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We study presentations of the virtual dualizing modules of special linear groups of
number rings, the Steinberg modules. Bykovskii gave a presentation for the Steinberg
modules of the integers, and our main result is a generalization of this to the Gaussian
integers and the Eisenstein integers. We also show that this generalization does not give

a presentation for the Steinberg modules of several Euclidean number rings.

1 Introduction
1.1 Cohomology
In this paper, we study the cohomology of special linear groups of number rings in large

degrees. Let Oy denote the ring of integers in a number field K with r; real embeddings
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and r, pairs of complex conjugate embeddings. It follows from the work by Borel-Serre
[3, Theorem 11.4.2] (also see e.g., Church-Farb-Putman [6, Section 1.4]) that

r
v, = El((n+1)n—2)+r2(n2—1)—n+1

is the virtual cohomological dimension of SL,(Og), and hence Hi(SLn(OK);(@) = 0 for
i > v,. This does not mean that H"'*(SL,,(Og); Q) # 0O, only that there is some twisted

coefficient system where this group is nontrivial. We investigate the following question.

Question 1.1. For O a number ring, what is the largest i such that Hi(SLn(OK); Q) is

non-zero?

In particular, we seek better bounds on vanishing of rational cohomology than
just the virtual cohomological dimension. See [5, 6, 8, 9, 11, 16-18, 23] for progress on
this question as well as applications of this question to computations in algebraic
K-theory. The main such results are Lee-Szczarba's theorem [17, Theorem 1.3] that
H"(SL,(Of);Q) = 0 for n > 2 and O a Euclidean domain, and Church-Putman's
theorem [8, Theorem A] that H"”‘l(SLn(Z); Q) = 0 for n > 3. Our main theorem extends
Church-Putman’s result to two other number rings: the Gaussian integers Z[i] and

the Eisenstein integers Z[p] with p = %?3

domains, with v, = n? — n.

a 6th root of unity. These are Euclidean

Theorem A. Let Oy denote the Gaussian integers or Eisenstein integers. Then

H" 1(GL,(0g);Q) =0 forn > 2,

H'"1(SL,(0x); Q) =0 forn > 3.

In fact, it suffices to only invert (2n + 1)!, but we restrict to rational statements in the

introduction.

1.2 Dualizing modules

Our strategy for proving Theorem A is to give a presentation for the virtual dualizing
module of the groups GL,(Og) and SL,(Og) and use it to show that the (v, — 1)st
cohomology group vanishes.

Recall that the Tits building 7,,(K) of a field K is the geometric realization of the

poset of non-empty proper subspaces of the K-vector space K™ ordered by inclusion.
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This poset is spherical of dimension (n — 2) [12, 25, 28] and its top reduced homology is
called the Steinberg module and denoted St,,(K). The action of GL,(Of) on 7,,(K) gives
this the structure of a Z[GL,,(Og)l-module. Borel-Serre [3, §11] proved that for O the
ring of integers in a number field K, St,,(K) is the virtual dualizing module of K. That is,

there is a natural isomorphism
H" 7Y (SL,,(Og); Q) —> H;(SL,(Og); St,,(K) ® Q).

Thus, to show H""‘l(SLn(OK); Q) =0, it suffices to show H, (SL,(Of); St,,(K) ® Q) = 0.
This will be done by finding a presentation of the relevant Steinberg modules.
For O an integral domain, let Byk,(O) denote the quotient of the free abelian group on

symbols [[‘71, ..., 7,1, with (71, ..., v, an ordered basis of O", by the following relations:

(1) [vy,..., V]l = sgn(@)llv, .., Vsl for o a permutation of {1,...,n} and
sgn(o) its sign.
2) vy, vy,...,v,]l = [luvy, vy, ..., v,]l for u a unit in O.

(3) [[‘71,‘721 ‘_}3/ LR 1‘7”]] - [[‘71 + ‘_}21 ‘_}21 ‘_}3r- .. I‘_}n]] + [[‘71 + ‘_}2/ T_}1/ ‘_}31 o.. r‘_}n]] = O

The symbols [[Vy, ..., V,]] are sometimes called modular symbols. Letting A € GL,,(O) act
on a symbol [V, ..., v,]1 by [[AV,,...,AV,]] gives Byk, (O) a Z[GL,,(O)]-module structure.

>

Let K denote the field of fractions of . Given an ordered basis t71,...,vn,
the subposet of subspaces of K" that are spanned by a non-empty proper subset of
Vy,...,V, is isomorphic to the barycentric subdivision of dA™ ! and thus realizes to
an (n — 2)-dimensional sphere with canonical orientation. These spheres are called
apartments and sending [[171, ... ,F/n]] to the fundamental class of the apartment gives

a homomorphism of Z[GL,,(O)]-modules
Byk, (0) — St (K).

Bykovskii [4] proved that Byk, (Z) — St,(Q) is an isomorphism. If Byk, (O) — St,(K) is
an isomorphism, we say the generalized Bykovskii presentation holds for O. That the
Bykovskii's presentation holds for Z is the key ingredient in Church-Putman's vanishing
result for H"»~1(SL,,(Z); Q). We investigate the following question and give a partial

answer:

Question 1.2. For which number rings does the generalized Bykovskil presentation
hold?

Theorem B. Let Oy denote the Gaussian integers or Eisenstein integers, and K its
field of fractions. Then Byk, (Of) — St,(K) is an isomorphism of Z[GL,,(Og)]-modules

for all n.
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10350 A. Kupers et al.

Theorem A follows quickly from Theorem B. Surjectivity of the map Byk, (O) —
St,,(K) follows from work of Ash-Rudolph [1, Theorem 4.1] whenever O is Euclidean.
In fact, for number rings O, the generalized Riemann hypothesis implies that
Byk, (Or) — St,(K) is surjective if and only if Oy is Euclidean [23, Corollary 1.2].
One might think that the generalized Bykovskil presentation holds for all Euclidean

number rings, but this is not the case.

Theorem C. Let Oy be the ring of integers in K = Q(v/d). Assume Ok is a Euclidean
domain that is not additively generated by units. Then the map Byk, (Oy) — St,(K) is

not injective for all n > 2.

Norm-Euclidean number rings satisfying the hypothesis of this theorem have
been classified and are @(ﬁ) for d ¢ {-11,-7,-2,6,7,11,17,19,33,37,41,57,73};
see Remark 3.29. Thus there are many examples of Euclidean number rings where
the generalized Bykovskil presentation fails. In fact, we give a more general result

(Theorem 4.13) allowing the reader to possibly find more examples.

Remark 1.3. The main technical result is that certain simplicial complexes of “aug-
mented partial frames” are highly connected. This has applications in a forthcoming
paper [15] on homological stability for general linear groups of certain Euclidean

domains.

2 Elementary Properties of the Gaussian Integers and Eisenstein Integers

In this section, we establish some elementary properties of the Gaussian integers and
Eisenstein integers. These properties are the primary reason that the proof of Theorem A

in this paper only applies to these rings.

Notation 2.1. Let Ok denote the Gaussian integers or Eisenstein integers. We will pick

preferred ring generators for each ring,

Gaussian integers : i,

. o 1.
Eisenstein integers : p=eb = 2 +1

The latter is not the conventional choice of an additive generator for the Eisenstein

integers, which is more typically p? = e . See Figure 1.
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(A) The Gaussian integers. (B) The Eisenstein integers.

Fig. 1. The additive generators and the units in Og. (A) The Gaussian integers. (B) The Eisenstein
integers.

With this notation, observe that the complex norm is given as follows,

Gaussian integers : Ix + iy|? = x% + y? (x,y € R),

1
Eisenstein integers: |x+ py|? = |x+ E(l +iV3)y|?=x*+xy+y> (x,y €R).

The complex norm is a Euclidean function for Oy the Gaussian integers or
Eisenstein integers. That is, given a,b € Ok with |b| > 0, then there is a g € O with
la — gb| < |b|. Moreover, this function is multiplicative in the sense that |ab| = |a||b|. We

now prove some key lemmas.

Lemma 2.2. Let Oy be the Gaussian integers or Eisenstein integers. Let a, b € O with

|la| = |b| > 0. Then there is a unit u with |a — ub| < |a|.

Proof. Pick u such that the angle between a and ub is less than 7 /3. It is an elementary

exercise in trigonometry to see that |a — ub| < |a|. |

Convention 2.3. Let H be a group and S a set of generators. In this paper, the
term Cayley graph for H with generators S means the undirected graph with vertices
elements of H and an edge between h and g if and only if they differ by left
multiplication by an element in S. In particular, if s and s~! € S, then the Cayley
graph for H with generators S agrees with the Cayley graph for H with generators
S\ {s71}.
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(A) Eisenstein integers within complex distance 2 (B) An instance of a ball B, containing 0 and p+ 1.

of the origin.

Fig. 2. (A) Eisenstein integers within complex distance 2 of the origin. (B) An instance of a ball B,

containing 0 and p + 1.

Lemma 2.4. Let Oy be the Gaussian integers or Eisenstein integers. Let G be the Cayley
graph of O with units as generators. Let z € C and let G, be the full subgraph of G on

vertices x with |x — z| < 1. Then G, is connected.

Proof. Consider the open ball B, of radius 1 centered on the point z € C. This ball
must contain at least one element of Ok, and without loss of generality we may assume
it contains 0.

We will first consider the case where O is the Eisenstein integers. Any other
element of Oy in B, must have distance < 2 from the origin. There are only twelve such
points, as shown in Figure 2a. Six of these (colored dark gray) are joined to 0 by an edge,
and the other six (colored light gray) are distance 2 from the origin in the edge metric
on the Cayley graph.

Up to symmetry, then, it suffices to assume that both 0 and p + 1 are contained
in B, and show that either p or 1 must be contained in B,. See Figure 2b. In this case, z

must be contained in the intersection By N B as in Figure 5a. But this intersection is

+1
contained in the union B, U B, as in Figure gb. Hence pe B, or1 € B,.
Next suppose Ok is the Gaussian integers. There are only eight points other than
0 that could be contained in the ball B,, as in Figure 4.
It suffices to check that, if 0 and i + 1 are contained in B,, then so is one of i or
1. But ByNB;,, € B; UB;, as shown in Figure 5.

The result follows. .

€202 1990)0 6z U0 3senb Aq 8005919/ 7€01/€L/220Z/3I01e/ulWI/Wod dno olWwapede//:sdRy Wwoly papeojumoq



Bykovskii Presentation of Steinberg Modules 10353

(A) The intersection By N Bpy1. (B) The containment By N By+1 € B, U By.

Fig. 3. (A) The intersection Bg N B, 1. (B) The containment BN B,;1 S By UBj.

.
O

4 (©] (©] ] 3 O @ .
(A) The intersection Bo N Biyi. (B) The containment By N B;+1 C B; U By.

Fig. 5. Gaussian integers within complex distance 2 of the origin. (A) The intersection By N B; .
(B) The containment Bo N B;;; S B; UB;.
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Fig. 6. The region S and its translates S+i,S+1,S+i+ 1.

Lemma 2.5. Let O be the Gaussian integers. If z; and z, are any complex numbers,

then there exist r;,r, € O so that

lzy =1l <1, |z -1yl <1, and |(zy —1))+ (25 —1y)| <1

Proof. Up to the addition of elements of O, we may assume that z;, z, are contained
in the set

S=[ZGC'_—1§Re(z)§ ;lflm(z)fl]’
2 2 2

1
Er
the closure of the square fundamental domain for Oy centered around zero in Figure 6.
The sum z, +z, must have both real and imaginary parts in the interval [-1, 1], so
the sum is contained in S or in one of its eight translates shown in Figure 6. If |z; +2z,| <
1, then we are done, so suppose otherwise. Up to symmetry, we may consider two cases:
(zy+2zy) e(S+1)or(z; +2zy) €(S+1+19).
First suppose that (z; + z,) € (S+ 1). This means that at least one of z; and z,
(say, z;) must have real part at least }—L. Then we will replace z; by (z; —1). By assumption
-1

-3 —1
— < Re(z; — 1)< — — <Im(z, — 1) <
Z = (2, )_2 7 = (zy -1 =<

N | =

and so (z; — 1) lies in the rectangular region shown in Figure 7. The number (z; — 1) is

(@) -

see Figure 7. But now ((z; — 1) + z,) is contained in S and therefore in the unit ball, so

contained in the unit ball, as

we have completed this case.
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Fig.7. The regions containing z; and (z; — 1) are shaded gray and dark gray, respectively. The

region containing (z; + z») is white.

