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ABSTRACT: Probability distributions are often used to character-
ize the randomness of nature. In stochastic model predictive
control (SMPC), disturbances are described by a probability
distribution that is used within a stochastic optimization problem
to construct a feedback control law. While powerful, these
probability distributions are themselves subject to their own type
of uncertainty, often called distributional uncertainty. In this work,
we establish that SMPC, under suitable assumptions, provides a
nonzero margin of robustness to this distributional uncertainty.
This inherent distributional robustness is a%orded by feedback and careful algorithm design. Through a small example, we
demonstrate the implications of this result for incorrectly modeled, out-of-sample, and even unmodeled disturbances. This result also
covers scenario-based approximations of stochastic optimal control problems and unifies the description of robustness for nominal
and stochastic model predictive control.

1. FOREWORD: SOME RECOLLECTIONS OF TUNDE
OGUNNAIKE

During my (R.D.M.) time as an undergraduate student at the
University of Delaware between 2013 and 2017, Professor
Ogunnaike was the Dean of the College of Engineering.
Despite what I assume was a demanding schedule as Dean,
Prof. Ogunnaike made it a point to sneak into many chemical
engineering courses as a guest lecturer. The first of these
lectures I was fortunate enough to attend was in the
Introduction to Engineering course required for all of the
freshman engineering majors. Prof. Ogunnaike, of course,
devoted the lecture to probability and statistics. Perhaps less
important than the material covered was the statement made
by this choice. The Dean of the College of Engineering, with a
long and acclaimed career in industry and academia, thought
that the most important thing he could tell the freshman
engineering class was about probability and statistics. Clearly,
that point stuck with me for the years to come.
Although not directly, Prof. Ogunnaike’s influence was still

felt in the chemical engineering curriculum at the University of
Delaware. The process dynamics and control course was
designed by Prof. Ogunnaike and taught from his book.1 The
chemical engineering department even o%ered a probability
and statistic course based another one of Prof. Ogunnaike’s
books.2 Prof. Ogunnaike’s e%orts undoubtedly shaped my
education for the better with e%ects that still resonate in my
doctoral research in stochastic dynamical systems and control.
While I only got the opportunity to interact with Prof.
Ogunnaike on a few occasions, his friendly and considerate
nature was apparent. During my senior year, I decided to
pursue a Ph.D. at the University of Wisconsin following my

graduation. At the commencement ceremony, as I walked
across the stage to shake his hand and accept my diploma,
Prof. Ogunnaike had only two words for me: “Go Badgers!”

I (J.B.R.) first met Tunde Ogunnaike on a cold January day
in 1980 in Madison, WI, when I arrived to enroll in the
chemical engineering Ph.D. program at the University of
Wisconsin. Tunde took me under his wing, showed me where
the best apartments close to campus were located, and
introduced me around to the other graduate students who
would become my colleagues for the next five years. I later
chose Professor Harmon Ray as my research advisor, and since
Tunde was also one of Harmon’s Ph.D. students, we became
close colleagues during graduate school and lifelong friends.
Besides his quiet and thoughtful demeanor and his kindness
toward other people, one of the first professional attributes I
noticed about Tunde was his enthusiasm for and deep
understanding of probability and statistics. Where I might
investigate the Physics department’s graduate o%erings for
relevant courses in mechanics, Tunde would scour UW’s
outstanding Statistics department’s graduate courses. He took
that department’s two-semester required graduate sequence for
statistics Ph.D. students. He took so many graduate courses
that he earned an M.S. in Statistics while doing his Ph.D. in
Chemical Engineering. Even though I knew very little about
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the subject, Tunde would tutor me on various fundamental
issues, such as the meaning and interpretation of Bayesian
statistics, and we would have long, philosophical debates about
the theoretical underpinnings of the subject. Although I
successfully avoided formal education in statistics as a graduate
student, it was a choice I would later regret when I wanted to
understand better how to model uncertainty in dynamical
systems, especially when designing feedback controllers for
these systems. Later, as an Assistant Professor at the University
of Texas, I had to buckle down and teach myself probability
and statistics. That is one of the reasons I encourage my own
graduate students to take as many graduate courses as they
wish during their Ph.D. studies. It is just much easier to learn a
subject when an expert has organized all the material and is
going to explain it to you and answer your questions.
Much later, when coauthoring a graduate engineering text

on mathematical modeling, I wrote up my own take on what
probability and statistics mean and why they are useful, starting
with the axioms of probability, and working through random
variables, sampling, conditional probability, and all the other,
by then, indispensable tools of this subject that find application
in engineering. Tunde was the person I would show the early
drafts of the probability chapter, and he gave me lots of helpful
feedback. About this time, his own text on randomness and
random variables was nearing completion,2 and he would send
me drafts of various chapters. Likely the most illuminating
discussions Tunde and I had during this period concerned the
notion of convergence of samples of a random variable to the
probability distribution of that random variable. I think we
both learned something from those discussions. One
illustration of those ideas is given in Figure 2 of this paper.
The content of this paper is the natural consequence of my

many discussions with Tunde over many years. Nature is
random. You want to control some part of nature. So how do
you design a control system to contend with nature’s
randomness? And what precisely can you say about how well
your designed control system will perform at this task?

2. INTRODUCTION

Disturbances and uncertainty are an inescapable part of any
engineering system. In process control, the preferred method
to address these potential disturbances and uncertainty is
through feedback. By reacting to these disturbances as they are
observed, we imbue even simple control algorithms such as
PID with some margin of robustness to these disturbances.
This margin of robustness allows the control algorithm to
withstand and overcome the small perturbations and model
uncertainty that are ubiquitous in applications. For this reason,
feedback is an essential component of even advanced,
optimization-based control algorithms such as model pre-
dictive control (MPC).
In nominal MPC, we use a nominal dynamical model of the

system to predict the future states of the plant given a
trajectory of inputs over a finite horizon. We then solve an
optimization problem to select the optimal trajectory of inputs
for the system given some measure of performance that we call
a stage cost. We implement only the f irst input in this optimal
trajectory. After a fixed time interval, we then estimate the new
state of the system based on measurements (i.e., feedback) and
recompute the optimal input trajectory from this new state,
again implementing only the first input of this trajectory. We
repeat this process at each time step and therefore construct an

algorithm that includes both optimization and feedback from
the system.

In a significant contribution, Grimm et al.3 demonstrate that
certain (nonlinear) nominal MPC formulations may produce
suitable performance for the idealized case (i.e., no
disturbances) and yet a%ord zero margin of robustness to
disturbances. For example, arbitrarily small disturbances can
produce unstable closed-loop systems without careful algo-
rithm design. After a decade of further research, Yu et al.4

demonstrate suGcient conditions for the MPC problem
formulation that guarantee a nonzero margin of robustness
to disturbances. Allan et al.5 extend these results to a
suboptimal MPC algorithm and more general terminal
conditions that admit discrete-valued inputs. We refer to this
property as inherent robustness because this robustness is
a%orded by feedback and does not require any disturbance
information in the nominal MPC optimization problem.

While the inherent robustness of nominal MPC is often
suGcient in industrial practice, there may arise applications
with unusually stringent safety requirements or performance
demands, or with large uncertainty that is poorly captured via a
nominal dynamical model of the system. For these
applications, stochastic MPC (SMPC) o%ers a method with
the potential to improve on the robustness of nominal MPC by
including a stochastic description of the disturbance directly in
the problem formulation. The SMPC optimization problem
typically involves minimizing the expected value of the stage
cost subject to deterministic and probabilistic constraints.6−8

SMPC still incorporates feedback via the same rolling horizon
approach as nominal MPC (i.e., the stochastic optimization
problem is solved at each sampling time with an updated state
estimate to determine the input at that time). For more details
on approximating and solving both linear and nonlinear SMPC
problems see Mesbah7 and the references therein. While
solution methods for these SMPC problems are important
research topics, we instead focus this work on the properties of
the control law and resulting closed-loop system generated by
SMPC.

