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ABSTRACT. We hybridize the methods of finite element exterior calculus for the Hodge-Laplace
problem on differential k-forms in R™. In the cases k = 0 and k = n, we recover well-known primal
and mixed hybrid methods for the scalar Poisson equation, while for 0 < k < n, we obtain new
hybrid finite element methods, including methods for the vector Poisson equation in n = 2 and
n = 3 dimensions. We also generalize [Stenberg| postprocessing from k = n to arbitrary k, proving
new superconvergence estimates. Finally, we discuss how this hybridization framework may be
extended to include nonconforming and hybridizable discontinuous Galerkin methods.

1. INTRODUCTION

Finite element exterior calculus (FEEC) is a powerful framework that unifies the analysis of
several families of conforming finite element methods for problems involving Laplace-type operators
(Arnold, Falk, and Winther [4, 5], Arnold [2]). These include the classic “continuous Galerkin”
Lagrange finite element method and the Raviart-Thomas (RT) [39] and Brezzi-Douglas-Marini
(BDM) [8] mixed methods for the scalar Poisson equation, as well as mixed methods based on
Nédélec elements [34] [35] for the 2- and 3-dimensional vector Poisson equation. In FEEC, these are
all seen as finite element methods for the Hodge-Laplace operator on differential k-forms in R”,
where scalar fields are identified with 0- and n-forms and vector fields with 1- and (n — 1)-forms.

In this paper, we hybridize FEEC for arbitrary dimension n and form degree k. That is, we
construct hybrid finite element methods using discontinuous spaces of differential forms, enforcing
continuity and boundary conditions using Lagrange multipliers on the element boundaries. The
solutions agree with those of the original, non-hybrid FEEC methods, and the Lagrange multipliers
are seen to correspond to weak tangential and normal traces. This hybrid formulation enables static
condensation: since only the Lagrange multipliers are globally coupled, the remaining internal degrees
of freedom can be eliminated using an efficient local procedure, and the resulting Schur complement
system can be substantially smaller than the original one. We also present a generalization of
Stenberg postprocessing [41], which for 0 < k < n is shown to give new improved estimates.

The special cases £k = 0 and k = n are shown to recover known results on hybridization and
postprocessing for the scalar Poisson equation. In particular, the case k = n corresponds to the
hybridized RT [3] and BDM [8] methods, and the postprocessing procedure is precisely that of
Stenberg [41]. The case k = 0 corresponds to the more recent hybridization of the continuous
Galerkin method by Cockburn, Gopalakrishnan, and Wang [20].

The hybrid and postprocessing schemes in the remaining cases 0 < k < n are new and, to the
best of our knowledge, have not appeared in the literature even for the vector Poisson equation
when n = 2 or n = 3. In particular, the hybridization of Nédélec edge elements is different from
that in Cockburn and Gopalakrishnan [18]: here, the Lagrange multipliers are simply traces of
standard elements, rather than living in a space of “jumps.” We expect these new methods to be
especially useful in computational electromagnetics, where Nédélec elements are ubiquitous and the
differential forms point of view has provided significant insight (cf. Hiptmair [27]).

While we restrict our attention primarily to hybrid methods for conforming simplicial meshes,
we remark that the framework developed here has the potential to be applied to other types of
domain decomposition methods, including methods on cubical meshes, nonconforming meshes,
mortar methods, etc. We also discuss briefly how the unified hybridization framework of Cockburn,
Gopalakrishnan, and Lazarov [19], which includes hybridizable discontinuous Galerkin (HDG)
methods, may also be generalized to the Hodge—Laplace problem for 0 < k£ < n.
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1.1. Why hybridize? There are several theoretical and practical benefits of hybridization:

e additional information about solutions: The Lagrange multiplier functions often correspond
to weak boundary traces of solution components, even though the numerical solution may
not be regular enough for a trace to exist in the usual sense (e.g., the trace of an L? function
or normal derivative of an H' function).

e static condensation: Degrees of freedom for discontinuous function spaces can be locally
eliminated. The resulting Schur complement only involves boundary degrees of freedom for
the Lagrange multipliers, so it can be substantially smaller than the original global problem.

e Jocal postprocessing and superconvergence: The numerical solution may be efficiently “post-
processed” by using the boundary traces to solve a local problem on each element, resulting
in an improved approximation compared to the original solution.

Seminal work on hybridization of mixed finite element methods was done by Fraeijs de Veubeke
[22]. For the scalar Poisson equation, the RT method was hybridized in this manner by Arnold and
Brezzi [3], who introduced the notion of postprocessing. Hybridization and postprocessing were also
discussed in the original paper introducing the BDM method [§], and an interesting characterization
of the Lagrange multipliers for the hybridized RT and BDM methods appears in Cockburn and
Gopalakrishnan [I7]. A refined local postprocessing procedure for mixed methods, which can be
applied with or without hybridization, was given by Stenberg [41]; see also Gastaldi and Nochetto
[23], who discovered this independently (cf. [23, egs. 4.14-4.15]), as well as Bramble and Xu [7].

More recently, Cockburn, Gopalakrishnan, and Wang [20] hybridized the continuous Galerkin
method, using an approach similar to the “three-field domain decomposition method” of Brezzi
and Marini [9], and showed that static condensation yields the same condensed system as that
obtained by the original, non-hybrid static condensation procedure of Guyan [26]. Even more
recently, Cockburn, Gopalakrishnan, and Lazarov [19] introduced an important unified hybridization
framework that includes the above methods, as well as nonconforming and HDG methods, for the
scalar Poisson equation. A survey of historical and recent developments appears in Cockburn [16].

1.2. Organization of the paper. The paper is organized as follows:

o recalls the basic machinery and terminology of differential forms, the Hodge—
Laplace problem, and FEEC. This includes a discussion of tangential and normal traces,
which play an important role throughout the paper.

. presents a domain decomposition of the Hodge-Laplace problem. The variational
form of this problem involves broken spaces of differential forms, along with boundary traces
that act as Lagrange multipliers enforcing interelement continuity and boundary conditions.

. develops hybrid finite element methods for the Hodge-Laplace problem, based on
the domain-decomposed variational principle from the previous section. We prove that these
are hybridized versions of the FEEC methods, show how static condensation can be used to
reduce the size of the global system, and develop error estimates for the hybrid variables.

e [Section 5| generalizes the postprocessing procedure of Stenberg [41] from k& = n to arbitrary k.
This procedure only uses the statically condensed variables, so it can be applied immediately
after solving the condensed system, or it can be applied to solutions obtained by ordinary
finite element methods without hybridization. In addition to known superconvergence results
for k = n, we give new improved error estimates for k < n.

° gives concrete illustrations of the hybrid and postprocessing methods when n = 3,
using the language of vector calculus and classic families of finite elements.

3 presents numerical experiments, confirming the error estimates of and

e Finally, presents an extension of the framework of Cockburn, Gopalakrishnan, and
Lazarov [19], whereas the previous sections only address conforming methods. This lays the
groundwork for hybridization of nonconforming and discontinuous Galerkin methods for
FEEC, although we postpone the analysis of such methods for future work.
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2. BACKGROUND: DIFFERENTIAL FORMS AND FINITE ELEMENT EXTERIOR CALCULUS

In this section, we quickly recall the exterior calculus of differential forms, the Hodge—Laplace
problem, and FEEC, in order to lay the foundation and fix the notation for the subsequent sections.
We refer to Arnold, Falk, and Winther [4, 5], Arnold [2], and references therein for a comprehensive
treatment. We also discuss tangential and normal traces of differential forms, which will play an
important role in domain decomposition and hybridization. Our treatment of these traces follows
that in Weck [42] (see also Kurz and Auchmann [30]), which extended work of Buffa and Ciarlet
[T1} [12], Buffa, Costabel, and Sheen [13] for vector fields in R3.

2.1. Exterior calculus of differential forms. Let 2 C R" be a bounded Lipschitz domain, and
denote by A¥(Q) the space of smooth differential k-forms on Q, where k = 0,...,n. We assume
that the reader is familiar with the following basic operations of exterior calculus:

the wedge product A: AF(Q) x AY(Q) — AFTE(Q),

the (Euclidean) Hodge star isomorphism x: A*(Q) — A" #(Q),

the exterior derivative d: A*¥(Q) — AF1(Q),

the codifferential § := (—1)*x~1dx: AF(Q) = AF~1(Q),

the Hodge Laplace operator L := dé + dd: A¥(Q) — A*(Q).

These are graded operators, but we suppress the form degree for notational simplicity, e.g., writing
d rather than d*. From the Leibniz rule for d and definition of §, we have the important identity

(1) d(7 Axv) =d7 A *xv — T A %60,

where 7 € A*71(Q) and v € A*(Q).

The Hilbert space L?2A*(2) is the completion of A¥(Q) with respect to the L? inner product
(v, w)q = [ v A*w, whose associated norm is denoted ||-||o. Taking d in the sense of distributions
allows it to be extended to a closed, densely defined operator with domain

HAR(Q) = {v e L*AF(Q) : dv € L*AFTH ()},
which is itself a Hilbert space with the graph inner product (v, w)yrq) = (v,w)q + (dv, dw)q.

The subspace HA*(Q2) ¢ HAF(Q) is defined to be the closure of C8°A*(Q), the space of smooth
k-forms with compact support in 2. Likewise, § may be extended to a closed, densely defined
operator with domain

H*AM(Q) = {v e L2A*(Q) : 6v € L*AF1(Q)} = xHA"*(),
which is a Hilbert space with the graph inner product (v, w)g«r ) = (v, w)a + (6v, dw)q, and the
subspace H AF(Q) = xHA"%(Q) ¢ H*AF(Q) is the closure of CeAR(Q).

2.2. Tangential and normal traces. The restriction of a differential form to the boundary 0f2 is
encoded in a pair of differential forms on 0f2, called the tangential trace and normal trace. This is
analogous to decomposing a vector field into its tangential and normal components at the boundary.

We begin with the case of smooth differential forms, where the boundary 02 is also smooth. The
trace map tr: AF(Q) — AF(99) is defined to be the pullback of k-forms by the inclusion 9Q — Q,
i.e., trv € A¥(0Q) is just the restriction of v € A¥(Q) to vectors tangent to the boundary. Denote
the Hodge star on 92 by * and the associated L? inner product by (-, -)sq.

Definition 2.1 (tangential and normal traces). Given v € A*(Q),
o' = tro e AF(09), V" =% r v € AFTL00).

These definitions allow a particularly elegant expression of the integration by parts formula for
differential forms. The following result is standard, but the proof is short and illuminates the
definition of the normal trace.
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k proxy field tangential trace normal trace
0 pel>(Q) ©lon 0

1 veC®(QR?) vjgg—(v-R)n v-n

2 weC®QRY (w-n)n wXn

3 e lC>®N) 0 n

TABLE 1. Tangential and normal traces of differential forms on  C R3, in terms of
scalar and vector proxy fields.

Proposition 2.2. If 7 € A*¥1(Q) and v € A*(Q), then we have the integration by parts formula
(2) (T8 "N 50 = (dT,v)q — (T, 0v)q.

Proof. Using the definitions of 7% and v"°*, we calculate

(T80 T 5o = / T A SO = / tr AtrHv = / tr(7 A xv) = / d(7 A *v),
o0 o0 o0 Q

where the last step uses Stokes’ theorem. Applying completes the proof. O

An equivalent description of tangential and normal traces uses the outer unit normal vector field
7 and its associated 1-form 7’ = 7; dz’. Letting 15 denote the interior product (or contraction) with
1, the Leibniz rule for this operator gives the identity

vl = w(@ AV) +0° A (t0).

