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ARTICLE INFO ABSTRACT
Keywords: This paper addresses how to combine the two main engineering design tools, optimization and feedback, to
Feedback control

obtain high performance process control or process operation systems. We discuss the historical development of
process control, where feedback dominated the early practical designs, and optimization was then incorporated
much later through technologies like model predictive control. In chemical production scheduling, on the
other hand, optimization had a strong early influence on the problem formulation, and feedback has only
recently made an appearance. The recent developments in both process control and scheduling are illustrated
with specific examples emerging from this series of FOCAPO/CPC meetings. The paper next presents recent
theoretical developments in nominal and stochastic model predictive control. The closed-loop properties that
arise from these different open-loop optimal control problems are then compared. The paper closes with some
discussion of when the improvements of the closed-loop properties are worth the added complexity of the

Optimal control

On-line optimization
Scheduling

Stochastic optimal control
Robust model predictive control

stochastic optimal control problem.

1. Introduction

Creating systems to ensure reliable and high performance process
control or process operations requires smart use of our two main
engineering design® tools: optimization and feedback. The purpose of
optimization is to ensure high performance, especially in the nomi-
nal case, and the purpose of feedback is to ensure reliability of this
performance in the face of the inevitable unknown disturbances. The
holy grail would be to perform an optimal feedback design; we call it
the holy grail because that problem remains intractable for anything
but the simplest situations: processes modeled by unconstrained linear
dynamical systems and quadratic performance objectives.®

If the optimal feedback design is out of reach for most processes,
then, unfortunately, we have to be smart. The problem of how to best
combine optimization and feedback is now complex and many alterna-
tives can be envisaged, each with particular strengths and weaknesses.
And we cannot let every system design become its own special case. The
development cost is too high, and the maintenance cost of many, one-
off, complex designs is overwhelming. So we still require invention of

* Corresponding author.
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general design approaches that handle large classes of processes. Creat-
ing that kind of general design requires ingenuity combined with careful
analysis of performance and reliability tradeoffs. So one objective of
this paper is to summarize our field’s current level of ingenuity.

You can learn a lot about a civilization’s mathematical development
by observing how general is their concept of a function. Similarly you
can learn a lot about a civilization’s process systems engineering devel-
opment by observing what combinations of optimization and feedback
have they been able to reduce to practice. We shall attempt such an
assessment of our field in this paper.

2. Historical context

History provides valuable context for any assessment of a current
status and an outlook for the future. In the process control side of
process systems engineering, the considerations of practical application
mainly drove the field forward in its early history. Bequette (2019)
provides an excellent summary of this period and describes the in-
dustrial developments for controlling temperature, pressure, and level
during the period 1910-1930s. The opportunity to improve process

1 This work was supported by the National Science Foundation, United States under Grant 2027091.
2 Note that throughout this paper, design refers to the design of an algorithm or method used for control or scheduling. This meaning should not be confused

with the field of process design, which we do not discuss here.

3 See, for example, Rawlings et al. (2020, pp. 90-93) for a brief statement of the difficulties of solving the optimal feedback problem using dynamic programming

for nonlinear models of reasonable state dimension.
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operation through automation led to the development of feedback
control analog hardware that implemented simple PID (proportional—
integral-derivative) algorithms that responded to measurement signals,
and made automatic adjustments to the available actuators to maintain
process operations despite the unknown process disturbances taking
place. Automation was essential because the hardware needed to re-
spond in real-time in a continuous processing environment, and human
operators were expensive and unreliable to handle large numbers of
routine and low-level processes and units. In this early era of process
control, there is clearly a large contribution from feedback and little
or no contribution from optimization. There is also a human, cultural
impact of this history: process and control engineers that lived through
this period could not help but develop a high appreciation for the power
of feedback. There was little regard for optimization as it was hardly
even used in any practical, industrial process control application.

Optimization was not absent from the entire field of control, it was
just not (yet) having much impact on practice. Control theory was
under steady development, however, and optimization was mainstream
to the development of control theory. The late 1950s and early 1960s
were an explosive period of rapid development of optimal control,
in particular. Tremendous progress was made on both the open-loop
optimal control problem, summarized in results like Pontryagin’s max-
imum principle (Pontryagin et al.,, 1961), as well as the feedback
form of the optimal control problem, summarized under the names
of dynamic programming and the Hamilton-Jacobi-Bellman equation
(Bellman and Dreyfus, 1962; Bryson and Ho, 1975). But even the
developers of optimal open-loop control during this period had a strong
sense for the requirements to deploy a feedback version of the controller
in applications. For example, the following passage from a leading
optimal control textbook of the 1960s has an almost modern outlook
(Lee and Markus, 1967, p. 24).

“In each optimal control problem our ultimate goal is to synthesize
the optimal controller by an appropriately designed closed or feed-
back loop. The advantage of such a closed-loop control, as against an
open-loop control, is that the process then becomes self-adjusting and
self-correcting. A feedback control can often correct for unpredictable
variations in the environment of the plant or for repeated perturbations
or irregularities in the process.”

A note on model predictive control (MPC). Many accounts have been
written about the history of MPC, and there is little need to revisit
those accounts here. A standard story line is that MPC emerged from
industrial practice in the process industries in the 1970s with imple-
mentations such as IDCOM and DMC (Richalet et al., 1978; Cutler
and Ramaker, 1980; Prett and Gillette, 1980). While no one doubts
that successful industrial implementation was a critical event — perhaps
the critical event — leading to widespread interest in MPC, it does not
address the development of the ideas and concepts underpinning MPC.