For the linear SMPC problem, one can establish several
important results for the closed-loop system. If we use a global
stochastic Lyapunov function as the terminal cost, then one
can establish that linear SMPC renders the origin asymptoti-
cally stable in probability for multiplicative disturbances9 and
stable in expectation for additive disturbances.10 Global
stochastic Lyapunov functions, however, are not available for
open-loop unstable systems with input constraints. Instead,
one can use a terminal constraint and a local Lyapunov
function as the terminal cost to ensure recursive feasibility and
stability in expectation for closed-loop systems subject to
bounded disturbances.11−14 We note that for open-loop
unstable systems with input constraints the disturbances
must be bounded to ensure that a stabilizing control law
exists for the system. Goulart and Kerrigan15 establish that
linear SMPC with a quadratic, positive definite stage cost
renders the origin input-to-state stable (ISS) for the closed-
loop system, regardless of the disturbance’s probability
distribution. Lorenzen et al.16 extend these results to include
a less restrictive constraint tightening approach and establish
that the minimal robust positive invariant set is asymptotically
stable with probability one for linear SMPC. Hewing et al.17

propose a linear SMPC algorithm with indirect feedback to
ensure recursive feasibility of the stochastic optimization
problem and establish similar stability results for their
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algorithm. Sehr and Bitmead18 propose a linear SMPC
algorithm with output-feedback and establish a bound on the
asymptotic average performance of the closed-loop system.
For nonlinear SMPC, the closed-loop properties are more

diGcult to analyze, and results are necessarily more
conservative. In a significant contribution, Chatterjee and
Lygeros19 use a global stochastic Lyapunov function as the
terminal cost to establish that the expected value of the optimal
cost is bounded along the closed-loop trajectory. Mayne and
Falugi20 then extend this result to systems with input/state
constraints and bounded disturbances via a terminal constraint.
In McAllister and Rawlings,21 the authors improve on these
stability results and establish that SMPC renders the origin
robustly asymptotically stable in expectation (RASiE).
All of these results, however, rely on the pivotal assumption

that the stochastic model of uncertainty used in the SMPC
optimization problem is equivalent to the stochastic
uncertainty of the plant. Thus, these results apply to only an
idealized version of SMPC. In practice, the disturbance
distribution, typically identified from data, is not exact and is
instead subject to its own uncertainty, often called distribution-
al uncertainty. What then happens to these guarantees for
idealized SMPC if the distribution used in the optimization
problem is not the same as the plant? As demonstrated for
nominal MPC, there is a possibility that without careful
algorithm design, SMPC may provide zero margin of
robustness to distributional uncertainty for some nonlinear
systems, even if the idealized SMPC performance is
satisfactory.
In this work, we introduce suGcient conditions that ensure

SMPC provides a nonzero margin of robustness to this
distributional uncertainty. We call this property inherent
distributional robustness. We again use the term inherent to
emphasize that this distributional robustness is the result of
feedback, and we do not incorporate any measure of this
distributional uncertainty in the stochastic optimization
problem. These suGcient conditions provide a set of design
rules for SMPC that ensure the algorithm is not fragile and
therefore more suitable for industrial implementation.
The paper outline is as follows. In section 2, we consider

linear unconstrained systems and the stochastic linear
quadratic regulator to introduce the concept of distributional
robustness. In section 3, we then introduce the nonlinear
SMPC problem formulation and associated assumptions. In
section 4, we define distributional robustness for closed-loop
systems and note that SMPC is distributionally robust in this
context for suGciently small errors in the disturbance
distribution. In section 5, we use a small example to
demonstrate the implications of this distributional robustness
for incorrectly modeled and unmodeled disturbances. In
section 6, we discussion the significance of this result for
scenario-based approximations of the SMPC optimization
problem and extensions to nominal MPC. More technical
details on these results can be found in McAllister and
Rawlings.22

2.1. Notation. Let and denote the integers and reals,
respectively. Let superscripts on these sets denote dimension,
and let subscripts on these sets denotes restrictions (e.g., n

0

for nonnegative reals of dimension n). Let |·| denote Euclidean
norm and |x|Y ≔ infy∈Y|x − y| denote Euclidean point-to-set
distance. Let f: X → Y denote a function that maps any x ∈ X
to a point f(x) ∈ Y. A function f: X → Y is Lipschitz
continuous if there exists L ≥ 0 such that |f(x1) − f(x2)| ≤ L|x1

− x2| for all x1, x2 ∈ X. A function f: X → Y is locally Lipschitz
continuous if f(·) is Lipschitz continuous on any compact
subset of X. Let ( ) denote the Borel algebra of some set Ω.
Let tr(A) denote the trace of the matrix A. Let Pr(x ∈ S)
denote the probability that a random variable x takes a value in
the set S. Let [ ]x denote expected value of a random variable
x and [ | ]x y denote the conditional expected value of x given y.
The function :

0 0
is in class , written ·( ) ,

if α(·) is continuous, strictly increasing, and α(0) = 0.

3. STOCHASTIC LINEAR QUADRATIC REGULATOR

We begin with a linear unconstrained control problem to
introduce the concept of distributional robustness for closed-
loop systems. The system is described by the di%erence
equation

= + +
+
x Ax Bu w (1)

in which x
n is the state, u

m is the input, and
=w

q is the disturbance. The successor state is
denoted x+ and ×

A
n n, ×

B
n m are matrices. We assume

that the pair (A, B) is stabilizable. The disturbance w is
assumed to be a normally distributed random variable that is
independent and identically distributed (i.i.d.) in time with
zero mean:

w (0, )

in which Σ ≻ 0 is the covariance of w. Let

w w w kw ( (0), (1), ..., ( 1))
k

denote the sequence of random variables up to k
0
. For

any Borel measurable function g: k , let [ ]g w( )k
denote expected value with respect to this distribution of w.

In this work, however, we do not assume that the probability
distribution of the plant is known. We instead assume that the
stochastic optimal control problem is formulated with a model
of this disturbance denoted w. For this linear case, we assume
that w is also a normally distributed random variable that is
i.i.d. and zero mean:

w (0, )

in which Σ̂ ≻ 0 is the covariance of w. Note that may not be
equal to Σ. The corresponding dynamical model therefore
evolves according to

= + +
+
x Ax Bu w

in which w (0, ). Let

w w w kw ( (0), (1), ..., ( 1))
k

denote the sequence of random variables up to k
0
. For

any Borel measurable function g: k , let [ ]g w( )k
denote expected value with respect to this distribution of w.

For this model of the probability distribution, we define the
stochastic linear quadratic regulator (LQR) as follows. We do
not refer to this formulation as linear quadratic Gaussian
(LQG) control because we do not include the Kalman filter
component of the standard LQG problem. Instead, we focus
on only the regulation portion of the problem.

Since this formulation considers all possible realizations of
the disturbance, we must optimize over a sequence of feedback
policies Π ≔ (π0, π1, ...) instead of a single trajectory of inputs.
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These feedback policies map the state of the system at time k
to a specific input u(k) = πk(x(k)) within the stochastic
optimization problem. We assume, without loss of generality,
that the origin is the target steady state for the controller.
We define the stage cost as

+x u x Qx u Ru( , )

in which Q, R are positive definite matrices (Q, R≻ 0). We
then define the infinite horizon cost function as

Ä

Ç

Å
Å
Å
Å
Å
Å
Å
Å
Å
Å
Å

É

Ö

Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ=

V x
N

x k x k( , ) lim
1

( ( ), ( ( )))
N

k

N

k

0

1

in which + = + +x k Ax k B x k w k( 1) ( ) ( ( )) ( )
k is the

stochastic system evolution, x(0) = x is the deterministic
initial condition, and Π is the infinite trajectory of control
policies. We normalize the infinite horizon cost by the horizon
length so that V x( , ) is finite. The infinite horizon stochastic
optimal control problem is then given by

=V x V x( ) min ( , )0

(2)

for all x n in which the optimal trajectory of policies is

denoted = ( , , ...)0
,0
0

,1
0 . We use the subscript to

indicate that the cost function and therefore the optimization
problem depend on the probability distribution of w.
Using dynamic programming, one can show that the

solution to this optimization problem is given by the matrix
P≻ 0 that solves the discrete-time algebraic Riccati equation
(DARE):

= + +P APA APB R B PB B PA Q( )( ) ( )1
(3)

such that A + BK is Schur stable with

= +K R B PB B PA( ) ( )1

(see section 3.1 in Bertsekas).23 Note that we require (A, B)
stabilizable for this solution to exist. The optimal cost is given

by =V x tr P( ) ( )0 and the optimal control law, defined by the

first control policy in the optimal solution, is given by
= =x x Kx( ) ( )

,0
0 . Note that the matrices P and K do not

depend on the variance .
We take a moment to emphasize the significance of this

result. The choice of does not a%ect the optimal control law
derived from this problem formulation. In fact, these are the
same the matrix P and control law κ(x) = Kx for the nominal
LQR problem of the same system and cost matrices Q, R. This
property is known as certainty equivalence.24,25 Van de Water
and Willems26 provide a discussion of certainty equivalence for
stochastic optimal control problems. Moreover, this equiv-
alence means that including stochastic information in the
optimization problem produces a di%erent controller only if we
consider nonquadratic stage costs, nonlinear systems, or
problems with relevant input constraints. If we instead
consider systems with nearly linear dynamics, inactive
constraints, and quadratic stage costs, then di%erences between
the control laws of nominal MPC and SMPC may be
insignificant.
This control law gives the following closed-loop system

= + + = +
+
x Ax B x w A x w( )

K (4)

in which AK ≔ A + BK and w (0, ). We use
k x w( ; , )k to denote the state of the closed-loop system in

eq 4 at time k
0
, given the initial condition x and

disturbance sequence wk:

+

=

k x A x A w iw( ; , ) ( )
k K

k

i

k

K

k i

0

1
1

We leave the subscript on ·( ) to indicate that the control
law is designed assuming the disturbance is distributed

according to . While irrelevant for the stochastic LQR, this
dependence is important for the (nonlinear) SMPC problem
in the following sections and is therefore retained for
consistency.

