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Abstract. Preservation of linear and quadratic invariants by numerical integrators has
been well studied. However, many systems have linear or quadratic observables that are
not invariant, but which satisfy evolution equations expressing important properties of the
system. For example, a time-evolution PDE may have an observable that satisfies a local
conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs.

We introduce the concept of functional equivariance, a natural sense in which a numerical
integrator may preserve the dynamics satisfied by certain classes of observables, whether or
not they are invariant. After developing the general framework, we use it to obtain results
on methods preserving local conservation laws in PDEs. In particular, integrators preserving
quadratic invariants also preserve local conservation laws for quadratic observables, and
symplectic integrators are multisymplectic.

1. Introduction

In numerical ordinary differential equations (ODEs), it is known that all B-series methods
(including Runge–Kutta methods) preserve linear invariants, while only certain ones preserve
quadratic invariants. Linear invariants arising in physical systems include mass, charge, and
linear momentum; quadratic invariants include angular momentum and other momentum
maps, as well as the canonical symplectic form for Hamiltonian systems. See Hairer, Lubich,
and Wanner [15] and references therein.

However, for partial differential equations (PDEs) describing time evolution, it is desirable
for a numerical integrator to preserve not only global invariants but also local conservation
laws. For instance, the evolution may preserve total mass (a global invariant), but the mass
in a particular region may change by flowing through the boundary of the region (a local
conservation law). Another example is the canonical multisymplectic conservation law for
Hamiltonian PDEs, which is a quadratic local conservation law for the variational equation.
Focusing only on global invariants overlooks this more granular, local form of conservativity.

This paper develops a new framework for the preservation of such properties by numerical
integrators. We do so by answering a much more general question: When does a numerical
integrator preserve the evolution of certain classes of observables (e.g., linear, quadratic),
even when those observables are not invariants? This includes not only global invariants, as
previously studied, but also local conservation laws and other balance laws encountered in
both conservative and dissipative dynamical systems.

The main idea of our approach is summarized as follows. Suppose y = y(t) evolves in a
(finite- or infinite-dimensional) Banach space Y according to ẏ = f(y). Given a functional
F ∈ C1(Y ), the chain rule implies that z = F (y) evolves according to ż = F ′(y)f(y). Now,
if Φ is a numerical integrator, let Φf : y0 ↦→ y1 denote its application to the original system
ẏ = f(y), and let Φg : (y0, z0) ↦→ (y1, z1) denote its application to the augmented system

(1) ẏ = f(y), ż = F ′(y)f(y),

corresponding to the vector field g(y, z) =
(︁
f(y), F ′(y)f(y)

)︁
. We say that Φ is F -functionally

equivariant if Φg preserves the relation z = F (y), i.e., Φg :
(︁
y0, F (y0)

)︁
↦→
(︁
y1, F (y1)

)︁
, for all

1
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vector fields f on Y . In other words, the following diagram commutes:

y0 y1

(y0, z0) (y1, z1) .

Φf

(id,F ) (id,F )

Φg

This is weaker than equivariance in the usual sense, since the diagram need only commute
for (1), not arbitrary (id, F )-related vector fields. Preserving invariants becomes the special
case where the augmented equation reads ż = 0 and the integrator leaves z constant.

We develop a theory of functional equivariance and show that it provides a useful tool kit
for understanding the behavior of (especially affine and quadratic) observables, including
local conservation laws and multisymplecticity. The paper is organized as follows:

• Section 2 characterizes the functional equivariance of a large class of numerical
integrators, including B-series methods, and explores some consequences for both
conservative and non-conservative dynamical systems. The main result, Theorem 2.9,
shows that a method is functionally equivariant for a class of observables if and only
if it preserves invariants in that class. In particular, all B-series methods are affine
functionally equivariant, and those preserving quadratic invariants are quadratic
functionally equivariant.

• Section 3 applies this framework to local conservation laws for PDEs and spatially
semidiscretized PDEs. In particular, affine/quadratic functionally equivariant nu-
merical integrators are seen to preserve discrete-time local conservation laws for
affine/quadratic observables.

• Section 4 applies this framework to the multisymplectic conservation law for canonical
Hamiltonian PDEs and spatially semidiscretized PDEs. We show that multisymplec-
tic semidiscretization in space, followed by a symplectic integrator in time, yields a
multisymplectic method in spacetime. We also show that hybrid finite elements may
be used for multisymplectic semidiscretization, generalizing the results of McLachlan
and Stern [22] to time-evolution problems.

• Finally, Section 5 extends the results from the class of methods considered in Section 2
to additive and partitioned methods, including additive/partitioned Runge–Kutta
methods and splitting/composition methods.

We remark that many of the results, particularly in Section 2 and Section 5, are obtained
using only the equivariance properties of methods with respect to affine maps, rather than
representing them in terms of trees or Runge–Kutta tableaux. In particular, Theorem 2.12
gives a new, tree-free proof that B-series methods are closed under differentiation, while
Theorem 5.20 generalizes this to additive and partitioned methods.

2. Functional equivariance

2.1. Basic definitions and results. Let Φ be a one-step numerical integrator, whose
application to a vector field f ∈ X(Y ) with time-step size ∆t gives a map Φ∆t,f : Y → Y ,
y0 ↦→ y1. All the methods we will consider have Φ∆t,f = Φ1,∆tf , so it suffices to consider
integrator maps Φf := Φ1,f with unit time step. When we refer to a numerical integrator,

we mean the entire collection of maps Φ =
{︁
Φf : f ∈ X(Y ), Y a Banach space

}︁
.1

Remark 2.1. While this definition covers a large class of numerical integrators, including
B-series methods, other classes of methods require additional data besides f in order to

1For some methods, such as implicit Runge–Kutta methods, Φ∆t,f (y) might only be defined for sufficiently
small ∆t. Including such integrators requires only the minor modification of viewing Φf as a partial function.
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define an integrator map, e.g., an additive decomposition of f or a partitioning of Y . In
Section 5, we will discuss how the results of this section generalize to such methods, including
additive/partitioned Runge–Kutta methods and splitting/composition methods.

The main class of numerical integrators of this type that we will consider are B-series
methods, which McLachlan, Modin, Munthe-Kaas, and Verdier [18] proved are completely
characterized by the following property of affine equivariance.

Definition 2.2. Given an affine map A : Y → U , a pair of vector fields f ∈ X(Y ) and
g ∈ X(U) is A-related if A′ ◦ f = g ◦ A. A numerical integrator Φ is affine equivariant if
A ◦Φf = Φg ◦A for all A-related f and g, all affine maps A, and all Banach spaces Y and U .

Remark 2.3. This is consistent with the definition of affine equivariance in [18]. We distinguish
it from the weaker definition in Munthe-Kaas and Verdier [23], where the condition above is
required only for affine isomorphisms rather than all affine maps.

Definition 2.4. Given a Gâteaux differentiable map F : Y → Z and f ∈ X(Y ), define
g ∈ X(Y × Z) by g(y, z) =

(︁
f(y), F ′(y)f(y)

)︁
. We say that a numerical integrator Φ is

F -functionally equivariant if (id, F ) ◦ Φf = Φg ◦ (id, F ) for all f ∈ X(Y ). That is, if
Φf : y0 ↦→ y1, then Φg :

(︁
y0, F (y0)

)︁
↦→
(︁
y1, F (y1)

)︁
. Given a class of maps F , we say that Φ is

F-functionally equivariant if this holds for all F ∈ F(Y,Z) and all Banach spaces Y and Z.

This is a slight generalization of the situation considered in the introduction: Z may now
be any Banach space rather than R, and F is only required to be Gâteaux differentiable
rather than C1. Note that g ∈ X(Y × Z) is precisely the vector field corresponding to the
augmented system (1).

Example 2.5 (Runge–Kutta methods). An s-stage Runge–Kutta method has the form

Yi = y0 +∆t
s∑︂

j=1

aijf(Yj), i = 1, . . . , s,

y1 = y0 +∆t
s∑︂

i=1

bif(Yi),

where aij and bi are given coefficients defining the method. When this method is applied to
the augmented system (1), we augment the method by

z1 = z0 +∆t

s∑︂
i=1

biF
′(Yi)f(Yi).

Note that the internal stages Z1, . . . , Zs are not needed, since the augmented vector field
depends only on y. Hence, for a Runge–Kutta method, F -functional equivariance says that

F (y1) = F (y0) + ∆t
s∑︂

i=1

biF
′(Yi)f(Yi).

In particular, if F is an invariant of f , so that F ′(y)f(y) = 0 for all y ∈ Y , then the terms
of this sum vanish, and we get F (y1) = F (y0).

Proposition 2.6. Every affine equivariant method is affine functionally equivariant.

