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Abstract. We hybridize the methods of finite element exterior calculus for the Hodge–Laplace
problem on differential k-forms in Rn. In the cases k = 0 and k = n, we recover well-known primal
and mixed hybrid methods for the scalar Poisson equation, while for 0 < k < n, we obtain new
hybrid finite element methods, including methods for the vector Poisson equation in n = 2 and
n = 3 dimensions. We also generalize Stenberg postprocessing from k = n to arbitrary k, proving
new superconvergence estimates. Finally, we discuss how this hybridization framework may be
extended to include nonconforming and hybridizable discontinuous Galerkin methods.

1. Introduction

Finite element exterior calculus (FEEC) is a powerful framework that unifies the analysis of
several families of conforming finite element methods for problems involving Laplace-type operators
(Arnold, Falk, and Winther [4, 5], Arnold [2]). These include the classic “continuous Galerkin”
Lagrange finite element method and the Raviart–Thomas (RT) [39] and Brezzi–Douglas–Marini
(BDM) [8] mixed methods for the scalar Poisson equation, as well as mixed methods based on
Nédélec elements [34, 35] for the 2- and 3-dimensional vector Poisson equation. In FEEC, these are
all seen as finite element methods for the Hodge–Laplace operator on differential k-forms in Rn,
where scalar fields are identified with 0- and n-forms and vector fields with 1- and (n− 1)-forms.

In this paper, we hybridize FEEC for arbitrary dimension n and form degree k. That is, we
construct hybrid finite element methods using discontinuous spaces of differential forms, enforcing
continuity and boundary conditions using Lagrange multipliers on the element boundaries. The
solutions agree with those of the original, non-hybrid FEEC methods, and the Lagrange multipliers
are seen to correspond to weak tangential and normal traces. This hybrid formulation enables static
condensation: since only the Lagrange multipliers are globally coupled, the remaining internal degrees
of freedom can be eliminated using an efficient local procedure, and the resulting Schur complement
system can be substantially smaller than the original one. We also present a generalization of
Stenberg postprocessing [41], which for 0 < k < n is shown to give new improved estimates.

The special cases k = 0 and k = n are shown to recover known results on hybridization and
postprocessing for the scalar Poisson equation. In particular, the case k = n corresponds to the
hybridized RT [3] and BDM [8] methods, and the postprocessing procedure is precisely that of
Stenberg [41]. The case k = 0 corresponds to the more recent hybridization of the continuous
Galerkin method by Cockburn, Gopalakrishnan, and Wang [20].

The hybrid and postprocessing schemes in the remaining cases 0 < k < n are new and, to the
best of our knowledge, have not appeared in the literature even for the vector Poisson equation
when n = 2 or n = 3. In particular, the hybridization of Nédélec edge elements is different from
that in Cockburn and Gopalakrishnan [18]: here, the Lagrange multipliers are simply traces of
standard elements, rather than living in a space of “jumps.” We expect these new methods to be
especially useful in computational electromagnetics, where Nédélec elements are ubiquitous and the
differential forms point of view has provided significant insight (cf. Hiptmair [27]).

While we restrict our attention primarily to hybrid methods for conforming simplicial meshes,
we remark that the framework developed here has the potential to be applied to other types of
domain decomposition methods, including methods on cubical meshes, nonconforming meshes,
mortar methods, etc. We also discuss briefly how the unified hybridization framework of Cockburn,
Gopalakrishnan, and Lazarov [19], which includes hybridizable discontinuous Galerkin (HDG)
methods, may also be generalized to the Hodge–Laplace problem for 0 < k < n.
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1.1. Why hybridize? There are several theoretical and practical benefits of hybridization:

• additional information about solutions: The Lagrange multiplier functions often correspond
to weak boundary traces of solution components, even though the numerical solution may
not be regular enough for a trace to exist in the usual sense (e.g., the trace of an L2 function
or normal derivative of an H1 function).

• static condensation: Degrees of freedom for discontinuous function spaces can be locally
eliminated. The resulting Schur complement only involves boundary degrees of freedom for
the Lagrange multipliers, so it can be substantially smaller than the original global problem.

• local postprocessing and superconvergence: The numerical solution may be efficiently “post-
processed” by using the boundary traces to solve a local problem on each element, resulting
in an improved approximation compared to the original solution.

Seminal work on hybridization of mixed finite element methods was done by Fraeijs de Veubeke
[22]. For the scalar Poisson equation, the RT method was hybridized in this manner by Arnold and
Brezzi [3], who introduced the notion of postprocessing. Hybridization and postprocessing were also
discussed in the original paper introducing the BDM method [8], and an interesting characterization
of the Lagrange multipliers for the hybridized RT and BDM methods appears in Cockburn and
Gopalakrishnan [17]. A refined local postprocessing procedure for mixed methods, which can be
applied with or without hybridization, was given by Stenberg [41]; see also Gastaldi and Nochetto
[23], who discovered this independently (cf. [23, eqs. 4.14–4.15]), as well as Bramble and Xu [7].

More recently, Cockburn, Gopalakrishnan, and Wang [20] hybridized the continuous Galerkin
method, using an approach similar to the “three-field domain decomposition method” of Brezzi
and Marini [9], and showed that static condensation yields the same condensed system as that
obtained by the original, non-hybrid static condensation procedure of Guyan [26]. Even more
recently, Cockburn, Gopalakrishnan, and Lazarov [19] introduced an important unified hybridization
framework that includes the above methods, as well as nonconforming and HDG methods, for the
scalar Poisson equation. A survey of historical and recent developments appears in Cockburn [16].

1.2. Organization of the paper. The paper is organized as follows:

• Section 2 recalls the basic machinery and terminology of differential forms, the Hodge–
Laplace problem, and FEEC. This includes a discussion of tangential and normal traces,
which play an important role throughout the paper.

• Section 3 presents a domain decomposition of the Hodge–Laplace problem. The variational
form of this problem involves broken spaces of differential forms, along with boundary traces
that act as Lagrange multipliers enforcing interelement continuity and boundary conditions.

• Section 4 develops hybrid finite element methods for the Hodge–Laplace problem, based on
the domain-decomposed variational principle from the previous section. We prove that these
are hybridized versions of the FEEC methods, show how static condensation can be used to
reduce the size of the global system, and develop error estimates for the hybrid variables.

• Section 5 generalizes the postprocessing procedure of Stenberg [41] from k = n to arbitrary k.
This procedure only uses the statically condensed variables, so it can be applied immediately
after solving the condensed system, or it can be applied to solutions obtained by ordinary
finite element methods without hybridization. In addition to known superconvergence results
for k = n, we give new improved error estimates for k < n.

• Section 6 gives concrete illustrations of the hybrid and postprocessing methods when n = 3,
using the language of vector calculus and classic families of finite elements.

• Section 7 presents numerical experiments, confirming the error estimates of Sections 4 and 5.
• Finally, Section 8 presents an extension of the framework of Cockburn, Gopalakrishnan, and
Lazarov [19], whereas the previous sections only address conforming methods. This lays the
groundwork for hybridization of nonconforming and discontinuous Galerkin methods for
FEEC, although we postpone the analysis of such methods for future work.
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2. Background: differential forms and finite element exterior calculus

In this section, we quickly recall the exterior calculus of differential forms, the Hodge–Laplace
problem, and FEEC, in order to lay the foundation and fix the notation for the subsequent sections.
We refer to Arnold, Falk, and Winther [4, 5], Arnold [2], and references therein for a comprehensive
treatment. We also discuss tangential and normal traces of differential forms, which will play an
important role in domain decomposition and hybridization. Our treatment of these traces follows
that in Weck [42] (see also Kurz and Auchmann [30]), which extended work of Buffa and Ciarlet
[11, 12], Buffa, Costabel, and Sheen [13] for vector fields in R3.

2.1. Exterior calculus of differential forms. Let Ω ⊂ Rn be a bounded Lipschitz domain, and
denote by Λk(Ω) the space of smooth differential k-forms on Ω, where k = 0, . . . , n. We assume
that the reader is familiar with the following basic operations of exterior calculus:

• the wedge product ∧ : Λk(Ω)× Λℓ(Ω) → Λk+ℓ(Ω),
• the (Euclidean) Hodge star isomorphism ⋆ : Λk(Ω) → Λn−k(Ω),
• the exterior derivative d: Λk(Ω) → Λk+1(Ω),
• the codifferential δ := (−1)k⋆−1d⋆ : Λk(Ω) → Λk−1(Ω),
• the Hodge–Laplace operator L := dδ + δd: Λk(Ω) → Λk(Ω).

These are graded operators, but we suppress the form degree for notational simplicity, e.g., writing
d rather than dk. From the Leibniz rule for d and definition of δ, we have the important identity

(1) d(τ ∧ ⋆v) = dτ ∧ ⋆v − τ ∧ ⋆δv,

where τ ∈ Λk−1(Ω) and v ∈ Λk(Ω).
The Hilbert space L2Λk(Ω) is the completion of Λk(Ω) with respect to the L2 inner product

(v, w)Ω :=
∫︁
Ω v ∧ ⋆w, whose associated norm is denoted ∥·∥Ω. Taking d in the sense of distributions

allows it to be extended to a closed, densely defined operator with domain

HΛk(Ω) :=
{︁
v ∈ L2Λk(Ω) : dv ∈ L2Λk+1(Ω)

}︁
,

which is itself a Hilbert space with the graph inner product (v, w)HΛk(Ω) := (v, w)Ω + (dv,dw)Ω.

The subspace H̊Λk(Ω) ⊂ HΛk(Ω) is defined to be the closure of C∞
0 Λk(Ω), the space of smooth

k-forms with compact support in Ω. Likewise, δ may be extended to a closed, densely defined
operator with domain

H∗Λk(Ω) :=
{︁
v ∈ L2Λk(Ω) : δv ∈ L2Λk−1(Ω)

}︁
= ⋆HΛn−k(Ω),

which is a Hilbert space with the graph inner product (v, w)H∗Λk(Ω) := (v, w)Ω + (δv, δw)Ω, and the

subspace H̊
∗
Λk(Ω) = ⋆H̊Λn−k(Ω) ⊂ H∗Λk(Ω) is the closure of C∞

0 Λk(Ω).

2.2. Tangential and normal traces. The restriction of a differential form to the boundary ∂Ω is
encoded in a pair of differential forms on ∂Ω, called the tangential trace and normal trace. This is
analogous to decomposing a vector field into its tangential and normal components at the boundary.

We begin with the case of smooth differential forms, where the boundary ∂Ω is also smooth. The
trace map tr : Λk(Ω) → Λk(∂Ω) is defined to be the pullback of k-forms by the inclusion ∂Ω ↪→ Ω,
i.e., tr v ∈ Λk(∂Ω) is just the restriction of v ∈ Λk(Ω) to vectors tangent to the boundary. Denote
the Hodge star on ∂Ω by ˆ︁⋆ and the associated L2 inner product by ⟨·, ·⟩∂Ω.

Definition 2.1 (tangential and normal traces). Given v ∈ Λk(Ω),

vtan := tr v ∈ Λk(∂Ω), vnor := ˆ︁⋆−1 tr ⋆v ∈ Λk−1(∂Ω).

These definitions allow a particularly elegant expression of the integration by parts formula for
differential forms. The following result is standard, but the proof is short and illuminates the
definition of the normal trace.
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k proxy field tangential trace normal trace

0 φ ∈ C∞(Ω) φ|∂Ω 0

1 v ∈ C∞(Ω,R3) v|∂Ω − (v · ˆ︁n)ˆ︁n v · ˆ︁n
2 w ∈ C∞(Ω,R3) (w · ˆ︁n)ˆ︁n w × ˆ︁n
3 ψ ∈ C∞(Ω) 0 ψˆ︁n

Table 1. Tangential and normal traces of differential forms on Ω ⊂ R3, in terms of
scalar and vector proxy fields.

Proposition 2.2. If τ ∈ Λk−1(Ω) and v ∈ Λk(Ω), then we have the integration by parts formula

(2) ⟨τ tan, vnor⟩∂Ω = (dτ, v)Ω − (τ, δv)Ω.

Proof. Using the definitions of τ tan and vnor, we calculate

⟨τ tan, vnor⟩∂Ω =

∫︂
∂Ω
τ tan ∧ ˆ︁⋆vnor = ∫︂

∂Ω
tr τ ∧ tr ⋆v =

∫︂
∂Ω

tr(τ ∧ ⋆v) =
∫︂
Ω
d(τ ∧ ⋆v),

where the last step uses Stokes’ theorem. Applying (1) completes the proof. □

An equivalent description of tangential and normal traces uses the outer unit normal vector fieldˆ︁n and its associated 1-form ˆ︁n♭ = ˆ︁ni dxi. Letting ιˆ︁n denote the interior product (or contraction) withˆ︁n, the Leibniz rule for this operator gives the identity

v|∂Ω = ιˆ︁n(ˆ︁n♭ ∧ v) + ˆ︁n♭ ∧ (ιˆ︁nv).
We may then identify vtan with the k-form ιˆ︁n(ˆ︁n♭ ∧ v) and vnor with the (k − 1)-form ιˆ︁nv. When
Ω ⊂ R3, the correspondence of these traces to scalar and vector proxy fields is given in Table 1, using
the proxy operations for ιˆ︁n and ˆ︁n♭ ∧ , and (2) recovers the familiar integration by parts formulas of
vector calculus.

Weck [42] showed that it is possible to extend the tangential and normal traces so that a weak
version of (2) holds for τ ∈ HΛk−1(Ω) and v ∈ H∗Λk(Ω), where ∂Ω is only assumed to be Lipschitz.

We denote the trace spaces in which τ tan and vnor live by ˆ︁HΛk−1,tan(∂Ω) and ˆ︁H∗Λk−1,nor(∂Ω),

respectively. These are generally subspaces of H−1/2Λk−1(∂Ω), but not necessarily of L2Λk−1(∂Ω),
so ⟨·, ·⟩∂Ω should be interpreted as a duality pairing extending the L2 inner product on ∂Ω [42,
Theorem 8]. See Kurz and Auchmann [30] for an excellent account of Weck’s results and some
concrete applications to electromagnetics. Mitrea, Mitrea, and Shaw [33] obtain comparable results

by extending the alternative approach using ιˆ︁n and ˆ︁n♭ ∧ described above.

The definitions of ˆ︁HΛk−1,tan(∂Ω) and ˆ︁H∗Λk−1,nor(∂Ω) are somewhat technical, but thankfully,
we may make use of [42, Theorems 5 and 7], which give isomorphisms

(3) ˆ︁HΛk−1,tan(∂Ω) ∼= HΛk−1(Ω)/H̊Λk−1(Ω), ˆ︁H∗Λk−1,nor(∂Ω) ∼= H∗Λk(Ω)/H̊
∗
Λk(Ω).

