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We study presentations of the virtual dualizing modules of special linear groups of

number rings, the Steinberg modules. Bykovskiı̆ gave a presentation for the Steinberg

modules of the integers, and our main result is a generalization of this to the Gaussian

integers and the Eisenstein integers. We also show that this generalization does not give

a presentation for the Steinberg modules of several Euclidean number rings.

1 Introduction

1.1 Cohomology

In this paper, we study the cohomology of special linear groups of number rings in large

degrees. Let OK denote the ring of integers in a number field K with r1 real embeddings
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10348 A. Kupers et al.

and r2 pairs of complex conjugate embeddings. It follows from the work by Borel–Serre

[3, Theorem 11.4.2] (also see e.g., Church–Farb–Putman [6, Section 1.4]) that

νn := r1

2
((n + 1)n − 2) + r2(n2 − 1) − n + 1

is the virtual cohomological dimension of SLn(OK), and hence Hi(SLn(OK); Q) = 0 for

i > νn. This does not mean that Hνn(SLn(OK); Q) #= 0, only that there is some twisted

coefficient system where this group is nontrivial. We investigate the following question.

Question 1.1. For OK a number ring, what is the largest i such that Hi(SLn(OK); Q) is

non-zero?

In particular, we seek better bounds on vanishing of rational cohomology than

just the virtual cohomological dimension. See [5, 6, 8, 9, 11, 16–18, 23] for progress on

this question as well as applications of this question to computations in algebraic

K-theory. The main such results are Lee–Szczarba’s theorem [17, Theorem 1.3] that

Hνn(SLn(OK); Q) = 0 for n ≥ 2 and OK a Euclidean domain, and Church–Putman’s

theorem [8, Theorem A] that Hνn−1(SLn(Z); Q) = 0 for n ≥ 3. Our main theorem extends

Church–Putman’s result to two other number rings: the Gaussian integers Z[i] and

the Eisenstein integers Z[ρ] with ρ = 1+√−3
2 a 6th root of unity. These are Euclidean

domains, with νn = n2 − n.

Theorem A. Let OK denote the Gaussian integers or Eisenstein integers. Then

Hνn−1(GLn(OK); Q) = 0 for n ≥ 2,

Hνn−1(SLn(OK); Q) = 0 for n ≥ 3.

In fact, it suffices to only invert (2n + 1)!, but we restrict to rational statements in the

introduction.

1.2 Dualizing modules

Our strategy for proving Theorem A is to give a presentation for the virtual dualizing

module of the groups GLn(OK) and SLn(OK) and use it to show that the (νn − 1)st

cohomology group vanishes.

Recall that the Tits building Tn(K) of a field K is the geometric realization of the

poset of non-empty proper subspaces of the K-vector space Kn ordered by inclusion.
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Bykovskiı̆ Presentation of Steinberg Modules 10349

This poset is spherical of dimension (n − 2) [12, 25, 28] and its top reduced homology is

called the Steinberg module and denoted Stn(K). The action of GLn(OK) on Tn(K) gives

this the structure of a Z[GLn(OK)]-module. Borel–Serre [3, §11] proved that for OK the

ring of integers in a number field K, Stn(K) is the virtual dualizing module of K. That is,

there is a natural isomorphism

Hνn−i(SLn(OK); Q)
∼=−→ Hi(SLn(OK); Stn(K) ⊗ Q).

Thus, to show Hνn−1(SLn(OK); Q) = 0, it suffices to show H1(SLn(OK); Stn(K) ⊗ Q) = 0.

This will be done by finding a presentation of the relevant Steinberg modules.

For O an integral domain, let Bykn(O) denote the quotient of the free abelian group on

symbols [[)v1, . . . , )vn]], with )v1, . . . , )vn an ordered basis of On, by the following relations:

(1) [[)v1, . . . , )vn]] = sgn(σ )[[)vσ (1), . . . , )vσ (n)]] for σ a permutation of {1, . . . , n} and

sgn(σ ) its sign.

(2) [[)v1, )v2, . . . , )vn]] = [[u)v1, )v2, . . . , )vn]] for u a unit in O.

(3) [[)v1, )v2, )v3, . . . , )vn]] − [[)v1 + )v2, )v2, )v3, . . . , )vn]] + [[)v1 + )v2, )v1, )v3, . . . , )vn]] = 0.

The symbols [[)v1, . . . , )vn]] are sometimes called modular symbols. Letting A ∈ GLn(O) act

on a symbol [[)v1, . . . , )vn]] by [[A)v1, . . . , A)vn]] gives Bykn(O) a Z[GLn(O)]-module structure.

Let K denote the field of fractions of O. Given an ordered basis )v1, . . . , )vn,

the subposet of subspaces of Kn that are spanned by a non-empty proper subset of

)v1, . . . , )vn is isomorphic to the barycentric subdivision of ∂%n−1 and thus realizes to

an (n − 2)-dimensional sphere with canonical orientation. These spheres are called

apartments and sending [[)v1, . . . , )vn]] to the fundamental class of the apartment gives

a homomorphism of Z[GLn(O)]-modules

Bykn(O) −→ Stn(K).

Bykovskiı̆ [4] proved that Bykn(Z) → Stn(Q) is an isomorphism. If Bykn(O) → Stn(K) is

an isomorphism, we say the generalized Bykovskiı̆ presentation holds for O. That the

Bykovskiı̆’s presentation holds for Z is the key ingredient in Church–Putman’s vanishing

result for Hνn−1(SLn(Z); Q). We investigate the following question and give a partial

answer:

Question 1.2. For which number rings does the generalized Bykovskiı̆ presentation

hold?

Theorem B. Let OK denote the Gaussian integers or Eisenstein integers, and K its

field of fractions. Then Bykn(OK) → Stn(K) is an isomorphism of Z[GLn(OK)]-modules

for all n.
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10350 A. Kupers et al.

Theorem A follows quickly from Theorem B. Surjectivity of the map Bykn(O) →
Stn(K) follows from work of Ash–Rudolph [1, Theorem 4.1] whenever O is Euclidean.

In fact, for number rings OK , the generalized Riemann hypothesis implies that

Bykn(OK) → Stn(K) is surjective if and only if OK is Euclidean [23, Corollary 1.2].

One might think that the generalized Bykovskiı̆ presentation holds for all Euclidean

number rings, but this is not the case.

Theorem C. Let OK be the ring of integers in K = Q(
√

d). Assume OK is a Euclidean

domain that is not additively generated by units. Then the map Bykn(OK) → Stn(K) is

not injective for all n ≥ 2.

Norm-Euclidean number rings satisfying the hypothesis of this theorem have

been classified and are Q(
√

d) for d ∈ {−11, −7, −2, 6, 7, 11, 17, 19, 33, 37, 41, 57, 73};
see Remark 3.29. Thus there are many examples of Euclidean number rings where

the generalized Bykovskiı̆ presentation fails. In fact, we give a more general result

(Theorem 4.13) allowing the reader to possibly find more examples.

Remark 1.3. The main technical result is that certain simplicial complexes of “aug-

mented partial frames” are highly connected. This has applications in a forthcoming

paper [15] on homological stability for general linear groups of certain Euclidean

domains.

2 Elementary Properties of the Gaussian Integers and Eisenstein Integers

In this section, we establish some elementary properties of the Gaussian integers and

Eisenstein integers. These properties are the primary reason that the proof of Theorem A

in this paper only applies to these rings.

Notation 2.1. Let OK denote the Gaussian integers or Eisenstein integers. We will pick

preferred ring generators for each ring,

Gaussian integers : i,

Eisenstein integers : ρ = e
2π i
6 = 1

2
+ i

√
3

2
.

The latter is not the conventional choice of an additive generator for the Eisenstein

integers, which is more typically ρ2 = e
2π i
3 . See Figure 1.
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Bykovskiı̆ Presentation of Steinberg Modules 10351

Fig. 1. The additive generators and the units in OK . (A) The Gaussian integers. (B) The Eisenstein

integers.

With this notation, observe that the complex norm is given as follows,

Gaussian integers : |x + iy|2 = x2 + y2 (x, y ∈ R),

Eisenstein integers : |x + ρy|2 =
∣∣∣∣x + 1

2
(1 + i

√
3)y

∣∣∣∣
2 = x2 + xy + y2 (x, y ∈ R).

The complex norm is a Euclidean function for OK the Gaussian integers or

Eisenstein integers. That is, given a, b ∈ OK with |b| > 0, then there is a q ∈ OK with

|a − qb| < |b|. Moreover, this function is multiplicative in the sense that |ab| = |a||b|. We

now prove some key lemmas.

Lemma 2.2. Let OK be the Gaussian integers or Eisenstein integers. Let a, b ∈ OK with

|a| = |b| > 0. Then there is a unit u with |a − ub| < |a|.

Proof. Pick u such that the angle between a and ub is less than π/3. It is an elementary

exercise in trigonometry to see that |a − ub| < |a|. !

Convention 2.3. Let H be a group and S a set of generators. In this paper, the

term Cayley graph for H with generators S means the undirected graph with vertices

elements of H and an edge between h and g if and only if they differ by left

multiplication by an element in S. In particular, if s and s−1 ∈ S, then the Cayley

graph for H with generators S agrees with the Cayley graph for H with generators

S \ {s−1}.
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10352 A. Kupers et al.

Fig. 2. (A) Eisenstein integers within complex distance 2 of the origin. (B) An instance of a ball Bz

containing 0 and ρ + 1.

Lemma 2.4. Let OK be the Gaussian integers or Eisenstein integers. Let G be the Cayley

graph of OK with units as generators. Let z ∈ C and let Gz be the full subgraph of G on

vertices x with |x − z| < 1. Then Gz is connected.

Proof. Consider the open ball Bz of radius 1 centered on the point z ∈ C. This ball

must contain at least one element of OK , and without loss of generality we may assume

it contains 0.

We will first consider the case where OK is the Eisenstein integers. Any other

element of OK in Bz must have distance < 2 from the origin. There are only twelve such

points, as shown in Figure 2a. Six of these (colored dark gray) are joined to 0 by an edge,

and the other six (colored light gray) are distance 2 from the origin in the edge metric

on the Cayley graph.

Up to symmetry, then, it suffices to assume that both 0 and ρ + 1 are contained

in Bz and show that either ρ or 1 must be contained in Bz. See Figure 2b. In this case, z

must be contained in the intersection B0 ∩ Bρ+1, as in Figure 5a. But this intersection is

contained in the union Bρ ∪ B1, as in Figure 5b. Hence ρ ∈ Bz or 1 ∈ Bz.

Next suppose OK is the Gaussian integers. There are only eight points other than

0 that could be contained in the ball Bz, as in Figure 4.

It suffices to check that, if 0 and i + 1 are contained in Bz, then so is one of i or

1. But B0 ∩ Bi+1 ⊆ Bi ∪ B1, as shown in Figure 5.

The result follows.
!
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Bykovskiı̆ Presentation of Steinberg Modules 10353

Fig. 3. (A) The intersection B0 ∩ Bρ+1. (B) The containment B0 ∩ Bρ+1 ⊆ Bρ ∪ B1.

Fig. 4. Gaussian integers within complex distance 2 of the origin.

Fig. 5. Gaussian integers within complex distance 2 of the origin. (A) The intersection B0 ∩ Bi+1.

(B) The containment B0 ∩ Bi+1 ⊆ Bi ∪ B1.
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10354 A. Kupers et al.

Fig. 6. The region S and its translates S ± i, S ± 1, S ± i ± 1.

Lemma 2.5. Let OK be the Gaussian integers. If z1 and z2 are any complex numbers,

then there exist r1, r2 ∈ OK so that

|z1 − r1| < 1, |z2 − r2| < 1, and |(z1 − r1) + (z2 − r2)| < 1.