AT AT
\

/

|1
(A) The regions containing z; and (21 — 1 — %) (B) The regions containing z2 and (z2 — ¢) are
are shaded gray and dark gray, respectively. shaded gray and dark gray, respectively. The
The region containing (z1 + z2) is white. region containing (z1 + z2) is white.

Fig. 8. (A) The regions containing z; and (z; — 1 — i) are shaded gray and dark gray, respectively.
The region containing (z; + zg) is white. (B) The regions containing z, and (z —i) are shaded gray
and dark gray, respectively. The region containing z; + z, is white.

Now suppose that (z; + z,) € (S+ 1 +1). Again we may assume that z; has real
part at least }—L, and again we know |z; — 1| < 1. If |z; — 1 —i|] < 1, then we could replace
z, by (z; — 1 — i), and the sum (z; — 1 — i) + z, would be contained in S. So suppose
|zy —1—1| > 1. See Figure 8a. In this case we will replace z; by (z; — 1) and z, by (z, — 1),
and then

(z, -1+ (z,—D) €S

is contained in the unit ball as desired. It remains to show that |z, —i| < 1.
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Assume for contradiction that |z, —i| > 1, so z, is contained in the region shown

in Figure 8b. This assumption implies in particular that

V3

Im(z,)) <1— —.
(zy) < 2

The assumption that |z; — 1 —i| > 1 implies that

V7

Im(z,))<1— —,
(z)) < 1

as we see in Figure 8a. But then

V3 V7)1
Im(zl+ZZ)S(I_T)+(1_T)< 2

which contradicts the premise that z; + z, is contained in the region (S+ 1 + 7). So we

conclude that |z, —i| < 1, which concludes the proof. |

Lemma 2.6. Let Oy be the Eisenstein integers. If z; and z, are any complex numbers,

then there exist ry,r, € O so that
|lzy =1l <1, |zy—1ryl <1, and |(z; —1r)+ (2, —1y)| < 1.

Proof. Consider the rectangular fundamental domains for O shown in Figure 9a. Up
to the addition of elements of O, we may assume that z; and z, are in (the closure of)

the fundamental domain centered about zero,

Sz[ze(C —V3 ﬁ]

, — <Im(z) < —
4 — ()_4

N| —

-1
— < Re <
7 = (2) <

The region S is shaded medium gray in Figure 9a. Observe that |z, |, |z,| < 1.
By symmetry under reflection in the real and imaginary axes, we may assume
that Im(z;), Re(z;) > 0. Thus z, is in the quadrant shaded dark gray in Figure 9b, and

V3

-1 —+/3
TSRe(ZI—i_ZZ)S]" Tflm(zl‘i‘Zz)ST

We deduce that the sum (z; +z,) must be contained in the rectangle shown in Figure 10a.
If |z, +2z,| < 1 then we are done, so assume otherwise. In this case, either z, +z, =

p —1,0r (z; + z,) is in one of the regions A or B shown in Figure 10b.
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// \<>1
Nap%

A

~
N

(A) The unit circle and a rectangular funda-
mental domain for Ok along with six of its
translates.

(B) We may assume z; is in the dark gray
region.

Fig. 9. (A) The unit circle and a rectangular fundamental domain for Og along with six of its
translates. (B) We may assume z; is in the dark gray region.

=1 £ X =1 £ X
A
1 1
B
" // s s /a/ s
(A) The sum z1 + 22 is contained in the (B) The region A is shown in dark gray and

rectangle B in medium gray

Fig. 10. (A) The sum z; + z5 is contained in the rectangle. (B) The region A is shown in dark gray

and B in medium gray.

If z, + z, = p — 1, then we must have the extremal values of z; and z, given by

z; =(%§)i and z2=_%+(§)i,

as shown in Figure 11a. In this case both z; and z, + z, are strictly within distance 1 of

p — 1. We may then replace z, by (z; — p + 1), so

lzy,—p+1] <1 and [(zy—p+1)+2,]=0<1.
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p—1 p Y op—1 r
A
Z9 21 1
(A) The case z1 + 22 =p—1 (B) The case z1 + 22 € A

Fig. 11. (A) The case z; + zp = p — 1. (B) The case z] + zg€A.

Next suppose z; + z, € A. Necessarily z; # 0, otherwise z; + z, = z, would have
norm strictly less than one. But then both z, and z; + z, are within strict distance 1 of

p, as in Figure 11b. We may replace z; with z; — p, so
|z, —pl <1 and [(zy — p)+ 25| < 1.

Finally, suppose that z; + z, € B. It follows that

V13

1
Re(z Zy) > ——— > —,
(z; +25) > 2 2

This implies that Re(z;) > }1 for at least one choice of i = 1,2, so z; is contained in the
dark gray region in Figure 12. But then both z; and z, + z, are within distance strictly

less than 1 of 1, as in Figure 12. We may replace z; with z; — 1, and
|z, =1 <1 and lz, +z, — 1] < 1.

This concludes the proof. |

3 Connectivity Results

Our results will be a consequence of connectivity/non-connectivity results for com-
plexes of augmented partial frames. These complexes were introduced by Church-
Putman [8] to give a topological proof of Bykovskil's presentation of St,(Q). The original

proof used more algebraic methods [4].
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1

IB
CN DL

Fig. 12. The case z] + z3 € B. The region of S with real part at least é is shaded dark gray.

3.1 Definitions and previously known results

We say that a simplicial complex is d-spherical if it is simultaneously d-dimensional
and (d — 1)-connected, in which case it is homotopy equivalent to a wedge of d-spheres.
A simplicial complex is Cohen-Macaulay of dimension d if it is d-spherical and the
link of every k-simplex is (d — k — 1)-spherical. We follow the usual convention that
(—1)-connected means non-empty. An example of a Cohen-Macaulay complex is the Tits

building:

Definition 3.1. For a finite-dimensional vector space V over a field K, let 7 (V) denote
the geometric realization of the poset of proper non-empty subspaces of V ordered by
inclusion. When V = K", write 7,,(K) for 7(K") and call it the nth Tits building of K.

The following theorem seems to have first appeared in Solomon [28] for finite

fields; see Garland [12, Theorem 2.2] and Quillen [25, Theorem 2] for the general case.

Theorem 3.2 (Solomon-Tits). For K a field, 7,,(K) is Cohen-Macaulay of dimension
(n — 2).

Since 7,,(K) is (n — 2)-spherical,

St, (K) = H,_,(T,,(K))

is the only possible non-zero reduced homology group, called the nth Steinberg module.
It may be helpful to remark that for O a Dedekind domain with field of fractions K, there
is a natural bijection between summands of O" and subspaces of K"; see for example,
Church-Farb-Putman [6, Lemma 2.3].
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3.1.1 Partial frames

We now recall the definition of the complexes of (augmented) partial frames. The
complex of partial frames is closely related to the complex of partial bases considered
(for example) by Maazen [19] and van der Kallen [30] in the context of homological
stability. See Church-Farb-Putman [6] and [23] for a discussion of the relationship
between the complex of partial bases/frames and generators of Steinberg modules. From

now on, we let O denote an integral domain.
Convention 3.3. In this paper, a line in O™ will mean a rank one free summand.

Definition 3.4. A vector v € O" is called primitive if its span is a direct summand. In
that case, we denote its span by v. Similarly if v is a line, we let v denote a primitive
vector that spans that line. The vector v is well defined up to multiplication by a unit
of O.

Definition 3.5. A partial frame is an unordered collection of lines vy, ..., v, in O™ such
that there are lines v,,.;,...,v,_; so that the natural map vy @ ---®v,_; — O" is an
isomorphism.

Definition 3.6. Let M be a finite-rank free O-module. The complex of partial frames
B(M) is the simplicial complex with p-simplices given by the set of partial frames in
M of cardinality p + 1. A simplex {WO,...,Wq} is a face of {VO,...,Vp} if and only if
{wg, ..., q} C{vy,---, p}. We write B,,(O) for B(O™).

We consider O™ as a submodule of O™'" by the inclusion of the 1st m
coordinates, and let e, ..., e,, denote the lines spanned by the standard basis vectors of
O™, As in Church—Putman [8, Definition 4.1], we use the shorthand

Bg(O) = Linan+m(O) (el, ey em).

Observe that B9 (0) is equal to B,,(O).

Theorem 3.7. If O is a Euclidean domain, then the simplicial complexes B'(O) are

Cohen-Macaulay of dimension (n — 1).

We prove this theorem using Maazen [19], though it can also be established by
adapting the techniques of Church-Putman [8, Theorem 4.2], who prove it O = Z.
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Proof of Theorem 3.7. Since the link of a p-simplex in BJ}*(O) is isomorphic to

m+p+1
Bn—p—l

(0), it suffices to show that the complexes B}*(O) are (n — 2)-connected. Let
B(0O), denote the semi-simplicial set of ordered partial frames. That is, B:’f((’))p is the
set of ordered (p + 1)-tuples (v, ..., ») with underlying set {vy,..., pl @ p-simplex of
B'(O). The ith face map forgets the ith line. By [14, Lemma 3.16], it suffices to show
B(0), is (n—2)-connected. Let 0}}(0), denote the semi-simplicial set of ordered partial
bases. That is, O7'(0),, is the set of ordered (p + 1)-tuples (Vo - - .,17p) with {vg, ..., vy}
a p-simplex of B*(O). As before, the ith face map forgets the ith vector. Maazen [19,
Section I11.4, Theorem 4.2, and Corollary 4.5] proved that the barycentric subdivision of
[0 (O),| is (n — 2)-connected and hence [|07}(O),]| is (n — 2)-connected. Consider the

natural projections:

07/(0), — B (0),

(Vor V1r-- -, {7p) > (span(vy), span(v,), ..., span(?/p)).

By picking a representative v for all lines v, one can construct a splitting of this map;
see [23, Proposition 2.13]. Thus, [|BJ*(O),|| and hence BJ}(O) is (n — 2)-connected. |

3.1.2 Augmented partial frames
One of the innovations of Church-Putman [8] is the introduction of a simplicial complex
of augmented partial frames, obtained by adding new “additive” simplices to BJ'(O).

These correspond to certain relations in Steinberg modules.

Definition 3.8. An augmented partial frame is an unordered collection of lines
Voo i Vp such that, possibly after re-indexing, vy, ... "V is a partial frame and there

are units u,, u, in O so that vy = u;v; + u,v,.

Definition 3.9. Let M be a finite-rank free O-module. The complex of augmented
partial frames BA(M) is the simplicial complex with p-simplices given by the union of
the set of partial frames in M of cardinality p + 1 and the set of augmented partial
frames in M of cardinality p + 1. A set wy,... Wy is a face of v, ... Vp if and only if
{wg, ..., Wq} C{vy, ... ,Vp}. We generally write BA,, (O) for BA(O™).

We adapt the following notation from Church-Putman [8, Definitions 4.7 and
4.11].

