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ABSTRACT: Aerosol-OT reverse micelles represent a chemical
construct where surfactant molecules self-assemble to stabilize water
nanodroplets 1−10 nm in diameter. Although commonly assumed to
adopt a spherical shape, all-atom molecular dynamics simulations and
some experimental studies predict a nonspherical shape. If these
aggregates are not spherical, then what shape do they take? Because
the tools needed to evaluate the shape of something that lacks regular
structure, order, or symmetry are not well developed, we present a set
of three intuitive metricscoordinate-pair eccentricity, convexity, and
the curvature distributionthat estimate the shape of an amorphous
object, and we demonstrate their use on a simulated aerosol-OT
reverse micelle. These metrics are all well-established methods and
principles in mathematics, and each provides unique information
about the shape. Together, these metrics provide intuitive descriptions of amorphous shapes, facilitate ways to quantify those shapes,
and follow their changes over time.

1. INTRODUCTION

Since Dalton first proposed his atomic theory, the study of
chemistry has been inextricably linked to the study of structure.1

Soon after Dalton, early organic chemists Kekule ́ and Couper
discovered chemical bonding and invented the notation to
represent molecules spatially.2 Seven years later, Kekule ́
proposed the first structure of benzene.3,4 By developing a
robust understanding of structure, Kekule ́ and Couper paved the
way for modern organic chemistry.5 Later, harnessing X-rays
would allow researchers to characterize organic and inorganic
crystals.6 This ability was used to determine the structure of
penicillin, which showed researchers how to create a whole host
of beta-lactam antibiotics and revolutionize medicine.7−9

Today, a wide range of experimental methods and theoretical
frameworks exist to determine molecular, crystal, nanoparticle
and meso-structures. However, these methods and frameworks
only apply for highly organized, well-defined systems.
Disordered and amorphous shapes have eluded description so
far, despite the frequency with which such systems appear in
nature. Polymers, biological structures, and soft materials, like
self-assembled systems, frequently display disorder and adopt
shapes that are not easily described with current theoretical
frameworks.10

Aerosol-OT (AOT) reverse micelles are an excellent model
system to explore amorphous shapes. These particles have been
extensively studied and used because AOT creates remarkably
robust aggregates with sizes closely related to the water:AOT

ratio.11 A plethora of studies, from characterizing molecular
behavior in nanoconfinement to templating nanoparticle
synthesis12−22 make AOT reverse micelles exceptionally well
characterized. Despite extensive use in research, there is
continued debate on the shape of AOT reverse micelles.
Much experimental work assumes that the aggregates are
spherical,23−29 but other experimental work disagrees.30−33

While early simulations applied the same simplification of
assuming a spherical micelle,34 the all-atom molecular dynamics
simulations enabled by greater computing power have
universally found the reverse micelles adopt some variation of
a nonspherical shape.33,35−41 Simplifying assumptions are often
made about AOT reverse micelles to build a framework for
understanding results. For example, Piletic et al., used nonlinear
IR spectroscopy to demonstrate two distinct water environ-
ments, “shell” and “core” water, calculated assuming a spherical
shape.13With the shape of these particles amatter of debate, new
methods of investigating the shape are needed because the shape
impacts how many studies and results are interpreted.
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Some arbitrary and amorphous shapes can be replicated by a
sum of spherical harmonics functions.42,43 To achieve the
precision that defines the shape, these calculations involve
hundreds of integrals over tens of thousands of points and
require that the shape contain no hollow cavities or overhangs.
While spherical harmonics can produce an exact facsimile of the
shape and are quite convenient in several applications, such as X-
ray tomography, they have no handle to develop intuition about
the shape. Therefore, spherical harmonics are not flexible
enough to accommodate many amorphous shapes that arise in
chemical systems. Additionally, tracking any group of
coefficients generated by the spherical harmonics model does
not describe how the shape evolves over time or allow
comparison.
To compare irregular, amorphous shapes in an ensemble, or

to follow the evolution of a shape in time requires development
of metrics that provide an accurate description of an arbitrary
amorphous shape and capture their important and fundamental
features. Here, we present a set of metricscoordinate-pair
eccentricity, convexity, and curvaturewhich are well-estab-
lished in the field of mathematics, and provide an intuitive and
meaningful description of the shape of amorphous objects. We
apply these metrics to describe the amorphous shape of a
simulated AOT reverse micelle and use the metrics to follow the
evolution of shape over the course of the 100 ns simulation. We
note that this analysis can be used to compare related
amorphous shapes from a vast range of applications.

