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The Stochastic Robustness of Nominal and
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Abstract—In this work, we establish and compare
the stochastic and deterministic robustness properties
achieved by nominal model predictive control (MPC),
stochastic MPC (SMPC), and a proposed constraint-
tightened MPC (CMPC) formulation, which represents
an idealized version of tube-based MPC. We consider
three definitions of robustness for nonlinear systems
and bounded disturbances: robustly asymptotically sta-
ble (RAS), robustly asymptotically stable in expectation
(RASiE), and RASiE with respect to the stage cost �(·) used
in these MPC formulations (�-RASiE). Via input-to-state sta-
bility (ISS) and stochastic ISS (SISS) Lyapunov functions,
we establish that MPC, subject to sufficiently small distur-
bances, and CMPC ensure all three definitions of robust-
ness without a stochastic objective function. While SMPC
is RASiE and �-RASiE, SMPC is not neccesarily RAS for
nonlinear systems. Through a few simple examples, we
illustrate the implications of these results and demonstrate
that, depending on the definition of robustness considered,
SMPC is not necessarily more robust than nominal MPC
even if the disturbance model is exact.

Index Terms—Model predictive control (MPC), stability of
nonlinear systems, stochastic systems, stochastic optimal
control.

I. INTRODUCTION

I
N PRACTICE, a control algorithm must ensure some margin
of robustness to disturbances. Nominal model predictive

control (MPC) is known to be robustly asymptotically stable
(RAS) with respect to (w.r.t.) sufficiently small disturbances [1],
[11], [29], [39]. We use the term inherent robustness to describe
this property of nominal MPC as this robustness is achieved
through feedback, and disturbances are not explicitly considered
in the problem formulation. This inherent robustness is often
sufficient for successful implementation of MPC.

Stochastic MPC (SMPC) instead considers disturbances ex-
plicitly in the problem formulation. The SMPC problem is
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typically defined as a minimization of the expected value of
the cost function, given a probabilistic description of the uncer-
tainty in the system [8], [22], [28]. The optimization problem is
often subject to deterministic and probabilistic state and input
constraints. This stochastic optimization problem, however, is
more computationally intensive and further complicates the
closed-loop analysis relative to nominal MPC. In this article,
we focus on the closed-loop properties of SMPC.

With appropriate terminal constraints and costs, linear SMPC
ensures robust recursive feasibility and stability in expectation
for the closed-loop system [2], [3], [4], [17]. If we assume that
the effect of the disturbance vanishes at the origin, one can also
establish that the origin of the closed-loop system is asymptoti-
cally stable in probability [31]. Lorenzen et al. [21] established
that linear SMPC asymptotically stabilizes, with probability one,
the minimal robust positively invariant set for the system. For
nonlinear SMPC, Chatterjee and Lygeros [6] established, for
unconstrained nonlinear systems, that the expected value of the
optimal cost along the closed-loop trajectory is bounded if the
terminal cost is a global stochastic Lyapunov function. Mayne
and Falugi [23] extended these results to address constrained
nonlinear systems subject to bounded, stochastic disturbances
and, with terminal constraints, require the terminal cost to be
only a local stochastic Lyapunov function. In [27], the authors
established that SMPC renders the closed-loop system RAS
in expectation (RASiE). Fundamental mathematical properties,
such as the existence of solutions and the measurability of the
closed-loop trajectory, are also established [26], [27]. In [27],
however, there is no discussion of the theoretical properties of
other MPC formulations or a comparison of these formulations.

Tube-based stochastic/robust MPC formulations offer a mid-
dle ground between nominal MPC and SMPC. These methods
use information about the disturbance distribution and/or sup-
port to tighten constraints while retaining the computational
and theoretical convenience afforded by a nominal objective
function. These tube-based methods were proposed for linear
systems subject to worst-case disturbances [7], [24] and ex-
tended to consider nonlinear systems [5], [20], [25]. In [4], a
stochastic description of these disturbances was used to con-
struct tubes that satisfy probabilistic (chance) constraints for
the system. The notion of incremental stabilizability can also
be used to tighten constraints without the need for complicated
offline computations [16], [35].

Despite the obvious connection between these different MPC
formulations, we are unaware of any rigorous comparison of the
theoretical properties achieved by these different techniques.
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We attribute this limitation to the fact that closed-loop results
for nominal MPC and SMPC are typically deterministic and
stochastic, respectively. Thus, there are currently no precise
characterizations of robustness that are comparable across these
two methods.

In this article, we address this limitation and compare these
MPC formulations via three definitions of deterministic and
stochastic robustness for closed-loop nonlinear systems with
bounded disturbances. The first, RAS, is based on input-to-state
stability (ISS) [14] and is a definition of deterministic robust-
ness. The second, RASiE, is influenced by nonlinear stochastic
stability results [19] and the more recent definitions of stochastic
input-to-state stability (SISS) [18], [37], [38].1 RASiE is a def-
inition of stochastic robustness that characterizes the behavior
of a stochastic closed-loop system, in terms of the norm of the
state, subject to different disturbance distributions. The third
definition, RASiE w.r.t. the stage cost �(·) (�-RASiE), extends
the notion of stochastic robustness, which typically addresses
the norm of the state, to a more general performance metric
�(·). Since the MPC problem directly considers this stage cost
�(·) in the optimization problem, �-RASiE offers a more natural
definition of stochastic robustness to compare across different
MPC formulations.

The rest of this article is organized as follows. In Section
II, we introduce three definitions of robustness for closed-loop
systems: RAS, RASiE, and �-RASiE. We then establish suffi-
cient conditions for these definitions through ISS and SISS Lya-
punov functions. In Section III, we establish that nominal MPC
satisfies all of these definitions of robustness for sufficiently
small disturbances. In Section IV, we establish that SMPC is
RASiE and �-RASiE, but is not necessarily RAS. In Section V,
we propose a constraint-tightened MPC (CMPC) formulation
that represents an idealized version of tube-based MPC, i.e.,
tightened constraints with a nominal objective function. We
then establish that CMPC is RAS, RASiE, and �-RASiE for
the same disturbance set considered in SMPC. In Section VI,
we consider several small examples to illustrate and compare
the theoretical properties of these MPC formulations., Finally,
Section VII concludes this article.

Notation: Let I and R denote the integers and reals, re-
spectively. Let superscripts and subscripts denote dimension
and restrictions (e.g., R

n
≥0 denotes nonnegative reals of di-

mension n), respectively. Let | · | denote Euclidean norm.
For a sequence wk := (w(0), w(1), . . . , w(k − 1)), we define
||wk|| := maxi∈I[0,k−1]

|w(i)|. The function ³ : R≥0 → R≥0 is
in class K if it is continuous, strictly increasing, and ³(0) = 0.
The function³ : R≥0 → R≥0 is in classK∞ if³(·) ∈ K and un-
bounded, i.e., lims→∞ ³(s) = ∞. A function ´ : R≥0 × I≥0 →
R≥0 is in class KL if for every k ∈ I≥0 the function ´(·, k)
is in class K and for fixed s ∈ R≥0, the function ´(s, ·) is
nonincreasing and limk→∞ ´(s, k) = 0. Let B(Ω) denote the
Borel algebra of some set Ω. Let tr(A) denote the trace of a
matrix A.

1These definitions, however, are distinct from the one used in this work.
See [27] for a further discussion.

II. ROBUSTNESS OF CLOSED-LOOP SYSTEMS

A. Closed-Loop Stochastic System and Preliminaries

We consider the following discrete-time system:

x+ = f(x, u, w) f : R
n × U × W → R

n (1)

in which x ∈ R
n is the state, u ∈ U ⊆ R

m is the controlled
input, w ∈ W ⊆ R

q is a disturbance (random variable), and x+

denotes the successor state. Let (Ω,F , P ) be the probability
space for the sequence w∞ : Ω → W

∞ of random variables
w, i.e., w∞ := {w(i)}∞i=0 for w(i) : Ω → W . We define the
subsequencewi : Ω → W

i aswi := (w(0), . . . , w(i− 1)). We
also define the expected value of a Borel measurable function
g : W

i → R as the following Lebesgue integral:

E [g(wi)] :=

∫

Ω

g(wi(ω))dP (ω).