€202 4890)00 6¢ uo }sanb Aq 800591 9/L€01/€1/220z/2101e/ulwI/WOod dNo"olwepede//:sdiy Wwolj papeojumo(q



10362 A. Kupers et al.

Definition 3.10. Fix n > 0. Let BAJ}(O) be the full subcomplex of

Linkg, . oy(€1,... €p)
of simplices vy, ..., v, such that v; Z span(e,,...,e,,) forall i.
Definition 3.11. Foro = {wy,..., Wal, let mBAT(O) (o) denote the full subcomplex of
LinkBAZL(O) (0) of simplices {vg,..., ) such that for all i,
v, Z span(él,...,ém,ﬁfo,...,ﬁ/q).
Observe that BAJ}(O) is equal to mBAn+m(O)(el, ....ey). The span of the lines

in a p-simplex {VO,...,Vp} of BA*(O) has rank p + 1 or p. The following definition,

analogous to [8, Definition 4.9], describes the latter type of simplices:

Definition 3.12. Leto = {vy,... ' Vpl be a p-simplex of BAJ}(O).

(i) We say o is an internally additive simplex if v, = u; v + ujflj for some i,j, k
and some units uy, u; in O.

(i) We say o is an externally additive simplex if v; = u;€; + u;v; for some
i,j,k and some units uy, u; in O. More generally, if o is a simplex in
LinkBAW(O)({WO, ..., Wp}), we say that o is an externally additive simplex
if v; = uy vy + uw for some units uz, u in O, and primitive vector w spanning
€1/ 1€y W, ..., Wpy_y OT W,

p
(iii) We say that a simplex is additive if it is externally or internally additive.

We will need a subcomplex of certain links with control on the last coordinate:

Definition 3.13. Let f: O"™ — O denote the projection onto the last coordinate. If
O comes equipped with a preferred multiplicative Euclidean function |—|, we let F(v) =
|f ()| for v a line spanned by v. This is well defined since |—| is multiplicative. If O is the
Gaussian integers or Eisenstein integers, we will take |—| to be the usual norm on the
complex numbers, |a + bi| = Va? +b2. We will occasionally denote |f (V)| by F(v) instead
of F(v).

Definition 3.14. Let o be a simplex of BA*(O). Then

LinkEAW(O) (o)
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denotes the full subcomplex of IﬁBAW(O) (o) consisting of lines v such that there is a

vertex w in o with F(v) < F(w). Similarly define

Linkgm ©)(@) and Link; AT (O) (o)

for simplices o in B(O) or BA*(O), respectively.
We can deduce a connectivity result for the latter complex from that for B} (O).

Lemma 3.15. Let O be a Euclidean domain and let o be a simplex in BJ*(0). Assume
that F(w) > 0 for some vertex w in o. Then Lin EW(O)(O') is Cohen-Macaulay of

dimension (n — dim(c) — 2).

Proof. For a simplex 7 in Linkgn ©(@),
. S
LkainkE;p(O)(")(T) = Linkpm o, (0 % 7),

where * denotes simplicial join; this uses the assumption that for all v € 7 we have
F(v) < F(w) for some w € o. Our goal is therefore to show that Linkgr,?(o) (o) is (n —
dim(o) — 3)-connected.

This result is proved in the case O = Z in Church-Putman [8, Lemma 4.5], and
their proof adapts readily to all Euclidean domains. For completeness, we sketch a proof

here. Given Theorem 3.7, it suffices to show that there is a simplicial retraction
7 : Linkgm ) (0) — Linkgmo) (o).

Let x be a vertex of ¢ with M = F(x) maximal among the vertices, and fix a
representative vector x. We define the map = on vertices of Linkgm (o) as follows.
Forv e LinkBgL(O) (o), choose a representative v € O™, and let g, € O be a quotient of
f(¥) on division by f(x), in the sense of the Euclidean algorithm. If F(V') < F(X) we take

q, = 0. Then by construction
0 <F(-gq,x%) <FX) =M.

We can thus define 7 (v) to be the line spanned by (v—q,%). It is straightforward to verify
that this map on vertices extends over simplices in LinkBW(o) (o), and fixes simplices in
Linkn o, (@). n
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10364 A. Kupers et al.
3.2 New connectivity results

By modifying the proof of Church-Putman [8, Theorem C’], we will prove the following.

Theorem 3.16. For O the Gaussian integers or Eisenstein integers, the simplicial
complexes BA'(O) are Cohen-Macaulay of dimension n for all n and m satisfying

n>1landn-+m> 2.

Recall BA,,(Og) = BA%(Og) so the above theorem implies BA,,(O) is spherical.
3.2.1 Low-dimensional cases
Before we can prove that BA' (Og) is Cohen-Macaulay for general n and m, we will first
need to study small values. The argument will be by induction, and the following will

be the base case.

Lemma 3.17. Let m > 1. Then BA*(0) is connected if and only if O is additively

generated by multiplicative units.

Proof. An (m+1)-simplexinBA,, ;(O) containinge,,e,,...,e,, is an augmented frame

for O™+ of the form

{e;.ep....e,. X, ¥}

where {&, ..., &,,, X} is a basis for O™*!, and § = u; X + u,€; or y = u,€; + u,é; for some
i,j and some units u,, u, € O. By definition BAT'(0) is the subgraph of the edges {x,y}
on those lines x, y described above that are not contained in O™.

In particular, the vertices of this graph are the spans of vectors of the form
(X1,....X,,, 1) with x; € O; these vertices may be uniquely represented by a vector with
(m + 1)st coordinate equal to 1, and the other coordinates may be any values in O™.
There is an edge from (x,,...,x,,,1) to (y;,...,¥,,. 1) if and only if there is an i such that
x; = y; for all j # i and x; — y; is a unit. See Figure 13. There is therefore a path from

(X1,...,%y, 1) to (yy,..., ¥y 1) if and only if each value x; — y; is a sum of units. The

1

claim follows. [ |

As illustrated in Figure 13, if O is additively generated by units, then BAT*(O)
is the Cayley graph for the additive group O™ associated to the generating set

{ué; |luaunit,i=1,..., m}.

Proposition 3.18. Let Oy denote the Gaussian integers or Eisenstein integers. Then

BA,(O) is Cohen-Macaulay of dimension 2.
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{0

Fig. 13. Part of the complex BA%(Z).

Proof. For BA,(Og) to be Cohen-Macaulay of dimension 2, no condition is imposed
on the link of 2-simplices. The link of a 1-simplex {v,,v,} always contains the vertex
span(v; + v,), so is (—1)-connected. The link of a vertex v is isomorphic to BA}(Oy),
which is 0-connected by Lemma 3.17 since O is additively generated by units. Thus it
remains to show that BA,(Oy) is 1-connected.

First observe that BA,(Oy) is 0-connected since its 1-skeleton is B,(Og), which
is connected by Theorem 3.7. Now suppose ¢: S! — BA,(O) is a simplicial map with
respect to some simplicial structure on S!. Our goal is to show that ¢ is homotopic to a
constant map.

Let

M = max sl{F(¢(X))}'

vertices xe

Here F is as in Definition 3.13. If M = 0O, then ¢ is the constant map at e;. Hence assume
that M > 0 and that ¢ is not constant. We will prove that ¢ can be homotoped to a map
¢ having one less vertex mapping to a line w with F(w) = M. As it is not constant, by
collapsing edges, we may assume that ¢ is simplex-wise injective. Pick a vertex x € S*
with F(¢(x)) = M. Let x; and x, be the vertices adjacent to x, and let ¢(x) = w and
¢ (x;) = v; denote the images in BA,(Og).

We will homotope ¢ to make the vertices adjacent to x have last coordinate < M,
if they do not already. So suppose without loss of generality that F(v;) = M. By Lemma

2.2, we can find a unit u with F(v; — uw) < M. Since we assume that ¢ is simplex-wise
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10366 A. Kupers et al.

injective, v; # w and hence ¥, — uw # 0. Let v] denote the span of v; — uw and note
that {v,, v}, w} forms a simplex in BA,(O). Thus, there is a homotopy H, with:

HO - ¢,

H,(y) =¢(y) fory e S! not in the interior of {x;,x},

H, is a simplicial map from S' with the edge {x;,x} subdivided once and

with middle vertex being mapped to v;.

Since F(v}) < M, we see that ¢ is homotopic to a simplicial map where one of the vertices
adjacent to x has last coordinate smaller than M. If necessary, we can also apply this
procedure to v,.

Thus, we may assume that the images of vertices adjacent to x are v;,v, €

Linkle2 Ok) (w). Pick representatives v; and w. The vertices of

Link§A2(0K> (w)

are precisely the spans of vectors of the form v, +aw with a € O such that F(v, +aw) <

F(w) = M, equivalently, such that

fw)
fw)

+al <1.

There is an edge between the span of v, + aw and the span of v, + bw if and only if

a — b is a unit. Thus, LinkEAz(OK)(W) is isomorphic to the graph G, of Lemma 2.4 for

z = —f(v)/f(W). Hence, that lemma implies it is connected. Let A = S° denote the set

containing x; and x,. Since the target is connected, the map

is null-homotopic. Let

g: Cone(4A) — LinkEAz((’)K)(W)

be a null-homotopy from a choice of simplicial complex structure on Cone(A); note that

such a simplicial structure is just a subdivision of an interval. See Figure 14a.
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Cone(A)

Sl

(A) The cone on A (B) The complex Z ~ S* (¢) The image of ¢

Fig. 14. Sample illustrations of the homotopy between ¢ and $. (A) The cone on A. (B) The complex
Z ~ 8. (C) The image of ¢.

Let Z be S! with simplicial structure given by replacing {x;,x} U {x,x,} with
Cone(4A), as in Figure 14b. Let b:Z— BA,(Og) be given by the formula:

¢(y) if yeZ\Cone(4),

gy) if y € Cone(4).

Observe that ¢ maps {x;,x} U {x,x,} into Starg,, o, (W), $ maps Cone(4) into
Starp,, o) (W), and both maps agree on A. See Figure 14c. Thus, ¢ and ¢ are homotopic.
The new map ¢ maps one fewer vertex to a vertex realizing the value M. Iterating this

procedure produces a map with image contained in the star of e,. ]

The following lemma is well known. See Section 4.1 for a review of some notation
related to posets. When we refer to the connectivity of a poset we mean the connectivity

of the geometric realization of its nerve, and similarly for maps between posets.

Lemma 3.19. Letp: X — Y be a map of simplicial complexes with ¥ Cohen-Macaulay
of dimension n. Suppose for each simplex o of Y the inverse image p~! (o) is (dim(o)—1)-

connected. Then X is (n — 1)-connected.

Proof. Let simp(X) be the poset of simplices of X, ordered by inclusion, and similarly
for simp(Y). Then p induces a functor simp(p): simp(X) — simp(Y) and there are

homeomorphisms making the following diagram commute:

simp(X)] ——— X

ISimp(p)J k”

lsimp(Y)| ——— Y-
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10368 A. Kupers et al.

These homeomorphisms are just the standard homeomorphisms between a simplicial
complex and its barycentric subdivision. Thus it suffices to prove that |simp(p)| is n-

connected. We now apply [31, Corollary 2.2] (also see [13, Theorem 4.1]): a map
fiX—Y

of posets is n-connected if there is a function ¢t: Y — Z so that for all y € Y we have
Y, = {y eY |y >y}is (n—t(y) — 2)-connected,
fly ={xeX|f(x) <y}is (t(y) — 1)-connected.
Here we take n as in the hypothesis, and t(o) = dim(o). Then simp(p)/o is simp(p~1(0)),
which by assumption is (dim(c) — 1)-connected. Similarly, simp(Y). , is simp(Linky(0)),

which is (n — dim(o) — 2)-connected because Y is Cohen-Macaulay of dimension n. H

Proposition 3.20. Let Of denote the Gaussian integers or Eisenstein integers. Let w

be a line in 013{ with F(w) > 0. Then LinkgAa(OK)(w) is 1-connected.