2. METHODS
To test and demonstrate themetrics of shape proposed here, this
study uses the example of a reverse micelle system simulated
with molecular dynamics. The micelle consists of isooctane,
water, and the surfactant bis(2-ethylhexyl) sulfosuccinate, more
commonly known as aerosol-OT (AOT), shown in Figure 1.

The exact aggregation numberthe number of surfactant
molecules per micellefor an AOT reverse micelle is not
precisely known, with various measurements producing differ-
ent estimates.35,41,44,45 The Abel lab provides a set of reasonable
estimates for common w0 values of micelles.46 These estimates
agree with the most extensive computational search for the
aggregation number of AOT reverse micelles performed to
date,41 which also agree well with several experimental
sources.44,45 A review of these numbers and some select similar
sources is provided in the Supporting Information (SI) in Figure
S6. We use those numbers for our simulation and therefore the
simulation consists of 1,500 isooctane molecules, 210 water
molecules, and 42 AOT molecules. Isooctane and AOT were
modeled using the CHARMM36 force field,35,47 while water was
modeled with the TIP3P force field,48 in keeping with the Abel

group’s specifications and previous all-atommolecular dynamics
simulations of reverse micelles.33,35,37−41,46

The simulations were carried out using the 2019 series
GROMACS package.49−52 The system was packed into a
spherical micelle using Packmol.53 The system was minimized
by steepest descent to remove any overlapping molecules from
the packing. Equilibration was performed in several steps to
ensure that the shape of the micelle was not influenced or biased
by the starting structure, as detailed in Table 1. The equilibration

steps were designed to maintain position restraints on the core
while allowing the system to relax from the outside in. The
system was allowed to run for another 9 ns with no position
restraints on any component to complete the equilibration. All
equilibration steps were performed with anNPT ensemble using
a V-rescale thermostat54 and Berendsen barostat55 with a 1 fs
step size. The data presented here were collected from a
production run of 100 ns using the NPT ensemble with the
Nose−Hoover thermostat56,57 and Parrinello−Rahman baro-
stat58,59 and a 0.5 fs step size. Both equilibration and production
runs were held at 1 bar and 298 K. This paper aims only to
demonstrate the use of these shape metrics, so this simulation
length is sufficient for our purposes. A future paper will utilize
these metrics to thoroughly investigate the shape of AOT
reverse micelles over a longer period of time.
Custom Python code was written to perform all shape

analyses described here and is provided as a public GitHub
repository. The core workflow is to first create a Willard−
Chandler surface of the micelle.60,61 This produces a
triangulated mesh representation of the micelle on which the
analyses can then be performed.62 The code uses the
MDAnalysis package63,64 for manipulation of the molecular
dynamics trajectory and the PyVista package65 for manipulation
of the mesh. For all of the analyses shown here, the water,
sodium counterions, and succinate headgroup of AOT were
considered as the micelle surface. The choice of surface almost
certainly impacts the results and a comparison of different
choices likely holds valuable information about the system.
However, these types of considerations are beyond the scope of
this paper and will be explored in a subsequent paper.

3. METRICS OF SHAPE
3.1. Coordinate Pair Eccentricity. In mathematics,

eccentricity is a number that uniquely characterizes ellipses
and is defined as66,67

= −e
b
a

1
2

2 (1)

where e is the eccentricity and a and b are the major and minor
semiaxes, respectively. To adapt this definition to characterizing
physical objects, which are necessarily three-dimensional, the

Figure 1. Structure of aerosol-OT (AOT) surfactant.

Table 1. Equilibration Schedule for Reverse Micelles

position restraints (kJ/mol)

step time (ns) total time equilibrated (ns) water AOT isooctane

0.2 0.2 1000 1000 1000
0.5 0.7 1000 1000 0
0.1 0.8 1000 500 0
0.1 0.9 1000 0 0
0.1 1.0 500 0 0
9.0 10.0 0 0 0
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moments of inertia have been used historically.35,37,38 In this
view, an ellipsoid of equivalent mass but constant density is
created by equating the principal moments of inertia of the
object to the well-known equations for the moments of inertia
for an ellipsoid of equivalent mass.68 The addition of a new
dimension also means that a new semiaxis must be introduced, c,
to transition from an ellipse to an ellipsoid.