We may then identify v'® with the k-form t5(7” A v) and v™" with the (k — 1)-form tzv. When
Q) C R3, the correspondence of these traces to scalar and vector proxy fields is given in using
the proxy operations for ¢; and 7’ A , and recovers the familiar integration by parts formulas of
vector calculus.

Weck [42] showed that it is possible to extend the tangential and normal traces so that a weak
version of () holds for 7 € HA*=1(Q) and v € H*A*(Q), where 05 is only assumed to be Lipschitz.
We denote the trace spaces in which 7% and v live by HAF=1#0(9Q) and H*Ak—1mor(5()),
respectively. These are generally subspaces of H~1/2AF=1(9Q), but not necessarily of L2A*~(9Q),
so (-,-)aq should be interpreted as a duality pairing extending the L? inner product on 9 [42,
Theorem 8]. See Kurz and Auchmann [30] for an excellent account of Weck’s results and some
concrete applications to electromagnetics. Mitrea, Mitrea, and Shaw [33] obtain comparable results
by extending the alternative approach using ¢ and 7’ A described above.

The definitions of HA*~111(9Q) and H*A¥~11o7(9Q) are somewhat technical, but thankfully,
we may make use of [42, Theorems 5 and 7|, which give isomorphisms

(3)  HAFLR(Q0) = HAFYQ)/HAFHQ),  HAPN(00) = H*AR(Q)/H AR Q).

Therefore, we may treat the trace spaces as quotient spaces, equipped with the quotient norms

tan — 7/:tan }, nor ~nor } .

7 [ean,00 = inf {[|7] rar-1(0) : 7 107" lnor,00 = nf {[[v]| e ar(q) : 0" =7

These generalize the “minimum energy extension” quotient norms discussed in Carstensen, Demkow-
icz, and Gopalakrishnan [14, Section 2] for H', H(curl), and H(div) traces in R?. The next result,
relating these norms to the duality pairing, is a straightforward generalization of [14, Lemma 2.2].
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Lemma 2.3. For all 7% € HAF10(9Q) and 57 € H*AF=100r(9Q), we have the equalities

<7_tan nor> <Ttan ’\nor>

~ o0 ~ o0
HTtanHtan,QQ = Sup —r=——— > anorunor,aﬂ = Sup —= -
noT£(Q) ||U||n0r,8ﬂ Ftan£(Q) ”THtaH,BQ
That is, the duality isomorphisms T — (70 )0 and 0" — (-, 0" )gq are isometries.
Proof. Given 7' the Riesz representation theorem gives a unique w € H*A¥(€2) such that
(w,v)q + (6w, 0v)q = (T, ") 5, VYo € H*AF(Q),

so w + déw = 0 with (—dw)t™ = 7t Taking 7 = —dw € HA¥1(Q), we have 7 + dd7 = 0 with
rlan — ptan “oo (7 Yo + (d7,d¢)q = 0 for all ¢ € HAF~1(Q). This is precisely the variational

problem satisfied uniquely by the minimum-H A-norm extension of 7%% so 7 is this extension and
17 [tan.00 = |17l gak-1(q)- Since 7 = —dw and dr = w, we have HTHHAk—l(Q) = ||wl| gk (), and

w,v)q + (dw, 0v)q Ftan qnor o0

P anon = gy = sup ot Ot gy, Lo

veH*AF(), HU”H*A’“(Q) veH*AR(Q), HUHH*Ak(m
v#0 v#0

For any " = 9", the denominator is minimized when [|v[| g«px(q) = 0" |lnor,00, so the first
equality follows. The second equality is proved similarly. [l

Remark 2.4. As an immediate consequence of the isomorphisms (3), we have
HAFQ) = {ve HAF(Q =0},  HANQ) = {ve HAMQ =0}.

More generally, any closed extension of d: C§°A*(Q) — C’(‘)’OA’“H(Q) resultlng in a Hilbert complex
HAF(Q) c VF ¢ HA¥(Q) is called a choice of ideal boundary conditions, cf. Briining and Lesch [10].
For example, one may take a suitably nice decomposition of €2 into two pieces, I'**" and I'°*, and let
VE = {v e HA*(Q) : v*|pwan = 0}. For an analysis of these mixed boundary conditions (including
what qualifies as a “suitably nice decomposition”), see Jakab, Mitrea, and Mitrea [29], Gol’dshtein,
Mitrea, and Mitrea [25].

2.3. The Hodge decomposition and Poincaré inequality. Although much of the following
analysis applies to more general Hilbert complexes, we focus our attention on

0— HA°Q) S HAYQ) S - & HA™MQ) — 0.

The operators d satisfy a compactness property, as shown by Picard [37], and in particular they are
Fredholm and thus have closed range. Define

ko= {dTITEHAk_l(Q)}, 3k = {vEHAk(Q):dv:O}, oF =3k Nkt

which are the subspaces of exact, closed, and harmonic k-forms in L2A*(Q). Tt follows that
L2A%(Q) = B @ §F @ 35T,
which is an L?-orthogonal decomposition called the Hodge decomposition. By Banach’s closed range
theorem and the adjointness of d and §, we may also write
—{ve HA Q) :ov=0} =3, 3" ={0n:ne H A" (Q) =B,
called coclosed and coexact k-forms. This implies
=35n3, = {ve HAF(Q) n H A*Q) : dv =0, dv = 0},

which is an equivalent characterization of harmonic forms.
Finally, since d is an HA-bounded isomorphism between HA¥(2) N 3%L and B!, Banach’s
bounded inverse theorem implies that there exists a constant cp(€2) such that

lolle < ep(@)lldvllo, Yo € HAR(S) N3M,
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which is called the Poincaré inequality. Note that Arnold, Falk, and Winther [5], Arnold [2] write
the Poincaré inequality differently, using the [||| yzs(q) norm, so that the constant is /1 + cp(Q2)2.
However, the form we have chosen is more convenient for scaling arguments that we will apply later.

2.4. The Hodge—Laplace problem. Recall the Hodge—Laplace operator L := dd + dd on k-forms,
which we can now interpret in a weak sense. Given f € L2A*(€2), we wish to solve the following
problem: Find u € H**, p € $H*, such that
Lu+p=f in Q,
u™ =0, (du)*" =0, on .
The solution gives the Hodge decomposition f = do + p + dp, where 0 = du and p = du.

FEEC is based on the following mixed formulation of the Hodge-Laplace problem: Find o €
HA*1(Q), u € HAF(Q), p € H such that

(4a) (0,7)a — (u,dT)q =0, vr e HAF1(Q),
(4b) (do,v)q + (du, dv)g + (p,v)a = (f,v)q, Yve HA¥(Q),
(4c) (u,q)a =0, Vg € 5,

where both boundary conditions are natural. More generally, nonvanishing natural boundary
conditions may be imposed by adding (-, -)sn terms on the right-hand side. The well-posedness of
this mixed formulation is proved in Arnold, Falk, and Winther [4, Theorem 7.2] and generalized to
abstract Hilbert complexes in Arnold, Falk, and Winther [5, Theorem 3.2].

Remark 2.5. Instead of natural boundary conditions, one may impose essential boundary conditions
o' = 0 and u'* = 0 by taking the test and trial functions from HA*'(Q), HA*(Q), $ , cf. [5,
Section 6.2]. This may be generalized to nonvanishing o' and u'®® via a standard extension

argument. We may also impose other ideal boundary conditions H A(Q) C V € HA(Q), as discussed
in [Remark 2.4, For example, mixed boundary conditions are essential for o', 4/'a% on I'**" and

natural for ™", (du)"°" on I'"™°T.

2.5. Finite element exterior calculus. Just as the Galerkin method approximates problems on
infinite-dimensional Hilbert spaces by restricting to finite-dimensional subspaces, FEEC approximates
problems on infinite-dimensional Hilbert complexes by restricting to finite-dimensional subcomplezes.

A subcomplex Vj, € HA(Q) is a sequence of (here, finite-dimensional) subspaces V¥ ¢ HAK(Q)

that is closed with respect to d, i.e., thk C thH. Just as in [Section 2.3 we have subspaces
By ={dn:meVy ', 3={wm eV dv, =0}, 9} =35 0B

along with a discrete Hodge decomposition th = ‘Bﬁ &) ﬁﬁ o 3§L and discrete Poincaré inequality.
Note that the subcomplex assumption implies %ﬁ C B* and 3’; C 3F, although in general ﬁ’fL ¢ $HF
and SZL ¢ 3%L. An additional key assumption in the analysis (but not implementation) of FEEC is
the existence of bounded commuting projections 7r,’§: HA*(Q) — V,f, which among other uses gives
control of the discrete Poincaré constant in terms of c¢p(2).

In FEEC, one then approximates the Hodge-Laplace problem by the following finite-
dimensional variational problem: Find oy, € V,ffl, Uup € th , Dn € ﬁi such that

(5a) (on,mh)a — (up,dmh) =0, V1, € V}ffl,
(5b) (don, vn)a + (dun, dvy)a + (pr,vn)a = (f,on)a, Yo, € V¥,
(5¢) (un, qn)a = 0, Va € 9.

Arnold, Falk, and Winther [4 [5] establish stability and convergence for this problem, proving
quasi-optimal error estimates in the HA-norm and improved L2-error estimates under additional
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regularity assumptions using the aforementioned compactness property. (In [5], much of this analysis
takes place in the setting of abstract Hilbert complexes.) As in @, we may instead take
essential boundary conditions for o} and uj**. Licht [32] has recently extended the analysis of
FEEC to mixed boundary conditions, including the construction of bounded commuting projections.

One more essential ingredient of FEEC is the construction of finite elements for the spaces th.
Suppose that  C R” is polyhedral, and let 7, be a triangulation of 2 by n-simplices K € Tp.
Arnold, Falk, and Winther [4, [5] construct two families of piecewise-polynomial differential forms,
called P.A and P, A, which we will sometimes refer to collectively as PFA. Arnold, Falk, and

Winther [4, 5] show that any of the pairs of spaces

P AR (Ty) (f r > 1)
(6) Vi =P AN (T, V= or :
P AR (Th)

results in a subcomplex for the problem satisfying the needed analytical assumptions.

3. DOMAIN DECOMPOSITION OF THE HODGE-LAPLACE PROBLEM

This section presents a domain decomposition of the Hodge—Laplace problem, where 2 C R" is
partitioned into non-overlapping Lipschitz subdomains K € Tp,. This will be the foundation for the

hybrid methods in where Q is polyhedral and K € 7Ty, are elements of a conforming mesh.
However, the results of this section also apply to more general types of domain decomposition.

3.1. Decomposition of Hilbert complexes of differential forms. Define the broken spaces

HANT,) = [] HANEK),  HAN(Th) = [ HAHK).
KeTh KeTy,

As product spaces, these naturally inherit the inner products

() )Th = Z (G VSR O )HAk(Th) = Z (, ')HA’V(K)a (, )H*Ak(Th) = Z (-, ')H*Ak(K)'

KeTy, KeTy KeTy

We can then define d: HA*(T,) — HAF(T;,) to be d[gax(xy on each K € T, and likewise

for 6: H*A*(T,) — H*AF='(T;,). These broken Hilbert complexes are simply the HA and H*A
complexes for the disjoint union | |- K.