What then can we say about the stochastic properties of
·( ) subject to the disturbance w with the covariance Σ? We

have the following result that establishes a form of
distributional robustness for stochastic LQR.
Theorem 1 (Stochastic LQR). For the closed-loop system in

(4), there exist λ ∈ (0, 1) and ρ, γ1, γ2 > 0 such that

[| |] | | + + | |k x x tr trw( ; , ) ( ) ( )k

k

1 2

(5)

for all x n, Σ̂ ≻ 0, Σ ≻ 0, and k
0
.

Proof. We define the function V(x) ≔ x′Px, in which P is the
solution to the DARE in eq 3 and choose any Σ ≻ 0. We then
have from the fact that [ ] =w 0 and the definition of P and K
that

[ + | ]

= [ + + | ]

= +

= +

= +

V A x w x

A x w P A x w x

A x P A x tr P

x Px x Qx Kx R Kx tr P

V x x Kx tr P

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( , ) ( )

K

K K

K K

(6)

Since Q, P ≻ 0, there exist c1, c2, c3, c4 > 0 such that c1|x|
2

≤

V(x) ≤ c2|x|
2 and

[ | ] | | +
+

V x x V x c x c tr( ) ( ) ( )3
2

4 (7)

in which x+ = AKx + w. Thus, V(x) serves as a stochastic ISS
Lyapunov function. From the upper bound V(x) ≤ c2|x|

2 and
eq 7, we have

[ ] +
+

V x V x c tr( ) ( ) ( )1 4 (8)

in which λ1 = (1 − c3/c2) ∈ (0, 1).
Choosing x n, Σ̂ ≻ 0, we let x(k) = ϕ(k; x, wk). For this

closed-loop system, we have from eq 8 that

[ + | ] +V x k x k V x k c tr( ( 1)) ( ) ( ( )) ( )1 4

We then apply the law of total expectation, or iterated
expectation, which states [ [ + ]] = [ + ]x k x k x k( 1) ( ) ( 1) ,
to give

[ + ] [ ] +V x k V x k c tr( ( 1)) ( ( )) ( )1 4

We iterate this inequality from x(0) = x to give
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[ ] +

+

=

V x k V x c tr

V x
c

tr

( ( )) ( ) ( )

( )
1

( )

k

i

k

i

k

1

0

1

1 4

1
4

1

We use the bounds c1|x|
2 ≤ V(·) ≤ c2|x|2 to give

[| | ] | | +x k c c x
c

c
tr( ) ( / )

(1 )
( )k2

1 2 1
2 4

1 1

We then apply Jensen’s inequality, which states that for a
convex function ϕ(·), we have [ ] [ ]x x( ) ( ) , and take

the square root of both sides of this equation. Since ·( ) is
subadditive, we have

i

k

jjjjj

y

{

zzzzz
[| |] | | +x k c c x

c

c
tr( ) ( / )

(1 )
( )k

1
/2

2 1
1/2 4

1 1

1/2

We define λ ≔ λ1
1/2, ρ ≔ (c2/c1)

1/2, and γ ≔ (c4/c1/(1 − λ))1/2

to give

[| |] | | +k x x trw( ; , ) ( )k

k

(9)

We also have that

= +

+ | |

tr tr tr

tr tr

( ) ( ) ( )

( ) ( ) (10)

Substitute eq 10 into eq 9 to give eq 5 with γ1 = γ2 = γ. Since
the choice of x n, Σ̂ ≻ 0, and Σ ≻ 0 was arbitrary, eq 5
holds for all x n, Σ̂ ≻ 0, and Σ ≻ 0. □

The right-hand side of the bound in eq 5 contains three
terms. The first ensures that the e%ect of the initial condition
vanishes as k → ∞. The second term accounts for the e%ect of

the covariance used to design the control law ( ). The third
term accounts for the discrepancy between the covariance used

to design the control law and the covariance that
characterizes the plant Σ. For this linear case, this discrepancy
is quantified by the trace of the di%erence between the

covariances for these distributions (i.e., tr( )). Note that
we use the absolute value of this term and therefore negative

values of tr( ), indicating that Σ is “smaller” than , may

increase the value of [| |]k x w( ; , )k . As we recover
the bound for the idealized problem:

[| |] | | +k x x trw( ; , ) ( )k

k

1

If = = 0, then we recover exponential stability of the
nominal closed-loop system.
We can also establish a performance bound for this closed-

loop system in terms of the asymptotic average of the expected
value of the stage cost.
Theorem 2 (Stochastic LQR; Performance). For the closed-

loop system in eq 4, we have that

[ ]

+ | |

=
T

x k x k

tr P tr P

lim
1

( ( ), ( ( )))

( ) ( ( ))

T
k

T

0

1

(11)

in which P is the solution to the DARE in eq 3 and
=x k k x w( ) ( ; , )k for all x n, Σ̂ ≻ 0, and Σ ≻ 0.

Proof. Choose x
n, Σ̂ ≻ 0, Σ ≻ 0, and let

=x k k x w( ) ( ; , )k . Starting with eq 6, we apply the law of
total expectation and rearrange to give

[ ]

= [ ] [ + ] +

x k Kx k

V x k V x k tr P

( ( ), ( ))

( ( )) ( ( 1)) ( )

We sum both sides of eq 6 from k = 0 to T − 1 and divide by
T to give

[ ]

=
[ ]

+

=
T

x k Kx k

V x V x T

T
tr P

1
( ( ), ( ))

( ) ( ( ))
( )

k

T

0

1

We note tha t f o r any x
n, t h e quan t i t y

[ ]V x V x T( ) ( ( )) is bounded. If we take the limit as T →

∞, then we have

[ ] =

=
T

x k x k tr Plim
1

( ( ), ( ( ))) ( )
T

k

T

0

1

(12)

We also have that

= +

+ | |

tr P tr P tr P

tr P tr P

( ) ( ) ( ( ))

( ) ( ( ))

We combine this bound with eq 12 to give eq 11. Since the
choice of x n, Σ̂ ≻ 0, and Σ ≻ 0 was arbitrary, eq 11 holds
for all x n, Σ̂ ≻ 0, and Σ ≻ 0. □

The bound in eq 11 contains two terms on the right-hand
side. The first is based on the covariance used in the controller

design . The second is again based on the di%erence between

Σ and . As , we recover the idealized performance
bound:

[ ]

=
T

x k x k tr Plim
1

( ( ), ( ( ))) ( )
T

k

T

0

1

(13)

In both eqs 5 and 11, we observe a similar characterization
of distributional robustness. Arbitrarily small di%erences

between the probability distributions, in terms of tr( ),
produce similarly small increases in these bounds relative to

the idealized case (i.e., = ). These bounds also ensure that

small di%erences between Σ and do not produce unstable
closed-loop systems.

This result, however, is not unexpected for the LQR
problem discussed here. For this linear unconstrained system
and stochastic LQR controller, the bounds in eqs 5 and 11 can
actually be strengthened to eqs 9 and 12, respectively. For
nonlinear systems, however, we cannot establish bounds
analogous to eqs 9 or 12. We therefore focus on the weaker
versions in eqs 5 and 11 instead to better illustrate the
definitions of distributional robustness provided in section 4.

4. STOCHASTIC MODEL PREDICTIVE CONTROL

4.1. Stochastic System(s). We now consider nonlinear,
discrete-time dynamical systems

= × ×
+x f x u w f( , , ) : n m q n
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in which x
n is the state, u m is the manipulated input,

w
q is the disturbance, and x+ is the successor state.

We again let wk ≔ (w(0), w(1), ..., w(k − 1)) denote a
sequence of disturbances. We consider the following
assumption for the disturbances.
Assumption 3. The disturbances w are random

variables that are i.i.d. in time. The set is compact and
contains the origin.
In contrast to the linear example in the previous section,

Assumption 3 is more general in that w can be distributed
according to any valid probability distribution but more
restrictive in that must be compact (i.e., closed and
bounded). Since we intend to consider systems with bounded
manipulated inputs, we require that is bounded to ensure
that the problem is well-posed. If we instead allowed
unbounded disturbances, then we may be unable to reject
these disturbances with any bounded input and controller.
Given Assumption 3, each w has an equivalent probability

distribution. To represent this distribution we use a Borel
p robab i l i t y measure , denoted by the mapp ing

[ ]: ( ) 0, 1 , in which ( ) denotes the collection
of all Borel measurable subsets of . The Borel probability
measure has the following interpretation.