Proof. Let w,, w, be lines with {w,, w,, w} a simplex in B3(O). Let L: 0% — w; @ w,

be given by
L(aVT/l + bVTfZ + CVT/) = aVT/l + bVTfZ

If aw, + bw, + cw spans a line in the link of w, then aw; + bw, spans a line that only
depends on the line spanned by aw, +bw,+cw. We will show that L induces a simplicial

map
p: Link§A3(OK)(W) —> BA(w; ® wy)
given by sending the span of aw, + bw, + cw to the span of aw, + bw,.

Claim: p is a simplicial map

Since the span of aw, + bw, + cw is a vertex of Linkg,, o,,(w), the span of
aw, + bw, + cw is not w and so aw, + bw, is nonzero. In fact, aw, + bw, spans a line.
Thus the formula for p produces a map on sets of vertices.

Now we check that it extends to a simplicial map, starting with 2-simplices. Let
(v, vy, V) € LinkEAB(OK)(W)

be an internally additive 2-simplex in the sense of Definition 3.12. Reorder and pick

representatives so that v, = v, + V,. Since {v,v,} is an edge of Linkg,, ¢,,(w) and
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{vg, v, V,} is internally additive, w,v,, v, are a partial frame and thus p(v;),p(vy) is
also a partial frame. Since L is linear, L(vy) = L(v;) + L(v,). Thus, {p(vy), p(v;), p(v,)}
forms a simplex in BA(w; & w,).

Next, let

{vo, v1, v} € Linkg, o) (W)

be an externally additive 2-simplex. Pick representatives and reindex so that vy = v} +w.
Then p(vy) = p(v¥}), and p maps {v{, v}, v4} to {p(v}), p(v,)}, which forms a 1-simplex in
BA(w, @ wy). Since every simplex of Linkgy, o~
types of simplices, we have checked that p is a simplicial map.

)(W) is contained in one of these two

Proposition 3.18 implies that BA(w; @ w,) is Cohen-Macaulay of dimension 2.
Thus, to apply Lemma 3.19 to p with n = 2, it suffices to show the fiber over a simplex

o € BA(w; ® wy) is (dim(c) — 1)-connected.

Claim: If dim(o) = 0, then p~1(0) is (—1)-connected (in fact, connected)

Let o = {v,}. Fix a representative v, spanning v, and w spanning w. Note that p~!({vy})
has vertices of the form v, + aw such that a € Op and F(v, + aw) < F(w). There is
an edge between v, + aw and v, + bw if and only if @ — b is a unit. The constraint

F(Vy + aw) < F(w) is a constraint on a equivalent to the condition that

F (V)
f)

< 1.

‘a—i—

Thus, p~!({vy}) is isomorphic to a subgraph of the Cayley graph of Or with units as
generators. Specifically, p~!({v,}) is the subgraph on those vertices contained in the
open ball of radius 1 (in the complex metric) around the complex number —f(v,)/f (W).

This subgraph is 0-connected by Lemma 2.4 and hence is also (—1)-connected.

Claim: If dim(o) = 1, then p~!(0) is connected (in fact, 1-connected)

Let 0 = {vy, v;}. Then the vertices of p‘l({vo,vl}) are lines spanned by vectors of the
form

Vo+aw, v;+bw

with a,b € Ok subject to the condition that F(v, + aw), F(v; + bw) < F(w). The edges

correspond to pairs of these vectors of the form

Vo +aw, v, +bw}, {Vy+aw, vy+ (@a+ww}, (v, +bw, v, + b+ ww}
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with u a unit in Og, and the 2-simplices correspond to triples of these vectors
(Vo +aw, v, +bw, v+ (@ +ww}, (Vy+aw, v, +bw, v; + b+ ww},

with u a unit. Notably, p~!({v,, v;}) is the 2-skeleton of the join of p~! ({vy}) and p~1 ({v; }).
Since p~1({vy}) and p~!({v;}) are connected, p~!({vy, v;}) is 1-connected and hence 0-
connected.

Claim: If dim(o') = 2, then p~!(0) is 1-connected

Let 0 = {v,, v, V,}, so o is necessarily an augmented frame. Let
X=p (vo D UP (Vo oD Up ™ (v, Vo)) S P~ ({vo, vy, VD).
Since X contains the 1-skeleton of p_l({VO, Vi, VD),
(X, X9) — m;(p " (v, vy, Vo)), Xo)
is surjective for i = 0,1 and all basepoints x;. Observe that
p ' dvi,vh np T vy vie) =p~ (v

if j # k, and the inclusions of the intersection into each term is the inclusion of a
subcomplex. This implies that X is connected and hence so is p‘l({VO, V1, Vo)),

Our next goal is to pick basepoints x; € p~!({v;}) such that {x,, x;,x,} forms a
simplex in p~1({vy, v, v,}). Pick representatives for v; and w such that v, = v, + v,. As
noted before, a representative for a line in p~!({v;}) is a vector of the form v, + r;w with
r; € Og such that

f)
r; + —| <
b fw)
By Lemma 2.5 and Lemma 2.6 applied to z; = —ff('é;)) and z, = —J}((Zf)), we see that we can

find ry, ry, ry, with ry = r; +r, and with
x; :=span(v,+r;w) e p *({v;})) fori=0,1 and2.
Since

(Vo + roW) = (V] + 1 W) + (Vy + ryw),
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Fig. 15. A schematic of a generator of 71 (X, xq).

the lines {x,, x;, x,} form a simplex.

Since each p~!({v;, vih is 1-connected and each p~!({v;}) is O-connected, a
groupoid version of the Seifert-van Kampen theorem (see e.g., May [20, Chapter 2,
Section 7]) implies that =, (X, xy) is generated by any loop that is a concatenation of

a path y,; in p~1({vy, v;}) from x, to x;,
a path y;, in p~'({vy, v,}) from x; to x,,
a path y,g in p~1({vy, v,}) from x, to x;.
Pick each of these paths from x; to x; to be the edge from x; to x;. See Figure 15. Our

specific choice of x,, x;, x, from the previous paragraph then implies that

m (X, x9) —> nl(p_l({VOI V1. Vol Xg)
is the zero map since {x,, x;, x,} forms a simplex. Since 7, (X, xy) — 7, (p~! (v, V1, Va}, Xg)
is also surjective, this implies that 7, (p~!({vy, v;, v,}), x;) is trivial. Since we already

showed that p~!({v,, v;, v,}) is connected, this completes the argument. |

3.2.2 General case
Having completed these low-dimensional cases, we proceed to prove that the complex

of augmented partial bases is spherical for general n and m.

Lemma 3.21. Let Oy denote the Gaussian integers or Eisenstein integers. Let w be a
line with F(w) # 0. The inclusion

L Llnk;AT (Ok) (W) — LinkBAz1 (Ok) (W)

admits a (not necessarily simplicial) retraction.
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Lemma 3.21 is an analogue of Church-Putman [8, Proposition 4.17]. We first
define the retraction 7 on the vertices of mBAW(OK)(W). Unfortunately, this map on
vertices does not extend to a simplicial map. There are certain 1- and 2-simplices o,
the carrying simplices, for which the images of the vertices do not span a simplex in
ﬁﬁgAT (OK)(W), although every face of o does map to a simplex. As in Church-Putman,
we remedy this problem by changing the simplicial structure on Linkg,m o, ,(w).
Specifically, we subdivide each carrying simplex oc—leaving its boundary unaltered—
and correspondingly subdivide each simplex that has o as a face. We may then
define the map 7 on the new simplicial structure. Although = does not respect the
simplicial structure of ﬂﬁBAW(OK)(w), it does define a topological retraction. We
note that to prove [8, Proposition 4.17], Church-Putman subdivided carrying triangles
by inserting a single vertex. In the case of the Gaussian integers or Eisenstein
integers, this is not possible. Instead, we will use a more elaborate connectivity

argument.

Proof of Lemma 3.21. Recall the functions f and F of Definition 3.13. For each vertex
Ve @BAW(OK)(w), pick a vertex v” € ﬁﬁgAmoK) (w) such that:
() There are representatives v and w and a € O such that v” is the span of
V+aw,

(ii) F@™) < F(w),

(iii) v" =vif F(v) < F(w).
Such an assignment exists because of the Euclidean algorithm. Specifically, we choose
a so that f(V 4 aw) is a least residue of f(v) modulo f(w).

If the vectors w, v, V;, V5, ... form a partial basis, then so too will the vectors

- -

w, ‘707'[ = ‘70 +a0‘7v, ‘717T = ‘71 +CL1W, 17271 = {}2 +a2ﬁ/,. .o

Unfortunately, if a triple of vectors v, v,, v, satisfies v, = v, +V,, there is no reason that
the same linear relation will hold amongst representatives of their images v, v,", v, .
(Lemma 2.5 and Lemma 2.6 imply that, for a fixed such triple v, v;, V,, we could choose
least residues to arrange that !70” = ?/f’ + !72” . However, there is no way to choose an
image v” for each line v to preserve all such linear relations simultaneously.) Similarly,
if vy = v; + w, the same relation need not hold amongst their images. Consequently, the
assignment on vertices v — v* does not extend over simplices in ﬂﬁBAmOK)(w).
Following Church-Putman [8, Proof of Proposition 4.17], we call an internally

additive 2-simplex o = {vg, vy, vy} carrying if {vj,v],v;} does not form a 2-simplex.
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Let LinkEA(voeavleaw

edges {vg,v]}, {v],v3}, {v], vy} form simplices. Thus, the union of these three edges

)(W) denote Linkg, y(w) N ﬁﬁ;ﬂ(o@(w). Observe that the

(vo®view

forms a loop in Linkg;, y (W), which we denote by y_. We will use Proposition 3.20

(vo®viow

to deduce that this loop is null homotopic in Link;, ,(w) once we describe an

(vo®vidw
isomorphism

LinkEA(VO avew) (W) = Linkz, . (W)

for some line w C OF. Let g : vy ® v; ® w — Ok be the restriction of f. The image
of g is a nonzero principal ideal of O, say (a). Let g’ : vy ® v; ® w — O be given
by ¢/ (v) = g(v)/a. Note that |g(V)| < |g(w)| if and only if |¢/(V)| < |g'(W)|. Since ¢ is
surjective, we may pick an isomorphism ¢ : vy @ v, @ w — O3, which identifies g’ with
projection onto the last coordinate. The isomorphism ¢ identifies Link§A<VO®V1®W)(W)
with LinkEAs (w) for w = ¢ (w). Thus, y, is null homotopic in LinkEA(Vo@VI@W)(W).

For each carrying internally additive 2-simplex o = {v, v;, v,}, pick a simplicial

map
H,: T(0) — Linkg, e, ow) (W)

from a triangulation T'(c) of the standard 2-simplex, with y, equal to the restriction of
H_ to the boundary of T(0). In particular, the triangulation T(c) does not subdivide the
boundary triangle.

Similarly, call an externally additive 1-simplex o = {vy, v;} carrying if {vg,v]}
does not form a 1-simplex. The vertices v{, v form a 0-sphere in Lin1<§A(VO®W) (w), which
we denote by y,. In the proof of Proposition 3.18, we identified LinkEA(V()@W)(W) with a
graph of the form G,. Thus, by Lemma 2.4, it is connected and so y, is null homotopic.

For each carrying externally additive 1-simplex o = {v,, v;}, pick a simplicial map
H, :T(o) — LinkgA(VO@W)(W)

with T(o) a triangulation of the standard 1-simplex, and y, equal to the restriction of
H_ to the boundary of T(o).
Call a simplex carrying if it is a carrying internally additive 2-simplex or

a carrying externally additive 1-simplex. Let X be obtained from ﬁ(BAW(OK)(W) by
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10374 A. Kupers et al.

Fig. 16. Examples of a carrying 1-simplex (red) and a carrying 2-simplex (purple) before and after
subdivision. Both subdivisions can be executed simultaneously.

replacing

Starﬁm;{l(op(‘/") (o) with Lmk@my(op("") (0) % T(0)

for each carrying simplex o. It makes sense to replace all of these simplices simul-
taneously because every simplex of Linkg,m,,(w) contains at most one carrying
subsimplex and because the subdivisions T(c) do not subdivide the boundary of o. See
Figure 16.