Proof. Up to the addition of elements of OK , we may assume that z1, z2 are contained

in the set

S =
{

z ∈ C
∣∣∣∣

−1
2

≤ Re(z) ≤ 1
2

,
−1
2

≤ Im(z) ≤ 1
2

}
,

the closure of the square fundamental domain for OK centered around zero in Figure 6.

The sum z1+z2 must have both real and imaginary parts in the interval [−1, 1], so

the sum is contained in S or in one of its eight translates shown in Figure 6. If |z1 +z2| ≤
1, then we are done, so suppose otherwise. Up to symmetry, we may consider two cases:

(z1 + z2) ∈ (S + 1) or (z1 + z2) ∈ (S + 1 + i).

First suppose that (z1 + z2) ∈ (S + 1). This means that at least one of z1 and z2

(say, z1) must have real part at least 1
4 . Then we will replace z1 by (z1 −1). By assumption

−3
4

≤ Re(z1 − 1) ≤ −1
2

−1
2

≤ Im(z1 − 1) ≤ 1
2

and so (z1 − 1) lies in the rectangular region shown in Figure 7. The number (z1 − 1) is

contained in the unit ball, as

(−3
4

)2

+
(

1
2

)2

< 1;

see Figure 7. But now ((z1 − 1) + z2) is contained in S and therefore in the unit ball, so

we have completed this case.
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Bykovskiı̆ Presentation of Steinberg Modules 10355

Fig. 7. The regions containing z1 and (z1 − 1) are shaded gray and dark gray, respectively. The

region containing (z1 + z2) is white.

Fig. 8. (A) The regions containing z1 and (z1 − 1 − i) are shaded gray and dark gray, respectively.

The region containing (z1 + z2) is white. (B) The regions containing z2 and (z2 − i) are shaded gray

and dark gray, respectively. The region containing z1 + z2 is white.

Now suppose that (z1 + z2) ∈ (S + 1 + i). Again we may assume that z1 has real

part at least 1
4 , and again we know |z1 − 1| < 1. If |z1 − 1 − i| < 1, then we could replace

z1 by (z1 − 1 − i), and the sum (z1 − 1 − i) + z2 would be contained in S. So suppose

|z1 − 1 − i| ≥ 1. See Figure 8a. In this case we will replace z1 by (z1 − 1) and z2 by (z2 − i),

and then

(z1 − 1) + (z2 − i) ∈ S

is contained in the unit ball as desired. It remains to show that |z2 − i| < 1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/1

3
/1

0
3
4
7
/6

1
6
5
0
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
2
3



10356 A. Kupers et al.

Assume for contradiction that |z2 − i| ≥ 1, so z2 is contained in the region shown

in Figure 8b. This assumption implies in particular that

Im(z2) ≤ 1 −
√

3
2

.

The assumption that |z1 − 1 − i| ≥ 1 implies that

Im(z1) ≤ 1 −
√

7
4

,

as we see in Figure 8a. But then

Im(z1 + z2) ≤
(

1 −
√

3
2

)

+
(

1 −
√

7
4

)

<
1
2

,

which contradicts the premise that z1 + z2 is contained in the region (S + 1 + i). So we

conclude that |z2 − i| < 1, which concludes the proof. !

Lemma 2.6. Let OK be the Eisenstein integers. If z1 and z2 are any complex numbers,

then there exist r1, r2 ∈ OK so that

|z1 − r1| < 1, |z2 − r2| < 1, and |(z1 − r1) + (z2 − r2)| < 1.

Proof. Consider the rectangular fundamental domains for OK shown in Figure 9a. Up

to the addition of elements of OK , we may assume that z1 and z2 are in (the closure of)

the fundamental domain centered about zero,

S =
{

z ∈ C
∣∣∣∣∣

−1
2

≤ Re(z) ≤ 1
2

,
−

√
3

4
≤ Im(z) ≤

√
3

4

}

.

The region S is shaded medium gray in Figure 9a. Observe that |z1|, |z2| < 1.

By symmetry under reflection in the real and imaginary axes, we may assume

that Im(z1), Re(z1) ≥ 0. Thus z1 is in the quadrant shaded dark gray in Figure 9b, and

−1
2

≤ Re(z1 + z2) ≤ 1,
−

√
3

4
≤ Im(z1 + z2) ≤

√
3

2
.

We deduce that the sum (z1+z2) must be contained in the rectangle shown in Figure 10a.

If |z1+z2| < 1 then we are done, so assume otherwise. In this case, either z1+z2 =
ρ − 1, or (z1 + z2) is in one of the regions A or B shown in Figure 10b.
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Bykovskiı̆ Presentation of Steinberg Modules 10357

Fig. 9. (A) The unit circle and a rectangular fundamental domain for OK along with six of its

translates. (B) We may assume z1 is in the dark gray region.

Fig. 10. (A) The sum z1 + z2 is contained in the rectangle. (B) The region A is shown in dark gray

and B in medium gray.

If z1 + z2 = ρ − 1, then we must have the extremal values of z1 and z2 given by

z1 =
(√

3
4

)

i and z2 = −1
2

+
(√

3
4

)

i,

as shown in Figure 11a. In this case both z1 and z1 + z2 are strictly within distance 1 of

ρ − 1. We may then replace z1 by (z1 − ρ + 1), so

|z1 − ρ + 1| < 1 and |(z1 − ρ + 1) + z2| = 0 < 1.
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10358 A. Kupers et al.

Fig. 11. (A) The case z1 + z2 = ρ − 1. (B) The case z1 + z2εA.

Next suppose z1 + z2 ∈ A. Necessarily z1 #= 0, otherwise z1 + z2 = z2 would have

norm strictly less than one. But then both z1 and z1 + z2 are within strict distance 1 of

ρ, as in Figure 11b. We may replace z1 with z1 − ρ, so

|z1 − ρ| < 1 and |(z1 − ρ) + z2| < 1.

Finally, suppose that z1 + z2 ∈ B. It follows that

Re(z1 + z2) ≥
√

13
4

>
1
2

.

This implies that Re(zi) ≥ 1
4 for at least one choice of i = 1, 2, so zi is contained in the

dark gray region in Figure 12. But then both zi and z1 + z2 are within distance strictly

less than 1 of 1, as in Figure 12. We may replace zi with zi − 1, and

|zi − 1| < 1 and |z1 + z2 − 1| < 1.

This concludes the proof. !

3 Connectivity Results

Our results will be a consequence of connectivity/non-connectivity results for com-

plexes of augmented partial frames. These complexes were introduced by Church–

Putman [8] to give a topological proof of Bykovskiı̆’s presentation of Stn(Q). The original

proof used more algebraic methods [4].
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Bykovskiı̆ Presentation of Steinberg Modules 10359

Fig. 12. The case z1 + z2 ∈ B. The region of S with real part at least 1
4 is shaded dark gray.

3.1 Definitions and previously known results

We say that a simplicial complex is d-spherical if it is simultaneously d-dimensional

and (d − 1)-connected, in which case it is homotopy equivalent to a wedge of d-spheres.

A simplicial complex is Cohen–Macaulay of dimension d if it is d-spherical and the

link of every k-simplex is (d − k − 1)-spherical. We follow the usual convention that

(−1)-connected means non-empty. An example of a Cohen–Macaulay complex is the Tits

building:

Definition 3.1. For a finite-dimensional vector space V over a field K, let T (V) denote

the geometric realization of the poset of proper non-empty subspaces of V ordered by

inclusion. When V = Kn, write Tn(K) for T (Kn) and call it the nth Tits building of K.

The following theorem seems to have first appeared in Solomon [28] for finite

fields; see Garland [12, Theorem 2.2] and Quillen [25, Theorem 2] for the general case.

Theorem 3.2 (Solomon–Tits). For K a field, Tn(K) is Cohen–Macaulay of dimension

(n − 2).

Since Tn(K) is (n − 2)-spherical,

Stn(K) := H̃n−2(Tn(K))

is the only possible non-zero reduced homology group, called the nth Steinberg module.

It may be helpful to remark that for O a Dedekind domain with field of fractions K, there

is a natural bijection between summands of On and subspaces of Kn; see for example,

Church–Farb–Putman [6, Lemma 2.3].
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3.1.1 Partial frames

We now recall the definition of the complexes of (augmented) partial frames. The

complex of partial frames is closely related to the complex of partial bases considered

(for example) by Maazen [19] and van der Kallen [30] in the context of homological

stability. See Church–Farb–Putman [6] and [23] for a discussion of the relationship

between the complex of partial bases/frames and generators of Steinberg modules. From

now on, we let O denote an integral domain.

Convention 3.3. In this paper, a line in On will mean a rank one free summand.

Definition 3.4. A vector )v ∈ On is called primitive if its span is a direct summand. In

that case, we denote its span by v. Similarly if v is a line, we let )v denote a primitive

vector that spans that line. The vector )v is well defined up to multiplication by a unit

of O.

Definition 3.5. A partial frame is an unordered collection of lines v0, . . . , vp in On such

that there are lines vp+1, . . . , vn−1 so that the natural map v0 ⊕ · · · ⊕ vn−1 → On is an

isomorphism.

Definition 3.6. Let M be a finite-rank free O-module. The complex of partial frames

B(M) is the simplicial complex with p-simplices given by the set of partial frames in

M of cardinality p + 1. A simplex {w0, . . . , wq} is a face of {v0, . . . , vp} if and only if

{w0, . . . , wq} ⊆ {v0, . . . , vp}. We write Bn(O) for B(On).

We consider Om as a submodule of Om+n by the inclusion of the 1st m

coordinates, and let e1, . . . , em denote the lines spanned by the standard basis vectors of

Om. As in Church–Putman [8, Definition 4.1], we use the shorthand

Bm
n (O) := LinkBn+m(O)(e1, . . . , em).

Observe that B0
n(O) is equal to Bn(O).

Theorem 3.7. If O is a Euclidean domain, then the simplicial complexes Bm
n (O) are

Cohen–Macaulay of dimension (n − 1).

We prove this theorem using Maazen [19], though it can also be established by

adapting the techniques of Church–Putman [8, Theorem 4.2], who prove it O = Z.
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Proof of Theorem 3.7. Since the link of a p-simplex in Bm
n (O) is isomorphic to

Bm+p+1
n−p−1 (O), it suffices to show that the complexes Bm

n (O) are (n − 2)-connected. Let

Bm
n (O)• denote the semi-simplicial set of ordered partial frames. That is, Bm

n (O)p is the

set of ordered (p + 1)-tuples (v0, . . . , vp) with underlying set {v0, . . . , vp} a p-simplex of

Bm
n (O). The ith face map forgets the ith line. By [14, Lemma 3.16], it suffices to show

Bm
n (O)• is (n−2)-connected. Let Om

n (O)• denote the semi-simplicial set of ordered partial

bases. That is, Om
n (O)p is the set of ordered (p + 1)-tuples ()v0, . . . , )vp) with {v0, . . . , vp}

a p-simplex of Bm
n (O). As before, the ith face map forgets the ith vector. Maazen [19,

Section III.4, Theorem 4.2, and Corollary 4.5] proved that the barycentric subdivision of

||Om
n (O)•|| is (n − 2)-connected and hence ||Om

n (O)•|| is (n − 2)-connected. Consider the

natural projections:

Om
n (O)• −→ Bm

n (O)•

()v0, )v1, . . . , )vp) 0−→ (span()v0), span()v1), . . . , span()vp)).

By picking a representative )v for all lines v, one can construct a splitting of this map;

see [23, Proposition 2.13]. Thus, ||Bm
n (O)•|| and hence Bm

n (O) is (n − 2)-connected. !

3.1.2 Augmented partial frames

One of the innovations of Church–Putman [8] is the introduction of a simplicial complex

of augmented partial frames, obtained by adding new “additive” simplices to Bm
n (O).

These correspond to certain relations in Steinberg modules.