For these broken spaces, we can define tangential and normal traces on 97, = | | KeT, 0K by
taking the trace on 0K for each K € Tj. Defining the pairing (-,-)s7, = ZKeTh<" Yo, we
immediately get the integration by parts formula

(T, ") or = (dr,v)7,, — (1, 60)7,, V7 € HAVY(T,), v e H'AM(T,),

simply by summing the integration by parts formulas for each K € 7,. Note that, if e = 0K TNIK ™~
is the interface between K* € 7T}, then e appears twice in the disjoint union 97} once as part of
OK™, and a second time as part of 9K . The traces of broken differential forms can therefore be
seen as “double valued,” since there is no continuity imposed at interfaces between subdomains.

There are natural inclusions HAF(Q) < HA*(T;) and H*A¥(Q) < H*A*(T;), which are defined
by restriction to each K € 7p,. The next result characterizes these subspaces of unbroken differential
forms, generalizing some classic results on domain decomposition of H', H(curl), and H(div) spaces
(cf. Propositions 2.1.1-2.1.3 of Boffi, Brezzi, and Fortin [6]). In a weak sense, it says that unbroken
differential forms are precisely those with “single valued” tangential or normal traces.
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Proposition 3.1. If Ty is a decomposition of Q into Lipschitz subdomains, then
HAF(Q) = {v e HAR(T;) : (', ") or =0, ¥ € H AFH(Q)},
HAR(Q) = {v € HAMT,) : (0 ") ar = 0, ¥y € H*AFH(Q)},
H*AF(Q ) {ve HAM(Ty) : (7' 0™ g7, =0, ¥ € HAM1(Q)},
HAR(Q) = {ve H*A*(Ty) « (7%, 0" M) o7, = 0, V7 € HAFH(Q)}.

Proof. These four identities are proved using essentially the same argument, so we give only a proof
of the first. If v € HAF(Q), then for all n € H AF1(Q),

< tan nor>

1" "Vor, = (dv,n)7, — (v,00)7, = (dv,n)a — (v, dn)a = (V7" )sn = 0.
Conversely, suppose that v € HAF(T,) € L2A*(T,) = L2A*(Q) satisfies (v*38, n2°%) 57 = 0 for all
ne H *AkH(Q). Then, using integration by parts and Cauchy—Schwarz,

(0,800 = (v.0m)7; = (dv, ) < Idollz [l = Idvliz o
In particular, this holds for n € Cg°AK1(Q), implying dv € L2A**1(Q) and hence v € HA*(Q). O

3.2. Decomposition of the Hodge—Laplace problem. For each K € 7}, observe that o and u
solve the local problem

(0,7) K — (u,d7)g =0, vr e HAFY(K),
(do,v) i + (du, dv)g = (f —p,v)k, Vo € HAF(K),
with essential boundary conditions o' and u'?". However, if the space of local harmonic forms
ﬁk(K ) is nontrivial, then this local problem is not Well—posed Therefore, we include an additional
local variable p € jﬁk(K ) and solve
(7a) (0,7) i — (u,d7)x = 0, vr € HAF1(K),
(7b) (do,v)k + (du, dv) g + (B,v) = (f —p,v)K, Yo € HAF(K),
_ 2k

(7c) (v, 9k = (W, Pk, Vg e H (K),

o k
where @ is the projection of u onto $ (K). Following [Remark 2.5| these local solvers are well-posed

for any right-hand side and tangential traces o', /a1,

We now allow the tangential traces o', ta“ to be independent variables and impose the

S
S \

Y

constraints ¢t = gtan gtan — gtan yging Lagrange multipliers u™°", p"°", which will turn out to be
the normal traces of u and p = du. Define the spaces
_ o k
Wk = HAF(T;), 5 = I[ % &)
KeTy,
W\k,nor — {nnor ine H*Ak+1(7;b)}, ‘//\'k,tan — {vtan ‘e HAk(Q)}

Note that V*tan consists of “single valued” traces from the unbroken space HA¥(Q), whereas the
other three spaces contain broken k-forms. Consider the variational problem: Find

. _ —k ~
(local variables) oe Wk, uwe Wk, PEH, amer e Wkt nor. prer c Wk nor,

. _ =k ~ _ ~
(global variables) p e Hk, uEeESH, glan ¢ Pk 1tan T Vk’tan,

R

When K € T;, are contractible (e.g., simplices in a triangulation), this is only an issue for k = n, where " (K) = R.



HYBRIDIZATION AND POSTPROCESSING IN FINITE ELEMENT EXTERIOR CALCULUS 9

satisfying

(8a) (o,7)7, — (u,d7) 7, + (@, 77, =0, vr e Wk,
(8b)  (do,v)y, + (du, o)y, + B+, 07y — (0o, = (fr0)7,  Vw e W,

(8¢) (@ —u,q)7; =0, View,

(8d) (a\tan L "y =0, Vghor ¢ Wk—l,nor’
(8e) (Gtan — ytem, Y o7 =0, VAT ¢ Wk’nor,
(8f) (u, q)7, =0, vq € ",

(82) (7. 7)7 =0, ies,

(Sh) @nor,?tanbﬁ =0, yrtan o f}k—l,tanj
(50) T =0, et PR,

Given values for the global variables, notice that f simply amounts to solving the local
problem on each K € Ty,

We now prove that this is indeed a domain decomposition of the Hodge—Laplace problem ,
which in particular implies well-posedness of . A more general proof of well-posedness, where the

right-hand side of is allowed to be arbitrary, will be given in [Section 3.3

Theorem 3.2. The following are equivalent:

o (0, u,p,u™", p"°r, p,w, 5 u?M) is a solution to (g)).

e (o,u,p) is a solution to , and furthermore, p = 0, u™°" = u"°", p"°" = (du)"", u is the

a.\tan tan

= o' gnd @t = ytan,

projection of u onto Ek,

Proof. Suppose we have a solution to . The claimed equalities are immediate from the variational
problem, so it remains only to show that (o, u,p) solves (). Since o' = ' and u'™ = u'™",
[Proposition 3.1| implies that ¢ € HA*¥~1(Q) and u € HA*(Q)). Therefore, taking test functions
T € HAF1(Q) and v € HA*(Q) in (8a)—(8D)), the normal trace terms vanish by (8L)-(8i), and we

obtain 7. Finally, is the same as , which proves the forward direction.
Conversely, given a solution (o, u,p) to ({]), it is immediate that (8a)—(8g]) hold. For the remaining

two equations, first observe that combining and gives (W%, 7440 5. = 0 for 7 € HAF1(Q),
which implies (8hL). Similarly, combining and gives (", v'™) oy = 0 for v € HAF(Q),
which implies . [l

For the last step of the proof, we could instead have used that gives u € H Ak (©2) and

(4Db)) gives du € H *AkH(Q), applying |Proposition 3.1| to conclude that their normal traces satisfy
f. However, as we will see, the variational argument above generalizes more readily to the

hybridization of FEEC in

Remark 3.3. Although the domain decomposition is presented above for HA() with natural
boundary conditions on 02, it is easily generalized to HA(2) or other ideal boundary conditions

HA(Q) € V . HA(Q), as in [Remark 2.5 In this case, the broken spaces are unchanged, and we
take the unbroken tangential traces and harmonic forms to be those from the complex V.

We note two special cases that recover known methods for the scalar Poisson equation:

e When k = 0, the only nontrivial fields are u, p"°*, p, and u"°*, and the Neumann problem

on ) is decomposed into local Dirichlet problems on K € 7. If V = H A(Q), so that
02 also has Dirichlet conditions, then p is trivial, and we recover the “three-field domain
decomposition method” of Brezzi and Marini [9]. This decomposition is the foundation for
the hybridized continuous Galerkin method of Cockburn, Gopalakrishnan, and Wang [20].
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e When k£ = n, the mixed formulation of the Dirichlet problem on € is decomposed into
local Neumann problems on K € 7. Assuming the subdomains are connected, the local
harmonic variables u and p are piecewise constant, and we recover the domain decomposition
appearing in Cockburn [16], Section 5.1], used for hybridization with local Neumann solvers.

3.3. Saddle point formulation and well-posedness. Define the bilinear forms

a((a,u,ﬁ, ut, pton), (1, v, q, 0", ﬁnor)) = —(o,7)7;, + (u,d7)T;, — <anor77_tan>a7_h
+(do,v) 7, + (du, dv) 7, + (B,v)7, — (P, 0o,
D)7, — (0, T o7 — (P, 5
b((7,v,4, 0", 1), (¢, 7,7, 0")) = (v, )75, — (@, V)7, + (O, T )am, + (7", 0" or,,
where we have chosen the signs so that a(-,-) is symmetric. Then the domain-decomposed Hodge—
Laplace problem becomes a particular instance of the saddle-point problem

(9a) a(z,z') +b(z',y) = F(z!), V2’ e X,
(9b) b(z,y') =G(y), Yy €Y.

Here, X is the space of local variables and Y is the space of global variables, so a(-,-) corresponds
to the local solvers and b(-,-) to the coupling between local and global variables. This saddle point
formulation will also be useful for describing the procedure of static condensation in

Theorem 3.4. The problem @D 1s well-posed.

Proof. Tt suffices to show that b(-,-) satisfies a single inf-sup condition, meaning that the map
x +— b(z,-) is surjective, and that a(-,-) satisfies a double inf-sup condition on the kernel of this
map, cf. Boffi, Brezzi, and Fortin [6, Theorem 4.2.3].

Let ¢, v, 7% and ' be arbitrary. For the first two terms appearing in b(-,-), we have

G —— ~@0)r
Sl = sup

lql|7; = sup , Lk
v#£0 ”UHTh q#0 ||Q||Th

attained at v = ¢ and § = —v when these are nonzero. Applying to each K € Ty, gives

~tan 7inor ~tan Snor
~tan <T U >3771 ~tan <U )M >37~h
T ,0 = sup (V= (% 0 = sup —(T—
o = o om0 D o anr,

which proves the inf-sup condition for b(-,-). It remains to show that a(-,-) satisfies an inf-sup
condition on the kernel of x + b(z,-). On this kernel, we have

w,v L ﬁk, 73,p=0, ,/u\nor’ puor | ‘/}k—l,tan’ ﬁnor’ ﬁnor L f}k,tan7
and we may further separate a(-,-) into a pair of bilinear forms

a((o,u), (1,v)) = —(0,7)7;, + (u,d7)7;, + (do,v)7;, + (du, dv)7;,
,8((7', ’U), (i}\nor’ nf\nor)) — _<@\nor7 Ttan>a7_h - <,ﬁn0r, vtan>a7_h‘

The inf-sup condition for S(-,-) holds by another application of on each K € Tp,.
Finally, using [Proposition 3.1}, the kernel of & — B(€, ) is precisely HA*~1(Q) x $*L, so the inf-sup
condition for «(-,-) on the kernel is just that for the non-domain-decomposed Hodge-Laplace
problem, cf. Arnold, Falk, and Winther [5, Theorem 3.2]. O
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4. HYBRID METHODS AND STATIC CONDENSATION

In this section, we present a hybridization of the FEEC methods of for the Hodge-
Laplace problem, based on the domain-decomposed variational principle (8). We then perform
static condensation of these methods, using the local solvers to efficiently reduce the system to a
smaller one involving only the global variables. This condensed system is shown to be as small or
smaller than that for standard FEEC without hybridization, and we prove an explicit formula for
the number of reduced degrees of freedom. Finally, we prove error estimates for the hybrid variables,
which approximate tangential and normal traces.

