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On The Inherent Distributional Robustness of

Stochastic and Nominal Model Predictive Control
Robert D. McAllister and James B. Rawlings

Abstract—We define a notion of distributional robustness, via
the Wasserstein metric, for closed-loop systems subject to errors
in the disturbance distribution used to construct the controller.
We then establish sufficient conditions for stochastic model pre-
dictive control (SMPC) to satisfy this definition of distributional
robustness and establish a similar notion of distributional robust-
ness for economic applications of SMPC. These results address
incorrectly or unmodeled disturbances, demonstrate the efficacy
of scenario optimization as a means to approximate and solve
the SMPC problem, and unify the descriptions of robustness for
stochastic and nominal model predictive control. This definition
of distributional robustness for closed-loop systems is general and
can be applied to other stochastic optimal control algorithms and,
potentially, the developing field of distributionally robust control.

Index Terms—Model predictive control, stochastic optimal
control, distributional robustness, stochastic systems

I. INTRODUCTION

In practice, a control algorithm must ensure some degree of

robustness to disturbances and modeling errors for successful

industrial implementation. By virtue of feedback, nominal

model predictive control (MPC) is known to be inherently

robust to sufficiently small disturbances [1, 11, 30]. We use

the term inherent robustness to indicate that this robustness is

achieved through feedback and without explicitly considering

the disturbances in the problem formulation.

Stochastic MPC (SMPC) offers a means to improve on the

inherent robustness of nominal MPC by including a stochastic

description of the disturbance directly in the problem formu-

lation. In general, the SMPC optimization problem minimizes

the expected value of the cost function subject to deterministic

and probabilistic constraints [8, 16, 20]. Using the same

rolling horizon approach as MPC, this stochastic optimization

problem is solved at each sample time, with an updated state

estimate, to determine the control action at that time. We focus

this article on the closed-loop properties of nonlinear SMPC.

We briefly review some contributions to the study of closed-

loop properties of SMPC. Primbs and Sung [21] use a global

stochastic Lyapunov function as the terminal cost to establish

that the origin is asymptotically stable with probability one

for linear systems with multiplicative disturbances that vanish

as the origin. Cannon, Kouvaritakis, and co-authors use a

terminal constraint and local Lyapunov function to ensure

recursive feasibility and stability in expectation for linear
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systems with bounded disturbances (that do not vanish at the

origin) and input/state constraints [4–6, 14]. Lorenzen et al.

[15] propose a less restrictive constraint tightening approach

and establish that linear SMPC asymptotically stabilizes, with

probability one, the minimal robust positive invariant set of

the system. For nonlinear SMPC, Chatterjee and Lygeros [7]

uses a global stochastic Lyapunov function to establish, for

unconstrained systems, that the expected value of the optimal

cost is bounded along the closed-loop trajectory. Mayne and

Falugi [17] use a terminal constraint and a local Lyapunov

function to extend the results in [7] to systems with bounded

inputs and disturbances. In [19], the authors establish that

SMPC renders the closed-loop system robustly asymptotic

stable in expectation (RASiE).

Although these results are interesting and instructive, the

key assumption made in SMPC closed-loop analysis, and

indeed much of stochastic optimal control in general, is that

the stochastic description of uncertainty used in the SMPC

optimization problem is exact and comprehensive. While this

assumption is a reasonable starting point, it does not hold for

any practical implementation of SMPC. Much like the nominal

model identified for nominal MPC, we cannot expect that a

stochastic model, typically identified from data, is exact.

In this work, we remove this assumption of exact dis-

turbance models and distributions. Specifically, we address

an open question in the field of SMPC that is of signifi-

cant practical concern: What, if any, robustness does SMPC

confer for unmodeled or incorrectly modeled disturbances?

This question is asking about the distributional robustness of

SMPC, i.e., the robustness of SMPC to errors in the probability

distribution used in the problem formulation. The unwritten

hypothesis is that feedback provides some margin of inherent

distributional robustness to SMPC and thereby addresses any

small discrepancies in the disturbance model. This hypothesis,

however, has never been established for SMPC.

To address this question of distributional robustness, we

require a notion of distance between probability measures, i.e.,

a probability metric. For this task, we select the Wasserstein

metric. While this metric initially gained popularity in the field

of optimal transport [28], there are several recent applications

of the Wasserstein metric in machine learning [2, 10], state

estimation [26], and optimal control [29]. In contrast to these

approaches, we do not use the Wasserstein metric in the

formulation of the SMPC optimization problem. Instead, we

use the Wasserstein metric only as a means to quantify the

distance between the true disturbance distribution and the

model disturbance distribution used in the SMPC optimization

problem.
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We summarize the paper as follows. In Section II, we

define the system of interest and introduce the SMPC problem

formulation and associated assumptions. In Section III, we

introduce the Wasserstein metric and a few important results

for this metric. In Section IV, we define distributionally robust

asymptotic stability in expectation (DRASiE) and establish a

sufficient condition for this form of robustness via a stochastic

input-to-state stable (SISS) Lyapunov function. In Section V,

we establish that SMPC is inherently distributionally robust

in terms of DRASiE and establish an alternative result for

economic applications of SMPC, i.e., problems in which the

stage cost is not necessarily positive definite with respect

to the origin. In Section VI, we discuss several insights for

both stochastic and nominal MPC afforded by these results.

We provide a numerical example to illustrate these results in

Section VII.

Notation: Let I and R denote the integers and reals. Let

superscripts and subscripts denote dimension and restrictions

(e.g., Rn
≥0 denotes nonnegative reals of dimension n). Let | · |

denote Euclidean norm and |x|Y := infy∈Y |x − y| denote

Euclidean point-to-set distance. The function α : R≥0 → R≥0

is in class K if it is continuous, strictly increasing, and α(0) =
0. The function α : R≥0 → R≥0 is in class K∞ if α(·) ∈ K
and unbounded, i.e., lims→∞ α(s) = ∞. A function β : R≥0×
I≥0 → R≥0 is in class KL if for every k ∈ I≥0 the function

β(·, k) is in class K and for fixed s ∈ R≥0 the function β(s, ·)
is nonincreasing and limk→∞ β(s, k) = 0. Let B(Ω) denote

the Borel algebra of some set Ω. Let tr(A) denote the trace of

a matrix A. Let δx(A) denote the Dirac measure defined for

a given x ∈ R
n and set A ⊆ R

n, i.e., δx(A) = 1 if x ∈ A
and δx(A) = 0 otherwise.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The stochastic system(s)

We consider the following discrete-time stochastic system

x+ = f(x, u, w) f : Rn × R
m × R

q → R
n (1)

in which x ∈ R
n is the state, u ∈ R

m is the controlled input,

w ∈ W ⊆ R
q is the stochastic disturbance, and x+ is the

successor state. Let (Ω,F , P ) denote the probability space for

the sequence w∞ : Ω → W
∞. We denote a subsequence of

w∞ as wi := (w(0), w(1), . . . , w(i− 1)) and define expected

value of a Borel measurable function g : W
i → R as the

Lebesgue integral

E [g(wi)] :=

∫

Ω

g(wi(ω))dP (ω) (2)

We then consider the following standard assumption.

Assumption 1. The random variables w(i) : Ω → W are

independent and identically distributed (i.i.d.) in time and W

is compact.

Given Assumption 1, each w(i) has an equivalent probability

measure that we denote µ : B(W) → [0, 1], defined such that

µ(F ) = P ({ω ∈ Ω : w(i;ω) ∈ F}) for all F ∈ B(W)
and i ∈ I≥0. We use M(W) to denote the collection of all

probability measures on (W,B(W)). All moments of w are

finite for µ(·) ∈ M(W), i.e.,
∫

|w|pdµ(w) < ∞ for all p ∈
I≥1, because W is compact. Note that W is larger than, but not

necessarily equal to, the support of µ. Therefore, µ(W) = 1
but there may exist a nonempty set S ⊆ W such that µ(S) = 0.