The space X is homeomorphic to Linkg,m e, (w) but has extra vertices that we
will use to construct our retraction.

Let vert denote the functor that sends a simplicial complex to its set of vertices.
Then

vert(X) = vert (mBAW(OK)(W)) U U vert(T(o0)).

o carrying

Note that this union is not a disjoint union as the vertices of y, are vertices of

Linkgm o, (W) and of T(o). Define
w: vert(X) — vert (ﬂn\kgAmoK)(w))
via the formula:

V" if y isavertexof mBAm(OK)(W),
H(Y) = . . "
H_(y) if y isavertexof T(o).

If y is a vertex of both T'(s) and mBAW(OK)(W), then H_(y) = y” by construction so x is

a well-defined function on vertices. We now check that 7 induces a simplicial map. Let
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T={xp,....Xp} S X be a simplex. We will show that {7 (xy), .. LT (Xp)} forms a simplex.

We will consider the following cases:

Case: t contains no interior vertices of any T'(o)

Since t does not contain any vertices in the interior of any T(c), we can view

T = {Xq,...,Xp} as a simplex in Linkg,m ) (w). If 7 is not additive, then by the definition
of r its image 7 (7) = {x, . .. ,X;} is a non-additive simplex in ﬂﬁgAm(OK)(w).

Now assume 7 is internally additive; the externally additive case is similar.
Reorder and pick representatives so that X, = X; + X,. As in the previous paragraph,
the vertices {x7,...,x7} span a non-additive simplex. We will now check that 7 (o) =
{xg.x7,... ,X’p’} forms a simplex by checking that {xj, x], x7 } is an additive simplex. Note
that {xy, x;,x,} is not carrying since all of the carrying simplices have been subdivided.
Thus {Xg,x’f,xg} forms a simplex. Observe that Condition (i) implies that the sum of the

submodules Xg X7, X, satisfies
xo +x] +x5 +wW=Xx,®x; &w.

Since the module xj + x] + x5 + w is only rank 3, {x7,x], x5} must be additive. Thus,

(o) ={x5,... ,X;} forms a simplex in mgAmOK)(W).

Case: T contains interior vertices of some T'(o)

Suppose that v contains interior vertices of T(c) and that ¢ = {vy, v;, vy} is
an internally additive carrying 2-simplex; the externally additive case is similar. Since
any simplex of @BAW(@K)(W) can contain at most one carrying subsimplex, we can
decompose t as the join 1 = « *x 8 of simplices «, 8 C X such that

a=TO)NT,
B contains no interior vertices of any T'(¢’) for any carrying simplex o’.
Note that n(¢) = H,(x) is a simplex of Link§A<V0®V1@W)(OK)(w). Since the star of any

simplex in T(o) is contained in

Link (0)*T(o),

LinkBAW(OK) (w)

B is a simplex of

. 1 T3 T
Lmk@m;{w@ ) (Vo V1, V2) = Linkgm o (v, Vi, w) = Linkgm o) (Vg , Vi, w).
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10376 A. Kupers et al.

There is a natural inclusion

—_—<
LlnkEA(VO@Vl@W) () (W) * Lmkghn ©x) (vg,v], w) — Linkg Am (O (W)

since simplices in LlnkBA(VO@V1®W)(OK)

frames for vy @ vy ® w = vj @ v{ @ w, whereas simplices in LinkEW(OK)(Vg' vi, w) all

(w) all arise from (possibly augmented) partial

arise from non-augmented partial frames for a direct complement of v © v ® w in
O[Té+m' In particular, 7 (o) = 7w («) * 7(B) forms a simplex in Iif\k\BA#(OK)(W)'

Having checked that = gives a simplicial map X — LinkgAm(OK)(w), we use this
to construct the desired retraction. Let A% denote the standard d-simplex. Pick for each
carrying simplex o, pick a homeomorphism h_ : A4m©@) _ T(5) that is simplicial on the

boundary. They induce homeomorphisms

idx h,: Star—— (o) —

LlnkBAm(O (W)

— Link— (o) * T(o)

LlnkBAm(O >(w)
and assemble to give a homeomorphism
h: Linkg,m o) (W) — X.

The map h is not simplicial. However, since simplices in Links (w) cannot be

BAT(O)
carrying by Condition(iii), the composition

mohout: L1nk BAT (O )(W) - Llnk BAT Ok )(W)

is simplicial. Thus we can check that it is the identity by checking it is the identity on

vertices. This follows from Condition(iii). Thus
woh: L1nk Bam (Og) (W) —> L1nk BAT Ok )(W)
is a retraction of ¢: ﬂﬁ;mol{)(w) — mBAW(OK)(W). |
Lemma 3.21 has the following corollary.

Corollary 3.22. Let O denote the Gaussian integers or Eisenstein integers Let wbea

line in BA},(Og) with F(w) # 0. If LkaAm(O y(w) is d-connected, so is Llnk BAT (O )(W)

The following is a direct adaptation of Church-Putman [8, Proposition 4.14].
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Lemma 3.23. Let O be a Euclidean domain. Let n > 1 and m > 0 such that m +n > 2.
Assume that BAZ&’(O) is Cohen-Macaulay of dimension n’ for all 1 < n’ < n and all
m’ > 0 satisfying m’ + n’ = m + n. Then for every p-simplex o of BAZ}(O), the link

LinkBA;ln(O) (o) is Cohen—-Macaulay of dimension (n — p — 1).

Proof. The proof of Church-Putman [8, Proposition 4.14] applies without modification;
we summarize it briefly. If a p-simplex o is additive, then LinkBAmO) (o) = B?_JF;(O) is
Cohen-Macaulay of dimension (n — p — 1) by Theorem 3.7.

Next, suppose we have a non-additive (n — 1)-simplex ¢ = {vy,...,v,}. Then
Linkg,m o, (o) contains the vertex corresponding to vy = &, +v; (if m > 1) or vy = v; + 7,
(if m =0), so LinkBAW(O) (o) is non-empty.

Finally, suppose we have a non-additive p-simplex o with p < n — 1. Then
mBAW(O) (o) = BA?_JF;_J”II (O) is Cohen—Macaulay of dimension (n—p—1) by assumption.
Each vertex

v € Linkg,m o) (0) \ Linkg,m ) (o)

. ~ 1 . T "
has LlnkLinkBAW(O)(U)(V) = BZ_JZ’_JFI (O) contained in Linkg,m (), and so the addition of
each such vertex v has the effect of coning off a subcomplex of Linkg,m (o) that is
Cohen-Macaulay of dimension (n — p — 2). The result follows by Church-Putman [8,

Lemma 4.13]. [ |

We now prove Theorem 3.16, which states that BA'(Og) is Cohen-Macaulay
of dimension n for O the Gaussian integers or Eisenstein integers. Other than
the proof of [8, Proposition 4.17], the proof of Church-Putman [8, Theorem C'] goes
through without modification for all rings that are additively generated by multi-
plicative units and have a multiplicative Euclidean function with the property that
if |a| = |b| > 0, then there is a unit u with |a — ub| < |a|. In place of [8, Propo-
sition 4.17], we instead invoke our Corollary 3.22. That the ring is Euclidean is used
throughout the proof [8, Theorem C’]; that it is additively generated by multiplicative
units is used in the base case of the induction [8, page 21] and appears here as
Lemma 3.17.

Recall that a combinatorial i-sphere is a simplicial complex that is PL-
homeomorphic to the boundary of an (i + 1)-simplex and a combinatorial i-disk
is a simplicial complex that is PL-homeomorphic to an i-simplex. Moreover, links

of p-simplices in the interior of combinatorial i-spheres and combinatorial i-disks
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10378 A. Kupers et al.

are combinatorial (i — p — 1)-spheres. Given a simplicial complex X, the simplicial
approximation theorem implies that we can represent every homotopy class of maps
St — X by a simplicial map from a combinatorial i-sphere to X. It also implies that every
null-homotopic simplicial map from a combinatorial i-sphere to X can be extended to a
simplicial map from a combinatorial (i + 1)-disk to X. Replacing the star of a p-simplex
in a combinatorial i-sphere by a different (i — p)-disk (with the same combinatorial
(i — p — 1)-sphere as boundary) results in a combinatorial i-sphere again. We will use
this fact while construct homotopies in the following proof. For a detailed introduction

to the topic we refer the reader to Rourke-Sanderson [27].

Proof of Theorem 3.16. We summarize Church-Putman [8,Proof of Theorem C’]. The
proof proceeds by induction on n and m. The base case is that BAT"(Og) is connected for
all m > 1, which was proven in Lemma 3.17. Now let n > 1 and m > 0 such that m+n > 2,
and assume that BAg/(OK) is Cohen-Macaulay of dimension n’ for all 1 < n’ < n with
2<n'4+m <n+m.

The links of simplices in BA'(Og) are appropriately highly connected by Lemma
3.23, so it suffices to prove that BA'(Og) is (n — 1)-connected.

Let ¢: S' — BA™(Og) be a simplicial map from a combinatorial i-sphere for
i<n-—1.Let

M(¢) = max F(¢(x))
vertices xeS!

where F is defined in Definition 3.13; the function M quantifies the “badness” of the
map ¢. Our goal is to homotope ¢ to reduce M. Then we can inductively homotope the
map ¢ to a map ¢’ for which ¢/(x) has (m + n)* coordinate zero for every vertex x € St.

The image of ¢’ is in the star of the vertex e and so it can then be homotoped to the

m+n’
constant map at e, .

Assume M(¢) = M > 0. Following Church-Putman, we proceed in four steps. In
the 1st step, we homotope ¢ so that for every simplex o € S! mapping to an additive
simplex of BA'(Og) satisfies F(¢(x)) < M for all vertices x € o. We must achieve
this homotopy without increasing M(¢). Choose o of maximal dimension g among those
simplices in S’ satisfying the following properties (x):

¢(0) = {vg,..., v} is additive, say, Vo = V; + v, for some generators of
Vo, Vi, Vy,
F(¢(x)) = M for some vertex x € o, and

F(¢(x)) = M for every vertex x € o with ¢(x) € {v;,... ,Vp}.
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Note that g > p. By assumption of maximality,
¢ (Linkgi(0)) < LinkEA;L"(OK)({VO' Vi Vph) = Linl{E;"(OK)({Vlf e V).

For the last equality we have used the assumption that, possibly after re-indexing
Vo, V1, Vy, F(v;) = M for some i = 1,...,p. The complex Linkgzn(OK)({vl,...,vp}) is

(n — p — 2)-connected by Lemma 3.15. Thus, the restriction
57471 = Linkg (o) —> LinkGn o) (V1 V)

is null homotopicasi—q—1 < n—p—2. This implies there is a combinatorial (i — g)-disk
D whose boundary is isomorphic to the combinatorial (i — g — 1)-sphere Linkgi (o) and a

map

g:D— LinkEW(OK)({Vl""'Vp})

extending ¢’|Linksi (0)- Because g maps to the link of ¢ (o), we may define the join of the

maps

(@, *g): (0 *xD) — BAI".

Let Z be the combinatorial i-sphere given by replacing Stargi(c) in S' with D * do. Let
¢: Z — BATM(Ox) be given by the formula

- d(y) if yeZ\ (3o D),
¢(y) = .
@l, *g)(y) if yedo=D.

Note that this map is continuous as ¢ and (¢|, * g) coincide on 9o * dD = 3Starg (o).
Moreover, observe that ¢ and ¢ are homotopic through ¢|, * g (extended by the constant
homotopy outside of the star of o). The new map ¢ has one fewer maximal simplices
satisfying (x). A similar argument applies to externally additive simplices. Iterating this
procedure produces the desired map.