Therefore, we may treat the trace spaces as quotient spaces, equipped with the quotient norms

∥ˆ︁τ tan∥tan,∂Ω := inf
{︁
∥τ∥HΛk−1(Ω) : τ

tan = ˆ︁τ tan}︁, ∥ˆ︁vnor∥nor,∂Ω := inf
{︁
∥v∥H∗Λk(Ω) : v

nor = ˆ︁vnor}︁.
These generalize the “minimum energy extension” quotient norms discussed in Carstensen, Demkow-
icz, and Gopalakrishnan [14, Section 2] for H1, H(curl), and H(div) traces in R3. The next result,
relating these norms to the duality pairing, is a straightforward generalization of [14, Lemma 2.2].
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Lemma 2.3. For all ˆ︁τ tan ∈ ˆ︁HΛk−1,tan(∂Ω) and ˆ︁vnor ∈ ˆ︁H∗Λk−1,nor(∂Ω), we have the equalities

∥ˆ︁τ tan∥tan,∂Ω = supˆ︁vnor ̸=0

⟨ˆ︁τ tan, ˆ︁vnor⟩∂Ω
∥ˆ︁v∥nor,∂Ω , ∥ˆ︁vnor∥nor,∂Ω = supˆ︁τ tan ̸=0

⟨ˆ︁τ tan, ˆ︁vnor⟩∂Ω
∥ˆ︁τ∥tan,∂Ω .

That is, the duality isomorphisms ˆ︁τ tan ↦→ ⟨ˆ︁τ tan, ·⟩∂Ω and ˆ︁vnor ↦→ ⟨·, ˆ︁vnor⟩∂Ω are isometries.

Proof. Given ˆ︁τ tan, the Riesz representation theorem gives a unique w ∈ H∗Λk(Ω) such that

(w, v)Ω + (δw, δv)Ω = ⟨ˆ︁τ tan, vnor⟩∂Ω, ∀v ∈ H∗Λk(Ω),

so w + dδw = 0 with (−δw)tan = ˆ︁τ tan. Taking τ = −δw ∈ HΛk−1(Ω), we have τ + δdτ = 0 with

τ tan = ˆ︁τ tan, so (τ, ϕ)Ω + (dτ,dϕ)Ω = 0 for all ϕ ∈ H̊Λk−1(Ω). This is precisely the variational
problem satisfied uniquely by the minimum-HΛ-norm extension of ˆ︁τ tan, so τ is this extension and
∥ˆ︁τ tan∥tan,∂Ω = ∥τ∥HΛk−1(Ω). Since τ = −δw and dτ = w, we have ∥τ∥HΛk−1(Ω) = ∥w∥H∗Λk(Ω), and

∥ˆ︁τ tan∥tan,∂Ω = ∥w∥H∗Λk(Ω) = sup
v∈H∗Λk(Ω),

v ̸=0

(w, v)Ω + (δw, δv)Ω
∥v∥H∗Λk(Ω)

= sup
v∈H∗Λk(Ω),

v ̸=0

⟨ˆ︁τ tan, vnor⟩∂Ω
∥v∥H∗Λk(Ω)

.

For any vnor = ˆ︁vnor, the denominator is minimized when ∥v∥H∗Λk(Ω) = ∥ˆ︁vnor∥nor,∂Ω, so the first
equality follows. The second equality is proved similarly. □

Remark 2.4. As an immediate consequence of the isomorphisms (3), we have

H̊Λk(Ω) =
{︁
v ∈ HΛk(Ω) : vtan = 0

}︁
, H̊

∗
Λk(Ω) =

{︁
v ∈ H∗Λk(Ω) : vnor = 0

}︁
.

More generally, any closed extension of d: C∞
0 Λk(Ω) → C∞

0 Λk+1(Ω) resulting in a Hilbert complex

H̊Λk(Ω) ⊂ V k ⊂ HΛk(Ω) is called a choice of ideal boundary conditions, cf. Brüning and Lesch [10].
For example, one may take a suitably nice decomposition of ∂Ω into two pieces, Γtan and Γnor, and let
V k :=

{︁
v ∈ HΛk(Ω) : vtan|Γtan = 0

}︁
. For an analysis of these mixed boundary conditions (including

what qualifies as a “suitably nice decomposition”), see Jakab, Mitrea, and Mitrea [29], Gol’dshtein,
Mitrea, and Mitrea [25].

2.3. The Hodge decomposition and Poincaré inequality. Although much of the following
analysis applies to more general Hilbert complexes, we focus our attention on

0 → HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω) → 0.

The operators d satisfy a compactness property, as shown by Picard [37], and in particular they are
Fredholm and thus have closed range. Define

Bk :=
{︁
dτ : τ ∈ HΛk−1(Ω)

}︁
, Zk :=

{︁
v ∈ HΛk(Ω) : dv = 0

}︁
, Hk := Zk ∩Bk⊥,

which are the subspaces of exact, closed, and harmonic k-forms in L2Λk(Ω). It follows that

L2Λk(Ω) = Bk ⊕ Hk ⊕ Zk⊥,

which is an L2-orthogonal decomposition called the Hodge decomposition. By Banach’s closed range
theorem and the adjointness of d and δ, we may also write

Bk⊥ =
{︁
v ∈ H̊

∗
Λk(Ω) : δv = 0

}︁
=: Z̊

∗
k, Zk⊥ =

{︁
δη : η ∈ H̊

∗
Λk+1(Ω)

}︁
=: B̊

∗
k,

called coclosed and coexact k-forms. This implies

Hk = Zk ∩ Z̊
∗
k =

{︁
v ∈ HΛk(Ω) ∩ H̊∗

Λk(Ω) : dv = 0, δv = 0
}︁
,

which is an equivalent characterization of harmonic forms.
Finally, since d is an HΛ-bounded isomorphism between HΛk(Ω) ∩ Zk⊥ and Bk+1, Banach’s

bounded inverse theorem implies that there exists a constant cP (Ω) such that

∥v∥Ω ≤ cP (Ω)∥dv∥Ω, ∀v ∈ HΛk(Ω) ∩ Zk⊥,
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which is called the Poincaré inequality. Note that Arnold, Falk, and Winther [5], Arnold [2] write

the Poincaré inequality differently, using the ∥·∥HΛk(Ω) norm, so that the constant is
√︁
1 + cP (Ω)2.

However, the form we have chosen is more convenient for scaling arguments that we will apply later.

2.4. The Hodge–Laplace problem. Recall the Hodge–Laplace operator L := dδ + δd on k-forms,
which we can now interpret in a weak sense. Given f ∈ L2Λk(Ω), we wish to solve the following
problem: Find u ∈ Hk⊥, p ∈ Hk, such that

Lu+ p = f in Ω,

unor = 0, (du)nor = 0, on ∂Ω.

The solution gives the Hodge decomposition f = dσ + p+ δρ, where σ = δu and ρ = du.
FEEC is based on the following mixed formulation of the Hodge–Laplace problem: Find σ ∈

HΛk−1(Ω), u ∈ HΛk(Ω), p ∈ Hk such that

(σ, τ)Ω − (u,dτ)Ω = 0, ∀τ ∈ HΛk−1(Ω),(4a)

(dσ, v)Ω + (du,dv)Ω + (p, v)Ω = (f, v)Ω, ∀v ∈ HΛk(Ω),(4b)

(u, q)Ω = 0, ∀q ∈ Hk,(4c)

where both boundary conditions are natural. More generally, nonvanishing natural boundary
conditions may be imposed by adding ⟨·, ·⟩∂Ω terms on the right-hand side. The well-posedness of
this mixed formulation is proved in Arnold, Falk, and Winther [4, Theorem 7.2] and generalized to
abstract Hilbert complexes in Arnold, Falk, and Winther [5, Theorem 3.2].

Remark 2.5. Instead of natural boundary conditions, one may impose essential boundary conditions

σtan = 0 and utan = 0 by taking the test and trial functions from H̊Λk−1(Ω), H̊Λk(Ω), H̊
k
, cf. [5,

Section 6.2]. This may be generalized to nonvanishing σtan and utan via a standard extension

argument. We may also impose other ideal boundary conditions H̊Λ(Ω) ⊂ V ⊂ HΛ(Ω), as discussed
in Remark 2.4. For example, mixed boundary conditions are essential for σtan, utan on Γtan and
natural for unor, (du)nor on Γnor.

2.5. Finite element exterior calculus. Just as the Galerkin method approximates problems on
infinite-dimensional Hilbert spaces by restricting to finite-dimensional subspaces, FEEC approximates
problems on infinite-dimensional Hilbert complexes by restricting to finite-dimensional subcomplexes.

A subcomplex Vh ⊂ HΛ(Ω) is a sequence of (here, finite-dimensional) subspaces V k
h ⊂ HΛk(Ω)

that is closed with respect to d, i.e., dV k
h ⊂ V k+1

h . Just as in Section 2.3, we have subspaces

Bk
h := {dτh : τh ∈ V k−1

h }, Zk
h := {vh ∈ V k

h : dvh = 0}, Hk
h := Zk

h ∩Bk⊥
h ,

along with a discrete Hodge decomposition V k
h = Bk

h ⊕ Hk
h ⊕ Zk⊥

h and discrete Poincaré inequality.

Note that the subcomplex assumption implies Bk
h ⊂ Bk and Zk

h ⊂ Zk, although in general Hk
h ̸⊂ Hk

and Zk⊥
h ̸⊂ Zk⊥. An additional key assumption in the analysis (but not implementation) of FEEC is

the existence of bounded commuting projections πkh : HΛk(Ω) → V k
h , which among other uses gives

control of the discrete Poincaré constant in terms of cP (Ω).
In FEEC, one then approximates the Hodge–Laplace problem (4) by the following finite-

dimensional variational problem: Find σh ∈ V k−1
h , uh ∈ V k

h , ph ∈ Hk
h such that

(σh, τh)Ω − (uh, dτh)Ω = 0, ∀τh ∈ V k−1
h ,(5a)

(dσh, vh)Ω + (duh,dvh)Ω + (ph, vh)Ω = (f, vh)Ω, ∀vh ∈ V k
h ,(5b)

(uh, qh)Ω = 0, ∀qh ∈ Hk
h.(5c)

Arnold, Falk, and Winther [4, 5] establish stability and convergence for this problem, proving
quasi-optimal error estimates in the HΛ-norm and improved L2-error estimates under additional
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regularity assumptions using the aforementioned compactness property. (In [5], much of this analysis
takes place in the setting of abstract Hilbert complexes.) As in Remark 2.5, we may instead take
essential boundary conditions for σtanh and utanh . Licht [32] has recently extended the analysis of
FEEC to mixed boundary conditions, including the construction of bounded commuting projections.

One more essential ingredient of FEEC is the construction of finite elements for the spaces V k
h .

Suppose that Ω ⊂ Rn is polyhedral, and let Th be a triangulation of Ω by n-simplices K ∈ Th.
Arnold, Falk, and Winther [4, 5] construct two families of piecewise-polynomial differential forms,
called PrΛ and P−

r Λ, which we will sometimes refer to collectively as P±
r Λ. Arnold, Falk, and

Winther [4, 5] show that any of the pairs of spaces

(6) V k−1
h = P±

r+1Λ
k−1(Th), V k

h =

⎧⎪⎨⎪⎩
PrΛ

k(Th) (if r ≥ 1)

or

P−
r+1Λ

k(Th)

⎫⎪⎬⎪⎭ ,

results in a subcomplex for the problem (5) satisfying the needed analytical assumptions.

3. Domain decomposition of the Hodge–Laplace problem

This section presents a domain decomposition of the Hodge–Laplace problem, where Ω ⊂ Rn is
partitioned into non-overlapping Lipschitz subdomains K ∈ Th. This will be the foundation for the
hybrid methods in Section 4, where Ω is polyhedral and K ∈ Th are elements of a conforming mesh.
However, the results of this section also apply to more general types of domain decomposition.

3.1. Decomposition of Hilbert complexes of differential forms. Define the broken spaces

HΛk(Th) :=
∏︂

K∈Th

HΛk(K), H∗Λk(Th) :=
∏︂

K∈Th

H∗Λk(K).

As product spaces, these naturally inherit the inner products

(·, ·)Th :=
∑︂
K∈Th

(·, ·)K , (·, ·)HΛk(Th) :=
∑︂
K∈Th

(·, ·)HΛk(K), (·, ·)H∗Λk(Th) :=
∑︂
K∈Th

(·, ·)H∗Λk(K).

We can then define d: HΛk(Th) → HΛk+1(Th) to be d|HΛk(K) on each K ∈ Th, and likewise

for δ : H∗Λk(Th) → H∗Λk−1(Th). These broken Hilbert complexes are simply the HΛ and H∗Λ
complexes for the disjoint union

⨆︁
K∈Th K.

For these broken spaces, we can define tangential and normal traces on ∂Th :=
⨆︁

K∈Th ∂K by

taking the trace on ∂K for each K ∈ Th. Defining the pairing ⟨·, ·⟩∂Th :=
∑︁

K∈Th⟨·, ·⟩∂K , we
immediately get the integration by parts formula

⟨τ tan, vnor⟩∂Th = (dτ, v)Th − (τ, δv)Th , ∀τ ∈ HΛk−1(Th), v ∈ H∗Λk(Th),

simply by summing the integration by parts formulas for each K ∈ Th. Note that, if e = ∂K+∩∂K−

is the interface between K± ∈ Th, then e appears twice in the disjoint union ∂Th: once as part of
∂K+, and a second time as part of ∂K−. The traces of broken differential forms can therefore be
seen as “double valued,” since there is no continuity imposed at interfaces between subdomains.

There are natural inclusions HΛk(Ω) ↪→ HΛk(Th) and H∗Λk(Ω) ↪→ H∗Λk(Th), which are defined
by restriction to each K ∈ Th. The next result characterizes these subspaces of unbroken differential
forms, generalizing some classic results on domain decomposition of H1, H(curl), and H(div) spaces
(cf. Propositions 2.1.1–2.1.3 of Boffi, Brezzi, and Fortin [6]). In a weak sense, it says that unbroken
differential forms are precisely those with “single valued” tangential or normal traces.
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Proposition 3.1. If Th is a decomposition of Ω into Lipschitz subdomains, then

HΛk(Ω) =
{︁
v ∈ HΛk(Th) : ⟨vtan, ηnor⟩∂Th = 0, ∀η ∈ H̊

∗
Λk+1(Ω)

}︁
,

H̊Λk(Ω) =
{︁
v ∈ HΛk(Th) : ⟨vtan, ηnor⟩∂Th = 0, ∀η ∈ H∗Λk+1(Ω)

}︁
,

H∗Λk(Ω) =
{︁
v ∈ H∗Λk(Th) : ⟨τ tan, vnor⟩∂Th = 0, ∀τ ∈ H̊Λk−1(Ω)

}︁
,

H̊
∗
Λk(Ω) =

{︁
v ∈ H∗Λk(Th) : ⟨τ tan, vnor⟩∂Th = 0, ∀τ ∈ HΛk−1(Ω)

}︁
.