We make the following assumption for the disturbances.
Assumption 1 (Disturbances): The disturbances w(i) : Ω →

W are independent and identically distributed (i.i.d.), zero mean
(E[w(i)] = 0), random variables. The support W is compact and
contains the origin.

Given Assumption 1, each random variable has an equivalent
probability measure that we denote μ : B(W ) → [0, 1]. This
probability measure satisfies μ(F ) = P ({ω ∈ Ω : w(i;ω) ∈
F}) for all F ∈ B(W ) and i ∈ I≥0. We use P(W ) to denote
the collection of all possible probability measures μ(·) on the
support W that satisfy Assumption 1, i.e.,

∫

W

wdμ(w) = 0 ∀ μ(·) ∈ P(W ).

Since W is bounded, the second moment of w is finite. For
any μ(·) ∈ P(W ), we denote the covariance matrix of w as

Σ := E [ww′] =

∫

W

ww′dμ(w).

Note that this covariance matrix is the same for all
i ∈ I≥0 because of Assumption 1. For the i.i.d. random
variables (w(i), w(i+ 1), . . . , w(i+N − 1)) and N ∈ I≥1,
their joint distribution measure μN : B(W N ) → [0, 1] is de-
fined as μN (F ) = μ(Fi)μ(Fi+1) . . . μ(Fi+N−1) for all F =
(Fi, Fi+1, . . . , Fi+N−1) ∈ B(W N ).

Each MPC formulation uses a stage cost, i.e., performance
metric, �(·) to define a feedback controller on a feasible set
X ⊆ R

n. We consider the origin to be the steady-state target,
without loss of generality, and consider the following regularity
assumption.

Assumption 2 (Continuity of system and cost): The system
f : R

n × U × W → R
n and stage cost � : R

n × U → R≥0 are
continuous and satisfy f(0, 0, 0) = 0, �(0, 0) = 0.

Since we intend to analyze SMPC, we must also allow the
control law to depend on the probability measure μ(·), as this
probability measure is included in the SMPC optimization prob-
lem. Thus, we define a generic control law κμ : X → U for all
μ(·) ∈ P(W ). The resulting closed-loop system is then

x+ = f(x, κμ(x), w). (2)
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We use φμ(k;x,wk) to denote the closed-loop state for (2)
at time k ∈ I≥0, given the initial state x ∈ X and disturbance
sequencewk = (w(0), . . . , w(k − 1)) ∈ W

k. In addition to the
closed-loop state trajectory φμ(·), we may also consider the
performance of the system via the stage cost. Specifically, we
investigate the closed-loop stage cost

�(x(k), κμ(x(k)))

along the closed-loop trajectory x(k) = φμ(k;x,wk). If we are
discussing a control law for a specific μ(·) or a control law that
does not depend on the probability measure, e.g., nominal MPC,
we may write the control law without this subscript as κ(·) and
the corresponding closed-loop trajectory as φ(k;x,wk).

Since the control laws for MPC, SMPC, and CMPC are
defined by solving an optimization problem at each time step, we
require that these optimization problems remain feasible along
the closed-loop trajectory to ensure that the control law remains
well defined, i.e., we require that the optimization problem for
each of these formulations is robustly recursively feasible. We
characterize this property through robust positive invariance
(RPI).

Definition 1 (RPI): A set X is RPI for the system x+ =
f(x, κμ(x), w), w ∈ W if x+ ∈ X for all x ∈ X , μ(·) ∈
P(W ), and w ∈ W .

If the feasible set of the optimization problem is RPI, then
the optimal control problem is robustly recursively feasible. If
the control law is independent of μ(·), i.e., κμ(·) = κ(·), then
this definition of RPI reduces to the standard definition of RPI
as found in [33, Def. 3.7].

Remark 2: Although κμ : X → U is not necessarily a con-
tinuous function, McAllister and Rawlings [26] established that,
under basic regularity assumptions, SMPC, and by extension
MPC and CMPC, produce a Borel measurable control law.
Therefore, all relevant functions (e.g., φμ(k; ·)) are Borel mea-
surable functions and the expected value is well defined for the
closed-loop system.

B. Robust Asymptotic Stability

We define RAS as follows. Note that RAS applies to a specific
control law, and we therefore consider κ(·) and φ(·) without the
subscript μ(·).

Definition 3 (RAS): The origin of a system x+ =
f(x, κ(x), w), w ∈ W is RAS in an RPI set X if there exist
´(·) ∈ KL and γ(·) ∈ K such that

|φ(k;x,wk)| ≤ ´(|x|, k) + γ(||wk||) (3)

for all x ∈ X , wk ∈ W
k, and k ∈ I≥0.

The definition of RAS is based on the more general notion of
ISS for discrete-time systems [14]. To establish RAS, we use an
ISS Lyapunov function.

Definition 4 (ISS Lyapunov function): The function V :
X → R≥0 is an ISS Lyapunov function for the system
x+ = f(x, κ(x), w), w ∈ W in an RPI set X if there exist
³1(·), ³2(·), ³3(·) ∈ K∞ and σ(·) ∈ K such that

³1(|x|) ≤ V (x) ≤ ³2(|x|) (4)

V (f(x, κ(x), w)) ≤ V (x)− ³3(|x|) + σ(|w|) (5)

for all x ∈ X and w ∈ W .
Proposition 5: If a system x+ = f(x, κ(x), w), w ∈ W , ad-

mits an ISS Lyapunov function in an RPI set X , then the origin
is RAS in X .

See [14, Lemma 3.5] for a proof of Proposition 5 for continu-
ous ISS Lyapunov functions and [1, Prop. 19] for a more general
proof for discontinuous ISS Lyapunov functions.

C. Robust Asymptotic Stability in Expectation

RAS is a strong property in that the bound in (3) is determin-
istic and holds for any realization of the disturbance trajectory
(wk ∈ W

k). Thus, RAS provides a bound for a deterministic
property of the system based on a deterministic property of the
disturbance trajectory. If we however use a stochastic repre-
sentation for the disturbance, we can construct a similar bound
for a stochastic property of the closed-loop system based on a
stochastic property of the disturbance. Specifically, we define
RASiE as a definition of stochastic robustness and derive some
associated results in this section.

To motivate the following definition of stochastic robust-
ness, we begin with a classic result for the stochastic linear-
quadratic regulator (LQR). For the LQR problem, we have
that f(x, u, w) = Ax+Bu+ w and �(x, u) = x′Qx+ u′Ru
with Q,R 
 0 and (A,B) stabilizable. We solve the infinite
horizon stochastic optimal control problem through a discrete-
time algebraic Riccati equation to yield the feedback controller
κ(x) = Kx and the Schur stable matrix AK = A+BK, i.e.,
all eigenvalues of AK are strictly inside the unit circle. Thus,
the closed-loop system satisfies

φ(k;x,wk) = Ak
Kx+

k−1
∑

i=0

Ak−1−i
K w(i).

Since AK is Schur stable, there exists c > 0 and λ ∈ (0, 1) such
that

|φ(k;x,wk)| ≤ λ
kc|x|+ c

k−1
∑

i=0

λ
k−1−i|w(i)| (6)

which leads to RAS by noting
∑k−1

i=0 λ
k−1−i ≤ 1/(1− λ). Al-

ternatively, we can take the expected value of (6) and note that
E[|w(i)|] ≤

√

tr(Σ) to give

E [|φ(k;x,wk)|] ≤ λ
kc|x|+

c

1− λ

√

tr(Σ).

Often this bound is derived for a single probability distribution
μ(·) and corresponding variance Σ. But this bound in fact holds
with the same constants c and λ for all μ(·) and Σ such that
E[w] = 0. The influence of the probability distribution on this
bound is captured entirely through the value of tr(Σ). Thus,
we want to define a nonlinear extension of this bound with the
same requirement: the upper bound depends on the probability
distribution through only a function of tr(Σ) and this bound
holds for all μ(·) ∈ P(W ) and corresponding Σ.

One of the convenient results in the stochastic LQR problem
is that the feedback controller κ(x) = Kx is independent of
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the probability distribution. For SMPC, however, the control
law varies with the probability distribution, i.e., we have κμ(·).2

Thus, we define stochastic robustness such that the control law
can vary with μ(·) and thereby accommodate SMPC. We also
require, per the previous discussion, that the upper bound in the
definition of RASiE depends on the value of μ(·) through only
a function of tr(Σ).