= +A
M

b c
5

( )2 2

(2a)

= +B
M

a c
5

( )2 2

(2b)

= +C
M

a b
5

( )2 2

(2c)

In this formulation, M is the mass of the object, A, B, and C
represent the magnitudes of the three principal moments of
inertia, and a, b, and c represent the semiaxis lengths. Each
principal moment of inertia shares a vector direction with the
semiaxis of the same letter, e.g., A and a share the same vector
direction. Semiaxis lengths are easily determined from these
equations using a linear algebra approach. Eccentricity, defined
in eq 1, becomes imaginary if b > a. We have adopted the
convention that a ≥ b ≥ c, which agrees with past literature and
mathematical standards. Note that using this convention also
implies that A ≤ B ≤ C.
Ellipsoids are generally sorted into one of three broad

categories: spheres, oblate ellipsoids, and prolate ellipsoids.69

Applying an eccentricity value to describe a three-dimensional
object using the standard, mathematical definition in eq 1,
becomes problematic, because the equation describes conic
sections that are necessarily two-dimensional. Most commonly,
only two of the three semiaxes are selected as input; however,
this leads to an inherent loss of information. Regardless of which
two semiaxes are chosen, at most only two of the categories of
ellipsoids can be distinguished. To characterize a three-
dimensional ellipsoid using eccentricity that does not lead to a
loss of information requires use of all three semiaxes to report
two different values of eccentricity. We introduce this concept as
coordinate-pair eccentricity (CPE), as given in eqs 3.

= − b
a

e 1ab

2

2 (3a)

= − c
a

e 1ac

2

2 (3b)

Here, eab and eac are the pair of values that constitute the CPE.
We chose these values as they allow us to differentiate between
all three categories of ellipsoids. A spherical ellipsoid is typified
by the relation a ≈ b ≈ c, while a prolate ellipsoid is typified by a
> b ≈ c, and an oblate ellipsoid is typified by a ≈ b > c. In more
familiar terms, a prolate ellipsoid is a roughly cigar shaped object
while an oblate ellipsoid resembles a disk or an M&M candy. eac
differentiates between a spherical object and an eccentric
ellipsoid, but not between whether that eccentric ellipsoid is
prolate or oblate because a > c, in both cases. By including eab,
this redundancy is removed and all three cases may be
differentiated.
3.2. Convexity. The second metric characterizes the

deviations from an ideal, convex shape. We use mathematical
terms here that do not share meaning with the more common

useage for convex surfaces, e.g., a convex lens. Within
mathematics, for a shape to be convex, the line connecting any
two points on the surface must be completely contained by the
shape (assuming a topological ball, i.e., no cavities or hollow
spaces inside).70 A convex hull is the smallest convex object or
set that contains the shape of interest. Many common shapes are
convex, including squares and circles in two dimensions, and
spheres and dodecahedra in three dimensions. However, it is
easy to find many shapes that do not meet this definition such as
a star (formally, an augmented pentagon or hexagon). Convexity
quantifies how far an arbitrary shape is from being convex.
The convexity can be defined in a number of ways.70

However, the more complex definitions are designed to provide
usable values even in situations such as infinitely thin rods,
spikes, or trenches that cannot be realistically obtained for a
shape derived from real, finite objects made up of atoms and
molecules. Therefore, we have chosen the computationally
simple and efficient definition:

Ξ = Volume(S)
Volume(CH(S)) (4)

where we use Ξ to represent the convexity, S denotes the shape
of interest, Volume() denotes the volume of the argument, and
CH() denotes the convex hull of the argument. Once again, the
convex hull is the smallest possible shape that circumscribes the
shape of interest and is convex. As shown by eq 4, convexity has a
range of (0, 1]. When Ξ = 1, the shape and its convex hull are
identical, and therefore have the same value. Similarly, a value of
0 cannot be realistically obtained for real, finite objects as this
would imply that the shape has zero volume and comprises
vanishingly thin rods.
A visual reference for the physical meaning of different

convexity values is given in Figure 2, showing convexity using
area for a 2D representation, rather than volume as defined in eq
4. The definition of convexity chosen here, in eq 4, conveniently
allows convexity to be thought of as the shape’s fraction of
volume relative to its convex hull. For a completely convex
shape, Ξ = 1, and Ξ will get successively smaller as more area is

Figure 2. Example figure of convexity in two dimensions. Each color
represents a different shape with one-tenth less convexity. The convex
hull for all of the shapes is shown as a red, dashed line.
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“removed” from the shape. For example, the yellow shape shown
in Figure 2 has a convexity of 0.6 because it has 60% of the area of
its convex hull.
3.3. The Curvature Distribution. The third shape metric

presented is the curvature distribution. Curvature of a two-
dimensional curve (of the form y = f(x)) is closely related to the
second derivative of the curve and can be most intuitively
defined as the inverse of the radius of an osculating circle, which
is a circle that closely approximates the curve at that point.71 An
example of an osculating circle is provided in the SI (Figure S3).
For a three-dimensional surface, curvature is no longer a single
value, but a pair of values known as the principal curvatures,
computed along orthogonal vector directions.72 There are two
primary ways in which these principal curvatures can be utilized,
that is, mean and Gaussian curvature, given in eqs 5a and 5b,
respectively.