4.1. Hybridized FEEC methods. For each K € Ty, let Wj,(K) C HA(K) be a finite-dimensional
subcomplex, so that

W= ] Wa(K),  Vi:=VnW,,
KeTy,

are respectively subcomplexes of W = HA(Ty,) and V = HA(Q) Let Ez = [lxer, ﬁ:(K), where

o k o k
9;,(K) is the space of local harmonic k-forms in W,(K), and let $¥ be the space of global harmonic
k-forms in th. Next, we define broken and unbroken tangential traces,

“ktan _ ;. tan . K Sktan _ g tan . kv _ Ohitan - Tkitan
Wh = {’Uhan U € Wh}’ Vh = {'Uhan U € Vh } =yeEnn Wh 5

and take W .= (WF)* Gince (-, )7 is a duality pairing, we use this same notation for the
h h Th y g

pairing of W,’f 1 with its dual space W,f T,

—

Example 4.1 (decomposition of PEA elements). If T, is a conforming simplicial mesh and
WE(K) = PEAF(K) for each K € Ty, then V¥ = PEA¥(T,). Since simplices are contractible,
the local harmonic forms are trivial for k¥ < n and piecewise constants for kK = n, and the global
harmonic forms 5’)’,2 are as in

For each K € Ty, the broken trace space W,’f ' contains tangential traces of PEA¥(K), so the
degrees of freedom are just those living on K. Since this is a broken space, the degrees of freedom
need not match on interior facets e = 9K NJK . By contrast, IA/}f A ontains tangential traces
from the unbroken space PXA¥(T,), so the degrees of freedom are single-valued. Finally, we can use
duality to identify /W;f M with the degrees of freedom for Wf % Since these tangential traces are
piecewise polynomial and thus in L?(97},), for implementation we may simply take W,’f I W,]f stan
where (-,-)g7;, is the L? inner product.

Now that we have defined these finite-dimensional subspaces, we may consider the following
finite-dimensional version of the domain-decomposed variational problem : Find

. _ _ 7]{: e L _ —~

(local variables) op € W,’f L up € W}If, D € Dy, upt € W,’f Lmor ot e W,]f’nor,
. _ —k ~ Sk— ~ >

(global variables) pn € HF, U € By, oPn e bt ayen g plen

2As in [Remark 3.3} the arguments readily generalize to V = H A(€) or other choices of ideal boundary conditions.
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satisfying

(10a) (on )75, = (uny drn) 75, + (@, T o, = 0, Y € Wi
(10b)  (don,v)7;, + (dun, dvn) 7, + (B + Provn) 7 — (PR R o7, = (fron) 7, Yon € WY,
(10c) (T — un, @) 7, = 0, Vg, € S,

(10d) (Gl _ glan gnory, - — (), Voo & W}l;—l,nor’
(10e) (@ — tan Grery o — (), Vo € W]l;,nor’
(10f) (un, qn)7, = 0, Van € HF,

(10g) (Br> On)7, = 0, VOh € D,

(10h) (@or 7y = 0, wrtan ¢ ‘/}hk—l,tam7
(101) (PROF B oy = 0, Vo ¢ i}hk,tan.

Given values for the global variables, ([10al)—(10e)) amounts to solving the local FEEC problems

(11a) (o Tn) i — (up, A7)k =0, W, € Wy (K,
(11b) (don, o) + (dup dvn) i + B o) = (f — Phs o)k, Vo € W(K),
(11c) (Un, @n) i = (Un, @p) K Vg, € QZ(K%
with essential tangential boundary conditions /" = 5}** and u{* = @}*".

The following result shows that this is indeed a hybrldlzatlon of the global FEEC problem ,
which in particular implies well-posedness of (|10} . The proof is quite similar to but
there are two important distinctions. First, u;" and pp°" generally do not equal the normal traces
of up and pp = duy, except weakly, in a Galerkln sense. Furthermore, a crucial role is played by the
specific choice of broken tangential and normal trace spaces above, particularly the fact that they
are in duality with respect to (-, )a7;,.

Theorem 4.2. The following are equivalent:

® (Oh, W, Dpyy URSS, PROT, Py Up, O30, W) is a solution to ([L0).
e (op,up,pr) is a solution to (), and furthermore, p; = O up®

determined by (10a)-(10b)), wy, is the projection of uj, onto 5’Jh; oy = gpan, and apen = ulan

" and pp" are uniquely

Proof. Suppose we have a solution to . The claimed equalities are immediate from the variational
problem, with uniqueness of the broken tangential and normal traces following from the fact that
these spaces are in duality with respect to (-,-)s7,, so it remains only to show that (on,un,pp)
solves (|bf). Since Jtan = G;Lan and utan = ﬂtan |Prop081t10n 3. 1| implies that o, € Vk Land uy, € Vh .

Taklng T € th Land vy, € Vh in -, the normal trace terms vanish by - -, and
we obtain f. Finally, is the same as , which proves the forward direction.
Conversely, given a solution (oy,, up, pp) to , it is immediate that — hold, again using
the fact that (-,-)g7, is a dual pairing to get uniqueness of the broken tangential and normal traces.
For the remaining two equations, first observe that combining al) and ([10a} - gives (Up®", T, t3m>37-h =0

for 7, € V,f_l, which implies (10h)). Similarly, combining (5bf) and ( gives (PP, v g7, = 0
for vy, € th , which implies ([10i). O

4.2. Static condensation. We next perform static condensation of the hybridized FEEC method
, eliminating the local variables using the local solvers and thereby obtaining a condensed
system involving only the global variables. We present the condensed system both in a matrix-free
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variational form and as a matrix Schur complement, and we prove that this system is as small or
smaller than the standard FEEC method without hybridization.

As we did in for the infinite-dimensional problem, we may write the hybridized FEEC
method as a saddle point problem,

(12a) a(zp, x)) + b(xh, yn) = F(x),), V), € Xy,
(12b) b(zn,yp) = G(vh), Vi € Ya.

Since the local FEEC solvers E[) corresponding to a(-, -) are well-posed, for any given F' and y;, we
can write the solution to (12a)) as x;, = Xp + X, , where

a(Xp,z},) = F(x},), a(th,:U'h) = —b(x), yn), vz}, € Xp.

This is an efficient local computation that may be done element-by-element in parallel. Substituting
this into ((12b]) gives a reduced problem involving only the global variables: Find y;, € Y}, satisfying

(13) b(th7y;L) = G(y;z) - b(XFay;L)’ Vy;z € Y.
This procedure of eliminating variables using local solvers is known as static condensation. Once
the condensed system has been solved for the global variables, the local variables may be recovered

element-by-element, if desired, using the local solvers. Furthermore, we may use linearity to separate
the influence of the individual components, computing Xz = X; and X, = X, +Xg, + Xa.}tlan + Xa;;m.

Given a finite element basis, (12) may also be written in the block-matrix form

5 -1

Since the matrix A corresponds to the local solvers , it has a block-diagonal structure, with
blocks corresponding to each K € T, and can therefore be inverted efficiently block-by-block. Given
F and y;, we can locally solve
AXp=F,,  AX,, =-Bly, = ap,=Xp+X,, =A'F, - A'BTy,.
Substituting this expression into Bxp = Gy, gives the condensed system
—BA™'BTy, = G, — BA™'F),

which is the matrix representation of the condensed variational problem . Here, the condensed
stiffness matrix —BA~' BT is precisely the Schur complement of the original stiffness matrix [ ]1‘5‘, BY ]

Remark 4.3. The classical static condensation technique of Guyan [26] did not use hybridization,
but simply partitioned the matrix system into blocks corresponding to internal and facet degrees of
freedom, then applied the Schur complement approach above to eliminate the interior degrees of
freedom. A similar approach has been applied to edge elements for Maxwell’s equations, as discussed
in the survey by Ledger and Morgan [31), Section 4.5]. The discovery of the relationship between
Guyan/s static condensation and hybridization is more recent, cf. Cockburn [16].

The next result proves that in full generality—without assumptions on the topology of K € Ty
7](: AN o~ .

or the elements used—the condensed system ((13|) on Y} = Y)Z X £, X th Ltan o th’tan is as small

or smaller than the standard FEEC system on V}f:_l X th X ﬁﬁ without hybridization. Since

the space .62 appears in both systems, it suffices to compare dim 5’; + dim vhk_l’tan + dim ?hk’tan
(condensed) with dim th_l + dim V}¥ (standard FEEC).

Theorem 4.4. We have the equality
(dim V1 4 dim V) — (dim §, + dim V51 4 dim P/t

= 3" (dim W}, (K) + dim By, (K) + dim 3, (K)).
KeTy,

(14)
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Consequently, the size of the hybridized and condensed FEEC system 1s always less than or
equal to that of the standard FEEC system , with equality if and only if WZ_I(K) 18 trivial and
Wh(K) = ) (K) for all K € T,

Proof. By definition, ‘7}5 2% s the image of V}F under the tangential trace map. Therefore, the
rank-nullity theorem implies that their dimensions differ by the dimension of the kernel, i.e.,

dim V¥ — dim V" = dim{vy, € Vi 2 of® = 0} = dim [[ Wy(K) = 3 dimW),(K).
KeTy KeTy,

° — ok
Applying the discrete Hodge decomposition to each W]Z(K ) and using 532 = [Ixer, Hr(K) gives

S dim Wy (K) = dimB) + 3 (dim B, (K) + dim 3, (K)).
KeTy, KeTy,

Combining this with the previous expression and the corresponding one for dim Vf_l —dim TA/hk_l’tan
implies , which completes the proof. O

We now give an explicit count of the reduced degrees of freedom when 7} is a simplicial mesh
and PFA elements are used. Arnold, Falk, and Winther [4, Sections 4.5-4.6] show that for r > 1,

dim P, AR (K) = (2: ;) (T ' k) dim P AF(K) = <Z) <T+fl_ 1>,

a

with the convention that (b) =0 when b < 0 or b > a. Applying these formulas to the stable pairs
of spaces for FEEC given in @, we get

o k o -1 k
Pt 0= (1) (1) a0 = () (7)) ez

. o — _ n T+k3—1 . o — n r.'.k
dim P, ;A" 1(K):<k_1>< . ) dlmPHlAk(K):(k)( . )

For each K € Ty, these formulas count the number of internal degrees of freedom, which are precisely
the ones eliminated by static condensation.

Since simplices are contractible, the local harmonic spaces are trivial, except for Y)Z(K ) 2 R.
When k = n, static condensation introduces one global degree of freedom per simplex, so in this case,
the number of degrees of freedom is reduced if and only if » > 1. When r = 0 (i.e., the lowest-order
RT and BDM methods), the degrees of freedom for uj, are simply replaced by those for uy,.

By checking when the spaces above have dimension greater than zero, we immediately obtain the

following corollary to

Corollary 4.5. Let Ty, be a simplicial mesh and V,f_l, th be one of the stable pairs in @ The
hybridized and condensed FEEC system 1s strictly smaller than the standard FEEC system
if and only if r > 1 and either

o VE=PAYT,) withr >n—k+1, or

o VIF =P A¥(T,) withr >n—k.

4.3. Error estimates for the hybrid variables. Let {7} be a shape-regular (but not necessarily
quasi-uniform) family of simplicial meshes of 2, where hx denotes the diameter of K € T;, and
h = maxgeT, hrx. We assume again that th_l, th is one of the stable pairs @ Error estimates
are already known for o, u, p (Arnold, Falk, and Winther [4, [5]), and for @ when k& = n (Douglas
and Roberts [21], Brezzi, Douglas, and Marini [§]), so it only remains to prove estimates for the
tangential and normal traces.
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The tangential traces are straightforward, since a}fm = o™ and U™ = uf*. We introduce a
scaled version of the tangential trace norm from [S
tan : 2 2 2 . __tan ~tan
7 1 fan 00 = it {lI7 (17 + Ak ld7 || = 74 = 720,

and denote ‘”"H%anﬁ']'h = ZKGThHHHtan,@K' It is an easy consequence that the errors for ;" and
uf® are controlled by those for oy, and uy,, which we now state as a proposition.