In the 2nd step, Church-Putman homotope ¢ so that if vertices x;,x, € Si satisfy
¢(x;) = ¢(x,) = v with F(v) = M, then x,,x, are not joined by an edge. This new
map must not increase M(¢) and must retain the properties achieved in Step 1. Choose
a simplex o of maximal dimension with the properties that ¢|, is not injective and
F(¢(x)) = M for every vertex x € o. Again let p = dim(¢(0)). Then, using the properties

achieved in Step 1, Linkgi(¢) must map to the subcomplex

Linkgn o, (#(0)) € Linkg,m o, (@(0)).
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10380 A. Kupers et al.

This subcomplex is (n—(p—1) —2)—connected by Lemma 3.15, so again we can homotope
¢ to remove the simplex ¢ (o) while preserving our desired properties.

In the 3rd step, Church-Putman further homotope the map ¢ so that it retains
the properties from Steps 1 and 2 and has the additional property that, whenever

vertices x;,x, € S* satisfy

F(p(x))) = F(¢(xy)) = M,

then x; and x, are not connected by an edge. Suppose {x;,x,} is an edge violating this
condition, with ¢(x;) = v; and ¢(x,) = v,. Pick representatives v, and v,. By Lemma
2.2, there is a unit u with F(v, — uv,) < F(v;). Let v, = span(v; — uv,). By the property
ensured in Step 2, v, # v,. Thus ¥, — uv, # 0 and so v, is a line. Given the property
ensured in Step 1, the image of Linkg ({x;,x,}) is contained in Linkg,m o, {vo, vy, V2}).
We can therefore homotope the map ¢ to map {x;,x,} to the concatenation of {v;, vy}

with {v,, v,}. In particular, we replace the simplicial structure on
Stargi ({x;,X,}) = {X;,X,} * Linkg ({x;, x,})

with the join of the barycentric subdivision of the edge {x;,x,} and Linkg({x;,x,}).
This procedure removes the edge {v,,v,} from the image of the map and preserves the
properties from the previous steps.

In the final step, Church-Putman homotope the map ¢ to reduce M(¢). Let x € St
be a vertex such that ¢ (x) = v with F(v) = M. The properties established in the previous

steps ensure that
¢ (Linkgi (%)) < LinkEA;n(oK) V).

The complex ﬁ{BAmOK)(v) = BA:l”_Jrl1 (Og) is (n — 2)—connected by inductive hypothesis,

. T
thus so is LkaAm((’)K)

from its image while preserving the properties from previous steps. Iterating this final

(v) by Corollary 3.22. We can therefore homotope ¢ to remove v

step will reduce M(¢) and complete the proof. |

3.3 New non-connectivity results

In this subsection, we show that BA,(O) may not always be Cohen-Macaulay but is
always highly connected. We begin with a general lemma about links in simplicial

complexes.
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Fig. 17. An illustrative example of the chain «.

Lemma 3.24. Let X be a simplicial complex and fix a simplicial structure on S!. Let
x be a vertex of S! and let y,z € Linkg (x). Let ¢: S! — X be a simplicial map such
that no vertex other than x maps to ¢ (x). If (/J*([Sl]) = 0 in H; (X), then [¢(y)] = [¢(2)] in
o (Linky (¢ (x))).

Proof. Let C, denote cellular chains. Suppose that qb*([Sl]) =0, and let o € C,(X) be a

chain such that
d(a) = ¢,(S') € C;(X).

The chain « can be written as «; + «,, with «; a sum of 2-simplices that have ¢ (x) as
a vertex and «, a sum of 2-simplices that do not have ¢(x) as a vertex. Let 8 € C;(X)
denote the chain associated to the simplicial path with vertices ¢(y), ¢(x), and ¢(z). An
instance of this complex is shown in Figure 17.

Each 1-simplex in the boundary of a 2-simplex appearing in «; either contains
the vertex ¢ (x) or is contained in Linky (¢ (x)). By assumption on ¢, the boundary a(«;)
must only pass through the vertex ¢ (x) once, and so it must be a sum of 8 and terms in
the link of ¢ (x). Hence

d(ay) = B € C; (X, Linky (¢ (x))).
Thus, [8] vanishes in H,(X,Linky(¢(x))). This implies that its image 5([8])

vanishes in Hj(Linky(¢(x))) under the connecting homomorphism § in the long exact

sequence of the pair (X, Linky (¢ (x))). Since

s(IBD = o] — ¢ (2)],
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10382 A. Kupers et al.

Fig. 18. A loop in BAy(ZIv/7]) coming from a detour (marked in gray).
this implies that ¢ (y) and ¢ (z) are in the same path component. |

Definition 3.25. We say that a ring O has detours if there are r;,r, € O such that

(i) r, —ryis notasum of units.
(ii) There is a simplicial path in B,(0) from span(’}) to span('?) that avoids

span(}).

An example of a detour is given in Figure 18 for Oy = Z[v/7]. Each vertex is

labelled by a vector spanning the corresponding line.
Proposition 3.26. If O has detours, then H,(BA,(0)) # 0.

Proof. Letv, = span("}) and v, = span(’?). We saw in the proof of Lemma 3.17 that
two vertices span(x;, ..., X,,, 1) and span(y;,...,¥,,, 1) are in the same path component
of BAT'(O) if and only if x; — y; is a sum of units for each i. It follows that v; and v, are

not in the same path component of
1 e .

Consider the loop that is a concatenation of a detour from v; to v, with the path
given by the three vertices vy, e;, and v,. This loop is not zero in H;(BA,(0))
by Lemma 3.24. |

Before we give examples of rings with detours, we need the following lemma.
Lemma 3.27. The full subcomplex of B,(Z) minus the vertex e, is connected.

Proof. Letv,,v, # e, be vertices in B,(Z). Since B,(Z) is connected [8, Theorem 4.2], we

can find a simplicial path y from v, to v,. Suppose the path contains e;. By removing
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loops, we may assume that y only passes through e, once. Let w; and w, be the vertices
adjacent to e; in the path. Since Linkg,, 4 (e;) is connected [8, Theorem C], we can find
a path y’ from w, to w, in the link. Note that Linkp,, 7 (€;) C By(Z). Let y” be y with
{wy,e;} U {e;, w,} replaced with y’. Observe y” gives a path from v, to v, that avoids
e;. u

We now show that Euclidean quadratic number rings not generated by units

have detours.

Proposition 3.28. Let O be thering of integers in K = Q(+/d) for d squarefree. Assume

that Oy is not generated by units but is Euclidean. Then Oy has detours.

Proof. Letd =+/dford # 1 (mod 4) and § = %& for d =1 (mod 4) so that O = ZI[$].
Since O is not generated by units, § is not a sum of units. Thus, it suffices to find a
path from ({) to (9) that avoids ().

We first consider the case d > 0. By Dirichlet’s unit theorem, Oy has infinitely

many units so there is a unit of the form a + bs with b # 0, a,b € Z. Note that the lines

G

form an edge in B,(Og). By Lemma 3.27, there is a path in B,(Z) C B,(Og) from ( %) to

spanned by the vectors

(9) that avoids (). The concatenation of this path with the previous edge is a detour.

Now assume d < 0. The only Euclidean quadratic imaginary number rings have
d=-1,-2,-3,-7,and —11. For d = —1 and d = —3, these are generated by units while
the other three rings are not generated by units (see e.g., Ashrafi-Vamos [2, Theorem 7]).
Note that the units in the case d = —2, -7, or —11 are just £1 and so (a + bs) — (¢ + dé)
is not a sum of units whenever b # d. Unlike for real quadratic number rings where
we had a conceptual construction of detours, in the imaginary case, will just exhibit an
explicit detour for each ring.

Case: d = —2. The path with vertices spanned by the following vectors is a detour:

()0
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Case: d = —7. The path with vertices spanned by the following vectors is a detour:
) ) —1426
1)\ s )J’\ 1 )

Case: d = —11. The path with vertices spanned by the following vectors is a detour:

OGO

Remark 3.29. The quadratic norm-Euclidean number rings have been completely
classified. They are the rings of integers O of K = Q(~/d) with

de{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19, 21,29, 33,37,41,57,73};

see for example, Stark [29, Theorem 8.21]. Ashrafi-Vamos [2, Theorem 7] completely
characterized which quadratic number rings are generated by units. When d # 1
(mod 4) and d > 0, O is generated by units if and only if d can be written as d = a? £ 1
for some a € Z. When d = 1 (mod 4) and d > O, the ring is generated by units if and
only if d can be written as d = a? + 4 for some a € Z. For d < 0, the ring is generated
by units if and only if d € {—3, —1}. Thus, the norm-Euclidean number rings that are not

generated by units are the rings of integers Or of K = Q(+/d) with
de{-11,-7,-2,6,7,11,17,19,33,37,41,57,73}.

On the other hand, there are Euclidean (but not norm-Euclidean) quadratic number rings
that are not generated by units, such as the ring of integers in Q(+/69). Our results apply

equally well to these rings.

We have just shown that it is not true that BA,,(O) is spherical for all Euclidean

domain. However, it is always highly connected.
Proposition 3.30. Let O be a Euclidean domain. Then BA*(O) is (n — 2)-connected.

Proof. Since Theorem 3.7 says that BJ*(O) is (n — 2)-connected, it suffices to show that
B (O) — BAM(O) induces a surjection on free homotopy classes [St,—]fori<n—2. We

will in fact show that it is a surjection fori <n—1.Fixi <n—1 and let ¢: St — BATMO)
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be a simplicial map with respect to a combinatorial triangulation of S*. Our goal is to
show that ¢ is homotopic to a map to B}}(O). Suppose that {v,, v;, vy} is an internally

additive simplex in the image of ¢. Then the link
Linkgam o) ({vy, v1, Vo)) = Linkgm o) ({vy, vo}).

is (n — 4)-connected by Theorem 3.7. As in the proof of [22, Lemma 2.49] and the 1st
step of the proof of Theorem 3.16, we can homotope the map ¢ to avoid the simplex
{vy, vy, vy} without introducing new additive simplices to its image. Iterating this pro-
cedure, and the analogous procedure for externally additive simplices, produces a map
to BIY(O). |

4 Presentations of Steinberg Modules and Vanishing of Cohomology

In this section, we use our (non-)connectivity results to deduce the main theorems of
the paper. We begin with a review of a useful tool: the spectral sequence associated to a

map of posets, originally due to Quillen [26].

4.1 The map of posets spectral sequence

Let Y be a poset. Associated to Y is the simplicial complex A(Y) of non-degenerate
simplices in the nerve of Y. A p-simplex of A(Y) corresponds to a (p + 1)-chain y, <
Y1 < -+ < yp of elements in Y. The dimension of Y is defined to be the dimension of
A(Y), and we let |Y| denote the geometric realization of A(Y). We note that, if Y is a
simplicial complex and Y the corresponding poset of simplices under inclusion, then
A(Y) is the barycentric subdivision of Y, and there is a homeomorphism Y = |Y]|.

For an element y € Y, recall we defined the subposets,
Y, ={yeY|y =<yl and Y., ={yeY|y>yh

Definition 4.1. Let Y be a poset. Let T be a functor from Y (viewed as a category) to

the category Ab of abelian groups. Define chain groups

;D= P Ty

Yo<--<yp€eY
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10386 A. Kupers et al.

with a differential >? (—1)!d;, with the face maps d; given by

d: P Twy— P Ty (1<i<p)

Yo<<Vp Yo<-<Pi<--<yp

d: P Ty — P T,

Yo<-<¥Vp y1<-<Vp

defined as follows. For i # 0, the map d; maps the summand indexed by (y, < --- < y,)
to the summand indexed by (yy < -+ < 7; < -+ < Yp) and acts by the identity on the
group T'(y,). The map d, maps the summand indexed by (y < -+ < y,,) to the summand
indexed by (y; < -+ < Yp) and the map of abelian groups T(y,) — T(y,;) is defined by
applying T to the morphism y; <y, in Y.