κ =
+k k
2m

1 2
(5a)

κ = k kG 1 2 (5b)

Here k1 and k2 are the principal curvatures. In eq 5a, κm, is the
mean curvature and in eq 5b, κG, is known as the Gaussian
curvature.72 Note that the curvature is defined to be in the
direction of the osculating circle describing it (see Figure S3 for
an example). As a matter of convention, the principal curvature
is considered positive if the surface is curved toward the interior
of the shape and negative if it is curved away from the shape.
As the literal average of principal curvatures, mean curvature

represents the average trend of the surface at the point where it is
computed.73 A positivemean curvature indicates that the surface
curves toward the center of the shape at that point. It is possible
to have principal curvatures of opposite signs, but the positive
principal curvature must dominate for the mean curvature to be

Figure 3. (a) Guide to coordinate-pair eccentricity: eac compares the largest and smallest semiaxes; eab compares the largest and intermediate axes. The
colors indicate approximate regions where different basic ellipsoids occur. These areas are approximate because there is no formal definition
delineating, e.g., when a mostly spherical object stops being spherical. Solutions in the hatched area contradict the assumption that a > b > c. (b)
Coordinate-pair eccentricity of the micelle. Time is displayed as a color according to the bar at right. (c) eab versus time. (d) eac versus time.
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positive, and so the surface is mostly positively curved. Here, we
point out that the common useage of “convex” and “concave” to
describe the direction and magnitude of curvature at a point on
the surface, by analogy to a lens, are aptly quantified with the
mean curvature and have nothing to do with convexity.
Gaussian curvature, on the other hand, indicates the nature of

the surface at a particular point. A positive Gaussian curvature
means that both principal curvatures have the same sign, either
positive or negative, and the surface at that point is considered
elliptic.73 This is the type of surface found at every point on an
ellipsoid, where both vectors of principal curvature curve in the
same direction. Where the Gaussian curvature is negative, one
principal curvature must be positive while the other is negative
leading to a hyperbolic point.73 A hyperbolic point is most
recognizable as the type of surface found at a saddle point.

4. RESULTS AND DISCUSSION
4.1. Coordinate-Pair Eccentricity. Extending the classical

definition of eccentricity67 to the third dimension allows us to
describe the distribution of mass within an amorphous shape by
differentiating between spherical, prolate and oblate ellipsoids.
However, the use of eccentricity is not the only method which
has been used to characterize shape in this way. Some groups use
a variation on eccentricity usually represented as η1 and
η2.

36,74,75 We explore the relationship between the two metrics
in detail in the SI, but believe that CPE represents a much more
straightforward and easy to use metric. Figure 3 presents the
CPE over time for the reverse micelle. The “standard” definition
of eccentricity,67 based on the study of 2D conic sections and
frequently used for these reverse micelles, is the same as CPE’s
eac parameter shown in Figure 3d. An increase in eac correctly
determines that the micelle is no longer spherical, but as shown
in Figure 3a, a change in eac cannot distinguish between prolate
and oblate ellipsoids. The addition of eab (Figure 3c)
distinguishes between the two basic ellipsoids.
CPE is best thought of as the zeroth order approximation of

shape. The semiaxes from which eccentricity is computed arise
directly from the object’s moments of inertia. Although the
underlying shape is often significantly more complex, the
remaining metrics presented here are of little use without this
basic model to build upon. None of the previous work, either
simulated or experimental, has been able to characterize whether
reverse micelles tend to be more prolate or oblate
ellipsoids.23−33,35−41 The best descriptions available are images
of simulated micelles, which appear largely prolate.37,41 As
Figure 3 shows, the micelles have a surprising level of diversity of
shape, showing fluctuations between being a predominantly
prolate and oblate ellipsoid which have not previously been
quantified.
Because it is only a very rough approximation of shape, the