Definition 6 (RASiE): The origin of a closed-loop stochastic
system x+ = f(x, κμ(x), w), w ∈ W is RASiE in an RPI set
X if there exist ´(·) ∈ KL and γ(·) ∈ K such that

E [|φμ(k;x,wk)|] ≤ ´(|x|, k) + γ(tr(Σ)) (7)

for all x ∈ X , μ(·) ∈ P(W ), and k ∈ I≥0.
Note that the upper bound depends on the probability measure

through only the argument tr(Σ). The functions ´(·) and γ(·)
are the same for all μ(·) ∈ P(W ).

Analogous to the ISS Lyapunov function, we define a stochas-
tic ISS (SISS) Lyapunov function. We also allow this Lyapunov
function to vary with μ(·) as the optimal cost for SMPC varies
with μ(·) as well (see Section IV).

Definition 7 (SISS Lyapunov function): The measurable func-
tion Vμ : X → R≥0, defined for all μ(·) ∈ P(W ), is an SISS
Lyapunov function for the system x+ = f(x, κμ(x), w), w ∈
W , in the RPI set X if there exist ³1(·), ³2(·), ³3(·) ∈ K∞ and
σ2(·), σ3(·) ∈ K such that

³1(|x|) ≤ Vμ(x) ≤ ³2(|x|) + σ2(tr(Σ)) (8)
∫

W

Vμ(f(x, κμ(x), w))dμ(w)

≤ Vμ(x)− ³3(|x|) + σ3(tr(Σ)) (9)

for all x ∈ X and μ(·) ∈ P(W ).
In Definition 7, we allow the SISS Lyapunov function to

vary with the probability measure μ(·), but require that the
K-functions are the same for all μ(·) ∈ P(W ). The bounds
vary with the probability measure μ(·) exclusively through the
argument tr(Σ)used inσ2(·), σ3(·). Definition 7 is novel because
we consider all possible values of μ(·) ∈ P(W ). Our previous
definition of RASiE in [27], like the rest of SMPC literature, is
derived for only a single μ(·). However, the proof procedures
for the results presented here for SMPC require only minor
extensions to the proof procedures used in [27].

Proposition 8: If a system x+ = f(x, κμ(x), w), w ∈ W ,
admits an SISS Lyapunov function in an RPI and bounded set
X , then the origin is RASiE in X .

Outline of Proof: For an arbitrary μ(·) ∈ P(W ), we use the
same approach as used in [27, Prop. 13] to construct the relevant
´(·) ∈ KL and γ(·) ∈ K functions in (7) in the definition of
RASiE. We then note that the construction of these functions
relies on only the K and K∞ functions used in bounds (8) and
(9) and does not depend explicitly on the probability measure
μ(·). Since the K and K∞ functions in (8) and (9) apply for
all μ(·) ∈ P(W ), the constructed ´(·) and γ(·) also hold for

2The liquid-level control example in Section VI-B has this feature. For
differentµ(·), the control law and closed-loop trajectory for SMPC are different.

all μ(·) ∈ P(W ), thus meeting the requirement of RASiE in
Definition 6. �

We find the following results (based on [30, Lemma 14])
useful in the subsequent analysis. See [27, Cor. 7] for a proof.

Lemma 9: If ³(·) ∈ K∞, then for any b ∈ R≥0, there exists
³c(·) ∈ K∞ such that ³c(·) is concave and ³(s) ≤ ³c(s) for all
s ∈ [0, b].

This lemma allows us to establish the following new result
for a single control law κ(·).

Proposition 10: Let Assumption 1 hold. If a function V :
X → R≥0 is an ISS Lyapunov function for the system x+ =
f(x, κ(x), w), w ∈ W , in an RPI set X , then V (·) is also an
SISS Lyapunov function for the system x+ = f(x, κ(x), w),
w ∈ W , in X .

Proof: Since V (·) is an ISS Lyapunov function, there exist
³1(·), ³2(·), ³3(·) ∈ K∞ and σ(·) ∈ K such that (4) and (5)
hold. Immediately, we have that (8) holds for the same functions
³1(·), ³2(·) and any σ2(·) ∈ K.

Since W is compact, there exists b ≥ 0 such that |w| ∈ [0, b]
for allw ∈ W . We define a function σ̃(·) ∈ K∞ such thatσ(s) ≤
σ̃(s) for all s ∈ R≥0, e.g., σ̃(s) := εs+ σ(s) with ε > 0. We
use Lemma 9 to construct a concave function σc(·) ∈ K∞ such
that σ(|w|) ≤ σ̃(|w|) ≤ σc(|w|) for all w ∈ W . We apply this
bound and Jensen’s inequality to give

∫

W

V (f(x, κ(x), w))dμ(w)

≤ V (x)− ³3(|x|) +

∫

W

σ(|w|)dμ(w)

≤ V (x)− ³3(|x|) +

∫

W

σc(|w|)dμ(w)

≤ V (x)− ³3(|x|) + σc

(
∫

W

|w|dμ(w)

)

= V (x)− ³3(|x|) + σc (E[|w|]) .

From Jensen’s inequality, we can also write E[|w|]2 ≤
E[|w|2] = tr(Σ). We define σ3(s) := σc(s

1/2) and note that
σ3(·) ∈ K. Thus, we have that σc(E[|w|]) = σ3(E[|w|]2) ≤
σ3(tr(Σ)) and
∫

W

V (f(x, κ(x), w))dμ(w) ≤ V (x)− ³3(|x|) + σ3 (tr(Σ)) .

Note that this bound holds for all μ(·) ∈ P(W ). Therefore, (9)
holds for ³3(·) ∈ K∞ and σ3(·) ∈ K, and Vμ(·) = V (·) is an
SISS Lyapunov function.

The converse of Proposition 10, however, does not hold.
For example, consider the scalar system x+ = (0.9 + w)x for
w ∈ W := {−0.2, 0, 0.2} distributed such that E[w] = 0. The
system is not ISS because w = 0.2 produces an unstable system
x+ = 1.1x, and therefore, |x(k)| → ∞ for some w ∈ W . But,
V (x) = x2 is an SISS Lyapunov function. �

Proposition 10 is both somewhat obvious and also, to the best
of our knowledge, new. Furthermore, this result allows us to,
for the first time, directly compare the theoretical properties of

nominal MPC and SMPC. Specifically, we use Proposition 10
in the subsequent analysis of nominal MPC to establish that the
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ISS Lyapunov function typically derived for nominal MPC also
confers RASiE. Moreover, Proposition 10 leads to the following
corollary that establishes a significant connection between RAS
and RASiE.

Corollary 11: Let Assumption 1 hold. If the origin of a
stochastic system x+ = f(x, κ(x), w), w ∈ W , is RAS in an
RPI and bounded set X , then the origin is also RASiE in X .

Outline of proof: We use [12, Th. 2.3] to establish that RAS
(ISS) implies the existence of an ISS Lyapunov function. Note
that we must specialize the results in [12] to a robustly positive
invariant set X and bounded disturbances, but this extension is
minor. By Proposition 10, this ISS Lyapunov function is also
an SISS Lyapunov function and by Proposition 8 the origin is
RASiE. �

D. Robustness W.R.T. the Stage Cost

For steady-state tracking applications of MPC, a standard
requirement is that the stage cost is lower-bounded by a K∞-
function of |x|, as detailed in the following assumption.

Assumption 3 (Stage cost bound): There exists ³�(·) ∈ K∞

such that ³�(|x|) ≤ �(x, u) for all (x, u) ∈ R
n × U .

This requirement ensures that if �(x, u) → 0, then |x| → 0,
but allows for significant flexibility in selecting �(·). This flexi-
bility is useful to tune the stage cost to reflect the importance of
different state and input variables according to the problem of
interest. This flexibility, however, also separates the objective of
the MPC problem from the metric considered in the definition of
RASiE. Thus, a reasonable metric for evaluating the robustness
of MPC formulations is the one specifically prescribed to the
MPC problem formulation: the stage cost. We therefore consider
a definition of stochastic robustness w.r.t. this stage cost �(·)
that we term RASiE w.r.t. the stage cost �(·) and abbreviate as
�-RASiE.

