,
a probability metric. For this task, we select the Wasserstein
metric. While this metric initially gained popularity in the field
of optimal transport [28], there are several recent applications
of the Wasserstein metric in machine learning [2, 10], state
estimation [26], and optimal control [29]. In contrast to these
approaches, we do not use the Wasserstein metric in the
formulation of the SMPC optimization problem. Instead, we
use the Wasserstein metric only as a means to quantify the
distance between the true disturbance distribution and the
model disturbance distribution used in the SMPC optimization
problem.
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We summarize the paper as follows. In Section II, we
define the system of interest and introduce the SMPC problem
formulation and associated assumptions. In Section III, we
introduce the Wasserstein metric and a few important results
for this metric. In Section IV, we define distributionally robust
asymptotic stability in expectation (DRASIE) and establish a
sufficient condition for this form of robustness via a stochastic
input-to-state stable (SISS) Lyapunov function. In Section V,
we establish that SMPC is inherently distributionally robust
in terms of DRASIE and establish an alternative result for
economic applications of SMPC, i.e., problems in which the
stage cost is not necessarily positive definite with respect
to the origin. In Section VI, we discuss several insights for
both stochastic and nominal MPC afforded by these results.
We provide a numerical example to illustrate these results in
Section VII.

Notation: Let I and R denote the integers and reals. Let
superscripts and subscripts denote dimension and restrictions
(e.g., RZ, denotes nonnegative reals of dimension n). Let | - |
denote Euclidean norm and |z|y := inf,cy |z — y| denote
Euclidean point-to-set distance. The function o : R>¢ — R>g
is in class K if it is continuous, strictly increasing, and «(0) =
0. The function o : R>¢g — Rxq is in class K if a-) € K
and unbounded, i.e., lim,_,, a(s) = co. A function 3 : R> x
I>9 = R>g is in class KL if for every k € I>¢ the function
B(-, k) is in class K and for fixed s € R>q the function 5(s, -)
is nonincreasing and limy_,o (s, k) = 0. Let B(Q2) denote
the Borel algebra of some set €. Let tr(A4) denote the trace of
a matrix A. Let d,(A) denote the Dirac measure defined for
a given x € R™ and set A C R", ie., 0,(4) =1ifz € A
and J,(A) = 0 otherwise.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. The stochastic system(s)

We consider the following discrete-time stochastic system

vt = f(z,u,w) f:R"xR™xR?— R" (1)

in which = € R"™ is the state, u € R™ is the controlled input,
w € W C RY? is the stochastic disturbance, and =T is the
successor state. Let (Q, F, P) denote the probability space for
the sequence wo, : 2 — W™, We denote a subsequence of
Woo as W; := (w(0),w(1),...,w(i —1)) and define expected
value of a Borel measurable function g : W! — R as the
Lebesgue integral

Bla(wi)] = | glwiw))dP() @
We then consider the following standard assumption.

Assumption 1. The random variables w(i) : @ — W are
independent and identically distributed (i.i.d.) in time and W
is compact.

Given Assumption 1, each w(i) has an equivalent probability
measure that we denote p : B(W) — [0, 1], defined such that
wF) = Pw € Q : w(;w) € F}) for all F € B(W)
and ¢ € I>o. We use M(W) to denote the collection of all
probability measures on (W, 5(W)). All moments of w are

finite for p(-) € M(W), ie., [ |w|Pdu(w) < oo for all p €
I>1, because W is compact. Note that W is larger than, but not
necessarily equal to, the support of . Therefore, (W) = 1
but there may exist a nonempty set S C W such that u(S) = 0.

Since we intend to consider problems with bounded inputs,
we require that W is bounded (compact). Otherwise, the
control problem is not well posed, i.e., we are attempting to
reject an unbounded disturbance with a bounded input.

In this work, we do not assume that we know the set W
or measure p for the random variable w. Instead, we have
access to only a model of the set W and probability measure
1, that we denote W and 1, respectively. Note that we may
assume W C W without loss of generality because we can
always increase the size of W to fit W and assign these
additional values measure zero with . We may also, without
loss of generality, define i on the domain B(W) and assign
zero measure to all the points in W that are not in W i.e.,
fi : B(W) — [0,1] such that (W \ W) = 0. Specifically, we
have that

[ stirdita) = [ gtadaco)
w A\

for all measurable functions g(-) because (W \ W) = 0.
Thus, W includes the support of [i. Note that we allow for the
possibility that W is larger than the support of ji. We define
i1 on the larger set W only to facilitate the comparison of
w and fi. In the SMPC optimization problem, the stochastic
system evolves according to the following stochastic model
and without knowledge of W or p.

xt = f(x,u, ) weW 3)
in which w is distributed according to the measure ji.

We formalize these requirements of the disturbance model
used in the SMPC formulation through the following assump-
tion.

Assumption 2. The random variables (i) are i.i.d. in time,
with a probability measure & : B(W) — [0,1]. The set W is
compact and contains the origin. The probability distribution

satisfies i(W) = 1.

We use M (W) to denote the collection of all probability mea-
sures on (W, B(W)) that satisfy Assumption 2, i.e., (W) = 1
for all i € M(W). Note that M (W) C M(W). We provide
an illustration of these sets in Figure 1. We emphasize that
the framework we have introduced is capable of representing
incorrectly modeled (4t # p), unmodeled W # W), or out-
of-sample (W is finite) disturbances. We discuss each of these
cases further in Section VI

For the ii.d. random variables w = (w(i),w(i +
1),...,w(# + N — 1)) and N € Iy, their joint dis-
tribution measure [V BWYN) — [0,1] is defined
as pN(F) = p(F)i(Fii1). .. p(Fiyn-1) for all F =
(F;,Fiyq,...,Fion—1) € B(WY). For any Borel measurable
function g : WV — R, we define expected value with respect
to [i as

Blow) = [ o) = [

g(w)di™ (W)

W
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Fig. 1. Illustration of the sets W, W and the probability measures p, 1. We
also show the Hausdorff distance dgz(-) between these two sets.

in which the second equality holds because /i € M( ) and
therefore /i(W \ W) = 0. Note that we use E[] to indicate
expected value with respect to [t instead of p. We frequently
use the expected value of |w| as a bounding quantity in
subsequent analysis and note the following inequality

w (%) + [Ew

in which 3 = 0 is the covariance matrix of @ and the upper
bound can be constructed via Jensen’s inequality.

E[laf) <

Remark 1. Sampling-based approximation of x may not
produce empirical distributions with zero mean. We therefore
do not restrict /it to only measures of zero mean and instead
leave I@[ﬁ}} = 0 as a special case of the subsequent results.

Remark 2. We can extend these results to systems with
time-varying probability measures (i.e., w(i) and w(¢) are
independent but not identically distributed). This extension,
however, requires that we consider a time-varying problem
and adds additional notation to the following analysis. Given
the introductory nature of this paper, we address only i.i.d.
disturbances.

B. SMPC problem formulation

We now introduce the SMPC problem formulation. We
assume that there is a fixed set W used in the SMPC algorithm,
as is typical in SMPC analysis. This requirement is important
because the subsequent assumptions and sets for SMPC are
based on a single set W (e.g., Assumption 5). We do, however,
allow for different fi and derive bounds that apply for any
such ji. Thus, the optimization problem and control law is
subsequently defined as a function of fi.