Since we intend to consider problems with bounded inputs,

we require that W is bounded (compact). Otherwise, the

control problem is not well posed, i.e., we are attempting to

reject an unbounded disturbance with a bounded input.

In this work, we do not assume that we know the set W

or measure µ for the random variable w. Instead, we have

access to only a model of the set W and probability measure

µ, that we denote Ŵ and µ̂, respectively. Note that we may

assume Ŵ ⊆ W without loss of generality because we can

always increase the size of W to fit Ŵ and assign these

additional values measure zero with µ. We may also, without

loss of generality, define µ̂ on the domain B(W) and assign

zero measure to all the points in W that are not in Ŵ, i.e.,

µ̂ : B(W) → [0, 1] such that µ̂(W \ Ŵ) = 0. Specifically, we

have that
∫

W

g(ŵ)dµ̂(ŵ) =

∫

Ŵ

g(ŵ)dµ̂(ŵ)

for all measurable functions g(·) because µ̂(W \ Ŵ) = 0.

Thus, Ŵ includes the support of µ̂. Note that we allow for the

possibility that Ŵ is larger than the support of µ̂. We define

µ̂ on the larger set W only to facilitate the comparison of

µ and µ̂. In the SMPC optimization problem, the stochastic

system evolves according to the following stochastic model

and without knowledge of W or µ.

x+ = f(x, u, ŵ) ŵ ∈ Ŵ (3)

in which ŵ is distributed according to the measure µ̂.

We formalize these requirements of the disturbance model

used in the SMPC formulation through the following assump-

tion.

Assumption 2. The random variables ŵ(i) are i.i.d. in time,

with a probability measure µ̂ : B(W) → [0, 1]. The set Ŵ is

compact and contains the origin. The probability distribution

satisfies µ̂(Ŵ) = 1.

We use M̂(W) to denote the collection of all probability mea-

sures on (W,B(W)) that satisfy Assumption 2, i.e., µ̂(Ŵ) = 1
for all µ̂ ∈ M̂(W). Note that M̂(W) ⊆ M(W). We provide

an illustration of these sets in Figure 1. We emphasize that

the framework we have introduced is capable of representing

incorrectly modeled (µ̂ 6= µ), unmodeled (Ŵ 6= W), or out-

of-sample (Ŵ is finite) disturbances. We discuss each of these

cases further in Section VI.

For the i.i.d. random variables ŵ = (ŵ(i), ŵ(i +
1), . . . , ŵ(i + N − 1)) and N ∈ I≥1, their joint dis-

tribution measure µ̂N : B(WN ) → [0, 1] is defined

as µ̂N (F ) = µ̂(Fi)µ̂(Fi+1) . . . µ̂(Fi+N−1) for all F =
(Fi, Fi+1, . . . , Fi+N−1) ∈ B(WN ). For any Borel measurable

function g : WN → R, we define expected value with respect

to µ̂ as

Ê [g(ŵ)] =

∫

WN

g(ŵ)dµ̂N (ŵ) =

∫

ŴN

g(ŵ)dµ̂N (ŵ)
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•

•

dH(W, Ŵ)

Fig. 1. Illustration of the sets W, Ŵ and the probability measures µ, µ̂. We
also show the Hausdorff distance dH(·) between these two sets.

in which the second equality holds because µ̂ ∈ M̂(W) and

therefore µ̂(W \ Ŵ) = 0. Note that we use Ê [·] to indicate

expected value with respect to µ̂ instead of µ. We frequently

use the expected value of |ŵ| as a bounding quantity in

subsequent analysis and note the following inequality

Ê [|ŵ|] ≤

√

tr
(

Σ̂
)

+
∣

∣

∣
Ê [ŵ]

∣

∣

∣

2

in which Σ̂ � 0 is the covariance matrix of ŵ and the upper

bound can be constructed via Jensen’s inequality.

Remark 1. Sampling-based approximation of µ may not

produce empirical distributions with zero mean. We therefore

do not restrict µ̂ to only measures of zero mean and instead

leave Ê[ŵ] = 0 as a special case of the subsequent results.

Remark 2. We can extend these results to systems with

time-varying probability measures (i.e., w(i) and ŵ(i) are

independent but not identically distributed). This extension,

however, requires that we consider a time-varying problem

and adds additional notation to the following analysis. Given

the introductory nature of this paper, we address only i.i.d.

disturbances.

B. SMPC problem formulation

We now introduce the SMPC problem formulation. We

assume that there is a fixed set Ŵ used in the SMPC algorithm,

as is typical in SMPC analysis. This requirement is important

because the subsequent assumptions and sets for SMPC are

based on a single set Ŵ (e.g., Assumption 5). We do, however,

allow for different µ̂ and derive bounds that apply for any

such µ̂. Thus, the optimization problem and control law is

subsequently defined as a function of µ̂.

We define the parameterized control policy π : Rn × V →
R

m in which x ∈ R
n is the current state of the system and

v ∈ V ⊆ R
l are the parameters in the control policy, e.g.,

π(x, v) = Kx + v. Thus, the resulting system of interest is

defined as

x+ = f(x, π(x, v), ŵ) ŵ ∈ Ŵ (4)

in which ŵ is distributed according to µ̂. We use φ̂(k;x,v, ŵ)
to denote the solution of (4) at time k, given the initial

condition x ∈ R
n, the trajectory of control policy parameters

v = (v(0), v(1), . . . , v(N − 1)) ∈ V
N , and disturbance

trajectory ŵ ∈ Ŵ
N .

We consider the case of hard input constraints, i.e., u ∈
U ⊆ R

m. We do not, however, consider hard or probabilistic

constraints on the state since we do not assume that the

disturbance model is exact. Thus, a disturbance not included

in Ŵ may cause the closed-loop system to violate these state

constraints. This fact is also true for nominal MPC [1, 30].

Instead, we assume that all state constraints are converted to

exact penalty functions in the stage cost [13, 25, 31]. We

do, however, include a terminal state constraint Xf ⊆ R
n

in the following SMPC problem that must satisfy specific

requirements detailed in subsequent assumptions.

For a horizon of N ∈ I≥1, we denote the set of admissible

control law parameter trajectories given x ∈ R
n as

V(x) := {v ∈ V
N :

π(φ̂(k;x,v, ŵ), v(k)) ∈ U ∀ŵ ∈ Ŵ
N , k ∈ I[0,N−1]

φ̂(N ;x,v, ŵ) ∈ Xf ∀ŵ ∈ Ŵ
N}

and the set of all feasible initial states is denoted

X := {x ∈ R
n : V(x) 6= ∅}

Note that V(x) and X depend on Ŵ, but not µ̂. We define the

stage cost ` : Rn × R
m → R, terminal cost Vf : Rn → R≥0,

and the function

J(x,v, ŵ) :=

N−1
∑

k=0

`(x(k), π(x(k), v(k))) + Vf (x(N)) (5)

in which x(k) = φ̂(k;x,v, ŵ). We define the SMPC cost

function based on the expected value of J(·) given the

disturbance model available, i.e.,

Vµ̂(x,v) := Ê [J(x,v, ŵ)]

=

∫

ŴN

J(x,v, ŵ)dµ̂N (ŵ)

The optimization problem for any x ∈ X is defined as

Pµ̂(x) : V 0
µ̂ (x) = min

v∈V(x)
Vµ̂(x,v) (6)

and the optimal solutions for a given distribution µ̂ ∈ M̂(W)
are defined by the set-valued mapping v

0
µ̂ : X ⇒ V

N such

that

v
0
µ̂(x) := arg min

v∈V(x)
Vµ̂(x,v)

Note that v0
µ̂(x) is a set-valued mapping because there may

be multiple solutions to Pµ̂(x).
To streamline the following presentation, we assume that

there exists some Borel measurable selection rule that defines

a single-valued control law κµ̂ : X → U such that κµ̂(x) ∈
{π(x, v(0)) : v ∈ v

0
µ̂(x)} for all x ∈ X , in which v(0) is the

first parameter vector in the sequence v.