The critical intellectual idea to combine feedback and optimal con-
trol with a moving horizon certainly did not first emerge from 1970s
industrial implementations in the process industries. It is difficult to
pin down a single source for this idea. For example, consider the
following passage, taken again from Lee and Markus’s 1967 graduate
level textbook, “Foundations of Optimal Control” (Lee and Markus,
1967, p. 423).

“One technique for obtaining a feedback controller synthesis from
knowledge of open-loop controllers is to measure the current control
process state and then compute very rapidly for the open-loop control
function. The first portion of this function is then used during a short
time interval, after which a new measurement of the process state is
made and a new open-loop optimal control function is computed for
this new measurement. The procedure is then repeated. In this way
external disturbances and other unknowns are taken into account in
much the same way as is done by a feedback controller.”

So the authors first offer a succinct summary of model predictive
control, and then go on to make an explicit connection to optimal
feedback control.
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“If no disturbance or other unknowns are encountered, the recom-
puted control function should agree with the appropriate portion of
the previously computed controller. This is essentially the principle
of optimality [Bellman] in the theory of dynamic programming, a
feedback principle.”

Here is a clearly articulated proposal to combine optimization and
feedback, and the reader cannot help but be struck by the casual
and offhand manner in which the idea is presented. The authors are
not announcing a breakthrough research idea, but offering a simple
reminder of some common lore of the control community, and stressing
the importance of feedback in addition to open-loop optimal control.
The least we can conclude is that the notion of combining open-loop
optimal control with a moving horizon to obtain a feedback implemen-
tation was mainstream in the early 1960s control theory community. It
seems pointless at best and misleading at worst to attempt to assign
that critical idea to any individual or group of practitioners. It likely
occurred to all of the 1950-1960 era control theory researchers who
had been exposed in their education to both feedback controller design
and optimal control theory.

What was missing in the 1960s was essentially a technology to make
the concept “compute very rapidly for the open-loop control function”
deployable in applications. Fortunately for all of us working today
in process systems engineering, the computing technology necessary
for implementing open-loop optimal control as a feedback controller,
entered a period of extremely rapid development shortly thereafter.
The timing could not have been better. The combination of optimal
control theory and inexpensive online computing technology enabled a
revolution in what control theory could be applied in process control
applications. The aftershocks of this rapid development in optimal
control and fast, inexpensive online computing are still being felt
today. The successful deployment of these ideas in process control
applications led to successful deployments in many other industries
such as flight control, robotics and mechatronics applications, HVAC
systems, power systems, etc. It is not an exaggeration to say that the
process control practitioners led the way to a revolution in advanced
control technology that was deployed widely across many industrial
sectors of the world economy.

Another illustrative example of the importance of judiciously com-
bining feedback and optimal control arises when we consider account-
ing for uncertainty in the MPC design. One natural robust control
formulation is the so-called min-max approach where we minimize
over the manipulated variables, as in standard MPC, but maximize over
the uncertainty in the inner problem. That approach was applied to
the “Shell Standard Control Problem” by the Shell research team at the
second Shell Workshop held in Houston in 1988 (Cuthrell et al., 1990).
And what was the outcome? The bottom line was that there was no
improvement in the closed-loop robustness compared to a nominal MPC
design. All of us attending the workshop were scratching our heads
over that outcome. David Mayne, an eminent control theorist from
electrical engineering, pointed out the reason a few years later. One
cannot achieve robustness by optimizing over an open-loop optimal
control as a sequence of control actions. One must optimize over control
policies. As David summarizes it (Rawlings et al., 2020, p. 199).

“The obvious and well-known conclusion is that feedback control
is superior to open-loop control when uncertainty is present. Feedback
control requires determination of a control policy, however, which is
a difficult task if nonlinearity and/or constraints are features of the
optimal control problem.”

And David shows how to design a (robust) min-max MPC that does
guarantee robustness (Rawlings et al., 2020, pp. 220-223). The trick
is to finitely parameterize the policy to maintain a tractable online
optimization problem. We illustrate this point also later in this paper
when we define stochastic MPC, another form of MPC that addresses
model uncertainty. David’s contribution to MPC theory were especially
noteworthy because he brought his vast expertise in optimal control
and nonlinear control theory to bear on the MPC problem; he also
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brought the MPC problem to the attention of the broader control theory
community, which sparked many different contributions to MPC from
a much wider group of outstanding control theorists.

In summary, the interaction of these two communities, the practi-
tioners in the process industries, and the control theory researchers,
was indeed a special one. And that interaction took place largely at this
series of meetings over the last thirty years. There was a lot of passion
displayed by both groups, and there were many good ideas contributed
by both groups as well. There was some heat, but there was also a lot
of light. A common mythology discussed at these meetings centered
around the existence of a supposed “gap” between academics doing
control theory for theory’s sake, and practitioners requiring reliable
technologies to address their current control operational difficulties.
That characterization does not do justice to the interactions that I
(JBR) witnessed at these meetings. When you see one set of respected
practitioners arguing to deploy large-scale model predictive control, and
another set of respected practitioners resisting that notion and calling in-
stead for better tuning guidelines to handle multi-loop PID controllers,
that is hardly an academic-industrial gap between theory and practice.
That is basically a conflict over what the future of industrial practice is
going to become. And everyone had a stake in that outcome, and no one
could predict whether either of these technologies or something else
entirely was going to emerge as a clear winner. I (JBR) recall traveling
home after several of the CPC meetings and thinking, “Wow, what just
happened; where are we going next?” I could not wait to get back home
to start working on the new ideas. For me, that is the legacy of the CPC
side of these meetings.