Definition 3.8. An augmented partial frame is an unordered collection of lines

v0, . . . , vp such that, possibly after re-indexing, v1, . . . , vp is a partial frame and there

are units u1, u2 in O so that )v0 = u1)v1 + u2)v2.

Definition 3.9. Let M be a finite-rank free O-module. The complex of augmented

partial frames BA(M) is the simplicial complex with p-simplices given by the union of

the set of partial frames in M of cardinality p + 1 and the set of augmented partial

frames in M of cardinality p + 1. A set w0, . . . , wq is a face of v0, . . . , vp if and only if

{w0, . . . , wq} ⊆ {v0, . . . , vp}. We generally write BAn(O) for BA(On).

We adapt the following notation from Church–Putman [8, Definitions 4.7 and

4.11].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/1

3
/1

0
3
4
7
/6

1
6
5
0
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
2
3



10362 A. Kupers et al.

Definition 3.10. Fix n > 0. Let BAm
n (O) be the full subcomplex of

LinkBAn+m(O)(e1, . . . , em)

of simplices v0, . . . , vp such that vi #⊆ span()e1, . . . , )em) for all i.

Definition 3.11. For σ = {w0, . . . , wq}, let L̂inkBAm
n (O)(σ ) denote the full subcomplex of

LinkBAm
n (O)(σ ) of simplices {v0, . . . , vp} such that for all i,

vi #⊆ span()e1, . . . , )em, )w0, . . . , )wq).

Observe that BAm
n (O) is equal to L̂inkBAn+m(O)(e1, . . . , em). The span of the lines

in a p-simplex {v0, . . . , vp} of BAm
n (O) has rank p + 1 or p. The following definition,

analogous to [8, Definition 4.9], describes the latter type of simplices:

Definition 3.12. Let σ = {v0, . . . , vp} be a p-simplex of BAm
n (O).

(i) We say σ is an internally additive simplex if )vi = uk)vk + uj)vj for some i, j, k

and some units uk, uj in O.

(ii) We say σ is an externally additive simplex if )vi = uk)ek + uj)vj for some

i, j, k and some units uk, uj in O. More generally, if σ is a simplex in

L̂inkBAm
n (O)({w0, . . . , wp}), we say that σ is an externally additive simplex

if )vi = uk)vk +u )w for some units uk, u in O, and primitive vector )w spanning

e1, . . . , em, w0, . . . , wp−1 or wp.

(iii) We say that a simplex is additive if it is externally or internally additive.

We will need a subcomplex of certain links with control on the last coordinate:

Definition 3.13. Let f : On+m → O denote the projection onto the last coordinate. If

O comes equipped with a preferred multiplicative Euclidean function |−|, we let F(v) =
|f ()v)| for v a line spanned by )v. This is well defined since |−| is multiplicative. If O is the

Gaussian integers or Eisenstein integers, we will take |−| to be the usual norm on the

complex numbers, |a+bi| =
√

a2 + b2. We will occasionally denote |f ()v)| by F()v) instead

of F(v).

Definition 3.14. Let σ be a simplex of BAm
n (O). Then

L̂ink<
BAm

n (O)(σ )
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denotes the full subcomplex of L̂inkBAm
n (O)(σ ) consisting of lines v such that there is a

vertex w in σ with F(v) < F(w). Similarly define

Link<
Bm

n (O)(σ ) and Link<
BAm

n (O)(σ )

for simplices σ in Bm
n (O) or BAm

n (O), respectively.

We can deduce a connectivity result for the latter complex from that for Bm
n (O).

Lemma 3.15. Let O be a Euclidean domain and let σ be a simplex in Bm
n (O). Assume

that F(w) > 0 for some vertex w in σ . Then Link<
Bm

n (O)(σ ) is Cohen–Macaulay of

dimension (n − dim(σ ) − 2).

Proof. For a simplex τ in Link<
Bm

n (O)(σ ),

LinkLink<
Bm

n (O)
(σ )(τ ) = Link<

Bm
n (O)(σ ∗ τ ),

where ∗ denotes simplicial join; this uses the assumption that for all v ∈ τ we have

F(v) < F(w) for some w ∈ σ . Our goal is therefore to show that Link<
Bm

n (O)(σ ) is (n −
dim(σ ) − 3)-connected.

This result is proved in the case O = Z in Church–Putman [8, Lemma 4.5], and

their proof adapts readily to all Euclidean domains. For completeness, we sketch a proof

here. Given Theorem 3.7, it suffices to show that there is a simplicial retraction

π : LinkBm
n (O)(σ ) −→ Link<

Bm
n (O)(σ ).

Let x be a vertex of σ with M = F(x) maximal among the vertices, and fix a

representative vector )x. We define the map π on vertices of LinkBm
n (O)(σ ) as follows.

For v ∈ LinkBm
n (O)(σ ), choose a representative )v ∈ On+m, and let qv ∈ O be a quotient of

f ()v) on division by f ()x), in the sense of the Euclidean algorithm. If F()v) < F()x) we take

qv = 0. Then by construction

0 ≤ F()v − qv )x) < F()x) = M.

We can thus define π(v) to be the line spanned by ()v−qv )x). It is straightforward to verify

that this map on vertices extends over simplices in LinkBm
n (O)(σ ), and fixes simplices in

Link<
Bm

n (O)(σ ). !
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3.2 New connectivity results

By modifying the proof of Church–Putman [8, Theorem C’], we will prove the following.

Theorem 3.16. For OK the Gaussian integers or Eisenstein integers, the simplicial

complexes BAm
n (OK) are Cohen–Macaulay of dimension n for all n and m satisfying

n ≥ 1 and n + m ≥ 2.

Recall BAn(OK) = BA0
n(OK) so the above theorem implies BAn(OK) is spherical.

3.2.1 Low-dimensional cases

Before we can prove that BAm
n (OK) is Cohen–Macaulay for general n and m, we will first

need to study small values. The argument will be by induction, and the following will

be the base case.

Lemma 3.17. Let m ≥ 1. Then BAm
1 (O) is connected if and only if O is additively

generated by multiplicative units.

Proof. An (m+1)-simplex in BAm+1(O) containing e1, e2, . . . , em is an augmented frame

for Om+1 of the form

{e1, e2, . . . , em, x, y}

where {)e1, . . . , )em, )x} is a basis for Om+1, and )y = u1)x + u2)ej or )y = u1)ei + u2)ej for some

i, j and some units u1, u2 ∈ O. By definition BAm
1 (O) is the subgraph of the edges {x, y}

on those lines x, y described above that are not contained in Om.

In particular, the vertices of this graph are the spans of vectors of the form

(x1, . . . , xm, 1) with xi ∈ O; these vertices may be uniquely represented by a vector with

(m + 1)st coordinate equal to 1, and the other coordinates may be any values in Om.

There is an edge from (x1, . . . , xm, 1) to (y1, . . . , ym, 1) if and only if there is an i such that

xj = yj for all j #= i and xi − yi is a unit. See Figure 13. There is therefore a path from

(x1, . . . , xm, 1) to (y1, . . . , ym, 1) if and only if each value xi − yi is a sum of units. The

claim follows. !

As illustrated in Figure 13, if O is additively generated by units, then BAm
1 (O)

is the Cayley graph for the additive group Om associated to the generating set

{u)ei | u a unit, i = 1, . . . , m }.

Proposition 3.18. Let OK denote the Gaussian integers or Eisenstein integers. Then

BA2(OK) is Cohen–Macaulay of dimension 2.
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Fig. 13. Part of the complex BA2
1(Z).

Proof. For BA2(OK) to be Cohen–Macaulay of dimension 2, no condition is imposed

on the link of 2-simplices. The link of a 1-simplex {v1, v2} always contains the vertex

span()v1 + )v2), so is (−1)-connected. The link of a vertex v is isomorphic to BA1
1(OK),

which is 0-connected by Lemma 3.17 since OK is additively generated by units. Thus it

remains to show that BA2(OK) is 1-connected.

First observe that BA2(OK) is 0-connected since its 1-skeleton is B2(OK), which

is connected by Theorem 3.7. Now suppose φ : S1 → BA2(OK) is a simplicial map with

respect to some simplicial structure on S1. Our goal is to show that φ is homotopic to a

constant map.

Let

M := max
vertices x∈S1

{F(φ(x))}.

Here F is as in Definition 3.13. If M = 0, then φ is the constant map at e1. Hence assume

that M > 0 and that φ is not constant. We will prove that φ can be homotoped to a map

φ̂ having one less vertex mapping to a line w with F(w) = M. As it is not constant, by

collapsing edges, we may assume that φ is simplex-wise injective. Pick a vertex x ∈ S1

with F(φ(x)) = M. Let x1 and x2 be the vertices adjacent to x, and let φ(x) = w and

φ(xi) = vi denote the images in BA2(OK).

We will homotope φ to make the vertices adjacent to x have last coordinate < M,

if they do not already. So suppose without loss of generality that F(v1) = M. By Lemma

2.2, we can find a unit u with F()v1 − u )w) < M. Since we assume that φ is simplex-wise
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injective, v1 #= w and hence )v1 − u )w #= 0. Let v′
1 denote the span of )v1 − u )w and note

that {v1, v′
1, w} forms a simplex in BA2(OK). Thus, there is a homotopy Ht with:

· H0 = φ,

· Ht(y) = φ(y) for y ∈ S1 not in the interior of {x1, x},
· H1 is a simplicial map from S1 with the edge {x1, x} subdivided once and

with middle vertex being mapped to v′
1.

Since F(v′
1) < M, we see that φ is homotopic to a simplicial map where one of the vertices

adjacent to x has last coordinate smaller than M. If necessary, we can also apply this

procedure to v2.

Thus, we may assume that the images of vertices adjacent to x are v1, v2 ∈
Link<

BA2(OK)
(w). Pick representatives )v1 and )w. The vertices of

Link<
BA2(OK)(w)

are precisely the spans of vectors of the form )v1+a )w with a ∈ OK such that F()v1+a )w) <

F(w) = M, equivalently, such that

∣∣∣∣
f ()v)

f ( )w)
+ a

∣∣∣∣ < 1.

There is an edge between the span of )v1 + a )w and the span of )v1 + b )w if and only if

a − b is a unit. Thus, Link<
BA2(OK)(w) is isomorphic to the graph Gz of Lemma 2.4 for

z = −f ()v)/f ( )w). Hence, that lemma implies it is connected. Let A ∼= S0 denote the set

containing x1 and x2. Since the target is connected, the map

φ|A −→ Link<
BA2(OK)(w)

is null-homotopic. Let

g : Cone(A) −→ Link<
BA2(OK)(w)

be a null-homotopy from a choice of simplicial complex structure on Cone(A); note that

such a simplicial structure is just a subdivision of an interval. See Figure 14a.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/1

3
/1

0
3
4
7
/6

1
6
5
0
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
2
3



Bykovskiı̆ Presentation of Steinberg Modules 10367

Fig. 14. Sample illustrations of the homotopy between φ and φ̂. (A) The cone on A. (B) The complex

Z 2 Sl. (C) The image of φ̂.

Let Z be S1 with simplicial structure given by replacing {x1, x} ∪ {x, x2} with

Cone(A), as in Figure 14b. Let φ̂ : Z → BA2(OK) be given by the formula:

φ̂(y) =





φ(y) if y ∈ Z \ Cone(A),

g(y) if y ∈ Cone(A).

Observe that φ maps {x1, x} ∪ {x, x2} into StarBA2(OK)(w), φ̂ maps Cone(A) into

StarBA2(OK)(w), and both maps agree on A. See Figure 14c. Thus, φ and φ̂ are homotopic.

The new map φ̂ maps one fewer vertex to a vertex realizing the value M. Iterating this

procedure produces a map with image contained in the star of e2. !