=S Pr w S( ) ( )

in which both sides denote the probability that w takes a value
in the set S ( ). Probability measures satisfy the usual
Axioms of Probability (i.e., μ(S) ≥ 0 for all S ( ),

=( ) 1, and μ satisfies the property of countable additivity).
We use a probability measure to characterize the distribution

of this random variable instead of a continuous probability
density function, which is more common in engineering
literature, to ensure that these results can address both
continuous and discrete probability distributions. To define a
discrete probability distribution via a probability measure we
use the Dirac measure that we denote δω for some point

and is defined as

l

m
oo

n
oo

S

S

S
( )

0,

1,

for any S ( ). For s
1

discrete points of equal

probability, given by the sequence { }=i i

s

1
, we have the

probability measure

· = ·

=

s
( )

1
( )

d

i

s

1
i

All of the subsequent results therefore apply for discrete,
continuous, and mixed distributions. Most significantly, using
probability measures allows us to define a general notion of
distance between probability distributions.
Let ( ) denote the collection of all probability measures

for the set . Moreover, we define expected value as the
following Lebesgue integral with respect to this Borel
probability measure.

[ ]w w wd ( )

Note that dμ(w) replaces the probability density function
p(w) dw in this definition of integration and expected value.

For the sequence wk, expected value of the Borel measurable

function g: k is defined as

[ ]g g w w

w k

w w( ) ( ) d ( (0)) d ( (1))

... d ( ( 1))

k kk

We now introduce the model of the disturbance distribution

used in the SMPC problem. Let q denote the set of
disturbances considered in the SMPC problem formulation
and let denote the probability measure for these
disturbances. We therefore have the following stochastic
dynamical model for the SMPC problem formulation.

=
+x f x u w w( , , )

in which w is distributed according to the measure .

We assume that without loss of generality because

we can increase the size of to fit and assign these
additional values of w zero probability with μ. We also, without
loss of generality, define on the domain ( ) by assigning

zero probability to all points in that are not in , i.e.,

[ ]: ( ) 0,1 such that =( / ) 0. Specifically, we
have that

=g w w g w w( ) d ( ) ( ) d ( )

for all measurable functions g: . We require that μ and
are defined on the same domain to facilitate the comparison

of these two distributions. The following assumption restates
these requirements.

Assumption 4. The random variables w are i.i.d. in
time, with a known probability measure that satisfies

=( ) 1. The set is compact and contains the
origin.

In the following results, we assume that the set used in
the SMPC algorithm is fixed, but derive bounds that hold for

any that satisfies Assumption 4. Let ( ) denote the set of
all probability measures for the set that satisfy Assumption 4

(i.e., =( ) 1 for all ( )).
With this framework, we can consider problems in which we

incorrectly model the disturbances. For example, we assume

that = [ ]2, 2 , but μ([−1, 1]) = 1, i.e., w ∈ [−1, 1] with
probability one. This framework is also general enough to
consider disturbances in the plant that are entirely absent from
the disturbance model and SMPC optimization problem. For

example, we can consider nominal MPC by defining = { }0

and { } =( 0 ) 1 while μ({0}) < 1. Moreover, we allow to

be a finite set (e.g., = { }0,1 ) even if is uncountable (e.g.,
= [ ]1,1 ). Thus, we can represent incorrectly modeled

( ), unmodeled ( ), or out-of-sample ( is finite)
disturbances.

For the sequence of i.i.d. random variables

w w w Nw ( (0), (1), ..., ( 1))

and N
1
, we have the joint distribution measure

[ ]: ( ) 0,1N N defined as

S S S S( ) ( ) ( )... ( )N

N0 1 1
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for all =S S S S( , , ..., ) ( )
N

N

0 1 1 . For any Borel

measurable function g:
N , we define expected value

with respect to as

[ ] =g gw w w( ) ( ) d ( )N
N

for all ( ). We use [·] to indicate the expected value
is evaluated with respect to instead of μ.
Note that we do not assume that either w or w is zero mean.

Thus, we use [| |]w in the definition of distributional

robustness instead of tr( ) , in which is the covariance
of w. We also note the following inequality:

[| |] + | [ ]|w tr w( )

Thus, for zero mean w (i.e., [ ] =w 0), we have that

[| |]w tr( ) and can substitute this bound into the
subsequent results.
4.2. SMPC Problem Formulation. We now introduce the

SMPC problem formulation with a prediction horizon N
0

. As with the stochastic LQR problem, we optimize over a
sequence of feedback policies (π0, π1, ..., πN−1) such that the
control action at time step in the optimization problem is given
by u(k) = πk(x(k)). In general, however, we cannot optimize
(in real time) over an infinite dimensional object such as a
continuous function.
To formulate a tractable optimization problem for this

nonlinear dynamical model, we instead define a parameterized
control policy ×:

n m in which x
n is the

current state of the system and v l are the parameters
that define the control policy. Often, we choose π(x, v) = Kx +
v in which K is a fixed (feedback gain) matrix and v is vector
with the same number of elements as u. Depending on the
choice of parametrization, however, and may not be
directly related. For example, we may choose π(x, v) ≔ K(v1)x
+ v2 with ×

K:
m n

1
and = = ×v v v( , )1 2 1 2. In

this case, may have a higher dimension than .
In any case, we optimize over the trajectory v ≔ (v(0), v(1),

..., v(N − 1)) and thereby define a trajectory of control
policies. The resulting dynamical model is therefore

=
+x f x x v w w( , ( , ), ) (14)

in which w is distributed according to . Let k x v w( ; , , )
denote the predicted state at time k

N0:
based on the

dynamical model in eq 14, given the initial condition x
n,

the trajectory v
N , and disturbance trajectory w

N

.
We allow input constraints u m, but do not allow

deterministic or probabilistic constraints on the state (except
the terminal constraint). Since we do not assume that the
disturbance set used in the SMPC problem formulation is

exact, the system can encounter w and is therefore not
guaranteed to satisfy these state constraints for the closed-loop
system. If we nonetheless attempt to enforce these state
constraints in the SMPC problem, then we may encounter
states for which the optimization problem is infeasible. Instead,
we assume that these desired state constraints are converted to
penalty functions that are included in the stage cost. This
procedure is often used in nominal MPC formulations for the

same reason.27−29 We do, however, include a terminal
constraint f

n in the problem formulation.

We denote the set of admissible control law parameter
trajectories given x

n as

{

}

x k x v k

k N x

v v w

w v w w

( ) : ( ( ; , , ), ( ))

, ( ; , , )

N

N

N f

N

0: 1

The set of all initial states such that the SMPC optimization
problem has a solution is denoted

{ }x x: ( )n

We define the stage cost ×:
n m , terminal cost

V :f
n

0
, and the function

+

=

J x x k x k v k V x Nv w( , , ) ( ( ), ( ( ), ( ))) ( ( ))
k

N

f

0

1

in which x k k x v w( ) ( ; , , ). We then define the SMPC
cost function based on the expected value of J(·) with respect
to :

[ ] =V x J x J xv v w v w w( , ) ( , , ) ( , , ) d ( )N

N

As with the stochastic LQR, we note that this cost function
depends on the distribution . The optimization problem for
any x is defined as

V x V x v( ) min ( , )
xv

0

( ) (15)

and the optimal solution for a given distribution ( ) is

denoted by the function v :
N0 . If there are multiple

solutions to this optimization problem for a given x , then
we assume that some Borel measurable selection rule is applied

such that xv ( )0 defines only a single optimal trajectory for any

given x .
Note that the optimal control problem in eq 15 includes

nominal MPC as a special case if we choose = { }0 ,
{ } =( 0 ) 1, π(x, v) = v, and = . In this case,

=V x J xv u 0( , ) ( , , ) and

= { }x x N xu u 0( ) ( ) : ( ; , , )N
f

The subsequent results therefore apply to the nominal MPC
problem as well as SMPC. We provide a more detailed
comparison of SMPC and nominal MPC in section 6.2.

We implement SMPC in a rolling horizon framework such
that only the first input in this optimal trajectory is injected
into the plant. At the next time step, we observe/estimate the
new state of the plant and resolve this optimization problem to
again determine the input. The control law derived from this
SMPC formulation is therefore defined as

x x v x( ) ( , (0; ))0

in which v x(0; )0 is the first element of xv ( )0 . Note that the

optimization problem in eq 15 and the control law :

depend on the distribution .
The resulting closed-loop system is then

=
+x f x x w w( , ( ), ) (16)
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in which w is distributed according to μ. Let k x w( ; , )
k

denote the state at time k
0

based on the dynamical

system in eq 16, given the initial state x and disturbance

sequence w
k

k. Note that the deterministic value of ·( )

depends on the probability distribution because this
distribution a%ects the control law. The expected value of
the closed-loop state trajectory, however, is evaluated based on
μ. In the subsequent analysis, we discuss quantities such as

[| |] = | |k x k x w

w w k

w w( ; , ) ( ; , ) d ( (0))

d ( (1))... d ( ( 1))

k k
k

that depend on both and μ.
We introduce the following assumptions that characterize

the dynamical system and SMPC problem formulation.
Assumption 5 (Lipschitz Continuity of System and Cost).