A note on FOCAPO/CPC collaborations. The authors know much less
about the historical development of process operations outside of pro-
cess control. Consider chemical production scheduling, for example.
The history of process scheduling is quite different than process control
where the early practice was dominated by feedback solutions with lit-
tle optimization. General scheduling (e.g., for discrete manufacturing)
was studied in the 1950s. Chemical production scheduling is younger
still—it appeared as a subdiscipline in the 1970s. Chemical production
scheduling felt a stronger early influence from academic research fo-
cusing on optimization, i.e., solving for an optimal schedule. Feedback
was not much considered until around the time of the merging of
FOCAPO and CPC in 2012. The first joint FOCAPO/CPC meeting took
place in Savannah, GA in January 2012. Prodromos Daoutidis, the CPC
co-chair, encouraged Christos Maravelias and me (JBR) to present a
paper to both groups at the combined day of the meeting. Christos and
I had been working on using feedback in optimal scheduling to add
performance guarantees to the closed-loop schedule. We thought that
collaboration would illustrate overcoming challenges in bringing these
two communities into closer contact. The key for us turned out to be
developing a common language for expressing the process models. That
development took place over a few months in this way: Christos and
I co-supervised a Ph.D. student, Kaushik Subramanian. Kaushik would
meet with me, and I would say, ‘“Those scheduling models do not make
any sense; here’s how we would express a dynamical system model.”
Kaushik would meet with Christos, and Christos would say, “Wait, the
control people do what? That cannot represent a scheduling model.”
Finally, after a few months of this treatment Kaushik said, “Here’s how
you translate a scheduling model into a dynamic state-space model, and
here’s how you then solve it.”

What I (JBR) learned from this experience is that to bring two re-
search communities together, you require. .. one really smart graduate
student. The graduate student has conversations with both professors.
Over a few months the graduate student becomes bilingual. Neither
professor ever learns the other’s language.* After a few months the
graduate student can suddenly speak a new language to both professors,

4 Professors are notoriously stubborn and slow learners.
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and you write down that new language. The beauty is that all three
can now speak the new language. The language that Kaushik developed
is summarized in Subramanian et al. (2012). The translation provided
enables the control community to design a feedback solution to the
scheduling problem by formulating an MPC control problem for the
dynamic model equivalent of the scheduling model.

Fruitful collaborations often impact everyone participating. Col-
laborators do not merely import ideas from other fields, they cross-
pollinate. Control people expect that control theory might have some-
thing to contribute to chemical production scheduling because control
exploits feedback to obtain robustness to disturbances and modeling
errors, and feedback was largely missing in early optimal scheduling.
But did scheduling have any impact on control theory? The answer is
yes. By its nature, scheduling focuses attention on the discrete decision
variables as an essential part of any application. Integers abound:
which products should be made, in what sequence, in which pieces
of equipment? Of course, discrete decisions appear in many process
control problems as well, but traditionally they were handled with
heuristics and supervisory logic, and not solved on-line as part of the
optimal control problem. In MPC, for example, discrete decisions had
been introduced in Slupphaug et al. (1998), Bemporad and Morari
(1999), but the theory for the closed-loop properties for these systems
was fragmentary and developed largely as special cases. Motivated by
their importance in scheduling applications (and HVAC energy opti-
mization), these integer decisions were fully integrated into mainstream
MPC theory in Rawlings and Risbeck (2017). This development was the
thesis topic of another smart graduate student, Michael Risbeck, who
also did joint research with Christos. Michael took Kaushik’s starting
point to its logical conclusion and formulated the fully integrated
scheduling and control problem, also expressed in state-space form.
When tractable, that formulation can also be optimized directly in an
economic MPC framework, and when a feasible reference trajectory is
used as a terminal constraint, the closed-loop economic performance
of the nominal system is shown to be at least as good as the reference
trajectory (Risbeck et al., 2019). So we have a performance bound on
the (nominal) closed-loop system that is better than the best available
feasible, open-loop reference trajectory. From a theory perspective, that
is a good starting point for integrating scheduling and control, but
much work remains to reduce such an approach to practice.

The second author of this paper also participated as a Ph.D. student
in a (third) research collaboration with Christos. This one was a some-
what different but similar story to Kaushik’s. In this collaboration we
were trying to characterize and analyze the robustness of the feedback
scheduling solution to unknown disturbances, such as equipment break-
downs, canceled orders, task delays, etc. But we already had a common
modeling language, so conversations were easier at first. The ones with
me then went like this, “Wait, what? Those disturbances are not small,
like process and measurement noise, those disturbances are large; no
controller can handle those. Koty, tell Christos that’s hopeless.” Koty
would come back later and tell me, “Well, Christos says, ‘Hopeless
or not, those are the relevant disturbances. What can a feedback
solution do about them?’” And that seemed like an impasse. But then
Koty had a good idea. Robustness first had to be redefined from a
stochastic perspective. The focus then changes from bounds on worst
performance over all disturbances to bounds on average performance
over all disturbances. And those large disturbances required a different
probability distribution. And then we could say something about the
stochastic robustness to those large (but rare) disturbances (McAllister
et al., 2022; McAllister and Rawlings, 2022a). What I learned from this
collaboration was basically the same lesson. The graduate student talks
to two different experts. The graduate student eventually internalizes
what those experts know. The graduate student then has a new idea.
Why couldn’t Christos and I just generate the new idea directly without
the third party? I have no explanation. Maybe psychologists have
studied this issue and know the answer. Interestingly, we also never
required a meeting with all three of us. Of course we had some of
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those meetings as well, but they were not the ones where the magic
happened.