Proof. These four identities are proved using essentially the same argument, so we give only a proof

of the first. If v ∈ HΛk(Ω), then for all η ∈ H̊
∗
Λk+1(Ω),

⟨vtan, ηnor⟩∂Th = (dv, η)Th − (v, δη)Th = (dv, η)Ω − (v, δη)Ω = ⟨vtan, ηnor⟩∂Ω = 0.

Conversely, suppose that v ∈ HΛk(Th) ⊂ L2Λk(Th) ∼= L2Λk(Ω) satisfies ⟨vtan, ηnor⟩∂Th = 0 for all

η ∈ H̊
∗
Λk+1(Ω). Then, using integration by parts and Cauchy–Schwarz,

(v, δη)Ω = (v, δη)Th = (dv, η)Th ≤ ∥dv∥Th∥η∥Th = ∥dv∥Th∥η∥Ω.

In particular, this holds for η ∈ C∞
0 Λk+1(Ω), implying dv ∈ L2Λk+1(Ω) and hence v ∈ HΛk(Ω). □

3.2. Decomposition of the Hodge–Laplace problem. For each K ∈ Th, observe that σ and u
solve the local problem

(σ, τ)K − (u,dτ)K = 0, ∀τ ∈ H̊Λk−1(K),

(dσ, v)K + (du,dv)K = (f − p, v)K , ∀v ∈ H̊Λk(K),

with essential boundary conditions σtan and utan. However, if the space of local harmonic forms

H̊
k
(K) is nontrivial, then this local problem is not well-posed.1 Therefore, we include an additional

local variable p ∈ H̊
k
(K) and solve

(σ, τ)K − (u,dτ)K = 0, ∀τ ∈ H̊Λk−1(K),(7a)

(dσ, v)K + (du,dv)K + (p, v)K = (f − p, v)K , ∀v ∈ H̊Λk(K),(7b)

(u, q)K = (u, q)K , ∀q ∈ H̊
k
(K),(7c)

where u is the projection of u onto H̊
k
(K). Following Remark 2.5, these local solvers are well-posed

for any right-hand side and tangential traces σtan, utan.
We now allow the tangential traces ˆ︁σtan, ˆ︁utan to be independent variables and impose the

constraints σtan = ˆ︁σtan, utan = ˆ︁utan using Lagrange multipliers ˆ︁unor, ˆ︁ρnor, which will turn out to be
the normal traces of u and ρ = du. Define the spaces

W k := HΛk(Th), H
k
:=

∏︂
K∈Th

H̊
k
(K),

ˆ︂W k,nor :=
{︁
ηnor : η ∈ H∗Λk+1(Th)

}︁
, ˆ︁V k,tan :=

{︁
vtan : v ∈ HΛk(Ω)

}︁
.

Note that ˆ︁V k,tan consists of “single valued” traces from the unbroken space HΛk(Ω), whereas the
other three spaces contain broken k-forms. Consider the variational problem: Find

σ ∈W k−1, u ∈W k, p ∈ H
k
, ˆ︁unor ∈ ˆ︂W k−1,nor, ˆ︁ρnor ∈ ˆ︂W k,nor,(local variables)

p ∈ Hk, u ∈ H
k
, ˆ︁σtan ∈ ˆ︁V k−1,tan, ˆ︁utan ∈ ˆ︁V k,tan,(global variables)

1When K ∈ Th are contractible (e.g., simplices in a triangulation), this is only an issue for k = n, where H̊
n
(K) ∼= R.
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satisfying

(σ, τ)Th − (u,dτ)Th + ⟨ˆ︁unor, τ tan⟩∂Th = 0, ∀τ ∈W k−1,(8a)

(dσ, v)Th + (du,dv)Th + (p+ p, v)Th − ⟨ˆ︁ρnor, vtan⟩∂Th = (f, v)Th , ∀v ∈W k,(8b)

(u− u, q)Th = 0, ∀q ∈ H
k
,(8c)

⟨ˆ︁σtan − σtan, ˆ︁vnor⟩∂Th = 0, ∀ˆ︁vnor ∈ ˆ︂W k−1,nor,(8d)

⟨ˆ︁utan − utan, ˆ︁ηnor⟩∂Th = 0, ∀ˆ︁ηnor ∈ ˆ︂W k,nor,(8e)

(u, q)Th = 0, ∀q ∈ Hk,(8f)

(p, v)Th = 0, ∀v ∈ H
k
,(8g)

⟨ˆ︁unor, ˆ︁τ tan⟩∂Th = 0, ∀ˆ︁τ tan ∈ ˆ︁V k−1,tan,(8h)

⟨ˆ︁ρnor, ˆ︁vtan⟩∂Th = 0, ∀ˆ︁vtan ∈ ˆ︁V k,tan.(8i)

Given values for the global variables, notice that (8a)–(8e) simply amounts to solving the local
problem (7) on each K ∈ Th.

We now prove that this is indeed a domain decomposition of the Hodge–Laplace problem (4),
which in particular implies well-posedness of (8). A more general proof of well-posedness, where the
right-hand side of (8) is allowed to be arbitrary, will be given in Section 3.3.

Theorem 3.2. The following are equivalent:

• (σ, u, p, ˆ︁unor, ˆ︁ρnor, p, u, ˆ︁σtan, ˆ︁utan) is a solution to (8).
• (σ, u, p) is a solution to (4), and furthermore, p = 0, ˆ︁unor = unor, ˆ︁ρnor = (du)nor, u is the

projection of u onto H
k
, ˆ︁σtan = σtan, and ˆ︁utan = utan.

Proof. Suppose we have a solution to (8). The claimed equalities are immediate from the variational
problem, so it remains only to show that (σ, u, p) solves (4). Since σtan = ˆ︁σtan and utan = ˆ︁utan,
Proposition 3.1 implies that σ ∈ HΛk−1(Ω) and u ∈ HΛk(Ω). Therefore, taking test functions
τ ∈ HΛk−1(Ω) and v ∈ HΛk(Ω) in (8a)–(8b), the normal trace terms vanish by (8h)–(8i), and we
obtain (4a)–(4b). Finally, (8f) is the same as (4c), which proves the forward direction.

Conversely, given a solution (σ, u, p) to (4), it is immediate that (8a)–(8g) hold. For the remaining
two equations, first observe that combining (4a) and (8a) gives ⟨ˆ︁unor, τ tan⟩∂Th = 0 for τ ∈ HΛk−1(Ω),

which implies (8h). Similarly, combining (4b) and (8b) gives ⟨ˆ︁ρnor, vtan⟩∂Th = 0 for v ∈ HΛk(Ω),
which implies (8i). □

For the last step of the proof, we could instead have used that (4a) gives u ∈ H̊
∗
Λk(Ω) and

(4b) gives du ∈ H̊
∗
Λk+1(Ω), applying Proposition 3.1 to conclude that their normal traces satisfy

(8h)–(8i). However, as we will see, the variational argument above generalizes more readily to the
hybridization of FEEC in Section 4.

Remark 3.3. Although the domain decomposition is presented above for HΛ(Ω) with natural

boundary conditions on ∂Ω, it is easily generalized to H̊Λ(Ω) or other ideal boundary conditions

H̊Λ(Ω) ⊂ V ⊂ HΛ(Ω), as in Remark 2.5. In this case, the broken spaces are unchanged, and we
take the unbroken tangential traces and harmonic forms to be those from the complex V .

We note two special cases that recover known methods for the scalar Poisson equation:

• When k = 0, the only nontrivial fields are u, ˆ︁ρnor, p, and ˆ︁unor, and the Neumann problem
on Ω is decomposed into local Dirichlet problems on K ∈ Th. If V = H̊Λ(Ω), so that
∂Ω also has Dirichlet conditions, then p is trivial, and we recover the “three-field domain
decomposition method” of Brezzi and Marini [9]. This decomposition is the foundation for
the hybridized continuous Galerkin method of Cockburn, Gopalakrishnan, and Wang [20].
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• When k = n, the mixed formulation of the Dirichlet problem on Ω is decomposed into
local Neumann problems on K ∈ Th. Assuming the subdomains are connected, the local
harmonic variables u and p are piecewise constant, and we recover the domain decomposition
appearing in Cockburn [16, Section 5.1], used for hybridization with local Neumann solvers.

3.3. Saddle point formulation and well-posedness. Define the bilinear forms

a
(︁
(σ, u, p, ˆ︁unor, ˆ︁ρnor), (τ, v, q, ˆ︁vnor, ˆ︁ηnor))︁ := −(σ, τ)Th + (u,dτ)Th − ⟨ˆ︁unor, τ tan⟩∂Th

+(dσ, v)Th + (du,dv)Th + (p, v)Th − ⟨ˆ︁ρnor, vtan⟩∂Th
+(u, q)Th − ⟨σtan, ˆ︁vnor⟩∂Th − ⟨utan, ˆ︁ηnor⟩∂Th ,

b
(︁
(τ, v, q, ˆ︁vnor, ˆ︁ηnor), (q, v, ˆ︁τ tan, ˆ︁vtan))︁ := (v, q)Th − (q, v)Th + ⟨ˆ︁vnor, ˆ︁τ tan⟩∂Th + ⟨ˆ︁ηnor, ˆ︁vtan⟩∂Th ,

where we have chosen the signs so that a(·, ·) is symmetric. Then the domain-decomposed Hodge–
Laplace problem (8) becomes a particular instance of the saddle-point problem

a(x, x′) + b(x′, y) = F (x′), ∀x′ ∈ X,(9a)

b(x, y′) = G(y′), ∀y′ ∈ Y.(9b)

Here, X is the space of local variables and Y is the space of global variables, so a(·, ·) corresponds
to the local solvers and b(·, ·) to the coupling between local and global variables. This saddle point
formulation will also be useful for describing the procedure of static condensation in Section 4.2.

Theorem 3.4. The problem (9) is well-posed.

Proof. It suffices to show that b(·, ·) satisfies a single inf-sup condition, meaning that the map
x ↦→ b(x, ·) is surjective, and that a(·, ·) satisfies a double inf-sup condition on the kernel of this
map, cf. Boffi, Brezzi, and Fortin [6, Theorem 4.2.3].

Let q, v, ˆ︁τ tan, and ˆ︁vtan be arbitrary. For the first two terms appearing in b(·, ·), we have

∥q∥Th = sup
v ̸=0

(v, q)Th
∥v∥Th

, ∥v∥Th = sup
q ̸=0

−(q, v)Th
∥q∥Th

,

attained at v = q and q = −v when these are nonzero. Applying Lemma 2.3 to each K ∈ Th gives

∥ˆ︁τ tan∥tan,∂Th = supˆ︁vnor ̸=0

⟨ˆ︁τ tan, ˆ︁vnor⟩∂Th
∥ˆ︁vnor∥nor,∂Th , ∥ˆ︁vtan∥tan,∂Th = supˆ︁ηnor ̸=0

⟨ˆ︁vtan, ˆ︁ηnor⟩∂Th
∥ˆ︁ηnor∥nor,∂Th ,

which proves the inf-sup condition for b(·, ·). It remains to show that a(·, ·) satisfies an inf-sup
condition on the kernel of x ↦→ b(x, ·). On this kernel, we have

u, v ⊥ Hk, q, p = 0, ˆ︁unor, ˆ︁vnor ⊥ ˆ︁V k−1,tan, ˆ︁ρnor, ˆ︁ηnor ⊥ ˆ︁V k,tan,

and we may further separate a(·, ·) into a pair of bilinear forms

α
(︁
(σ, u), (τ, v)

)︁
= −(σ, τ)Th + (u,dτ)Th + (dσ, v)Th + (du,dv)Th ,

β
(︁
(τ, v), (ˆ︁vnor, ˆ︁ηnor))︁ = −⟨ˆ︁vnor, τ tan⟩∂Th − ⟨ˆ︁ηnor, vtan⟩∂Th .

The inf-sup condition for β(·, ·) holds by another application of Lemma 2.3 on each K ∈ Th.
Finally, using Proposition 3.1, the kernel of ξ ↦→ β(ξ, ·) is precisely HΛk−1(Ω)× Hk⊥, so the inf-sup
condition for α(·, ·) on the kernel is just that for the non-domain-decomposed Hodge–Laplace
problem, cf. Arnold, Falk, and Winther [5, Theorem 3.2]. □
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4. Hybrid methods and static condensation

In this section, we present a hybridization of the FEEC methods of Section 2.5 for the Hodge–
Laplace problem, based on the domain-decomposed variational principle (8). We then perform
static condensation of these methods, using the local solvers to efficiently reduce the system to a
smaller one involving only the global variables. This condensed system is shown to be as small or
smaller than that for standard FEEC without hybridization, and we prove an explicit formula for
the number of reduced degrees of freedom. Finally, we prove error estimates for the hybrid variables,
which approximate tangential and normal traces.

4.1. Hybridized FEEC methods. For each K ∈ Th, let Wh(K) ⊂ HΛ(K) be a finite-dimensional
subcomplex, so that

Wh :=
∏︂

K∈Th

Wh(K), Vh := V ∩Wh,

are respectively subcomplexes of W = HΛ(Th) and V = HΛ(Ω).2 Let H
k
h :=

∏︁
K∈Th H̊

k

h(K), where

H̊
k

h(K) is the space of local harmonic k-forms in W̊
k
h(K), and let Hk

h be the space of global harmonic

k-forms in V k
h . Next, we define broken and unbroken tangential traces,

ˆ︂W k,tan
h := {vtanh : vh ∈W k

h }, ˆ︁V k,tan
h := {vtanh : vh ∈ V k

h } = ˆ︁V k,tan ∩ ˆ︂W k,tan
h ,

and take ˆ︂W k,nor
h := (ˆ︂W k,tan

h )∗. Since ⟨·, ·⟩∂Th is a duality pairing, we use this same notation for the

pairing of ˆ︂W k,tan
h with its dual space ˆ︂W k,nor

h .

Example 4.1 (decomposition of P±
r Λ elements). If Th is a conforming simplicial mesh and

W k
h (K) = P±

r Λk(K) for each K ∈ Th, then V k
h = P±

r Λk(Th). Since simplices are contractible,
the local harmonic forms are trivial for k < n and piecewise constants for k = n, and the global
harmonic forms Hk

h are as in Section 2.5.

For each K ∈ Th, the broken trace space ˆ︂W k,tan
h contains tangential traces of P±

r Λk(K), so the
degrees of freedom are just those living on ∂K. Since this is a broken space, the degrees of freedom

need not match on interior facets e = ∂K+ ∩ ∂K−. By contrast, ˆ︁V k,tan
h contains tangential traces

from the unbroken space P±
r Λk(Th), so the degrees of freedom are single-valued. Finally, we can use

duality to identify ˆ︂W k,nor
h with the degrees of freedom for ˆ︂W k,tan

h . Since these tangential traces are

piecewise polynomial and thus in L2(∂Th), for implementation we may simply take ˆ︂W k,nor
h = ˆ︂W k,tan

h

where ⟨·, ·⟩∂Th is the L2 inner product.