Proof. If F : Y → Z is an affine map, then so is (id, F ) : Y → Y × Z. Since the vector fields
f and g in Definition 2.4 are (id, F )-related, the conclusion follows by affine equivariance. □
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Remark 2.7. The converse is generally not true. For instance, the map y0 ↦→ y0+(f div f)(y0),
which is defined for finite-dimensional Y , is seen to be affine functionally equivariant but
is not affine equivariant except in the weaker sense mentioned in Remark 2.3. This is an
example of an “aromatic” series that is not a B-series, cf. Munthe-Kaas and Verdier [23].

Since we are concerned for the time being with affine equivariant numerical integrators, it
is natural to make the following assumptions on F . This includes cases where F contains
not only affine maps but also quadratic or higher-degree polynomial maps.

Assumption 2.8. The class of maps F satisfies the following:

• F(Y, Y ) contains the identity map for all Y ;
• F(Y,Z) is a vector space for all Y and Z;
• F is invariant under composition with affine maps, in the following sense: If A : Y →
U and B : V → Z are affine and F ∈ F(U, V ), then B ◦ F ◦A ∈ F(Y, Z).

As noted in the introduction, preservation of invariants may be seen as a special case of
functional equivariance, so one might expect the latter property to be strictly stronger than
the former. Perhaps surprisingly, our first main result shows that they are equivalent.

Theorem 2.9. Let F satisfy Assumption 2.8. A numerical integrator Φ preserves F-
invariants if and only if it is F-functionally equivariant.

Proof. (⇒) Suppose Φ preserves F -invariants. Given F ∈ F(Y,Z), it follows from Assump-
tion 2.8 thatG(y, z) = F (y)−z is in F(Y ×Z,Z). This is an invariant of the augmented vector
field g(y, z) =

(︁
f(y), F ′(y)f(y)

)︁
, since G′(y, z)g(y, z) = F ′(y)f(y)− F ′(y)f(y) = 0. Hence,

preservation of F-invariants implies Φg : (y0, z0) ↦→ (y1, z1) satisfies G(y1, z1) = G(y0, z0),
i.e., F (y1)− z1 = F (y0)− z0. In particular, z0 = F (y0) implies z1 = F (y1).

(⇐) Conversely, suppose Φ is F-functionally equivariant. If F ∈ F(Y, Z) is an invariant
of f ∈ X(Y ), then the augmented vector field is g = (f, 0), and F-functional equivariance
implies Φg :

(︁
y0, F (y0)

)︁
↦→
(︁
y1, F (y1)

)︁
. However, any constant functional y ↦→ c ∈ Z is also

in F(Y,Z) and has the same augmented vector field g, so Φg : (y0, c) ↦→ (y1, c) for all c ∈ Z.
Hence, F (y1) = F (y0). □

Corollary 2.10. For B-series methods, the following statements hold:

(a) Every B-series method is affine functionally equivariant.
(b) B-series methods preserving quadratic invariants (e.g., Gauss–Legendre collocation

methods) are quadratic functionally equivariant.
(c) No B-series method is cubic functionally equivariant.

Proof. This follows since B-series methods are affine equivariant and none preserves arbitrary
cubic invariants (Chartier and Murua [9], Iserles, Quispel, and Tse [16]). □

2.2. Strong equivariance vs. functional equivariance. There is a stronger notion of
F -equivariance, based on a straightforward generalization of Definition 2.2 to nonlinear maps
F : Y → U . Two vector fields f ∈ X(Y ) and g ∈ X(U) are F -related if F ′(y)f(y) = (g◦F )(y)
for all y ∈ Y , and Φ is F -equivariant if F ◦ Φf = Φg ◦ F whenever this is the case.

To illustrate the distinction with functional equivariance, we now show that the im-
plicit midpoint method is not quadratic equivariant in this stronger sense, although Corol-
lary 2.10(b) tells us that it is quadratic functionally equivariant. Let F : R → R, y ↦→ y2,
and observe that the vector fields

f(y) = −y, g(u) = −2u,

are F -related. Applying the implicit midpoint method with time step size ∆t = 1 gives

y1 =
1

3
y0, u1 = 0.
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Since u1 ̸= (y1)
2 for y0 ̸= 0, the method is not F -equivariant. On the other hand, applying

the method to the augmented equation ż = F ′(y)f(y) = −2y2 with z0 = (y0)
2 gives

z1 = (y0)
2 − 2

(︃
y0 + y1

2

)︃2

= (y0)
2 − 2

(︃
y0 +

1
3y0

2

)︃2

=
1

9
(y0)

2 = (y1)
2,

which illustrates that the method is F -functionally equivariant.
Essentially, functional equivariance requires only that Φ commute with particular pairs of

related vector fields, while strong equivariance requires that it commute with all such pairs.

2.3. Affine equivariance and closure under differentiation. In addition to invariants
and observables that depend on y itself, we are often interested in those that depend on
variations of y. We say that η is a variation of y if (y, η) ∈ Y × Y satisfy

(2) ẏ = f(y), η̇ = f ′(y)η,

whose flow is the derivative of the flow of f ∈ X(Y ). An especially important example is the
canonical symplectic form for Hamiltonian ODEs, which can be understood as a quadratic
invariant depending on two variations of y.

Definition 2.11. A numerical method Φ is said to be closed under differentiation if the
method applied to (2) is the derivative of Φf , i.e., (y1, η1) =

(︁
Φf (y0),Φ

′
f (y0)η0

)︁
.

Bochev and Scovel [5] showed that Runge–Kutta methods are closed under differentiation,
from which it follows that those preserving quadratic invariants are symplectic integrators.
The same argument can be applied to B-series methods, where closure under differentiation
can be established by showing that it holds for all trees [15, Theorem VI.7.1]. Here, we
present a new, tree-free proof that uses only affine equivariance, and which will readily
generalize to additive and partitioned methods in Section 5.

Theorem 2.12. Affine equivariant numerical integrators are closed under differentiation.

Proof. Given f ∈ X(Y ), consider the system

ẋ = f(x), ẏ = f(y),

corresponding to f × f ∈ X(Y × Y ). Since f × f is A-related to f , where A is either of the
projections (x, y) ↦→ x or (x, y) ↦→ y, it follows that Φf×f = Φf × Φf . Now, let ϵ > 0 and
take z = F (x, y) = (x− y)/ϵ, giving the augmented system

ẋ = f(x), ẏ = f(y), ż =
f(x)− f(y)

ϵ
.

By Proposition 2.6, applying Φ to this system yields

x1 = Φf (x0), y1 = Φf (y0), z1 =
Φf (x0)− Φf (y0)

ϵ
.

Finally, let x0 = y0 + ϵη0 and take the limit as ϵ → 0. □

Corollary 2.13. Let Φ be an affine equivariant numerical integrator preserving F-invariants.
Given F ∈ F(Y × Y, Z), define g ∈ X(Y × Y × Z) by

g(y, η, z) =
(︂
f(y), f ′(y)η, F ′(y, η)

(︁
f(y), f ′(y)η

)︁)︂
.

Then Φg

(︁
y0, η0, F (y0, η0)

)︁
=
(︁
y1, η1, F (y1, η1)

)︁
, where y1 = Φf (y0) and η1 = Φ′

f (y0)η0.

Proof. Apply Theorem 2.9 and Theorem 2.12. □

Remark 2.14. It is trivial to extend Corollary 2.13 to the case where F depends on two or
more variations of y, e.g., F = F (y, ξ, η) where ξ̇ = f ′(y)ξ and η̇ = f ′(y)η.
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2.4. Examples. Before discussing applications to conservation laws for PDEs, which will
be the subject of Section 3, we first illustrate some examples of functional equivariance for
numerical ODEs.

2.4.1. Hamiltonian systems. Suppose Y is equipped with a Poisson bracket {·, ·}. Given
H : Y → R, the corresponding Hamiltonian vector field f ∈ X(Y ) is determined by the

condition Ḟ = {F,H} for F : Y → R. That is, the augmented system (1) can be written

ẏ = f(y), ż = {F,H}(y).

Hence, if Φ is F-functionally equivariant, then applying Φ to this system gives a “discrete
version” of Ḟ = {F,H} for F ∈ F(Y,R). For a Runge–Kutta method, this has the form

F (y1) = F (y0) + ∆t

s∑︂
i=1

bi{F,H}(Yi).

This holds for any Poisson bracket, not just the canonical bracket or those for which the
Poisson tensor is constant. Preservation of F -invariants is the special case where {F,H} = 0.

2.4.2. Canonical Hamiltonian systems with damping/forcing. Let Y = R2n with canonical
coordinates y = (q, p). Consider the system

(3) q̇ = ∇pH(q, p), ṗ = −∇qH(q, p)− cp,

where H is a Hamiltonian and c ≥ 0 a constant parameter. If H has the special form
H(q, p) = 1

2p
TM−1p+V (q), where M is a positive definite mass matrix and V is a potential

energy function, then energy is dissipated according to d
dtH(q, p) = −cpTM−1p, and the

parameter c dictates the rate of dissipation.
If V is also quadratic, then so is H, and hence any quadratic functionally equivariant

method Φ yields a discrete version of this dissipation law. If Φ is a Runge–Kutta method
preserving quadratic invariants, then this has the form

H(q1, p1) = H(q0, p0)−∆t
s∑︂

i=1

bicP
T
i M−1Pi.