CPE has limitations. It is a starting place rather than a complete
description of the shape by itself. For example, CPE would
classify a spiral shape, possibly encountered in polymer or
biological chemistry, as a prolate ellipsoid given the distribution
of mass and relative aspect ratio. Likewise, CPE would classify a
U-shaped object, such as a horseshoe or the micelle image in the
green box in Figure 4, as an oblate ellipsoid, while human
intuition would interpret these shapes as folded prolate
ellipsoids. Although this tendency may occasionally violate
intuition, it is an accurate description of the mass distribution,
and more importantly, quantifiable and reproducible.
In addition, sensitivity to changes in eccentricity is not

uniform across all values. The CPE response depends on the

initial value; for smaller initial values of eccentricity, unit changes
in semiaxis length lead to larger changes to eccentricity. This
effect is clearly displayed in Figure 3c between 30 and 70 ns
where eab has, on average, a significantly smaller value than
anywhere else in the simulated time. Accordingly, eab appears to
have significantly larger fluctuations than eac. This can be
explained by the significantly increased response of eccentricity
to the same changes in semiaxis length when the eccentricity is
small. A plot of the eccentricity as a function of semiaxis length is
provided in the SI (Figure S4) to further demonstrate this point.

4.2. Convexity. CPE provides a good starting place for
describing amorphous objects, but there are vastly different
shapes that yield the same CPE values. For example, any basic
regular polyhedron, such as a cube, is indistinguishable from its
augmented variation that replaces the faces of the polyhedron
with pyramids whose height could be either positive or negative,
effectively creating “spiky” shapes.76,77 Regardless of the
augmentation used, the CPE value of any regular polyhedron
will be (0,0) and classified as a perfect sphere. To differentiate
between such objects and further characterize an amorphous
shape, we propose convexity as a second metric.70 Defined in
Section 3.2, convexity is the difference between the object and its
convex hull. The convexity provides complementary informa-
tion to CPE. Fluctuations in eccentricity predominantly reflect
how the micelle deforms in a direction tangential to its surface.
For example, a movement that stretches the shape from a sphere
into a prolate ellipsoid alters the distribution of mass and
therefore CPE. While there are movements, such as bends, that
both metrics can detect, fluctuations in convexity tend to reflect
motion normal to the reverse micelle surface because these
irregularities alter convexity but do not necessarily change the
CPE.
The convexity of the simulated reverse micelle is presented in

Figure 4, along with example images in several key portions of
the simulation. These data demonstrate two key points. First, the
micelle never exhibits an irregularity that removes more than
30% of the volume from the convex hull. Even in the most
extreme case highlighted in green where a fold appears to have
formed, the convexity only drops to a value of 0.7. Second, the

Figure 4. Convexity of the reverse micelle over the time of the full
simulation. Representative images of reverse micelles at select times
indicated by highlighted boxes appear above the convexity data.
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convexity never reaches a value of 1, showing that the reverse
micelle is never completely convex and always has some
irregularities. The conclusion is that the micelles are largely
convex but invariably include numerous bumps and divots on
the surface.
In general, we observe two different types of changes to the

shape that contribute to the fluctuations in convexity. Fast, low
amplitude fluctuations arising from small movements normal to
the surface, likely from the surface sinking or growing locally to
form a divot or bump. We also observe higher amplitudes and
typically slower fluctuations arising from larger changes to shape.
The image highlighted in the green box in Figure 4 demonstrates
this type of slow fluctuation and has reduced convexity
compared to other points. Over time, this fold disappears and
a new general shape forms that is a bubble connected by a thin
neck to the remainder of the micelle in a dumbbell-type
configuration, as highlighted in the cyan box. These irregularities
can also disappear to form a highly convex shape, such as is the
image in the magenta box.
We note that the convexity in particular, but also the CPE,

indicate that it is unlikely that the surface area to volume ratio of

the reverse micelle is constant. Simple geometric arguments
demonstrate that a sphere minimizes the surface area to volume
ratio while other ellipsoids have greater surface area to volume.
So a change in the CPE of an ideal ellipsoid most likely
accompanies a change in the surface area to volume ratio. The
creation of a bumpy surface, as measured by convexity, will also
increase the surface area to volume ratio as demonstrated
succinctly by the math problem, Gabriel’s Horn. Therefore, the
observation of variation in both Figures 3 and 4 suggests that the
surface area to volume ratio is changing. Because the volume of
the micelle can be said to be predominantly water while the
surface area is predominantly controlled by the AOT surfactant,
this ratio can be a useful metric for examining the interaction
between the two regions. A thorough investigation of this ratio is
beyond the scope of this paper but is a value easily accessible
from the metrics provided here.