Proposition 4.6. For each K € Ty, we have

llo™ — 032 2 o < llo = onllk + Wk [ld(o = on)|[3

™ = w0 < = unlle + B [la — )
Consequently,

o™ = o3 s o, < llo = onlld + H2 [l = om) [

"™ — w1 En o, < llu—unlld, + h?{|d(u — up HQ

Proof. The first pair of inequalities follows immediately from the fact that the scaled tangential
trace norm is an infimum, and the second pair follows by summing over K € Ty, O

Given sufficient elliptic regularity, the estimates of Arnold, Falk, and Winther [5] now imply

hT+2”f”r+1,Q7 if V"/’_1 = r+1Ak_1(7}L)
if Vk 1 Pr+1Ak 1(771)

i flla, if V¥ =Py AX(Th),
R fllr—1.0, otherwise,

o™ = o3 llan,o7, < {

™ — wi™ lean.o7 < {

which is the optimal order allowed by the polynomial degree of the tangential traces.
We next give estimates for the normal traces, generalizing an argument of Arnold and Brezzi [3]

for the hybridized RT method. Recall that u;°" (VV;;C 71’tan) and ppo* € (/W}I: A% S0 we compare
them to the natural projections P,u™ € (Wk 1 Ay« and Pyt € (W,]f %y« defined by

<ﬁhun0r ?}gan>an _ < nor ?}tzan>87—hv V?h c ﬁ/\}lf—l,tan7
(Pap™ 0o, = (0, 0o, WOn € Wyt

If we simply identify u;" with the corresponding element of Wk Ltan C L2AFY(0Ty), we generally
do not observe convergence to the unprojected u"°", and hkevvlse for pp°" and p"°". The reason is
that the identification of u}°" with an element of LQAI" L(0Ty) is only unlque up to the annihilator

(W;f 1 tEm) . Therefore, we should really measure the L? error after quotienting by the annihilator,
which is equivalent to taking the projections above. We define the scaled L? norm ||-||sx = h}(/2 I llor
and denote [[157, = > ke, I3k

Theorem 4.7. For each K € Ty, we have

1P = @5 ok S [1Phu — unllic + hicllo = onll,

1P = 5" lloe S ([ Pac(u = un)| ¢ + e (Jlalo = on)ll ¢ + Ip = pallxc ).
where Py, denotes L? projection onto Wy,. Consequently,

1P = @ o, S I1Phu = unll7;, + bllo — onlla,

18" = 3o < | Pacd(u— un)ls + 5 ([l — o) + Ip — pile).
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Proof. A scaling argument shows that each 7}°" € W: ~LN (9K has an extension 7, € W,f_l(K )
with 72" = 712" such that

I7alle + Prclldmll e < N7 llox-

Therefore, subtracting (10al) from ., we get

~nor __tan

h}(<ﬁhun - uhor ?i‘gan>8K _ <unor — e, Tt >(’9K

—hK{
|~

< (il = onllsc + 1Phe = wllic ) (7nllsc + haclidral )

o—0on,Th)K + (u—up,dm) K }

= hi|—(0 —on, h) Kk + (Pru — up, dmh) K ]

S (hcllo = onllac + 1 Prae = wnllxc ) 17 e

Since (-, -)ox agrees with the L? inner product,

- N 1/2 ﬁhun _ unor’?tan oK hK ﬁhun _ unor’?tan oK
|thun _ u20r||‘8K _ h‘K/ sup < anh h > = sup < — h h > ’
T T ox N T o
which completes the proof of the first estimate. The estimate for [|P,p™" — P |lox is obtained
similarly, and the ||-[|s7;, estimates again follow immediately from the ||-||ax estimates. O

For k < n, we generally cannot improve on ||P,u — up||7;, < |lu — up|lo, so assuming sufficient
elliptic regularity and applying the estimates from Arnold, Falk, and Winther [5] gives

hl[ fles if Vi =Py AX(Th),

ﬁ wtor — /\HOY
[z o7, < {hr+1||f||r_179, otherwise,

i.e., the convergence rate is the same as that for up, — v. When k = n, however, ||Pyu — us||7;,
famously superconverges for the RT and BDM methods (Douglas and Roberts [21], Arnold and
Brezzi [3], Brezzi, Douglas, and Marini [§]). In this case, we recover the superconvergence results of
[3, §] for the Lagrange multipliers:

. P2 fllv.q, if r =0,
|HPhun _ i[?lor‘HBTh 5 hr+3||f||r+1,Q, ifr > 1, V{L—l _ Pr+1A”*1(7;l),
hr+2||f||T,Q; if r > ]_, V}?fl — ’P;+1An—1(771).

From the perspective of FEEC, this occurs since W' = V' = B, so || Pyu—un |7, = HP%h (u—up) HQ,
which superconverges according to [5, Lemma 3.13]. On the other hand, when k < n, the error is
dominated by the nonvanishing SfLL component [5, Lemma 3.16], so there is no improvement.

Similarly, when k < n — 1, we generally cannot do better than HPhd(u — uh)HTh < Hd(u
so assuming sufficient elliptic regularity,

h)HQ’

if th = P;+1Ak(77z)a

Bup™ — 52 loms, < .
’” h H| h hTHfH?"—].,Q) if th — PTAk(ﬂL)a

and the convergence rate is the same as that for dup — du. However, when k£ = n — 1, we obtain
superconvergence as a consequence of the following lemma (which holds for all k£, not just k =n—1).

Lemma 4.8. The FEEC solution satisfies || Py, d(u — uh)HQ < h(Hd(a —on)||g+1lp— thQ).
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Proof. The argument is similar to [, Lemma 3.15]. Let vj, € SQL be such that dvy, = Py, d(u —up,),
and take v = P51 vy. Since v is orthogonal to d(o — 0y,) and p — py, subtracting from gives

1P, (=)l = (d(w—up), don)
= (d(o —on) + (0= pn),v — vn)q
< (o~ o)l + I~ pala) v — v e
S h(Hd(U —on)||g+ IIp _thQ) | P, d(u — up)|| -
The last step uses [5, Lemma 3.12], which says that [[v — vs|lo < hlldup|o- 0

Corollary 4.9. For k =n — 1, we have the improved estimate

1Pas™ = 35 o < h(ld(o = on) g + lp = pulle)-

In particular, when f € %2717 we have pp = Jshpnor exactly.
Proof. Since HPhd(u — uh)HTh = HP%hd(u — uh)HQ when k = n — 1, the improved estimate is

immediate from |Theorern 4.7| and |Lemma 4.81 In particular, o and p vanish when f € SOBZ_l, S0 in

that case the left-hand side is identically zero. O

Assuming sufficient elliptic regularity, this gives the superconvergent rates

R 0 if f e B, _
D, phor _ poor < ’ ol
| Prp i llor, < {h’"HHerJrLQ, otherwise.

5. POSTPROCESSING

In this section, we introduce a local postprocessing procedure, which generalizes that of Stenberg
[41] from k = n to arbitrary k. We develop new error estimates for the postprocessed solution
when &k < n; in particular, postprocessing gives a superconvergent approximation pj to du for
k =mn —1, and dp; is an improved approximation to ddu for all k. Finally, we discuss how this
analysis corresponds to that of Stenberg [41] in the case k = n, giving superconvergence of u} to .

5.1. The postprocessing procedure. To motivate the proposed procedure, recall that the exact
local solver corresponds to solving Lu +p = f — p such that Pgu = u, with tangential boundary

conditions given by 5% and %", Instead of writing this as a variational problem on the HA(K)
complex, we can equivalently write it on the H*A(K) complex as

(15a) (psm) i — (u, 0 = (@™ "), vn € H*AFY(K),
(15b) (6p,v) K + (6u,00)k + (B, v = (f — p,v) K — (G, 0" M)ox, Vo € H*A¥(K),
(15¢) (D) = @Dk, Vg € " (K),

where the tangential boundary conditions are now natural rather than essential. As before, we have
o =4duand p =du

The postprocessing procedure is based on approximating on a finite-dimensional subcomplex
Wi (K) € H*A(K), meaning §W; 1 (K) C Wi*(K). Since xH*AF(K) = HA"*(K), an equivalent
condition is that xW(K) C HA(K) is a subcomplex. Moreover, mp: HA(K) — «W}(K) is a
bounded commuting projection if and only if x~tmpx: H*A(K) — Wy (K) is. For a simplicial mesh,
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we may therefore take
P AVF(K) (if r* > 1)
VRN R) = PE AR YE),  «WiR(K) = or
PZHA"_’“(K)

T

This is just the Hodge dual of the stable pairs @ with k replaced by n — k and r by r*, so all of
the results of Arnold, Falk, and Winther [5] apply immediately to the dual problem. We write the
discrete Hodge decomposition for this complex as

Wik (K) = B3} (K) @ 95 (K) @ 33" (K).

When K is contractible (e.g., a simplex), we have $;¥(K) = ﬁk(K), which is 2 R for £ = n and
trivial otherwise.
We are now ready to define the postprocessing procedure on K € Tp: Find pj € W;kﬂ (K),

ul € WiF(K), p; € 9;F(K) such that

(16a) (Phs )i — (uf,, 6mp) ik = (@™, np Vo Vi, € WK,
(16b)  (6ph, vn) i + (Oul, dvn) i + (Bl vn) i = (f — Py o)k — (G, vV,  Vou, € WiF(K),
(16¢) (un, @n)x = (Un, @) K Vg, € ﬁZ’“(K)

tan atan

Remark 5.1. The right-hand side only depends on the global variables py,, @y, 0;*", u;*". Therefore,
after we solve the statically condensed problem , this procedure can be used as an alternative
to the local solvers for recovering approximations to the local variables on K € Tj,.

We can also apply postprocessing if FEEC is implemented using , without hybridization, since

~ ~ . . . . o k
U, = Py up, 05" = o, and U™ = wj. In the simplicial case, since H;"(K) = $,(K), we can

simply replace wy, by up, on the right-hand side of without projecting.

Note that, while the original solution variables are tangentially continuous between elements, the
postprocessed solution variables generally do not have any tangential or normal continuity, i.e., they
are neither HA(2)- nor H*A(Q)-conforming.

Example 5.2 (Stenberg postprocessing). When k£ = n and 7, is a simplicial mesh, the space
W H(K) is trivial, Wi (K) 2 Py (K), and $;"(K) = R. Therefore, becomes

~tan

(grad uy,, grad vp) i + (Ph, va)x = (f,vn)k — (0", vn)or, Yup € Pr(K),
(u;kwqh)K = (uthh)K7 VQh € Rv

which coincides with Stenberg [41] postprocessing for the RT and BDM methods. Stenberg also
considered a second form of postprocessing with 7y, g, € P,(K), but we do not consider that here.

5.2. Error estimates for k < n. We now analyze this postprocessing procedure when, as before,
{Tn} is a shape-regular family of simplicial meshes of 2. We wish to determine the accuracy of the
solution to the postprocessing problem , compared to that obtained using the local solvers ([L1]).