We define the parameterized control policy 7 : R" x V —
R™ in which x € R" is the current state of the system and
v € V C R! are the parameters in the control policy, e.g.,
m(x,v) = Kz + v. Thus, the resulting system of interest is
defined as

et = fla,m(z,0),0) weW

“4)

in which  is distributed according to fi. We use qAS(k:, T,V,W)
to denote the solution of (4) at time k, given the initial
condition x € R", the trajectory of control policy parameters
v = (v(0),v(1),...,v(N — 1)) € V¥, and disturbance
trajectory w € WV

We consider the case of hard input constraints, i.e., u €
U C R™. We do not, however, consider hard or probabilistic
constraints on the state since we do not assume that the
disturbance model is exact. Thus, a disturbance not included
in W may cause the closed-loop system to violate these state
constraints. This fact is also true for nominal MPC [1, 30].
Instead, we assume that all state constraints are converted to
exact penalty functions in the stage cost [13, 25, 31]. We
do, however, include a terminal state constraint Xy C R"
in the following SMPC problem that must satisfy specific
requirements detailed in subsequent assumptions.

For a horizon of N € I>;, we denote the set of admissible
control law parameter trajectories given z € R" as

V(z) :={veVV:
m(p(k;z, v, w),v(k)) € U V& € WY k € Ijp y_]
P(N;z,v,W) € X; YW € WV}
and the set of all feasible initial states is denoted
X :={z eR": V(x) # 0}

Note that V() and X depend on W, but not /.. We define the
stage cost £ : R™ x R™ — R, terminal cost V; : R" — R>o,
and the function

N-1
J(x,v,w) = Z Lz (k), m(x
k=0

in which z(k) = ¢(k;x,v,W). We define the SMPC cost
function based on the expected value of J(-) given the
disturbance model available, i.e.,

Vi(z,v) = E[J(z,v,W)]
= / J(z, v, w)dpN (W)
WN
The optimization problem for any x € X is defined as

Pu(z): V2(z) = min V,
() (z) S a(z,v)

(k),v(k))) + Vi(z(N)) (5)

i (6)
and the optimal solutions for a given distribution fi € M(W)
are defined by the set-valued mapping vA : X = VY such
that
0 .
! =a V1 5
vh(r) = arg min V(. v)

Note that vg(a:) is a set-valued mapping because there may
be multiple solutions to Py (z).

To streamline the following presentation, we assume that
there exists some Borel measurable selection rule that defines
a single-valued control law x; : X — U such that k;(x) €
{m(z,v(0)) : v € v)(z)} for all z € X, in which v(0) is the
first parameter vector in the sequence v.

The resulting closed-loop system is then

T = f(x,kp(x),w) weW (7
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in which w is distributed according to ;. We use ¢ (k; x, wy,)
to denote the solution to (7) at time k € I>( given the initial
condition x and disturbance sequence wi = (w(0), ..., w(k—
1)) € WF. In the subsequent analysis, the control law
ki () and therefore the deterministic value of the closed-
loop trajectory ¢, () depend on the disturbance model /. The
disturbance, however, takes values w € W and the expected
value of the closed-loop state trajectory is evaluated based on
the disturbance distribution ¢ € M(W). Thus, we discuss
quantities such as

E [l (ks 2, wi)|) = / 165 (ks 2, wi ()| dP ()
- /W 16k 2w | dpaw 0)) (1) . dpsCo(k — 1))

C. Assumptions for SMPC
We require the following assumptions for SMPC.

Assumption 3 (Continuity of system and cost). The model f :
R™ x R™ x R? — R", control parameterization 7 : R” XV —
R™, stage cost £ : R"xR™ — R, and terminal cost Vy : R" —
R>q are locally Lipschitz continuous. Furthermore, we have,
without loss of generality, that f(0,0,0) = 0, ¢(0,0) = 0, and
Vi (0) = 0.

Note that we have strengthened the usual assumption of con-
tinuity to local Lipschitz continuity. However, local Lipschitz
continuity is typically required already (and satisfied for many
problems of interest) if we intend to use standard nonlinear
optimization methods to solve the SMPC optimization prob-
lem. This assumption of local Lipschitz continuity, however,
does not imply that the optimal cost function Vﬂo(~) or control
law k;(-) are continuous functions of z € X.

Assumption 4 (Properties of the constraint sets). The sets
U and V are compact and contain the origin. The set X; is
defined by X; := {x € R" : V;(z) < 7} for some 7 > 0. The
set X is bounded. The control law parameterization satisfies
m(x,v) € Uforall z € R” and v € V.

Note that the final requirement of Assumption 4 means that
m(x,v) = Kz 4+ v may not be a valid control law parame-
terization. Instead, we can define 7(z,v) = saty(Kz + v) in
which u = saty(s) maps s to the closest value that satisfies
u €T, ie., saty(s) = arg min,cy |u — s|.

Assumption 5 (Terminal control law). There exists a locally
Lipschitz continuous terminal control law sy : Xy — U and
7 < 7 such that for all z € Xy,

fla, kp(z),0) € {w: Vi(x) <7} CXp, ViDEW  (8)
Vi(f(2,k55(2),0)) < Vi(z) — Uz, 54 (2)) ©)
Furthermore, 7(x,0) = r¢(z) for all z € Xjy.

Thus, the terminal control law must drive any x € X to the
interior of X for all w € W. This assumption is stronger than
the assumption of robust positive invariance for the terminal
set typically used in SMPC. Assumption 5 ensures that X" is
nonempty because Xy is nonempty and Xy C X

We also require the usual lower bound on the stage cost.

Assumption 6 (Stage cost bound). There exists a function
ay(+) € K such that for all (z,u) € R™ x U, we have that

ag(|z]) < €(z,u)

Note that all of these assumptions address the construction
of the SMPC optimization problem and do not specify any
requirements concerning the true disturbance set and distri-
bution (W and p). Instead, these assumptions consider only
the set W. We can also choose any ji € M(W) for the set
W. Given Assumptions 2-5, we can establish that all stochastic
quantities considered in the subsequent results are well defined
[19, Prop. 5].

III. THE WASSERSTEIN METRIC

The goal of this work is to show that if the difference
between p and [ is small, the degradation in performance of
the closed-loop system relative to the idealized SMPC result
is also small. Moreover, we wish to show that as 1 — u (e.g.,
a sampling based approximation), we recover the idealized
SMPC guarantee found in [19]. Thus, we require a concept
of distance between probability measures, i.e., a probability
metric, and a notion of convergence for probability measures.

We use the Wasserstein metric for this task for three main
reasons. First, the Wasserstein distance between continuous
and discrete distributions is well defined (in contrast to Kull-
back-Leibler divergence). Second, the Kantorovich-Rubinstein
dual representation of the Wasserstein distance provides a
useful upper bound for the difference between expected values
of a nonlinear, Lipschitz continuous function for two differ-
ent probability distributions. Third, the Wasserstein distance
metrizes weak convergence on M (W) for compact W C R?
(in contrast to total variation distance which does not converge
to zero for sampling based approximations of continuous
distributions).