The following lemma is well known. See Section 4.1 for a review of some notation

related to posets. When we refer to the connectivity of a poset we mean the connectivity

of the geometric realization of its nerve, and similarly for maps between posets.

Lemma 3.19. Let p : X → Y be a map of simplicial complexes with Y Cohen–Macaulay

of dimension n. Suppose for each simplex σ of Y the inverse image p−1(σ ) is (dim(σ )−1)-

connected. Then X is (n − 1)-connected.

Proof. Let simp(X) be the poset of simplices of X, ordered by inclusion, and similarly

for simp(Y). Then p induces a functor simp(p) : simp(X) → simp(Y) and there are

homeomorphisms making the following diagram commute:
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10368 A. Kupers et al.

These homeomorphisms are just the standard homeomorphisms between a simplicial

complex and its barycentric subdivision. Thus it suffices to prove that |simp(p)| is n-

connected. We now apply [31, Corollary 2.2] (also see [13, Theorem 4.1]): a map

f : X −→ Y

of posets is n-connected if there is a function t : Y → Z so that for all y ∈ Y we have

· Y>y := {y′ ∈ Y | y′ > y} is (n − t(y) − 2)-connected,

· f /y := {x ∈ X | f (x) ≤ y} is (t(y) − 1)-connected.

Here we take n as in the hypothesis, and t(σ ) = dim(σ ). Then simp(p)/σ is simp(p−1(σ )),

which by assumption is (dim(σ ) − 1)-connected. Similarly, simp(Y)>σ is simp(LinkY(σ )),

which is (n − dim(σ ) − 2)-connected because Y is Cohen–Macaulay of dimension n. !

Proposition 3.20. Let OK denote the Gaussian integers or Eisenstein integers. Let w

be a line in O3
K with F(w) > 0. Then Link<

BA3(OK)(w) is 1-connected.

Proof. Let w1, w2 be lines with {w1, w2, w} a simplex in B3(OK). Let L : O3 → w1 ⊕ w2

be given by

L(a )w1 + b )w2 + c )w) = a )w1 + b )w2.

If a )w1 + b )w2 + c )w spans a line in the link of w, then a )w1 + b )w2 spans a line that only

depends on the line spanned by a )w1+b )w2+c )w. We will show that L induces a simplicial

map

p : Link<
BA3(OK)(w) −→ BA(w1 ⊕ w2)

given by sending the span of a )w1 + b )w2 + c )w to the span of a )w1 + b )w2.

Claim: p is a simplicial map

Since the span of a )w1 + b )w2 + c )w is a vertex of LinkBA3(OK)(w), the span of

a )w1 + b )w2 + c )w is not w and so a )w1 + b )w2 is nonzero. In fact, a )w1 + b )w2 spans a line.

Thus the formula for p produces a map on sets of vertices.

Now we check that it extends to a simplicial map, starting with 2-simplices. Let

{v0, v1, v2} ∈ Link<
BA3(OK)(w)

be an internally additive 2-simplex in the sense of Definition 3.12. Reorder and pick

representatives so that )v0 = )v1 + )v2. Since {v1, v2} is an edge of LinkBA3(OK)(w) and
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Bykovskiı̆ Presentation of Steinberg Modules 10369

{v0, v1, v2} is internally additive, w, v1, v2 are a partial frame and thus p(v1), p(v2) is

also a partial frame. Since L is linear, L()v0) = L()v1) + L()v2). Thus, {p(v0), p(v1), p(v2)}
forms a simplex in BA(w1 ⊕ w2).

Next, let

{v′
0, v′

1, v′
2} ∈ Link<

BA3(OK)(w)

be an externally additive 2-simplex. Pick representatives and reindex so that )v′
0 = )v′

1+ )w.

Then p()v′
0) = p()v′

1), and p maps {v′
0, v′

1, v′
2} to {p(v′

1), p(v′
2)}, which forms a 1-simplex in

BA(w1 ⊕ w2). Since every simplex of Link<
BA3(OK)

(w) is contained in one of these two

types of simplices, we have checked that p is a simplicial map.

Proposition 3.18 implies that BA(w1 ⊕ w2) is Cohen–Macaulay of dimension 2.

Thus, to apply Lemma 3.19 to p with n = 2, it suffices to show the fiber over a simplex

σ ⊆ BA(w1 ⊕ w2) is (dim(σ ) − 1)-connected.

Claim: If dim(σ ) = 0, then p−1(σ ) is (−1)-connected (in fact, connected)

Let σ = {v0}. Fix a representative )v0 spanning v0 and )w spanning w. Note that p−1({v0})
has vertices of the form )v0 + a )w such that a ∈ OK and F()v0 + a )w) < F(w). There is

an edge between )v0 + a )w and )v0 + b )w if and only if a − b is a unit. The constraint

F()v0 + a )w) < F(w) is a constraint on a equivalent to the condition that
∣∣∣∣a + f ()v0)

f ( )w)

∣∣∣∣ < 1.

Thus, p−1({v0}) is isomorphic to a subgraph of the Cayley graph of OK with units as

generators. Specifically, p−1({v0}) is the subgraph on those vertices contained in the

open ball of radius 1 (in the complex metric) around the complex number −f ()v0)/f ( )w).

This subgraph is 0-connected by Lemma 2.4 and hence is also (−1)-connected.

Claim: If dim(σ ) = 1, then p−1(σ ) is connected (in fact, 1-connected)

Let σ = {v0, v1}. Then the vertices of p−1({v0, v1}) are lines spanned by vectors of the

form

)v0 + a )w, )v1 + b )w

with a, b ∈ OK subject to the condition that F()v0 + a )w), F()v1 + b )w) < F(w). The edges

correspond to pairs of these vectors of the form

{)v0 + a )w, )v1 + b )w}, {)v0 + a )w, )v0 + (a + u) )w}, {)v1 + b )w, )v1 + (b + u) )w}
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10370 A. Kupers et al.

with u a unit in OK , and the 2-simplices correspond to triples of these vectors

{)v0 + a )w, )v1 + b )w, )v0 + (a + u) )w}, {)v0 + a )w, )v1 + b )w, )v1 + (b + u) )w},

with u a unit. Notably, p−1({v0, v1}) is the 2-skeleton of the join of p−1({v0}) and p−1({v1}).
Since p−1({v0}) and p−1({v1}) are connected, p−1({v0, v1}) is 1-connected and hence 0-

connected.

Claim: If dim(σ ) = 2, then p−1(σ ) is 1-connected

Let σ = {v0, v1, v2}, so σ is necessarily an augmented frame. Let

X = p−1({v0, v1}) ∪ p−1({v0, v2}) ∪ p−1({v1, v2}) ⊆ p−1({v0, v1, v2}).

Since X contains the 1-skeleton of p−1({v0, v1, v2}),

πi(X, x0) −→ πi(p
−1({v0, v1, v2}), x0)

is surjective for i = 0, 1 and all basepoints x0. Observe that

p−1({vi, vj}) ∩ p−1({vi, vk}) = p−1({vi})

if j #= k, and the inclusions of the intersection into each term is the inclusion of a

subcomplex. This implies that X is connected and hence so is p−1({v0, v1, v2}).
Our next goal is to pick basepoints xi ∈ p−1({vi}) such that {x0, x1, x2} forms a

simplex in p−1({v0, v1, v2}). Pick representatives for vi and w such that )v0 = )v1 + )v2. As

noted before, a representative for a line in p−1({vi}) is a vector of the form )vi + ri )w with

ri ∈ OK such that
∣∣∣∣ri + f ()vi)

f ( )w)

∣∣∣∣ < 1.

By Lemma 2.5 and Lemma 2.6 applied to z1 = − f ()v1)
f ( )w)

and z2 = − f ()v2)
f ( )w)

, we see that we can

find r0, r1, r2 with r0 = r1 + r2 and with

xi := span()vi + ri )w) ∈ p−1({vi}) for i = 0, 1 and 2.

Since

()v0 + r0 )w) = ()v1 + r1 )w) + ()v2 + r2 )w),
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Bykovskiı̆ Presentation of Steinberg Modules 10371

Fig. 15. A schematic of a generator of π1(X, x0).

the lines {x0, x1, x2} form a simplex.

Since each p−1({vi, vj}) is 1-connected and each p−1({vi}) is 0-connected, a

groupoid version of the Seifert–van Kampen theorem (see e.g., May [20, Chapter 2,

Section 7]) implies that π1(X, x0) is generated by any loop that is a concatenation of

· a path γ01 in p−1({v0, v1}) from x0 to x1,

· a path γ12 in p−1({v1, v2}) from x1 to x2,

· a path γ20 in p−1({v0, v2}) from x2 to x0.

Pick each of these paths from xi to xj to be the edge from xi to xj. See Figure 15. Our

specific choice of x0, x1, x2 from the previous paragraph then implies that

π1(X, x0) −→ π1(p−1({v0, v1, v2}, x0)

is the zero map since {x0, x1, x2} forms a simplex. Since π1(X, x0) → π1(p−1({v0, v1, v2}, x0)

is also surjective, this implies that π1(p−1({v0, v1, v2}), x1) is trivial. Since we already

showed that p−1({v0, v1, v2}) is connected, this completes the argument. !

3.2.2 General case

Having completed these low-dimensional cases, we proceed to prove that the complex

of augmented partial bases is spherical for general n and m.

Lemma 3.21. Let OK denote the Gaussian integers or Eisenstein integers. Let w be a

line with F(w) #= 0. The inclusion

ι : L̂ink<
BAm

n (OK)(w) −→ L̂inkBAm
n (OK)(w)

admits a (not necessarily simplicial) retraction.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/1

3
/1

0
3
4
7
/6

1
6
5
0
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
2
3



10372 A. Kupers et al.

Lemma 3.21 is an analogue of Church–Putman [8, Proposition 4.17]. We first

define the retraction π on the vertices of L̂inkBAm
n (OK)(w). Unfortunately, this map on

vertices does not extend to a simplicial map. There are certain 1- and 2-simplices σ ,

the carrying simplices, for which the images of the vertices do not span a simplex in

L̂ink<
BAm

n (OK)
(w), although every face of σ does map to a simplex. As in Church–Putman,

we remedy this problem by changing the simplicial structure on L̂inkBAm
n (OK)(w).

Specifically, we subdivide each carrying simplex σ—leaving its boundary unaltered—

and correspondingly subdivide each simplex that has σ as a face. We may then

define the map π on the new simplicial structure. Although π does not respect the

simplicial structure of L̂inkBAm
n (OK)(w), it does define a topological retraction. We

note that to prove [8, Proposition 4.17], Church–Putman subdivided carrying triangles

by inserting a single vertex. In the case of the Gaussian integers or Eisenstein

integers, this is not possible. Instead, we will use a more elaborate connectivity

argument.

Proof of Lemma 3.21. Recall the functions f and F of Definition 3.13. For each vertex

v ∈ L̂inkBAm
n (OK)(w), pick a vertex vπ ∈ L̂ink<

BAm
n (OK)

(w) such that:

(i) There are representatives )v and )w and a ∈ OK such that vπ is the span of

)v + a )w,

(ii) F(vπ ) < F(w),

(iii) vπ = v if F(v) < F(w).

Such an assignment exists because of the Euclidean algorithm. Specifically, we choose

a so that f ()v + a )w) is a least residue of f ()v) modulo f ( )w).

If the vectors )w, )v0, )v1, )v2, . . . form a partial basis, then so too will the vectors

)w, )v π
0 = )v0 + a0 )w, )v π

1 = )v1 + a1 )w, )v π
2 = )v2 + a2 )w, . . .

Unfortunately, if a triple of vectors )v0, )v1, )v2 satisfies )v0 = )v1+)v2, there is no reason that

the same linear relation will hold amongst representatives of their images )v π
0 , )v π

1 , )v π
2 .