4.3. Curvature Distribution. We require one more metric
to characterize the particle shape for one simple reason: CPE
and convexity considered alone cannot differentiate between
regular geometric shapes such as a sphere and a cube. The CPE
would indicate both to be perfectly spherical and both shapes are

Figure 5. Curvature distribution of two random frames from the beginning (a) and end (b) of the trajectory (legend: raw curvature). Each curvature
distribution is fitted to the sum of two Lorentzians (legend: curves 1/2 and total fit). The distribution for the ellipsoid computed from the moments of
inertia is also plotted, renormalized so it fits on the graph (legend: ellipsoid curvature). The expected distribution for a sphere of this size is shown to
provide a reference for an object this size (legend: sphere curvature). Images on the right show the micelle at these times, colored by curvature with
positive values in red.
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also fully convex. The key to differentiating these shapes is their
curvature distributions, presented as a probability density
function (PDF). Recall that, as defined in Section 3.3, mean
curvature shows the direction and magnitude of the curvature of
the surface at a point and that positive mean curvature values
indicate that the surface curves toward the interior of the shape.
Gaussian curvature provides information about the nature of the
surface. A positive Gaussian curvature indicates an elliptic point
while negative Gaussian curvature indicates a hyperbolic
point.73 The surfaces of a sphere and cube both lack saddle
points, so the Gaussian curvature is always positive. Thus, we
consider only mean curvature to compare the forms. A sphere
has constant, positive mean curvature creating a probability
density function that is a delta function at the value for its size. A
cube has only flat faces and the joints between them leading to a
sum of two delta functions, renormalized to one, with a
distribution at zero for the flat faces and a distribution at infinity
for the edges and corners.
In the case of a general amorphous shape, a priori, the

distribution is expected to represent more than just a single
value. If the smallest value of principal curvature over the entire
surface is zero, then the shape must be fully convex, as
demonstrated by Figure 2. Therefore, if the convexity is less than
1, then divots exist somewhere on the surface and these must
have negative principal curvature(s) at some point.
We calculate the curvature value at each point on the surface

of the triangulated mesh of the reverse micelle for each time
point in the simulation. To reduce the data to a viewable set, we
generate a histogram of curvature values at each time point. The
exact number of points at which curvature is computed varies,
with typical values being between 1 and 3000 points. Because
the reverse micelle oscillates between a predominantly prolate
and oblate ellipsoid but starts largely prolate and ends largely
oblate, Figure 5 presents examples of the mean curvature
distribution at time points from the beginning and end of the
simulation to sample a variety of cases.
Figure 5 provides several comparisons to guide its

interpretation. The mean curvature distribution fits well to the
sum of two Lorentzians, which we compare to the curvature
distribution of an ideal ellipsoid with the same eccentricity and
dimensions as the micelle at the selected time points. The
expected curvature for a sphere of the same size as the micelle is
provided as a simple reference for size-independent compar-
isons, because curvature is an extrinsic value. The curvature
distributions are highly characteristic of the shape, with distinct
patterns for both prolate and oblate ellipsoids (see the SI for
additional patterns of ideal ellipsoids, Figure S5). Curvature
distributions for the ideal ellipsoids tend to display two sharp
peaks, as seen in Figure 5, but the exact peak locations and
shapes vary. However, in all cases, scaling the semiaxes to be
larger shifts the observed peaks to the lefttoward smaller,
positive valuesand reduces the domain while maintaining the
pattern for that eccentricity. Reducing the sizes of the semiaxes
shifts the peaks to the right and increases the domain.
As Figure 5 shows, peak maxima of each fitted Lorentzian

appears near a peak in the curvature distribution of the ideal
ellipsoid. This suggests that the fitted Lorentzians represent the
two peaks from the ideal ellipsoid curvature distribution, albeit
with significant broadening. There are several sources of
broadening relative to an ideal ellipsoid. First, with bumps and
divots on its surface, the reverse micelle is not a true ellipsoid. If
we assume that the observed shape is an ellipsoid that has been
subsequently distorted, then creating a divot on the surface

removes some population from the curvature value at that place
and creates population on the left side of the distributionat
negative values. Since the most likely curvature values for a
randomly chosen portion of the surface are the peak values of the
distribution, the creation of divots has a “Robin Hood” effect
that will tend to decrease the peak intensities and raise the left
side of the distribution. The boundary points between a divot’s
negative curvature and the rest of the surface creates flat regions
of zero curvature at the interface that further broaden the
distributionthe divot removes a curved portion to create the
flat interfacial regionand smooth the distribution between the
left side and the peak values. An analogous process occurs for
bumps on the surface, operating on the right side of the
distribution, removing from the peaks, increasing, and
smoothing the population on the right wing of the distribution.
A second broadening mechanism arises because the curvature

is computed numerically. For a well-defined function, the
curvature can be calculated analytically and is exact. However,
on a Delauney triangulated surface, there is no real curve.62