We consider the type-1 version of this metric, sometimes
known as the Kantorovich-Rubinstein metric, defined as fol-
lows.

Definition 3 (Wasserstein metric). The (type-1) Wasserstein
metric W : M(W) x M(W) — R is defined as

Wi(p1,p2) ;==  inf

/ |wy — wa|dy(wy, we)
YET (p1,p2) JWxw

for all py,pe € M(W), in which I'(uq, u2) denotes the
collection of all measures on W x W with marginals p; and
W2, i.e., v € T'(p1, pio) must satisfy

Ml(')Z/W’Y(vw2)dw2 Mz(')Z/WV(wL')dM

The measure ~(-) can be viewed as a transport plan for
moving a distribution described by p1 to another one described
by pe. Thus, determining the Wasserstein distance amounts to
solving for the optimal transport plan in which the cost is
given by the Euclidean distance |- |. Note that the Wasserstein
metric satisfies all the axioms of a distance on M (W) for
compact W C R”. Specifically, the metric is finite, symmetric,
satisfies the triangle inequality, and W (1, u2) = 0 if and only

if H1 = 2.
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A particularly useful result for the Wasserstein metric (type-
1) is the following dual representation.

Theorem 4 (Kantorovich-Rubinstein). For any probability
measures i1, pio € M(W) we have

Wi ) = s { [ stwamw) [ stwrinu]

in which L denotes the space of all Lipschitz continuous func-
tions with |g(w1) — g(ws2)| < |wy — wal for all wy,wy € W.

See Villani [28, Remark 6.5] for a discussion of this result.
Thus, for any Lipschitz continuous function g(-) with Lipschitz
constant L > 0 on W, we have that

/ g(w)dp (w) —/ g(w)dpz(w) < LW (1, p2)
W W

for all pq, po € M(W).

We now introduce a notion of convergence for probability
measures in the space M(W). For a sequence of probability
measures {p;}52, in M(W), we say that u; converges weakly
to p € M(W) if

| sty = [ gyt

for all continuous and bounded functions g : W — R. We use
the notation p; — w to denote weak convergence. For compact
W, convergence in the Wasserstein metric is equivalent to
weak convergence, i.e., for the sequence {u;}52,, pi —
if and only if W (p;, ) — 0 [28, Theorem 6.9].

The notion of convergence for probability measures is
particularly important for sampling-based empirical approx-
imations of a probability measure. For example, consider a
probability measures i € M(W). We draw s random samples
from p that we denote {&;}; ; and define the empirical
probability measure as fi5 := %Zle dg, in which 6, is the
Dirac measure at w;. One can show that fi; — p as s — oo
via the strong law of large numbers [27].

IV. DISTRIBUTIONAL ROBUSTNESS

We first define robust positive invariance (RPI) as follows.

Definition 5 (Robust positive invariance). The set X is
robustly positive invariant (RPI) for the system zt =
(@, ka(z),w), w e Wif x € X implies that 2™ € X for all
weW and i € M(W).

We define distributional robustness for a closed-loop non-
linear systems as follows.

Definition 6 (Distributionally Robust Asymptotic Stability in
Expectation). The origin of the system ™ = f(xz, k4(z), w),
w € W is distributionally robustly asymptotically stable in
expectation (DRASIE) in the RPI set X if there exist 5(-) €
KL and v1(+),v2(-) € K such that

B (136 7, wi)| A
< Bzl k) + 71 (Bl[@]]) + 72 (W (p, 2)) - (10)
for all z € X, i € M(W), p € M(W), and k € I.

The first part of the upper bound in (10) is a KL func-
tion that ensures the effect of the initial condition x € X
(asymptotically) vanishes as k — oo. The second function
~v1(E[|w@]]) accounts for the persistent effect of the modeled
disturbance (w) in the control law design and the ideal system
with ¢ = [i. The third function ~vo(W (u, 1)) accounts for
the discrepancy between the disturbance distribution model
[, used in the SMPC optimization problem, and the true
disturbance distribution p. If p = fi, then v (W (u, 1)) =0
and we recover the usual bound for idealized SMPC analysis.
The most significant consequence of this result is that the
effect of arbitrarily small errors between /i and p produce sim-
ilarly small deviations from the closed-loop bound derived for
idealized SMPC analysis. We further discuss the implications
of this property for SMPC in Section VL.

Next, we define an SISS Lyapunov function to serve as a
sufficient condition for this definition of distributional robust-
ness.

Definition 7 (SISS Lyapunov function). The measurable func-
tion V; : X — R>q is an SISS Lyapunov function, defined for
all i € M(W), for the system =+ = f(z, kp(x), w), w € W
in the RPI set X if there exist oy (), as(:),as(-) € Ko and
o2(+),03(-),04(-) € K such that

ar(|z]) < Va(z) < ao(|z]) + oo (E[|w]]) (11)

/W Valf (2, (). 0)ds(a0)
< Va(@) — as(lz]) + oaE]lbl]) + oa(W (i) (12)
for all z € X, i € M(W), u € M(W).

Note that we allow the upper bound for V() to depend on
IE[|1I)|] and therefore /i. Since we intend to use the optimal cost
of SMPC as the SISS Lyapunov function, this generalization
is necessary since Vf?(m) is usually nonzero for x = 0 and
grows with increasing K[||].

We can now use this SISS Lyapunov function as a sufficient
condition for DRASIE.

Proposition 8. If a system " = f(z,kp(z),w), w € W
admits an SISS Lyapunov function in the RPI bounded set X,
then the origin is DRASIE.

As the proof of this result is similar to the proof in [19, Prop.
13], we defer this proof to the Appendix.

V. INHERENT DISTRIBUTIONAL ROBUSTNESS OF SMPC

In addition to characterizing the distance between p and ji,
we must also characterize the distance between the sets W
and W. A natural metric for the distance between sets is the
Hausdorff distance defined for two sets X,Y C R™ as

dg(X,)Y) = max{sup |x]y, sup |yX}
reX yey

Note that since W C W and both sets are compact, we have
that dy (W, W) = max,cw |wl|y. We show an example of
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this distance in Figure 1. Note that W (u, 1) — 0 does not
imply that dg (W, W) — 0.!
The main result of this paper is now stated.

Theorem 9. Let Assumptions 1-6 hold. Then there exists § > 0
such that for any set W C R satisfying dg (W, W) < 6, the
feasible set X is RPI for the system x = f(z,rz(x),w),
w € W and the origin of this system is DRASIE in X.

Thus, for a sufficiently small difference between W and W,
the SMPC problem remains robustly recursively feasible and
is distributionally robust. Note that if dg (W, W) is too large,
the feasible set X may not be RPI even if W (u, i) — 0. In
other words, disturbances w ¢ W that occur with arbitrarily
small (but nonzero) probability can still affect the feasibility
of the SMPC optimization problem.

To establish this result, we require the following intermedi-
ate lemmata. Their corresponding proofs can be found in the
Appendix.