(Lemma 2.5 and Lemma 2.6 imply that, for a fixed such triple )v0, )v1, )v2, we could choose

least residues to arrange that )v π
0 = )v π

1 + )v π
2 . However, there is no way to choose an

image vπ for each line v to preserve all such linear relations simultaneously.) Similarly,

if )v0 = )v1 + )w, the same relation need not hold amongst their images. Consequently, the

assignment on vertices v 0→ vπ does not extend over simplices in L̂inkBAm
n (OK)(w).

Following Church–Putman [8, Proof of Proposition 4.17], we call an internally

additive 2-simplex σ = {v0, v1, v2} carrying if {vπ
0 , vπ

1 , vπ
2 } does not form a 2-simplex.
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Bykovskiı̆ Presentation of Steinberg Modules 10373

Let Link<
BA(v0⊕v1⊕w)(w) denote LinkBA(v0⊕v1⊕w)(w) ∩ L̂ink<

BAm
n (OK)

(w). Observe that the

edges {vπ
0 , vπ

1 }, {vπ
1 , vπ

2 }, {vπ
2 , vπ

0 } form simplices. Thus, the union of these three edges

forms a loop in Link<
BA(v0⊕v1⊕w)(w), which we denote by γσ . We will use Proposition 3.20

to deduce that this loop is null homotopic in Link<
BA(v0⊕v1⊕w)(w) once we describe an

isomorphism

Link<
BA(v0⊕v1⊕w)(w) ∼= Link<

BA3
(w̃)

for some line w̃ ⊂ O3
K . Let g : v0 ⊕ v1 ⊕ w → OK be the restriction of f . The image

of g is a nonzero principal ideal of OK , say (a). Let g′ : v0 ⊕ v1 ⊕ w → OK be given

by g′()v) = g()v)/a. Note that |g()v)| < |g( )w)| if and only if |g′()v)| < |g′( )w)|. Since g′ is

surjective, we may pick an isomorphism φ : v0 ⊕ v1 ⊕ w → O3
K , which identifies g′ with

projection onto the last coordinate. The isomorphism φ identifies Link<
BA(v0⊕v1⊕w)(w)

with Link<
BA3

(w̃) for w̃ = φ(w). Thus, γσ is null homotopic in Link<
BA(v0⊕v1⊕w)(w).

For each carrying internally additive 2-simplex σ = {v0, v1, v2}, pick a simplicial

map

Hσ : T(σ ) −→ Link<
BA(v0⊕v1⊕w)(w)

from a triangulation T(σ ) of the standard 2-simplex, with γσ equal to the restriction of

Hσ to the boundary of T(σ ). In particular, the triangulation T(σ ) does not subdivide the

boundary triangle.

Similarly, call an externally additive 1-simplex σ = {v0, v1} carrying if {vπ
0 , vπ

1 }
does not form a 1-simplex. The vertices vπ

0 , vπ
1 form a 0-sphere in Link<

BA(v0⊕w)(w), which

we denote by γσ . In the proof of Proposition 3.18, we identified Link<
BA(v0⊕w)(w) with a

graph of the form Gz. Thus, by Lemma 2.4, it is connected and so γσ is null homotopic.

For each carrying externally additive 1-simplex σ = {v0, v1}, pick a simplicial map

Hσ : T(σ ) −→ Link<
BA(v0⊕w)(w)

with T(σ ) a triangulation of the standard 1-simplex, and γσ equal to the restriction of

Hσ to the boundary of T(σ ).

Call a simplex carrying if it is a carrying internally additive 2-simplex or

a carrying externally additive 1-simplex. Let X be obtained from L̂inkBAm
n (OK)(w) by
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10374 A. Kupers et al.

Fig. 16. Examples of a carrying 1-simplex (red) and a carrying 2-simplex (purple) before and after

subdivision. Both subdivisions can be executed simultaneously.

replacing

StarL̂inkBAm
n (OK )(w)

(σ ) with LinkL̂inkBAm
n (OK )(w)

(σ ) ∗ T(σ )

for each carrying simplex σ . It makes sense to replace all of these simplices simul-

taneously because every simplex of L̂inkBAm
n (OK)(w) contains at most one carrying

subsimplex and because the subdivisions T(σ ) do not subdivide the boundary of σ . See

Figure 16.

The space X is homeomorphic to L̂inkBAm
n (OK)(w) but has extra vertices that we

will use to construct our retraction.

Let vert denote the functor that sends a simplicial complex to its set of vertices.

Then

vert(X) = vert
(
L̂inkBAm

n (OK)(w)
)

∪
⋃

σ carrying

vert(T(σ )).

Note that this union is not a disjoint union as the vertices of γσ are vertices of

L̂inkBAm
n (OK)(w) and of T(σ ). Define

π : vert(X) −→ vert
(
L̂ink<

BAm
n (OK)(w)

)

via the formula:

π(y) =





yπ if y is a vertex of L̂inkBAm

n (OK)(w),

Hσ (y) if y is a vertex of T(σ ).

If y is a vertex of both T(σ ) and L̂inkBAm
n (OK)(w), then Hσ (y) = yπ by construction so π is

a well-defined function on vertices. We now check that π induces a simplicial map. Let
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Bykovskiı̆ Presentation of Steinberg Modules 10375

τ = {x0, . . . , xp} ⊆ X be a simplex. We will show that {π(x0), . . . , π(xp)} forms a simplex.

We will consider the following cases:

Case: τ contains no interior vertices of any T(σ )

Since τ does not contain any vertices in the interior of any T(σ ), we can view

τ = {x0, . . . , xp} as a simplex in L̂inkBAm
n (OK)(w). If τ is not additive, then by the definition

of π its image π(τ ) = {xπ
0 , . . . , xπ

p } is a non-additive simplex in L̂ink<
BAm

n (OK)
(w).

Now assume τ is internally additive; the externally additive case is similar.

Reorder and pick representatives so that )x0 = )x1 + )x2. As in the previous paragraph,

the vertices {xπ
1 , . . . , xπ

p } span a non-additive simplex. We will now check that π(σ ) =
{xπ

0 , xπ
1 , . . . , xπ

p } forms a simplex by checking that {xπ
0 , xπ

1 , xπ
2 } is an additive simplex. Note

that {x0, x1, x2} is not carrying since all of the carrying simplices have been subdivided.

Thus {xπ
0 , xπ

1 , xπ
2 } forms a simplex. Observe that Condition (i) implies that the sum of the

submodules xπ
0 , xπ

1 , xπ
2 satisfies

xπ
0 + xπ

1 + xπ
2 + w = x0 ⊕ x1 ⊕ w.

Since the module xπ
0 + xπ

1 + xπ
2 + w is only rank 3, {xπ

0 , xπ
1 , xπ

2 } must be additive. Thus,

π(σ ) = {xπ
0 , . . . , xπ

p } forms a simplex in L̂ink<
BAm

n (OK)
(w).

Case: τ contains interior vertices of some T(σ )

Suppose that τ contains interior vertices of T(σ ) and that σ = {v0, v1, v2} is

an internally additive carrying 2-simplex; the externally additive case is similar. Since

any simplex of L̂inkBAm
n (OK)(w) can contain at most one carrying subsimplex, we can

decompose τ as the join τ = α ∗ β of simplices α, β ⊂ X such that

· α = T(σ ) ∩ τ ,

· β contains no interior vertices of any T(σ ′) for any carrying simplex σ ′.

Note that π(α) = Hσ (α) is a simplex of Link<
BA(v0⊕v1⊕w)(OK)(w). Since the star of any

simplex in T(σ ) is contained in

LinkL̂inkBAm
n (OK )(w)

(σ ) ∗ T(σ ),

β is a simplex of

LinkL̂inkBAm
n (OK )(w)

(v0, v1, v2) = LinkBm
n (OK)(v0, v1, w) = LinkBm

n (OK)(v
π
0 , vπ

1 , w).
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10376 A. Kupers et al.

There is a natural inclusion

Link<
BA(v0⊕v1⊕w)(OK)(w) ∗ Link<

Bm
n (OK)(v

π
0 , vπ

1 , w) ↪→ L̂ink
<

BAm
n (OK)(w)

since simplices in Link<
BA(v0⊕v1⊕w)(OK)

(w) all arise from (possibly augmented) partial

frames for v0 ⊕ v1 ⊕ w = vπ
0 ⊕ vπ

1 ⊕ w, whereas simplices in Link<
Bm

n (OK)(v
π
0 , vπ

1 , w) all

arise from non-augmented partial frames for a direct complement of vπ
0 ⊕ vπ

1 ⊕ w in

On+m
K . In particular, π(σ ) = π(α) ∗ π(β) forms a simplex in L̂inkBAm

n (OK)(w).

Having checked that π gives a simplicial map X → L̂ink<
BAm

n (OK)
(w), we use this

to construct the desired retraction. Let %d denote the standard d-simplex. Pick for each

carrying simplex σ , pick a homeomorphism hσ : %dim(σ ) → T(σ ) that is simplicial on the

boundary. They induce homeomorphisms

id ∗ hσ : StarL̂inkBAm
n (OK )(w)

(σ )
∼=−→ LinkL̂inkBAm

n (OK )(w)
(σ ) ∗ T(σ )

and assemble to give a homeomorphism

h : L̂inkBAm
n (OK)(w) −→ X.

The map h is not simplicial. However, since simplices in L̂ink<
BAm

n (OK)
(w) cannot be

carrying by Condition(iii), the composition

π ◦ h ◦ ι : L̂ink<
BAm

n (OK)(w) −→ L̂ink<
BAm

n (OK)(w)

is simplicial. Thus we can check that it is the identity by checking it is the identity on

vertices. This follows from Condition(iii). Thus

π ◦ h : L̂inkBAm
n (OK)(w) −→ L̂ink<

BAm
n (OK)(w)

is a retraction of ι : L̂ink<
BAm

n (OK)
(w) −→ L̂inkBAm

n (OK)(w). !

Lemma 3.21 has the following corollary.

Corollary 3.22. Let OK denote the Gaussian integers or Eisenstein integers. Let w be a

line in BAn
m(OK) with F(w) #= 0. If L̂inkBAm

n (OK)(w) is d-connected, so is L̂ink<
BAm

n (OK)
(w).

The following is a direct adaptation of Church–Putman [8, Proposition 4.14].
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Bykovskiı̆ Presentation of Steinberg Modules 10377

Lemma 3.23. Let O be a Euclidean domain. Let n ≥ 1 and m ≥ 0 such that m + n ≥ 2.

Assume that BAm′
n′ (O) is Cohen–Macaulay of dimension n′ for all 1 ≤ n′ < n and all

m′ ≥ 0 satisfying m′ + n′ = m + n. Then for every p-simplex σ of BAm
n (O), the link

LinkBAm
n (O)(σ ) is Cohen–Macaulay of dimension (n − p − 1).

Proof. The proof of Church–Putman [8, Proposition 4.14] applies without modification;

we summarize it briefly. If a p-simplex σ is additive, then LinkBAm
n (O)(σ ) ∼= Bm+p

n−p (O) is

Cohen–Macaulay of dimension (n − p − 1) by Theorem 3.7.

Next, suppose we have a non-additive (n − 1)-simplex σ = {v1, . . . , vn}. Then

LinkBAm
n (O)(σ ) contains the vertex corresponding to )v0 = )e1 + )v1 (if m ≥ 1) or )v0 = )v1 + )v2

(if m = 0), so LinkBAm
n (O)(σ ) is non-empty.

Finally, suppose we have a non-additive p-simplex σ with p < n − 1. Then

L̂inkBAm
n (O)(σ ) ∼= BAm+p+1

n−p−1 (O) is Cohen–Macaulay of dimension (n−p−1) by assumption.