Definition 12 (�-RASiE): The origin of a stochastic system
x+ = f(x, κμ(x), w), w ∈ W , is said to be �-RASiE w.r.t. the
stage cost �(x, κμ(x)) in an RPI set X if there exist ´(·) ∈ KL
and γ(·) ∈ K such that

E [�(x(k), κμ(x(k)))] ≤ ´(|x|, k) + γ(tr(Σ)) (10)

in which x(k) = φμ(k;x,wk), for all x ∈ X , μ(·) ∈ P(W ),
and k ∈ I≥0.

If we have that ³�(|x|) ≤ �(x, u) for all x ∈ R
n, and that X

is bounded, �-RASiE also implies RASiE. Furthermore, we note
that this definition of robustness w.r.t. stage cost is stronger than
the stage cost bound often derived for SMPC (see [27, Th. 12]
or [6, Th. 6] for an example).

We now establish that an SISS Lyapunov function that
also satisfies �(x, κμ(x)) ≤ Vμ(x) ensures that the origin is
�-RASiE. Since the Lyapunov function constructed for MPC
is (almost) always based on the optimal cost function, requiring
�(x, κμ(x)) ≤ Vμ(x) is minor.

Proposition 13: If a system x+ = f(x, κμ(x), w), w ∈ W ,
admits an SISS Lyapunov functionVμ : X → R≥0 in an RPI and
bounded set X that satisfies �(x, κμ(x)) ≤ Vμ(x) for all x ∈ X
and μ(·) ∈ P(W ), then the origin is �-RASiE in X .

Proof: Using the SISS Lyapunov function, we proceed with
the same steps as in [27, Prop. 13], for an arbitraryμ(·) ∈ P(W ),
to give

E [Vμ(x(k))] ≤ max{ ˜́(Vμ(x), k), γ̃(tr(Σ))}

in which x(k) = φμ(k;x,wk), ˜́(·) ∈ KL, and γ̃(·) ∈ K. The
construction of ´(·) and γ(·) is similar to the standard approach
for discrete-time ISS Lyapunov functions, as discussed in [14,
Lemma 3.5]. We use the fact that �(x, κμ(x)) ≤ Vμ(x) to give

E [�(x(k), κμ(x(k)))] ≤ max{ ˜́(Vμ(x), k), γ̃(tr(Σ))}.

We use the upper bound for Vμ(x) to give

E [�(x(k), κμ(x(k)))]

≤ ˜́ (³2(|x|) + σ2(tr(Σ)), k) + γ̃(tr(Σ))

≤ ´(|x|, k) + γ(tr(Σ))

in which ´(s, k) := ˜́(2³2(s), k) ∈ KL and γ(s) :=
˜́(2σ2(s), 0) + γ̃(s) ∈ K. Note that the functions ´(·) and
γ(·) are constructed independently of μ(·) and therefore apply
for all μ(·) ∈ P(W ). �

Remark 14: We can consider additional performance met-
rics of the form �μ : X → R≥0 in the definition of �-RASiE.
If these metrics satisfy �μ(x) ≤ Vμ(x), or, more generally,
�μ(x) ≤ ³(|x|) for some ³(·) ∈ K∞, then the SISS Lyapunov
function is sufficient to establish �-RASiE w.r.t. this performance
metric.

III. NOMINAL MPC

For nominal MPC, the disturbance is not explicitly considered
in the optimization problem. Thus, the system model is

x+ = f(x, u, 0). (11)

For a prediction horizon N ∈ I≥1, we use φ̂(k;x,u) to denote
the open-loop state for (11) at time k ∈ I[0,N ], given the initial
state x and the control trajectory u = (u(0), u(1), . . . , u(N −
1)). For nominal MPC, we allow hard input constraintsu ∈ U ⊆
R

m, but do not enforce hard state constraints. While satisfaction
of hard state constraints is desirable, there is no guarantee that
hard state constraints can be satisfied for a perturbed system.
Instead, we assume that state constraints are converted to exact
penalty functions that are included in the stage cost [15], [36],
[40].

We do, however, use a terminal constraint Xf ⊆ R
n and a

define a terminal cost as Vf : R
n → R≥0. For MPC with a

horizon of N ∈ I≥1, we define the set of admissible inputs,
admissible states, and objective function, respectively, as

U(x) := {u ∈ U
N : x(N) ∈ Xf}

X := {x : U(x) �= ∅}

V (x,u) :=

N−1
∑

k=0

�(x(k), u(k)) + Vf (x(N))
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in whichx(k) := φ̂(k;x,u). The nominal MPC problem for any
x ∈ X is defined as

P (x) : V 0(x) = min
u∈U(x)

V (x,u) (12)

and the optimal solutions for a given initial state are denoted
u
0(x) := argmin

u∈U(x) V (x,u). Note that u
0(x) is a set-

valued mapping because there may be multiple solutions to
P (x). To streamline the following presentation, we assume that
there exists some Borel measurable selection rule that defines a
single-valued control law κ : X → U such that κ(x) ∈ u0(0;x)
for all x ∈ X , in which u0(0;x) is the set of first inputs inu0(x).
The resulting closed-loop system is then

x+ = f(x, κ(x), w). (13)

We use φ(k;x,wk) to denote the closed-loop state for (13)
at time k ∈ I≥0 given the initial state x ∈ X and disturbance
sequence wk ∈ W

k.
We consider the following assumptions adapted from [1].
Assumption 4 (Properties of the constraint sets): The set U

is compact and contains the origin. The set Xf is defined by
Xf := {x ∈ R

n : Vf (x) ≤ τ} for some τ > 0.
Assumption 5 (Terminal ingredients): The function Vf :

R
n → R≥0 is continuous and satisfies Vf (0) = 0. There exists

a terminal control law κf : Xf → U such that for all x ∈ Xf ,
f(x, κf (x), 0) ∈ Xf and

Vf (f(x, κf (x), 0)) ≤ Vf (x)− �(x, κf (x)).

Under these assumptions, we can establish the following
theorem for the robustness of nominal MPC.

Theorem 15 (MPC): Let Assumptions 1–5 hold. For every
ρ > 0, there exists δ > 0 such that for W ⊆ {w ∈ R

q : |w| ≤
δ}, the closed-loop system x+ = f(x, κ(x), w), w ∈ W , and
the setS := {x ∈ R

n : V 0(x) ≤ ρ} ∩ X we have the following.
i) The set S is RPI.

ii) The origin is RAS in the set S .
iii) The origin is RASiE in the set S .
iv) The origin is �-RASiE in the set S .

Outline of proof: Allan et al. [1] established (i) and (ii)
for suboptimal MPC (and thereby optimal MPC) by using the
cost function as an ISS Lyapunov function for the closed-loop
system. (iii) By Proposition 10, this ISS Lyapunov function is
also an SISS Lyapunov function and by Proposition 8, the origin
is RASiE on the bounded and RPI set S . (iv) Since the cost
function is used as the ISS/SISS Lyapunov function, we also
know that �(x, κ(x)) ≤ V (x) and by Proposition 13, the origin
is �-RASiE in the set S . �

Thus, nominal MPC, for sufficiently small disturbances
(|w| ≤ δ), satisfies all of the definitions of deterministic and
stochastic robustness in the set S . Moreover, continuity of the
optimal value function is not required for this result due to
the choice of the terminal constraint as a sublevel set of an
appropriate terminal cost (Assumptions 4 and 5). This robustness
is achieved without directly considering the disturbancew in the
optimization problem and is inherent to nominal MPC through
feedback.