The k = n case has already been analyzed by Stenberg [41], so we restrict our attention to k < n.
Since the local harmonic spaces are trivial, the exact solver simplifies to

(17a) (psm)k — (u,6n)k = (@, "o, vn € H*A(K),
(17b) (6p,0) K + (Ju,60) K = (f = p,v) K — (G, 0" ok, Vv € HAH(K),

and the postprocessing problem simplifies to

(18a) (Phs ) i — (Why 0m0) i = (@™ 0 ok, Vi € WiFH(K),
(18b) (05 vn) i + (Oujy, 6vn)k = (f — provn)k — G, v ox, Yo, € Wik(K).
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To aid in the analysis, we introduce the intermediate approximation pj € W,’:kH(K ), up € W;:k(K )
such that
~tan _ nor

(19a) (Pr> M) i — (Un, Onp) k6 = (@, " ok Vi € WK,
(19b) (67m, vn) i + (8, 6vn) ke = (f — pyvn) i — (G, 03N ok, Vo, € Wik(K),

where the global variables on the right-hand side are the same as those in the exact solution ((17)).
Note that is just the FEEC approximation of on the subcomplex W (K) C H*A(K), so
the results of Arnold, Falk, and Winther [5] immediately give us estimates for p — pp and u — uy. It
therefore remains to analyze the difference between and ((19).

As in [5], we assume that the exact solution satisfies an elliptic regularity estimate of the form

[uller2.0 + [plleveo + lduflerro + llollivie + lldollea S I fllee

for 0 <t < tpax, where ||-||z.o denotes the H! norm on Q. We will frequently invoke [5, Theorem
3.11], which gives L? error estimates for the FEEC solution in terms of the best approximation
allowed by the regularity of the exact solution and the polynomial degree of the finite element
spaces. These estimates will be applied both to the original FEEC approximation on V3 and to
the intermediate approximation on Wy (K).

We want the postprocessed solution to be at least as good as the standard FEEC solution obtained
from the local solvers . The following assumptions ensure that r* is large enough for the Wy (K)
complex to approximate the exact solution as well as Wj,(K) does. If f L B* then o = 0, so
it is enough for W;*(K) to contain the same total space of polynomials as WF(K), i.e., r* > r.
Otherwise, in order to approximate o # 0, we also need the stronger condition that W;k_l(K )
contains the same total space of polynomials as W,lf_l(K )-

Assumption A. Assume that we are in one of the following three cases:
(1) f LB% and r* > r.
P A"HK), 1t >r+42,
S AVRK), >4 L
Pr-A"THK),  rt =141,
P:HA”_’“(K), r* >

r

(2) WFH(K) = P AFY(K) and «W;F(K) = {

(3) WEH(K) =P, AP 1K) and «W;*(K) = {

Our first result shows that dpj gives an improved approximation of ép = ddu, compared to dduy,.

In particular, when f = dp € %Z, we can obtain an arbitrarily good approximation by taking the
postprocessing degree r* large enough.

Theorem 5.3. For each K € T, and 0 < s < timax, we have
1600 = pn)|| e S Pl fllsies i s <7* 41,
1605w — P3| ;¢ < [|dlo = on)|| x + P — Pallx-
Consequently, if [Assumption 4] holds, then
L )s<r*+1, fe %Z
5p—pp <h’ . ’ '
o= il < isten o {15 T

Proof. The first estimate is immediate from [5, Theorem 3.11] applied to the problem . Next,
subtracting (I8B]) from (T9B) with v, € B*(K) gives
~tan ~tan , nor

(6(pn = £1)vn) ;o = (P — Py on) i + (G5 — T, 03 ) ok
= (pn —p,on)k + (d(on — ), vn) &

< (Jld(o = om) e + o = ol ) ol
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and taking vy, = 6(pn — pj,) implies the second estimate. Finally, summing over K € 7T} and applying
[0, Theorem 3.11] once more gives
0, if fe®B,

~ <
5Pn = )|, < {hs||f||s,g, if s <7+ 1, otherwise,

so the last estimate follows by and the triangle inequality. O

The next result says that, generically, du; approximates o = du as well as o}, does, but no better.
In the case f € %Z, when o = 05, = 0, we can make duj arbitrarily small by taking r* large enough.

Theorem 5.4. For each K € Ty, and 0 < s < tiax, we have
s<r*+4+1, fe€ %z,
H(S(U - ﬁh)”[( 5 hs[;_IHfHS,K7 Zf S S ’f'*, *Wftk(K) = 7'_*+1Anik(K)7
s<r*—1, *W*(K)="P-A"*K),

|6(tn — ufy)|| o S llo—onllx + hK(Hd(U — )|+ Ip —th1<>-

Consequently, if [Assumption 4] holds, then
s<ri+1, feB,
|6 —=up)ll. SE IS s i {s<r+1, VETL =P AT,
s<r, VETL =P AFN(T).

T

Proof. The first estimate is immediate from [0, Theorem 3.11]. Next, subtracting (18b|) from (19b)
with v, € 338 (K) gives
(6 — u), 0vn) o = (pn — P vn)ic + (G — 3", v)

= (pn —p,vn)k + (d(on — 0),08) . — (on — 0, 0vp) K

oK

< [l = b+ e ato = )+ = ol Unls

In the last step, we have applied Cauchy—Schwarz and the Poincaré inequality with scaling, which
says that ||vs||x S hi||dvn| k. Taking vy, such that dvy = d(up — uj) implies the second estimate.
Finally, summing over K € 7, and applying [5, Theorem 3.11] gives

0, if feB,
o(up — uj, < < 1, VF1=p, Ak 7
H ( h h)HTh ~ thHst,m otherwise, if s<r+ hk—l r_+1 k_l(ﬁ)
s <, Vi =P AT (Th),
so the last estimate follows by and the triangle inequality. O
Thus far, we have been able to avoid dealing with the error term a'" — 4", which dominates

the postprocessing error, preventing improved convergence of the B} (K) components. There is one
special exception, however: when k = n — 1, the space B;"(K) is trivial, so there is no error in this
component of p;. In this case, we will see that p; is an improved estimate compared to duy,. Since

$;"(K) = R is nontrivial, though, we need to control the $" component of the error, which we will
do with the aid of the following lemma.

Lemma 5.5. I[fk=n—1andn, € 9", then
@ — @, o, S h(|lat = on)lg + I = palle) Innlle.

In particular, if f € %2_1, then faK tr(u —up) =0 for all K € Tp.
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Proof. Since ny, is piecewise constant, (@™ — @™, ")y, = (d(u —up), ”h)n . Piecewise constants
are in V"' = B}, so the estimate follows by In particular, o and p vanish when f € ‘%2_1,
so in that case the left-hand side is identically zero. (|

Remark 5.6. This generalizes the well-known property that, when n = 1 and k& = 0, the continuous
Galerkin solution equals the exact solution at nodes.

We now show that p; approximates p = du as well as duy, does, but no better when k <n — 1.
*

However, when k£ = n — 1, we get an improved estimate, and when f € B we can obtain an

arbitrarily good approximation by taking r* large enough.

n—1

Theorem 5.7. For each K € T, and 0 < s < tyax,
e, {s <41, FWRTYE) = P AVEL (K,
s, K

o~ < hs+1
o= pnllx S Ry IS <1, WY K) = Pr AR (K,

150 = il S lldCw = wn)l] ¢ + e (Jlale = o)l + lIp = pllxc ).

Consequently, if [Assumption 4| holds, then
s<r+1, f.L%B,
lp =il SR I fllss i {5 <, Vi =P AN(Th)
s<r-—1, V}f = PTA’“(E).
In the case k = n — 1, this estimate may be improved to

s<r*+1, fe %;_1, F W K) = P AV R 1K),
lp = phllm S P fllse,  if {5 <7, f € By, WMHE) =P AVFHEK),

i
s<r+4+1, otherwise.

Proof. The first estimate is immediate from [5, Theorem 3.11]. Next, subtracting (18a)) from (19al)

with 7, € 33F(K) gives

~tan ~tan , nor

(Pr = phy i) ke = (@™ = G ™) or = (d(u —up),mn) o < ||d(w —up) || lnnll &
which implies
15500 (Bh = pi)ll ¢ < [l —un)| -
Furthermore, by the Poincaré inequality and

P55 B = i) e S ol |6Gon = o)1 < Bc ([l o = )| ¢ + llp = pallxc )

so the second estimate follows by the Hodge decomposition and triangle inequality. Summing over

K € T, and applying [0, Theorem 3.11] gives
s<r+1, f1 %Z,

15n = Phllz S R fllsgs 3 qs <, Vi =P A5 (Th),

s<r—1, Vi =P.A(Tp),

so the third estimate follows by and the triangle inequality.

Finally, consider the special case k =n — 1. Taking n;, € H" and applying [Lemma 5.5| gives

~tan ~tan _ nor

(B = P )7, = (@ =W ™) o, S h(|ldo = 00l + Ip = Palle) Inalle:

and therefore,
15 = o) 7, < B (lld(e = ol + Ip = palle).
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Note that this eliminates the Hd(u — Uh)HQ term that appears in the £ < n — 1 case. Hence,

= i 0t =l o) < { R
and the improved estimate follows. O
Finally, we show that u; approximates u as well as u;, does, but no better.
Theorem 5.8. For each K € T, and 0 < s < tmax,
lu — |l < {hKHfllKa {f*Wﬁk ZPfA"_k(K)a
RS2\ fllse,  if s <7 —1, otherwise,

~

liin = willie S Il = unllic + e (JlaCu =) e + o = onllac ) + B ([lae = on) | + Ip = pallxc ).
Consequently, if [Assumption 4] holds, then
* Blfllos i V= PIANTR),
= uillm < { no

hSHHst,Q, if s <r—1, otherwise.
Proof. The first estimate is immediate from [5, Theorem 3.11]. Next, subtracting (18a)) from (19al)

with ny, € 32k+M(K) gives

(Up, — up, 6nn) i = (P — Py i) K — (@™ — W™ nr Yok

= (P3e2 (i) (Ph = P1), ) ¢ — (d(w — un),mn) g + (u — up, On) ¢
S (e = wnllsc + Rl = wn) | + 03 3Gn = ol ) lomall
by Cauchy—Schwarz and the Poincaré inequality. With this implies
1P ) i = il S Ml = wnllie + Al = )| + 5 ([ = o) ¢ + lIp = Pl ).
Furthermore, by the Poincaré inequality and

so the second estimate follows by the Hodge decomposition and triangle inequality. Finally, summing
over K € Ty, and applying [0, Theorem 3.11] gives

@ —utllr < 4 SNl it Vi = Py AR (Th),
[an —upll7s <9, si0 . .
2| fllso, if s <7 —1, otherwise,
so the last estimate follows by and the triangle inequality. ]

5.3. Remarks on the case k = mn. Although the case k = n has already been analyzed by
Stenberg [41], we now briefly describe this analysis from the FEEC viewpoint, relating it to the
techniques developed in this section. In this case, the postprocessing procedure becomes

(5,“;«;’ 5Uh)K + (T?;kw Uh)K = (f) vh)K - <3It1an7 ,Ugor)aK, Yoy, € W;Lkn(K)’
<u27qh)K == (uh7qh)K7 vqh € ,57);;"([(),
and the intermediate approximation is given by

Py ey (n — up) || S hcllo = onllx + h%((Hd(U — o) + llp _ph||K)>

tan
)

(0Un, 0vp) ik + (Pr,vn) ik = (f,on)x — (67" v o,  Von € Wi (K),
(Un, @n)x = (u, ) K, Vg, € 9" (K).
The argument in still works, so applying the Poincaré inequality gives

[Pser () (@n — )| ¢ S hcllo = onllxc + hil||d(o — on)|| -

v
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Furthermore, since ' consists of piecewise constants, which are in V' = B}, we have
“Pﬁ(ah_uZ)HK: HPE(“ HK HP‘Bh U —Up HK
Summing over K € 7, and applying [5, Lemma 3.13] implies
R fllsg, it s <1, Vit =PrA™(Th),
s<r+1, V=P A" (T,
S S r, V}:’L ! - Pr—‘rlAn 1(771)7

so by |Assumption Aland the triangle inequality, this same estimate holds for ||u — uj ||7;,. This is
precisely the improved estimate in Stenberg [41, Theorem 2.2], by essentially the same proof.

up —up|l7, S
[P wll7 S hs+2”f”s,07 otherwise, if

6. ILLUSTRATION OF THE METHODS IN n = 3 DIMENSIONS

We now give a concrete illustration of the hybridization and postprocessing schemes in n = 3
dimensions, using scalar and vector proxy fields and the familiar operations of vector calculus. Let
Th be a simplicial triangulation of a bounded, polyhedral domain 2 C R3. For simplicity, we also
assume that § is contractible, so that $° = R and $* is trivial for k = 1,2, 3.