If T = Z is the constant functor with identity maps, then H,(Y;Z) is isomorphic
to the usual homology H,(]Y|). The following lemma is adapted from Charney [7,
Lemma 1.3]. See also [23, Lemma 3.2]. Recall that the height of y € Y is by definition
dim(A(Y_,)).

Lemma 4.2. Suppose that T: Y — Ab is a functor that is nonzero only on elements of
height m. Then
H(Y, D)= @@ H, (Y. T¥)
height(yg)=m

Definition 4.3. Let f: X — Y be a map of posets. For y € Y, define f\y to be the
subposet of X

Ay =&xeX|fx <y}

Consider a map of posets f: X — Y, and fix a degree g € Z.,. Then there is a
functor from the poset Y to Ab that takes an object y € Y to the abelian group Hq(f\y).
With this functor, we may state the following theorem. The spectral sequence associated
to amap f: X — Y of posets was introduced by Quillen [26, Section 7]; see also Charney
[7, Section 1].

Theorem 4.4 (Quillen [26]). Let f: X — Y be a map of posets. There is a strongly

convergent spectral sequence

By =H,(Vily = Hy(F\D)) = Hy. ((X).

€202 1990)0 6z U0 3senb Aq 8005919/ 7€01/€L/220Z/3I01e/ulWI/Wod dno olWwapede//:sdRy Wwoly papeojumoq



Bykovskii Presentation of Steinberg Modules 10387
4.2 Generalized Bykovskil presentations for the Gaussian integers and Eisenstein integers

In this subsection, we let O denote Gaussian integers or the Eisenstein integers and
K its field of fractions. Our objective is to prove Theorem A and Theorem B. Recall that
Theorem B is the statement that Byk, (Ox) — St,,(K) is an isomorphism for all n. We can
deduce Theorem B from Theorem 3.16 using the same arguments that Church-Putman
use to deduce [8, Theorem B] from [8, Theorem C]. We recall these arguments in the three
lemmas below and the proof of Theorem B.

We make the following definition, as in Church-Putman [8, Proof of Theorem B].

Definition 4.5. For a Euclidean ring O, we let BA,(O) denote the subcomplex of
BA,,(0O) consisting of simplices {vg, vy, ... ,Vp} withvy+v, +---+ v, C on,

Let sd denote the barycentric subdivision. This subcomplex is defined to give a

map
span: sd(BA,,(0)) — T,(K)

{VO,Vl,...,Vp}|—>KV0+KV1 +-~-+Kvp.

This arises from a map of posets with domain simp(BA, (O)) and target the poset
defining the Tits building.

Lemma 4.6 (Following [8, Theorem B Step 3]). Let Oy be the Gaussian integers or
Eisenstein integers. The map span: sd(BA, (Og)) — T,(K) induces an isomorphism of
ZIGL,(Og)l-modules H,,_,(BA,(Ox)) = H,_,(T,(K)).

We could prove this by quoting Church-Putman [8, Proposition 2.3] but will
instead prove it using the spectral sequence of Theorem 4.4, as a warm-up for our proof

of Theorem C.

Proof. When n =1, both BA,,(O)" and 7, (K) are empty, so we may assume n > 2. We
consider the spectral sequence of Theorem 4.4 associated to the functor span. Observe

that, given a proper nonzero subspace V C K",
span\V = { (v, v,,...,v,) € SMP(BA, (Og)) | Kvg + Kvy + -+ + Kv, € V| =BAWVN Op).

By Theorem 3.16 the complex BA(V N O) is Cohen-Macaulay of dimension dim(V) (for
dim(V) > 2) or dimension 0 (when dim(V) = 1), so H,(span\V) = 0 except possibly when
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10388 A. Kupers et al.

Fig. 19. The page EI%,q when n = 6. There are no nonzero differentials to or from the term EZ—Z,O

forr > 2.

q = 0 or g = dim(V). We can identify 7,(K)., = 7 (K"/V). Thus for q > 0, we find by
Lemma 4.2 that

Equ = H, (7;1(1{),‘ [V~ Hq(span\V)])

= @ ﬁp—l (T(Kn/v), Hdim(V) (BA(V N O;é)))
VCK",dim(V)=q

The building 7(K™/V) is spherical of dimension dim(K"/V) — 2, and so for g > 0, we
conclude that Eﬁ,q vanishes unless p—1 = n—dim(V)—2, equivalently, unless p+q = n—1.
When g =0,

2~ _ _ —
Epq = HP(E(K)) =0 exceptwhen p=0 or p=n-2.
The spectral sequence (see Figure 19) converges to Hp+q(BAn(OK)/). The only
nonzero E2 term on the diagonal p + g = n — 2 is the term E2_, ; = H, ,(7,(K)), and
this term admits no non-zero incoming or outgoing higher differentials. This gives the

desired isomorphism. |

Lemma 4.7 (Following [8, Theorem B Step 1]). Let O be an integral domain, then there

is an isomorphism of Z[GL,,(O)]-modules

Byk,(0) — H,_,(BA,(0),BA,(0)).
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Bykovskii Presentation of Steinberg Modules 10389

Proof. By construction, BA,(O)" contains all simplices of BA, (O) except for the n-
simplices corresponding to augmented n-frames, and the (n — 1)-simplices correspond-
ing to non-augmented n-frames. From the exact sequence
s
C,(BA,(0),BA,(0)) = C, ,(BA,(0),BA,(0)) — H, ,(BA,(0),BA,(0)) — 0
we see that H,,_;(BA,,(0),BA, (0)) is the group generated by the simplices

{vy,....v} vy @ @®v,=0"

modulo relations of the form

5({V0,V1,V2,V3...,Vn_l}) With ﬁo :‘71 +‘72
={vy, vy, va..., V1) —{vg, Vo, V3..., Vv, 1} + vy, Vi, Vg3..., V1) —0+0—---£0.
This is precisely the presentation defining the group Byk,, (O). |

Lemma 4.8 (Following [8, Theorem B Step 2]). Let Oy be the Gaussian integers or

Eisenstein integers. There is an isomorphism of Z[GL,, (Ok)l-modules
H, ,(BA,(Og),BA,(Og)) —> H, ,(BA,(Og).

Proof. By Theorem 3.16, BA,(Og) is (n — 1)-connected. Thus an isomorphism
is given by the connecting homomorphism in the long exact sequence of the pair

Recall that Theorem B says that when Oy is the Gaussian integers or Eisenstein

integers, the generalized Bykovskii presentation holds.

Proof of Theorem B. Consider the maps
Byk, (Ok) % H, ;(BA,(Ok),BA, (Og)) (*—:*; H, ,(BA,(Og)) (*T:*)) H, (T, (X)),
the rightmost group being St,(K) by definition. The map (x) is an isomorphism by

Lemma 4.7, the map (x*) is an isomorphism by Lemma 4.8, and the map (xx*x*) is an

isomorphism by Lemma 4.6. Thus the composite is an isomorphism of Z[GL,,(Og)l-
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10390 A. Kupers et al.

modules. As in the proof of Church-Putman [8, Theorem B], this composite is the map
described in Section 1.2. |

Corollary 4.9. Let O be the Gaussian integers or Eisenstein integers, and K its field

of fractions. Then St,,(K) admits a partial resolution by Z[GL,, (Ox)]-modules
5
C,(BA, (Og),BA,(Og)) = C,_,(BA,(Ox),BA,(Og)) —> St,(K) —> 0.

Proof. By Theorem B, there is an isomorphism Byk, (Of) = St,(K), and so the result

follows from the proof of Lemma 4.7. |

We will now use our resolution to show vanishing for group homology with

coefficient in the Steinberg module.

Theorem 4.10. Let Oy denote the Gaussian integers or Eisenstein integers and let k

be a ring with n! and 3 invertible. Then

H,(GL,(O);St,(K) ®k) =0 forn > 2,

H;(SL,,(Og);St,(K)®k) =0 forn > 3.
Proof. By Corollary 4.9 we have a partial resolution
C,(BA,(Og),BA,(0g); k) - C,_{(BA,(Og),BA,(Og); k) —> St (K) @ k — 0

of St (K) ® k by kIGL,,(Og)]-modules. These modules are flat, for example, by Church-
Putman [8, Lemma 3.2]; its proof only requires that the orders of the stabilizers of
simplices in BA,,(Og) which are not in BA, (Og)’, are invertible in the coefficients. There
are two cases:
If o ={vy,...,v,} is a basis of OF, it has stabilizer of order |Og|" - n!.
If o = {vy,...,v,} is an additive simplex spanning OF, it has stabilizer of
order 6 - |OZ|""! - (n — 2)!.
Thus when G,, is SL,,(Ok) or GL,,(Of), we may compute H, (G,; St,,(K) ® k) by extending

this partial resolution to a flat resolution, and taking the homology of the chain complex

-+ —> C,(BA,(Ok),BA, (Og) i k), — C,_1(BA,(Ok),BA,(Ok); k), —> 0
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Bykovskii Presentation of Steinberg Modules 10391

obtained by passing to G, -coinvariants. To show that H,(G,; St,,(K) ® k) = 0, then, it
suffices to show that the coinvariants C, (BA,,(Ok),BA,(Ok)’; k)¢, vanish.
Fix n > 2. The free k-module C,(BA,(Ok),BA,(Or) k) = C,(BA,(Og);k) is

spanned by augmented frames {vy, ..., v, } subject to the relation
{Vo, ceey Vn} = Sgn(O'){VU(O), ceoy Va(n)}'
with o a permutation {1,...,n} and sgn(o) its sign, and with G, -action

g{VOI---!Vn,} = {g(VO)r~-~/g(Vn)}l ge Gn

Consider an augmented basis {v,...,v,}, reorder, and pick representatives v, ... ,17n

such that v, = v; + V,. Let h € GL,,(O) be the linear map defined by
Then h({vy, vy, vy, Vs, ..., V) = {vg, vy, vy, Vg,..., V) = —{vy,Vq,Vy,V3,...,V,}. Since
2 is invertible in k, this implies that generators of C,(BA,(Ok);k) map to zero in
Cn(BA,(Ok); k)L, (0 and hence
The element h does not have determinant 1 and this is the reason we must assume n > 3
to show the SL,,(Og)-coinvariants vanish. For n > 3, there is a linear map ¢ € SL,(Ok)
satisfying

@) =0y, Ty =7, () =—V5, @) =7, fori>3.

Again { negates the generator {vy,...,v,}, and we infer that

Cp(BA,(Ok)i K)sr, (0g) =0 forn > 3.

The following theorem implies Theorem A.

Theorem 4.11. Let Or denote the Gaussian integers or Eisenstein integers. Let k be a

ring with (n + 1)! invertible if n is congruent to 1 modulo 4 and with (2n + 1)! invertible
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10392 A. Kupers et al.

otherwise. Then

H" Y(GL,(Og); k) =0  forn=> 2,

H'"1(SL,(0g); k) =0 forn > 3.

Proof. Let Or denote the Gaussian integers or Eisenstein integers. Borel-Serre duality
[3] applies not just with Q-coefficients as stated in the introduction, but in fact their
work implies that duality hold with any coefficients in which all torsion primes for
the group are invertible. By [10, Lemma 3.9], the torsion primes of GL,(Of) for O
quadratic imaginary are bounded by n + 1 if n =1 (mod 4) and 2n + 1 otherwise. Thus,
H,(SL,, (O); St,(K) ® k) = H"»~1(SL, (Og); k) as the orders of torsion elements of G, are
invertible in k. Similarly, because K is quadratic imaginary, Putman-Studenmund [24,

Theorem C and following paragraph] implies that
H" " 1(GL, (0); k) — H, (GL,(O); St,,(K) ® k).