IV. STOCHASTIC MPC

For SMPC, we consider the disturbance explicitly in the
optimization problem and optimize over a set of potential con-
trol policy parameterizations. We first define the parameterized
control policy π : R

n × V → U in which x ∈ R
n is the current

state of the system and v ∈ V ⊆ R
l are the parameters in the

control policy (e.g., π(x, v) = Kx+ v).3 Thus, the resulting
system of interest is defined as

x+ = f(x, π(x, v), w). (14)

We use φ̂s(k;x,v,w) to denote the open-loop state for (14) at
time k, given the initial state x ∈ R

n, the trajectory of control
policy parameters v = (v(0), v(1), . . . , v(N − 1)), and distur-
bance trajectory w ∈ W

N .
We consider the case of hard input and state constraints,

i.e., (x, u) ∈ Z ⊆ R
n × U . If we also consider (one-step-ahead)

probabilistic, we can reformulate these constraints as (x, u) ∈
Zμ ⊆ Z (see [27]), in which Zμ varies with μ(·). To streamline
the definitions and analysis in this initial work, however, we omit
probabilistic constraints and therefore the feasible set for SMPC
is independent of μ(·). For a horizon N ∈ I≥1 and the terminal
constraint Xf ⊆ R

n, we define the admissible parameter trajec-
tories and feasible initial states as

V(x) := {v ∈ V
N :

(x(k), π(x(k), v(k))) ∈ Z ∀w ∈ W
N , k ∈ I[0,N−1]

x(N) ∈ Xf ∀w ∈ W
N}

X s := {x : V(x) �= ∅}

in which x(k) = φ̂s(k;x,v,w).
We use the same stage and terminal cost defined for nominal

MPC to define the function

J(x,v,w) =

N−1
∑

k=0

�(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) = φ̂s(k;x,v,w). We define the SMPC cost func-
tion based on the expected value of J(·), i.e.,

V s
μ (x,v) :=

∫

W N

J(x,v,w)dμN (w).

The optimization problem for any x ∈ X s is defined as

P
s
μ(x) : V s0

μ (x) = min
v∈V(x)

V s
μ (x,v) (15)

and the optimal solutions for a given initial state are denoted
v
s0
μ (x) := argmin

v∈V(x) V
s
μ (x,v). Note that vs0

μ (x) is a set-
valued mapping because there may be multiple solutions to
P

s
μ(x). As with nominal MPC, we assume that there exists some

Borel measurable selection rule that defines a single-valued
control law κs

μ : X s → U such that κs
μ(x) ∈ {π(x, v) : v ∈

vs0μ (0;x)} for all x ∈ X s, in which vs0μ (0;x) is the set of first
parameter vectors in v

s0
μ (x). Both the optimal cost and control

3Nominal MPC formulations can use a similar control law parameterization
to “prestabilize” the open-loop system and thereby ensure that the MPC opti-
mization problem is well conditioned [13], [34].
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law for SMPC depend on the probability measure μ(·). The
resulting closed-loop system is then

x+ = f(x, κs
μ(x), w). (16)

We use φs
μ(k;x,wk) to denote the closed-loop state for (16)

at time k ∈ I≥0 given the initial state x ∈ X s, disturbance
sequence wk ∈ W

k, and probability measure μ(·) ∈ P(W ).
For SMPC formulations, we typically assume that the model

of the disturbance support and distribution is identical to that of
the underlying plant. We note, however, that this assumption is
idealized and typically not satisfied for any practical implemen-
tation of SMPC. Nonetheless, we proceed under this assumption.
The study of idealized SMPC is analogous to that of nominal
stability properties for a control algorithm. The merit of this
analysis is in establishing the best performance one can expect
from SMPC to serve as a baseline. If the performance is not
satisfactory under ideal conditions, then there is little incentive
to study nonideal conditions.

For SMPC, we require some of the same assumptions already
stated for MPC (specifically, Assumptions 1–3) as well as a few
modified assumptions.

Assumption 6 (Properties of the constraint sets; SMPC): The
set Z is closed and contains the origin. The sets U , Xf are
compact and contain the origin. The set Xf contains the origin
in its interior. The set X s is bounded.

Assumption 7 (Terminal ingredients; SMPC): The function
Vf : R

n → R≥0 is continuous and satisfies Vf (0) = 0. There
exists a continuous terminal control law κf : Xf → U such that
for all x ∈ Xf ,

f(x, κf (x), w) ∈ Xf ∀w ∈ W

Vf (f(x, κf (x), 0)) ≤ Vf (x)− �(x, κf (x)).

Furthermore, (x, κf (x)) ∈ Z and π(x, 0) = κf (x) for all x ∈
Xf .

Assumption 8 (Parameterization): The set V is compact and
contains the origin. The function π : R

n × V → U is continu-
ous.

Assumption 8 sets some basic requirements for the control law
parameterization while Assumptions 6 and 7 are the versions
of Assumptions 4 and 5 adjusted for SMPC. Assumption 6
addresses the additional state constraints added to the SMPC
problem while dropping the requirement that Xf is a level set
of the terminal cost. Assumption 7 requires, in addition to the
nominal cost decrease in the terminal region, that the terminal
control law renders the terminal set RPI. This requirement
ensures that the SMPC algorithm is robustly recursively feasible.

We note that Assumption 7 may seem significantly stronger
than Assumption 5. As such, we present the following result to
better understand the relationship between these two assump-
tions (see the Appendix for proof).

Lemma 16: Let Assumptions 2–5 hold and κf (·) be a con-
tinuous function. Then, there exists δ > 0 such that for any
W ⊆ {w ∈ R

q : |w| ≤ δ}, the terminal set Xf is RPI for the
system x+ = f(x, κf (x), w), w ∈ W .

Thus, the assumptions required for MPC are already sufficient
to guarantee that the terminal control law renders Xf RPI for

disturbances up to some size δ > 0. Indeed, the terminal control
law and set already in use for an MPC formulation may also be
satisfactory for an SMPC formulation. Of course, sufficiently
large disturbances may render the construction of a suitable
terminal control law and terminal set either difficult or impos-
sible if we consider nonlinear systems and/or input constraints.
Assumption 7 also ensures that Xf ⊆ X s, and therefore, X s is
not empty (See Lemma 22).

With these assumptions, we have the following result.
Theorem 17 (SMPC): Let Assumptions 1–3 and 6–8 hold

with W and μ(·) ∈ P(W ) known exactly. For the closed-loop
system x+ = f(x, κs

μ(x), w), w ∈ W , we have the following.
i) The set X s is RPI.

ii) The origin is RASiE in the set X s.
iii) The origin is �-RASiE in the set X s.

Proof: In [27, Prop. 11], we establish that the set X s is RPI
for arbitrary μ(·) ∈ P(W ). Since X s is not a function of μ(·),
X s is therefore RPI for all μ(·) ∈ P(W ), i.e., (i) holds. In [27,
Prop. 11], we also show that there exists σ(·) ∈ K such that

∫

W

V s0
μ (f(x, κs

μ(x), w))dμ(w)

≤ V s0
μ (x)− �(x, κs

μ(x)) + σ(tr(Σ)) (17)

for all x ∈ X s and arbitraryμ(·) ∈ P(W ). Although not explic-
itly stated in [27], (17) in fact holds for all μ(·) ∈ P(W ) with
the same function σ(·) ∈ K since this K-function is constructed
independently of the probability measure μ(·). The function
σ(tr(Σ)) captures the effect of varying probability measures
entirely through the argument tr(Σ). By using Assumption 3,
we have that there exists ³�(·) ∈ K∞ such that

∫

W

V s0
μ (f(x, κs

μ(x), w))dμ(w)

≤ V s0
μ (x)− ³�(|x|) + σ(tr(Σ))

for all x ∈ X s and μ(·) ∈ P(W ). Furthermore, we have that
³�(|x|) ≤ �(x, κs

μ(x)) ≤ V s0
μ (x) for all x ∈ X s and μ(·) ∈

P(W ).
We now construct the upper bound for Vμ(·). From the proof

of [27, Lemma 14], we have that

V s0
μ (x) ≤ Vf (x) +Nσ(tr(Σ)) (18)

for all x ∈ Xf and arbitrary μ(·) ∈ P(W ). Since the functions
Vf (·) and σ(·) are constructed independently of μ(·), we know
that (18) holds for all μ(·) ∈ P(W ). We then define

W (x) := max

{

sup
μ∈P(W )

(

V s0
μ (x)−Nσ(tr(Σ))

)

, 0

}

and note that 0 ≤ W (x) ≤ Vf (x) for all x ∈ Xf . Since Vf (·) is
continuous, W (0) = Vf (0) = 0, and Xf contains the origin in
its interior, we know that W (x) is continuous at the origin.