Let V}, be a stable subcomplex of

grad

0 —— HYQ) 225 H(cwrl; Q) - H(div; Q) — £2(Q) —— 0,

containing continuous Lagrange elements, Nédélec edge and face elements, and discontinuous
Lagrange elements. Let W), be the corresponding “broken” complex, with WF(K) = V}¥|x for
K € Tp,. Using the scalar and vector proxies for tangential traces in we have

f}}?;tan _ {Uh|87’h = Vho}7 /ng,nor _ W}(L),tan _ {Uh|87’h = W}?},
17h1’tan = {wnlor;, — (vn )7 vy €V}, Wi’nor = Wé’tam = {wnlor;, — (vn - )7 vy € W)
V;?’tan = {(Uh ‘n)n ;o € Vh2}> /W;%nor = W}%tan = {(Uh )N vy € Wf?}’

whose degrees of freedom are just those of th and W,’f living on O7},.
For postprocessing on K € Ty, let W(K) be a stable subcomplex of

—div

0+ L2(Q) <% H(div; Q) <2 H(cwl; Q) <22

HY(Q) +— 0,
whose normal traces have scalar and vector proxies given in

6.1. The case k = 0. The hybrid method is: Find uy € W,?, puor e WO M, €R, U Atan € VO tan
such that

~nor V% ”70
h
(graduhagradvh)7 (phavh>7h <ph 7vh>87h (Javh)7hv Vp € h>

(@™ — un, "o, =0, ViR € W
(un, qn)7, = 0, Van € R,
(Bh 0y ar, = 0, Vo € e

which is the hybridized continuous Galerkin method of Cockburn, Gopalakrishnan, and Wang
[20] for the Neumann problem. The postprocessing scheme on K € 7y, is: Find p} € Wil(K),
u} € W;O(K) such that
(0 M) 1 + (ufy diveg) i = (@E™, nn - R)ak, Vi € Wi (K,
—(div pj, von)k = (f —provw)k,  Vou € WR(K).
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6.2. The case k = 1. The hybrid method is: Find o), € W), uj, € W}, 0" € WO T pher e T/V1 nor
gian ¢ potan gan ¢ LAY guch that

(Oh, Th)T5, — (un, grad m,) 7, + (@, a7, =0, V1, € W}?,
(grad oy, vp )7, + (curlug, curlvy) 7, — (P2, vp)o7, = (fyvn)7,  Yon € Wi,
(@1 — o, TR o, = 0, VR € W
(@™ — up, ™o, =0, VT € W
(@nor, 7ty = ), VAR e "}hO,tan’
(BRor Btan) 5 = 0, Vo € "}hl,tan.
The postprocessing scheme on K € Ty, is: Find p; € Wi2(K), uj € W;L(K) such that
(P )i — (u, curlon) i = (@, X Mok, Vi, € Wi (K),

(curl pp, vp) i + (divuy, divop)x = (f, vn)x — (aflan,vh Mok, Yup € WJI(K)

6.3. The case k = 2. The hybrid method is: Find o), € W}, uj, € W2, 0" € VV1 T pher e Wi’nor,
gian ¢ pbtan gan ¢ 2N guch that

</\HOI‘

1
,Th>a7’h=0, VThEWh,

2
7Uh>a7—h (f7 Uh)’Tha V'Uh S Wh7
v/\nor c /W;,nor,

(O’h,Th)T (uh,curlTh)Th

(curlop,vp) 7, + (divug, div o), — (PR

A
|
o

<0h - O-ha r)a

=t ~ A”rQ,nor
<uhan uh?ﬁh r)E)Th = 07 vngor € h ’
~ ~t ~t 1.t
< nor7 an)arrh =0, vThan c Vh anj
~t ~ 172,t
<’\1101" an>d7—h = 0’ V,Uhan c Vh an7

The postprocessing scheme on K € Ty, is: Find p; € Wi3(K), uj € W;?(K) such that
(Phs )i + (uh, grad i) ke = (@™, mni)ox, Vi, € Wi (K),

—(grad py, vp) K + (curluy, curlvp) g = (f,vp)k — (af;m,vh X Myor, Vop € W[:2(K)

6.4. The case k = 3. The hybrid method is: Find o, € W2, uj, € W2, p, € R7r, Ghor € Wz’nor,
ay, € RTr, 512 € V2™ such that

(Uthh)Th — (’U,h,diVTh)Th + <u20r Th>67’h =0, V1, € Wf%,
(divop,vn)7, + @psvn)7, = (f, v8) T3 Yoy, € W;?,
(@n = un,@h)7 = 0, va, €R™,
(@1 — on, Tp "o, = 0, VR € Wi,
(Pr, On)7, =0, Vo, € R,
<u20r 5_\]‘;an>a7_h — O, \V/Atan c ‘7h2,tan’

which is the alternative hybridization of the RT and BDM methods in Cockburn [16, Section
5] using local Neumann solvers; its solution coincides with the classic hybridized RT and BDM
methods of Arnold and Brezzi [3], Brezzi, Douglas, and Marini [§] using local Dirichlet solvers. The
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v N IRt =@ oy, llu—uplly, 0w —up)llyn WP = B3 oT,  lle—pillm (18— i),
0 1 2.06e-01 — 5.03e-01 —  5.87e-01 — 7.87e-01 — 1.38e+00 — 6.24e+00 —
2 4.67e-01 -1.2 5.27e-01 -0.1 6.32e-01 -0.1  1.56e400 -1.0 1.27e+00 0.1 4.70e+00 0.4
4 3.13e-01 0.6 2.91e-01 0.9 1.95e-01 1.7 9.38e-01 0.7 6.83e-01 0.9 2.47e+00 0.9
8  1.80e-01 0.8 1.51e-01 0.9 5.35e-02 1.9 5.02e-01 0.9 3.49e-01 1.0 1.28e+00 1.0
16 9.42e-02 0.9 7.66e-02 1.0 1.38e-02 2.0 2.57e-01 1.0 1.76e-01 1.0 6.46e-01 1.0
1 1 1.99e-01 — 3.33e-01 —  3.69e-01 — 1.65e+-00 — 1.02e+00 — 3.62e+00 —
2 1.76e-01 0.2 8.45e-02 2.0 4.97e-02 2.9 8.09e-01 1.0 2.81e-01 1.9 7.46e-01 2.3
4  5.82e-02 1.6 2.56e-02 1.7 7.93e-03 2.6 2.44e-01 1.7 7.70e-02 1.9 2.16e-01 1.8
8  1.60e-02 1.9 6.84e-03 1.9 1.06e-03 2.9 6.47e-02 1.9 1.98e-02 2.0 5.71e-02 1.9
16  4.14e-03 1.9 1.75e-03 2.0 1.36e-04 3.0 1.66e-02 2.0 5.01e-03 2.0 1.46e-02 2.0
2 1 1.09e-01 — 5.68e-02 —  2.0le-02 — 5.14e-01 — 2.10e-01 —  5.65e-01 —
2 4.61le-02 1.2 1.19e-02 2.3 4.46e-03 2.2 2.32e-01 1.1 5.06e-02 2.1 1.09e-01 2.4
4 7.16e-03 2.7 1.52e-03 3.0 2.84e-04 4.0 3.52e-02 2.7 6.67e-03 2.9 1.20e-02 3.2
8  9.68e-04 2.9 1.92e-04 3.0 1.77e-05 4.0 4.71e-03 2.9 8.41e-04 3.0 1.44e-03 3.1
16 1.25e-04 3.0 2.42e-05 3.0 1.11e-06 4.0 6.05e-04 3.0 1.05e-04 3.0 1.78e-04 3.0

TABLE 2. Errors and rates for a manufactured solution with n = 3, k = 1, using
hybridization with P, _HAO & CG,q1 and P JrlA1 2 N1E,;; elements and local post-
processing with broken %P +2A1 = N1E, 42 and *P, | +2A2 2~ N1F, o elements. Since

k <n —1, we get improved convergence of dp; but not pp°" or pj.

postprocessing scheme on K € T}, is exactly that of Stenberg [41]: Find u} € W;3(K), pj, € R such
that

(gradu}, grad vp) i + (B, vn) k= (f, o)k — (G0, viiYore, Youn € WiB(K),
(uh, Gn) ik = (Tn, Q) K, Vg, € R.
7. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments in n = 3 dimensions that illustrate and confirm
the foregoing theory. We omit the cases k = 0 and k& = n, since these correspond to known methods
for the scalar Poisson equation whose properties are already well understood. The remaining cases
correspond to hybridization and postprocessing methods for the vector Poisson equation.

For the sake of brevity, we present only numerical experiments using P, A elements with

*P. 1A postprocessing, where 7 is chosen optimally according to |Assumption A|, and where f

has nonvanishing components in both 8* and %Z Errors and rates are shown only for the normal
traces and postprocessed solution components, since the convergence behavior of the remaining
variables follows from previous work. We have conducted many additional numerical experiments,
which all conform with the theoretical results.

All computations have been carried out using the Firedrake finite element library [38] (version
0.13.04+3719.¢8e730839), and a Firedrake component called Slate [24] was used to implement the
local solvers for static condensation and postprocessing.