Each vertex

v ∈ LinkBAm
n (O)(σ ) \ L̂inkBAm

n (O)(σ )

has LinkLinkBAm
n (O)(σ )(v) ∼= Bm+p+1

n−p−1 (O) contained in L̂inkBAm
n (O)(σ ), and so the addition of

each such vertex v has the effect of coning off a subcomplex of L̂inkBAm
n (O)(σ ) that is

Cohen–Macaulay of dimension (n − p − 2). The result follows by Church–Putman [8,

Lemma 4.13]. !

We now prove Theorem 3.16, which states that BAm
n (OK) is Cohen–Macaulay

of dimension n for OK the Gaussian integers or Eisenstein integers. Other than

the proof of [8, Proposition 4.17], the proof of Church–Putman [8, Theorem C’] goes

through without modification for all rings that are additively generated by multi-

plicative units and have a multiplicative Euclidean function with the property that

if |a| = |b| > 0, then there is a unit u with |a − ub| < |a|. In place of [8, Propo-

sition 4.17], we instead invoke our Corollary 3.22. That the ring is Euclidean is used

throughout the proof [8, Theorem C’]; that it is additively generated by multiplicative

units is used in the base case of the induction [8, page 21] and appears here as

Lemma 3.17.

Recall that a combinatorial i-sphere is a simplicial complex that is PL-

homeomorphic to the boundary of an (i + 1)-simplex and a combinatorial i-disk

is a simplicial complex that is PL-homeomorphic to an i-simplex. Moreover, links

of p-simplices in the interior of combinatorial i-spheres and combinatorial i-disks
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10378 A. Kupers et al.

are combinatorial (i − p − 1)-spheres. Given a simplicial complex X, the simplicial

approximation theorem implies that we can represent every homotopy class of maps

Si → X by a simplicial map from a combinatorial i-sphere to X. It also implies that every

null-homotopic simplicial map from a combinatorial i-sphere to X can be extended to a

simplicial map from a combinatorial (i + 1)-disk to X. Replacing the star of a p-simplex

in a combinatorial i-sphere by a different (i − p)-disk (with the same combinatorial

(i − p − 1)-sphere as boundary) results in a combinatorial i-sphere again. We will use

this fact while construct homotopies in the following proof. For a detailed introduction

to the topic we refer the reader to Rourke–Sanderson [27].

Proof of Theorem 3.16. We summarize Church–Putman [8,Proof of Theorem C’]. The

proof proceeds by induction on n and m. The base case is that BAm
1 (OK) is connected for

all m ≥ 1, which was proven in Lemma 3.17. Now let n ≥ 1 and m ≥ 0 such that m+n ≥ 2,

and assume that BAm′
n′ (OK) is Cohen–Macaulay of dimension n′ for all 1 ≤ n′ < n with

2 ≤ n′ + m′ ≤ n + m.

The links of simplices in BAm
n (OK) are appropriately highly connected by Lemma

3.23, so it suffices to prove that BAm
n (OK) is (n − 1)-connected.

Let φ : Si → BAm
n (OK) be a simplicial map from a combinatorial i-sphere for

i ≤ n − 1. Let

M(φ) := max
vertices x∈Si

F(φ(x))

where F is defined in Definition 3.13; the function M quantifies the “badness” of the

map φ. Our goal is to homotope φ to reduce M. Then we can inductively homotope the

map φ to a map φ′ for which φ′(x) has (m + n)th coordinate zero for every vertex x ∈ Si.

The image of φ′ is in the star of the vertex em+n, and so it can then be homotoped to the

constant map at em+n.

Assume M(φ) = M > 0. Following Church–Putman, we proceed in four steps. In

the 1st step, we homotope φ so that for every simplex σ ∈ Si mapping to an additive

simplex of BAm
n (OK) satisfies F(φ(x)) < M for all vertices x ∈ σ . We must achieve

this homotopy without increasing M(φ). Choose σ of maximal dimension q among those

simplices in Si satisfying the following properties (∗):

· φ(σ ) = {v0, . . . , vp} is additive, say, )v0 = )v1 + )v2 for some generators of

v0, v1, v2,

· F(φ(x)) = M for some vertex x ∈ σ , and

· F(φ(x)) = M for every vertex x ∈ σ with φ(x) ∈ {v3, . . . , vp}.
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Note that q ≥ p. By assumption of maximality,

φ(LinkSi(σ )) ⊆ Link<
BAm

n (OK)({v0, v1, . . . , vp}) = Link<
Bm

n (OK)({v1, . . . , vp}).

For the last equality we have used the assumption that, possibly after re-indexing

v0, v1, v2, F(vi) = M for some i = 1, . . . , p. The complex Link<
Bm

n (OK)({v1, . . . , vp}) is

(n − p − 2)-connected by Lemma 3.15. Thus, the restriction

Si−q−1 ∼= LinkSi(σ ) −→ Link<
Bm

n (OK)({v1, . . . , vp})

is null homotopic as i−q−1 ≤ n−p−2. This implies there is a combinatorial (i−q)-disk

D whose boundary is isomorphic to the combinatorial (i − q − 1)-sphere LinkSi(σ ) and a

map

g : D −→ Link<
Bm

n (OK)({v1, . . . , vp})

extending φ|LinkSi (σ ). Because g maps to the link of φ(σ ), we may define the join of the

maps

(φ|σ ∗ g) : (σ ∗ D) → BAm
n .

Let Z be the combinatorial i-sphere given by replacing StarSi(σ ) in Si with D ∗ ∂σ . Let

φ̂ : Z → BAm
n (OK) be given by the formula

φ̂(y) =





φ(y) if y ∈ Z \ (∂σ ∗ D),

(φ|σ ∗ g)(y) if y ∈ ∂σ ∗ D.

Note that this map is continuous as φ and (φ|σ ∗ g) coincide on ∂σ ∗ ∂D ∼= ∂StarSi(σ ).

Moreover, observe that φ and φ̂ are homotopic through φ|σ ∗ g (extended by the constant

homotopy outside of the star of σ ). The new map φ̂ has one fewer maximal simplices

satisfying (∗). A similar argument applies to externally additive simplices. Iterating this

procedure produces the desired map.

In the 2nd step, Church–Putman homotope φ so that if vertices x1, x2 ∈ Si satisfy

φ(x1) = φ(x2) = v with F(v) = M, then x1, x2 are not joined by an edge. This new

map must not increase M(φ) and must retain the properties achieved in Step 1. Choose

a simplex σ of maximal dimension with the properties that φ|σ is not injective and

F(φ(x)) = M for every vertex x ∈ σ . Again let p = dim(φ(σ )). Then, using the properties

achieved in Step 1, LinkSi(σ ) must map to the subcomplex

Link<
Bm

n (OK)(φ(σ )) ⊆ Link<
BAm

n (OK)(φ(σ )).
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10380 A. Kupers et al.

This subcomplex is (n−(p−1)−2)–connected by Lemma 3.15, so again we can homotope

φ to remove the simplex φ(σ ) while preserving our desired properties.

In the 3rd step, Church–Putman further homotope the map φ so that it retains

the properties from Steps 1 and 2 and has the additional property that, whenever

vertices x1, x2 ∈ Si satisfy

F(φ(x1)) = F(φ(x2)) = M,

then x1 and x2 are not connected by an edge. Suppose {x1, x2} is an edge violating this

condition, with φ(x1) = v1 and φ(x2) = v2. Pick representatives )v1 and )v2. By Lemma

2.2, there is a unit u with F()v1 − u)v2) < F()v1). Let v0 = span()v1 − u)v2). By the property

ensured in Step 2, v1 #= v2. Thus )v1 − u)v2 #= )0 and so v0 is a line. Given the property

ensured in Step 1, the image of LinkSi({x1, x2}) is contained in LinkBAm
n (OK)({v0, v1, v2}).

We can therefore homotope the map φ to map {x1, x2} to the concatenation of {v1, v0}
with {v0, v2}. In particular, we replace the simplicial structure on

StarSi({x1, x2}) = {x1, x2} ∗ LinkSi({x1, x2})

with the join of the barycentric subdivision of the edge {x1, x2} and LinkSi({x1, x2}).
This procedure removes the edge {v1, v2} from the image of the map and preserves the

properties from the previous steps.

In the final step, Church–Putman homotope the map φ to reduce M(φ). Let x ∈ Si

be a vertex such that φ(x) = v with F(v) = M. The properties established in the previous

steps ensure that

φ(LinkSi(x)) ⊆ L̂ink<
BAm

n (OK)(v).

The complex L̂inkBAm
n (OK)(v) ∼= BAm+1

n−1 (OK) is (n − 2)–connected by inductive hypothesis,

thus so is L̂ink<
BAm

n (OK)
(v) by Corollary 3.22. We can therefore homotope φ to remove v

from its image while preserving the properties from previous steps. Iterating this final

step will reduce M(φ) and complete the proof. !

3.3 New non-connectivity results

In this subsection, we show that BAn(O) may not always be Cohen–Macaulay but is

always highly connected. We begin with a general lemma about links in simplicial

complexes.
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Fig. 17. An illustrative example of the chain α.

Lemma 3.24. Let X be a simplicial complex and fix a simplicial structure on S1. Let

x be a vertex of S1 and let y, z ∈ LinkS1(x). Let φ : S1 → X be a simplicial map such

that no vertex other than x maps to φ(x). If φ∗([S
1]) = 0 in H1(X), then [φ(y)] = [φ(z)] in

π0(LinkX(φ(x))).

Proof. Let C∗ denote cellular chains. Suppose that φ∗([S
1]) = 0, and let α ∈ C2(X) be a

chain such that

∂(α) = φ∗([S
1]) ∈ C1(X).

The chain α can be written as α1 + α2, with α1 a sum of 2-simplices that have φ(x) as

a vertex and α2 a sum of 2-simplices that do not have φ(x) as a vertex. Let β ∈ C1(X)

denote the chain associated to the simplicial path with vertices φ(y), φ(x), and φ(z). An

instance of this complex is shown in Figure 17.

Each 1-simplex in the boundary of a 2-simplex appearing in α1 either contains

the vertex φ(x) or is contained in LinkX(φ(x)). By assumption on φ, the boundary ∂(α1)

must only pass through the vertex φ(x) once, and so it must be a sum of β and terms in

the link of φ(x). Hence

∂(α1) = β ∈ C1(X, LinkX(φ(x))).

Thus, [β] vanishes in H1(X, LinkX(φ(x))). This implies that its image δ([β])

vanishes in H0(LinkX(φ(x))) under the connecting homomorphism δ in the long exact

sequence of the pair (X, LinkX(φ(x))). Since

δ([β]) = [φ(y)] − [φ(z)],
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10382 A. Kupers et al.

Fig. 18. A loop in BA2(Z[
√

7]) coming from a detour (marked in gray).

this implies that φ(y) and φ(z) are in the same path component. !

Definition 3.25. We say that a ring O has detours if there are r1, r2 ∈ O such that

(i) r1 − r2 is not a sum of units.

(ii) There is a simplicial path in B2(O) from span
( r1

1

)
to span

( r2
1

)
that avoids

span
(

1
0

)
.

An example of a detour is given in Figure 18 for OK = Z[
√

7]. Each vertex is

labelled by a vector spanning the corresponding line.

Proposition 3.26. If O has detours, then H1(BA2(O)) #= 0.

Proof. Let v1 = span
( r1

1

)
and v2 = span

( r2
1

)
. We saw in the proof of Lemma 3.17 that

two vertices span(x1, . . . , xm, 1) and span(y1, . . . , ym, 1) are in the same path component

of BAm
1 (O) if and only if xi − yi is a sum of units for each i. It follows that v1 and v2 are

not in the same path component of

BA1
1(O) = L̂inkBA2(O)

(
e1

)
= LinkBA2(O)

(
e1

)
.