The system × ×f : n m q n, control parametrization
×:

n m, stage cost ×:
n m , and terminal

cost V :f
n

0
are locally Lipschitz continuous. Further-

more, f(0, 0, 0) = 0, (0, 0) = 0, and Vf(0) = 0.
We note that local Lipschitz continuity of these functions is

already required if we intend to use nonlinear optimization
solvers to solve the SMPC optimization problem. In fact, we
often require these functions to be continuously di%erentiable,
a stronger requirement than local Lipschitz continuity, if
gradient-based optimization algorithms are used to solve these
problems. For example, polynomial and exponential functions
are both locally Lipschitz continuous and continuously
di%erentiable.
Assumption 6 (Properties of the Constraint Sets). The set

and are compact and contain the origin. The set f is

defined as { }x V x: ( )f
n

f for some τ > 0. The set

is bounded. The control law parametrization satisfies
x v( , ) for all x n and v .
The requirement that and are compact is standard to

ensure that a solution to the SMPC optimization problem
exists. We also require that f is defined as a sublevel set of

Vf(·), which is a similar requirement for the robustness of
nominal MPC (See Assumption 2 in Allan et al.).5 We also
require that the feasible set is bounded. While this
assumption is not often stated, most physical systems in
engineering applications admit upper and lower bounds on the
state. For example, the mole fraction of a chemical species is
between zero and one, and the temperature of a reactor
is lower bounded by the temperature of the coolant/inlet
stream and upper bounded by the adiabatic limit. We also note
that discretization of continuous ordinary di%erential equa-
tions produces a discrete-time system such that

= { × }f X x u f x u X( ) ( , ) : ( , , 0)n1 is bounded
for all bounded X

n. Therefore, the compact sets and

f ensure that is bounded for nominal MPC and SMPC

(See Prop. 2.10(d) in Rawlings et al.).30

The final requirement of Assumption 6 means that π(x, v) =
Kx + v may not be a valid control law parametrization. Instead,
we can define = +x v Kx v( , ) sat ( ) in which =u ssat ( )
maps s to the closed value the satisfies u (i.e.,

= | |s u ssat ( ) arg min
u

). This restriction is minor since
we are not permitted to use control inputs outside of in the

SMPC optimization problem regardless of the parametrization
chosen for π(·).
Assumption 7 (Terminal Control Law). There exists a

locally Lipschitz continuous terminal control law :f f

and constant < such that for all x f ,

V f x x V x x x( ( , ( ), 0)) ( ) ( , ( ))f f f f (17)

{ }f x x w x V x w( , ( ), ) : ( )f f (18)

Furthermore, π(x, 0) = κf(x) for all x f .

The requirement in eq 17 for the terminal control law is a
common stability assumption for nominal MPC (see
Assumption 2.14(a) in Rawlings et al.).30 The requirement
in eq 18 ensures that the terminal control law drives any
x f to the interior of f for any realization of the

disturbance w . This assumption is therefore stronger
than the assumption of robust positive invariance for the
terminal set typically used in the analysis of SMPC (see
Assumption 5 in Mayne and Falugi).20 Strengthening this
assumption is important to allow some nonzero di%erence

between and . We also require exponential bounds on the
stage and terminal cost. Note that a quadratic stage cost and
quadratic terminal cost satisfy the following assumption.
Assumption 8 (Cost Bounds). There exist c1, c2, a > 0 such

that

| |

| |

x u c x

V x c x

( , )

( )

a

f
a

1

2

for all ×x u( , ) n .
We emphasize that all of these assumptions address the

construction of the SMPC problem formulation and do not
specify any requirements for the disturbance set and
distribution μ. Thus, these assumptions guide SMPC controller
design. Note that in Assumption 7 we implicitly restrict the

size of by requiring a terminal control law the satisfies eq 18

for any w . We then allow any ( ) for the chosen

set .

5. DISTRIBUTIONAL ROBUSTNESS

With this problem statement, we have two sets and and
two probability measures μ and . The goal of this work is to
show that small discrepancies between these sets and measures,
produce similarly small degradation of the performance bound
that can be derived for the idealized version of SMPC, in which
these sets and measures are equal. How then do we define
distance between these sets and measures?

The most intuitive concept of a distance or metric is the
Euclidean distance |x − y| between two real vectors x y,

n.
The concept of distance, however, can be generalized to
address functions, sets, and even probability measures. In this
section we introduce two such generalizations: The Hausdor%
distance between sets and the Wasserstein distance between
probability distributions.

To characterize the distance between and we use the
Hausdor% distance. The Hausdor% distance between two sets
X Y,

q is defined as

{ | | | | }d X Y x y( , ) max sup , supH
x X

Y
y Y

X
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in which |x|Y denotes the point-to-set distance from the point x

to the set Y, i.e., |x|Y ≔ infy∈Y |x − y|. Since and is
compact by Assumption 4, the Hausdor% distance between
these two sets is given by the simpler expression

| |d w( , ) max
H

w

(i.e., the largest distance between any point in w and the

set ).
5.1. Wasserstein Distance. There are several notions of

distance available for probability measures, but we find that the
Wasserstein distance is the most suitable for this work for two
key reasons: (i) the dual formulation of this distance, which is
important to establish the results in this section and (ii) the
ability to compare continuous and discrete probability
distributions, which is important to draw conclusions about
sampling-based approximations of the SMPC optimization
problem.
While the Wasserstein metric initially found application in

the field of optimal transport,31 more recent applications of
this metric can be found in machine learning32,33 and
distributionally robust optimization (DRO).34 DRO has
subsequently been used to develop new Kalman filtering
formulations35 and new nonlinear stochastic optimal control
formulations36 in which distributional uncertainty is included
directly in the optimization problem. In contrast to these
approaches we do not include the Wasserstein distance or any
notion of distributional uncertainty directly in the SMPC
optimization problem. We instead use the Wasserstein distance
only to quantify the distance between μ and and use this
distance in the definition of distributional robustness for
closed-loop systems. Givens and Shortt37 provide a further
discussion of useful properties of the Wasserstein distance.
To characterize the distance between two probability

distributions, one may begin with a simple proposal for this
distance in the following form. Consider two random variables
w w,

q

1 2 with probability measures , ( )
1 2

,
respectively. We then define the expected value of the
Euclidean distance between these two measures.

[| |] | |
×

w w w w w wd ( ) d ( )1 2 1 2 1 1 2 2

This potential definition of distance is both simple, somewhat
intuitive given our natural inclination toward the Euclidean
norm, but is not, unfortunately, a proper distance or useful for
this work. To see why, note that this quantity assumes that w1

and w2 are independent random variables. So even if μ1 = μ2, we
do not know that [| |] =w w 0

1 2
. For example, considering

normally distributed scalar random variables w w, (0,1)1 2 ,

we have that [| |] =w w 2/1 2 .
To compare the distributions of these random variables, we

want to consider the best possible coupling of these
distributions instead of treating both variables as independent.
The Wasserstein distance (type 1) provides this comparison.
Definition 9 (Wasserstein Distance). The Wasserstein

distance between ( )
1

and ( )
2

is defined as

| |
×

W w w w w( , ) inf d ( , )
1 2

( , )
1 2 1 2

1 2

in which Γ(μ1, μ2) denotes the collection of all measures of
× with marginals μ1 and μ2, i.e.,

· = · · = ·w w w w( ) ( , ) d ( ) ( , ) d
1 2 2 2 1 1

for all γ(·) ∈ Γ(μ1, μ2).
In optimal transport, the measure γ(·) is called a transport

plan for moving density or “earth” from a distribution
described by μ1 to another distribution described by μ2.
Hence, the Wasserstein distance is sometimes called the “earth
mover’s” distance for discrete distributions. We plot an
example of γ(·) for two 1D normal distributions in Figure 1.

For 1D distributions, the Wasserstein metric admits an
illustrative simplification in terms of cumulative distribution
functions. Let F1(w1) ≔ μ1((−∞, w1]) and F2(w2) ≔ μ1((−∞,
w2]) denote the cumulative distribution functions for scalar
random variables w w,1 2 . Then, we have

= | |W F w F w w( , ) ( ) ( ) d
1 2 1 2

In Figure 2, we consider an example with μ1 defined as a
normal distribution and μ2 defined as a discrete distribution
with only four events of equal probability. We plot the

probability density function p w w( ) ( )
i

F

w

d

d

i and cumulative

distribution function Fi(w) for these two distributions. The
arrows represent the delta functions in p2(w). In the bottom
plot of Figure 2 we show the absolute di%erence between these
two cumulative distribution functions. The integral of this
absolute di%erence (i.e., the shaded area under this curve) is
equal to the Wasserstein distance between μ1 and μ2 for this
example.