7.1. Test problems. On the unit cube Q = [0, 1], a structured tetrahedral mesh 7y, is formed by

partitioning  into N x N x N cubes, each of which is divided into six tetrahedra. As in

we identify HA(Q) and H*A(Q2) with the complexes of scalar and vector proxy fields. We use the

“method of manufactured solutions” by choosing a smooth u satisfying the boundary conditions,
taking f = —Auw, and applying the numerical method to this f. For k = 1, we choose

sin(mx) sin(mx

u(z,y,z) = |sin(my) | + | — cos(mx

sin(mz) 0

~—

cos(my)
sin(my) |

~—
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r NPt =@ llor,  llu—upll, (|6 —ulog, PR =5 Mo, e —pillm 66— el
0 1 7.19e-01 — 6.97e-01 —  2.14e+00 —  1.28e+00 — 1.97e+00 — 1.31le+01 —
2 5.98e-01 0.3 5.07e-01 0.5 1.75e+00 0.3 1.17e+00 0.1 7.57e-01 1.4 9.79¢e4+00 0.4
4 3.30e-01 0.9 2.62e-01 0.9 9.51e-01 0.9  3.98e-01 1.6 2.19¢e-01 1.8 5.32e+00 0.9
8  1.74e-01 0.9 1.33e-01 1.0 4.90e-01 1.0 1.15e-01 1.8 5.78e-02 1.9 2.72e4+00 1.0
16  8.84e-02 1.0 6.66e-02 1.0 2.47e-01 1.0 3.02e-02 1.9 1.47e-02 2.0 1.37e4+00 1.0
1 1 6.54e-01 — 5.55e-01 — 1.72e+00 —  2.97e+00 — 9.23e-01 —  9.40e+00 —
2 2.83e-01 1.2 1.59e-01 1.8 4.69e-01 1.9  3.97e-01 2.9 2.21e-01 2.1 3.66e+00 1.4
4 8.64e-02 1.7 4.26e-02 1.9 1.24e-01 1.9  5.31e-02 2.9 3.07e-02 2.8 1.0le+00 1.9
8  2.32e-02 1.9 1.09e-02 2.0 3.15e-02 2.0  6.79e-03 3.0 3.94e-03 3.0 2.59e-01 2.0
16  5.97e-03 2.0 2.74e-03 2.0 7.93e-03 2.0 8.60e-04 3.0 4.97e-04 3.0 6.51e-02 2.0
2 1 2.44e-01 — 2.25e-01 —  6.60e-01 — 3.66e-01 — 6.63e-01 —  6.18e+00 —
2 8.47e-02 1.5 4.16e-02 2.4 1.02e-01 2.7  8.26e-02 2.1 5.40e-02 3.6 1.08e+00 2.5
4 1.29e-02 2.7 5.71le-03 2.9 1.33e-02 2.9 5.51e-03 3.9 3.75e-03 3.8 1.50e-01 2.8
8  1.73e-03 2.9 7.31e-04 3.0 1.68e-03 3.0 3.54e-04 4.0 2.41e-04 4.0 1.92e-02 3.0
16 2.22e-04 3.0 9.20e-05 3.0 2.11e-04 3.0 2.24e-05 4.0 1.51e-05 4.0 2.42e-03 3.0

TABLE 3. Errors and rates for a manufactured solution with n = 3, k = 2, using
hybridization with P, JrlA1 = N1E,4q and P, +1A2 > N1F,;; elements and local
postprocessing with broken xP__ +1A0 & CGpr41 and xP,_ _HA]L = N1E,;; elements.
Since k = n — 1, we get superconvergence of pi°" and pj as compared with pj, = duy,.

where the first term is in B! and the second is in %: For k = 2, we choose

sin(7my) sin(7z) cos(mx) sin(my) sin(mz)
u(z,y,z) = |sin(rzx)sin(rz) | + |sin(rz) cos(my) sin(rz) | ,
sin(mz) sin(my) sin(mz) sin(my) cos(nz)

where the first term is in B2 and the second is in %;

7.2. Results. |Table 2| shows the errors and rates for the k = 1 problem, using P, ;A elements and

*xP, oA postprocessing. (Since P, JrlA0 >~ P, 1A, the minimum degree satisfying is
r=r+1.) shows the errors and rates for the £ = 2 problem, using P, ;A elements and
*P, 1A postprocessing. For clarity, the captions describe the elements both in FEEC notation and
in terms of their classical scalar and vector proxies. Adopting the Unified Form Language (UFL)
[1] notation used by Firedrake, we denote Lagrange finite elements by CG, Nédélec H(curl) edge
elements of the first kind by N1E, and Nédélec H(div) face elements of the first kind by N1F.
These results match the error estimates in and Specifically, when k =1 <n — 1,
we do not get superconvergence of pj°" or p;: both converge with the same rate O(h™ 1Y as pp, = duy,.
However, dp} converges with improved rate O(h" 1), compared with O(h") for §ps. On the other

hand, when k =2 = n — 1, we see that pI" and p} both superconverge with rate O(h""2).

8. A VIEW TOWARD HDG METHODS FOR FINITE ELEMENT EXTERIOR CALCULUS

In this last section, we briefly present an even more general approach to domain decomposition
and hybrid methods for the Hodge-Laplace problem. This includes hybridization of the conforming
FEEC methods we have discussed so far, as well as nonconforming and HDG methods. In the cases
k = 0 and k = n, we recover the unified hybridization framework of Cockburn, Gopalakrishnan,
and Lazarov [19] for the scalar Poisson equation. When n = 3, the cases kK =1 and k = 2 include
some recently proposed HDG methods for the vector Poisson equation and Maxwell’s equations.
Although we lay out the framework here, we postpone a detailed discussion and analysis of these
methods for future work.
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8.1. Variational principle. To motivate the variational principle for these more general methods,
we begin with a new formulation of the exact local solvers for the Hodge-Laplace problem. Given

~ ~ _ =k . .
ot 4t on K, u € § (K), and p € $H*, observe that the exact solution satisfies

(0,7) K — (u,dT) K + (U™, T 5 = 0, Vr e HAFY(K)n H*A*Y(K),
(0,60) i + (p, dv) K + (B, 0) K — (P, 0ok = (f — p,v)K — (T, V") ok,
Yo € HAR(K) N H*AF(K),
(p:m)k — (u,6n)k = (@, "o, Vn€ HAM(K)n H*AM(K),

(u,9)k = (W, 9)k, Vg € &' (K).

Here, both d and § are taken weakly, as they are only applied to test functions.
Now, suppose we choose finite element spaces W/ (K) C HA*(K) N H*A*(K) for each K € Ty,

giving the broken space W,f = [lker, W,’f (K), and likewise for W}]fﬂ. Suppose we also choose
unbroken spaces ?: “Ltan - {7k—1tan gpnq th’tan C Vktan which do not necessarily correspond to
tangential traces of W,]f_l and W,’f Then we consider the variational problem: Find

(local variables) op, € W,]f_l, up, € W,ff, Ph € Wf“, Dy, € EZ,
(global variables) pn € OY, uy, € EZ, opn ¢ ?hk_l’tan, Pt € ‘7,? otan
satisfying
(20a) (oh, )7, — (un, dmh) T3, + (ﬂrﬁor,ntban)a% =0, V1, € W,f_l,

(on, 6vn)7, + (phs dvn) 7, + (Pr + PrsvR) T,
(20b) + (@K er, — (O o er, = (fron) T, Yon € Wy,
(20c) (ors 1) 75, = (un, Omn) 75, — (@™ ™o, = 0, Vi, € WEH,
(20d) (@ — un, T4)7, =0, va, € 5,
(20e) (wn, @n) 7, = 0, Van € 9},
(20f) (Bns Tn)75, = 0, Vo, € By,
(208) @A =0, v e Pihen
(20h) <ﬁ;1lor’@zan>8n =0, \v/a;;lan c th’tan'

To complete the specification of the problem, one must define the approximate normal traces u;°"

and pp°, which play the same role as the “numerical flux” does in [19]. The discrete harmonic

spaces Ez and j’J’fL are then defined so that the local and global solvers have unique solutions.

Remark 8.1. For the scalar Poisson equation, we recover the unified hybridization framework of [19].
If £ = 0, then in terms of scalar and vector proxies, simplifies to

(pn-grad va) 7, + (Pn, vn) 7 — (PR, vn)om, = (fron)Ts  Vup € WY,
(ph777h)771 + (Uh,diV T’h)'ﬁl - <a2an777h : ﬁ>37—h = 07 vnh € Wf}?
(Uh, Qh)'Th = 07 \V/Qh S 5%7

~ ~ 70t
<2)\nh0r, U;Lan>87—h = 0, \V/’U]t_ban € Vh’ an,



28 GERARD AWANOU, MAURICE FABIEN, JOHNNY GUZMAN, AND ARI STERN

which gives the methods of [19] for the Neumann problem, using local Dirichlet solvers. Alternatively,
if k = n, and each K € T}, is connected (e.g., simplicial), then becomes

(oh, 7h)7, — (up, div )7, + (@, ) a7, =0, Vo, € WL,
—(on, grad vp) 7, + (Dps vn) 75 + (G vior, = (frvn)7,  Von, € Wi,
Ty, — un,qy)75, = 0, Vg, € R,
(Ph, 0n) 75, = 0, Vo, € R,
<a20r77/:}tLan>aTh =0, v?;clan c ‘//\vhk—l,tan,

which is the alternative hybridization of Cockburn [16, Section 5] using local Neumann solvers.

8.2. Examples of methods. Different choices of the finite element spaces and approximate normal
traces in yield different families of methods. We now discuss a few specific examples.

8.2.1. The hybridized FEEC methods. Suppose we choose the spaces W}, and Vh as in We
then define @}°" € W,’: —hoor and PRt € W,If 9 to be new unknown variables, which are determined
by augmenting by the equations

(199 (G = ol TR om, = 0, VERT € W)
106 <a‘;Lan o uzan’ ﬁ20r>37_h — 07 vﬁgor e W}lf,nor.

Using these, (20b)) and (20c) become equivalent to (10b)) and pp = duy, respectively. Hence, the
variational problem is equivalent to , so we recover the hybridized FEEC methods of

~snor nor

8.2.2. Mized and nonconforming hybrid methods. Suppose we take u;°" = u}
Then, using integration by parts, simplifies to

or nor

and pp" = pj

~tan , nor

(Sun, 6vn) 7, + (8pn, vn) T, + Ph + Pryv) T + (GF" 00V or, = (f,0n)7h,  Yon € Wi,

(oo m0) 7 — (uny O0n) 7, — (T, i oy, = 0, Wi € W,
(@h — un, Tn) 7, =0, Va, € By,
(un, qn)7, = 0, Y, € HF,
(B> Th) 75, = 0, Vo, € By,
<u20r’ 7@}1;an>an =0, v?}tlan e i}hkfl,tan’
<p20r’@zan>an — 0’ V;L)\;;Zan c th’tanv

and op, = dup. When k = 0, we obtain mixed hybrid methods for the Neumann problem using local
Dirichlet solvers, including the classic hybridized RT and BDM methods [3, [8]. When k& = n, we
obtain primal hybrid methods for the Dirichlet problem using local Neumann solvers, including the
nonconforming hybrid method of Raviart and Thomas [40)].

8.2.3. Hybridizable discontinuous Galerkin methods. Suppose we take

~nor __ , nor ~tan tan “N10r __ _nor ~tan tan
up” = up® — M@ — o)™), PRt = PR+ ™ — ™),

where A and p are penalty functions on O7},. corresponds to the case A = u = 0, while
the hybridized FEEC methods of can be seen as the limiting case \, u — oo.

When £ = 0, becomes the hybrid local discontinuous Galerkin (LDG-H) method of [19],
while k£ = n gives the alternative implementation of [16, Section 5] using local Neumann solvers.
For the vector Poisson equation when n = 2 or n = 3, corresponds to the recent HDG methods
of Nguyen, Peraire, and Cockburn [36], Chen, Qiu, Shi, and Solano [I5], which have been applied to
Maxwell’s equations. Since the initial appearance of the current manuscript as a preprint, Hong, Li,
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and Xu [28] have analyzed several methods of this type for general k£ and n within the extended
Galerkin (XG) framework.
Finally, a different family of HDG methods may be constructed by taking

agor — urﬁor _ )\(azan _ (5uh)tan)’ ﬁiﬁor — dugor 4 M(a‘;ban _ uzan)’

which generalizes the hybrid interior penalty (IP-H) method of [19].
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