So in 2023, at the time of this third joint FOCAPO/CPC meeting,
have the fields of optimal operation, production scheduling in this case,
and feedback control been successfully integrated? A fair answer seems
to be: No, not yet, but the situation remains fluid. Certainly such an
integration has not been reduced to standard industrial practice as it
has in process control. After a plenary lecture on process scheduling
at the second joint meeting in Tucson (2017), I (JBR) asked the pre-
senter if there was a reason one would not want to reschedule every
time new information became available. The speaker’s reaction was
basically, “Mon dieux, we would never consider something crazy like
that. Practitioners do not like changes to the schedule!” I remember
thinking, “Well, at least the control practitioners were not telling us to
keep our hands off the valves in control applications.”

But consider as well the recent and first textbook on chemical
production scheduling (Maravelias, 2021, p. 365).

“In general, decisions obtained from a finite horizon planning model
are implemented in a setting where the system operates indefinitely and
under uncertainty, hence, what the model returns as optimal predicted
solution may not be optimal for the long-term operation of the actual
system.... As time passes by, more information becomes available, and
this information should be accounted for as soon as possible to deter-
mine new decisions. Thus, real-time scheduling is a generalization of
rescheduling, since it is based on a recomputation that is carried out
not only upon the realization of trigger events but also periodically to
consider new information.”

So time will tell. Perhaps Maravelias (2021) will become the Lee
and Markus of the scheduling community and be quoted at some
FOCAPO/CPC meeting 50 years from now as proof that the notion of
combining feedback with optimal scheduling was a mainstream idea in
the scheduling community as early as the 2020s.

3. Nominal and stochastic model predictive control

So after these admittedly subjective and selected historical com-
ments, we would like to return to the main question posed in the
title of the paper: how do we best combine or harmonize feedback and
optimization to obtain high performance that is also robust to either
unknown or imperfectly modeled disturbances affecting a system. And
now we would like to be precise about what is known and what is
not known about this issue. Grand generalizations may pass muster
when summarizing some developments of the distant past, but such
generalizations are dangerous and misleading when summarizing a
complex, current state of the art. Also, given the limits on the authors’
expertise, we have to restrict this discussion to the state of affairs in
model predictive control and optimal stochastic control.

Wonham (1969) starts his optimal stochastic control paper with the
sentence, “STOCHASTIC CONTROL is a convenient misnomer for the control
of systems subject to stochastic disturbances.” Similarly, stochastic MPC
(SMPC) is applying MPC to systems where the model of the system in-
cludes stochastic disturbances, i.e., the process model is (1) rather than
(2). But certainly we cannot expect the plant’s true disturbances to be
captured by the disturbance model chosen in SMPC. That case reflects
an unrealistic belief that sure, nature is random, but we somehow get
to know the randomness exactly. If only life were that simple.

But simulation and case studies can tell us a lot about what might
happen when we apply MPC to a plant with some unknown random-
ness. In simulation, the designer can test the performance of the control
system in many different scenarios. For example, we can evaluate
nominal MPC’s performance using the disturbances as modeled in the
SMPC controller (is nominal MPC robust to disturbances?) We can
evaluate SMPC’s performance when there are no disturbances (does
SMPC sacrifice nominal performance in search of robustness to dis-
turbances?). Case studies of this sort are quite informative. But case
studies can take us only so far. It is unlikely that we can draw general
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conclusions without theory and analysis of the control systems. We
next present some recent theoretical developments on the question of
whether stochastic MPC has obtained any closed-loop properties that
are different than those achieved by nominal MPC.

Notation

Let I and R denote the integers and reals. Let superscripts on these
sets denote dimensions and subscripts on these sets denote restrictions
(e.g., R" for real vectors of dimension » and 1. 5, for integers from 0 up
to and including N > 0.) Let | - | denote Euclidean norm. The function
a : Ryy = Ry is in class X, denoted a(-) € X, if a(:) is continuous,
strictly increasing, and «(0) = 0. The function a : R,y — R, is in
class %, if a() € K is unbounded, i.e., lim,_, a(s) = oo. A function
B 1 Ryoxlyo = Ry is in class K1 if, for fixed k € I, the function §(-, k)
is in class X and, for fixed s € R, the function f(s, -) is nonincreasing
and lim,_,, f(s,k) = 0. Let E[-] denote expected value of a random
variable.

3.1. System model

We consider discrete time, stochastic systems of the following
form.

xt = fx,u,w) @

in which x € R” is the state, u € U C R is the input, w € W C RY is
the disturbance, and x* denotes the successor state. We treat the origin
((x,u) = 0) as the steady-state target (setpoint) of interest. Moreover,
we assume that the disturbances w € W are random variables that
are independent and identically distributed in time (i.i.d.) with zero
mean (E[w] = 0). Let 4 denote the probability distribution for w and
let u € M(W) denote the collection of all probability distributions on
the support W that are zero mean. Let X denote the covariance matrix
for w, i.e.,

Y :=Elww']

for all y € M(W). To control this stochastic system, we consider two
variations of MPC.