Now that we have defined these finite-dimensional subspaces, we may consider the following
finite-dimensional version of the domain-decomposed variational problem (8): Find

σh ∈W k−1
h , uh ∈W k

h , ph ∈ H
k
h, ˆ︁unorh ∈ ˆ︂W k−1,nor

h , ˆ︁ρnorh ∈ ˆ︂W k,nor
h ,(local variables)

ph ∈ Hk
h, uh ∈ H

k
h, ˆ︁σtanh ∈ ˆ︁V k−1,tan

h , ˆ︁utanh ∈ ˆ︁V k,tan
h ,(global variables)

2As in Remark 3.3, the arguments readily generalize to V = H̊Λ(Ω) or other choices of ideal boundary conditions.
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satisfying

(σh, τh)Th − (uh,dτh)Th + ⟨ˆ︁unorh , τ tanh ⟩∂Th = 0, ∀τh ∈W k−1
h ,(10a)

(dσh, vh)Th + (duh,dvh)Th + (ph + ph, vh)Th − ⟨ˆ︁ρnorh , vtanh ⟩∂Th = (f, vh)Th , ∀vh ∈W k
h ,(10b)

(uh − uh, qh)Th = 0, ∀qh ∈ H
k
h,(10c)

⟨ˆ︁σtanh − σtanh , ˆ︁vnorh ⟩∂Th = 0, ∀ˆ︁vnorh ∈ ˆ︂W k−1,nor
h ,(10d)

⟨ˆ︁utanh − utanh , ˆ︁ηnorh ⟩∂Th = 0, ∀ˆ︁ηnorh ∈ ˆ︂W k,nor
h ,(10e)

(uh, qh)Th = 0, ∀qh ∈ Hk
h,(10f)

(ph, vh)Th = 0, ∀vh ∈ H
k
h,(10g)

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V k−1,tan
h ,(10h)

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V k,tan
h .(10i)

Given values for the global variables, (10a)–(10e) amounts to solving the local FEEC problems

(σh, τh)K − (uh, dτh)K = 0, ∀τh ∈ W̊
k−1
h (K),(11a)

(dσh, vh)K + (duh, dvh)K + (ph, vh)K = (f − ph, vh)K , ∀vh ∈ W̊
k
h(K),(11b)

(uh, qh)K = (uh, qh)K , ∀qh ∈ H̊
k

h(K),(11c)

with essential tangential boundary conditions σtanh = ˆ︁σtanh and utanh = ˆ︁utanh .
The following result shows that this is indeed a hybridization of the global FEEC problem (5),

which in particular implies well-posedness of (10). The proof is quite similar to Theorem 3.2, but
there are two important distinctions. First, ˆ︁unorh and ˆ︁ρnorh generally do not equal the normal traces
of uh and ρh = duh, except weakly, in a Galerkin sense. Furthermore, a crucial role is played by the
specific choice of broken tangential and normal trace spaces above, particularly the fact that they
are in duality with respect to ⟨·, ·⟩∂Th .

Theorem 4.2. The following are equivalent:

• (σh, uh, ph, ˆ︁unorh , ˆ︁ρnorh , ph, uh, ˆ︁σtanh , ˆ︁utanh ) is a solution to (10).
• (σh, uh, ph) is a solution to (5), and furthermore, ph = 0, ˆ︁unorh and ˆ︁ρnorh are uniquely

determined by (10a)–(10b), uh is the projection of uh onto H
k
h, ˆ︁σtanh = σtanh , and ˆ︁utanh = utanh .

Proof. Suppose we have a solution to (10). The claimed equalities are immediate from the variational
problem, with uniqueness of the broken tangential and normal traces following from the fact that
these spaces are in duality with respect to ⟨·, ·⟩∂Th , so it remains only to show that (σh, uh, ph)

solves (5). Since σtanh = ˆ︁σtanh and utanh = ˆ︁utanh , Proposition 3.1 implies that σh ∈ V k−1
h and uh ∈ V k

h .

Taking τh ∈ V k−1
h and vh ∈ V k

h in (10a)–(10b), the normal trace terms vanish by (10h)–(10i), and
we obtain (5a)–(5b). Finally, (10f) is the same as (5c), which proves the forward direction.

Conversely, given a solution (σh, uh, ph) to (5), it is immediate that (10a)–(10g) hold, again using
the fact that ⟨·, ·⟩∂Th is a dual pairing to get uniqueness of the broken tangential and normal traces.
For the remaining two equations, first observe that combining (5a) and (10a) gives ⟨ˆ︁unorh , τ tanh ⟩∂Th = 0

for τh ∈ V k−1
h , which implies (10h). Similarly, combining (5b) and (10b) gives ⟨ˆ︁ρnorh , vtanh ⟩∂Th = 0

for vh ∈ V k
h , which implies (10i). □

4.2. Static condensation. We next perform static condensation of the hybridized FEEC method
(10), eliminating the local variables using the local solvers (11) and thereby obtaining a condensed
system involving only the global variables. We present the condensed system both in a matrix-free
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variational form and as a matrix Schur complement, and we prove that this system is as small or
smaller than the standard FEEC method (5) without hybridization.

As we did in Section 3.3 for the infinite-dimensional problem, we may write the hybridized FEEC
method (10) as a saddle point problem,

a(xh, x
′
h) + b(x′h, yh) = F (x′h), ∀x′h ∈ Xh,(12a)

b(xh, y
′
h) = G(y′h), ∀y′h ∈ Yh.(12b)

Since the local FEEC solvers (11) corresponding to a(·, ·) are well-posed, for any given F and yh we
can write the solution to (12a) as xh = XF + Xyh , where

a(XF , x
′
h) = F (x′h), a(Xyh , x

′
h) = −b(x′h, yh), ∀x′h ∈ Xh.

This is an efficient local computation that may be done element-by-element in parallel. Substituting
this into (12b) gives a reduced problem involving only the global variables: Find yh ∈ Yh satisfying

(13) b(Xyh , y
′
h) = G(y′h)− b(XF , y

′
h), ∀y′h ∈ Yh.

This procedure of eliminating variables using local solvers is known as static condensation. Once
the condensed system has been solved for the global variables, the local variables may be recovered
element-by-element, if desired, using the local solvers. Furthermore, we may use linearity to separate
the influence of the individual components, computing XF = Xf and Xyh = Xph +Xuh

+Xˆ︁σtan
h

+Xˆ︁utan
h

.

Given a finite element basis, (12) may also be written in the block-matrix form[︃
A BT

B

]︃ [︃
xh
yh

]︃
=

[︃
Fh

Gh

]︃
.

Since the matrix A corresponds to the local solvers (11), it has a block-diagonal structure, with
blocks corresponding to each K ∈ Th, and can therefore be inverted efficiently block-by-block. Given
F and yh, we can locally solve

AXF = Fh, AXyh = −BT yh =⇒ xh = XF + Xyh = A−1Fh −A−1BT yh.

Substituting this expression into Bxh = Gh gives the condensed system

−BA−1BT yh = Gh −BA−1Fh,

which is the matrix representation of the condensed variational problem (13). Here, the condensed
stiffness matrix −BA−1BT is precisely the Schur complement of the original stiffness matrix

[︁
A BT

B

]︁
.

Remark 4.3. The classical static condensation technique of Guyan [26] did not use hybridization,
but simply partitioned the matrix system into blocks corresponding to internal and facet degrees of
freedom, then applied the Schur complement approach above to eliminate the interior degrees of
freedom. A similar approach has been applied to edge elements for Maxwell’s equations, as discussed
in the survey by Ledger and Morgan [31, Section 4.5]. The discovery of the relationship between
Guyan’s static condensation and hybridization is more recent, cf. Cockburn [16].

The next result proves that in full generality—without assumptions on the topology of K ∈ Th
or the elements used—the condensed system (13) on Yh = Hk

h × H
k
h × ˆ︁V k−1,tan

h × ˆ︁V k,tan
h is as small

or smaller than the standard FEEC system (5) on V k−1
h × V k

h × Hk
h without hybridization. Since

the space Hk
h appears in both systems, it suffices to compare dimH

k
h + dim ˆ︁V k−1,tan

h + dim ˆ︁V k,tan
h

(condensed) with dimV k−1
h + dimV k

h (standard FEEC).

Theorem 4.4. We have the equality

(14)

(dimV k−1
h + dimV k

h )− (dimH
k
h + dim ˆ︁V k−1,tan

h + dim ˆ︁V k,tan
h )

=
∑︂
K∈Th

(︁
dim W̊

k−1
h (K) + dim B̊

k

h(K) + dim Z̊
k⊥
h (K)

)︁
.
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Consequently, the size of the hybridized and condensed FEEC system (13) is always less than or

equal to that of the standard FEEC system (5), with equality if and only if W̊
k−1
h (K) is trivial and

W̊
k
h(K) = H̊

k

h(K) for all K ∈ Th.

Proof. By definition, ˆ︁V k,tan
h is the image of V k

h under the tangential trace map. Therefore, the
rank-nullity theorem implies that their dimensions differ by the dimension of the kernel, i.e.,

dimV k
h − dim ˆ︁V k,tan

h = dim{vh ∈ V k
h : vtanh = 0} = dim

∏︂
K∈Th

W̊
k
h(K) =

∑︂
K∈Th

dim W̊
k
h(K).

Applying the discrete Hodge decomposition to each W̊
k
h(K) and using H

k
h :=

∏︁
K∈Th H̊

k

h(K) gives∑︂
K∈Th

dim W̊
k
h(K) = dimH

k
h +

∑︂
K∈Th

(︁
dim B̊

k

h(K) + dim Z̊
k⊥
h (K)

)︁
.

Combining this with the previous expression and the corresponding one for dimV k−1
h −dim ˆ︁V k−1,tan

h
implies (14), which completes the proof. □

We now give an explicit count of the reduced degrees of freedom when Th is a simplicial mesh
and P±

r Λ elements are used. Arnold, Falk, and Winther [4, Sections 4.5–4.6] show that for r ≥ 1,

dim P̊rΛ
k(K) =

(︃
r − 1

n− k

)︃(︃
r + k

k

)︃
, dim P̊−

r Λ
k(K) =

(︃
n

k

)︃(︃
r + k − 1

n

)︃
,

with the convention that
(︁
a
b

)︁
= 0 when b < 0 or b > a. Applying these formulas to the stable pairs

of spaces for FEEC given in (6), we get

dim P̊r+1Λ
k−1(K) =

(︃
r

n− k + 1

)︃(︃
r + k

k − 1

)︃
, dim P̊rΛ

k(K) =

(︃
r − 1

n− k

)︃(︃
r + k

k

)︃
(if r ≥ 1),

dim P̊−
r+1Λ

k−1(K) =

(︃
n

k − 1

)︃(︃
r + k − 1

n

)︃
, dim P̊−

r+1Λ
k(K) =

(︃
n

k

)︃(︃
r + k

n

)︃
.

For each K ∈ Th, these formulas count the number of internal degrees of freedom, which are precisely
the ones eliminated by static condensation.

Since simplices are contractible, the local harmonic spaces are trivial, except for H̊
n

h(K) ∼= R.
When k = n, static condensation introduces one global degree of freedom per simplex, so in this case,
the number of degrees of freedom is reduced if and only if r ≥ 1. When r = 0 (i.e., the lowest-order
RT and BDM methods), the degrees of freedom for uh are simply replaced by those for uh.

By checking when the spaces above have dimension greater than zero, we immediately obtain the
following corollary to Theorem 4.4.

Corollary 4.5. Let Th be a simplicial mesh and V k−1
h , V k

h be one of the stable pairs in (6). The
hybridized and condensed FEEC system (13) is strictly smaller than the standard FEEC system (5)
if and only if r ≥ 1 and either

• V k
h = PrΛ

k(Th) with r ≥ n− k + 1, or

• V k
h = P−

r+1Λ
k(Th) with r ≥ n− k.

4.3. Error estimates for the hybrid variables. Let {Th} be a shape-regular (but not necessarily
quasi-uniform) family of simplicial meshes of Ω, where hK denotes the diameter of K ∈ Th and

h := maxK∈Th hK . We assume again that V k−1
h , V k

h is one of the stable pairs (6). Error estimates
are already known for σ, u, p (Arnold, Falk, and Winther [4, 5]), and for u when k = n (Douglas
and Roberts [21], Brezzi, Douglas, and Marini [8]), so it only remains to prove estimates for the
tangential and normal traces.
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The tangential traces are straightforward, since ˆ︁σtanh = σtanh and ˆ︁utanh = utanh . We introduce a
scaled version of the tangential trace norm from Section 2.2,

|||ˆ︁τ tan|||2tan,∂K := inf
{︁
∥τ∥2K + h2K∥dτ∥2K : τ tan = ˆ︁τ tan}︁,

and denote |||·|||2tan,∂Th :=
∑︁

K∈Th |||·|||
2
tan,∂K . It is an easy consequence that the errors for σtanh and

utanh are controlled by those for σh and uh, which we now state as a proposition.

Proposition 4.6. For each K ∈ Th, we have

|||σtan − σtanh |||2tan,∂K ≤ ∥σ − σh∥2K + h2K
⃦⃦
d(σ − σh)

⃦⃦2
K
,

|||utan − utanh |||2tan,∂K ≤ ∥u− uh∥2K + h2K
⃦⃦
d(u− uh)

⃦⃦2
K
.

Consequently,

|||σtan − σtanh |||2tan,∂Th ≤ ∥σ − σh∥2Ω + h2
⃦⃦
d(σ − σh)

⃦⃦2
Ω
,

|||utan − utanh |||2tan,∂Th ≤ ∥u− uh∥2Ω + h2
⃦⃦
d(u− uh)

⃦⃦2
Ω
.

Proof. The first pair of inequalities follows immediately from the fact that the scaled tangential
trace norm is an infimum, and the second pair follows by summing over K ∈ Th. □

Given sufficient elliptic regularity, the estimates of Arnold, Falk, and Winther [5] now imply

|||σtan − σtanh |||tan,∂Th ≲

{︄
hr+2∥f∥r+1,Ω, if V k−1

h = Pr+1Λ
k−1(Th),

hr+1∥f∥r,Ω, if V k−1
h = P−

r+1Λ
k−1(Th),

|||utan − utanh |||tan,∂Th ≲

{︄
h∥f∥Ω, if V k

h = P−
1 Λk(Th),

hr+1∥f∥r−1,Ω, otherwise,

which is the optimal order allowed by the polynomial degree of the tangential traces.
We next give estimates for the normal traces, generalizing an argument of Arnold and Brezzi [3]

for the hybridized RT method. Recall that ˆ︁unorh ∈ (ˆ︂W k−1,tan
h )∗ and ˆ︁ρnorh ∈ (ˆ︂W k,tan

h )∗, so we compare

them to the natural projections ˆ︁Phu
nor ∈ (ˆ︂W k−1,tan

h )∗ and ˆ︁Phρ
nor ∈ (ˆ︂W k,tan

h )∗ defined by

⟨ ˆ︁Phu
nor, ˆ︁τ tanh ⟩∂Th = ⟨unor, ˆ︁τ tanh ⟩∂Th , ∀ˆ︁τh ∈ ˆ︂W k−1,tan

h ,

⟨ ˆ︁Phρ
nor, ˆ︁vtanh ⟩∂Th = ⟨ρnor, ˆ︁vtanh ⟩∂Th , ∀ˆ︁vh ∈ ˆ︂W k,tan

h .