We now establish that W (x) is locally bounded. Let X be a
compact subset of X s. The function J : R

n × V
N × W

N →
R≥0 is a composition of a finite number of continuous functions
and is therefore continuous. Thus, J(·) has an upper bound on
the compact set X × V

N × W
N . Since V(x) ⊆ V

N for all x ∈

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28,2023 at 20:06:37 UTC from IEEE Xplore.  Restrictions apply. 



MCALLISTER AND RAWLINGS: STOCHASTIC ROBUSTNESS OF NOMINAL AND STOCHASTIC MODEL PREDICTIVE CONTROL 5817

X s, V s0
μ : X s → R≥0 must satisfy the same upper bound for all

μ(·) ∈ P(W ). Thus, W (x) must satisfy the same upper bound
because W (x) ≤ supμ∈P(W ) V

s0
μ (x). Since 0 ≤ W (x) and the

choice of X is arbitrary, W (x) is locally bounded on X s.
Since W (x) is locally bounded, satisfies W (0) = 0, and is

continuous at x = 0, there exists³2(·) ∈ K∞ such thatW (x) ≤
³2(|x|) for all x ∈ X s [32, Prop. 14]. Furthermore, we have that

V s0
μ (x)−Nσ(tr(Σ)) ≤ W (x) ≤ ³2(|x|)

for all x ∈ X s and μ(·) ∈ P(W ). Thus, V s0
μ (·) is an SISS Lya-

punov function and we apply Proposition 8 to establish (ii). Since
we also have that �(x, κμ(x)) ≤ Vμ(x), we use Proposition 13
to establish (iii). �

Note that, unlike nominal MPC, SMPC is not (necessarily)
RAS in the set X s. For linear systems, quadratic costs, and
specifically chosen control law parameterizations and terminal
costs, Goulart and Kerrigan [9] established that SMPC is RAS,
but this result relies on properties, such as convexity of the
optimal cost, that do not extend to the nonlinear SMPC problem.
We discuss the practical implications of this fact in Section VI.

V. CMPC

A key strength of SMPC is that the disturbances considered
in the problem formulation provide a natural means to tighten
the state and input constraints and ensure robust constraint
satisfaction for the closed-loop system, i.e.,

(φs
μ(k;x,wk), κ

s
μ(φ

s
μ(k;x,wk))) ∈ Z

for all x ∈ X ,μ(·) ∈ P(W ),wk ∈ W
k, and k ∈ I≥0. In certain

control problems, SMPC is used primarily for this purpose,
and the stochastic objective function is not essential to the
design goal. Tube-based MPC is particularly suited for these
problems as it provides a middle ground between nominal and
stochastic MPC. By using the stochastic/robust MPC framework
to systematically tighten constraints, tube-based MPC ensures
robust constraint satisfaction while retaining a nominal objective
function. For nonlinear systems, these tube-based formulations
use methods to (conservatively) tighten the state and input
constraints offline and thereby reduce the online computational
burden.

Since this article focuses on the closed-loop properties of
these MPC algorithms, we consider a somewhat different prob-
lem than the typical tube-based MPC formulation. Specifically,
we propose using the same control parameterization, disturbance
support, and therefore set of admissible control parameteriza-
tions (V(x)) as SMPC, but consider an objective function evalu-
ated for only the nominal trajectory. We denote this formulation
CMPC. This formulation, unlike tube-based MPC, does not lend
itself to offline computation of the setV(·) and therefore does not
offer the same computational efficiencies as tube-based MPC.
However, this formulation serves as an idealized version of
tube-based MPC. That is, we tighten the constraints no more than
necessary to ensure robust constraint satisfaction. Tube-based
MPC formulations can be viewed as methods to conservatively
approximate V(·) offline (or with minimal online computation).

We define the CMPC optimization problem as

P
c(x) : V c0(x) = min

v∈V(x)
J(x,v,0) (19)

for any x ∈ X s and the optimal solutions for a given initial state
are denoted v

c0(x) := argmin
v∈V(x) J(x,v,0).

Thus, we are using the disturbance support W to construct
the tightened constraint set V(x), but we optimize over the
nominal objective function (w = 0). We use a state feedback
parameterization, but disturbance feedback parameterizations
are also used in tube-based MPC. These two parameterizations
are equivalent for linear systems [10].

We use a Borel measurable selection rule to define the single-
valued control law κc : X s → U such that κc(x) ∈ {π(x, v) :
v ∈ vc0(0;x)} for allx ∈ X s, in which vc0(0;x) is the set of first
parameter vectors in v

c0(x). The resulting closed-loop system
is then

x+ = f(x, κc(x), w). (20)

Note that the optimal cost and control law for CMPC do not
depend on the probability measure μ(·).

Theorem 18 (CMPC): Let Assumptions 1–3 and 6–8 hold
with W known exactly. For the closed-loop system x+ =
f(x, κc(x), w), w ∈ W , we have the following.

i) The set X s is RPI.
ii) The origin is RAS in the set X s.

iii) The origin is RASiE in the set X s.
iv) The origin is �-RASiE in the set X s.

Proof: If x ∈ X s, we have that for v
0 ∈ v

c0(x) and
all w := (w(0), w(1), . . . , w(N − 1)) ∈ W

N , x(N,w) =

φ̂s(N ;x,v0,w) ∈ Xf and

f(x(N,w), κf (x(N,w)), w(N)) ∈ Xf

for all w(N) ∈ W by Assumption 7. Thus, the trajectory

ṽ
+ = (v0(1), v0(2), . . . , v0(N − 1), 0)

satisfies ṽ
+ ∈ V(x+) for x+ = f(x, κc(x), w(0)) and all

w(0) ∈ W . Since V(x+) �= ∅, x+ ∈ X s. So X s is RPI and (i)
holds. We also have from Assumption 7 that

J(f(x, κc(x), 0), ṽ+,0) ≤ J(x,v0,0)− �(x, κc(x)).

We have that J(·) is continuous and X s, U , and V are
compact. By [1, Prop. 20], there exists σ(·) ∈ K such that

|J(f(x, u, w),v,0)− J(f(x, u, 0),v,0)| ≤ σ(|w|)

for all (x, u, w) ∈ X s × U × W and v ∈ V
N . Thus, we have

for all x ∈ X s and w ∈ W ,

V c0(x+) ≤ J(f(x, κc(x), w), ṽ+,0)

≤ J(f(x, κc(x), 0), ṽ+,0) + σ(|w|)

≤ J(x,v0,0)− �(x, κc(x)) + σ(|w|)

≤ V c0(x)− ³�(|x|) + σ(|w|).

By Assumption 3, we have that ³�(|x|) ≤ �(x, κc(x)) ≤
V c0(x) for all x ∈ X s.
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We now construct the upper bound for V c0(x). We choose
x ∈ Xf and consider a nominal trajectory generated by re-
peated application of the terminal control law, denoted x(k) :=

φ̂s(k;x,0,0) since π(x, 0) = κf (x). The set Xf is RPI for
this control law due to Assumption 7 and the fact that 0 ∈ W .
Therefore, 0 ∈ V(x). From Assumption 7, we have that

Vf (x(k + 1))− Vf (x(k)) ≤ −�(x(k), κf (x(k)))

for all k ∈ I[0,N−1]. We sum both sides of the inequality from
k = 0 to k = N − 1 to give

Vf (x(N))− Vf (x) ≤ −
N−1
∑

k=0

�(x(k), κf (x(k))).

By optimality and the definition of J(·), we have

V c0(x) ≤ J(x,0,0)

=

N−1
∑

k=0

�(x(k), κf (x(k))) + Vf (x(N))

≤ Vf (x)

for all x ∈ Xf . Since 0 ≤ V c0(x), Vf (·) is continuous,
Vf (0) = 0, and Xf contains the origin in its interior, we have
that V c0(·) is continuous at the origin.

The function J(x,v,0) is continuous and therefore has an
upper bound on the compact set X × V

N for any compact
X ⊆ X s. Since V(x) ⊆ V

N for all x ∈ X s, V c0(x) has the
same upper bound on X . Since X is arbitrary, V c0(·) is locally
bounded on X s. Since V c0(·) is continuous at the origin and
locally bounded on X s, there exists ³2(·) ∈ K∞(·) such that
V c0(x) ≤ ³2(|x|) for all x ∈ X s [32, Prop. 14].