The resulting closed-loop system is then

x+ = f(x, κµ̂(x), w) w ∈ W (7)
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in which w is distributed according to µ. We use φµ̂(k;x,wk)
to denote the solution to (7) at time k ∈ I≥0 given the initial

condition x and disturbance sequence wk = (w(0), . . . , w(k−
1)) ∈ W

k. In the subsequent analysis, the control law

κµ̂(·) and therefore the deterministic value of the closed-

loop trajectory φµ̂(·) depend on the disturbance model µ̂. The

disturbance, however, takes values w ∈ W and the expected

value of the closed-loop state trajectory is evaluated based on

the disturbance distribution µ ∈ M(W). Thus, we discuss

quantities such as

E [|φµ̂(k;x,wk)|] =

∫

Ω

|φµ̂(k;x,wk(ω))|dP (ω)

=

∫

Wk

|φµ̂(k;x,wk)|dµ(w(0))dµ(w(1)) . . . dµ(w(k − 1))

C. Assumptions for SMPC

We require the following assumptions for SMPC.

Assumption 3 (Continuity of system and cost). The model f :
R

n×R
m×R

q → R
n, control parameterization π : Rn×V →

R
m, stage cost ` : Rn×R

m → R, and terminal cost Vf : Rn →
R≥0 are locally Lipschitz continuous. Furthermore, we have,

without loss of generality, that f(0, 0, 0) = 0, `(0, 0) = 0, and

Vf (0) = 0.

Note that we have strengthened the usual assumption of con-

tinuity to local Lipschitz continuity. However, local Lipschitz

continuity is typically required already (and satisfied for many

problems of interest) if we intend to use standard nonlinear

optimization methods to solve the SMPC optimization prob-

lem. This assumption of local Lipschitz continuity, however,

does not imply that the optimal cost function V 0
µ̂ (·) or control

law κµ̂(·) are continuous functions of x ∈ X .

Assumption 4 (Properties of the constraint sets). The sets

U and V are compact and contain the origin. The set Xf is

defined by Xf := {x ∈ R
n : Vf (x) ≤ τ} for some τ > 0. The

set X is bounded. The control law parameterization satisfies

π(x, v) ∈ U for all x ∈ R
n and v ∈ V.

Note that the final requirement of Assumption 4 means that

π(x, v) = Kx + v may not be a valid control law parame-

terization. Instead, we can define π(x, v) = satU(Kx + v) in

which u = satU(s) maps s to the closest value that satisfies

u ∈ U, i.e., satU(s) = argminu∈U |u− s|.

Assumption 5 (Terminal control law). There exists a locally

Lipschitz continuous terminal control law κf : Xf → U and

τ̃ < τ such that for all x ∈ Xf ,

f(x, κf (x), ŵ) ∈ {x : Vf (x) ≤ τ̃} ⊂ Xf , ∀ŵ ∈ Ŵ (8)

Vf (f(x, κf (x), 0)) ≤ Vf (x)− `(x, κf (x)) (9)

Furthermore, π(x, 0) = κf (x) for all x ∈ Xf .

Thus, the terminal control law must drive any x ∈ Xf to the

interior of Xf for all ŵ ∈ Ŵ. This assumption is stronger than

the assumption of robust positive invariance for the terminal

set typically used in SMPC. Assumption 5 ensures that X is

nonempty because Xf is nonempty and Xf ⊆ X .

We also require the usual lower bound on the stage cost.

Assumption 6 (Stage cost bound). There exists a function

α`(·) ∈ K∞ such that for all (x, u) ∈ R
n × U, we have that

α`(|x|) ≤ `(x, u)

Note that all of these assumptions address the construction

of the SMPC optimization problem and do not specify any

requirements concerning the true disturbance set and distri-

bution (W and µ). Instead, these assumptions consider only

the set Ŵ. We can also choose any µ̂ ∈ M̂(W) for the set

Ŵ. Given Assumptions 2-5, we can establish that all stochastic

quantities considered in the subsequent results are well defined

[19, Prop. 5].

III. THE WASSERSTEIN METRIC

The goal of this work is to show that if the difference

between µ and µ̂ is small, the degradation in performance of

the closed-loop system relative to the idealized SMPC result

is also small. Moreover, we wish to show that as µ̂ → µ (e.g.,

a sampling based approximation), we recover the idealized

SMPC guarantee found in [19]. Thus, we require a concept

of distance between probability measures, i.e., a probability

metric, and a notion of convergence for probability measures.

We use the Wasserstein metric for this task for three main

reasons. First, the Wasserstein distance between continuous

and discrete distributions is well defined (in contrast to Kull-

back–Leibler divergence). Second, the Kantorovich-Rubinstein

dual representation of the Wasserstein distance provides a

useful upper bound for the difference between expected values

of a nonlinear, Lipschitz continuous function for two differ-

ent probability distributions. Third, the Wasserstein distance

metrizes weak convergence on M(W) for compact W ⊆ R
q

(in contrast to total variation distance which does not converge

to zero for sampling based approximations of continuous

distributions).

We consider the type-1 version of this metric, sometimes

known as the Kantorovich-Rubinstein metric, defined as fol-

lows.

Definition 3 (Wasserstein metric). The (type-1) Wasserstein

metric W : M(W)×M(W) → R≥0 is defined as

W (µ1, µ2) := inf
γ∈Γ(µ1,µ2)

∫

W×W

|w1 − w2|dγ(w1, w2)

for all µ1, µ2 ∈ M(W), in which Γ(µ1, µ2) denotes the

collection of all measures on W×W with marginals µ1 and

µ2, i.e., γ ∈ Γ(µ1, µ2) must satisfy

µ1(·) =

∫

W

γ(·, w2)dw2 µ2(·) =

∫

W

γ(w1, ·)dw1

The measure γ(·) can be viewed as a transport plan for

moving a distribution described by µ1 to another one described

by µ2. Thus, determining the Wasserstein distance amounts to

solving for the optimal transport plan in which the cost is

given by the Euclidean distance | · |. Note that the Wasserstein

metric satisfies all the axioms of a distance on M(W) for

compact W ⊂ R
n. Specifically, the metric is finite, symmetric,

satisfies the triangle inequality, and W (µ1, µ2) = 0 if and only

if µ1 = µ2.
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A particularly useful result for the Wasserstein metric (type-

1) is the following dual representation.

Theorem 4 (Kantorovich-Rubinstein). For any probability

measures µ1, µ2 ∈ M(W) we have

W (µ1, µ2) = sup
g∈L

{
∫

W

g(w)dµ1(w)−

∫

W

g(w)dµ2(w)

}

in which L denotes the space of all Lipschitz continuous func-

tions with |g(w1)− g(w2)| ≤ |w1 − w2| for all w1, w2 ∈ W.

See Villani [28, Remark 6.5] for a discussion of this result.

Thus, for any Lipschitz continuous function g(·) with Lipschitz

constant L ≥ 0 on W, we have that
∫

W

g(w)dµ1(w)−

∫

W

g(w)dµ2(w) ≤ LW (µ1, µ2)

for all µ1, µ2 ∈ M(W).
We now introduce a notion of convergence for probability

measures in the space M(W). For a sequence of probability

measures {µi}
∞
i=1 in M(W), we say that µi converges weakly

to µ ∈ M(W) if
∫

W

g(w)dµi(w) →

∫

W

g(w)dµ(w)

for all continuous and bounded functions g : W → R. We use

the notation µi → µ to denote weak convergence. For compact

W, convergence in the Wasserstein metric is equivalent to

weak convergence, i.e., for the sequence {µi}
∞
i=1, µi → µ

if and only if W (µi, µ) → 0 [28, Theorem 6.9].

The notion of convergence for probability measures is

particularly important for sampling-based empirical approx-

imations of a probability measure. For example, consider a

probability measures µ ∈ M(W). We draw s random samples

from µ that we denote {ω̂i}
s
i=1 and define the empirical

probability measure as µ̂s := 1
s

∑s
i=1 δω̂i

in which δω̂i
is the

Dirac measure at ω̂i. One can show that µ̂s → µ as s → ∞
via the strong law of large numbers [27].