There are only points connected by straight lines approximating
a curved surface, and an algorithm must be used to estimate this
curvature. The algorithm we use to calculate curvature (a part of
the PyVista package65) sometimes creates erroneously large
values that shift a population from the peak areas and move it
toward the extreme tails of the distribution. A more advanced
algorithmmay reduce this error but will not eliminate it entirely.
This has the effect of broadening the distribution symmetrically.
These overestimated values appear as the deeply colored spots
on the representative micelle surfaces shown in Figure 5 that are
clearly out of place with the surrounding values.
The bump-and-divot broadening described here does not act

symmetrically on the peak in the same way that common sources
of broadening, such as homo- or heterogeneous spectroscopic
broadening do. Rather than modifying a well-defined spectro-
scopic transition, the broadening mechanism described here
quite literally erases the imaginary “previous” values and replaces
them with other values. This literal substitution, rather than
modification of values, can explain why the fitted Lorentzians
bracket the peaks of the curvature distributions of the ideal
ellipsoids.
Having described, in Figure 5, the curvature distributions for

two select times, Figure 6 presents the mean and Gaussian
curvature distributions over the full simulation. The mean
curvature shows a relatively broad peak that is roughly
symmetric and centered on a positive value. In contrast, the
Gaussian curvature shows a sharp, asymmetric peak with
significantly more positive Gaussian curvature than negative,
but the median value is almost exactly zero, skewing only slightly
positive. The micelle is a topological ball, so even with its various
irregularities, the most likely shape should have more elliptic
than hyperbolic points, which readily explains the asymmetry.
The most striking feature of Figure 6 is how little the values

change over time. Figure 5 suggests that the mean curvature
predominantly follows the curvature distribution of an ideal
ellipsoid, with some broadening indicating the formation of
bumps and divots. However, over the course of the simulation,
there is no evidence of a significant broadening, narrowing, or
shift in peak position of the overall distribution. This constancy
in curvature is in contrast to the walking behavior observed in
the CPE in Figure 3. We attribute this stability to two factors.
First, the simulation ensures that the volume of the micelle is
constant. Constant volume implies that the curvature must
revolve around some similar set of values because curvature is an
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extrinsic value. Drift toward either larger or smaller curvature
values would indicate a change in size, which is impossible for a
system of set stoichiometry such as the simulated micelle. In
contrast, CPE is an intrinsic value, so it can exhibit walking
behavior not mirrored by the curvature distribution. A constant
volume also means that any deformation to one side of the shape
must move the displaced volume somewhere else, creating an

endless supply of roughly similar bumps and divots. Second, it is
likely that the forces acting on the micelle are relatively constant.
If the micelle has been properly equilibrated, then the entire
simulation exists in the same potential energy well, constantly
dancing from local minimum to minimum. This produces a
stationary set of forces that are constantly shifting but with a
time invariant mean and without any transient spikes. We see no
drift in the eccentricity or convexity to indicate the micelle
continues migrating to a minimum, and we match or exceed the
equilibration times for all relevant simulated reverse micelles in
literature33,35−37,40,41 sthat we are aware of, so we assume that
this condition has been met. Then the forces acting on the
micelle must be in equilibrium and must be responsible for the
creation of the imperfections observed. Therefore, the
dissipation of one imperfection must create the same sort of
strain somewhere else, leading to the formation of a new
imperfection. With constant volume ensuring the distributions
remain centered on a constant value, and amostly constant set of
imperfections leading to constant broadening, the curvature
distribution on whole remains quite stable.

5. APPLICATIONS, LIMITATIONS, AND CONCLUSIONS
We propose three metricscoordinate pair eccentricity (CPE),
convexity, and curvature distributionto characterize and
quantify amorphous shapes, particularly those found in
chemistry. With these parameters, researchers can describe
shapes that have until now relied on visual inspection. These
metrics also allow us to compare similar systems quantitatively,
track changes and fluctuations, and even compute characteristic
times for these fluctuations. Most importantly, although our
code is designed to work with a molecular dynamics simulation,
as long as the system can be converted to a Delauney
triangulated mesh,62 this analysis can be applied to numerous
fields of both chemistry and science at large.
We envision these metrics being used in a variety of ways in