Thus, V c0(·) is an ISS Lyapunov function on the RPI set X s.
Also, V c0(·) is an SISS Lyapunov function by Proposition 10.
Furthermore, we have that X s is bounded (Assumption 6) and
that �(x, κc(x)) ≤ V c0(x). Thus, by Propositions 5, 8, and 13,
we have (ii)–(iv). �

An important property of CMPC is that, unlike SMPC, the
origin is RAS. Furthermore, the probability measure of the
disturbance is not required to solve the optimization prob-
lem (except to construct probabilistic constraints). Analogous
to nominal MPC, we still satisfy the proposed definitions of
stochastic robustness (RASiE and �-RASiE), without requiring
a stochastic objective function.

VI. EXAMPLES AND COMPARISONS

With Theorems 15, 17, and 18 in hand, we make the following
observation: nominal MPC, SMPC, and CMPC satisfy the same
definitions of stochastic robustness. The next question to answer
is then: Which method is more robust? Based on the definitions of
stochastic robustness presented in this article, we consider three
specific conjectures that characterize the notion that SMPC is
more robust than nominal MPC.

Naive Conjecture 19: Let f(·), �(·), Vf (·), U , Xf , μ(·), and
W be the same for nominal MPC and SMPC. Then, the feasible
set for SMPC, X s, is larger than the RPI set for nominal MPC,
S , for the same disturbance set W , i.e., S ⊆ X s.

Naive Conjecture 20: Let f(·), �(·), Vf (·), U , Xf , μ(·), and
W be the same for nominal MPC and SMPC. For any x ∈ X s,

lim
k→∞

E
[

|φs
μ(k;x,wk)|

]

≤ lim
k→∞

E [|φ(k;x,wk)|]

if these limits exist, i.e., SMPC is better than MPC in terms of
the expected norm of the closed-loop state (RASiE).

Conjecture 21: Let f(·), �(·), Vf (·), U , Xf , μ(·), and W be
the same for nominal MPC and SMPC. For any x ∈ X s,

lim
k→∞

E
[

�(xs(k), κs
μ(x

s(k)))
]

≤ lim
k→∞

E [�(x(k), κ(x(k)))]

if these limits exist in which xs(k) = φs
μ(k;x,wk) and x(k) =

φ(k;x,wk), i.e., SMPC is better than MPC in terms the expected
value of the closed-loop stage cost (�-RASiE).

In the following sections, we use a few simple examples to
investigate these conjectures and compare the strengths, weak-
nesses, and closed-loop behavior of MPC, SMPC, and CMPC. In
particular, we demonstrate that Naive Conjectures 19 and 20 do
not hold. Conjecture 21, however, is supported by the following
examples.

A. RPI Sets

Naive Conjecture 19 frames the discussion of robustness
based on the respective RPI sets for each control method. We
note that CMPC and SMPC, due to their formulations, share the
same RPI setX s. We begin with a comparison of three important
sets for each of these problems.

Lemma 22: Let Assumptions 1, 2, and 6–8 hold. Let f(·), U ,
Xf , and W be the same for nominal MPC and SMPC. Then,
Xf ⊆ X s ⊆ X .

Proof: For any x ∈ Xf , we have that 0 ∈ V(x) because
Assumption 7 ensures that Xf is RPI for the system x+ =
f(x, κf (x), w), w ∈ W , and (x, κf (x)) ∈ Z. So for any x ∈
Xf , V(x) �= ∅ and therefore x ∈ X s as well. Thus, Xf ⊆ X s.

For any x ∈ X s and v ∈ V(x), we know that
φ̂s(N ;x,v,0) ∈ Xf because 0 ∈ W by Assumption 1.
Thus, we can define u = (u(0), . . . , u(N − 1)) such that
u(k) = π(φ̂s(k;x,v,0), v(k)) and we have that φ̂(k;x,u) =
φ̂s(k;x,v,0). Therefore, u ∈ U

N , φ̂(N ;x,u) ∈ Xf , and
u ∈ U(x). So for any x ∈ X s, U(x) �= ∅ and therefore x ∈ X
as well. Thus, X s ⊆ X . �

Naive Conjecture 19, however, compares the set X s to the
RPI set for nominal MPC from Theorem 15, i.e., the set S , for
an equivalent disturbance setw ∈ W . By definition,S ⊆ X , but
establishing the relative sizes of S and either Xf and X s for a
general nonlinear control problem is difficult.

Instead, we demonstrate a counter example to Naive Con-
jecture 19. Consider the scalar system x+ = x+ u+ w with
|u| ≤ 2 and |w| ≤ 1. Choose the stage cost �(x, u) = x2 + u2,
terminal cost Vf (x) = 2x2, terminal constraints Xf := [−2, 2],
and control law parameterization π(x, v) = −x+ v. We have
that X := {x : |x| ≤ 2 + 2N} and X s := {x : |x| ≤ 2 +N}
since SMPC must address the potential for a disturbance of
|w| = 1 at each time step while still satisfying the terminal
constraint. Thus, we have that Xf ⊂ X s ⊂ X for all N ≥ 1,
in which these are strict subsets. For the disturbance of interest,
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Fig. 1. Two tanks with gravity driven flow between tanks 1 and 2.

however, the entire feasible set X is RPI for the nominal MPC
controller. Thus, we have

X s ⊂ S = X

in which X s is a strict subset of S , i.e., Naive Conjecture 19
does not hold. In the next section, we also establish a counter
example to Naive Conjecture 20.

B. Liquid-Level Control

We consider a simple example with two tanks as shown in
Fig. 1. The goal is to control the height of liquid in each tank
via the inlet flow rate into tank 1 and the effluent flow rate from
tank 2. Tank 1 drains into tank 2 by gravity at a rate proportional
to the height of tank 1.

This proportionality constant is subject to uncertainty and w
may take values in the set W := {−0.3, 0, 0.3} with the prob-
ability measure μ({0.3}) = μ({−0.3}) = 0.35 and μ({0}) =
0.3. We write the differential equations for the system in devia-
tion variables as follows:

dx1

dt
= −(1 + w)x1 + u1 − w

dx2

dt
= (1 + w)x1 − u2 + w

in which x1, x2 are the tank heights and u1, u2 are the flow
rates. The nominal system (w = 0) is linear, but the disturbance
results in both an additive and multiplicative effect on the system
in terms of deviation variables. Since the disturbance support
is finite, we can discretize this differential equation (assuming
a zero-order hold on the inputs and disturbance) exactly for all
w ∈ W . We evaluate the expected value of the objective function
in the SMPC optimization problem by enumerating all possible
disturbance trajectories. We similarly evaluate expected value
of the closed-loop state and stage cost by simulating all possible
disturbance trajectories.

We have the input constraints u1, u2 ∈ [−1, 1]. We define the
stage cost as �(x, u) := x′Qx+ u′RuwithQ := diag([0.1, 20])
and R := diag([0.1, 0.1]). Note that we have selected penalties
that strongly discourage any deviations in the height of the
second tank. Nonetheless, this stage cost is positive definite and
satisfies all the usual requirements for nominal MPC and SMPC.

We use the LQR cost P and gain K from the nominal system
(w = 0) to define the terminal cost Vf (x) := x′Px and control

Fig. 2. Closed-loop trajectory for MPC for the liquid-level control prob-
lem.

Fig. 3. Closed-loop trajectory for SMPC for the liquid-level control
problem.

law parameterization π(x, v) := Kx+ v. We define the termi-
nal constraint as Xf := {x : |x1| ≤ 0.4, |x2| ≤ 0.4} and verify
that this terminal constraint satisfies the required assumptions
with the terminal control law κf (x) := Kx.4

In Figs. 2 and 3, we plot the resulting closed-loop trajectories
for each realization of the disturbance and the expected values
of these trajectories for MPC and SMPC, respectively, with
N = 3. Since deviations in x2 are assigned a large cost, the
SMPC controller decides to decrease the height of the first tank
to minimize the effect of the disturbance on x2. While there are
clear benefits to this approach in terms of the expected stage cost
of the system, the behavior is nonintuitive in terms of a typical
tracking control problem. Indeed, SMPC drives the system away
from the origin. The closed-loop trajectory for CMPC is identical
to nominal MPC and therefore omitted.