Lemma 10. Consider a Lipschitz continuous function g :
X xS = Rwith X CR" and S C R™. Then G(z) =
Js 9(x, s)du(s) is also a Lipschitz continuous function with
the same Lipschitz constant for all y € M(S).

Lemma 11. Let Assumptions 2-5 hold. Then there exists Ly >
0 such that

[ Vitstenste), i)
W

< Vi(@) — lla, mp (@) + LeE[]]
for all x € X; and i € M(W).

(13)

Lemma 12. Let Assumptions 2-5 hold. Then there exist
ag() € K and o3(-) € K such that VO( ) < aq(|z]) +

oo (E[[w]]) for all x € X and ji € M(W).
We now proceed to the proof of Theorem 9.

Proof of Theorem 9. We proceed by first establishing the
there exists § > 0 such that X’ is RPL Since f(-) and 7 (-) are
locally Lipschitz continuous and X is bounded, there exists
L, > 0 such that

(@, m (2, 0), w) = f(a, 7 (2, 0),D)

forallz € &, UGV weW,andw e W. Forz € X and i €
M(W), choose v° € vY 0(x) such that k,(z) = m(z,v°(0)),

any w € WY, and deﬁne

)| < Lylw — |

vti= (0°(1),0°(2),...,2°(N = 1),0)
and
wt = (0(1),0(2),...,0(N —1),w(N))
for some @(N) € W. We denote zt(w) =
flz,kp(x),w), x(N) = qS(N;x,VO,W), and
xH(N;w) = (/A)(N;:Jﬁ(w),frﬂﬁvf). Note that z € X,

weW, vt e VN, and wt € WY are all bounded. The
function ¢(N;-) is locally Lipschitz continuous since it is a

Consider pe = (1 — €)d{oy +€dy1y and i = 6{0} with W = {0,1}
and W = {0}. As &€ — 0, W (pe, 1) — 0, but dgy (W, W) = 1.

composition of a finite number of locally Lipschitz continuous
functions, i.e., the composition of f(-) with itself N times.
Therefore, Vi (¢(N;-)) is also locally Lipschitz continuous
and there exists Ly > 0 such that
Vi (@ (Vs w)) = Vi (a* (N )

< V(@ (N5w)) = Vi(a™*

< Lyla™* (w) — a* (@)

< I:Jfo|w — 1f)|

(N;0))

for all w € W and @ € W. Since z
Assumption 5 that Vy(z™(N;w))
therefore,

(N) € Xy, we have from
< 7 for all w € W and

Vi(z T (N;w)) <7+ LyLy|w — 1|

for any w € W and @ € W. Thus, for any w € W, we can
choose w € W to minimize the value of |w — w|, i.e., the
value of W closest to w, and we have that

Vf (.13+ (N

We define 6 := (1 — 7)/(LsL,) > 0. Thus, for all sets W
such that dH (W, W) < &, we have that|w|, < d and therefore
Vi(zt(N;w)) < 7 and 2t (N;w) € Xy for all w € W.
Since 7T((£ v) € U for any v € V and = € R”, we have that
vt € V(2T (w)) and therefore 2t (w) € X for all w € W.
Since the choice of € X and [i € M(W) was arbitrary, we
have that X’ is RPI for the system f(z,x;(z), w), w € W and
any set W C RY such that dg (W, W) < 4.

We now establish an expected cost decrease condition for
the probability measure fi similar to [19, Prop. 11]. Using the
definition of J(-), we obtain

w)) < 7+ Ly Laluwly,

— Uz, k(@) + 1(z(N), @(N))  (14)

in which
n(@,w) == =V(@) + Uz, 55 (2)) + Vi(f (2, 5 (2), w))

From Lemma 11 and the fact that x(IN) € Xy, there exists
Ly > 0 such that

[ ) ) ()t (N) < LElal] (1)
We also have the equality
Vi@ = [ I i (w)da)  16)
WN+1

We integrate both sides of (14) with respect to V!
(15), (16), and the definition of V() to give

and apply

| Vitar @), 5 )dito)
W

< Vi (2) — Uz, ma(2)) + LyE[l@f]  (17)
in which we can exchange W with W for the domain of
integration since Assumption 2 ensures that (W '\ W) = 0.

Now, we use Theorem 4 to exchange f with p. The
function J(x,v,w) is a composition of a finite number of
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locally Lipschitz continuous functions and is therefore locally
Lipschitz continuous. Thus, J(z, v, w) is Lipschitz continuous
on the compact set X x VIV x WY, From Lemma 10, we
have that V},(z,v) is also Lipschitz continuous with the same
Lipschitz constant for all i € M(W). Thus, there exists
Lj > 0 such that
|Vﬂ(f(xa U, ’U)), V+) - Vﬂ(f(.%', u, ’lI]), V+
forall w,w € W,z € X, u e U, vt € V¥, and i € M(W).
We choose arbitrary i € M(W) and use Theorem 4 to give,

) < Lylw — ]

/W Va(f (@ u,w), v )dp(w)
< [ Valf @), v (o) + LaW () (19
W

forall z € X, uw € U, vt € VN, y € M(W). Note that
the choice of /i € M(W) was arbitrary and therefore (18)
holds for all /i € M(W) with the same value of L; > 0. We
combine (17), (18) and by optimality we have

/W VO(f (2, (), w))dpu(ww)
< VO(x) — . kp(2) + L[] + LW (i) (19)

for all z € X, i € M(W), and p1 € M(W).

We now establish that V[?(-) is an SISS Lyapunov function.
From Assumption 6, there exists ay(-) € Ko such that
—l(z, k() < —oy(|z]) in (19). Therefore, (12) holds with
Vi () —VO() 3(+) == ap(-) € Koo, 03(s) :==Lys € K, and
o4(s) == LJS € K. We also use Assumption 6 to show that
a1 (|z]) = ae(|z|) < Uz, kp(x)) < Vi(z) for all z € X We
then use Lemma 12 to construct the upper bound for Vo( ).
Thus, Vp(-) satisfies all the requirements in Definition 7 for
an SISS Lyapunov function. By Proposition 8, the origin is
DRASIE. O

An important class of applications for SMPC are economic
problems in which the stage cost is defined to directly rep-
resent a performance metric for the process (e.g., economic
cost, carbon production). If this cost is positive definite with
respect to the origin (the specified steady state), then the
results of Theorem 9 also hold. But this requirement restricts
the space of economic cost functions that we may consider
with SMPC and can exclude many relevant problems. Thus,
in economic applications of MPC, i.e., economic MPC, the
key generalization is that we do not require Assumption 6 to
hold. By dropping this assumption, we obtain a weaker, but
still instructive result, for economic applications of SMPC.?

Theorem 13. Let Assumptions 1-5 hold. Then there exists 6 >
0 such that for any set W C RY satisfying dg (W, W) < §,
the feasible set X is RPI for the system xt = f(x, kg(z), w),

2If we assume some form of “stochastic dissipativty” for the stage cost and
system, we may be able to retain the results in Theorem 9, but the form of
this condition is another open research question for even idealized SMPC.

w € W. Furthermore, there exist Ly, Ly > 0 such that the
closed-loop trajectory satisfies

limsup — Z E[¢

T—o0

(x(K)))]

< LyR[lf] + LW (i 4) 20)
in which x(k) =
w e M(W).