the study of reverse micelles. For example, we have found it
exceptionally curious that the micelle has the same consituents
everywhere, presumably leading to the same interactions
everywhere, and yet adopts a shape where certain regions are
highly curved and others are hardly curved at all. This suggests
just the opposite of our naıv̈e analysis: that the interactions are
not the same everywhere. While in this study we have presented
the reverse micelle only as an example system, we hope that a
more thorough investigation into the shape of these reverse
micelles will provide further information about this mystery. We
have also noticed that in the work of Eskici and Axelsen to find
the aggregation number of AOT reverse micelles via computed
interaction energies,41 the aggregation number also appears to
impact the shape quite significantly. Therefore, by performing an
initial search for the aggregation number based on interaction
energies while simultaneously measuring the shape parameters,
a model could be developed to find the aggregation number or at
least dramatically narrow the range of potential values using the
more computationally efficient shape parameters. These shape
metrics could also be used to create a large number of simulated
small-angle X-ray scattering curves with, e.g., a Monte Carlo
approach to refine experimental interpretation and reconcile
experimental work with computational work in regards to the
shape of the micelles or other soft materials. We also hope that
these metrics will provide a common ground for comparison
between different studies and verification of new work against
old work, such as comparison between the work of Abel et al.,35

the work of Martinez et al.,37 and the work of Eskici and

Figure 6. (a) Mean curvature distribution from the early frame of
Figure 5. The black vertical line is the median of the distribution. The
other shades of gray represent percentile ranges from the median: from
darkest to lightest, 30%, 50%, 70%, 90%. (b) Mean curvature
distribution over all times. The example in (a) represents a single
slice of the data presented here, shown as a green line. (c) Gaussian
curvature distribution over all times.
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Axelsen,41 who have all used slightly different aggregation
numbers and water:AOT ratios, which undoubtedly impact the
shape of the micelles.
Although these metrics provide robust characterization, they

are not unique. Thus, it is not possible to reproduce a single,
unique shape purely from these metrics. Although the realm of
amorphous shapes is immense, the metrics we describe here
have an exceptional ability to distinguish between similar shapes
and are great tools for comparative analysis. Here we take a brief
inventory of some situations where these metrics may or may
not work. Just like in our example system, an AOT reverse
micelle, these metrics are particularly well suited to shapes
without any holes or interior cavities, e.g., topological balls. This
rough group would include all possible types of micelles
(provided the entire interior is considered part of the system),
but also systems such as bacteria and other single celled
organisms, liquid-in-gas droplets or gas-in-liquid bubbles,
globular proteins, and nanoparticles. While proteins and
nanoparticles are typically well-defined and therefore not
obvious candidates for metrics characterizing amorphous
shapes, characterizing the exact shape may not be easy or
irregularities such as crystal defects may present challenges.
Therefore, it may be preferable in certain circumstances to use
themetrics presented here to roughly characterize a well-defined
protein, or to provide a better measure for when a protein
transitions from one conformation to another. It may also be
preferable to use these metrics to characterize the real shape of
individual nanoparticles, including the crystal defects. These
metrics could also be reasonably applied to long tubes with
relative ease such as the hydrophilic cavities within a Nafion
membrane, the shape of a single strand of a polymer, or the
shape of long aggregates such as carbon nanotube ropes or tube-
shaped self-assembled objects.10 The study of shapes other than
topological ballsthat is, without any holes or interior
cavitiespresents a challenge. This includes topological
spheresobjects without a hole but which are completely
hollowsuch as a cell membrane that does not include the
interior of the cell, or our own micelles if we removed the water
from consideration. It could also include shapes such as those
observed in the work of Vasquez et al., whose simulation of an
AOT reverse micelle has apparently formed a toroidal shape.33

While this greatly intrigues us and begs further study, in this case,
our definition of convexity, in particular, would be challenged
because the volume relative to the convex hull would be
dramatically reduced by the cavity and convexity would not be
responsive to changes in the interior surface.
We encourage readers hoping to apply our metrics to carefully

consider their specific system and modify our metrics as needed
to adequately describe that system. For example, in the case of
the hollow cavity, a new definition of convexity might need to be
explored, such as a definition based on surface area rather than
volume. Alternatively, it could be advantageous to consider the
interior and exterior surfaces separately and track them
independently, although it could also be just as good to simply
use the definitions we have presented and simply ignore the
interior cavity, depending on what the requirements and
interests of that particular system are. We cannot answer to all
hypotheticals in a single paper, and the reader is advised to take
such things into consideration. However, we are confident that
the majority of real systems which might be encountered in
chemistry will allow the metrics presented here to be used
without modification and we hope this serves as an adequate

framework for developing newmeasurements in the rare cases in
which these metrics fail or are insufficient.
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