Consider the loop that is a concatenation of a detour from v1 to v2 with the path

given by the three vertices v1, e1, and v2. This loop is not zero in H1(BA2(O))

by Lemma 3.24. !

Before we give examples of rings with detours, we need the following lemma.

Lemma 3.27. The full subcomplex of B2(Z) minus the vertex e1 is connected.

Proof. Let v1, v2 #= e1 be vertices in B2(Z). Since B2(Z) is connected [8, Theorem 4.2], we

can find a simplicial path γ from v1 to v2. Suppose the path contains e1. By removing
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loops, we may assume that γ only passes through e1 once. Let w1 and w2 be the vertices

adjacent to e1 in the path. Since LinkBA2(Z)(e1) is connected [8, Theorem C], we can find

a path γ ′ from w1 to w2 in the link. Note that LinkBA2(Z)(e1) ⊂ B2(Z). Let γ ′′ be γ with

{w1, e1} ∪ {e1, w2} replaced with γ ′. Observe γ ′′ gives a path from v1 to v2 that avoids

e1. !

We now show that Euclidean quadratic number rings not generated by units

have detours.

Proposition 3.28. Let OK be the ring of integers in K = Q(
√

d) for d squarefree. Assume

that OK is not generated by units but is Euclidean. Then OK has detours.

Proof. Let δ =
√

d for d #= 1 (mod 4) and δ = 1+
√

d
2 for d = 1 (mod 4) so that OK = Z[δ].

Since OK is not generated by units, δ is not a sum of units. Thus, it suffices to find a

path from
(

δ
1

)
to

(
0
1

)
that avoids

(
1
0

)
.

We first consider the case d > 0. By Dirichlet’s unit theorem, OK has infinitely

many units so there is a unit of the form a + bδ with b #= 0, a, b ∈ Z. Note that the lines

spanned by the vectors

{(
δ

1

)

,

(
a

−b

)}

form an edge in B2(OK). By Lemma 3.27, there is a path in B2(Z) ⊆ B2(OK) from
( a

−b
)

to
(

0
1

)
that avoids

(
1
0

)
. The concatenation of this path with the previous edge is a detour.

Now assume d < 0. The only Euclidean quadratic imaginary number rings have

d = −1, −2, −3, −7, and −11. For d = −1 and d = −3, these are generated by units while

the other three rings are not generated by units (see e.g., Ashrafi–Vámos [2, Theorem 7]).

Note that the units in the case d = −2, −7, or −11 are just ±1 and so (a + bδ) − (c + dδ)

is not a sum of units whenever b #= d. Unlike for real quadratic number rings where

we had a conceptual construction of detours, in the imaginary case, will just exhibit an

explicit detour for each ring.

Case: d = −2. The path with vertices spanned by the following vectors is a detour:

(
δ

1

)

,

(
1

−δ

)

,

(
0

1

)

.
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Case: d = −7. The path with vertices spanned by the following vectors is a detour:

(
δ

1

)

,

(
3 − δ

−δ

)

,

(
−1 + 2δ

1

)

.

Case: d = −11. The path with vertices spanned by the following vectors is a detour:

(
δ

1

)

,

(
2

1 − δ

)

,

(
δ

2

)

,

(
1

1 − δ

)

,

(
0

1

)

.

!

Remark 3.29. The quadratic norm-Euclidean number rings have been completely

classified. They are the rings of integers OK of K = Q(
√

d) with

d ∈ {−11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73};

see for example, Stark [29, Theorem 8.21]. Ashrafi–Vámos [2, Theorem 7] completely

characterized which quadratic number rings are generated by units. When d #≡ 1

(mod 4) and d > 0, OK is generated by units if and only if d can be written as d = a2 ± 1

for some a ∈ Z. When d ≡ 1 (mod 4) and d > 0, the ring is generated by units if and

only if d can be written as d = a2 ± 4 for some a ∈ Z. For d < 0, the ring is generated

by units if and only if d ∈ {−3, −1}. Thus, the norm-Euclidean number rings that are not

generated by units are the rings of integers OK of K = Q(
√

d) with

d ∈ {−11, −7, −2, 6, 7, 11, 17, 19, 33, 37, 41, 57, 73}.

On the other hand, there are Euclidean (but not norm-Euclidean) quadratic number rings

that are not generated by units, such as the ring of integers in Q(
√

69). Our results apply

equally well to these rings.

We have just shown that it is not true that BAn(O) is spherical for all Euclidean

domain. However, it is always highly connected.

Proposition 3.30. Let O be a Euclidean domain. Then BAm
n (O) is (n − 2)-connected.

Proof. Since Theorem 3.7 says that Bm
n (O) is (n−2)-connected, it suffices to show that

Bm
n (O) → BAm

n (O) induces a surjection on free homotopy classes [Si, −] for i ≤ n − 2. We

will in fact show that it is a surjection for i ≤ n−1. Fix i ≤ n−1 and let φ : Si → BAm
n (O)
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be a simplicial map with respect to a combinatorial triangulation of Si. Our goal is to

show that φ is homotopic to a map to Bm
n (O). Suppose that {v0, v1, v2} is an internally

additive simplex in the image of φ. Then the link

LinkBAm
n (O)({v0, v1, v2}) ∼= LinkBm

n (O)({v1, v2}).

is (n − 4)-connected by Theorem 3.7. As in the proof of [22, Lemma 2.49] and the 1st

step of the proof of Theorem 3.16, we can homotope the map φ to avoid the simplex

{v0, v1, v2} without introducing new additive simplices to its image. Iterating this pro-

cedure, and the analogous procedure for externally additive simplices, produces a map

to Bm
n (O). !

4 Presentations of Steinberg Modules and Vanishing of Cohomology

In this section, we use our (non-)connectivity results to deduce the main theorems of

the paper. We begin with a review of a useful tool: the spectral sequence associated to a

map of posets, originally due to Quillen [26].

4.1 The map of posets spectral sequence

Let Y be a poset. Associated to Y is the simplicial complex %(Y) of non-degenerate

simplices in the nerve of Y. A p-simplex of %(Y) corresponds to a (p + 1)-chain y0 <

y1 < · · · < yp of elements in Y. The dimension of Y is defined to be the dimension of

%(Y), and we let |Y| denote the geometric realization of %(Y). We note that, if Y is a

simplicial complex and Y the corresponding poset of simplices under inclusion, then

%(Y) is the barycentric subdivision of Y, and there is a homeomorphism Y ∼= |Y|.
For an element y ∈ Y, recall we defined the subposets,

Y≤y := {y′ ∈ Y | y′ ≤ y} and Y>y := {y′ ∈ Y | y′ > y}.

Definition 4.1. Let Y be a poset. Let T be a functor from Y (viewed as a category) to

the category Ab of abelian groups. Define chain groups

Cp(Y; T) :=
⊕

y0<···<yp∈Y

T(y0)
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10386 A. Kupers et al.

with a differential
∑p

i=0(−1)idi, with the face maps di given by

di :
⊕

y0<···<yp

T(y0) −→
⊕

y0<···<ŷi<···<yp

T(y0) (1 ≤ i ≤ p)

d0 :
⊕

y0<···<yp

T(y0) −→
⊕

y1<···<yp

T(y1),

defined as follows. For i #= 0, the map di maps the summand indexed by (y0 < · · · < yp)

to the summand indexed by (y0 < · · · < ŷi < · · · < yp) and acts by the identity on the

group T(y0). The map d0 maps the summand indexed by (y0 < · · · < yp) to the summand

indexed by (y1 < · · · < yp), and the map of abelian groups T(y0) → T(y1) is defined by

applying T to the morphism y0 < y1 in Y.

If T = Z is the constant functor with identity maps, then H∗(Y; Z) is isomorphic

to the usual homology H∗(|Y|). The following lemma is adapted from Charney [7,

Lemma 1.3]. See also [23, Lemma 3.2]. Recall that the height of y ∈ Y is by definition

dim(%(Y≤y)).

Lemma 4.2. Suppose that T : Y → Ab is a functor that is nonzero only on elements of

height m. Then

Hp(Y; T) =
⊕

height(y0)=m

H̃p−1(|Y>y0
|; T(y0)).

Definition 4.3. Let f : X → Y be a map of posets. For y ∈ Y, define f \y to be the

subposet of X

f \y := {x ∈ X | f (x) ≤ y}.

Consider a map of posets f : X → Y, and fix a degree q ∈ Z≥0. Then there is a

functor from the poset Y to Ab that takes an object y ∈ Y to the abelian group Hq(f \y).

With this functor, we may state the following theorem. The spectral sequence associated

to a map f : X → Y of posets was introduced by Quillen [26, Section 7]; see also Charney

[7, Section 1].

Theorem 4.4 (Quillen [26]). Let f : X → Y be a map of posets. There is a strongly

convergent spectral sequence

E2
p,q = Hp

(
Y; [y 0→ Hq(f \y)]

)
6⇒ Hp+q(X).
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Bykovskiı̆ Presentation of Steinberg Modules 10387

4.2 Generalized Bykovskiı̆ presentations for the Gaussian integers and Eisenstein integers

In this subsection, we let OK denote Gaussian integers or the Eisenstein integers and

K its field of fractions. Our objective is to prove Theorem A and Theorem B. Recall that

Theorem B is the statement that Bykn(OK) → Stn(K) is an isomorphism for all n. We can

deduce Theorem B from Theorem 3.16 using the same arguments that Church–Putman

use to deduce [8, Theorem B] from [8, Theorem C]. We recall these arguments in the three

lemmas below and the proof of Theorem B.

We make the following definition, as in Church–Putman [8, Proof of Theorem B].

Definition 4.5. For a Euclidean ring O, we let BAn(O)′ denote the subcomplex of

BAn(O) consisting of simplices {v0, v1, . . . , vp} with v0 + v1 + · · · + vp " On.

Let sd denote the barycentric subdivision. This subcomplex is defined to give a

map

span: sd(BAn(O)′) −→ Tn(K)

{v0, v1, . . . , vp} 0−→ Kv0 + Kv1 + · · · + Kvp.

This arises from a map of posets with domain simp(BAn(O)′) and target the poset

defining the Tits building.

Lemma 4.6 (Following [8, Theorem B Step 3]). Let OK be the Gaussian integers or

Eisenstein integers. The map span: sd(BAn(OK)′) → Tn(K) induces an isomorphism of

Z[GLn(OK)]-modules H̃n−2(BAn(OK)′)
∼=−→ H̃n−2(Tn(K)).

We could prove this by quoting Church–Putman [8, Proposition 2.3] but will

instead prove it using the spectral sequence of Theorem 4.4, as a warm-up for our proof

of Theorem C.

Proof. When n = 1, both BAn(OK)′ and Tn(K) are empty, so we may assume n ≥ 2. We

consider the spectral sequence of Theorem 4.4 associated to the functor span. Observe

that, given a proper nonzero subspace V " Kn,

span\V =
{
{v0, v1, . . . , vp} ∈ simp(BAn(OK)′)

∣∣∣ Kv0 + Kv1 + · · · + Kvp ⊆ V
}

∼= BA(V ∩ On
K).

By Theorem 3.16 the complex BA(V ∩ On
K) is Cohen–Macaulay of dimension dim(V) (for

dim(V) ≥ 2) or dimension 0 (when dim(V) = 1), so Hq(span\V) = 0 except possibly when
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10388 A. Kupers et al.

Fig. 19. The page E2
p,q when n = 6. There are no nonzero differentials to or from the term Er

n−2,0
for r ≥ 2.

q = 0 or q = dim(V). We can identify Tn(K)>V
∼= T (Kn/V). Thus for q > 0, we find by

Lemma 4.2 that

E2
p,q

∼= Hp

(
Tn(K); [V 0→ Hq(span\V)]

)

∼=
⊕

V⊆Kn, dim(V)=q

H̃p−1

(
T (Kn/V); Hdim(V)(BA(V ∩ On

K))
)
.