Proof. In the proof of Theorem 9, we established that X is
RPI and that the bound in (19) holds for some § > 0 without
using Assumption 6. We choose € X" and denote the closed-
loop trajectory z(k) = ¢;(k;x, wy). We then apply the law
of total expectation to (19) and rearrange to give,

dp(ksx,wy) forall x € X, i € M(W),

E [l(x(k), ka(z(k)))]
<E [V{(z(k))]-E [V (z(k + 1))+ L[ b[]+LsW (i, 1)

We sum both sides of this inequality from k¥ = 0 to 7" — 1,
cancel terms, and divide by T to give,

ri(z(K)))]

_E [V[?(x(T))]
T

V,? ()

IN

+ LyB[l|] + LW (s, 1)

Since V(z,v) is Lipschitz continuous on X' x V¥ for all
i € M(W), we have that VO( ) is bounded uniformly for all

z € X and fi € M(W). Therefore, E[VZ(x(T))] is bounded
since z(T') € X. We take the limit supremum as T — oo and
note that V;)(z) /T and E[V}(z(T))]/T vanish as T — oo to
give (20). O

VI. DISCUSSION

We now discuss several insights derived from Theorems 9
and 13.

A. SMPC

Idealized SMPC: For idealized SMPC, we have that the
disturbance model and distribution are exact and therefore
i = fi and W = W. Under these conditions, W (s, 1) = 0,
d (W, W) = 0, and (10), (20) reduce to their idealized SMPC
counterparts discussed in [19], i.e.,

E (| (k; x, wk)u < B(lz], k) + 7 (E[l®]]) Vk €I (21)

lim sup — Z E[¢

T—o0

(x(k)] < LiE[lw]]  (22)

forall z € X and p € M(W). The bound in (22) is a standard
result for idealized SMPC performance that was first derived

for nonlinear systems in Chatterjee and Lygeros [7]. Similar
results are also available for (idealized) robust MPC [3].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2023 at 17:15:59 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3273420

Incorrectly modeled disturbances: We assume that W =
W, but the distribution is incorrect: @ # [i. In this case,
dg (W, W) = 0 and recursive feasibility is guaranteed (X
is RPI). The performance bound for either E[|z(k)|] or
E [¢(xz(k),u(k))] degrades relative the idealized case with
respect to the distance between i and p, i.e., W (g, ). Thus,
as ji — p we recover the idealized SMPC bound. Furthermore,
arbitrarily small differences between [ and p, in terms of
W (-), produce similarly small deviations in the performance
bound. If we select W larger than the support of p, i.e.,
(1(W) = 1, then we have that W = W. Thus, designing for a
larger disturbance than the system experiences does not affect
feasibility. This additional conservatism, however, may reduce
performance. Moreover, for a sufficiently large set W, there
may not exist any x(-), Xy, and V(-) that satisfy Assumption
5.

Unmodeled disturbances: In this case, we have that W #
W and 1 # [i. Note that this case represents disturbances that
were “undermodeled” in which the true disturbance may be
larger than the disturbances included in W, e.g., we define
W= {w e R?: |w| <1}, but W := {w € R? : |w| < 2}
with p(W) < 1. This case also covers elements or directions
of w € W that are entirely absent in W, e.g., W .= {w €

9 : |w| <1and w; =0} or W := {0}. This representation

can also be interpreted as an error in the dynamic model f(-).
For example, we consider the dynamic model f (z,u,wn), but
the actual system evolves according to f(z,u,w) = f (z,u+
wa, 0) + w3 in which w = [wy, wa, w3]’. Nonetheless, we may
still define W := {w € R3: |wy| < 1, wy =0, ws = 0}

B. Scenario Optimization

Scenario optimization methods are often used to approx-
imate and solve the stochastic optimization problem in (6),
particularly for nonlinear systems. By selecting a finite set of
possible scenarios from the underlying disturbance distribution
and set, the stochastic objective can be approximated by the
average cost of these scenarios and the constraints in the
optimization problem are required to hold for all scenarios
considered. The quality of and performance bounds for this
approximate optimal solution/cost are topics that have gener-
ated much interest, with applications beyond SMPC. However,
the quality of this approximation is irrelevant for SMPC if
near exact approximations still produce poor controllers. The
contribution in this subsection is novel because we are able to
bound the performance of the closed-loop system generated by
repeated solutions to this approximated optimization problem
and can thereby directly address performance of the controller
subject to a scenario-based approximation of the stochastic
optimization problem.

We proceed by redefining the optimization problem in (6)
based on an empirical distribution generated via a scenario-
based approximation of the original stochastic optimal control
problem. Thus, we can analyze the scenario approximation
error as an additional error in representing the true disturbance
distribution for w. Specifically, we construct this scenario
optimization problem by drawing s € I>; samples, denoted
w;, from the model disturbance distribution j and set W.

We then define the set W, = {&1, &9, . ..,
distribution
1 S
=1

Note that /i, (-) and W, satisfy the requirements in Assumption
2 for all s € I>;. Moreover, if Assumption 5 holds for W,
Assumption 5 also holds for WS - W. Thus, we may use
fis(-), W, in place of fi, W for all algorithms and results in
this work including Theorems 9 and 13.

This fact allows us to draw several important conclusions
for scenario-based approximations of the stochastic optimal
control problem. First, if W is sufficiently close to W
(dg (W, W) < §/2), and the sampling of W is sufficiently
dense (dg (W, W,) < §/2), then X is RPI (dg (W, W,) < 0).
This observation implies that scenario-based methods, if a
sufficient number of samples are used, can ensure robust
recursive feasibility for SMPC. In fact, deliberate construction
of W, to ensure the approximation is sufficiently dense on A\
may be preferable to constructing W, via random sampling,
in which dg (W,, W) may take large values with some small
probability.

Second, the performance is bounded by the distance be-
tween [is and p. By the triangle inequality, we have that

W (i, frs) < W (g, 1) + W (fa, fis)

By the weak convergence of sampling, we have

Wk, fus) = Wk, 1)

with probability one as s — oo. Thus, the performance
bounds in (10) and (20) converge to their values for the
original stochastic optimization problem as the number of
samples increases. We can further quantify this convergence
of the Wasserstein metric in terms of the number samples and
dimension of the w via results that can be found in [9]. As
the number of samples increases, we expect the closed-loop
performance of this scenario-based approximation to improve
at the expense of increased computational cost. The trade-off
between the performance and computational cost is therefore
important to understand and manage.

Ws } and empirical

C. Constraint-tightened MPC

Although the conclusions of Theorema 9 and 13 are in-
formative for SMPC, these results are particularly interesting
given their ability to unify notions of stochastic robustness
across different MPC formulations. Since different MPC for-
mulations may be treated as special cases of SMPC, we
can use this single theorem to draw conclusions about two
additional MPC formulations: constraint-tightened MPC (dis-
cussed in this subsection) and nominal MPC (discussed in the
next subsection).