There is no reason to restrict to linear damping: if we replace the damping term −cp in (3)
by an arbitrary forcing term ϕ(q, p), then we obtain

(4) H(q1, p1) = H(q0, p0) + ∆t

s∑︂
i=1

biP
T
i M−1ϕ(Qi, Pi),

where the sum on the right-hand side approximates the work done by ϕ. When V is not
quadratic, the identities above generally do not hold. However, since the kinetic energy
functional 1

2p
TMp is quadratic, we still get the weaker identity

1

2
pT1 M

−1p1 =
1

2
pT0 M

−1p0 +∆t
s∑︂

i=1

biP
T
i M−1

[︁
−∇V (Qi) + ϕ(Qi, Pi)

]︁
,

where the sum approximates work done by both conservative and non-conservative forces.
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2.4.3. Monotone observables. Suppose F ∈ F(Y,R) is such that F ′(y)f(y) ≤ 0, so F (y)
is monotone decreasing. If Φ is an F-functionally equivariant Runge–Kutta method with
bi ≥ 0, then

F (y1) = F (y0) + ∆t
s∑︂

i=1

biF
′(Yi)f(Yi) ≤ F (y0),

so F is also monotone decreasing along the numerical solution. Conversely, any method
with this monotonicity property also preserves F-invariants, and is thus F-functionally
equivariant, since F is an invariant when ±F are both monotone decreasing.

Remark 2.15. For Runge–Kutta methods, the additional condition bi ≥ 0 is needed to get
monotonicity. Functional equivariance alone is not sufficient. We are not aware of a more
general version of this condition for arbitrary B-series methods.

An immediate consequence is the known B-stability of Runge–Kutta methods preserving
quadratic invariants with bi ≥ 0. If Y is a Hilbert space with inner product ⟨·, ·⟩, consider

ẋ = f(x), ẏ = f(y),

on Y ×Y , and let F (x, y) = 1
2∥x−y∥2. Then F ′(x, y)

(︁
f(x), f(y)

)︁
=
⟨︁
x−y, f(x)−f(y)

⟩︁
≤ 0

implies F (x1, y1) ≤ F (x0, y0), i.e., ∥x1 − y1∥ ≤ ∥x0 − y0∥. This is precisely the condition for
B-stability, cf. Butcher [8], Burrage and Butcher [7].

Another immediate application is to the dissipative systems in Section 2.4.2, when H is
quadratic. If ϕ is a dissipative force, in the sense that pTM−1ϕ(q, p) ≤ 0 for all (q, p) ∈ R2n,
then (4) implies H(q1, p1) ≤ H(q0, p0), i.e., the quadratic energy is monotone decreasing
along the numerical solution.

2.4.4. Symplectic and conformal symplectic systems. Suppose that ω is a continuous bilinear
form on Y . Let ξ and η each be variations of y, so that (y, ξ, η) ∈ Y × Y × Y satisfy

ẏ = f(y), ξ̇ = f ′(y)ξ, η̇ = f ′(y)η.

Then ω(ξ, η) is a quadratic functional of this augmented system, evolving according to

d

dt
ω(ξ, η) = ω

(︁
f ′(y)ξ, η

)︁
+ ω

(︁
ξ, f ′(y)η

)︁
= (Lfω)y(ξ, η),

where (Lfω)y is the Lie derivative along f of ω at y [1, Theorem 6.4.1].
If Φ preserves quadratic invariants, then we may apply quadratic functional equivariance

to describe the numerical evolution of ω. Taking g ∈ X(Y × Y × Y × R) to be

g(y, ξ, η, z) =
(︁
f(y), f ′(y)ξ, f ′(y)η, (Lfω)y(ξ, η)

)︁
,

it follows from Corollary 2.13 and Remark 2.14 that

(5) Φg(y0, ξ0, η0, ω(ξ0, η0)
)︁
=
(︁
y1, ξ1, η1, ω(ξ1, η1)

)︁
,

where y1 = Φf (y0), ξ1 = Φ′
f (y0)ξ0, and η1 = Φ′

f (y0)η0. Furthermore, this implies

ω(ξ1, η1) = ω
(︁
Φ′
f (y0)ξ0,Φ

′
f (y0)η0

)︁
= (Φ∗

fω)y0(ξ0, η0),

where (Φ∗
fω)y0 is the pullback of ω by Φf at y0. For a Runge–Kutta method preserving

quadratic invariants, (5) takes the form

(6) ω(ξ1, η1) = ω(ξ0, η0) + ∆t

s∑︂
i=1

bi(Lfω)Yi(Ξi,Hi),

and the sum on the right-hand side expresses the difference between Φ∗
∆tfω and ω at y0.

In particular, suppose that ω is antisymmetric and nondegenerate, so that (Y, ω) is a
symplectic vector space. If f is a symplectic vector field, satisfying Lfω = 0, then we
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recover the result of Bochev and Scovel [5] that if Φ preserves quadratic invariants, then
Φ∗

fω = ω, i.e., Φ is a symplectic integrator. An interesting generalization is the case of

conformal symplectic vector fields, satisfying Lfω = −cω for some constant c, of which (3)
is a canonical example; see McLachlan and Perlmutter [17]. In this case, (6) becomes

ω(ξ1, η1) = ω(ξ0, η0)−∆t
s∑︂

i=1

bicω(Ξi,Hi),

which can be seen as an approximate conformal symplecticity relation. However, Φ∗
∆tfω

generally does not equal e−c∆tω exactly unless c = 0; see McLachlan and Quispel [19,
Example 7] for a counterexample when Φ is the implicit midpoint method.

Remark 2.16. The arguments above apply without modification if ω is a vector-valued
bilinear form, i.e., a continuous bilinear map Y × Y → Z for some Banach space Z.

3. Application to conservation laws in PDEs

In this section, we apply the general results of Section 2 to local conservation laws in
time-evolution PDEs. We also consider discrete conservation laws in numerical PDEs, when
semidiscretization in space is combined with numerical integration in time.

3.1. General approach and examples. Let ẏ = f(y) correspond to a time-dependent
system of PDEs on a domain Ω, where the Banach space Y is a function space (or product
of function spaces) on Ω. Suppose that solutions satisfy a local conservation law, in the form

(7) ρ̇ = −div J,

where ρ and J depend on y. The notation is deliberately suggestive of Maxwell’s equations,
where ρ is charge density, J is current density, and (7) is local conservation of charge.

From Theorem 2.9 and Corollary 2.10, we immediately obtain a powerful general statement
about preservation of local conservation laws under numerical integration. If ρ = F (y),
where F ∈ F(Y, Z) and Z is an appropriate space of densities, then F ′(y)f(y) = −div J(y),
and thus an F -functionally equivariant integrator satisfies a discrete-time version of (7). For
instance, a Runge–Kutta method preserving F-invariants satisfies

ρ1 = ρ0 −∆t
s∑︂

i=1

bi div J(Yi).

We note that, while ρ is required to be related to y by a functional in F (e.g., ρ is affine
or quadratic in y), no such restriction is placed on J . In particular, all B-series methods
preserve affine local conservation laws, while those preserving quadratic invariants also
preserve quadratic local conservation laws. In the case of symplectic Runge–Kutta methods,
Frasca-Caccia and Hydon [12, Section 3.1] recently proved this by a direct computation,
whereas here it is seen as a particular instance of quadratic functional equivariance.

In addition to the differential form of the conservation law (7), we may also integrate over
a compact subdomain K ⊂ Ω and apply the divergence theorem to get

(8)
d

dt

∫︂
K
ρ = −

∫︂
∂K

J · ˆ︁n,
where ˆ︁n denotes the outer unit normal to K. This may be seen as an integral form of the
conservation law (7). In this case, if

∫︁
K ρ = F (y) with F ∈ F(Y,R), then an F -functionally
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equivariant method satisfies a discrete-time version of (8). In the case of a Runge–Kutta
method preserving F-invariants, this has the form∫︂

K
ρ1 =

∫︂
K
ρ0 −∆t

s∑︂
i=1

bi

∫︂
∂K

J(Yi) · ˆ︁n.
Example 3.1. Maxwell’s equations in R3 consist of the vector evolution equations

Ḃ = − curlE, Ḋ = curlH − J,

along with the scalar constraint equations

divB = 0, divD = ρ,

and the constitutive relations D = ϵE and B = µH. Here, E and H are the electric and
magnetic fields, D and B are the electric and magnetic flux densities, ϵ and µ are the electric
permittivity and magnetic permeability tensors, and ρ and J are charge and current density.