If we simply identify ˆ︁unorh with the corresponding element of ˆ︂W k−1,tan
h ⊂ L2Λk−1(∂Th), we generally

do not observe convergence to the unprojected unor, and likewise for ˆ︁ρnorh and ρnor. The reason is

that the identification of ˆ︁unorh with an element of L2Λk−1(∂Th) is only unique up to the annihilator

(ˆ︂W k−1,tan
h )⊥. Therefore, we should really measure the L2 error after quotienting by the annihilator,

which is equivalent to taking the projections above. We define the scaled L2 norm |||·|||∂K := h
1/2
K ∥·∥∂K

and denote |||·|||2∂Th :=
∑︁

K∈Th |||·|||
2
∂K .

Theorem 4.7. For each K ∈ Th, we have

||| ˆ︁Phu
nor − ˆ︁unorh |||∂K ≲ ∥Phu− uh∥K + hK∥σ − σh∥K ,

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂K ≲

⃦⃦
Phd(u− uh)

⃦⃦
K
+ hK

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
,

where Ph denotes L2 projection onto Wh. Consequently,

||| ˆ︁Phu
nor − ˆ︁unorh |||∂Th ≲ ∥Phu− uh∥Th + h∥σ − σh∥Ω,

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th ≲

⃦⃦
Phd(u− uh)

⃦⃦
Th

+ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
.
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Proof. A scaling argument shows that each ˆ︁τ tanh ∈ ˆ︂W k−1,tan
h (∂K) has an extension τh ∈W k−1

h (K)
with τ tanh = ˆ︁τ tanh such that

∥τh∥K + hK∥dτh∥K ≲ |||ˆ︁τ tanh |||∂K .

Therefore, subtracting (10a) from (8a), we get

hK⟨ ˆ︁Phu
nor − ˆ︁unorh , ˆ︁τ tanh ⟩∂K = hK⟨unor − ˆ︁unorh , τ tanh ⟩∂K

= hK

[︂
−(σ − σh, τh)K + (u− uh, dτh)K

]︂
= hK

[︂
−(σ − σh, τh)K + (Phu− uh, dτh)K

]︂
≤

(︂
hK∥σ − σh∥K + ∥Phu− uh∥K

)︂(︂
∥τh∥K + hK∥dτh∥K

)︂
≲

(︂
hK∥σ − σh∥K + ∥Phu− uh∥K

)︂
|||ˆ︁τ tanh |||∂K .

Since ⟨·, ·⟩∂K agrees with the L2 inner product,

||| ˆ︁Phu
nor − ˆ︁unorh |||∂K = h

1/2
K supˆ︁τ tanh ̸=0

⟨ ˆ︁Phu
nor − ˆ︁unorh , ˆ︁τ tanh ⟩∂K
∥ˆ︁τ tanh ∥∂K

= supˆ︁τ tanh ̸=0

hK⟨ ˆ︁Phu
nor − ˆ︁unorh , ˆ︁τ tanh ⟩∂K
|||ˆ︁τ tanh |||∂K

,

which completes the proof of the first estimate. The estimate for ||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂K is obtained

similarly, and the |||·|||∂Th estimates again follow immediately from the |||·|||∂K estimates. □

For k < n, we generally cannot improve on ∥Phu − uh∥Th ≤ ∥u − uh∥Ω, so assuming sufficient
elliptic regularity and applying the estimates from Arnold, Falk, and Winther [5] gives

||| ˆ︁Phu
nor − ˆ︁unorh |||∂Th ≲

{︄
h∥f∥Ω, if V k

h = P−
1 Λk(Th),

hr+1∥f∥r−1,Ω, otherwise,

i.e., the convergence rate is the same as that for uh → u. When k = n, however, ∥Phu − uh∥Th
famously superconverges for the RT and BDM methods (Douglas and Roberts [21], Arnold and
Brezzi [3], Brezzi, Douglas, and Marini [8]). In this case, we recover the superconvergence results of
[3, 8] for the Lagrange multipliers:

||| ˆ︁Phu
nor − ˆ︁unorh |||∂Th ≲

⎧⎪⎨⎪⎩
h2∥f∥1,Ω, if r = 0,

hr+3∥f∥r+1,Ω, if r ≥ 1, V n−1
h = Pr+1Λ

n−1(Th),
hr+2∥f∥r,Ω, if r ≥ 1, V n−1

h = P−
r+1Λ

n−1(Th).

From the perspective of FEEC, this occurs sinceWn
h = V n

h = Bn
h, so ∥Phu−uh∥Th =

⃦⃦
PBh

(u−uh)
⃦⃦
Ω
,

which superconverges according to [5, Lemma 3.13]. On the other hand, when k < n, the error is
dominated by the nonvanishing Zk⊥

h component [5, Lemma 3.16], so there is no improvement.
Similarly, when k < n− 1, we generally cannot do better than

⃦⃦
Phd(u− uh)

⃦⃦
Th

≤
⃦⃦
d(u− uh)

⃦⃦
Ω
,

so assuming sufficient elliptic regularity,

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th ≲

{︄
hr+1∥f∥r,Ω, if V k

h = P−
r+1Λ

k(Th),
hr∥f∥r−1,Ω, if V k

h = PrΛ
k(Th),

and the convergence rate is the same as that for duh → du. However, when k = n− 1, we obtain
superconvergence as a consequence of the following lemma (which holds for all k, not just k = n− 1).

Lemma 4.8. The FEEC solution (5) satisfies
⃦⃦
PBh

d(u− uh)
⃦⃦
Ω
≲ h

(︂⃦⃦
d(σ − σh)

⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
.
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Proof. The argument is similar to [5, Lemma 3.15]. Let vh ∈ Zk⊥
h be such that dvh = PBh

d(u− uh),
and take v = PZ⊥vh. Since v is orthogonal to d(σ−σh) and p− ph, subtracting (5b) from (4b) gives⃦⃦

PBh
d(u− uh)

⃦⃦2
Ω
=

(︁
d(u− uh), dvh

)︁
Ω

=
(︁
d(σ − σh) + (p− ph), v − vh

)︁
Ω

≤
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
∥v − vh∥Ω

≲ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂⃦⃦
PBh

d(u− uh)
⃦⃦
Ω
.

The last step uses [5, Lemma 3.12], which says that ∥v − vh∥Ω ≲ h∥dvh∥Ω. □

Corollary 4.9. For k = n− 1, we have the improved estimate

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th ≲ h

(︂⃦⃦
d(σ − σh)

⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
.

In particular, when f ∈ B̊
∗
n−1, we have ˆ︁ρnorh = ˆ︁Phρ

nor exactly.

Proof. Since
⃦⃦
Phd(u − uh)

⃦⃦
Th

=
⃦⃦
PBh

d(u − uh)
⃦⃦
Ω

when k = n − 1, the improved estimate is

immediate from Theorem 4.7 and Lemma 4.8. In particular, σ and p vanish when f ∈ B̊
∗
n−1, so in

that case the left-hand side is identically zero. □

Assuming sufficient elliptic regularity, this gives the superconvergent rates

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th ≲

{︄
0, if f ∈ B̊

∗
n−1,

hr+2∥f∥r+1,Ω, otherwise.

5. Postprocessing

In this section, we introduce a local postprocessing procedure, which generalizes that of Stenberg
[41] from k = n to arbitrary k. We develop new error estimates for the postprocessed solution
when k < n; in particular, postprocessing gives a superconvergent approximation ρ∗h to du for
k = n − 1, and δρ∗h is an improved approximation to δdu for all k. Finally, we discuss how this
analysis corresponds to that of Stenberg [41] in the case k = n, giving superconvergence of u∗h to u.

5.1. The postprocessing procedure. To motivate the proposed procedure, recall that the exact
local solver (7) corresponds to solving Lu+ p = f − p such that PHu = u, with tangential boundary

conditions given by ˆ︁σtan and ˆ︁utan. Instead of writing this as a variational problem on the H̊Λ(K)
complex, we can equivalently write it on the H∗Λ(K) complex as

(ρ, η)K − (u, δη)K = ⟨ˆ︁utan, ηnor⟩∂K , ∀η ∈ H∗Λk+1(K),(15a)

(δρ, v)K + (δu, δv)K + (p, v)K = (f − p, v)K − ⟨ˆ︁σtan, vnor⟩∂K , ∀v ∈ H∗Λk(K),(15b)

(u, q)K = (u, q)K , ∀q ∈ H̊
k
(K),(15c)

where the tangential boundary conditions are now natural rather than essential. As before, we have
σ = δu and ρ = du

The postprocessing procedure is based on approximating (15) on a finite-dimensional subcomplex

W ∗
h (K) ⊂ H∗Λ(K), meaning δW ∗k+1

h (K) ⊂W ∗k
h (K). Since ⋆H∗Λk(K) = HΛn−k(K), an equivalent

condition is that ⋆W ∗
h (K) ⊂ HΛ(K) is a subcomplex. Moreover, πh : HΛ(K) → ⋆W ∗

h (K) is a
bounded commuting projection if and only if ⋆−1πh⋆ : H

∗Λ(K) →W ∗
h (K) is. For a simplicial mesh,
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we may therefore take

⋆W ∗k+1
h (K) = P±

r∗+1Λ
n−k−1(K), ⋆W ∗k

h (K) =

⎧⎪⎨⎪⎩
Pr∗Λ

n−k(K) (if r∗ ≥ 1)

or

P−
r∗+1Λ

n−k(K)

⎫⎪⎬⎪⎭ .

This is just the Hodge dual of the stable pairs (6) with k replaced by n− k and r by r∗, so all of
the results of Arnold, Falk, and Winther [5] apply immediately to the dual problem. We write the
discrete Hodge decomposition for this complex as

W ∗k
h (K) = B∗k

h (K)⊕ H∗k
h (K)⊕ Z∗k⊥

h (K).

When K is contractible (e.g., a simplex), we have H∗k
h (K) = H̊

k
(K), which is ∼= R for k = n and

trivial otherwise.
We are now ready to define the postprocessing procedure on K ∈ Th: Find ρ∗h ∈ W ∗k+1

h (K),

u∗h ∈W ∗k
h (K), p∗h ∈ H∗k

h (K) such that

(ρ∗h, ηh)K − (u∗h, δηh)K = ⟨ˆ︁utanh , ηnorh ⟩∂K , ∀ηh ∈W ∗k+1
h (K),(16a)

(δρ∗h, vh)K + (δu∗h, δvh)K + (p∗h, vh)K = (f − ph, vh)K − ⟨ˆ︁σtanh , vnorh ⟩∂K , ∀vh ∈W ∗k
h (K),(16b)

(u∗h, qh)K = (uh, qh)K , ∀qh ∈ H∗k
h (K).(16c)

Remark 5.1. The right-hand side only depends on the global variables ph, uh, ˆ︁σtanh , ˆ︁utanh . Therefore,
after we solve the statically condensed problem (13), this procedure can be used as an alternative
to the local solvers (11) for recovering approximations to the local variables on K ∈ Th.

We can also apply postprocessing if FEEC is implemented using (5), without hybridization, since

uh = PHh
uh, ˆ︁σtanh = σtanh , and ˆ︁utanh = utanh . In the simplicial case, since H∗k

h (K) = H̊
k

h(K), we can

simply replace uh by uh on the right-hand side of (16c) without projecting.
Note that, while the original solution variables are tangentially continuous between elements, the

postprocessed solution variables generally do not have any tangential or normal continuity, i.e., they
are neither HΛ(Ω)- nor H∗Λ(Ω)-conforming.

Example 5.2 (Stenberg postprocessing). When k = n and Th is a simplicial mesh, the space
W ∗n+1

h (K) is trivial, W ∗n
h (K) ∼= Pr∗(K), and H∗n

h (K) ∼= R. Therefore, (16) becomes

(gradu∗h, grad vh)K + (p∗h, vh)K = (f, vh)K − ⟨ˆ︁σtanh , vhˆ︁n⟩∂K , ∀vh ∈ Pr∗(K),

(u∗h, qh)K = (uh, qh)K , ∀qh ∈ R,

which coincides with Stenberg [41] postprocessing for the RT and BDM methods. Stenberg also
considered a second form of postprocessing with p∗h, qh ∈ Pr(K), but we do not consider that here.

5.2. Error estimates for k < n. We now analyze this postprocessing procedure when, as before,
{Th} is a shape-regular family of simplicial meshes of Ω. We wish to determine the accuracy of the
solution to the postprocessing problem (16), compared to that obtained using the local solvers (11).

The k = n case has already been analyzed by Stenberg [41], so we restrict our attention to k < n.
Since the local harmonic spaces are trivial, the exact solver (15) simplifies to

(ρ, η)K − (u, δη)K = ⟨ˆ︁utan, ηnor⟩∂K , ∀η ∈ H∗Λk+1(K),(17a)

(δρ, v)K + (δu, δv)K = (f − p, v)K − ⟨ˆ︁σtan, vnor⟩∂K , ∀v ∈ H∗Λk(K),(17b)

and the postprocessing problem (16) simplifies to

(ρ∗h, ηh)K − (u∗h, δηh)K = ⟨ˆ︁utanh , ηnorh ⟩∂K , ∀ηh ∈W ∗k+1
h (K),(18a)

(δρ∗h, vh)K + (δu∗h, δvh)K = (f − ph, vh)K − ⟨ˆ︁σtanh , vnorh ⟩∂K , ∀vh ∈W ∗k
h (K).(18b)
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To aid in the analysis, we introduce the intermediate approximation ˜︁ρh ∈W ∗k+1
h (K), ˜︁uh ∈W ∗k

h (K)
such that

(˜︁ρh, ηh)K − (˜︁uh, δηh)K = ⟨ˆ︁utan, ηnorh ⟩∂K , ∀ηh ∈W ∗k+1
h (K),(19a)

(δ˜︁ρh, vh)K + (δ˜︁uh, δvh)K = (f − p, vh)K − ⟨ˆ︁σtan, vnorh ⟩∂K , ∀vh ∈W ∗k
h (K),(19b)

where the global variables on the right-hand side are the same as those in the exact solution (17).
Note that (19) is just the FEEC approximation of (17) on the subcomplex W ∗

h (K) ⊂ H∗Λ(K), so
the results of Arnold, Falk, and Winther [5] immediately give us estimates for ρ− ˜︁ρh and u− ˜︁uh. It
therefore remains to analyze the difference between (18) and (19).