We plot the expected value of the norm of the state and stage
cost for the closed-loop trajectory of each controller in Fig. 4.
As we may expect, SMPC achieves a lower expected stage cost
as k → ∞. The value of E[|x(k)|], however, is larger for SMPC
than for MPC. By the end of the simulation at k = 3, the value
E[|x(k)|] appears to be constant and we presume that the limit
of E[|x(k)|] exists and is approximately the same as the value
at k = 3. Thus, Naive Conjecture 20 does not hold.

As noted in the previous theoretical analysis, one significant
distinction between MPC and SMPC (for nonlinear systems) is
that SMPC does not guarantee robust asymptotic stability. We
demonstrate the implications of this shortcoming by considering
a nominal realization of the disturbance, i.e., wk = 0. We plot
the nominal closed-loop trajectory for SMPC in Fig. 5. Despite
the fact that no disturbance occurs, SMPC drives the system
away from the origin and is therefore not RAS or nominally
asymptotically stable.

4We have not chosen Xf as a level set of Vf (·) as required by Assumption
4. However, the nominal system is linear and the constraints are convex, and
therefore, nominal MPC is RAS [11].
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Fig. 4. Expected value of the norm of the state and stage cost for
the closed-loop trajectory of each controller in the liquid-level control
problem.

Fig. 5. Closed-loop trajectory for SMPC subject to a nominal realiza-
tion of the disturbances, i.e., wk = 0, for the liquid-level control problem.

C. State Constraints

We now consider a two-state linear system to illustrate the
benefits of the systematic constraint tightening procedure inher-
ent to SMPC and CMPC. The system is described by

x+ = Ax+Bu+Gw

A =

[

1 0.1

−0.1 0.95

]

B =

[

5

0.1

]

G =

[

1

0

]

with u ∈ [−1, 1]. We again assume a finite support for w with
μ({0.05}) = μ({−0.05}) = 0.35 and μ({0}) = 0.3. We also
consider the state constraint |x1| ≤ 1.

We use a quadratic stage cost with Q = diag([1, 10]) and
R = 0.1. We use the LQR cost P and gain K for the un-
constrained system to define the terminal cost Vf (x) := x′Px,
terminal constraint Xf := {x : x′Px ≤ 1}, and terminal control
law κf (x) := Kx. We define π(x, v) = Kx+ v for SMPC and
CMPC and verify that this design satisfies all the required
assumptions. We choose a horizon of N = 4.

Since SMPC and CMPC can guarantee robust state constraint
satisfaction (if the disturbance support is accurate), we include
the state constraint as a hard constraint in these optimization
problems. For MPC, we instead convert the state constraint to a
large violation penalty to ensure that the constraint is satisfied
if possible while retaining robust recursive feasibility of the
optimization problem. Specifically, we redefine the stage cost
as

�(x, u) = x′Qx+ u′Ru+ λ|x1|[−1,1]

Fig. 6. Closed-loop trajectories for MPC subject to 30 different realiza-
tions of the disturbance sequence for the state constraint example.

Fig. 7. Closed-loop trajectories for SMPC subject to 30 different real-
izations of the disturbance sequence for the state constraint example.

in which λ ≥ 0 is a large violation penalty and |x1|[−1,1] :=
min{|y − x1| : y ∈ [−1, 1]} denotes point-to-set distance. We
find that λ = 100 is sufficient to ensure constraint satisfaction
in the nominal optimization problem (when possible). We use
this stage cost in the subsequent statistics for the closed-loop
system.

In Figs. 6 and 7, we plot the closed-loop trajectory for 30
realizations of the disturbance (drawn from the known distribu-
tion) for MPC and SMPC, respectively. Both controllers initially
drive x1 away from the origin in the interest of minimizing the
value of x2 and therefore the stage cost. The main difference
between these methods is that MPC drives the nominal value
of x1(1) to the state constraint and therefore cannot ensure that
this constraint is satisfied for the perturbed system. By contrast,
SMPC leaves a buffer between the nominal value of x1(1)
and the state constraint to ensure robust constraint satisfaction.
For subsequent time steps, however, the two control methods
produce similar trajectories.

We plot the performance of each method in terms of E[|x|]
and E[�(x, κ(x))] in Fig. 8. We note that CMPC produces nearly
identical performance to SMPC without the need for a stochastic
objective. At k = 1, MPC violates the state constraint, and there-
fore, the closed-loop performance of MPC is inferior to SMPC
or CMPC. But for k ≥ 2, all of these controllers produce nearly
equivalent performance. Once the state is inside the terminal
region and state/input constraints are not active, the optimal
controller for both the nominal and stochastic linear system is
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Fig. 8. Sample average closed-loop performance of each method sub-
ject to 30 different realizations of the disturbance sequence for the state
constraint example.

the LQR feedback gain. Thus, MPC, SMPC, and CMPC all use
the same control law within the terminal region and achieve the
same closed-loop performance in this region.

VII. CONCLUSION

SMPC can find a superior operating point or trajectory than
nominal MPC, in terms of the expected stage cost. Thus, Con-
jecture 21 is well motivated and is supported by these examples,
although we were unable to prove (or disprove) this conjecture.
Naive Conjectures 19 and 20, however, do not hold. Thus, the
claim that SMPC is necessarily “more robust” than nominal
MPC should be qualified. There are reasonable definitions of
robustness for which MPC can outperform SMPC.

In summary, SMPC appears to offer a clear benefit for control
applications that prioritize economic performance (i.e., stage
cost minimization) over stability of a target steady state. If sta-
bility of a target steady state is prioritized; however, the benefits
of SMPC are less obvious. Feedback is sufficient to ensure that
MPC, without any knowledge of the disturbance model or distri-
bution, achieves the same type of stochastic robustness afforded
by SMPC, i.e., RASiE and �-RASiE, for sufficiently small dis-
turbances (|w| ≤ δ). If this nonzero margin of robustness (δ > 0)
is too small and/or robust state constraint satisfaction is required
for safety-critical applications, constraint-tightening methods
such as CMPC can be employed that also ensure RASiE and
�-RASiE without a stochastic objective function. Furthermore,
SMPC does not ensure RAS of the origin, a property often seen
as essential for a control algorithm. We also emphasize that these
results address only idealized SMPC, in which the probability
measure of the disturbance is known exactly. In practice, we
do not have an exact disturbance model and the performance of
SMPC may degrade relative to the idealized case.

APPENDIX

Proof of Proposition 16: Since Vf (·), f(·), and κf (·) are
continuous and Xf and U are bounded, we have from [1, Prop.
20] that there exists σ(·) ∈ K∞ such that

|Vf (f(x, κf (x), w))− Vf (f(x, κf (x), 0))| ≤ σ(|w|)

for all x ∈ Xf and w ∈ W . We combine this bound with As-
sumption 5 to give

Vf (f(x, κf (x), w)) ≤ Vf (x)− �(x, κf (x)) + σ(|w|)

for allx ∈ Xf andw ∈ W . We apply the bound in Assumption 3
to give

Vf (f(x, κf (x), w)) ≤ Vf (x)− ³�(|x|) + σ(|w|)

for all x ∈ Xf and w ∈ W . Furthermore, since Vf (0) = 0, then
by [1, Prop. 20] there exists σf (·) ∈ K∞ such that

Vf (x) = |Vf (x)− Vf (0)| ≤ σf (|x|).

Recall that Xf := {x ∈ X : Vf (x) ≤ τ} for some τ > 0. If
Vf (x) ≥ τ/2, then we have |x| ≥ σ−1

f (τ/2) and therefore

Vf (f(x, κf (x), w)) ≤ τ − ³�(σ
−1
f (τ/2)) + σ(|w|).

If Vf (x) < τ/2, we have that

Vf (f(x, κf (x), w)) ≤ τ/2 + σ(|w|).

Therefore, for all x ∈ Xf , we have

Vf (f(x, κf (x), w)) ≤ τ − γ + σ(|w|)

in which γ = min{τ/2, ³�(σ
−1
f (τ/2))}. By bounding |w| ≤

σ−1(γ) =: δ, we have that Vf (f(x, κf (x), w)) ≤ τ for all x ∈
Xf . Thus, for any w ∈ W ⊆ {w ∈ R

q : |w| ≤ δ}, we have that
x ∈ Xf implies f(x, κf (x), w) ∈ Xf . �
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