3.2. Nominal MPC

In nominal MPC, we use only a nominal model of the system, i.e.,
x* = f(x,u,0) 2

to design the controller. For the horizon N € I,, we use G(k; x,u)
to denote the state trajectory of Eq. (2) at time k € .5, given
the initial state x € R” and input trajectory u € UN. We allow
input constraints u € U, but do not enforce state constraint in the
optimization problem. For a perturbed system, there is no guaran-
tee that these state constraints can be satisfied. Instead, we convert
these state constraints to penalty functions in the stage cost (Zheng
and Morari, 1995; Scokaert and Rawlings, 1999). Thus, the optimizer
avoids violating these constraints if possible, but does not produce an
infeasible optimization problem otherwise. We do, however, require a
terminal state constraint denoted by the set X, C R”". To characterize
the performance objective for the controller, we define a stage cost
?(x,u). We also define a corresponding terminal cost V,(x) that is
chosen to guarantee stability and robustness.

We define the set of admissible input trajectories, feasible initial
states, and objective function, respectively, as

ux) :={ue U : x(N) e X,}
X :={xeR": Ux) # @}
N-1

Vix,u) : Z C(x(k), u(k)) + Vp(x(N))
k=0
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in which x(k) = ¢(k; x, u). The nominal MPC optimization problem for
any x € X is defined as
P(x) : Vo) := min V(x,u)
ueuU(x)
and the optimal solution is denoted u’(x). We implement, however,

only the first input in this optimal solution and the control law for
nominal MPC is therefore

K(x) 1= u%(0; %)
The resulting closed-loop system is then
xt = f(x, k(x), w) 3

and we use ¢(k; x,w,) to denote the state of Eq. (3) at time k € I,
given the initial state x € X and disturbance trajectory

w, = (w(O), w(l), ..., wk — 1)) € Wk

Thus, nominal MPC does not account for disturbances in the prob-
lem formulation directly, but does address disturbances through state
feedback.

The following assumptions ensure that nominal MPC is inherently
robust.

Assumption 3.1. The system f(-), stage cost #(-), and terminal cost
V;(-) are continuous and satisfy £(0,0,0) =0, £(0,0) =0, V;(0)=0.

Assumption 3.2. The set U is compact and contains the origin. The
set X, is defined by X, := {x € R" : V,(x) < 7} for some 7 > 0.

Assumption 3.3.
such that

There exists a terminal control law «, : X, - U

flx,kp(x),0) €Xy
V(G K p(x),00) < V(x) = £(x, K (x)

for all x € X,.

Assumption 3.4. There exists a,(-) € X, such that a,(|x]) < £(x,u)
for all (x,u) € R" x U.

3.3. Stochastic MPC

In SMPC, we use a stochastic model of the system. For now, we
assume this model is equivalent to the underlying plant in Eq. (1).
Since we are considering all possible realizations of the disturbance
in the optimization problem, we want to optimize over a trajectory of
control policies for this system to account for all possible realizations of
the state trajectory. To avoid the difficulties of dynamic programming
and ensure that the optimization problem is tractable, however, we
parameterize this control policy as z(x, v) in which v € V is the vector
of parameters for the control policy, e.g., z(x,v) = Kx + v in which K
is a fixed feedback gain matrix. Thus, the system of interest is

xt = f(x, n(x,v), w) 4

We use ¢*(k;x,v,w) to denote the state of Eq. (4) at time k € . y,
given the initial condition x € R”, trajectory of control policies defined
by v € V¥, and disturbance trajectory w € WN.

Since we are considering the disturbance directly in the optimiza-
tion problem, we can consider hard state as well as input constraints,
ie.,

(x,u) EZCR"xU

We define the admissible control parameter trajectories, feasible
initial states, and cost function, respectively, as

V(x):={veVN:

Computers and Chemical Engineering 176 (2023) 108277

(x, 2(x(k), v(k)) € Z Yw € WV, k €T y_,
and x(N) € X; Yw € WV}
X*i={x eR" : V(x) # 0}
N-1
V,x,v) =K z 2 (x(k), w(x(k), v(k))) + V(x(N))
k=0
in which x(k) = $*(k; x, v, w). Note that the cost function depends on the
probability distribution for w, i.e., u. The SMPC optimization problem
for any x € x* is defined as

S . s0 . . s
P”(X) : VH (x) := véﬂé&) VM (x,V)

and the optimal solution is denoted vflo(x). We again implement only
the first control policy in this optimal solution and the control law for
SMPC is therefore

Ky () = 7, 00 (0: )
The resulting closed-loop system is then
xt = f(x, K,(x), w) 5)

and we use qbfl (k;x,w;) to denote the state of (5) at time k € I,
given the initial condition x € X, disturbance sequence w, € Wk,
and probability distribution x4 € #(W). Note that the control law and
therefore closed-loop system depend on the probability distribution u
used in the SMPC problem formulation.

For SMPC, we require modified versions of Assumptions 3.2 and 3.3.

Assumption 3.5. The set Z is closed and contains the origin. The sets
U and X, are compact and contain the origin. The set X, contains the
origin in its interior. The set x* is bounded.

Assumption 3.6. There exists a continuous terminal control law
k; : X; — U such that

frp),w)€X, YweW
Vi(f(x,k(x),00) < V(%) = £(x, kp(x))

for all x € X , Furthermore, (x, kp(x)) € Z and 7z(x,0) = k,(x) for all
x € Xf.