Taking the divergence of the first evolution equation, we see that divB is a local invariant,
so the constraint divB = 0 is preserved by the evolution. Next, interpreting the constraint
divD = ρ to define ρ as a function of D, we see that taking the divergence of the second
evolution equation gives the local conservation law ρ̇ = −div J . Since divB and divD
are both linear in y = (B,D), any B-series method will preserve the constraint divB = 0,
together with a discrete version of the conservation law relating ρ and J .

Example 3.2. Consider the nonlinear Schrödinger (NLS) equation,

iu̇+∆u = ϕ
(︁
|u|2
)︁
u.

A direct computation shows that solutions satisfy

∂

∂t

1

2
|u|2 = ℑ(ū iu̇) = ℑ(−ū∆u) = ℑ

(︁
−div(ū gradu)

)︁
= −divℑ(ū gradu),

which is a local conservation law for the quadratic functional F (u) = 1
2 |u|

2. Since the implicit
midpoint method is quadratic functionally equivariant, it follows that this conservation law
is preserved, in the sense that

1

2
|u1|2 =

1

2
|u0|2 −∆tdivℑ

(︃
ū0 + ū1

2
grad

u0 + u1
2

)︃
.

More generally, for any quadratic functionally equivariant Runge–Kutta method,

1

2
|u1|2 =

1

2
|u0|2 −∆t

s∑︂
i=1

bi divℑ(Ū i gradUi).

Example 3.3. Consider the wave equation ü = ∆u, written as the first-order system

u̇ = p, ṗ = ∆u.

If y = (u, p) is a solution, then

∂

∂t

1

2

(︁
p2 + |gradu|2

)︁
= pṗ+ gradu · grad u̇ = p∆u+ gradu · grad p = div(p gradu),

which is a local conservation law for the quadratic functional F (u, p) = 1
2

(︁
p2 + |gradu|2

)︁
.

Hence, applying any quadratic functionally equivariant Runge–Kutta method gives

1

2

(︁
(p1)

2 + |gradu1|2
)︁
=

1

2

(︁
(p0)

2 + |gradu0|2
)︁
+∆t

s∑︂
i=1

bi div(Pi gradUi).
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3.2. Discrete conservation laws in numerical PDEs. In practice, of course, we will
not be applying numerical integrators to infinite-dimensional function spaces. Rather, we
typically first semidiscretize in space (e.g., using a finite difference, finite volume, or finite
element scheme), yielding a system ẏh = fh(yh) on a finite-dimensional vector space Yh to
which we can apply a numerical integrator.

Suppose the spatial discretization scheme is such that it preserves a semidiscrete conserva-
tion law ρ̇h = −divh Jh, where divh is some “discrete divergence” operator. Then it follows
from the previous section that, if ρh = Fh(yh) for some Fh = F(Yh, Zh), then applying
an F-functionally equivariant numerical integrator yields a fully discrete conservation law
corresponding to (7). We illustrate this with a few examples, which are semidiscretized
versions of those considered in the previous section.

Example 3.4. Nédélec [24] introduced a finite element semidiscretization of Maxwell’s
equations, in which E and B are approximated by piecewise-polynomial vector fields
Eh ∈ H(curl; Ω) and Bh ∈ H(div; Ω). This method may be written as

Ḃh = − curlEh,

∫︂
Ω
Ḋh · vh =

∫︂
Ω
(Hh · curl vh − Jh · vh),

where Dh = ϵEh, Hh = µ−1Bh, and vh is any vector field from the same space as Eh.
Taking the divergence of the first equation gives div Ḃh = 0, so the constraint divBh = 0 is

preserved by the evolution. For the second, when vh = − gradϕh for a piecewise-polynomial
scalar field ϕh, we get

−
∫︂
Ω
Ḋh · gradϕh =

∫︂
Ω
Jh · gradϕh,

which we may write as divh Ḋh = −divh Jh. Thus, taking ρh = divhDh implies the
semidiscrete charge conservation law ρ̇h = −divh Jh. (See Berchenko-Kogan and Stern [4]
for a hybridization of Nédélec’s method that preserves a stronger form of this conservation
law, using div rather than divh.) Since divBh and divhDh are linear in yh = (Bh, Dh), any
B-series method will preserve divBh = 0 exactly and give a discrete-time version of the
charge conservation law relating ρh and Jh.

Example 3.5. For the one-dimensional NLS equation, the finite-difference semidiscretization

iu̇k +
uk+1 − 2uk + uk−1

h2
= ϕ

(︁
|uk|2

)︁
uk

satisfies the semidiscrete local conservation law

d

dt

1

2
|uk|2 = −1

h

[︄
ℑ

(︄(︃
ūk + ūk+1

2

)︃(︃
uk+1 − uk

h

)︃)︄
−ℑ

(︄(︃
ūk−1 + ūk

2

)︃(︃
uk − uk−1

h

)︃)︄]︄
,

where the right-hand side is a difference of midpoint approximations to ℑ(ū ∂xu). Hence,
a discrete-time version of this conservation law is preserved by any B-series method that
preserves quadratic invariants.

Example 3.6. For the one-dimensional wave equation, consider the finite-difference semidis-
cretization

u̇k = pk, ṗk =
uk+1 − 2uk + uk−1

h2
.

If we define

ρk =
1

2
p2k +

1

4

(︃
uk+1 − uk

h

)︃2

+
1

4

(︃
uk − uk−1

h

)︃2

,
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which is a finite-difference approximation to 1
2

(︁
p2 + (∂xu)

2
)︁
, then a short calculation gives

the semidiscrete conservation law

ρ̇k =
1

h

[︄(︃
pk + pk+1

2

)︃(︃
uk+1 − uk

h

)︃
−
(︃
pk−1 + pk

2

)︃(︃
uk − uk−1

h

)︃]︄
,

where the right-hand side is a difference of midpoint approximations to p ∂xu. As in the
previous example, a discrete-time version of this conservation law is therefore preserved by
any B-series method that preserves quadratic invariants.

3.3. Remarks on quadratic conservation laws arising from point symmetries.
Conservation laws with quadratic densities are common in partial differential and differential-
difference equations because of their association with linear symmetries of Hamiltonian
PDEs. (See, e.g., Olver [25].) However, not all such symmetries are easily preserved under
semidiscretization. We focus here on affine point symmetries, those arising from actions on
the field variables.

For example, the one-dimensional NLS equation may be written in the form

iu̇ =
δ

δū

∫︂
Ω

(︂
|∂xu|2 + V

(︁
|u|2
)︁)︂

,

where V ′ = ϕ and δ/δū is the variational derivative with respect to ū. The integrand
H = |∂xu|2 + V

(︁
|u|2
)︁
is called the Hamiltonian density. Observe that H is invariant under

the diagonal U(1) action (u, ∂xu) ↦→ (eiαu, eiα∂xu), where α ∈ R ∼= u(1). This point
symmetry leads to the local conservation law for ρ = 1

2 |u|
2 in Example 3.2. More generally,

any Hamiltonian density of the form H = H
(︁
|u|2, |∂xu|2, ū ∂xu

)︁
has the same point symmetry,

and hence iu̇ = δ
δū

∫︁
ΩH has a local conservation law for ρ = 1

2 |u|
2.

Similarly, the one-dimensional semidiscretized NLS equation in Example 3.6 can be written

iu̇k =
∂

∂ūk

∑︂
ℓ

(︃⃓⃓⃓uℓ+1 − uℓ
h

⃓⃓⃓2
+

V
(︁
|uℓ|2

)︁
+ V

(︁
|uℓ+1|2

)︁
2

)︃
,

where the summand can be viewed as a discrete Hamiltonian density Hh. The invariance
of Hh under the point symmetry uℓ ↦→ eiαuℓ, uℓ+1 ↦→ eiαuℓ+1, yields the semidiscrete
local conservation law for ρk = 1

2 |uk|
2 obtained in Example 3.6. More generally, we get

such a local conservation law whenever the discrete Hamiltonian density has the form
Hh = Hh

(︁
|uℓ|2, |uℓ+1|2, ūℓuℓ+1

)︁
.

A related example involves orthogonal (rather than unitary) point symmetry. Suppose
u(t, x) and its conjugate momentum p(t, x) both take values in R3, and let A ∈ O(3) act by
z = (u, p, ∂xu, ∂xp) ↦→ (Au,Ap,A∂xu,A∂xp). Then any Hamiltonian density that depends
only on the 10 invariants zi · zj , 1 ≤ i ≤ j ≤ 4, is O(3) invariant and thus has a local
conservation law for ρ = u× p. Like the U(1) point symmetry discussed above, this O(3)
point symmetry is preserved under a wide class of lattice semidiscretizations, which have
corresponding semidiscrete quadratic conservation laws.