For constraint-tightened MPC (CMPC), we optimize a nom-
inal objective function subject to the tightened constraints used
in the SMPC problem formulation, i.e.,

min J(z,v,0)

23
veV(x) (23)
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For ({0}) = 1, the SMPC optimization problem in (6)
reduces to (23). Furthermore, we have that E[|w|] = 0 and
the Wasserstein metric reduces to

W) = [ fuld = £ o]
Therefore, (10), (20) can be simplified as follows.

Corollary 14 (CMPC). Let Assumptions 1-5 hold with
[({0}) = 1. Then there exists & > 0 such that for any set
W C RY satisfying d (W, W) < 6, the feasible set X is RPI
for the system xt = f(x,kp(x),w), w € W. Furthermore,
there exists Ly > 0 such that the closed-loop trajectory
satisfies

lim sup — Z E[¢

T—o0

(x(k)))] < LyE[[w]] 24

in which x(k) = d)ﬂ(k;x,wk)far all x € X and n € M(W).
If Assumption 6 also holds, there exist 5(-) € KL and () €
K such that

E [|¢a(k; z, we)|] < B(|2], k) + v2(E [|w]])
forall x € X, p € M(W), and k € I>.

(25)

By using these tightened constraints with a nominal ob-
jective function, we still guarantee that CMPC renders the
feasible set X' RPI for the closed-loop system and all w € W
with W sufficiently close to W. Note that ~2(-) and L appear
in (25) and (24), but 71 (-) and L, appear in the similar bounds
for idealized SMPC in (21) and (22). This observation sug-
gests, as one may expect, that the performance of CMPC and
SMPC may differ quantitatively, but the qualitative behavior is
likely similar for an otherwise equivalent problem. In general,
however, these bounds are too conservative to provide useful
quantitative information.

D. Nominal MPC

If we also choose W = {0}, the SMPC problem reduces
to a nominal MPC problem in which we have embedded
the feedback law m(x,v) in the optimization problem. Note
that this type of parameterization has been previously used
in nominal MPC formulations to “pre-stabilize” the open-loop
system and thereby ensure that the MPC optimization problem
is well conditioned [12, 24]. If we choose 7(z,v) = v and
V =T, the problems are equivalent since V(x) reduces to

V(z) =U(z) = {u e UV : ¢(N;z,u,0) € X;}
and the optimization problem becomes

min J(z,v,0) =

min J(z,u,0)
vev(z)

ueld(x)

With this choice of w(z,v), Assumptions 3, 4, and 6
are equivalent to the assumptions used in [1] to establish
the inherent robustness of nominal MPC.? In Assumption 5,
however, the requirement in (8) reduces to

flz,kp(x),0) € {x e R" : Vy(z) < 7}

3With the exception that Assumption 4 also requires bounded X, which is
a minor restriction.

(26)

i.e., the terminal control law must drive the subsequent state
for the nominal system to the interior of Xy when =z € Xy.
If Assumption 6 also holds, the nominal cost decrease in (9)
is sufficient to guarantee that (26) also holds. If Assumption
6 does not hold, however, the requirement in (26) is notably
different than the requirements typically considered or used for
economic MPC. As we discuss in the subsequent paragraphs,
this requirement allows us to derive new results for nominal
economic MPC.

For this problem, dg(W,{0}) = max,ecw|w| and the
bounds in (10), (20) reduce to the equations in (25), (24). Thus,
nominal MPC also confers some margin of inherent stochastic
robustness to sufficiently small disturbances, as previously
discussed in [18]. We summarize this result in the following
corollary.

Corollary 15 (Nominal MPC). Let Assumptions 1-5 hold with
i({0}) = 1 and W = {0}. Then there exists & > 0 such that
for any set W C R? satisfying maxyew |w| < 0, the feasible
set X is RPI for the system v = f(z,kp(x),w), w € W.
Furthermore, there exists Ly > 0 such that the closed-loop
trajectory satisfies

lim sup — Z E[¢

T—o0

(k)] < LyE[lw]]  27)

in which x(k) = ¢,1(k;x,wk)for all x € X and p € M(W).
If Assumption 6 also holds, there exist 5(-) € KL and ~»(+) €
K such that

Efl¢a(k;z, wi)|] < B(|z|, k) + v (E [Jw]])
forall x € X, p € M(W), and k € I>,.

(28)

The value of & > 0 in this result, however, is not necessarily
the same as in Theorems 9, 13, or Corollary 14. For an
otherwise equivalent problem (i.e., the same dynamic model,
stage cost, constraints, terminal cost, etc.), the value of 7 > 0
in Assumption 5 may be significant smaller (but not larger) for
W = {0} than for sets W that include more than the origin.
Note that in the Proof of Theorem 9, the value of ¢ is given
by _

T—T

LyL,

However, the feasible set X may also be larger (but not
smaller) for W = {0} than for sets W that include more than
the origin. Thus, the Lipschitz constants L £+ Lg > 0 may also
increase for nominal MPC relative to SMPC. Depending on
the relative magnitude of these changes, the value of § > 0
may be larger or smaller for nominal MPC than SMPC, for
an otherwise equivalent problem.

By explicitly requiring the terminal control law to satisfy
(26), Corollary 15 does not require Assumption 6 to ensure
that X is RPI for sufficiently small disturbances. This result is,
to the best of our knowledge, new for nominal economic MPC,
i.e., MPC without Assumption 6. By ensuring that X" is RPI,
we can guarantee recursive feasibility of nominal economic
MPC and thereby derive the performance bound (27) that
is analogous to the bounds derived for idealized versions of
stochastic MPC in [7] and robust MPC in [3]. Thus, nominal
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Fig. 2. Left: Input constraints U. Right: Contour plot of £(z, 0).

economic MPC is robust to sufficiently small disturbances in
an economic context, i.e., (27). Terminal control laws that
satisfy both (26) and (9), however, may prove difficult to
construct for economic cost functions.

VII. NUMERICAL EXAMPLE

We consider a simple (linear) numerical example with two
states (z1,x2), two inputs (uj,us), and two disturbances
(w1, ws) described by the following discrete-time dynamic
equations.

:vl+ =x1 +up +wr

xé" = X9 + U2 + W2

The dynamics of these two states are decoupled, but the input
is subject to the constraints u1,us € [—2,2] and u; + ug €
[—2,2]. We plot U in Figure 2.

For the SMPC controller design, we define (wq,w2) €
W = {—0.5,0,0.5} x {0}, i.e., ¥y € {—0.5,0,0.5} and 1y =
0. We define fi(-) such that ji({(—0.5,0)}) = 2({(0.5,0)})
€1/2 and [1({(0,0)}) = 1 — &, for some é; € [0,1]. We use
the stage cost

{(x,u) = max{xy,0} + 0.5 max{zs,0} + 5max{—x,0}
+ 2.5 max{—xg, 0} + 05‘U1| + 05|U2|

and note that this cost is asymmetric about the origin. We
plot the cost function for v = 0 in Figure 2. We choose the
terminal cost Vy(x) := 6|x1| + 6]22| and define X; := {x :
Vi(x) <6} = {x: |z1] + |x2| < 1}. We define the terminal
control law as the deadbeat controller k/(x) := —x. We use
the parameterization 7(x, v) := saty(—z+v) and let V := {v :
lv1] < 10, Jua| < 10}. We verify that this SMPC formulation
satisfies Assumptions 3-6. Since W is finite, we solve this
SMPC problem exactly.