Note that Assumption 3.6 implicitly restricts the size of W that may
be considered for a specific system. Sufficiently large disturbances may
render the construction of a suitable terminal control and a terminal
set either difficult or impossible for nonlinear systems and open-loop
unstable linear systems with input constraints. We also require the
following assumption for the control law parameterization.

Assumption 3.7. The set V is compact and contains the origin. The
function #(-) is continuous.

3.4. Properties

We introduce three potential definitions of robustness that include
both deterministic and stochastic representations of the disturbance
trajectory. Since the SMPC control law varies with u, we use the generic
control law «,(-) and corresponding closed-loop system ¢,(-) in the
following definitions to indicate this potential dependence. Since both
MPC and SMPC rely on optimization to define the control law, we
must first ensure that these optimization problems remain feasible for
the closed-loop system. We characterize this property through robust
positive invariance.

Definition 3.8 (RPI). A set X is robustly positive invariant (RPI) for
the system x* = f(x,x,(x),w), w € Wif x* € x for all x € X, w € W,
u € MW).
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If the feasible set of the MPC or SMPC optimization problem is RPI,
then the optimization problem is robustly recursively feasible, i.e., the
control law and closed-loop system are well defined. For this closed-
loop system, we define deterministic robustness as follows in which

IWell == maxep, , | lw@].

Definition 3.9 (RAS). The origin is robustly asymptotically stable
(RAS) for a system x* = f(x,k,(x),w), w € W in an RPI set X if there
exist f(-) € XL and y(-) € X such that

[, (ks x, wi)l < B(Ix], k) + v (IwelD (6)
for all x € x, w, € W¥, and k € I,,.

Thus, RAS ensures that the closed-loop state of the system converges
to a neighborhood of the origin defined by a %-function of the largest
disturbance experienced up to time k, i.e., y(||w.||). Note that this bound
must hold for any specific realization of the disturbance trajectory. As
we intend to consider a stochastic representation of the disturbance, we
are also interested in a similar bound based on the stochastic properties
of the underlying system. We define stochastic robustness as follows.

Definition 3.10 (RASIE). The origin is robustly asymptotically stable
in expectation (RASIE) for a system x* = f(x, K, (x),w), w e W in an
RPI set x if there exist (-) € XL and y(-) € K such that

Ell¢, (k; x, w)l] < p(Ix], k) + y(tr(2)) @)
for all x € X, p € M(W), and k € I,,.

Similar to RAS, RASIE requires that the effect of the initial condition
vanishes as k — oo with a persistent term based on the disturbance w.
In RASIE, however, (7) bounds a stochastic property of the closed-loop
system (E[-]) based on a stochastic property of the disturbances (tr(X)).
Note that ¥ depends on y and (7) must hold for all u € M(W).

These two definitions of robustness, one deterministic and one
stochastic, consider the usual metric of performance in process control:
distance to the origin (setpoint). In MPC, however, we define the
control law by optimizing a performance metric for the system defined
by the stage cost #(-). By requiring Assumption 3.4, we ensure that if
¢(x,u) — 0, then |x| — 0 as well. We nonetheless allow for significant
flexibility in selecting #(-) that allows us to tune the stage cost to
reflect the relative importance of the different elements of the state and
input, or even include specific economic metrics of performance in the
problem formulation. Given this flexibility and the benefits obtained
from this more general definition of performance, we propose a defini-
tion of robustness with respect to the stage cost, i.e., the performance
metric assigned to the MPC and SMPC problem formulation. We call
this property robust asymptotic stability in expectation with respect to
the stage cost, abbreviated as #-RASiE.

Definition 3.11 (£-RASIE). The origin is Z-RASIiE with respect to the
stage cost 7(-) for a system x* = f(x, K,(x), w), w € W in the RPI set X
if there exist f(-) € k£ and y(-) € X such that

E[Z(x(k), &, (x(K))] < (x|, k) + y(tr(Z)) ®
in which x(k) := ¢, (k;x,w,) for all x € X, y € M(W), and k € L.

Nominal MPC is known to be RAS for sufficiently small distur-
bances (Grimm et al., 2004; Pannocchia et al., 2011; Yu et al., 2014;
Allan et al., 2017). Moreover, we can establish that nominal MPC also
satisfies the two definitions of stochastic robustness introduced in this
section, as detailed in the following theorem (McAllister and Rawlings,
2022c).

Theorem 3.12 (Nominal MPC). Let Assumptions 3.1 to 3.4 hold. For every
p > 0 there exists 56 > 0 such that for all W C {w € RY : |w| < 6} and the
system xt = f(x,x(x),w), w € W, and the set § := {x € R" : V(x) <
p} N X we have that
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(i) The set S is RPL

(ii) The origin is RAS in the set .
(iii) The origin is RASIE in the set S.
(iv) The origin is £-RASIE in the set S.

For sufficiently small disturbances (Jw| < §), nominal MPC sat-
isfies all of the definitions of deterministic and stochastic robustness
introduced in this section. This robustness is inherent to nominal MPC
through feedback, despite the fact that nominal MPC does not con-
sider the disturbance directly in the problem formulation. By contrast,
SMPC does consider a stochastic description of the disturbance and
optimizes a stochastic objective function, thereby affording stochastic
robustness to the closed-loop system (Cannon et al., 2009; Kouvaritakis
et al.,, 2010; Lorenzen et al., 2016; Chatterjee and Lygeros, 2014;
Mayne and Falugi, 2019). In particular, we can establish the following
result (McAllister and Rawlings, 2023a, 2022c¢).