By contrast with point symmetries, symmetries that involve spatial translations are typi-
cally broken by semidiscretization. However, special semidiscretizations can be constructed
that preserve versions of the associated conservation laws, although these are generally not
symplectic. An example is provided by the Korteweg–de Vries equation

∂tu = ∂x(αu
2) + ν∂3

xu,

which has a local conservation law with ρ = u2. The semidiscretization

u̇k =
α

2h

[︁
θ(u2k+1 − u2k−1) + 2(1− θ)uk(uk+1 − uk−1)

]︁
+

ν

2h3
(uk+2 − 2uk+1 + 2uk−1 − uk−2)
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has a semidiscrete conservation law with density ρk = u2k only for the parameter θ = 2/3
(Ascher and McLachlan [3]).

Frasca-Caccia and Hydon [12] give general techniques for constructing finite-difference
semidiscretizations preserving several local conservation laws—linear, quadratic, or otherwise—
with many examples. When such methods are used in conjunction with B-series methods for
time integration, it follows from Theorem 2.9 and Corollary 2.10 that affine local conservation
laws are always preserved in a discrete sense, while quadratic local conservation laws are
preserved by any B-series method that preserves quadratic invariants.

4. Multisymplectic integrators

In this section, we apply the foregoing theory to the multisymplectic conservation law
for canonical Hamiltonian PDEs and its preservation by numerical integrators. Since
this is a quadratic local conservation law depending on variations of solutions, it follows
that B-series methods preserving quadratic invariants also preserve a discrete-time version
of the multisymplectic conservation law. Furthermore, we discuss techniques for spatial
semidiscretization that preserve a semidiscrete multisymplectic conservation law, reviewing
some known results for finite-difference semidiscretization and introducing new results for
finite-element semidiscretization. Consequently, when such methods are used in conjunction
with B-series methods preserving quadratic invariants, the resulting method will satisfy a
fully discrete multisymplectic conservation law.

4.1. Canonical Hamiltonian PDEs. Before discussing the canonical Hamiltonian formal-
ism for time-evolution PDEs, we first quickly recall the stationary (time-independent) case,
following the treatment in McLachlan and Stern [22].

Given a spatial domain Ω ⊂ Rm with coordinates x = (x1, . . . , xm), let u : Ω → Rn and
σ : Ω → Rmn be unknown fields. The de Donder–Weyl equations [11, 30] for a Hamiltonian
H : Ω× Rn × Rmn → R, H = H(x, u, σ), are

(9) ∂µu
i =

∂H

∂σµ
i

, −∂µσ
µ
i =

∂H

∂ui
,

where µ = 1, . . . ,m and i = 1, . . . , n. Here and henceforth, we use the Einstein index
convention of summing over repeated indices; for instance, ∂µσ

µ
i has an implied sum over µ

and therefore corresponds to the divergence of the vector field σi.
Now, for time-dependent problems, we let u = ui(t, x) and σ = σµ

i (t, x) depend on
t ∈ (t0, t1), and we introduce an additional unknown field p = pi(t, x). The de Donder–Weyl
equations for H : (t0, t1)× Ω× Rn × Rn × Rmn, H = H(t, x, u, p, σ), are then given by

(10) u̇i =
∂H

∂pi
, ∂µu

i =
∂H

∂σµ
i

, −(ṗi + ∂µσ
µ
i ) =

∂H

∂ui
.

Note that (10) is simply (9) in (m+ 1)-dimensional spacetime, where we have adopted the
special notation t = x0 and pi = σ0

i . Moreover, the special case m = 0 recovers canonical
Hamiltonian mechanics on R2n.

For m > 0, the de Donder–Weyl equations are not in the form ẏ = f(y), since we have
expressions for u̇ and ṗ but not σ̇. To deal with this, we assume that the second equation
of (10) defines σ as an implicit function of t, x, u, p, and gradu. By the implicit function
theorem, this is true (at least locally) if the mn×mn matrix ∂2H/(∂σµ

i ∂σ
ν
j ) is nondegenerate.

Therefore, we may eliminate the second equation and substitute this expression for σ into
the other two equations. Assuming the Hamiltonian does not depend on t, this gives a
system of the form ẏ = f(y) with y = (u, p).
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Example 4.1. Let n = 1, so that u and p are scalar fields and σ is a vector field on Ω, and
take H = 1

2

(︁
p2 − |σ|2). Then the de Donder–Weyl equations are

u̇ = p, gradu = −σ, −(ṗ+ div σ) = 0.

Eliminating the second equation and substituting σ = − gradu into the third, we obtain the
first-order form of the wave equation with y = (u, p), as in Example 3.3.

4.2. The multisymplectic conservation law. For Hamiltonian ODEs, the symplectic
conservation law is a statement about variations of solutions to Hamilton’s equations.
Similarly, for Hamiltonian PDEs, the multisymplectic conservation law is a statement about
variations of solutions to the de Donder–Weyl equations.

Definition 4.2. Let (u, p, σ) be a solution to (10). A (first) variation of (u, p, σ) is a
solution (v, r, τ) to the linearized problem

v̇i =
∂2H

∂pi∂uj
vj +

∂2H

∂pi∂pj
rj +

∂2H

∂pi∂σν
j

τνj ,

∂µv
i =

∂2H

∂σµ
i ∂u

j
vj +

∂2H

∂σµ
i ∂pj

rj +
∂2H

∂σµ
i ∂σ

ν
j

τνj ,

−(ṙi + ∂µτ
µ
i ) =

∂2H

∂ui∂uj
vj +

∂2H

∂ui∂pj
rj +

∂2H

∂ui∂σν
j

τνj ,

where the Hessians on the right-hand side are evaluated at (t, x, u, p, σ).

On the space Rn×Rn×Rmn ∋ (u, p, σ), we now define the canonical 2-forms ω0 = dui∧dpi
and ωµ = dui ∧ dσµ

i for µ = 1, . . . ,m. The multisymplectic conservation law states that, for
any pair of variations (v, r, τ) and (v′, r′, τ ′), we have

∂t

(︂
ω0
(︁
(v, r, τ), (v′, r′, τ ′)

)︁)︂
= −∂µ

(︂
ωµ
(︁
(v, r, τ), (v′, r′, τ ′)

)︁)︂
,

that is,

∂t(v
ir′i − v′iri) = −∂µ(v

iτ ′µi − v′iτµi ).

The proof is simply a calculation, using the symmetry of the Hessian. We abbreviate the
multisymplectic conservation law as

(11) ω̇0 = −∂µω
µ,

with the understanding that both sides are evaluated on variations of solutions to (10). In
the special case m = 0, we recover the usual symplectic conservation law for Hamiltonian
ODEs. As with the conservation laws in Section 3.1, we may also integrate (11) over a
compact subdomain K ⊂ Ω and apply the divergence theorem to get

(12)

∫︂
K
ω̇0 dmx = −

∫︂
∂K

ωµ dm−1xµ,

which is an integral form of the multisymplectic conservation law. Here, dmx := dx1∧· · ·∧dxm
is the standard Euclidean volume form on Rm and dm−1xµ := ιeµ d

mx is its interior product
with the µth standard basis vector. Again, we interpret (12) to mean that the equality holds
when both sides are evaluated on arbitrary variations of solutions.

Remark 4.3. If Ω is compact, and boundary conditions are chosen so that ωµ dm−1xµ = 0 on
∂Ω, then taking K = Ω in (12) gives

∫︁
Ω ω̇0 dmx = 0. This may be interpreted as invariance

of the symplectic form ω =
∫︁
Ω ω0 dmx on the infinite-dimensional phase space Y .
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4.3. Discrete-time multisymplectic conservation laws for numerical integrators.
As before, assume that the Hamiltonian does not depend on t and that σ is an implicit
function of the remaining variables, so that (10) can be reduced to ẏ = f(y) with y = (u, p).
It follows that variations evolve according to η̇ = f ′(y)η with η = (v, r), where τ = σ′(y)η.
Hence, (11) may be seen as a quadratic conservation law involving variations of y, and the
results of Section 2 immediately apply to give the following.

Theorem 4.4. Suppose that (10) can be written as ẏ = f(y) with y = (u, p), where σ is an
implicit function of the other variables. Let ξ = (v, r) and η = (v′, r′), with τ = σ′(y)ξ and
τ ′ = σ′(y)η, and define the augmented vector field

g(y, ξ, η, z) =

(︃
f(y), f ′(y)ξ, f ′(y)η,−∂µ

(︂
ωµ
(︁
(v, r, τ), (v′, r′, τ ′)

)︁)︂)︃
.

If Φ is an affine equivariant method preserving quadratic invariants, then

Φg

(︂
y0, ξ0, η0, ω

0
(︁
(v0, r0, τ0), (v

′
0, r

′
0, τ

′
0)
)︁)︂

=
(︂
y1, ξ1, η1, ω

0
(︁
(v1, r1, τ1), (v

′
1, r

′
1, τ

′
1)
)︁)︂

,

where y1 = Φf (y0), ξ1 = Φ′
f (y0)ξ0, and η1 = Φ′

f (y0)η0.