As in [5], we assume that the exact solution satisfies an elliptic regularity estimate of the form

∥u∥t+2,Ω + ∥p∥t+2,Ω + ∥du∥t+1,Ω + ∥σ∥t+1,Ω + ∥dσ∥t,Ω ≲ ∥f∥t,Ω,
for 0 ≤ t ≤ tmax, where ∥·∥t,Ω denotes the Ht norm on Ω. We will frequently invoke [5, Theorem
3.11], which gives L2 error estimates for the FEEC solution in terms of the best approximation
allowed by the regularity of the exact solution and the polynomial degree of the finite element
spaces. These estimates will be applied both to the original FEEC approximation (5) on Vh and to
the intermediate approximation (19) on W ∗

h (K).
We want the postprocessed solution to be at least as good as the standard FEEC solution obtained

from the local solvers (11). The following assumptions ensure that r∗ is large enough for the W ∗
h (K)

complex to approximate the exact solution as well as Wh(K) does. If f ⊥ Bk, then σ = 0, so
it is enough for W ∗k

h (K) to contain the same total space of polynomials as W k
h (K), i.e., r∗ ≥ r.

Otherwise, in order to approximate σ ̸= 0, we also need the stronger condition that W ∗k−1
h (K)

contains the same total space of polynomials as W k−1
h (K).

Assumption A. Assume that we are in one of the following three cases:

(1) f ⊥ Bk and r∗ ≥ r.

(2) W k−1
h (K) = Pr+1Λ

k−1(K) and ⋆W ∗k
h (K) =

{︄
Pr∗Λ

n−k(K), r∗ ≥ r + 2,

P−
r∗+1Λ

n−k(K), r∗ ≥ r + 1.

(3) W k−1
h (K) = P−

r+1Λ
k−1(K) and ⋆W ∗k

h (K) =

{︄
Pr∗Λ

n−k(K), r∗ ≥ r + 1,

P−
r∗+1Λ

n−k(K), r∗ ≥ r.

Our first result shows that δρ∗h gives an improved approximation of δρ = δdu, compared to δduh.

In particular, when f = δρ ∈ B̊
∗
k, we can obtain an arbitrarily good approximation by taking the

postprocessing degree r∗ large enough.

Theorem 5.3. For each K ∈ Th and 0 ≤ s ≤ tmax, we have⃦⃦
δ(ρ− ˜︁ρh)⃦⃦K ≲ hsK∥f∥s,K , if s ≤ r∗ + 1,⃦⃦
δ(˜︁ρh − ρ∗h)

⃦⃦
K

≤
⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K .

Consequently, if Assumption A holds, then⃦⃦
δ(ρ− ρ∗h)

⃦⃦
Th

≲ hs∥f∥s,Ω, if

{︄
s ≤ r∗ + 1, f ∈ B̊

∗
k,

s ≤ r + 1, otherwise.

Proof. The first estimate is immediate from [5, Theorem 3.11] applied to the problem (19). Next,
subtracting (18b) from (19b) with vh ∈ B∗k

h (K) gives(︁
δ(˜︁ρh − ρ∗h), vh

)︁
K

= (ph − p, vh)K + ⟨ˆ︁σtanh − ˆ︁σtan, vnorh ⟩∂K
= (ph − p, vh)K +

(︁
d(σh − σ), vh

)︁
K

≤
(︂⃦⃦

d(σ − σh)
⃦⃦
K
+ ∥p− ph∥K

)︂
∥vh∥K ,
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and taking vh = δ(˜︁ρh−ρ∗h) implies the second estimate. Finally, summing over K ∈ Th and applying
[5, Theorem 3.11] once more gives⃦⃦

δ(˜︁ρh − ρ∗h)
⃦⃦
Th

≲

{︄
0, if f ∈ B̊

∗
k,

hs∥f∥s,Ω, if s ≤ r + 1, otherwise,

so the last estimate follows by Assumption A and the triangle inequality. □

The next result says that, generically, δu∗h approximates σ = δu as well as σh does, but no better.

In the case f ∈ B̊
∗
k, when σ = σh = 0, we can make δu∗h arbitrarily small by taking r∗ large enough.

Theorem 5.4. For each K ∈ Th and 0 ≤ s ≤ tmax, we have

⃦⃦
δ(u− ˜︁uh)⃦⃦K ≲ hs+1

K ∥f∥s,K , if

⎧⎪⎨⎪⎩
s ≤ r∗ + 1, f ∈ B̊

∗
k,

s ≤ r∗, ⋆W ∗k
h (K) = P−

r∗+1Λ
n−k(K),

s ≤ r∗ − 1, ⋆W ∗k
h (K) = Pr∗Λ

n−k(K),⃦⃦
δ(˜︁uh − u∗h)

⃦⃦
K

≲ ∥σ − σh∥K + hK

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
.

Consequently, if Assumption A holds, then

⃦⃦
δ(u− u∗h)

⃦⃦
Th

≲ hs+1∥f∥s,Ω, if

⎧⎪⎨⎪⎩
s ≤ r∗ + 1, f ∈ B̊

∗
k,

s ≤ r + 1, V k−1
h = Pr+1Λ

k−1(Th),
s ≤ r, V k−1

h = P−
r+1Λ

k−1(Th).

Proof. The first estimate is immediate from [5, Theorem 3.11]. Next, subtracting (18b) from (19b)
with vh ∈ Z∗k⊥

h (K) gives(︁
δ(˜︁uh − u∗h), δvh

)︁
K

= (ph − p, vh)K + ⟨ˆ︁σtanh − ˆ︁σtan, vnorh ⟩∂K
= (ph − p, vh)K +

(︁
d(σh − σ), vh

)︁
K
− (σh − σ, δvh)K

≲

[︃
∥σ − σh∥K + hK

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂]︃
∥δvh∥K .

In the last step, we have applied Cauchy–Schwarz and the Poincaré inequality with scaling, which
says that ∥vh∥K ≲ hK∥δvh∥K . Taking vh such that δvh = δ(˜︁uh − u∗h) implies the second estimate.
Finally, summing over K ∈ Th and applying [5, Theorem 3.11] gives

⃦⃦
δ(˜︁uh − u∗h)

⃦⃦
Th

≲

⎧⎪⎨⎪⎩
0, if f ∈ B̊

∗
k,

hs+1∥f∥s,Ω, otherwise, if

{︄
s ≤ r + 1, V k−1

h = Pr+1Λ
k−1(Th),

s ≤ r, V k−1
h = P−

r+1Λ
k−1(Th),

so the last estimate follows by Assumption A and the triangle inequality. □

Thus far, we have been able to avoid dealing with the error term ˆ︁utan − ˆ︁utanh , which dominates
the postprocessing error, preventing improved convergence of the B∗

h(K) components. There is one
special exception, however: when k = n− 1, the space B∗n

h (K) is trivial, so there is no error in this
component of ρ∗h. In this case, we will see that ρ∗h is an improved estimate compared to duh. Since

H∗n
h (K) ∼= R is nontrivial, though, we need to control the H

n
component of the error, which we will

do with the aid of the following lemma.

Lemma 5.5. If k = n− 1 and ηh ∈ H
n
, then

⟨ˆ︁utan − ˆ︁utanh , ηnorh ⟩∂Th ≲ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
∥ηh∥Ω.

In particular, if f ∈ B̊
∗
n−1, then

∫︁
∂K tr(u− uh) = 0 for all K ∈ Th.
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Proof. Since ηh is piecewise constant, ⟨ˆ︁utan− ˆ︁utanh , ηnorh ⟩∂Th =
(︁
d(u−uh), ηh

)︁
Th
. Piecewise constants

are in V n
h = Bn

h, so the estimate follows by Lemma 4.8. In particular, σ and p vanish when f ∈ B̊
∗
n−1,

so in that case the left-hand side is identically zero. □

Remark 5.6. This generalizes the well-known property that, when n = 1 and k = 0, the continuous
Galerkin solution equals the exact solution at nodes.

We now show that ρ∗h approximates ρ = du as well as duh does, but no better when k < n− 1.

However, when k = n − 1, we get an improved estimate, and when f ∈ B̊
∗
n−1, we can obtain an

arbitrarily good approximation by taking r∗ large enough.

Theorem 5.7. For each K ∈ Th and 0 ≤ s ≤ tmax,

∥ρ− ˜︁ρh∥K ≲ hs+1
K ∥f∥s,K , if

{︄
s ≤ r∗ + 1, ⋆W ∗k+1

h (K) = Pr∗+1Λ
n−k−1(K),

s ≤ r∗, ⋆W ∗k+1
h (K) = P−

r∗+1Λ
n−k−1(K),

∥˜︁ρh − ρ∗h∥K ≲
⃦⃦
d(u− uh)

⃦⃦
K
+ hK

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
.

Consequently, if Assumption A holds, then

∥ρ− ρ∗h∥Th ≲ hs+1∥f∥s,Ω, if

⎧⎪⎨⎪⎩
s ≤ r + 1, f ⊥ B̊

∗
k,

s ≤ r, V k
h = P−

r+1Λ
k(Th)

s ≤ r − 1, V k
h = PrΛ

k(Th).

In the case k = n− 1, this estimate may be improved to

∥ρ− ρ∗h∥Th ≲ hs+1∥f∥s,Ω, if

⎧⎪⎨⎪⎩
s ≤ r∗ + 1, f ∈ B̊

∗
n−1, ⋆W

∗k+1
h (K) = Pr∗+1Λ

n−k−1(K),

s ≤ r∗, f ∈ B̊
∗
n−1, ⋆W

∗k+1
h (K) = P−

r∗+1Λ
n−k−1(K),

s ≤ r + 1, otherwise.

Proof. The first estimate is immediate from [5, Theorem 3.11]. Next, subtracting (18a) from (19a)

with ηh ∈ Z∗k+1
h (K) gives

(˜︁ρh − ρ∗h, ηh)K = ⟨ˆ︁utan − ˆ︁utanh , ηnorh ⟩∂K =
(︁
d(u− uh), ηh

)︁
K

≤
⃦⃦
d(u− uh)

⃦⃦
K
∥ηh∥K ,

which implies ⃦⃦
PZ∗

h(K)(˜︁ρh − ρ∗h)
⃦⃦
K

≤
⃦⃦
d(u− uh)

⃦⃦
K
.

Furthermore, by the Poincaré inequality and Theorem 5.3,⃦⃦
PZ∗⊥

h (K)(˜︁ρh − ρ∗h)
⃦⃦
K

≲ hK
⃦⃦
δ(˜︁ρh − ρ∗h)

⃦⃦
K

≤ hK

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
,

so the second estimate follows by the Hodge decomposition and triangle inequality. Summing over
K ∈ Th and applying [5, Theorem 3.11] gives

∥˜︁ρh − ρ∗h∥Th ≲ hs+1∥f∥s,Ω, if

⎧⎪⎨⎪⎩
s ≤ r + 1, f ⊥ B̊

∗
k,

s ≤ r, V k
h = P−

r+1Λ
k(Th),

s ≤ r − 1, V k
h = PrΛ

k(Th),

so the third estimate follows by Assumption A and the triangle inequality.
Finally, consider the special case k = n− 1. Taking ηh ∈ H

n
and applying Lemma 5.5 gives

(˜︁ρh − ρ∗h, ηh)Th = ⟨ˆ︁utan − ˆ︁utanh , ηnorh ⟩∂Th ≲ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
∥ηh∥Ω,

and therefore, ⃦⃦
PH(˜︁ρh − ρ∗h)

⃦⃦
Th

≲ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
.
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Note that this eliminates the
⃦⃦
d(u− uh)

⃦⃦
Ω
term that appears in the k < n− 1 case. Hence,

∥˜︁ρh − ρ∗h∥Th ≲ h
(︂⃦⃦

d(σ − σh)
⃦⃦
Ω
+ ∥p− ph∥Ω

)︂
≲

{︄
0, if f ∈ B̊

∗
n−1,

hs+1∥f∥s,Ω, if s ≤ r + 1, otherwise,

and the improved estimate follows. □

Finally, we show that u∗h approximates u as well as uh does, but no better.

Theorem 5.8. For each K ∈ Th and 0 ≤ s ≤ tmax,

∥u− ˜︁uh∥K ≲

{︄
hK∥f∥K , if ⋆W ∗k

h = P−
1 Λn−k(K),

hs+2
K ∥f∥s,K , if s ≤ r∗ − 1, otherwise,

∥˜︁uh − u∗h∥K ≲ ∥u− uh∥K + hK

(︂⃦⃦
d(u− uh)

⃦⃦
K
+ ∥σ − σh∥K

)︂
+ h2K

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
.

Consequently, if Assumption A holds, then

∥u− u∗h∥Th ≲

{︄
h∥f∥Ω, if V k

h = P−
1 Λk(Th),

hs+2∥f∥s,Ω, if s ≤ r − 1, otherwise.

Proof. The first estimate is immediate from [5, Theorem 3.11]. Next, subtracting (18a) from (19a)

with ηh ∈ Z∗k+1⊥
h (K) gives

(˜︁uh − u∗h, δηh)K = (˜︁ρh − ρ∗h, ηh)K − ⟨ˆ︁utan − ˆ︁utanh , ηnorh ⟩∂K
=

(︁
PZ∗⊥

h (K)(˜︁ρh − ρ∗h), ηh
)︁
K
−
(︁
d(u− uh), ηh

)︁
K
+ (u− uh, δηh)K

≲
(︂
∥u− uh∥K + hK

⃦⃦
d(u− uh)

⃦⃦
K
+ h2K

⃦⃦
δ(˜︁ρh − ρ∗h)

⃦⃦
K

)︂
∥δηh∥K ,

by Cauchy–Schwarz and the Poincaré inequality. With Theorem 5.3, this implies⃦⃦
PB∗

h(K)(˜︁uh − u∗h)
⃦⃦
K

≲ ∥u− uh∥K + hK
⃦⃦
d(u− uh)

⃦⃦
K
+ h2K

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
.