Theorem 3.13 (SMPC). Let Assumptions 3.1 and 3.4 to 3.7 hold with u
and W known exactly. Then for the system x* = f(x, K;(x), w), we W,
we have that

(i) The set x* is RPIL
(ii) The origin is RASIE in the set X*.
(iii) The origin is £-RASIE in the set X°.

Thus, nominal MPC and SMPC satisfy the same definitions of
stochastic robustness, in terms of both distance to the origin and stage
cost. In other words, SMPC is not providing some unique form of
stochastic robustness not available to nominal MPC. On the contrary,
SMPC is instead sacrificing deterministic robustness (RAS) for the
possibility of improving the stochastic robustness of the closed-loop
system.

Moreover, SMPC optimization problems are significantly more diffi-
cult to solve than nominal MPC optimization problems. These problems
require evaluation of an expectation, which is often computed by sam-
pling the random variable w and constructing all possible trajectories
for these realizations of the disturbance, i.e., a scenario tree. Thus, the
number of variables and therefore SMPC problem size is sV times larger
than the nominal MPC problem, in which s is the number of samples of
w at each time step and N is the horizon length of the SMPC problem.

3.5. A loss of nominal asymptotic stability

We consider a small example of level control in two tanks, adapted
from McAllister and Rawlings (2022c), as shown in Fig. 1. The goal
is to control the height of liquid in each tank (x;,x,) via the inlet
flow rate to tank 1 and outlet flow rate from tank 2 (u;,u,). Tank
1 drains into tank 2 by gravity at a rate proportional to the height
of tank 1. This proportionality constant is subject to uncertainty with
w € W := {-0.3,0,0.3}. We consider the probability distribution
Pr(w = —0.3) = Pr(w = 0.3) = 0.35 and Pr(w = 0) = 0.3. The differential
equations (in deviation variables) are

dx, 1+ w)x, +
— =- w -w
ar X T Uy
4w +

= w)x, — w
dr 1~

Since the support for the disturbance is finite, we can discretize this
differential equation (assuming a zero-order hold on the input and
disturbance with a time step 4 = 1) and solve the SMPC problem exactly
by considering all possible disturbance trajectories.

We consider the input constraints u;,u, € [—1,1] and stage cost
?(x,u) = x’Qx + v’ Ru with Q = diag([0.1,20]) and R = diag([0.1,0.1]).
Note that these penalties strongly discourage any deviations in x,, but
nonetheless satisfy all the usual requirements for nominal MPC and
SMPC. We use the LQR cost P and gain K for the nominal (w = 0)
unconstrained system to define the terminal cost V,;(x) = x'Px and
control law parameterization =(x,v) := Kx + v. We define the terminal
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Fig. 1. Two tanks with gravity driven flow between tank 1 and tank 2.
Source: Taken from McAllister and Rawlings (2022c).
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Fig. 2. The closed-loop trajectory for SMPC subject to a nominal realization of the
disturbances, i.e., w, = 0.
Source: Taken from McAllister and Rawlings (2022c).

constraint as X, := {x : |x;| £ 04, |x,| < 0.4} and verify that this
formulation satisfies Assumptions 3.1 and 3.4 to 3.7 for SMPC with the
terminal control law Ky(x) = Kx.

For nominal MPC, we can establish that these same choices of
stage cost, terminal cost, and terminal constraint render the origin
asymptotically stable for the nominal closed-loop system and RAS for
small disturbances, such as the disturbance w € W considered in
this example (Grimm et al., 2004). SMPC, however, does not render
the origin asymptotically stable for the nominal closed-loop system. In
Fig. 2, we plot the closed-loop trajectory for SMPC subject to a nominal
realization of the disturbance, i.e., w, = 0. Despite the fact that no
disturbance occurs and the system is initialized at the setpoint x(0) = 0,
the SMPC controller drives x; away from this setpoint. The value of
x, converges to a different steady state at x; ~ —0.6 that is not even
within the terminal set X y defined for the SMPC controller. Thus, the
SMPC controller does not render the origin (or the terminal set) RAS
or nominally asymptotically stable.

The benefit of SMPC for this example is that the expected value
of the stage cost evaluated for closed-loop state and input trajectory,
i.e., E[£(x(k), u(k))], is lower for SMPC than nominal MPC. By lowering
the value of x;, SMPC reduces the effect of the disturbance on x,.
Since we have assigned a larger cost to deviations in x, than x,, this
approach reduces the expected stage cost for the system subject to
this disturbance distribution. If this stage cost is closely related to the
economic performance of the process and the disturbance distribution
is well characterized, then SMPC may be preferred to nominal MPC
despite the lack of nominal asymptotic stability.

3.6. Distributional robustness

We would like to briefly summarize some recent results on how ro-
bust stochastic MPC is to errors in the assumed probability distribution
of the disturbances.