Proof. The key observation is that ω0
(︁
(v, r, τ), (v′, r′, τ ′)

)︁
= vir′i− v′iri is quadratic in ξ and

η alone, so it is not affected by the (possibly nonlinear) dependence of σ and its variations
on the other variables. Hence, the result follows from (5) and Remark 2.16. □

Corollary 4.5. For a Runge–Kutta method preserving quadratic invariants, we have

ω0
(︁
(v1, r1, τ1), (v

′
1, r

′
1, τ

′
1)
)︁

= ω0
(︁
(v0, r0, τ0), (v

′
0, r

′
0, τ

′
0)
)︁
−∆t

s∑︂
i=1

bi∂µ

(︂
ωµ
(︁
(Vi, Ri, Ti), (V

′
i , R

′
i, T

′
i )
)︁)︂

.

This may be written equivalently as

(du1)
j ∧ (dp1)j = (du0)

j ∧ (dp0)j −∆t
s∑︂

i=1

bi∂µ
(︁
(dUi)

j ∧ (dΣi)
µ
j

)︁
.

4.4. Multisymplectic semidiscretization on rectangular grids. If Ω is a Cartesian
product of intervals, equipped with a rectangular finite-difference grid, there is a substantial
literature on spatial semidiscretization such that a semidiscrete multisymplectic conservation
law holds. We refer the reader in particular to the following (non-exhaustive) list of references:
Reich [26], Bridges and Reich [6], Ryland and McLachlan [27], McLachlan, Ryland, and
Sun [21]. These semidiscretization schemes generally apply a symplectic Runge–Kutta or
partitioned Runge–Kutta method in each of the spatial directions. In light of Section 2, the
semidiscrete multisymplectic conservation law may be seen as resulting from m applications
of (6) or its generalization to partitioned methods in Section 5.

In one dimension of space, Sun and Xing [29] have recently investigated multisymplectic
semidiscretization using discontinuous Galerkin finite element methods.

4.5. Multisymplectic semidiscretization with hybrid finite element methods. In
McLachlan and Stern [22], we developed a framework for multisymplectic discretization of
time-independent Hamiltonian PDEs by hybrid finite element methods, including hybridizable
discontinuous Galerkin methods (cf. Cockburn, Gopalakrishnan, and Lazarov [10]). In this
section, we show that those same methods may be used for semidiscretization of time-
dependent Hamiltonian PDEs, and that a semidiscrete multisymplectic conservation law
holds. Consequently, when combined with a symplectic numerical integrator for time
discretization, the resulting method satisfies a fully discrete multisymplectic conservation
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law in spacetime. Unlike the methods discussed in the previous section, these methods may
be applied to unstructured meshes on non-rectangular domains.

Suppose that Ω ⊂ Rm is polyhedral, and let Th be a simplicial triangulation of Ω by
m-simplices K ∈ Th, where Eh =

⋃︁
K∈Th ∂K denotes the set of (m− 1)-dimensional facets.

We specify finite element spaces

V (K) ⊂
[︁
H2(K)

]︁n
, V :=

∏︂
K∈Th

V (K),

Σ(K) ⊂
[︁
H1(K)

]︁mn
, Σ :=

∏︂
K∈Th

Σ(K),

along with spaces of approximate boundary traces on Eh,ˆ︁V ⊂
[︁
L2(Eh)

]︁n
, ˆ︁V0 :=

{︁ˆ︁v ∈ ˆ︁V : ˆ︁v|∂Ω = 0
}︁
.

The de Donder–Weyl equations (10) are then approximated by the weak problem: Find(︁
u(t), σ(t), p(t), ˆ︁u(t))︁ ∈ V × Σ× V ∗ × ˆ︁V satisfying∫︂

K
u̇iri d

mx =

∫︂
K

∂H

∂pi
ri d

mx, ∀r ∈ V ∗(K),(13a)

0 =

∫︂
K

(︃
ui∂µτ

µ
i +

∂H

∂σµ
i

τµi

)︃
dmx−

∫︂
∂K
ˆ︁uiτµi dm−1xµ, ∀τ ∈ Σ(K),(13b) ∫︂

K
ṗiv

i dmx =

∫︂
K

(︃
σµ
i ∂µv

i − ∂H

∂ui
vi
)︃
dmx−

∫︂
∂K
ˆ︁σµ
i v

i dm−1xµ, ∀v ∈ V (K),(13c)

for all K ∈ Th, together with the conservativity condition

0 =
∑︂
K∈Th

∫︂
∂K
ˆ︁σµ
i ˆ︁vi dm−1xµ, ∀ˆ︁v ∈ ˆ︁V0.(13d)

Here, ˆ︁σ is determined by u, σ, ˆ︁u through a specified numerical flux function; see Cockburn,
Gopalakrishnan, and Lazarov [10], McLachlan and Stern [22] for further details. The
equations (13a)–(13c) are derived by multiplying (10) by test functions, integrating by parts
over K, and replacing the boundary traces of u and σ by the approximate traces ˆ︁u and ˆ︁σ.
Under appropriate nondegeneracy assumptions, the equations (13a) and (13c) define the
dynamics of yh = (u, p) on Yh := V × V ∗, where σ, ˆ︁u, and ˆ︁σ are implicit functions of yh.

We may then consider variations of solutions to (13), along with a corresponding semidis-
crete multisymplectic conservation law in the integral form (12). The following is a straight-
forward generalization of Lemma 2 in [22].

Theorem 4.6. If (13a)–(13c) hold on K ∈ Th, then∫︂
K
∂t(du

i ∧ dpi) d
mx = −

∫︂
∂K

(dˆ︁ui ∧ dˆ︁σµ
i ) d

m−1xµ +

∫︂
∂K

(︁
d(ˆ︁ui − ui) ∧ d(ˆ︁σµ

i − σµ
i )
)︁
dm−1xµ.

Consequently, the semidiscrete multisymplectic conservation law

(14)

∫︂
K
∂t(du

i ∧ dpi) d
mx = −

∫︂
∂K

(dˆ︁ui ∧ dˆ︁σµ
i ) d

m−1xµ

holds on K ∈ Th if and only if
∫︁
∂K

(︁
d(ˆ︁ui − ui) ∧ d(ˆ︁σµ

i − σµ
i )
)︁
dm−1xµ = 0.
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Proof. We may rewrite (13a)–(13c) as∫︂
K
u̇i dpi d

mx =

∫︂
K

∂H

∂pi
dpi d

mx,

0 =

∫︂
K

(︃
ui d(∂µσ

µ
i ) +

∂H

∂σµ
i

dσµ
i

)︃
dmx−

∫︂
∂K
ˆ︁ui dσµ

i d
m−1xµ,∫︂

K
ṗi du

i dmx =

∫︂
K

(︃
σµ
i d(∂µu

i)− ∂H

∂ui
dui
)︃
dmx−

∫︂
∂K
ˆ︁σµ
i du

i dm−1xµ.

Adding the first two equations, subtracting the third, and taking the exterior derivative on
both sides, we get∫︂

K
∂t(du

i ∧ dpi) d
mx

=

∫︂
K

(︁
∂µ(du

i ∧ dσµ
i ) + ddH

)︁
dmx−

∫︂
∂K

(dˆ︁ui ∧ dσµ
i + dui ∧ dˆ︁σµ

i ) d
m−1xµ

=

∫︂
∂K

(dui ∧ dσµ
i − dˆ︁ui ∧ dσµ

i − dui ∧ dˆ︁σµ
i ) d

m−1xµ

= −
∫︂
∂K

(dˆ︁ui ∧ dˆ︁σµ
i ) d

m−1xµ +

∫︂
∂K

(︁
d(ˆ︁ui − ui) ∧ d(ˆ︁σµ

i − σµ
i )
)︁
dm−1xµ,

where the second equality uses ddH = 0 and the divergence theorem. □

In Section 4 of [22], it is proved that several families of hybrid finite element methods,
including hybridized mixed methods (RT-H and BDM-H), nonconforming methods (NC-H),
discontinuous Galerkin methods (LDG-H and IP-H), and continuous Galerkin methods (CG-
H) satisfy the condition

∫︁
∂K

(︁
d(ˆ︁ui−ui)∧d(ˆ︁σµ

i −σµ
i )
)︁
dm−1xµ = 0 of Theorem 4.6. Therefore,

when these methods are applied to (13), they satisfy the semidiscrete multisymplectic
conservation law (14) on each K ∈ Th.

If the numerical flux satisfies the so-called strong conservativity condition Jˆ︁σK = 0, which is
stronger than (13d), then the multisymplectic conservation law (14) may also be strengthened
so that it holds for arbitrary unions of simplices. This holds for all of the methods mentioned
in the previous paragraph except CG-H. The following is a straightforward generalization of
Theorem 3 in [22].