Theorem 4.10 completes the proof. |

Remark 4.12. Church-Putman [8, Theorem A] also gave a vanishing result for the
twisted cohomology groups H"»~1(SL, (Z); V,), where V, is the rational representation
of GL,,(Q) with highest weight A given by the partition A = (A; > ... > 1,)); it vanishes
for n > 3 + ||A|| with |[A|| = X' (A; — A,,). Their arguments are easily adapted to our

situation:
HVH_I(SLn(OK)? V,) = HV”_l(GLn(OK); V,)=0 forn > 3+ ||A]],

where V, is now the rational representation of GL, (K) with highest weight A.

4.3 Examples of the failure of the generalized Bykovskii presentation

In this subsection, we prove Theorem C, which gives examples of rings for which the
Bykovskil presentation does not hold. This will follow from the following more general

theorem.

Theorem 4.13. Let O be a Euclidean domain with field of fractions K. If O has detours,
then the map Byk,, (O) — St, (K) is not injective for all n > 2.
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Proof. Assume O has detours and is Euclidean.

The case n = 2. Recall from Lemma 4.7 that there is an isomorphism H; (BA,(O), BA,(0)") =

Byk,(0) of ZIGL,(O)l-modules. Consider the long exact sequence of the pair
(BA,(0), BA,(0)),

Hl(BAQ(O)/) e Hl(BAQ(O)) —_— Hl(BAQ(O)7BA2(O)/) j

[ﬁ Ho(BAQ(O)/) E— Ho(BAQ(O)) E— Ho(BAQ(O),BAQ(O)/)

Proposition 3.26 implies that the group H, (BA,(0)) is nonzero, and as H; (BA,(0)") =0
the connecting homomorphism 8 has nontrivial kernel. By the proof of Theorem B, the
map Byk,(0) — St,(K) factors as

~

Byk,(0) —> H,(BA,(0),BA,(0)") LN ?IO(BAZ(O)/) — ﬁo('ﬁl(K)) = St,(K).

Since 9 is not injective, the composite Byk,(0O) — St,(K) cannot be an isomorphism.
The case n > 3. Recall from Definition 4.5 that BA, (O)' € BA,(O) is the subcomplex of
all simplices {vy, vy, ... ,Vp} for which vy+v; +-- vy, is a proper summand of O". There

is a map
span: sd(BA,,(0)) — T,(K)
and an associated strongly convergent spectral sequence
B2 g = Hy(To(®)i [V > Hy(span\V)]) = H,,,((BA,(O)),

described in Theorem 4.4. We will verify that for n > 3 its E?-page satisfies the
following:
(i) For g =0, the term Elz,y0 =0unlessp=0orp=n-—2.
(iii) For g =1, the term EIZL1 =0unlessp=n-—3.
(iii) For q > 2, the term Eﬁ,q = 0O unless (p 4+ q) is equal to (n — 1) or (n — 2).
(iii) See Figure 20.
(iv) EZ_,,=H, o(T,(K)).

(v) Erzz—S,lgea verr Hy_y(T(K"™/V); Hi (BA(V)).
dim(V)=2
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ot
*
o

Fig. 20. The page E}%,q when n = 6.

We first analyze the posets span\V. For a proper nonzero subspace V C K",

observe that
span\V = {{VO,VI,. L VpLE simp(BA,,(O)) | Kvy + Kv; + - -+ +Kv, C V} =~ BA(VNO™M).

By abuse of notation, for V € K" we write BA(V) to denote the complex BA(V N O").
Proposition 3.30 states that the complex BA(V) is (dim(V) — 2)-connected, so

H,(span\V) =0 except possibly when g = 0, dim(V) — 1 or dim(V).

First consider the case ¢ = 0. The complex BA(V) is always connected; this
follows from Proposition 3.30 when dim(V) > 2 and because BA(V) is a point when
dim(V) = 1. Thus when g = 0 we find that the functor [V — H,(BA(V)] is the trivial
functor Z. Then E12>,0 = HP(E(K)). By the Solomon-Tits theorem (Theorem 3.2), 7,,(K) is
spherical of dimension (n — 2), so the term Ef),o = 0 unless p = 0 or p = n — 2, properties
(i) and (iv).

Let g = 1. Because BA(V) is a point when dim(V) = 1, the group H, (BA(V))
can be nonzero only when dim(V) = 2. Thus the functor [V — H,(span\V)] is nonzero
only on elements of a single height. Taking the quotient by V gives an isomorphism
T,K).y — T(K"™/V), and so by Lemma 4.2,

El,= P H, ,(TK"/V);H BAWV)).

VCK™
dim(V)=2

€202 1990)0 6z U0 3senb Aq 8005919/ 7€01/€L/220Z/3I01e/ulWI/Wod dno olWwapede//:sdRy Wwoly papeojumoq



Bykovskii Presentation of Steinberg Modules 10395

The Solomon-Tits theorem implies that Ef,,l = 0 unless p = n — 3, properties (ii) and (v).
Let g > 2. In order to apply Lemma 4.2 to the terms Eg,q' we will write the
functors [V H,(span\V) = Hq(BA(V))] as extensions of functors that are each nonzero

only on elements of a single height. There is a short exact sequence of functors,
0 — Hy —> H,(BA(-)) — Hy — 0,
with functors Hr/;' H[Z’ given by

H,(BA(V)) if dim(V) =q+1, W) = H,(BA(V)) if dim(V) =g,

H(V) =
0 otherwise, 0 otherwise,

and natural transformations between them given by

dim(U) = ¢ dim(W) =¢+1
H 0—— H(BAW))
| | H
H,(BA(-)) H,(BAW)) Y H (BAW))
) H |
HY (BA(U)) —————— 0

We can then apply Lemma 4.2 to the terms in the associated long exact sequence

on homology:

1
Hy(To(K); H)) =—— @’ H, (T(K"/W); H,(BA(W))
l im(W) =g +1
Hy (Tu(K), [V = Hy(BA(V)))) EZ,
l )
Hy(To(K); HY)) =——= P H,1(T(K"/U); Hy(BAU))
l UCK™

dim(U)=q
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3 3 0 * * 0
2 2 0 0 * * 0
\
1 1 0 0 0 @ 0 0
0 0 0 * 0 0 0 * 0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(A) The term E}_5 ¢ (B) The term Ej,_3 4

Fig. 21. The spectral sequence Ezr),q illustrated for n = 6. (A) The term E:zfz,O' (B) The term E7r173'1.

The Solomon-Tits theorem now implies that for g > 2 the homology groups Eﬁ,q
can be nonzero only when p + g is equal to n — 1 or n — 2, property (iii). We have verified
our description of the E? page, as illustrated in Figure 20.

From the structure of the E? page, we can deduce the terms Errl_z,o and Er’;—s,l
are not the source or target of any nonzero differentials for any r > 2. See Figure 21. It
follows that ETZFZV0 =E°,,and E72173'1 = E;° 5. Using formal properties of the spectral

sequence, we see that there is a surjection
H, ,(BA,(0)) — Ej_5 0 = H,_o(T,(K)
and the term E,ZL_?,’1 is a quotient of the kernel. But

El ;= P H, J(TEYV),HBAV)= P StK"/V)®H BAW)).

VCK™ VCK™
dim(V)=2 dim(V)=2

Proposition 3.26 imply that the group H, (BA(V)) is nonzero, and the Steinberg module
St(K™/V) is nonzero for n > 3, so we conclude E121—3,1 # 0 in this range.
As in the proof of Theorem B, our map Byk, (O) — St (K) factors as (sincen > 3,

in degree (n — 2) we can conflate reduced and non-reduced homology)

Byk,,(0) = H, ,(BA,(0),BA,(O)) N H, ,(BA,(0)) — H, ,(T,(K)) = St,(K).
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Since H,,_,(BA, (0)) = 0, the connecting homomorphism 9 is surjective. We have proven
that the map H,,_,(BA,(0)) — H, _,(T,(K)) is not injective, so Byk, (0) — St (K) is not

injective. ]

We now prove Theorem C, which says the generalized Bykovskil presentation

does not hold for Euclidean quadratic number rings that are not generated by units.

Proof of Theorem C. Let O be a quadratic number ring that is Euclidean but is not
generated by units. By Proposition 3.28, Oy has detours. The claim now follows from
Theorem 4.13. |

Remark 4.14. See Section 1.2 for our notation for fundamental classes of apartments.

In this notation, the proof of Theorem C in conjunction with Figure 18 shows that

LO-CUCICENACI O UCHE)-

is arelation in St, (Q(+/7)) that does not follow from the generalized Bykovskii relations.

5 Open Questions

We end with some open questions. All examples of Euclidean domains for which the
generalized Bykovskiil presentation is known to hold are generated by units. Conversely,
all Euclidean domains for which the generalized Bykovskii presentation is known to fail

are not generated by units.

Question 5.1. For O a Euclidean domain, does the generalized Bykovskil presentation

hold if and only if O is generated by units?
The following question asks whether all relations in St,,(K) come from St, (K).

Question 5.2. Let Ker, (Of) denote the kernel of Byk,(Ox) — St,(K). For O a

Euclidean domain, is there a natural surjection

GLn(Og)
IndGLz(OII;)xGLn,Z(OK)Kerz(OK) X Byk,,_»(Og) — Ker,, (0g)?

The group Ker, (Of) measures relations in the Steinberg module beyond those

appearing in the Bykovskil presentation. An affirmative answer would imply that
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10398 A. Kupers et al.

for n > 4 and all Euclidean domains O, we have H;(GL,(O);St,(K) ® Q) =
H, (SL,,(Og); St,(K) ® Q) = 0.

Vanishing results near the virtual cohomological dimension are the subject
of several conjectures by Church-Farb-Putman [5]. In particular, they conjecture ([6,

Conjecture 2]) that

H"YSL,(Z);Q) =0  fori<n—1.
This is supported by the available computations [9, Remark 5.3], and known fori = 0
by Lee-Szczarba [17, Theorem 1.3] and i = 1 by Church-Putman [8, Theorem A]. It is
natural to ask the same question for other number rings; using [17, Theorem 1.3] and
Theorem A it is also true for i = 0,1 when we replace Z by the Gaussian integers or
Eisenstein integers.
Conjecture 5.3. Let Oy denote the Gaussian integers or Eisenstein integers. Then

an*i(SLn(OK); Q) = HVn*i(GLn((’)K); Q=0 foralli <n—1.

This is supported by the available computations Dutour Sikiri¢c-Gangl-
Gunnells-Hanke-Schiirmann-Yasaki [10, Tables 11, 12] or [11, Propositions 2.6, 2.10]:
H”4_i(GL4(OK); Q=0 for i < 2 and O the Gaussian integers or Eisenstein integers.
For general Euclidean number rings, one might expect a similar vanishing result though
possibly with a worse range.

One can also ask about integral versions of our vanishing result. In [21, Theorem
1.10] it was proven that forn > 6

H,(GL,(Z); St,(Q)) = H, (SL,(Z); St,,(Q)) = 0.
Question 5.4. Is it true that for n > 6 we have

H,(GL,,(Og); St,,(K)) = H;(SL,,(O); St,,(K)) =0

when Oy is the Gaussian integers or Eisenstein integers? Can the range be improved?
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The Bykovskil presentation is also useful for computing the homology of

congruence subgroups. For an ideal J C O, let
[() i=Ker| GL,(Og) > GL, (O /D]
We say an ideal J has the Lee-Szczarba property (see [17, page 28]) if the natural map
H'™(I,(J); Q) — Hy(T,()); St,(K) ® Q) —> H,,_,(T,(K)/ T, ()); Q)

is an isomorphism. For O = Z, the prime ideals with the Lee-Szczarba property are
(2),(3), and (5); see [17, Theorem 1.2] and [22, Theorem A]. The proof relies on the

Bykovskii presentation.

Question 5.5. Which prime ideals in the Gaussian integers or Eisenstein integers have

the Lee-Szczarba property?

Often, H,, ,(T7,(K)/T",(J)) is computable (see [22, Table 1]) so an answer to this

question could yield concrete calculations.
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