To investigate distributional robustness of the closed-loop system,
we allow the distribution of the disturbance in the MPC model to
be different from the distribution of the disturbance in the plant. To
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distinguish the model and the plant, we use @ € W with probability
distribution /i as the model disturbance, and w € W with probability
distribution u as the plant disturbance. To measure the distance be-
tween these two disturbance models, we use the Hausdorff set distance
dg (W, W) to measure the difference between the support sets W and
W, and we use the Wasserstein metric to measure the distance between
the probability distributions, denoted W (u, fi). McAllister and Rawlings
(2022b, 2023b) provide the precise definition of this metric and de-
scribe how it is computed given the two probability distributions. Note
that the Wasserstein metric satisfies all the axioms of a distance on the
set M (W), i.e., the metric W (u, /1) is symmetric, nonnegative, satisfies
the triangle inequality, and W (u, 2) = 0 if and only if 4 = 4 for all
u, i € M(W). Similarly, we have that the Hausdorff set distance satisfies
all the axioms of a distance for nonempty, compact subsets of RY.

Definition 3.14 (DRASIE). The origin of the system x* = f(x, k;(x), w),
w € W is distributionally robustly asymptotically stable in expectation
(DRASIE) in the RPI set x if there exist f(-) € XL and y,(:),7,(-) € X
such that

E [I¢ (ks x, wl] < BIx]. k) + vy ELIBI) + yo (W (. ) ©)
for all x € X, i € M(W), y € M(W), and k € L.

The first part of the upper bound in (9) is a X2 function that ensures
the effect of the initial condition x € X (asymptotically) vanishes as
k — oo. The second function y, ([|&|]) accounts for the persistent effect
of the modeled disturbance (i0) in the control law design and the ideal
system with y = ji. Note that if K[#] = 0, we can replace &[|@|] with
the upper bound tr(2)!/2. The third function y,(W (4, 1)) accounts for
the discrepancy between the disturbance distribution model 7, used in
the SMPC optimization problem, and the true disturbance distribution
u. If w = p, then y,(W(u, 1)) = 0 and we recover the usual bound
for idealized SMPC analysis. The most significant consequence of this
result is that the effect of arbitrarily small errors between 4 and u
produce similarly small deviations from the closed-loop bound derived
for idealized SMPC analysis.

Under suitable assumptions, SMPC is distributionally robust (McAl-
lister and Rawlings, 2022b, 2023b). Specifically, we can establish that
for sufficiently small errors in the disturbance support (d (W, W) <
5 for some § > 0), SMPC renders the closed-loop stochastic system
DRASIE. Note that these errors include disturbances that are incorrectly
modeled, unmodeled, or intentionally mismodeled via sampling-based
approximations of the stochastic optimization problem. Thus, feedback
is a crucial component of SMPC algorithms for essentially the same
reason as for nominal MPC algorithms: To address the inevitable dis-
crepancy between the stochastic or deterministic model used in the
optimization problem and the plant.

4. Conclusion

We summarize the expectations and outcomes in comparing nomi-
nal MPC to stochastic MPC.

1. We expect nominal MPC to bring the system to setpoint from
different initial conditions, because the optimal control problem
is designed for that.

This expectation is met.

2. We expect nominal MPC to be robust to small deterministic
disturbances, although we did not design for that.
This expectation is met.

3. We expect nominal MPC to be robust to small stochastic distur-
bances, although we did not design for that either.
This expectation is met.

4. We expect stochastic MPC to handle small stochastic distur-
bances, because we did design for that.
This expectation is met.
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5. But did we expect stochastic MPC to lose nominal deterministic
stability? Probably not, until we see the simulation example that
demonstrates this loss (McAllister and Rawlings, 2022c).

This is a surprise.

6. We expect stochastic MPC to be robust to small errors in the
stochastic model that we are using although we did not design
for that. This is the distributional robustness question.

This expectation is met.

7. But since nominal MPC is a stochastic MPC with an unusual/
trivial choice of stochastic model (zero), this distributional ro-
bustness also applies to nominal MPC.

This is a surprise.

8. Open question. How robust are either of these MPC designs
(nominal/stochastic) to deterministic model error, i.e., errors in
f() in Eq. (1).

We summarize these conclusions in the following table.

MPC SMPC SMPC always
outperforms MPC?
RPI set Yes Yes No
RAS Yes No No
RASIE Yes Yes No
¢-RASIE Yes Yes Yes?
DRASIE Yes Yes Unknown

aNo counter example yet.

Wonham (1969) concludes his paper on optimal stochastic control
from 50 years ago with the following remarks.

“Since the mathematical model is usually greatly complicated by
explicitly including stochastic features, it is always to be asked whether
the extra effort is worthwhile, i.e., whether it leads to a control
markedly superior in performance to one designed on the assumption
that stochastic disturbances are absent. In the case of feedback controls
the general conclusion is that only marginal improvements can be
obtained unless the disturbance level is very high, in which case the
fractional improvement from stochastic optimization may be large, but
the system is useless anyway. That is, efforts to counter disturbances by
simply warping the velocity field in state space are generally misplaced.
For this reason I do not think there is much point in trying to develop
low noise perturbation formalism for feedback controls.”

So how well does this rather pessimistic conclusion hold up when
applied to stochastic MPC? We think that today this conclusion war-
rants reconsideration. The control field is addressing more general
classes of control problems today compared to fifty years ago, and the
usefulness of stochastic control depends on the type of control problem
that one is addressing. If one is interested primarily in tracking perfor-
mance, Wonham’s pessimism remains entirely justified. In fact, a recent
surprise is that stochastic MPC does not provide robust asymptotic
stability of the steady-state target in the absence of disturbances.

If one is interested primarily in economic performance, however, an
accurate model of the randomness can pay significant dividends (Kumar
et al., 2018). In these economic control problems, the stability of the
steady state is not a goal of the control system design and therefore not
a major concern.
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