Theorem 4.7. If a strongly conservative method satisfies (14), then for all K ⊂ Th,∫︂
⋃︁

K
∂t(du

i ∧ dpi) d
mx = −

∫︂
∂(

⋃︁
K)

(dˆ︁ui ∧ dˆ︁σµ
i ) d

m−1xµ.

Proof. Sum (14) over K ∈ K, using Jˆ︁σK = 0 to cancel the contributions of internal facets. □

Remark 4.8. In the situation considered in Remark 4.3, taking K = Th implies conservation
of the symplectic form

∫︁
Ω dui∧dpi d

mx on Yh. This generalizes a result of Sánchez et al. [28],
which states that semidiscretization of the acoustic wave equation by LDG-H is symplectic.

5. Generalization to additive and partitioned methods

In the preceding sections, we have developed a theory of functional equivariance for a class
of numerical integrators, including B-series methods, and applied it to local conservation
laws for PDEs. This section extends the functional equivariance theory from Section 2 to
two larger classes of numerical integrators: additive methods and partitioned methods. It
follows that, when these methods are applied to PDEs satisfying local conservation laws,
the results of Section 3 and Section 4 may also be extended to these classes of methods.
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5.1. Additive methods. We now consider integrators applied to a vector field f ∈ X(Y )

after it has been additively decomposed as f = f [1] + · · · + f [N ]. Specifically, we have in
mind additive Runge–Kutta and NB-series methods (cf. Araújo, Murua, and Sanz-Serna
[2]), as well as splitting and composition methods (cf. McLachlan and Quispel [20]).

Denote the application of a method Φ to a decomposed vector field f = f [1] + · · ·+ f [N ]

by Φf [1],...,f [N ] . By an additive numerical integrator, we mean the entire collection of maps

Φ =
{︁
Φf [1],...,f [N ] : f [1], . . . , f [N ] ∈ X(Y ), Y a Banach space

}︁
. We begin by extending the

definitions of affine equivariance and functional equivariance to such methods.

Definition 5.1. An additive numerical integrator Φ isN -affine equivariant ifA◦Φf [1],...,f [N ] =

Φg[1],...,g[N ] ◦A whenever f [ν] ∈ X(Y ) and g[ν] ∈ X(U) are A-related for all ν = 1, . . . , N , all
affine maps A : Y → U , and all Banach spaces Y and U .

Definition 5.2. Given a Gâteaux differentiable map F : Y → Z and f [1], . . . , f [N ] ∈ X(Y ),

define g[1], . . . , g[N ] ∈ X(Y ×Z) by g[ν](y, z) =
(︁
f [ν](y), F ′(y)f [ν](y)

)︁
for ν = 1, . . . , N . We say

that an additive numerical integrator Φ is F -functionally equivariant if (id, F )◦Φf [1],...,f [N ] =

Φg[1],...,g[N ] ◦ (id, F ) for all f [1], . . . , f [N ] ∈ X(Y ) and F-functionally equivariant if this holds

for all F ∈ F(Y, Z) and all Banach spaces Y and Z.

Proposition 5.3. Every N -affine equivariant method is affine functionally equivariant.

Proof. The proof is essentially identical to that for Proposition 2.6. If F is affine, then so is
(id, F ), and the vector fields f [ν] and g[ν] are (id, F )-related for all ν = 1, . . . , N . □

Example 5.4 (additive Runge–Kutta methods). An s-stage additive Runge–Kutta (ARK)
method has the form

Yi = y0 +∆t
N∑︂
ν=1

s∑︂
j=1

a
[ν]
ij f

[ν](Yj), i = 1, . . . , s,

y1 = y0 +∆t
N∑︂
ν=1

s∑︂
i=1

b
[ν]
i f [ν](Yi),

and F -functional equivariance is the condition

F (y1) = F (y0) + ∆t

N∑︂
ν=1

s∑︂
i=1

b
[ν]
i F ′(Yi)f

[ν](Yi).

If F is an invariant, then we have F ′(Yi)f(Yi) = 0 but generally F ′(Yi)f
[ν](Yi) ̸= 0 for N > 1,

so the sum on the right-hand side need not vanish. However, if b
[ν]
i = bi is independent of

ν, then it does vanish, and we obtain F (y1) = F (y0) as in Example 2.5. This illustrates
that an ARK method may be functionally equivariant but not invariant preserving (even for
affine maps) unless some additional condition is satisfied.

Proposition 5.5. Additive Runge–Kutta methods are N -affine equivariant. Furthermore,

an ARK method preserves affine invariants if b
[ν]
i = bi is independent of ν.
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Proof. Suppose f [ν] and g[ν] are A-related for ν = 1, . . . , N . Then

A(Yi) = A(y0) +A′(Yi − y0)

= A(y0) + ∆t
N∑︂
ν=1

s∑︂
j=1

a
[ν]
ij (A

′ ◦ f [ν])(Yj)

= A(y0) + ∆t

N∑︂
ν=1

s∑︂
j=1

a
[ν]
ij g

[ν]
(︁
A(Yj)

)︁
,

for i = 1, . . . , s, and similarly,

A(y1) = A(y0) + ∆t
N∑︂
ν=1

s∑︂
i=1

b
[ν]
i g[ν]

(︁
A(Yi)

)︁
.

This shows that A(y1) = (A ◦ Φf )(y0) = (Φg ◦A)(y0), so Φ is N -affine equivariant. Finally,

if b
[ν]
i = bi is independent of ν, then Proposition 5.3 and Example 5.4 show that Φ preserves

affine invariants. □

Remark 5.6. It is straightforward to show that, in fact, all NB-series methods are N -
affine equivariant. (This includes, e.g., generalized additive Runge–Kutta methods, whose
symplecticity conditions were recently investigated by Günther, Sandu, and Zanna [13].) The

proof is, essentially, to repeatedly differentiate the A-relatedness condition A′ ◦f [ν] = g[ν] ◦A,
obtaining a relation between the elementary differentials.

Theorem 5.7. Let F satisfy Assumption 2.8. An additive numerical integrator Φ preserves
F-invariants if and only if it is F-functionally equivariant and preserves affine invariants.

Proof. (⇒) Suppose Φ preserves F-invariants. The proof of F-functional equivariance is
essentially identical to that in Theorem 2.9, and preservation of affine invariants follows
from the fact that F contains affine maps by Assumption 2.8.

(⇐) Conversely, suppose that Φ is F -functionally equivariant and preserves affine invari-

ants. If F ∈ F(Y,Z) is an invariant of f ∈ X(Y ), then g[ν](y, z) =
(︁
f [ν](y), F ′(y)f [ν](y)

)︁
is the corresponding decomposition of g = (f, 0). By F-functional equivariance, we have
Φg[1],...,g[N ] :

(︁
y0, F (y0)

)︁
↦→
(︁
y1, F (y1)

)︁
. Finally, since G(y, z) = z is an affine invariant of g,

it is preserved by Φg[1],...,g[N ] , and thus F (y0) = F (y1). □

Example 5.8. Let F be the class of quadratic maps. It follows that an additive numerical
integrator preserves quadratic invariants if and only if it is quadratic functionally equivariant

and preserves affine invariants. For ARK methods, a sufficient condition is that b
[ν]
i = bi be

independent of ν and b
[ν]
i a

[µ]
ij + b

[µ]
j a

[ν]
ji = b

[ν]
i b

[µ]
j for all i, j, µ, ν. The proof is identical to

that for symplecticity of ARK methods, cf. Araújo, Murua, and Sanz-Serna [2, Theorem 7].

Splitting methods take Φf [1],··· ,f [N ] to be a composition of exact flows φτf [ν] , i.e.,

Φf [1],...,f [N ] = φτsf [νs] ◦ · · · ◦ φτ1f [ν1] ,

where consistency requires
∑︁

νi=ν τi = 1 for all ν = 1, . . . , N . For N = 2, the two most
elementary splitting methods are the Lie–Trotter splitting φf [1] ◦φf [2] and the Strang splitting
φ 1

2
f [2] ◦φf [1] ◦φ 1

2
f [2] , where φ denotes the exact time-1 flow. Since the exact flow is equivariant

(and hence functionally equivariant) with respect to all maps F , the chain rule implies that
this is also true of splitting methods. As a consequence of Theorem 5.7, we get the following
negative result for splitting methods.