Furthermore, by the Poincaré inequality and Theorem 5.4,⃦⃦
PZ∗⊥

h (K)(˜︁uh − u∗h)
⃦⃦
K

≲ hK∥σ − σh∥K + h2K

(︂⃦⃦
d(σ − σh)

⃦⃦
K
+ ∥p− ph∥K

)︂
,

so the second estimate follows by the Hodge decomposition and triangle inequality. Finally, summing
over K ∈ Th and applying [5, Theorem 3.11] gives

∥˜︁uh − u∗h∥Th ≲

{︄
h∥f∥Ω, if V k

h = P−
1 Λk(Th),

hs+2∥f∥s,Ω, if s ≤ r − 1, otherwise,

so the last estimate follows by Assumption A and the triangle inequality. □

5.3. Remarks on the case k = n. Although the case k = n has already been analyzed by
Stenberg [41], we now briefly describe this analysis from the FEEC viewpoint, relating it to the
techniques developed in this section. In this case, the postprocessing procedure (16) becomes

(δu∗h, δvh)K + (p∗h, vh)K = (f, vh)K − ⟨ˆ︁σtanh , vnorh ⟩∂K , ∀vh ∈W ∗n
h (K),

(u∗h, qh)K = (uh, qh)K , ∀qh ∈ H∗n
h (K),

and the intermediate approximation is given by

(δ˜︁uh, δvh)K + (˜︁ph, vh)K = (f, vh)K − ⟨ˆ︁σtan, vnorh ⟩∂K , ∀vh ∈W ∗n
h (K),

(˜︁uh, qh)K = (u, qh)K , ∀qh ∈ H∗n
h (K).

The argument in Theorem 5.4 still works, so applying the Poincaré inequality gives⃦⃦
PZ∗⊥

h (K)(˜︁uh − u∗h)
⃦⃦
K

≲ hK∥σ − σh∥K + h2K
⃦⃦
d(σ − σh)

⃦⃦
K
.
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Furthermore, since H
n
consists of piecewise constants, which are in V n

h = Bn
h, we have⃦⃦

PH(˜︁uh − u∗h)∥K =
⃦⃦
PH(u− uh)

⃦⃦
K

≤
⃦⃦
PBh

(u− uh)
⃦⃦
K
.

Summing over K ∈ Th and applying [5, Lemma 3.13] implies

∥˜︁uh − u∗h∥Th ≲

⎧⎪⎨⎪⎩
hs+1∥f∥s,Ω, if s ≤ 1, V n

h = P−
1 Λn(Th),

hs+2∥f∥s,Ω, otherwise, if

{︄
s ≤ r + 1, V n−1

h = Pr+1Λ
n−1(Th),

s ≤ r, V n−1
h = P−

r+1Λ
n−1(Th),

so by Assumption A and the triangle inequality, this same estimate holds for ∥u− u∗h∥Th . This is
precisely the improved estimate in Stenberg [41, Theorem 2.2], by essentially the same proof.

6. Illustration of the methods in n = 3 dimensions

We now give a concrete illustration of the hybridization and postprocessing schemes in n = 3
dimensions, using scalar and vector proxy fields and the familiar operations of vector calculus. Let
Th be a simplicial triangulation of a bounded, polyhedral domain Ω ⊂ R3. For simplicity, we also
assume that Ω is contractible, so that H0 ∼= R and Hk is trivial for k = 1, 2, 3.

Let Vh be a stable subcomplex of

0 H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) 0,
grad curl div

containing continuous Lagrange elements, Nédélec edge and face elements, and discontinuous
Lagrange elements. Let Wh be the corresponding “broken” complex, with W k

h (K) = V k
h |K for

K ∈ Th. Using the scalar and vector proxies for tangential traces in Table 1, we haveˆ︁V 0,tan
h =

{︁
vh|∂Th : vh ∈ V 0

h

}︁
, ˆ︂W 0,nor

h = ˆ︂W 0,tan
h =

{︁
vh|∂Th : vh ∈W 0

h

}︁
,ˆ︁V 1,tan

h =
{︁
vh|∂Th − (vh · ˆ︁n)ˆ︁n : vh ∈ V 1

h

}︁
, ˆ︂W 1,nor

h = ˆ︂W 1,tan
h =

{︁
vh|∂Th − (vh · ˆ︁n)ˆ︁n : vh ∈W 1

h

}︁
,ˆ︁V 2,tan

h =
{︁
(vh · ˆ︁n)ˆ︁n : vh ∈ V 2

h

}︁
, ˆ︂W 2,nor

h = ˆ︂W 2,tan
h =

{︁
(vh · ˆ︁n)ˆ︁n : vh ∈W 2

h

}︁
,

whose degrees of freedom are just those of V k
h and W k

h living on ∂Th.
For postprocessing on K ∈ Th, let W ∗

h (K) be a stable subcomplex of

0 L2(Ω) H(div; Ω) H(curl; Ω) H1(Ω) 0,
− div curl − grad

whose normal traces have scalar and vector proxies given in Table 1.

6.1. The case k = 0. The hybrid method is: Find uh ∈W 0
h , ˆ︁ρnorh ∈ ˆ︂W 0,nor

h , ph ∈ R, ˆ︁utanh ∈ ˆ︁V 0,tan
h

such that

(graduh, grad vh)Th + (ph, vh)Th − ⟨ˆ︁ρnorh , vh⟩∂Th = (f, vh)Th , ∀vh ∈W 0
h ,

⟨ˆ︁utanh − uh, ˆ︁ηnorh ⟩∂Th = 0, ∀ˆ︁ηnorh ∈ ˆ︂W 0,nor
h ,

(uh, qh)Th = 0, ∀qh ∈ R,

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V 0,tan
h ,

which is the hybridized continuous Galerkin method of Cockburn, Gopalakrishnan, and Wang
[20] for the Neumann problem. The postprocessing scheme on K ∈ Th is: Find ρ∗h ∈ W ∗1

h (K),
u∗h ∈W ∗0

h (K) such that

(ρ∗h, ηh)K + (u∗h, div ηh)K = ⟨ˆ︁utanh , ηh · ˆ︁n⟩∂K , ∀ηh ∈W ∗1
h (K),

−(div ρ∗h, vh)K = (f − ph, vh)K , ∀vh ∈W ∗0
h (K).
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6.2. The case k = 1. The hybrid method is: Find σh ∈W 0
h , uh ∈W 1

h , ˆ︁unorh ∈ ˆ︂W 0,nor
h , ˆ︁ρnorh ∈ ˆ︂W 1,nor

h ,ˆ︁σtanh ∈ ˆ︁V 0,tan
h , ˆ︁utanh ∈ ˆ︁V 1,tan

h such that

(σh, τh)Th − (uh, grad τh)Th + ⟨ˆ︁unorh , τh⟩∂Th = 0, ∀τh ∈W 0
h ,

(gradσh, vh)Th + (curluh, curl vh)Th − ⟨ˆ︁ρnorh , vh⟩∂Th = (f, vh)Th , ∀vh ∈W 1
h ,

⟨ˆ︁σtanh − σh, ˆ︁vnorh ⟩∂Th = 0, ∀ˆ︁vnorh ∈ ˆ︂W 0,nor
h ,

⟨ˆ︁utanh − uh, ˆ︁ηnorh ⟩∂Th = 0, ∀ˆ︁ηnorh ∈ ˆ︂W 1,nor
h ,

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V 0,tan
h ,

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V 1,tan
h .

The postprocessing scheme on K ∈ Th is: Find ρ∗h ∈W ∗2
h (K), u∗h ∈W ∗1

h (K) such that

(ρ∗h, ηh)K − (u∗h, curl ηh)K = ⟨ˆ︁utanh , ηh × ˆ︁n⟩∂K , ∀ηh ∈W ∗2
h (K),

(curl ρ∗h, vh)K + (div u∗h, div vh)K = (f, vh)K − ⟨ˆ︁σtanh , vh · ˆ︁n⟩∂K , ∀vh ∈W ∗1
h (K).

6.3. The case k = 2. The hybrid method is: Find σh ∈W 1
h , uh ∈W 2

h , ˆ︁unorh ∈ ˆ︂W 1,nor
h , ˆ︁ρnorh ∈ ˆ︂W 2,nor

h ,ˆ︁σtanh ∈ ˆ︁V 1,tan
h , ˆ︁utanh ∈ ˆ︁V 2,tan

h such that

(σh, τh)Th − (uh, curl τh)Th + ⟨ˆ︁unorh , τh⟩∂Th = 0, ∀τh ∈W 1
h ,

(curlσh, vh)Th + (div uh,div vh)Th − ⟨ˆ︁ρnorh , vh⟩∂Th = (f, vh)Th , ∀vh ∈W 2
h ,

⟨ˆ︁σtanh − σh, ˆ︁vnorh ⟩∂Th = 0, ∀ˆ︁vnorh ∈ ˆ︂W 1,nor
h ,

⟨ˆ︁utanh − uh, ˆ︁ηnorh ⟩∂Th = 0, ∀ˆ︁ηnorh ∈ ˆ︂W 2,nor
h ,

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V 1,tan
h ,

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V 2,tan
h ,

The postprocessing scheme on K ∈ Th is: Find ρ∗h ∈W ∗3
h (K), u∗h ∈W ∗2

h (K) such that

(ρ∗h, ηh)K + (u∗h, grad ηh)K = ⟨ˆ︁utanh , ηhˆ︁n⟩∂K , ∀ηh ∈W ∗3
h (K),

−(grad ρ∗h, vh)K + (curlu∗h, curl vh)K = (f, vh)K − ⟨ˆ︁σtanh , vh × ˆ︁n⟩∂K , ∀vh ∈W ∗2
h (K).

6.4. The case k = 3. The hybrid method is: Find σh ∈ W 2
h , uh ∈ W 3

h , ph ∈ RTh , ˆ︁unorh ∈ ˆ︂W 2,nor
h ,

uh ∈ RTh , ˆ︁σtanh ∈ ˆ︁V 2,tan
h such that

(σh, τh)Th − (uh,div τh)Th + ⟨ˆ︁unorh , τh⟩∂Th = 0, ∀τh ∈W 2
h ,

(div σh, vh)Th + (ph, vh)Th = (f, vh)Th , ∀vh ∈W 3
h ,

(uh − uh, qh)Th = 0, ∀qh ∈ RTh ,

⟨ˆ︁σtanh − σh, ˆ︁vnorh ⟩∂Th = 0, ∀ˆ︁vnorh ∈ ˆ︂W 2,nor
h ,

(ph, vh)Th = 0, ∀vh ∈ RTh ,

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V 2,tan
h ,

which is the alternative hybridization of the RT and BDM methods in Cockburn [16, Section
5] using local Neumann solvers; its solution coincides with the classic hybridized RT and BDM
methods of Arnold and Brezzi [3], Brezzi, Douglas, and Marini [8] using local Dirichlet solvers. The
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r N ||| ˆ︁Phu
nor − ˆ︁unor

h |||∂Th
∥u− u∗

h∥Th

⃦⃦
δ(u− u∗

h)
⃦⃦
∂Th

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th

∥ρ− ρ∗h∥Th

⃦⃦
δ(ρ− ρ∗h)

⃦⃦
Th

0 1 2.06e-01 — 5.03e-01 — 5.87e-01 — 7.87e-01 — 1.38e+00 — 6.24e+00 —
2 4.67e-01 -1.2 5.27e-01 -0.1 6.32e-01 -0.1 1.56e+00 -1.0 1.27e+00 0.1 4.70e+00 0.4

4 3.13e-01 0.6 2.91e-01 0.9 1.95e-01 1.7 9.38e-01 0.7 6.83e-01 0.9 2.47e+00 0.9

8 1.80e-01 0.8 1.51e-01 0.9 5.35e-02 1.9 5.02e-01 0.9 3.49e-01 1.0 1.28e+00 1.0
16 9.42e-02 0.9 7.66e-02 1.0 1.38e-02 2.0 2.57e-01 1.0 1.76e-01 1.0 6.46e-01 1.0

1 1 1.99e-01 — 3.33e-01 — 3.69e-01 — 1.65e+00 — 1.02e+00 — 3.62e+00 —

2 1.76e-01 0.2 8.45e-02 2.0 4.97e-02 2.9 8.09e-01 1.0 2.81e-01 1.9 7.46e-01 2.3
4 5.82e-02 1.6 2.56e-02 1.7 7.93e-03 2.6 2.44e-01 1.7 7.70e-02 1.9 2.16e-01 1.8

8 1.60e-02 1.9 6.84e-03 1.9 1.06e-03 2.9 6.47e-02 1.9 1.98e-02 2.0 5.71e-02 1.9

16 4.14e-03 1.9 1.75e-03 2.0 1.36e-04 3.0 1.66e-02 2.0 5.01e-03 2.0 1.46e-02 2.0

2 1 1.09e-01 — 5.68e-02 — 2.01e-02 — 5.14e-01 — 2.10e-01 — 5.65e-01 —

2 4.61e-02 1.2 1.19e-02 2.3 4.46e-03 2.2 2.32e-01 1.1 5.06e-02 2.1 1.09e-01 2.4

4 7.16e-03 2.7 1.52e-03 3.0 2.84e-04 4.0 3.52e-02 2.7 6.67e-03 2.9 1.20e-02 3.2
8 9.68e-04 2.9 1.92e-04 3.0 1.77e-05 4.0 4.71e-03 2.9 8.41e-04 3.0 1.44e-03 3.1

16 1.25e-04 3.0 2.42e-05 3.0 1.11e-06 4.0 6.05e-04 3.0 1.05e-04 3.0 1.78e-04 3.0

Table 2. Errors and rates for a manufactured solution with n = 3, k = 1, using
hybridization with P−

r+1Λ
0 ∼= CGr+1 and P−

r+1Λ
1 ∼= N1Er+1 elements and local post-

processing with broken ⋆P−
r+2Λ

1 ∼= N1Er+2 and ⋆P−
r+2Λ

2 ∼= N1Fr+2 elements. Since
k < n− 1, we get improved convergence of δρ∗h but not ˆ︁ρnorh or ρ∗h.

postprocessing scheme on K ∈ Th is exactly that of Stenberg [41]: Find u∗h ∈W ∗3
h (K), ph ∈ R such

that

(gradu∗h, grad vh)K + (p∗h, vh)K = (f, vh)K − ⟨ˆ︁σtanh , vhˆ︁n⟩∂K , ∀vh ∈W ∗3
h (K),

(u∗h, qh)K = (uh, qh)K , ∀qh ∈ R.

7. Numerical experiments

In this section, we present numerical experiments in n = 3 dimensions that illustrate and confirm
the foregoing theory. We omit the cases k = 0 and k = n, since these correspond to known methods
for the scalar Poisson equation whose properties are already well understood. The remaining cases
correspond to hybridization and postprocessing methods for the vector Poisson equation.

For the sake of brevity, we present only numerical experiments using P−
r+1Λ elements with

⋆P−
r∗+1Λ postprocessing, where r∗ is chosen optimally according to Assumption A, and where f

has nonvanishing components in both Bk and B̊
∗
k. Errors and rates are shown only for the normal

traces and postprocessed solution components, since the convergence behavior of the remaining
variables follows from previous work. We have conducted many additional numerical experiments,
which all conform with the theoretical results.

All computations have been carried out using the Firedrake finite element library [38] (version
0.13.0+3719.g8e730839), and a Firedrake component called Slate [24] was used to implement the
local solvers for static condensation and postprocessing.