IV. DISTRIBUTIONAL ROBUSTNESS

We first define robust positive invariance (RPI) as follows.

Definition 5 (Robust positive invariance). The set X is

robustly positive invariant (RPI) for the system x+ =
f(x, κµ̂(x), w), w ∈ W if x ∈ X implies that x+ ∈ X for all

w ∈ W and µ̂ ∈ M̂(W).

We define distributional robustness for a closed-loop non-

linear systems as follows.

Definition 6 (Distributionally Robust Asymptotic Stability in

Expectation). The origin of the system x+ = f(x, κµ̂(x), w),
w ∈ W is distributionally robustly asymptotically stable in

expectation (DRASiE) in the RPI set X if there exist β(·) ∈
KL and γ1(·), γ2(·) ∈ K such that

E [|φµ̂(k;x,wk)|]

≤ β(|x|, k) + γ1(Ê[|ŵ|]) + γ2(W (µ, µ̂)) (10)

for all x ∈ X , µ̂ ∈ M̂(W), µ ∈ M(W), and k ∈ I≥0.

The first part of the upper bound in (10) is a KL func-

tion that ensures the effect of the initial condition x ∈ X
(asymptotically) vanishes as k → ∞. The second function

γ1(Ê[|ŵ|]) accounts for the persistent effect of the modeled

disturbance (ŵ) in the control law design and the ideal system

with µ = µ̂. The third function γ2(W (µ, µ̂)) accounts for

the discrepancy between the disturbance distribution model

µ̂, used in the SMPC optimization problem, and the true

disturbance distribution µ. If µ = µ̂, then γ2(W (µ, µ̂)) = 0
and we recover the usual bound for idealized SMPC analysis.

The most significant consequence of this result is that the

effect of arbitrarily small errors between µ̂ and µ produce sim-

ilarly small deviations from the closed-loop bound derived for

idealized SMPC analysis. We further discuss the implications

of this property for SMPC in Section VI.

Next, we define an SISS Lyapunov function to serve as a

sufficient condition for this definition of distributional robust-

ness.

Definition 7 (SISS Lyapunov function). The measurable func-

tion Vµ̂ : X → R≥0 is an SISS Lyapunov function, defined for

all µ̂ ∈ M̂(W), for the system x+ = f(x, κµ̂(x), w), w ∈ W

in the RPI set X if there exist α1(·), α2(·), α3(·) ∈ K∞ and

σ2(·), σ3(·), σ4(·) ∈ K such that

α1(|x|) ≤ Vµ̂(x) ≤ α2(|x|) + σ2(Ê[|ŵ|]) (11)

∫

W

Vµ̂(f(x, κµ̂(x), w))dµ(w)

≤ Vµ̂(x)− α3(|x|) + σ3(Ê[|ŵ|]) + σ4(W (µ, µ̂)) (12)

for all x ∈ X , µ̂ ∈ M̂(W), µ ∈ M(W).

Note that we allow the upper bound for Vµ̂(x) to depend on

Ê[|ŵ|] and therefore µ̂. Since we intend to use the optimal cost

of SMPC as the SISS Lyapunov function, this generalization

is necessary since V 0
µ̂ (x) is usually nonzero for x = 0 and

grows with increasing Ê[|ŵ|].
We can now use this SISS Lyapunov function as a sufficient

condition for DRASiE.

Proposition 8. If a system x+ = f(x, κµ̂(x), w), w ∈ W

admits an SISS Lyapunov function in the RPI bounded set X ,

then the origin is DRASiE.

As the proof of this result is similar to the proof in [19, Prop.

13], we defer this proof to the Appendix.

V. INHERENT DISTRIBUTIONAL ROBUSTNESS OF SMPC

In addition to characterizing the distance between µ and µ̂,

we must also characterize the distance between the sets W

and Ŵ. A natural metric for the distance between sets is the

Hausdorff distance defined for two sets X,Y ⊆ R
n as

dH(X,Y ) := max

{

sup
x∈X

|x|Y , sup
y∈Y

|y|X

}

Note that since Ŵ ⊆ W and both sets are compact, we have

that dH(W, Ŵ) = maxw∈W |w|
Ŵ

. We show an example of
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this distance in Figure 1. Note that W (µ, µ̂) → 0 does not

imply that dH(W, Ŵ) → 0.1

The main result of this paper is now stated.

Theorem 9. Let Assumptions 1-6 hold. Then there exists δ > 0
such that for any set W ⊆ R

q satisfying dH(W, Ŵ) ≤ δ, the

feasible set X is RPI for the system x+ = f(x, κµ̂(x), w),
w ∈ W and the origin of this system is DRASiE in X .

Thus, for a sufficiently small difference between W and Ŵ,

the SMPC problem remains robustly recursively feasible and

is distributionally robust. Note that if dH(W, Ŵ) is too large,

the feasible set X may not be RPI even if W (µ, µ̂) → 0. In

other words, disturbances w /∈ Ŵ that occur with arbitrarily

small (but nonzero) probability can still affect the feasibility

of the SMPC optimization problem.

To establish this result, we require the following intermedi-

ate lemmata. Their corresponding proofs can be found in the

Appendix.

Lemma 10. Consider a Lipschitz continuous function g :
X × S → R with X ⊆ R

n and S ⊆ R
m. Then G(x) :=

∫

S
g(x, s)dµ(s) is also a Lipschitz continuous function with

the same Lipschitz constant for all µ ∈ M(S).

Lemma 11. Let Assumptions 2-5 hold. Then there exists Lf ≥
0 such that

∫

Ŵ

Vf (f(x, κf (x), ŵ))dµ̂(ŵ)

≤ Vf (x)− `(x, κf (x)) + Lf Ê[|ŵ|] (13)

for all x ∈ Xf and µ̂ ∈ M̂(W).

Lemma 12. Let Assumptions 2-5 hold. Then there exist

α2(·) ∈ K∞ and σ2(·) ∈ K such that V 0
µ̂ (x) ≤ α2(|x|) +

σ2(Ê[|ŵ|]) for all x ∈ X and µ̂ ∈ M̂(W).

We now proceed to the proof of Theorem 9.

Proof of Theorem 9. We proceed by first establishing the

there exists δ > 0 such that X is RPI. Since f(·) and π(·) are

locally Lipschitz continuous and X is bounded, there exists

Lx > 0 such that

|f(x, π(x, v), w)− f(x, π(x, v), ŵ)| ≤ Lx|w − ŵ|

for all x ∈ X , v ∈ V, w ∈ W, and ŵ ∈ Ŵ. For x ∈ X and µ̂ ∈
M̂(W), choose v

0 ∈ v
0
µ̂(x) such that κµ̂(x) = π(x, v0(0)),

any ŵ ∈ Ŵ
N , and define

ṽ
+ := (v0(1), v0(2), . . . , v0(N − 1), 0)

and

w̃
+ := (ŵ(1), ŵ(2), . . . , ŵ(N − 1), ŵ(N))

for some ŵ(N) ∈ Ŵ. We denote x+(w) =
f(x, κµ̂(x), w), x(N) = φ̂(N ;x,v0, ŵ), and

x+(N ;w) = φ̂(N ;x+(w), ṽ+, w̃+). Note that x ∈ X ,

w ∈ W, ṽ
+ ∈ V

N , and w̃
+ ∈ Ŵ

N are all bounded. The

function φ̂(N ; ·) is locally Lipschitz continuous since it is a

1Consider µε = (1 − ε)δ{0} + εδ{1} and µ̂ = δ{0} with W = {0, 1}

and Ŵ = {0}. As ε → 0, W (µε, µ̂) → 0, but dH(W, Ŵ) = 1.

composition of a finite number of locally Lipschitz continuous

functions, i.e., the composition of f(·) with itself N times.