Corollary 5.9. Any splitting method that preserves affine invariants equals the exact flow.
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Proof. Since splitting methods are equivariant with respect to all maps, Theorem 5.7 implies
that any splitting method preserving affine invariants preserves all invariants. To see that
this must be the exact flow, consider the vector field (f, 1) ∈ X(Y × R), which augments
ẏ = f(y) by the equation ṫ = 1. The exact solution is y(t) = φtf (y0), so F (y, t) = y−φtf (y0)
is an invariant of (f, 1). Therefore, F (y1, 1) = F (y0, 0) = 0, which says that y1 = φf (y0). □

5.2. Partitioned methods. We finally consider partitioned methods, which are based on a
partitioning Y = Y [1] ⊕ · · · ⊕ Y [N ]. In particular, we have in mind partitioned Runge–Kutta
and P-series methods (cf. Hairer [14]). These are closely related to the methods in the

previous section, except the vector field decomposition f = f [1] + · · · + f [N ] is uniquely
specified by the partitioning of Y , i.e., f [ν](y) ∈ Y [ν] for all y ∈ Y and ν = 1, . . . , N . For this
reason, we write the flow of such a method as Φf rather than Φf [1],...,f [N ] . By a partitioned

numerical integrator, we mean the entire collection of maps Φ =
{︁
Φf : f ∈ X(Y ), Y =⨁︁N

ν=1 Y
[ν] a partitioned Banach space

}︁
.

Definition 5.10. Given partitioned spaces Y =
⨁︁N

ν=1 Y
[ν] and U =

⨁︁N
ν=1 U

[ν], we say that

A : Y → U is a P-affine map if it decomposes as A =
⨁︁N

ν=1A
[ν], where each A[ν] : Y [ν] → U [ν]

is affine. A partitioned numerical integrator Φ is P-affine equivariant if A ◦ Φf = Φg ◦ A
whenever f [ν] and g[ν] are A-related for all ν = 1, . . . , N , all P-affine maps A, all partitionings,
and all Banach spaces Y and U .

Example 5.11. If we partition U = R into U [µ] = R and U [ν] = {0} for ν ̸= µ, then the

P-affine functionals are those depending only on Y [µ]. Affine functionals depending on more
than one component Y [ν] cannot be P-affine for any partitioning of R. In particular, if we
take Y = R2 =

(︁
R× {0}

)︁
⊕
(︁
{0} × R

)︁
, then:

• (q, p) ↦→ q is P-affine for the partitioning U = R⊕ {0};
• (q, p) ↦→ p is P-affine for the partitioning U = {0} ⊕ R;
• (q, p) ↦→ q + p is never P-affine.

Proposition 5.12. If an additive numerical integrator Ψ is N -affine equivariant, then the
partitioned numerical integrator Φ defined by Φf = Ψf [1],...,f [N ] is P-affine equivariant.

Proof. This follows immediately from the definitions, since P-affine maps are affine. □

Example 5.13 (partitioned Runge–Kutta methods). An s-stage partitioned Runge–Kutta
method (PRK) is just the application of an ARK method to a partitioned space, as in
Proposition 5.12, where Φ is the PRK method and Ψ is the ARK method. As an immediate
corollary of this proposition, all PRK methods are P-affine equivariant.

The definition of F - and F -functional equivariance is the same as in Definition 2.4, where
given Y =

⨁︁N
ν=1 Y

[ν] and Z =
⨁︁N

ν=1 Z
[ν], we partition Y ×Z =

⨁︁N
ν=1(Y

[ν]×Z [ν]). However,
the methods being considered are not necessarily equivariant with respect to all affine maps,
so Assumption 2.8 is too restrictive on F . We therefore replace it with the following, which
just replaces “affine” by “P-affine” for specified partitions.

Assumption 5.14. Assume that:

• F(Y, Y ) contains the identity map for all Y =
⨁︁N

ν=1 Y
[ν];

• F(Y,Z) is a vector space for all Y =
⨁︁N

ν=1 Y
[ν] and Z =

⨁︁N
ν=1 Z

[ν];
• F is invariant under composition with P-affine maps, in the following sense: If
A : Y → U and B : V → Z are P-affine and F ∈ F(U, V ), then B ◦ F ◦A ∈ F(Y,Z),

for all Y =
⨁︁N

ν=1 Y
[ν], Z =

⨁︁N
ν=1 Z

[ν], U =
⨁︁N

ν=1 U
[ν], and V =

⨁︁N
ν=1 V

[ν].

Theorem 5.15. Let F satisfy Assumption 5.14. A partitioned numerical integrator Φ
preserves F-invariants if and only if it is F-functionally equivariant.
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Proof. The proof is formally identical to that for Theorem 2.9. □

Example 5.16. Let F be the class of P-affine maps. It follows that all P-affine equivariant
methods preserve P-affine invariants. In particular, by Example 5.11, affine invariants
F : Y → R depending only on a single component Y [µ] are preserved.

Example 5.17. Let F be the class of all affine maps, irrespective of partitioning. It follows
that P-affine equivariant methods preserve affine invariants if and only if they are affine

functionally equivariant. For PRK methods, as for ARK methods, this holds if b
[ν]
i = bi is

independent of ν. (See Example 5.4 and Proposition 5.5.)

Example 5.18. Let F be the class of quadratic maps that are at most bilinear with respect
to the partition. i.e., terms may be bilinear in y[µ] and y[ν] for µ ≠ ν. For PRK methods, a
sufficient condition for F-invariant preservation, and thus for F-functional equivariance, is

that b
[ν]
i = bi be independent of ν and b

[ν]
i a

[µ]
ij + b

[µ]
j a

[ν]
ji = b

[ν]
i b

[µ]
j for all i, j, and µ ̸= ν. This

is a straightforward generalization of the N = 2 case, cf. Hairer, Lubich, and Wanner [15,
Theorem IV.2.4].

Example 5.19. Let F be the class of all quadratic maps, irrespective of partitioning.
For PRK methods, as for ARK methods, a sufficient condition for quadratic invariant

preservation, and thus for quadratic functional equivariance, is that b
[ν]
i = bi be independent

of ν and b
[ν]
i a

[µ]
ij + b

[µ]
j a

[ν]
ji = b

[ν]
i b

[µ]
j for all i, j, µ, ν. (See Example 5.8.)

5.3. Closure under differentiation and (multi)symplecticity. Finally, we generalize
Theorem 2.12, which allows the functional equivariance results for N -affine and P-affine
equivariant methods to be applied to observables depending on variations.

Theorem 5.20. N -affine and P-affine equivariant methods are closed under differentiation.

Proof. The proof is basically the same as Theorem 2.12, although we need to specify how Φ
is applied to the augmented system

ẋ = f(x), ẏ = f(y), ż =
f(x)− f(y)

ϵ
.

We simply use the same decomposition or partition for each of the three parts. Specifically,
if Φ is N -affine equivariant, then we decompose

f(x) =
N∑︂
ν=1

f [ν](x), f(y) =
N∑︂
ν=1

f [ν](y),
f(x)− f(y)

ϵ
=

N∑︂
ν=1

f [ν](x)− f [ν](y)

ϵ
,

while if Φ is P-affine equivariant, we partition Y × Y × Y =
⨁︁N

ν=1(Y
[ν] × Y [ν] × Y [ν]). The

proof then proceeds as in Theorem 2.12. □

Therefore, the results on symplecticity and multisymplecticity of affine equivariant methods
preserving quadratic invariants also hold for N -affine and P-affine equivariant methods
preserving quadratic invariants. Moreover, since the canonical symplectic form ω = dqi ∧ dpi
and multisymplectic form ω0 = dui∧dpi are bilinear on Y = V ×V ∗, it suffices for an N = 2
partitioned method to preserve only bilinear invariants, as in Example 5.18. This includes
widely used symplectic PRK methods such as Störmer/Verlet and the Lobatto IIIA–IIIB
pair (Hairer, Lubich, and Wanner [15, Sections IV.2 and VI.4]), as well as compositions of
these methods.
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Affine isomorphism equivariant methods

Affine
equivariant
methods

Affine functionally equivariant methods

≡ B-series

≡ constant-coefficient
aromatic B-series

Example: PRK method with b
[ν]
i = bi

≡ variable-coefficient
aromatic B-series

Figure 1. The landscape of equivariant methods.

6. Concluding remarks

We conclude by posing a natural question for future investigation: Which numerical
integrators are affine functionally equivariant? Here is a summary of some related results
that have been mentioned throughout this paper:

• B-series methods are precisely the affine equivariant methods [18], so by Proposi-
tion 2.6, they are included among the affine functionally equivariant methods.

• Aromatic B-series methods are precisely the affine isomorphism equivariant methods
[23]. Since only isomorphsims are considered, the series coefficients may vary
depending on dimY . If the series coefficients are constant across dimensions, then
the method is affine functionally equivariant, as in Remark 2.7. Conversely, variable-
coefficient methods cannot be affine functionally equivariant, since y would then
evolve differently between the original and augmented systems.

• As shown in Example 5.17, partitioned methods may also be affine functionally

equivariant, e.g., a PRK method with b
[ν]
i = bi independent of ν. However, such

methods are generally not affine isomorphism equivariant, e.g., if a
[ν]
ij varies with ν,

so affine functional equivariance need not imply affine isomorphism equivariance.

Figure 1 depicts these relationships among the different classes of “equivariant” methods.
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