If w (0, )1 1 and w (0, )2 2 , then we also have the
following upper bound for the Wasserstein distance (See Prop.
7 in Givens and Shortt).37

+W tr( , ) ( 2( ) )
1 2

2
1 2 1

1/2
2 1

1/2 1/2

For the case of scalar w w,1 2 with w (0, )1 1 and
w (0, )2 2 , we can further establish that

| |W( , )
1 2 1 2

Figure 1. Probability density functions for an example of γ(·) ∈ Γ(μ1,
μ2) for two normal distributions.
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The notion of distance between normal distributions used in
eqs 5 and 11 is therefore similar to that of the Wasserstein
distance between normal distributions.
5.2. Main Results. Since the SMPC control law is based on

an optimization problem, we must first ensure that the
optimization problem remains feasible along the closed-loop
trajectory. Specifically, we want to show that the feasible set for
the optimization problem is robustly positive invariant for the
closed-loop system.
Definition 10 (Robust Positive Invariance). The set is

robustly positive invariant (RPI) for the system
=

+x f x x w( , ( ), ), w if x implies that +
x

for all w and ( ).
Robust positive invariance of the feasible set ensures that

for any state x , probability measure ( ), and
disturbance w , the successor state remains in . The
optimization problem therefore remains feasible. We also use
the notation ·( ) to indicate that the function
:

0 0
is continuous, strictly increasing, and α(0) = 0.

We now use the Wasserstein distance to define distributional
robustness for closed-loop nonlinear systems.
Definition 11 (Distributionally Robust Exponential Stability

in Expectation). The origin is distributionally robustly
exponentially stable in expectation (DRESiE) for the system

=
+x f x x w( , ( ), ), w in the RPI set if there exist λ

∈ (0, 1), ρ > 0, and · ·( ), ( )
1 2

such that

[| |] | | + [| |] +k x x w Ww( ; , ) ( ) ( ( , ))
k

k

1 2

(19)

for all x , ( ), ( ), and k
0
.

We note that eq 19 is similar to eq 5. The first term on the
right-hand side of eq 19 ensures that the e%ect of the initial
condition vanishes as k → ∞. In the second term, we use

[| |]w instead of tr( ) to characterize the probability measure

used to design the control law. If [ ] =w 0, then we can

replace [| |]w with tr( )1/2 in eq 19. In the third term, we use

W( , ) instead of tr( ) to quantify the di%erence
between the probability distribution used to design the control
law and the probability distribution that characterizes the
plant μ. If = , then =W( ( , )) 0

2
, and we recover the

same bound derived for idealized SMPC.

[| |] | | + [| |]k x x ww( ; , ) ( )
k

k

1 (20)

We can now establish a main result of this work.
Theorem 12 (Distributional Robustness of SMPC). Let

Assumptions 3−8 hold. Then there exists δ > 0 such that for

any q satisfying d ( , )
H and the system

=
+x f x x w( , ( ), ), w , we have that is RPI.

Furthermore, the origin is DRESiE for this system in the set
.
A proof of Theorem 12 for asymptotic, instead of

exponential, decay of the initial state is available in McAllister
and Rawlings.22 Since this proof is rather technical, we do not
delve into the details here. We instead focus on the practical
implications of this result in the following discussion.

We note two key properties a%orded by Theorem 12 for the
distributional robustness of SMPC. First, Theorem 12 ensures

that for small di%erences between and , the set is RPI
and the SMPC optimization problem remains feasible. Second,
Theorem 12 ensures that the origin is DRESiE for the closed-
loop system and the closed-loop system therefore satisfies eq
19. This bound ensures that small di%erences between and μ

produce similarly small deviations in upper bound derived for
idealized SMPC.

In addition to set point tracking problems, an important
class of applications for SMPC are economic problems in which
the stage cost is chosen to directly represent an economic
metric for the process (e.g., production cost). In certain cases,
this cost may be positive definite with respect to the origin
(target steady state) and satisfy the bound in Assumption 8.
Often, however, this requirement is too restrictive for the class
of economic cost functions of industrial interest. Thus, in
economic applications of MPC (i.e., economic MPC), we
often drop Assumption 8 and instead analyze the performance
of closed-loop system in terms of the stage cost. Without
Assumption 8, we typically obtain a weaker, but still useful,
result for economic applications of MPC. For economic
applications of SMPC, we have the following instructive result.
Theorem 13 (Distributional Robustness of Economic

SMPC). Let Assumptions 3−7 hold. Then there exists δ > 0

such that for any q satisfying d ( , )
H

and the

system =
+x f x x w( , ( ), ), w we have that is RPI.

Furthermore, there exist L1, L2 > 0 such that the closed-loop
trajectory satisfies

[ ]

[| |] +

=

x k x k

L w L W

lim sup
1

T
( ( ), ( ( )))

( , )

T k 0

T 1

1 2 (21)

in which =x k k x w( ) ( ; , )
k

for all x , ( ), and

( ).

Figure 2. Probability density pi(w) and cumulative density Fi(w) for
two 1D probability measures μ1, μ2. The bottom plot is the absolute
di%erence between these two cumulative distribution functions.
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A proof of Theorem 13 is available in McAllister and
Rawlings.22 The bound in eq 21 ensures that as T → ∞, the
time-averaged expected value of the stage cost is upper

bounded by a constant proportional to [| |]w and W( , ). If
= , then the bound in eq 21 reduces to a standard result for

idealized SMPC, first derived for nonlinear systems by
Chatterjee and Lygeros.19 Specifically, we have the following
bound for idealized economic SMPC.

[ ] [| |]

=
T

x k x k L wlim sup
1

( ( ), ( ( )))
T k

T

0

1

1
(22)

Thus, economic applications of SMPC also provide some
margin of inherent distributional robustness in terms of a
suitable performance metric.

6. EXAMPLE

To demonstrate the implications of these theoretical results,
we consider a small CSTR example. An irreversible, first-order
reaction A → B occurs in the liquid phase. The reaction is
exothermic and the reactor temperature is controller with
external cooling. We assume the inlet/outlet flow rate and
volume are constant. Mass and energy balances lead to the
following di%erential equations.

i

k

jjj
y

{

zzz
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k

jjj
y
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The state variables are the concentration of species A in the
reactor c and the temperature of the reactor T. The input is the
temperature of the coolant Tc. We choose the steady-state
target cs = 0.878 kmol/m3, Ts = 324.5 K, Tc,s = 300 K and
define the state and input as
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c c s c s, ,

The input is subject to the constraint [ ]u 0.1, 0.1 .
We discretize these di%erential equations via Runge−Kutta
(fourth-order) with a time step of Δ = 0.5 min. We also
include an additive disturbance w at each time step to give the
following nonlinear di%erence equation

= = +
+x f x u w f x u w( , , ) ( , )

For the SMPC problem, we assume that there is a
disturbance in the temperature of the reactor at each time
step. We model this disturbance with a discrete distribution

{ } × { }0 0.006, 0, 0.006 ( i . e . , =w 0
1

a n d
{ }w 0.006, 0, 0.0062 (approximately ±2 K)).The proba-

bility measure for this disturbance is defined such that
{ } = { } =( (0, 0.006) ) ( (0, 0.006) ) 0.3 a n d
{ } =( (0, 0) ) 0.4. We choose this simple disturbance

representation to ensure that these results are easy to interpret
and reproduce.
We choose the quadratic stage cost

= +x u x Qx u Ru( , )

with Q = 0.1I and R = 1. We then design the terminal control
law and cost by linearizing the nominal system at the target

steady state and computing the LQR gain K and cost matrix P
for this unconstrained linear system. We use inflated stage cost
matrices QLQR = 10Q and RLQR = R for this LQR calculation.
We then define the terminal cost as Vf(x) = x′Px and the

terminal constraint as = { }x V x: ( )f
n

f in which τ =

0.001. We define the control law parametrization as

= +x v Kx v( , ) sat ( ) and choose = [ ]1, 1 to ensure

suGcient flexibility in selecting this parameter. We choose N =
3. With this formulation, we satisfy Assumptions 5, 6, and 8.

We now verify Assumption 7 by sampling the terminal
region and computing the successor state for each of these
samples subject to the terminal control law κf(x) = Kx and all

possible realizations of w. That is, we approximate the set

{ }
+

f x Kx w x w( , , ): ,f f

We plot these points in Figure 3 along with the set f . We also

show in Figure 3 that all of these points are within the set

defined by { }x V x: ( )f in which = 0.8 . We use this

same approach to confirm that eq 17 also holds. We therefore

satisfy Assumption 7 with this problem formulation, within the

sampling error.

We can then formulate and solve the optimization problem

in eq 15 to determine the input at each time step. Specifically,

the SMPC optimization problem can be written as a nonlinear

program as follows. Since is finite with only three possible

values for the disturbance, we consider each of the 3N

disturbance trajectories w(s) = (w(s)(0), ..., w(s)(N − 1)) for

all s ∈ {1, ..., 3N} and their associated probability p(s)

determined by the distribution . Each disturbance trajectory

has a corresponding predicted state and input trajectory,

denoted x(s)(k) and u(s)(k). With these variables, the SMPC

optimization problem for the initial state x0 is then written as

follows.