7.1. Test problems. On the unit cube Ω = [0, 1]3, a structured tetrahedral mesh Th is formed by
partitioning Ω into N ×N ×N cubes, each of which is divided into six tetrahedra. As in Section 6,
we identify HΛ(Ω) and H∗Λ(Ω) with the complexes of scalar and vector proxy fields. We use the
“method of manufactured solutions” by choosing a smooth u satisfying the boundary conditions,
taking f = −∆u, and applying the numerical method to this f . For k = 1, we choose

u(x, y, z) =

⎡⎣sin(πx)sin(πy)
sin(πz)

⎤⎦+

⎡⎣ sin(πx) cos(πy)
− cos(πx) sin(πy)

0

⎤⎦ ,
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r N ||| ˆ︁Phu
nor − ˆ︁unor

h |||∂Th
∥u− u∗

h∥Th

⃦⃦
δ(u− u∗

h)
⃦⃦
∂Th

||| ˆ︁Phρ
nor − ˆ︁ρnorh |||∂Th

∥ρ− ρ∗h∥Th

⃦⃦
δ(ρ− ρ∗h)

⃦⃦
Th

0 1 7.19e-01 — 6.97e-01 — 2.14e+00 — 1.28e+00 — 1.97e+00 — 1.31e+01 —
2 5.98e-01 0.3 5.07e-01 0.5 1.75e+00 0.3 1.17e+00 0.1 7.57e-01 1.4 9.79e+00 0.4

4 3.30e-01 0.9 2.62e-01 0.9 9.51e-01 0.9 3.98e-01 1.6 2.19e-01 1.8 5.32e+00 0.9

8 1.74e-01 0.9 1.33e-01 1.0 4.90e-01 1.0 1.15e-01 1.8 5.78e-02 1.9 2.72e+00 1.0
16 8.84e-02 1.0 6.66e-02 1.0 2.47e-01 1.0 3.02e-02 1.9 1.47e-02 2.0 1.37e+00 1.0

1 1 6.54e-01 — 5.55e-01 — 1.72e+00 — 2.97e+00 — 9.23e-01 — 9.40e+00 —

2 2.83e-01 1.2 1.59e-01 1.8 4.69e-01 1.9 3.97e-01 2.9 2.21e-01 2.1 3.66e+00 1.4
4 8.64e-02 1.7 4.26e-02 1.9 1.24e-01 1.9 5.31e-02 2.9 3.07e-02 2.8 1.01e+00 1.9

8 2.32e-02 1.9 1.09e-02 2.0 3.15e-02 2.0 6.79e-03 3.0 3.94e-03 3.0 2.59e-01 2.0

16 5.97e-03 2.0 2.74e-03 2.0 7.93e-03 2.0 8.60e-04 3.0 4.97e-04 3.0 6.51e-02 2.0

2 1 2.44e-01 — 2.25e-01 — 6.60e-01 — 3.66e-01 — 6.63e-01 — 6.18e+00 —

2 8.47e-02 1.5 4.16e-02 2.4 1.02e-01 2.7 8.26e-02 2.1 5.40e-02 3.6 1.08e+00 2.5

4 1.29e-02 2.7 5.71e-03 2.9 1.33e-02 2.9 5.51e-03 3.9 3.75e-03 3.8 1.50e-01 2.8
8 1.73e-03 2.9 7.31e-04 3.0 1.68e-03 3.0 3.54e-04 4.0 2.41e-04 4.0 1.92e-02 3.0

16 2.22e-04 3.0 9.20e-05 3.0 2.11e-04 3.0 2.24e-05 4.0 1.51e-05 4.0 2.42e-03 3.0

Table 3. Errors and rates for a manufactured solution with n = 3, k = 2, using
hybridization with P−

r+1Λ
1 ∼= N1Er+1 and P−

r+1Λ
2 ∼= N1Fr+1 elements and local

postprocessing with broken ⋆P−
r+1Λ

0 ∼= CGr+1 and ⋆P−
r+1Λ

1 ∼= N1Er+1 elements.
Since k = n− 1, we get superconvergence of ˆ︁ρnorh and ρ∗h as compared with ρh = duh.

where the first term is in B1 and the second is in B̊
∗
1. For k = 2, we choose

u(x, y, z) =

⎡⎣sin(πy) sin(πz)sin(πx) sin(πz)
sin(πx) sin(πy)

⎤⎦+

⎡⎣cos(πx) sin(πy) sin(πz)sin(πx) cos(πy) sin(πz)
sin(πx) sin(πy) cos(πz)

⎤⎦ ,
where the first term is in B2 and the second is in B̊

∗
2.

7.2. Results. Table 2 shows the errors and rates for the k = 1 problem, using P−
r+1Λ elements and

⋆P−
r+2Λ postprocessing. (Since P−

r+1Λ
0 ∼= Pr+1Λ

0, the minimum degree satisfying Assumption A is

r∗ = r + 1.) Table 3 shows the errors and rates for the k = 2 problem, using P−
r+1Λ elements and

⋆P−
r+1Λ postprocessing. For clarity, the captions describe the elements both in FEEC notation and

in terms of their classical scalar and vector proxies. Adopting the Unified Form Language (UFL)
[1] notation used by Firedrake, we denote Lagrange finite elements by CG, Nédélec H(curl) edge
elements of the first kind by N1E, and Nédélec H(div) face elements of the first kind by N1F.

These results match the error estimates in Sections 4.3 and 5.2. Specifically, when k = 1 < n− 1,
we do not get superconvergence of ˆ︁ρnorh or ρ∗h: both converge with the same rate O(hr+1) as ρh = duh.
However, δρ∗h converges with improved rate O(hr+1), compared with O(hr) for δρh. On the other
hand, when k = 2 = n− 1, we see that ˆ︁ρnorh and ρ∗h both superconverge with rate O(hr+2).

8. A view toward HDG methods for finite element exterior calculus

In this last section, we briefly present an even more general approach to domain decomposition
and hybrid methods for the Hodge–Laplace problem. This includes hybridization of the conforming
FEEC methods we have discussed so far, as well as nonconforming and HDG methods. In the cases
k = 0 and k = n, we recover the unified hybridization framework of Cockburn, Gopalakrishnan,
and Lazarov [19] for the scalar Poisson equation. When n = 3, the cases k = 1 and k = 2 include
some recently proposed HDG methods for the vector Poisson equation and Maxwell’s equations.
Although we lay out the framework here, we postpone a detailed discussion and analysis of these
methods for future work.
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8.1. Variational principle. To motivate the variational principle for these more general methods,
we begin with a new formulation of the exact local solvers for the Hodge–Laplace problem. Givenˆ︁σtan, ˆ︁utan on ∂K, u ∈ H̊

k
(K), and p ∈ Hk, observe that the exact solution satisfies

(σ, τ)K − (u,dτ)K + ⟨unor, τ tan⟩∂K = 0, ∀τ ∈ HΛk−1(K) ∩H∗Λk−1(K),

(σ, δv)K + (ρ, dv)K + (p, v)K − ⟨ρnor, vtan⟩∂K = (f − p, v)K − ⟨ˆ︁σtan, vnor⟩∂K ,

∀v ∈ HΛk(K) ∩H∗Λk(K),

(ρ, η)K − (u, δη)K = ⟨ˆ︁utan, ηnor⟩∂K , ∀η ∈ HΛk+1(K) ∩H∗Λk+1(K),

(u, q)K = (u, q)K , ∀q ∈ H̊
k
(K).

Here, both d and δ are taken weakly, as they are only applied to test functions.
Now, suppose we choose finite element spaces W k

h (K) ⊂ HΛk(K) ∩H∗Λk(K) for each K ∈ Th,
giving the broken space W k

h :=
∏︁

K∈Th W
k
h (K), and likewise for W k±1

h . Suppose we also choose

unbroken spaces ˆ︁V k−1,tan
h ⊂ ˆ︁V k−1,tan and ˆ︁V k,tan

h ⊂ ˆ︁V k,tan, which do not necessarily correspond to

tangential traces of W k−1
h and W k

h . Then we consider the variational problem: Find

σh ∈W k−1
h , uh ∈W k

h , ρh ∈W k+1
h , ph ∈ H

k
h,(local variables)

ph ∈ Hk
h, uh ∈ H

k
h, ˆ︁σtanh ∈ ˆ︁V k−1,tan

h , ˆ︁utanh ∈ ˆ︁V k,tan
h ,(global variables)

satisfying

(σh, τh)Th − (uh,dτh)Th + ⟨ˆ︁unorh , τ tanh ⟩∂Th = 0, ∀τh ∈W k−1
h ,(20a)

(σh, δvh)Th + (ρh, dvh)Th + (ph + ph, vh)Th

+ ⟨ˆ︁σtanh , vnorh ⟩∂Th − ⟨ˆ︁ρnorh , vtanh ⟩∂Th = (f, vh)Th , ∀vh ∈W k
h ,(20b)

(ρh, ηh)Th − (uh, δηh)Th − ⟨ˆ︁utanh , ηnorh ⟩∂Th = 0, ∀ηh ∈W k+1
h ,(20c)

(uh − uh, qh)Th = 0, ∀qh ∈ H
k
h,(20d)

(uh, qh)Th = 0, ∀qh ∈ Hk
h,(20e)

(ph, vh)Th = 0, ∀vh ∈ H
k
h,(20f)

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V k−1,tan
h ,(20g)

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V k,tan
h .(20h)

To complete the specification of the problem, one must define the approximate normal traces ˆ︁unorh
and ˆ︁ρnorh , which play the same role as the “numerical flux” does in [19]. The discrete harmonic

spaces H
k
h and Hk

h are then defined so that the local and global solvers have unique solutions.

Remark 8.1. For the scalar Poisson equation, we recover the unified hybridization framework of [19].
If k = 0, then in terms of scalar and vector proxies, (20) simplifies to

(ρh, grad vh)Th + (ph, vh)Th − ⟨ˆ︁ρnorh , vh⟩∂Th = (f, vh)Th , ∀vh ∈W 0
h ,

(ρh, ηh)Th + (uh, div ηh)Th − ⟨ˆ︁utanh , ηh · ˆ︁n⟩∂Th = 0, ∀ηh ∈W 1
h ,

(uh, qh)Th = 0, ∀qh ∈ H0
h,

⟨ˆ︁ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V 0,tan
h ,
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which gives the methods of [19] for the Neumann problem, using local Dirichlet solvers. Alternatively,
if k = n, and each K ∈ Th is connected (e.g., simplicial), then (20) becomes

(σh, τh)Th − (uh,div τh)Th + ⟨ˆ︁unorh , τh⟩∂Th = 0, ∀τh ∈Wn−1
h ,

−(σh, grad vh)Th + (ph, vh)Th + ⟨ˆ︁σtanh , vhˆ︁n⟩∂Th = (f, vh)Th , ∀vh ∈Wn
h ,

(uh − uh, qh)Th = 0, ∀qh ∈ RTh ,

(ph, vh)Th = 0, ∀vh ∈ RTh ,

⟨ˆ︁unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V k−1,tan
h ,

which is the alternative hybridization of Cockburn [16, Section 5] using local Neumann solvers.

8.2. Examples of methods. Different choices of the finite element spaces and approximate normal
traces in (20) yield different families of methods. We now discuss a few specific examples.

8.2.1. The hybridized FEEC methods. Suppose we choose the spaces Wh and ˆ︁Vh as in Section 4. We

then define ˆ︁unorh ∈ ˆ︂W k−1,nor
h and ˆ︁ρnorh ∈ ˆ︂W k,nor

h to be new unknown variables, which are determined
by augmenting (20) by the equations

⟨ˆ︁σtanh − σtanh , ˆ︁vnorh ⟩∂Th = 0, ∀ˆ︁vnorh ∈ ˆ︂W k−1,nor
h ,(10d)

⟨ˆ︁utanh − utanh , ˆ︁ηnorh ⟩∂Th = 0, ∀ˆ︁ηnorh ∈ ˆ︂W k,nor
h .(10e)

Using these, (20b) and (20c) become equivalent to (10b) and ρh = duh, respectively. Hence, the
variational problem is equivalent to (10), so we recover the hybridized FEEC methods of Section 4.

8.2.2. Mixed and nonconforming hybrid methods. Suppose we take ˆ︁unorh = unorh and ˆ︁ρnorh = ρnorh .
Then, using integration by parts, (20) simplifies to

(δuh, δvh)Th + (δρh, vh)Th + (ph + ph, vh)Th + ⟨ˆ︁σtanh , vnorh ⟩∂Th = (f, vh)Th , ∀vh ∈W k
h ,

(ρh, ηh)Th − (uh, δηh)Th − ⟨ˆ︁utanh , ηnorh ⟩∂Th = 0, ∀ηh ∈W k+1
h ,

(uh − uh, qh)Th = 0, ∀qh ∈ H
k
h,

(uh, qh)Th = 0, ∀qh ∈ Hk
h,

(ph, vh)Th = 0, ∀vh ∈ H
k
h,

⟨unorh , ˆ︁τ tanh ⟩∂Th = 0, ∀ˆ︁τ tanh ∈ ˆ︁V k−1,tan
h ,

⟨ρnorh , ˆ︁vtanh ⟩∂Th = 0, ∀ˆ︁vtanh ∈ ˆ︁V k,tan
h ,

and σh = δuh. When k = 0, we obtain mixed hybrid methods for the Neumann problem using local
Dirichlet solvers, including the classic hybridized RT and BDM methods [3, 8]. When k = n, we
obtain primal hybrid methods for the Dirichlet problem using local Neumann solvers, including the
nonconforming hybrid method of Raviart and Thomas [40].

8.2.3. Hybridizable discontinuous Galerkin methods. Suppose we takeˆ︁unorh = unorh − λ(ˆ︁σtanh − σtanh ), ˆ︁ρnorh = ρnorh + µ(ˆ︁utanh − utanh ),

where λ and µ are penalty functions on ∂Th. Section 8.2.2 corresponds to the case λ = µ = 0, while
the hybridized FEEC methods of Section 4 can be seen as the limiting case λ, µ→ ∞.

When k = 0, (20) becomes the hybrid local discontinuous Galerkin (LDG-H) method of [19],
while k = n gives the alternative implementation of [16, Section 5] using local Neumann solvers.
For the vector Poisson equation when n = 2 or n = 3, (20) corresponds to the recent HDG methods
of Nguyen, Peraire, and Cockburn [36], Chen, Qiu, Shi, and Solano [15], which have been applied to
Maxwell’s equations. Since the initial appearance of the current manuscript as a preprint, Hong, Li,
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and Xu [28] have analyzed several methods of this type for general k and n within the extended
Galerkin (XG) framework.

Finally, a different family of HDG methods may be constructed by takingˆ︁unorh = unorh − λ
(︁ˆ︁σtanh − (δuh)

tan
)︁
, ˆ︁ρnorh = dunorh + µ(ˆ︁utanh − utanh ),

which generalizes the hybrid interior penalty (IP-H) method of [19].
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