Therefore, Vf (φ̂(N ; ·)) is also locally Lipschitz continuous

and there exists L̃f > 0 such that

Vf (x
+(N ;w))− Vf (x

+(N ; ŵ))

≤ |Vf (x
+(N ;w))− Vf (x

+(N ; ŵ))|

≤ L̃f |x
+(w)− x+(ŵ)|

≤ L̃fLx|w − ŵ|

for all w ∈ W and ŵ ∈ Ŵ. Since x(N) ∈ Xf , we have from

Assumption 5 that Vf (x
+(N ; ŵ)) ≤ τ̃ for all ŵ ∈ Ŵ and

therefore,

Vf (x
+(N ;w)) ≤ τ̃ + L̃fLx|w − ŵ|

for any w ∈ W and ŵ ∈ Ŵ. Thus, for any w ∈ W, we can

choose ŵ ∈ Ŵ to minimize the value of |w − ŵ|, i.e., the

value of ŵ closest to w, and we have that

Vf (x
+(N ;w)) ≤ τ̃ + L̃fLx|w|Ŵ

We define δ := (τ − τ̃)/(L̃fLx) > 0. Thus, for all sets W

such that dH(W, Ŵ) ≤ δ, we have that|w|
Ŵ

≤ δ and therefore

Vf (x
+(N ;w)) ≤ τ and x+(N ;w) ∈ Xf for all w ∈ W.

Since π(x, v) ∈ U for any v ∈ V and x ∈ R
n, we have that

v
+ ∈ V(x+(w)) and therefore x+(w) ∈ X for all w ∈ W.

Since the choice of x ∈ X and µ̂ ∈ M̂(W) was arbitrary, we

have that X is RPI for the system f(x, κµ̂(x), w), w ∈ W and

any set W ⊆ R
q such that dH(W, Ŵ) ≤ δ.

We now establish an expected cost decrease condition for

the probability measure µ̂ similar to [19, Prop. 11]. Using the

definition of J(·), we obtain

J(x+(ŵ), ṽ+, w̃+)

= J(x,v0, ŵ)− `(x, κµ̂(x)) + η(x(N), ŵ(N)) (14)

in which

η(x,w) := −Vf (x) + `(x, κf (x)) + Vf (f(x, κf (x), w))

From Lemma 11 and the fact that x(N) ∈ Xf , there exists

Lf > 0 such that
∫

ŴN+1

η(x(N), ŵ(N))dµ̂N (ŵ)dµ̂(ŵ(N)) ≤ Lf Ê[|ŵ|] (15)

We also have the equality

V 0
µ̂ (x) =

∫

ŴN+1

J(x,v0, ŵ)dµ̂N (ŵ)dµ̂(ŵ(N)) (16)

We integrate both sides of (14) with respect to µ̂N+1 and apply

(15), (16), and the definition of Vµ̂(·) to give

∫

W

Vµ̂(x
+(ŵ), ṽ+)dµ̂(ŵ)

≤ V 0
µ (x)− `(x, κµ̂(x)) + Lf Ê[|ŵ|] (17)

in which we can exchange Ŵ with W for the domain of

integration since Assumption 2 ensures that µ̂(W \ Ŵ) = 0.

Now, we use Theorem 4 to exchange µ̂ with µ. The

function J(x,v,w) is a composition of a finite number of
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locally Lipschitz continuous functions and is therefore locally

Lipschitz continuous. Thus, J(x,v,w) is Lipschitz continuous

on the compact set X × V
N × Ŵ

N . From Lemma 10, we

have that Vµ̂(x,v) is also Lipschitz continuous with the same

Lipschitz constant for all µ̂ ∈ M̂(W). Thus, there exists

LJ > 0 such that

|Vµ̂(f(x, u, w),v
+)− Vµ̂(f(x, u, ŵ),v

+)| ≤ LJ |w − ŵ|

for all w, ŵ ∈ W, x ∈ X , u ∈ U, v+ ∈ V
N , and µ̂ ∈ M(W).

We choose arbitrary µ̂ ∈ M̂(W) and use Theorem 4 to give,

∫

W

Vµ̂(f(x, u, w),v
+)dµ(w)

≤

∫

Ŵ

Vµ̂(f(x, u, ŵ),v
+)dµ̂(ŵ) + LJW (µ, µ̂) (18)

for all x ∈ X , u ∈ U, v
+ ∈ V

N , µ ∈ M(W). Note that

the choice of µ̂ ∈ M̂(W) was arbitrary and therefore (18)

holds for all µ̂ ∈ M̂(W) with the same value of LJ > 0. We

combine (17), (18) and by optimality we have

∫

W

V 0
µ̂ (f(x, κµ̂(x), w))dµ(w)

≤ V 0
µ̂ (x)− `(x, κµ̂(x)) + Lf Ê[|ŵ|] + LJW (µ, µ̂) (19)

for all x ∈ X , µ̂ ∈ M̂(W), and µ ∈ M(W).

We now establish that V 0
µ̂ (·) is an SISS Lyapunov function.

From Assumption 6, there exists α`(·) ∈ K∞ such that

−`(x, κµ̂(x)) ≤ −α`(|x|) in (19). Therefore, (12) holds with

Vµ̂(·) := V 0
µ̂ (·) α3(·) := α`(·) ∈ K∞, σ3(s) := Lfs ∈ K, and

σ4(s) := LJs ∈ K. We also use Assumption 6 to show that

α1(|x|) := α`(|x|) ≤ `(x, κµ̂(x)) ≤ Vµ̂(x) for all x ∈ X . We

then use Lemma 12 to construct the upper bound for V 0
µ̂ (·).

Thus, V 0
µ̂ (·) satisfies all the requirements in Definition 7 for

an SISS Lyapunov function. By Proposition 8, the origin is

DRASiE.

An important class of applications for SMPC are economic

problems in which the stage cost is defined to directly rep-

resent a performance metric for the process (e.g., economic

cost, carbon production). If this cost is positive definite with

respect to the origin (the specified steady state), then the

results of Theorem 9 also hold. But this requirement restricts

the space of economic cost functions that we may consider

with SMPC and can exclude many relevant problems. Thus,

in economic applications of MPC, i.e., economic MPC, the

key generalization is that we do not require Assumption 6 to

hold. By dropping this assumption, we obtain a weaker, but

still instructive result, for economic applications of SMPC.2

Theorem 13. Let Assumptions 1-5 hold. Then there exists δ >
0 such that for any set W ⊆ R

q satisfying dH(W, Ŵ) ≤ δ,

the feasible set X is RPI for the system x+ = f(x, κµ̂(x), w),

2If we assume some form of “stochastic dissipativty” for the stage cost and
system, we may be able to retain the results in Theorem 9, but the form of
this condition is another open research question for even idealized SMPC.

w ∈ W. Furthermore, there exist Lf , LJ > 0 such that the

closed-loop trajectory satisfies

lim sup
T→∞

1

T

T−1
∑

k=0

E [`(x(k), κµ̂(x(k)))]

≤ Lf Ê[|ŵ|] + LJW (µ, µ̂) (20)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X , µ̂ ∈ M̂(W),
µ ∈ M(W).

Proof. In the proof of Theorem 9, we established that X is

RPI and that the bound in (19) holds for some δ > 0 without

using Assumption 6. We choose x ∈ X and denote the closed-

loop trajectory x(k) = φµ̂(k;x,wk). We then apply the law

of total expectation to (19) and rearrange to give,

E [`(x(k), κµ̂(x(k)))]

≤ E
[

V 0
µ̂ (x(k))

]

−E
[

V 0
µ̂ (x(k + 1))

]

+Lf Ê[|ŵ|]+LJW (µ, µ̂)

We sum both sides of this inequality from k = 0 to T − 1,

cancel terms, and divide by T to give,

1

T

T−1
∑

k=0

E [`(x(k), κµ̂(x(k)))]

≤
V 0
µ̂ (x)− E

[

V 0
µ̂ (x(T ))

]

T
+ Lf Ê[|ŵ|] + LJW (µ, µ̂)

Since Vµ̂(x,v) is Lipschitz continuous on X × V
N for all

µ̂ ∈ M̂(W), we have that V 0
µ̂ (x) is bounded uniformly for all

x ∈ X and µ̂ ∈ M̂(W). Therefore, E[V 0
µ̂ (x(T ))] is bounded

since x(T ) ∈ X . We take the limit supremum as T → ∞ and

note that V 0
µ̂ (x)/T and E[V 0

µ̂ (x(T ))]/T vanish as T → ∞ to

give (20).