To illustrate changes in the control law with respect to
changes in i, we fix xo = 0 and calculate the values of
kp(x) for z1 € [—3,3]. In the top plot of Figure 3, we plot
the first element of r;(x), denoted u{ for multiple values
of £, € [0,1].* We observe three distinct regions of ; that
produce three different control laws. Moreover, we observe
that x;(x) is discontinuous with respect to changes in €;.

4The second element is zero for all 1 € [—3,3] and z2 = 0.

10
—— £1 €[0.00,0.28]
&1 € [0.29,0.46]
-------- &1 €[0.47,1.00] — 2z =(0.2,0)
2 [ E—
0.2
“(1] 0 -
72 -
T T
-2 0.5 1.0
€1

Fig. 3. Top: The first element of (), denoted u{, for all 21 € [—3,3] and
different values of 1. Bottom: The first element of x; () for all £ € [0, 1]
and = (0.2, 0).
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Fig. 4. Sample average (100 trajectories) of the norm of the closed-loop
state, Es[|z(k)|], for different distributions of w1 with the same variance and
wy = 0.

For x = (0.2,0), we plot the first element of x;(x) for
€1 € [0,1] in the bottom plot of Figure 3 to better illustrate
this discontinuity. Thus, arbitrarily small changes in ji can
produce significantly different controllers. For the exact two
values of £; at which these discontinuities occur, we note that
all values of u; € [—0.2,0] and uy € [0,0.25] are optimal for
x = (0.2,0).

First, we demonstrate the out-of-sample performance of
SMPC by simulating the closed-loop trajectory subject to a
continuous distribution for w;. Let W := W; x W, and
/L(Sl X SQ) = M1<51)M2<Sg) with S C Wy, S; C W,. Let
u2({0}) = 1 and Wy = {0}, i.e., Pr(wy = 0) = 1. We then
consider two options for y1(+): (i) a uniform distribution on
Wy = {w; € R: |w;| < 1/v/2} and (ii) a truncated normal
distribution on W; := {w; € R : |wi| < 2} with variance
1/6. Note that the variance of both continuous distributions
and the variance of [ used the SMPC optimization problem are
all equal to 1/6. In Figure 4, we plot the sample average (100
trajectories) of the norm of the closed-loop state, E,[|z(k)|],
for these different distributions of w;. Note that the perfor-
mance of SMPC is similar for both continuous distributions
and the ideal (discrete) distribution p = fi.

We now introduce an unmodeled disturbance. Let W :=
{-0.5,0,0.5}2, ie., w1, wy € {—0.5,0,0.5}, and pu(S; x
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Fig. 5. Expected value of the norm of the closed-loop state, E[|z(k)|] for
multiple values of £2. The arrow indicates that the value of E[|z(k)|] increases
with increasing e3.

52) = Ml(Sl),UQ(SQ) with Sl,SQ g {—0.5,0,0.5}. For
enes > 0, let u({-05)) = p({0.5) = /2 and
1;({0}) = 1 — ¢;. We assume that the distribution for w; is
chosen correctly in the SMPC problem, i.e., 1 = é; = 2/3,
but we now include the unmodeled disturbance wy via es.
We note that W (u, i) = eo/2. Starting from zy = (2,2),
we simulate the closed-loop trajectories for SMPC subject
to this unmodeled disturbance for multiple values of €2. In
Figure 5, we plot the expected norm of the closed-loop state
trajectory (E[|z(k)|] = E[|¢;(k; 2o, wy)|]) for multiple values
of 5. Note that this expected value is exact since W is finite.
As g5 and therefore W (i, i) increase, the value of E[|z(k)|]
increases for each k > 2. This behavior is consistent with
DRASIE and Theorem 9.

To demonstrate the robustness of SMPC to differences
between W and W, we first compute X’ for the disturbance
set W. We then sample this feasible region and simulate one
step of the closed-loop trajectory from these points subject to
W to construct the region

T={f (s mal@),

We plot both of these sets in Figure 6. Note that X' is a
strict subset of X'. Thus, there exists some margin of additional
disturbances that can be injected into the closed-loop system
such that X’ remains RPI, i.e., SMPC maintains some nonzero
margin of robustness.

We can in fact compute the largest § > 0 such that X is RPI
for the closed-loop system =t = f(z, kg (z), w), w € W and
any W € R? that satisfies dg (W, W) < 6. We find a value of
§ = (3/4)V/2 for this SMPC formulation as shown in Figure
6. For nominal MPC (W = {0}), the feasible set is larger
than SMPC and we have §,;pc = V2. Note that this value is
larger than the value of § computed for SMPC, corroborating
the previous discussion that followed Corollary 15.

W)z e X, e W}

VIII. CONCLUSIONS

Analogous to the inherent robustness of nominal MPC to
sufficient small errors in the deterministic dynamic model, we
established that SMPC is inherently robust to sufficient small
errors in the stochastic dynamic model. In both cases, this

=50 =25 00 2.5 5.0

T1

Fig. 6. The feasible set X for SMPC and the set of states after one step of
the closed-loop trajectory subject to W € W, denoted X'+,

inherent robustness is afforded by feedback. These errors may
include disturbances that were entirely absent from the distur-
bance model and errors introduced by scenario-based approxi-
mations of the stochastic optimization problem. Moreover, this
same result allows us to characterize the stochastic robustness
of other MPC formulations, e.g., constraint-tightened and
nominal MPC, as special cases of SMPC, thereby unifying
the analysis of these three different problem formulations. In
fact, this approach revealed a means to design the terminal
region for nominal economic MPC such that the feasible set
remains RPI for sufficiently small disturbances.

In addition, these results can likely be extend to suboptimal
SMPC algorithms via the same approach used in [1], thereby
alleviating some of the large computational burden imposed
by stochastic optimization. We emphasize that this definition
of distributional robustness for closed-loop systems is not
restricted to SMPC and is applicable to the larger field of
stochastic optimal control and, potentially, the developing field
of distributionally robust control.

APPENDIX

Proof of Proposition 8. Define ay(s) := as(a; *(s/2)) and
note that ay(+) € Ko and ay(s) < s for all s € R>( because
as(s) < ag(s) for all s € R>p.> We have the following
inequality.