Figure 3. Terminal constraint f and a sampling-based approx-

imation of
+

f to verify that Assumption 7 holds for the SMPC

problem formulation.
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We can then approximate +Kx k v ksat ( ( ) ( ))s( ) via sigmoid
functions or relax this constraint to u(s)(k) = Kx(s)(k) + v(k) if
the input constraints are not active for the optimal solution.
We use the latter approach for the following simulations.
Realize that constructing an SMPC formulation that satisfies

these assumptions is not significantly more diGcult than
constructing a nominal MPC formulation that satisfies the
assumptions in Yu et al.4 or Allan et al.5 For quadratic stage
costs, we typically construct a terminal cost for nominal MPC
via the same procedure used in this section. The computational
e%ort required to solve the SMPC optimization problem,
however, may be considerably larger than the computational
e%ort required to solve the nominal MPC problem, particularly
for nonlinear systems with long horizons. In the following
subsections, we investigate the robustness of SMPC for this
example by simulating the closed-loop trajectory subject to
various distributions for both w1 and w2.
6.1. Ideal SMPC. We first consider the case of idealized

SMPC, in which = and = . We simulated the
closed-loop system starting from c = 0.92 and T = 340 subject
to 30 realizations of the disturbance trajectory and plot the
closed-loop state and input trajectories for these simulations in
Figure 4. We use this same initial condition for all subsequent
simulations as well.
For these trajectories, we plot the norm of the closed-loop

state |x(k)| in which =x k k x w( ) ( ; , )
k

in Figure 5. We also

plot the sample average of these trajectories, denoted

[| |]x k( ) ,
s in Figure 5. We observe an initial, exponential

decay in [| |]x k( )
s , followed by a persistent deviation from the

origin due to the disturbance. Note this behavior is consistent
with eq 20 and therefore Theorem 12.
6.2. Incorrectly Modeled Disturbances. Next, we

consider that the disturbance support is correct (i.e.,

= ), but the probability distribution is incorrect (i.e.,
). Let μ({(0, −0.006)}) = μ({(0, 0.006)}) = ε2/2 and

μ({(0, 0)}) = 1 − ε2 for some ε2 ∈ [0, 1]. For this case, we
have that = | |W( , ) 0.006 0.62 . For multiple values of ε2

we simulate the closed-loop trajectory for 30 realizations of the
disturbance according to this distribution. We plot the sample
average of the norm of the closed-loop state, denoted

[| |]x k( ) ,
s in Figure 6 for these di%erent distributions.

We again observe a similar exponential decay for all of these
trajectories in the first few time steps. After this initial decay (k
≥ 6), these trajectories appear to remain within some region of
the origin, based on the value of ε2. Note that [| |]x k( )

s for ε2

= 1 is larger than for ideal SMPC (ε2 = 0.6) for k ≥ 6, as
suggested by eq 19. We also observe that [| |]x k( )

s is lower for
ε2 = 0.2 than ideal SMPC for k ≥ 6. This result, however, does
not conflict with eq 19. The bound in eq 19 must account for
any possible probability distribution and is therefore
conservative. In either case, SMPC is robust to incorrectly
modeled distributions.
6.3. Out-of-Sample Disturbances. We now consider a

continuous distribution for the temperature disturbance in the

plant and therefore , . Specifically, we assume
that w2 is distributed according to a truncated normal

Figure 4. Closed-loop trajectories for idealized SMPC with 30
realizations of the disturbance trajectory.

Figure 5. Norm of the closed-loop state trajectories |x(k)| and the

sample average of these trajectories [| |]x k( )
s .

Figure 6. Sample average of the norm of the closed-loop state,
denoted [| |]x k( )

s
, for di%erent values of ε2 and therefore di%erent μ.
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distribution with zero mean, a variance of 0.0062, and
truncated such that w2 ∈ [ −0.012, 0.012]. Disturbances
drawn from this truncated normal distribution are outside of
the set of samples used in the SMPC optimization problem,
hence the term out-of-sample disturbances. We simulate the
closed-loop trajectory for 30 realizations of the disturbance
drawn from this truncated normal distribution. In Figure 7, we
compare the sample average of the norm of the closed-loop
trajectory for this out-of-sample distribution to the idealized
SMPC result.

Theorem 12 also addresses these out-of-sample disturban-
ces. Note that the SMPC optimization problem remained
feasible along all of these closed-loop trajectories, even though
we considered out-of-sample disturbances that were up to
twice the size of the disturbances considered in the SMPC

optimization problem, i.e., =d ( , ) 0.006
H . Moreover, the

trajectories for ideal SMPC and SMPC subject to the truncated
normal distribution are very similar. These results are
consistent with Theorem 12 and are indicative of the fact
that SMPC is robust to out-of-sample disturbances.
6.4. Unmodeled Disturbances. Instead of incorrect

distributions for w2, we now consider the possibility of
nonzero w1, i.e., an unmodeled disturbance. We assume that w
is described by a discrete distribution in which

{ } × { }0.01, 0, 0.01 0.006, 0, 0.006

(i.e., w1 ∈ {−0.01, 0, 0.01} and w2 ∈ {−0.006, 0, 0.006}). We

therefore have that =d ( , ) 0.01
H

. The probability
distribution is given by μ({(w1, w2)}) = μ1({w1})μ2({w2}) in
which μ1({−0.01}) = μ1({0.01}) = ε1/2, μ1({0}) = 1 − ε1,
μ2({−0.006}) = μ2({0.006}) = ε2/2, and μ2({0}) = 1 − ε2. We
assume that the distribution for w2 is chosen correctly in the
SMPC optimization problem and therefore ε2 = 0.6. We
consider several values of ε1 to investigate the robustness of
SMPC to this unmodeled disturbance. Note that

=W( , ) 0.01 1 for this example.
We simulate the closed-loop trajectory for 30 realizations of

the disturbance trajectory for several values of ε1. Note that the
SMPC optimization problem remained feasible for all of these
simulations despite this unmodeled disturbance. We then
evaluate the sample average norm of the closed-loop state
trajectories for each ε1 and plot these trajectories in Figure 8.
As ε1 and therefore W w( , ) increase, [| |]x k( )

s increases as
well for k ≥ 6.

7. DISCUSSION AND CONCLUSIONS

7.1. Scenario-Based Approximations. Scenario optimi-
zation methods or the sample average approximation (SAA) are
often used to approximate and solve the SMPC optimization
problem for nonlinear systems.7 In these approximations, a
finite set of samples is chosen from a given disturbance
distribution. The expected value of the cost function is
approximated by the average cost of these scenarios and the
constraints in the optimization problem are required to hold
for all of these scenarios. Thus, the stochastic optimization
problem can be solved with deterministic methods (e.g., as a
nonlinear program). The quality of this approximation is often
characterized by the distance between the optimal cost/
argument for the approximate problem and the optimal cost/
argument for the original stochastic optimization problem.
Unfortunately, the quality of this approximation is meaningless
if near exact approximations still produce poor controllers. The
result in Theorem 12, however, establishes that the
distributional robustness of SMPC also extends to these
scenario-based approximations.

We construct this scenario optimization problem by drawing
s

1
samples, denoted

i
, from the model disturbance

distribution and set . We then define the finite set

= { }, , ...,
s s1 2 and empirical (discrete) distribution

· ·

=

s

( )
1

( )
s

i

s

1
i

The set
s
and distribution

s
satisfy Assumption 4. If

Assumption 7 holds for , then Assumption 7 also holds for

s
. We can therefore substitute

s
and

s
in place of

and for all algorithms and results in this work including
Theorems 12 and 13. This algorithm is closely related to that
of multistage MPC.38,39

We can thereby draw two important conclusions for these
scenario-based approximations. Both of these conclusions are
the result of the triangle inequality, which applies to even
generalized notions of distance such as the Hausdor% and
Wasserstein distance.

First, we have the following conclusion for the robust
recursive feasibility of the scenario-based approximation of the

SMPC problem. If is close to d( ( , ) /2)
H and the

sampling of is suGciently dense d( ( , ) /2)
H s

, then
we have that

Figure 7. Sample average of the norm of the closed-loop state,
[| |]x k( )
s

, for ideal SMPC and SMPC subject to a truncated normal
distribution for w2.