VI. DISCUSSION

We now discuss several insights derived from Theorems 9

and 13.

A. SMPC

Idealized SMPC: For idealized SMPC, we have that the

disturbance model and distribution are exact and therefore

µ = µ̂ and W = Ŵ. Under these conditions, W (µ, µ̂) = 0,

dH(W, Ŵ) = 0, and (10), (20) reduce to their idealized SMPC

counterparts discussed in [19], i.e.,

E [|φµ(k;x,wk)|] ≤ β(|x|, k) + γ1(Ê[|ŵ|]) ∀k ∈ I≥0 (21)

lim sup
T→∞

1

T

T−1
∑

k=0

E [`(x(k), κµ(x(k)))] ≤ Lf Ê[|ŵ|] (22)

for all x ∈ X and µ ∈ M(W). The bound in (22) is a standard

result for idealized SMPC performance that was first derived

for nonlinear systems in Chatterjee and Lygeros [7]. Similar

results are also available for (idealized) robust MPC [3].
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Incorrectly modeled disturbances: We assume that W =
Ŵ, but the distribution is incorrect: µ 6= µ̂. In this case,

dH(W, Ŵ) = 0 and recursive feasibility is guaranteed (X
is RPI). The performance bound for either E [|x(k)|] or

E [`(x(k), u(k))] degrades relative the idealized case with

respect to the distance between µ̂ and µ, i.e., W (µ, µ̂). Thus,

as µ̂ → µ we recover the idealized SMPC bound. Furthermore,

arbitrarily small differences between µ̂ and µ, in terms of

W (·), produce similarly small deviations in the performance

bound. If we select Ŵ larger than the support of µ, i.e.,

µ(Ŵ) = 1, then we have that W = Ŵ. Thus, designing for a

larger disturbance than the system experiences does not affect

feasibility. This additional conservatism, however, may reduce

performance. Moreover, for a sufficiently large set Ŵ, there

may not exist any κf (·), Xf , and Vf (·) that satisfy Assumption

5.

Unmodeled disturbances: In this case, we have that W 6=
Ŵ and µ 6= µ̂. Note that this case represents disturbances that

were “undermodeled” in which the true disturbance may be

larger than the disturbances included in Ŵ, e.g., we define

Ŵ := {w ∈ R
q : |w| ≤ 1}, but W := {w ∈ R

q : |w| ≤ 2}
with µ(Ŵ) < 1. This case also covers elements or directions

of w ∈ W that are entirely absent in Ŵ, e.g., Ŵ := {w ∈
R

q : |w| ≤ 1 and w1 = 0} or Ŵ := {0}. This representation

can also be interpreted as an error in the dynamic model f(·).
For example, we consider the dynamic model f̂(x, u, w1), but

the actual system evolves according to f(x, u, w) = f̂(x, u+
w2, 0)+w3 in which w = [w1, w2, w3]

′. Nonetheless, we may

still define Ŵ := {w ∈ R
3 : |w1| ≤ 1, w2 = 0, w3 = 0}

B. Scenario Optimization

Scenario optimization methods are often used to approx-

imate and solve the stochastic optimization problem in (6),

particularly for nonlinear systems. By selecting a finite set of

possible scenarios from the underlying disturbance distribution

and set, the stochastic objective can be approximated by the

average cost of these scenarios and the constraints in the

optimization problem are required to hold for all scenarios

considered. The quality of and performance bounds for this

approximate optimal solution/cost are topics that have gener-

ated much interest, with applications beyond SMPC. However,

the quality of this approximation is irrelevant for SMPC if

near exact approximations still produce poor controllers. The

contribution in this subsection is novel because we are able to

bound the performance of the closed-loop system generated by

repeated solutions to this approximated optimization problem

and can thereby directly address performance of the controller

subject to a scenario-based approximation of the stochastic

optimization problem.

We proceed by redefining the optimization problem in (6)

based on an empirical distribution generated via a scenario-

based approximation of the original stochastic optimal control

problem. Thus, we can analyze the scenario approximation

error as an additional error in representing the true disturbance

distribution for w. Specifically, we construct this scenario

optimization problem by drawing s ∈ I≥1 samples, denoted

ω̂i, from the model disturbance distribution µ̂ and set Ŵ.

We then define the set Ŵs = {ω̂1, ω̂2, . . . , ω̂s} and empirical

distribution

µ̂s(·) :=
1

s

s
∑

i=1

δω̂i
(·)

Note that µ̂s(·) and Ŵs satisfy the requirements in Assumption

2 for all s ∈ I≥1. Moreover, if Assumption 5 holds for Ŵ,

Assumption 5 also holds for Ŵs ⊆ Ŵ. Thus, we may use

µ̂s(·), Ŵs in place of µ̂, Ŵ for all algorithms and results in

this work including Theorems 9 and 13.

This fact allows us to draw several important conclusions

for scenario-based approximations of the stochastic optimal

control problem. First, if Ŵ is sufficiently close to W

(dH(W, Ŵ) ≤ δ/2), and the sampling of Ŵ is sufficiently

dense (dH(Ŵ, Ŵs) ≤ δ/2), then X is RPI (dH(W, Ŵs) ≤ δ).

This observation implies that scenario-based methods, if a

sufficient number of samples are used, can ensure robust

recursive feasibility for SMPC. In fact, deliberate construction

of Ŵs to ensure the approximation is sufficiently dense on Ŵ

may be preferable to constructing Ŵs via random sampling,

in which dH(Ŵs, Ŵ) may take large values with some small

probability.

Second, the performance is bounded by the distance be-

tween µ̂s and µ. By the triangle inequality, we have that

W (µ, µ̂s) ≤ W (µ, µ̂) +W (µ̂, µ̂s)

By the weak convergence of sampling, we have

W (µ, µ̂s) → W (µ, µ̂)

with probability one as s → ∞. Thus, the performance

bounds in (10) and (20) converge to their values for the

original stochastic optimization problem as the number of

samples increases. We can further quantify this convergence

of the Wasserstein metric in terms of the number samples and

dimension of the w via results that can be found in [9]. As

the number of samples increases, we expect the closed-loop

performance of this scenario-based approximation to improve

at the expense of increased computational cost. The trade-off

between the performance and computational cost is therefore

important to understand and manage.

C. Constraint-tightened MPC

Although the conclusions of Theorema 9 and 13 are in-

formative for SMPC, these results are particularly interesting

given their ability to unify notions of stochastic robustness

across different MPC formulations. Since different MPC for-

mulations may be treated as special cases of SMPC, we

can use this single theorem to draw conclusions about two

additional MPC formulations: constraint-tightened MPC (dis-

cussed in this subsection) and nominal MPC (discussed in the

next subsection).

For constraint-tightened MPC (CMPC), we optimize a nom-

inal objective function subject to the tightened constraints used

in the SMPC problem formulation, i.e.,

min
v∈V(x)

J(x,v,0) (23)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3273420

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2023 at 17:15:59 UTC from IEEE Xplore.  Restrictions apply. 



9

For µ̂({0}) = 1, the SMPC optimization problem in (6)

reduces to (23). Furthermore, we have that Ê[|ŵ|] = 0 and

the Wasserstein metric reduces to

W (µ, µ̂) =

∫

W

|w|dµ = E [|w|]

Therefore, (10), (20) can be simplified as follows.

Corollary 14 (CMPC). Let Assumptions 1-5 hold with

µ̂({0}) = 1. Then there exists δ > 0 such that for any set

W ⊆ R
q satisfying dH(W, Ŵ) ≤ δ, the feasible set X is RPI

for the system x+ = f(x, κµ̂(x), w), w ∈ W. Furthermore,

there exists LJ > 0 such that the closed-loop trajectory

satisfies

lim sup
T→∞

1

T

T−1
∑

k=0

E [`(x(k), κµ̂(x(k)))] ≤ LJE [|w|] (24)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X and µ ∈ M(W).
If Assumption 6 also holds, there exist β(·) ∈ KL and γ2(·) ∈
K such that

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ2(E [|w|]) (25)

for all x ∈ X , µ ∈ M(W), and k ∈ I≥0.