0s(Vi(@) < s (0o (la]) + o2 (E[0]))
< aa(202(J21) + (20 (E[ji]]))
= as(|z]) + as (202 (E[|w]]))

o2
By rearranging, we have —as(|z|) < —au(Va(z)) +
ay(202(E[|w]])) and therefore

| Vil (o wala) widu(w
< Viale) = aa (Vi @) + G(Ellbl]) + o (W (1, )

STf this inequality does not hold, we simply construct a new G (+) € Koo
such that aia(s) < @a(s) and az(s) < az(s).
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in which 5’3(8) = 0'3(8) + 014(2(72(8)) and 6’3() e K.
Since X and W are bounded, there exists & > 0 such
that V() < ao(lz]) + oo(E[|@]]) < b for all = € X,
fi € M(W) and corresponding E[|#|]. Using Lemma 6 in
[19], we can construct o, (-) € Ko such that «,(-) is convex
and o, (Va(z)) < ag(Vi(z)) for all z € X and ji € M(W).
Therefore, we have

/grvb(f(x,ﬁﬂ(x)vuﬁ)du(ﬂﬁ
< V(@) — au(Vi(@)) + 63 Ell@N) + 0a (W (p1, 1)

For arbitrary « € X, i € M(W), and p € M(W), let
z(k) == ¢u(k;z, wy) for all k € [>¢. To streamline notation,
we also define ¢(y, 1) := 3(B[|@]]) + o4 (W (1, /1)). By the
law of total expectation and Jensen’s inequality, we have

E[Va(z(k+1))]

< E[Vi((k))] — o (E [Va (2(k))]) + (s, )

Note that E [-] is defined with respect to p and not /.
Define 7(s) := 2max{a; !(s), s} and note that 7(-) € K.

If E [Va(2(k))] < 7(c(p 1))/2, then
E [V (a(k + 1))] < 3(cpn, ))/2 + i, )
< A(elp, 1) /2 4 F(e(p, 1) /2
= ’?(C(uv ﬂ))
I (e 1))/2 < E [Va(w(k))] < A(c(p, 1)), then

E[Va(z(k+1))]
< E[Va(e(k)] = aw (Y(e(p, 1)) /2) + e(p; 1)
) )

IN
N
’6\
=
=
2
(¢}
=~
=
Q
e
5
2

(29)

+ 1) < M (E[Va(z(k))])

in which A\i(s) := s — a,(s) + a,(s/2). We have that A ()
is continuous, A;(0) = 0, and A\;(s) < s for all s > 0. By
the same process used in [23, Theorem B.15], we construct
A() € Koo such that A;(s) < A(s) < s for s > 0. Thus, we

have
E[Va(z(k+1))] < A(E [Va(x(k))])
Repeated application of (30) and the fact that E [V} (2(0))] =
Vi(a) gives
E [Va(z(k))] < B(Va(x), k) := A (Va(2))

in which A*(-) is the composition of A(-) with itself & times.
Using the same approach as [23, Theorem B.15], we conclude
that 5(-) € KL. We combine (29) and (31) to give

E [Va(z(k))] < max{B(Va(x), k), 7(c(p, 1))}

Using [19, Lemma 6] and the fact that X is bounded,
we construct a convex function aj,(-) € K such that

(30)

€29

a1 (|z]) < ai(|z]) < Va(z) for all z € X and fi € M(W).
Thus, we apply Jensen’s inequality to give
ary(Eflz]]) < Elon(Jz])] < E[Va(z)]

and therefore
E[la(k)]] < max {ar}, (BVi(@), k) oz} (el ) |
< BuVa(@), k) + Falelu, )

in which §1(-) == a;,(B() € KL and 72(-) := a1 ,(3(-)) €
K. We use the upper bound for Vj(z) to give
Eflz(k)]] < ?1(02(|xl) +oa(E [0 1), k) + 5 (e(p, 1))
< Bi(2as(|2]), k) + Br (o2 (E[|@]]), k)
+ Y2 (c(p, 1))
< Blz], k) + 3 E[l@)]) + Fa(e(p, 1))
in which §(s, k) := B1(2aa(s), k) € KL and #1(s) =
51(20’2( ) ) e K.
We now unpack the function ¢(u, i) to give
F(E[lD]) + Fa(c(p, )
= 0 (B]jl]) + 7 (263(B[11])) + 32 (204 (W (1, 2)))
= N(E[D]]) +72(W (1, )
) =

in which y1(s) := 41(s) + 72(263(s)) € K and v,(s) =
A2(204(s)) € K. Substitute these definitions into (32) to
complete the proof. O

(32)

Proof of Lemma 10. Let L > 0 denote the Lipschitz constant
for g(-). For z1,z2 € X we have

|G(21) = G(22)| = w)) dp(w)

w)|dp(w)

g(.’ﬂg,

$27

in which the final equality holds because p € M(S) is a
probability measure, ie., [¢du(w) = 1. Thus, G(-) is a
Lipschitz continuous function with the same Lipschitz constant
as g(+). O

Proof of Lemma 11. Since Vi (-), f(-), ry(-) are locally Lips-
chitz continuous and Xy, W are bounded, there exists Ly > 0
such that

WVi(f(z,kp(2),0)) — Ve(f (2, kg (2),

for all z € Xy and @ € W. Therefore,

0)I < Ly|wl

[ Vit ws (o) i)
< Vi(f(z, 55 (2),0)) + LRE[d]]
We use this bound with (9) to give (13). O

Proof of Lemma 12. Choose = € X; and i € M(W) and
consider a trajectory generated by repeated application of the
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terminal control law, i.e., z(k) = ¢(k; x, 0, W) since 7(z,0) =

kf(x). The set Xy is RPI for W and this control law due to

Assumption 5 and therefore x(k) € X for all k € I}y n) and

w € WV, From Assumption 5 and Lemma 11, we have that
(Vi(a(k + 1)) = Vy(x(k))) di™ (w)

i
i

We sum both sides of the inequality from kK =0to k= N —1
to give

U (k), mp (2 (k)™ (W) + LE[|d]]

[ Wil (N) = V(e o)) di ()

N—-1 A
<- /WN > Ua(k), mp(z(k)da™ (W) + NLyE[d]]

By rearranging and using the definition of J(-) and = = x(0),
we have

(@, 0,W)dp" (W) < Vy(x) + NLyE[|]
WN
By optimality, we have
V() < Vi(z) + NLE[|w]]

Since the choice of x € Xy and fi € M(W) was arbitrary,
this inequality must hold for all z € X; and ji € M(W).
We now define
H(z):=max{ sup (Vl?(m) - NLﬂEHzDH) ,0
AENM(W)
and note that 0 < H(z) < Vy(x) for all z € X;. Since V()
is continuous, H(0) = V;(0) = 0, and X contains the origin
in its interior, we know that H(x) is continuous at the origin.
We also establish that H(-) is locally bounded on X. Let X
be a compact subset of X'. The function J(-) is a composition
of a finite number of continuous functions and is therefore
continuous. Thus, J(-) has an upper bound on the compact
set X x VN x WX, Since V(z) C VN forall z € X, V()
must satisfy the same upper bound for all z € X, p € M(W)
Thus, H(z) satisfies this same upper bound because H (z) <
SUP ¢ 1 (w) V(). Since 0 < H () also and the choice of X
was arbitrary, H(x) is locally bounded on X.

Since H(z) is locally bounded, satisfies H(0) = 0, and is
continuous at x = 0, we can apply [22, Prop. 14] to construct
as(:) € Koo such that H(z) < ao(|z|) for all z € X.
Furthermore, we have that

Vi (2) = NLsE[|@]] < H(x) < az(ja])

for all z € X and yu € M(W). Define o9(s) = NLs € K
and rearrange to complete the proof. O
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