Figure 8. Sample average of the norm of the closed-loop state,
[| |]x k( )
s , for multiple values of ε1.
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+d d d( , ) ( , ) ( , )
H s H H s

and therefore is RPI. In other words, scenario optimization
can ensure robust recursive feasibility of SMPC, if a suGcient
density of samples are used and the disturbance model is
suGciently accurate.
Second, the performance, in terms of norm of the state or

stage cost, of the closed-loop system is bounded by the
distance between

s
and μ. We again use the triangle inequality

to give

+W W W( , ) ( , ) ( , )
s s

We can further establish that random sampling of the
probability distribution ensures that

s
as s → ∞,40 and

therefore

W W( , ) ( , )
s

with probability one as s → ∞ (See Theorem 6.9 in Villani).31

The bounds in eqs 19 and 21 therefore converge to their values
for the original stochastic optimization problem as the number
of samples increases.
7.2. Comparison to Nominal MPC. Perhaps the most

interesting feature of the results in Theorems 12 and 13, is that
they unify the notions of stochastic robustness across nominal
and stochastic MPC. With the framework introduced in this
work, we can treat nominal MPC as a special case of SMPC. By

choosing = { }0 and { } =( 0 ) 1, the SMPC problem in eq
15 reduces to a nominal MPC problem in which we have
embedded the feedback law π(x, v) in the optimization
problem. Note that this type of parametrization is sometimes
used in nominal MPC to ensure the optimization problem is
well conditioned for open-loop unstable systems.41,42

If we also choose π(x, v) = v and = , then we have that

= = { }x x N xu u 0( ) ( ) : ( ; , , )N
f

and the optimization problem reduces to nominal MPC
exactly.

=V x J xv u 0min ( , ) min ( , , )
x xv u( ) ( )

With this choice of π(x, v) = v and = , Assumptions 5, 6,
and 8 are equivalent to the assumptions used in Allan et al.5 to
establish the inherent robustness of nominal MPC. In
Assumption 7, the nominal cost decrease condition in eq 17
is also required in Allan et al.5 and is standard in MPC
literature. The requirement in eq 18 reduces to

{ }f x x x V x( , ( ), 0) : ( )f
n

f (24)

for some < . If Assumption 8 also holds, then eq 18 is
implied by eq 17 and is therefore not an additional
requirement for the terminal cost, constraint, and control
law. In summary, the assumptions used in this work reduce to

their nominal MPC counterparts for this choice of = { }0 ,
{ } =( 0 ) 1, π(x, v) = v, and = .

For { } =( 0 ) 1, we have that [| |] =w 0 and

= | | = [| |]W w d w( , )

Moreover, = | |d w( , ) max
H w

for = { }0 . We there-
fore have the following corollary of Theorems 12 and 13.

Corollary 14 (Nominal MPC). Let Assumptions 3−7 hold

with = { }0 and { } =( 0 ) 1. Then there exists δ > 0 such
that for any set q satisfying | |wmax

w
, the set

is RPI for the system =
+x f x x w( , ( ), ), w . Fur-

thermore, there exists L2 ≥ 0 such that the closed-loop
trajectory satisfies

[ ] [| |]

=
T

x k x k L wlim sup
1

( ( ), ( ( )))
T k

T

0

1

2
(25)

in which =x k k x w( ) ( ; , )
k

for all x and ( ).

If Assumption 8 also holds, then there exist λ ∈ (0, 1), ρ > 0,
and ·( )

2
such that

[| |] | | + [| |]k x x ww( ; , ) ( )
k

k

2 (26)

for all x , ( ), and k
0
.

Thus, Corollary 14 ensures that nominal MPC confers some
margin of inherent stochastic robustness to suGciently small
disturbances. Note the similarities between the bounds in eqs
25, 26 and eqs 20, 22. We emphasize, however, that the
function γ2(·) and constant L2 in eqs 25, 26, respectively, are
not the same as the function γ1(·) and constant L1 in eqs 20,
22. This observations suggests that the performance of SMPC
and nominal MPC may di%er quantitatively, but their
qualitative behavior is likely similar for an otherwise equivalent
problem. In general, the functions γ1(·), γ2(·) and constants L1,
L2, δ are often too conservative to provide useful information
about the performance of these systems. Thus, e%orts to
compare the performance of nominal MPC and SMPC via
these bounds are likely misplaced. Simulation studies, such as
Kumar et al.,43 remain the best means to evaluate the potential
benefits of SMPC relative to nominal MPC.
7.3. Potential Extensions. 7.3.1. State and Probabilistic

Constraints. Since we are considering systems in which

, we cannot guarantee that state constraints (proba-
bilistic or deterministic) are satisfied for all realizations of the
disturbance w . Instead, we propose “softening” these
constraints by including them as penalty functions in the
SMPC stage cost. We note that for probabilistic constraints of
the form

Pr f x u w( ( , , ) ) 1 (27)

we can rewrite eq 27 as

{ }x u x u g x u( , ) ( , ): ( , ) 0

in which

=g x u I f x u w w( , ) 1 ( ( , , )) d ( )

and I is the indicator function for the set (i.e., =I x( ) 1 if

x and zero otherwise). Note that is a closed set if is
closed and f(·) is continuous (See Lemma 1 in McAllister and
Rawlings).21 In practice, the set and/or function g(·) is often
approximated (oVine). A potential approach to soften this
constraint is to include a penalty on the violation of this
constraint in the stage cost. Closed-loop properties for such a
reformulation, such as guarantees on closed-loop constraint
satisfaction under distributional uncertainty, have not been
investigated.
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7.3.2. Suboptimal SMPC Algorithms. Note that for
nonlinear SMPC formulations, we require the solution to a
nonconvex (stochastic) optimization problem (e.g., eq 23).
For problems of industrially relevant size, however, we are
typically unable to determine a global optimum for this
problem, as required by the analysis in this work, within the
computation time required to implement this controller in real-
time. Thus, suboptimal SMPC algorithms that guarantee some
nonzero margin of distributional robustness without requiring
an exact solution to the SMPC optimization problem in eq 15
are of significant practical interest.

7.3.3. State Estimation. In this work, we assumed perfect
knowledge of the current state of the system, but in practice
this state is estimated via methods such as Kalman filtering
(standard, extended, or unscented varieties) or moving horizon
estimation (MHE). Some of these state estimation methods,
such as Kalman filtering, provide a description of the
uncertainty in the state estimate. Including this information
in the SMPC problem formulation may therefore provide some
benefit to the closed-loop performance. Sehr and Bitmead,18

for example, present a framework for combining the state
estimation and regulation part of the stochastic optimal control
problem via stochastic dynamic programming (SDP). Their
results, however, are limited by the considerable computational
requirements required to solve the SDP problem for systems of
large state dimension. We can likely extend the problem
formulation in (eq 15) to include a distribution for the initial
state (i.e., the initial state x is distributed according to μx).
With this reformulation, however, the control action depends
on the distribution μx instead of just the best estimate of the
state x. Thus, it remains unclear how to extend the analysis
used in this work to address SMPC controllers that include the
state estimate uncertainty in their problem formulation.
Another approach is to establish that SMPC is (distribution-
ally) robust to state estimate error as an unmodeled
disturbance.

7.3.4. Forecasts. Often in economic SMPC applications, we
consider forecasts of disturbances, such as weather and real-
time electricity prices. To address these problems, we first
require that the results in this work are extended to time-
varying systems to account for the time-varying nature of these
forecasts. While we focused on the time-invariant case in this
work to avoid the additional notation of time-varying systems,
we do not anticipate special diGculties in extending these
theoretical results to time-varying systems. Often, these
forecasts are updated in real-time as more accurate data
become available. In general, however, updates to these
forecasts, and the forecasts themselves, may not be
independent and identically distributed. If the disturbances
are independent but not identically distributed, then an
extension of the theory presented in this paper to time-varying
systems may be suGcient to address these disturbances.

7.3.5. Disturbances That Are Correlated in Time.
Disturbances that are correlated in time are sometimes
considered in stochastic optimal control problem formulations,
but are rarely considered in the closed-loop analysis of these
problems. Recently, some theoretical results consider the
problem of disturbances that are correlated in time, but these
results are still limited in scope. Hewing et al.,17 for example,
consider disturbances that are correlated in time to construct
probabilistic reachable sets and establish recursive feasibility,
but derive closed-loop performance bounds for only the case of
i.i.d. disturbances. For the idealized SMPC problem, we are

unaware of any results that provide closed-loop performance
guarantees for systems with disturbances that are correlated in
time. There does not appear to be a simple extension of the
results in this work to address disturbances that are correlated
in time.
7.4. Conclusions. Even our best attempts to model

nature’s randomness are subject to distributional uncertainty.
If properly designed, however, control algorithms that include
these models of randomness in their problem formulation are
a%orded distributional robustness by feedback from the plant. In
this paper, we defined distributional robustness for closed-loop
systems and established suGcient conditions that ensure this
property for SMPC. Through a small example, we showed that
constructing an SMPC algorithm that satisfies these suGcient
conditions is not significantly more diGcult than constructing a
nominal MPC algorithm. We then demonstrated the
implications of distributional robustness for incorrectly
modeled, out-of-sample, and unmodeled disturbances with
this example. We further established that the distributional
robustness of SMPC also addresses scenario-based approx-
imations of the stochastic optimal control problem. Moreover,
these results allowed us to characterize the stochastic
robustness of nominal MPC as well, and thereby unified the
analysis of these two problem formulations. We note that this
definition of distributional robustness for closed-loop systems,
Definition 11, is general and therefore applicable to the larger
field of stochastic optimal control.
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