By using these tightened constraints with a nominal ob-

jective function, we still guarantee that CMPC renders the

feasible set X RPI for the closed-loop system and all w ∈ W

with W sufficiently close to Ŵ. Note that γ2(·) and LJ appear

in (25) and (24), but γ1(·) and Lf appear in the similar bounds

for idealized SMPC in (21) and (22). This observation sug-

gests, as one may expect, that the performance of CMPC and

SMPC may differ quantitatively, but the qualitative behavior is

likely similar for an otherwise equivalent problem. In general,

however, these bounds are too conservative to provide useful

quantitative information.

D. Nominal MPC

If we also choose Ŵ = {0}, the SMPC problem reduces

to a nominal MPC problem in which we have embedded

the feedback law π(x, v) in the optimization problem. Note

that this type of parameterization has been previously used

in nominal MPC formulations to “pre-stabilize” the open-loop

system and thereby ensure that the MPC optimization problem

is well conditioned [12, 24]. If we choose π(x, v) = v and

V = U, the problems are equivalent since V(x) reduces to

V(x) = U(x) = {u ∈ U
N : φ̂(N ;x,u,0) ∈ Xf}

and the optimization problem becomes

min
v∈V(x)

J(x,v,0) = min
u∈U(x)

J(x,u,0)

With this choice of π(x, v), Assumptions 3, 4, and 6

are equivalent to the assumptions used in [1] to establish

the inherent robustness of nominal MPC.3 In Assumption 5,

however, the requirement in (8) reduces to

f(x, κf (x), 0) ∈ {x ∈ R
n : Vf (x) ≤ τ̃} (26)

3With the exception that Assumption 4 also requires bounded X , which is
a minor restriction.

i.e., the terminal control law must drive the subsequent state

for the nominal system to the interior of Xf when x ∈ Xf .

If Assumption 6 also holds, the nominal cost decrease in (9)

is sufficient to guarantee that (26) also holds. If Assumption

6 does not hold, however, the requirement in (26) is notably

different than the requirements typically considered or used for

economic MPC. As we discuss in the subsequent paragraphs,

this requirement allows us to derive new results for nominal

economic MPC.

For this problem, dH(W, {0}) = maxw∈W |w| and the

bounds in (10), (20) reduce to the equations in (25), (24). Thus,

nominal MPC also confers some margin of inherent stochastic

robustness to sufficiently small disturbances, as previously

discussed in [18]. We summarize this result in the following

corollary.

Corollary 15 (Nominal MPC). Let Assumptions 1-5 hold with

µ̂({0}) = 1 and Ŵ = {0}. Then there exists δ > 0 such that

for any set W ⊆ R
q satisfying maxw∈W |w| ≤ δ, the feasible

set X is RPI for the system x+ = f(x, κµ̂(x), w), w ∈ W.

Furthermore, there exists LJ > 0 such that the closed-loop

trajectory satisfies

lim sup
T→∞

1

T

T−1
∑

k=0

E [`(x(k), κµ̂(x(k)))] ≤ LJE [|w|] (27)

in which x(k) = φµ̂(k;x,wk) for all x ∈ X and µ ∈ M(W).
If Assumption 6 also holds, there exist β(·) ∈ KL and γ2(·) ∈
K such that

E [|φµ̂(k;x,wk)|] ≤ β(|x|, k) + γ2(E [|w|]) (28)

for all x ∈ X , µ ∈ M(W), and k ∈ I≥0.

The value of δ > 0 in this result, however, is not necessarily

the same as in Theorems 9, 13, or Corollary 14. For an

otherwise equivalent problem (i.e., the same dynamic model,

stage cost, constraints, terminal cost, etc.), the value of τ̃ > 0
in Assumption 5 may be significant smaller (but not larger) for

Ŵ = {0} than for sets Ŵ that include more than the origin.

Note that in the Proof of Theorem 9, the value of δ is given

by

δ :=
τ − τ̃

L̃fLx

However, the feasible set X may also be larger (but not

smaller) for Ŵ = {0} than for sets Ŵ that include more than

the origin. Thus, the Lipschitz constants L̃f , Lx > 0 may also

increase for nominal MPC relative to SMPC. Depending on

the relative magnitude of these changes, the value of δ > 0
may be larger or smaller for nominal MPC than SMPC, for

an otherwise equivalent problem.

By explicitly requiring the terminal control law to satisfy

(26), Corollary 15 does not require Assumption 6 to ensure

that X is RPI for sufficiently small disturbances. This result is,

to the best of our knowledge, new for nominal economic MPC,

i.e., MPC without Assumption 6. By ensuring that X is RPI,

we can guarantee recursive feasibility of nominal economic

MPC and thereby derive the performance bound (27) that

is analogous to the bounds derived for idealized versions of

stochastic MPC in [7] and robust MPC in [3]. Thus, nominal
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in which σ̃3(s) := σ3(s) + α4(2σ2(s)) and σ̃3(·) ∈ K.

Since X and W are bounded, there exists b ≥ 0 such

that Vµ̂(x) ≤ α2(|x|) + σ2(Ê[|ŵ|]) ≤ b for all x ∈ X ,

µ̂ ∈ M̂(W) and corresponding Ê[|ŵ|]. Using Lemma 6 in

[19], we can construct αv(·) ∈ K∞ such that αv(·) is convex

and αv(Vµ̂(x)) ≤ α4(Vµ̂(x)) for all x ∈ X and µ̂ ∈ M̂(W).
Therefore, we have

∫

W

Vµ̂(f(x, κµ̂(x), w))dµ(w)

≤ Vµ̂(x)− αv(Vµ̂(x)) + σ̃3(Ê[|ŵ|]) + σ4(W (µ, µ̂))

For arbitrary x ∈ X , µ̂ ∈ M(W), and µ ∈ M(W), let

x(k) := φµ̂(k;x,wk) for all k ∈ I≥0. To streamline notation,

we also define c(µ, µ̂) := σ̃3(Ê[|ŵ|]) + σ4(W (µ, µ̂)). By the

law of total expectation and Jensen’s inequality, we have

E [Vµ̂(x(k + 1))]

≤ E [Vµ̂(x(k))]− αv (E [Vµ̂(x(k))]) + c(µ, µ̂)

Note that E [·] is defined with respect to µ and not µ̂.

Define γ̃(s) := 2max{α−1
v (s), s} and note that γ̃(·) ∈ K.

If E [Vµ̂(x(k))] ≤ γ̃(c(µ, µ̂))/2, then

E [Vµ̂(x(k + 1))] ≤ γ̃(c(µ, µ̂))/2 + c(µ, µ̂)

≤ γ̃(c(µ, µ̂))/2 + γ̃(c(µ, µ̂))/2

= γ̃(c(µ, µ̂))

If γ̃(c(µ, µ̂))/2 ≤ E [Vµ̂(x(k))] ≤ γ̃(c(µ, µ̂)), then

E [Vµ̂(x(k + 1))]

≤ E [Vµ̂(x(k))]− αv (γ̃(c(µ, µ̂))/2) + c(µ, µ̂)

≤ E [Vµ̂(x(k))] ≤ γ̃(c(µ, µ̂))

Thus, for E [Vµ̂(x(k))] ≤ γ̃(c(µ, µ̂)), we know that

E [Vµ̂(x(k + 1))] ≤ γ̃(c(µ, µ̂)) (29)

If E [Vµ̂(x(k))] ≥ γ̃(c(µ, µ̂)), we have

E [Vµ̂(x(k + 1))] ≤ λ1(E [Vµ̂(x(k))])

in which λ1(s) := s − αv(s) + αv(s/2). We have that λ1(·)
is continuous, λ1(0) = 0, and λ1(s) < s for all s > 0. By

the same process used in [23, Theorem B.15], we construct

λ(·) ∈ K∞ such that λ1(s) ≤ λ(s) < s for s > 0. Thus, we

have

E [Vµ̂(x(k + 1))] ≤ λ (E [Vµ̂(x(k))]) (30)

Repeated application of (30) and the fact that E [Vµ̂(x(0))] =
Vµ̂(x) gives

E [Vµ̂(x(k))] ≤ β̃(Vµ̂(x), k) := λk(Vµ̂(x)) (31)

in which λk(·) is the composition of λ(·) with itself k times.

Using the same approach as [23, Theorem B.15], we conclude

that β̃(·) ∈ KL. We combine (29) and (31) to give

E [Vµ̂(x(k))] ≤ max{β̃(Vµ̂(x), k), γ̃(c(µ, µ̂))}

Using [19, Lemma 6] and the fact that X is bounded,

we construct a convex function α1,v(·) ∈ K∞ such that

α1,v(|x|) ≤ α1(|x|) ≤ Vµ̂(x) for all x ∈ X and µ̂ ∈ M̂(W).
Thus, we apply Jensen’s inequality to give

α1,v(E [|x|]) ≤ E [α1,v(|x|)] ≤ E [Vµ̂(x)]

and therefore

E [|x(k)|] ≤ max
{

α−1
1,v

(

β̃(Vµ̂(x), k)
)

, α−1
1,v (γ̃(c(µ, µ̂)))

}

≤ β̃1(Vµ̂(x), k) + γ̃2(c(µ, µ̂))

in which β̃1(·) := α−1
1,v(β̃(·)) ∈ KL and γ̃2(·) := α−1

1,v(γ̃(·)) ∈
K. We use the upper bound for Vµ̂(x) to give

E [|x(k)|] ≤ β̃1(α2(|x|) + σ2(Ê[|ŵ|]), k) + γ̃1(c(µ, µ̂))

≤ β̃1(2α2(|x|), k) + β̃1(σ2(Ê[|ŵ|]), k)

+ γ̃2(c(µ, µ̂))

≤ β(|x|, k) + γ̃1(Ê[|ŵ|]) + γ̃2(c(µ, µ̂)) (32)

in which β(s, k) := β̃1(2α2(s), k) ∈ KL and γ̃1(s) :=
β̃1(2σ2(s), 0) ∈ K.

We now unpack the function c(µ, µ̂) to give

γ̃1(Ê[|ŵ|]) + γ̃2(c(µ, µ̂))

= γ̃1(Ê[|ŵ|]) + γ̃2

(

2σ̃3(Ê[|ŵ|])
)

+ γ̃2

(

2σ4(W (µ, µ̂))
)

= γ1(Ê[|ŵ|]) + γ2(W (µ, µ̂))

in which γ1(s) := γ̃1(s) + γ̃2(2σ̃3(s)) ∈ K and γ2(s) :=
γ̃2(2σ4(s)) ∈ K. Substitute these definitions into (32) to

complete the proof.

Proof of Lemma 10. Let L ≥ 0 denote the Lipschitz constant

for g(·). For x1, x2 ∈ X we have

|G(x1)−G(x2)| =

∣

∣

∣

∣

∫

S

(g(x1, w)− g(x2, w)) dµ(w)

∣

∣

∣

∣

≤

∫

S

|g(x1, w)− g(x2, w)|dµ(w)

≤

∫

S

L|x1 − x2|dµ(w)

= L|x1 − x2|

in which the final equality holds because µ ∈ M(S) is a

probability measure, i.e.,
∫

S
dµ(w) = 1. Thus, G(·) is a

Lipschitz continuous function with the same Lipschitz constant

as g(·).

Proof of Lemma 11. Since Vf (·), f(·), κf (·) are locally Lips-

chitz continuous and Xf , Ŵ are bounded, there exists Lf > 0
such that

|Vf (f(x, κf (x), ŵ))− Vf (f(x, κf (x), 0))| ≤ Lf |ŵ|

for all x ∈ Xf and ŵ ∈ Ŵ. Therefore,

∫

Ŵ

Vf (f(x, κf (x), ŵ))dµ̂(ŵ)

≤ Vf (f(x, κf (x), 0)) + Lf Ê[|ŵ|]

We use this bound with (9) to give (13).

Proof of Lemma 12. Choose x ∈ Xf and µ̂ ∈ M̂(W) and

consider a trajectory generated by repeated application of the
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terminal control law, i.e., x(k) = φ̂(k;x,0, ŵ) since π(x, 0) =
κf (x). The set Xf is RPI for Ŵ and this control law due to

Assumption 5 and therefore x(k) ∈ Xf for all k ∈ I[0,N ] and

ŵ ∈ Ŵ
N . From Assumption 5 and Lemma 11, we have that

∫

ŴN

(Vf (x(k + 1))− Vf (x(k))) dµ̂
N (ŵ)

≤ −

∫

ŴN

`(x(k), κf (x(k)))dµ̂
N (ŵ) + Lf Ê[|ŵ|]

We sum both sides of the inequality from k = 0 to k = N−1
to give

∫

ŴN

(Vf (x(N))− Vf (x(0))) dµ̂
N (ŵ)

≤ −

∫

ŴN

N−1
∑

k=0

`(x(k), κf (x(k)))dµ̂
N (ŵ) +NLf Ê[|ŵ|]

By rearranging and using the definition of J(·) and x = x(0),
we have

∫

ŴN

J(x,0, ŵ)dµ̂N (ŵ) ≤ Vf (x) +NLf Ê[|ŵ|]

By optimality, we have

V 0
µ̂ (x) ≤ Vf (x) +NLf Ê[|ŵ|]

Since the choice of x ∈ Xf and µ̂ ∈ M̂(W) was arbitrary,

this inequality must hold for all x ∈ Xf and µ̂ ∈ M̂(W).
We now define

H(x) := max

{

sup
µ̂∈M̂(W)

(

V 0
µ̂ (x)−NLf Ê[|ŵ|]

)

, 0

}

and note that 0 ≤ H(x) ≤ Vf (x) for all x ∈ Xf . Since Vf (·)
is continuous, H(0) = Vf (0) = 0, and Xf contains the origin

in its interior, we know that H(x) is continuous at the origin.

We also establish that H(·) is locally bounded on X . Let X
be a compact subset of X . The function J(·) is a composition

of a finite number of continuous functions and is therefore

continuous. Thus, J(·) has an upper bound on the compact

set X × V
N × Ŵ

N . Since V(x) ⊆ V
N for all x ∈ X , V 0

µ̂ (·)

must satisfy the same upper bound for all x ∈ X , µ ∈ M̂(W).
Thus, H(x) satisfies this same upper bound because H(x) ≤
supµ̂∈M̂(W) V

0
µ̂ (x). Since 0 ≤ H(x) also and the choice of X

was arbitrary, H(x) is locally bounded on X .

Since H(x) is locally bounded, satisfies H(0) = 0, and is

continuous at x = 0, we can apply [22, Prop. 14] to construct

α2(·) ∈ K∞ such that H(x) ≤ α2(|x|) for all x ∈ X .

Furthermore, we have that

V 0
µ̂ (x)−NLf Ê[|ŵ|] ≤ H(x) ≤ α2(|x|)

for all x ∈ X and µ ∈ M̂(W). Define σ2(s) = NLfs ∈ K
and rearrange to complete the proof.
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of probabilistic distributions in linear predictive control. Automatica, 46
(10):1719 – 1724, 2010. ISSN 0005-1098. doi: https://doi.org/10.1016/
j.automatica.2010.06.034.

[15] M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer. Constraint-
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tions. Sankhyā, 19(1/2):23–26, 1958.

[28] C. Villani. Optimal transport: old and new, volume 338. Springer, 2009.
[29] I. Yang. Wasserstein distributionally robust stochastic control: A data-

driven approach. IEEE Trans. Auto. Cont., 66(8):3863–3870, 2020.
[30] S. Yu, M. Reble, H. Chen, and F. Allgöwer. Inherent robustness
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