The building T (Kn/V) is spherical of dimension dim(Kn/V) − 2, and so for q > 0, we

conclude that E2
p,q vanishes unless p−1 = n−dim(V)−2, equivalently, unless p+q = n−1.

When q = 0,

E2
p,q

∼= Hp(Tn(K)) = 0 except when p = 0 or p = n − 2.

The spectral sequence (see Figure 19) converges to Hp+q(BAn(OK)′). The only

nonzero E2 term on the diagonal p + q = n − 2 is the term E2
n−2,0

∼= Hn−2(Tn(K)), and

this term admits no non-zero incoming or outgoing higher differentials. This gives the

desired isomorphism. !

Lemma 4.7 (Following [8, Theorem B Step 1]). Let O be an integral domain, then there

is an isomorphism of Z[GLn(O)]-modules

Bykn(O)
∼=−→ Hn−1(BAn(O), BAn(O)′).
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Bykovskiı̆ Presentation of Steinberg Modules 10389

Proof. By construction, BAn(O)′ contains all simplices of BAn(O) except for the n-

simplices corresponding to augmented n-frames, and the (n − 1)-simplices correspond-

ing to non-augmented n-frames. From the exact sequence

Cn(BAn(O), BAn(O)′)
δ−→ Cn−1(BAn(O), BAn(O)′) −→ Hn−1(BAn(O), BAn(O)′) −→ 0

we see that Hn−1(BAn(O), BAn(O)′) is the group generated by the simplices

{{v1, . . . , vn} | v1 ⊕ · · · ⊕ vn = On}

modulo relations of the form

δ
(
{v0, v1, v2, v3 . . . , vn−1}

)
with )v0 = )v1 + )v2

= {v1, v2, v3 . . . , vn−1} − {v0, v2, v3 . . . , vn−1} + {v0, v1, v3 . . . , vn−1} − 0 + 0 − · · · ± 0.

This is precisely the presentation defining the group Bykn(O). !

Lemma 4.8 (Following [8, Theorem B Step 2]). Let OK be the Gaussian integers or

Eisenstein integers. There is an isomorphism of Z[GLn(OK)]-modules

Hn−1(BAn(OK), BAn(OK)′)
∼=−→ H̃n−2(BAn(OK)′).

Proof. By Theorem 3.16, BAn(OK) is (n − 1)–connected. Thus an isomorphism

is given by the connecting homomorphism in the long exact sequence of the pair

(BAn(OK), BAn(OK)′). !

Recall that Theorem B says that when OK is the Gaussian integers or Eisenstein

integers, the generalized Bykovskiı̆ presentation holds.

Proof of Theorem B. Consider the maps

Bykn(OK)
∼=−→
(∗)

Hn−1(BAn(OK), BAn(OK)′)
∼=−−→

(∗∗)
H̃n−2(BAn(OK)′)

∼=−−−→
(∗∗∗)

H̃n−2(Tn(K)),

the rightmost group being Stn(K) by definition. The map (∗) is an isomorphism by

Lemma 4.7, the map (∗∗) is an isomorphism by Lemma 4.8, and the map (∗∗∗) is an

isomorphism by Lemma 4.6. Thus the composite is an isomorphism of Z[GLn(OK)]-
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10390 A. Kupers et al.

modules. As in the proof of Church–Putman [8, Theorem B], this composite is the map

described in Section 1.2. !

Corollary 4.9. Let OK be the Gaussian integers or Eisenstein integers, and K its field

of fractions. Then Stn(K) admits a partial resolution by Z[GLn(OK)]-modules

Cn(BAn(OK), BAn(OK)′)
δ−→ Cn−1(BAn(OK), BAn(OK)′) −→ Stn(K) −→ 0.

Proof. By Theorem B, there is an isomorphism Bykn(OK) ∼= Stn(K), and so the result

follows from the proof of Lemma 4.7. !

We will now use our resolution to show vanishing for group homology with

coefficient in the Steinberg module.

Theorem 4.10. Let OK denote the Gaussian integers or Eisenstein integers and let k

be a ring with n! and 3 invertible. Then

H1(GLn(OK); Stn(K) ⊗ k) = 0 for n ≥ 2,

H1(SLn(OK); Stn(K) ⊗ k) = 0 for n ≥ 3.

Proof. By Corollary 4.9 we have a partial resolution

Cn(BAn(OK), BAn(OK)′;k)
∂−→ Cn−1(BAn(OK), BAn(OK)′;k) −→ Stn(K) ⊗ k → 0

of Stn(K) ⊗ k by k[GLn(OK)]-modules. These modules are flat, for example, by Church–

Putman [8, Lemma 3.2]; its proof only requires that the orders of the stabilizers of

simplices in BAn(OK) which are not in BAn(OK)′, are invertible in the coefficients. There

are two cases:

· If σ = {v1, . . . , vn} is a basis of On
K , it has stabilizer of order |O×

K |n · n!.

· If σ = {v0, . . . , vn} is an additive simplex spanning On
K , it has stabilizer of

order 6 · |O×
K |n−1 · (n − 2)!.

Thus when Gn is SLn(OK) or GLn(OK), we may compute H∗(Gn; Stn(K) ⊗ k) by extending

this partial resolution to a flat resolution, and taking the homology of the chain complex

· · · −→ Cn(BAn(OK), BAn(OK)′;k)Gn
−→ Cn−1(BAn(OK), BAn(OK)′;k)Gn

−→ 0
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Bykovskiı̆ Presentation of Steinberg Modules 10391

obtained by passing to Gn-coinvariants. To show that H1(Gn; Stn(K) ⊗ k) = 0, then, it

suffices to show that the coinvariants Cn(BAn(OK), BAn(OK)′;k)Gn
vanish.

Fix n ≥ 2. The free k-module Cn(BAn(OK), BAn(OK)′;k) = Cn(BAn(OK);k) is

spanned by augmented frames {v0, . . . , vn} subject to the relation

{v0, . . . , vn} = sgn(σ ){vσ (0), . . . , vσ (n)},

with σ a permutation {1, . . . , n} and sgn(σ ) its sign, and with Gn-action

g{v0, . . . , vn} := {g(v0), . . . , g(vn)}, g ∈ Gn.

Consider an augmented basis {v0, . . . , vn}, reorder, and pick representatives )v0, . . . , )vn

such that )v0 = )v1 + )v2. Let h ∈ GLn(OK) be the linear map defined by

h()v1) = )v2, h()v2) = )v1, h()vi) = )vi for i > 2.

Then h({v0, v1, v2, v3, . . . , vn}) = {v0, v2, v1, v3, . . . , vn} = −{v0, v1, v2, v3, . . . , vn}. Since

2 is invertible in k, this implies that generators of Cn(BAn(OK);k) map to zero in

Cn(BAn(OK);k)GLn(OK) and hence

Cn(BAn(OK);k)GLn(OK) = 0 for n ≥ 2.

The element h does not have determinant 1 and this is the reason we must assume n ≥ 3

to show the SLn(OK)-coinvariants vanish. For n ≥ 3, there is a linear map 0 ∈ SLn(OK)

satisfying

0()v1) = )v2, 0()v2) = )v1, 0()v3) = −)v3, 0()vi) = )vi for i > 3.

Again 0 negates the generator {v0, . . . , vn}, and we infer that

Cn(BAn(OK);k)SLn(OK)
∼= 0 for n ≥ 3.

!

The following theorem implies Theorem A.

Theorem 4.11. Let OK denote the Gaussian integers or Eisenstein integers. Let k be a

ring with (n + 1)! invertible if n is congruent to 1 modulo 4 and with (2n + 1)! invertible
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10392 A. Kupers et al.

otherwise. Then

Hνn−1(GLn(OK);k) = 0 for n ≥ 2,

Hνn−1(SLn(OK);k) = 0 for n ≥ 3.

Proof. Let OK denote the Gaussian integers or Eisenstein integers. Borel–Serre duality

[3] applies not just with Q-coefficients as stated in the introduction, but in fact their

work implies that duality hold with any coefficients in which all torsion primes for

the group are invertible. By [10, Lemma 3.9], the torsion primes of GLn(OK) for OK

quadratic imaginary are bounded by n + 1 if n ≡ 1 (mod 4) and 2n + 1 otherwise. Thus,

H1(SLn(OK); Stn(K) ⊗ k) ∼= Hνn−1(SLn(OK);k) as the orders of torsion elements of Gn are

invertible in k. Similarly, because K is quadratic imaginary, Putman–Studenmund [24,

Theorem C and following paragraph] implies that

Hνn−1(GLn(OK);k)
∼=−→ H1(GLn(OK); Stn(K) ⊗ k).

Theorem 4.10 completes the proof. !

Remark 4.12. Church–Putman [8, Theorem A] also gave a vanishing result for the

twisted cohomology groups Hνn−1(SLn(Z); Vλ), where Vλ is the rational representation

of GLn(Q) with highest weight λ given by the partition λ = (λ1 ≥ . . . ≥ λn); it vanishes

for n ≥ 3 + ||λ|| with ||λ|| = ∑n
i=1(λi − λn). Their arguments are easily adapted to our

situation:

Hνn−1(SLn(OK); Vλ) = Hνn−1(GLn(OK); Vλ) = 0 for n ≥ 3 + ||λ||,

where Vλ is now the rational representation of GLn(K) with highest weight λ.

4.3 Examples of the failure of the generalized Bykovskiı̆ presentation

In this subsection, we prove Theorem C, which gives examples of rings for which the

Bykovskiı̆ presentation does not hold. This will follow from the following more general

theorem.

Theorem 4.13. Let O be a Euclidean domain with field of fractions K. If O has detours,

then the map Bykn(O) → Stn(K) is not injective for all n ≥ 2.
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Bykovskiı̆ Presentation of Steinberg Modules 10393

Proof. Assume O has detours and is Euclidean.

The case n = 2. Recall from Lemma 4.7 that there is an isomorphism H1(BA2(O), BA2(O)′) ∼=
Byk2(O) of Z[GL2(O)]-modules. Consider the long exact sequence of the pair

(BA2(O), BA2(O)′),

Proposition 3.26 implies that the group H1(BA2(O)) is nonzero, and as H1(BA2(O)′) = 0

the connecting homomorphism ∂ has nontrivial kernel. By the proof of Theorem B, the

map Byk2(O) → St2(K) factors as

Byk2(O)
∼=−→ H1(BA2(O), BA2(O)′)

∂−→ H̃0(BA2(O)′) −→ H̃0(Tn(K)) := St2(K).

Since ∂ is not injective, the composite Byk2(O) → St2(K) cannot be an isomorphism.

The case n ≥ 3. Recall from Definition 4.5 that BAn(O)′ ⊆ BAn(O) is the subcomplex of

all simplices {v0, v1, . . . , vp} for which v0 +v1 +· · ·+vp is a proper summand of On. There

is a map

span: sd(BAn(O)′) → Tn(K)

and an associated strongly convergent spectral sequence

E2
p,q = Hp

(
Tn(K); [V 0→ Hq(span\V)]

)
6⇒ Hp+q(BAn(O)′),

described in Theorem 4.4. We will verify that for n ≥ 3 its E2-page satisfies the

following:

(i) For q = 0, the term E2
p,0 = 0 unless p = 0 or p = n − 2.

(iii) For q = 1, the term E2
p,1 = 0 unless p = n − 3.

(iii) For q ≥ 2, the term E2
p,q = 0 unless (p + q) is equal to (n − 1) or (n − 2).

(iii) See Figure 20.

(iv) E2
n−2,0

∼= Hn−2(Tn(K)).

(v) E2
n−3,1

∼= ⊕
V⊆Kn

dim(V)=2
H̃n−4(T (Kn/V); H1(BA(V)).
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10394 A. Kupers et al.

Fig. 20. The page E2
p,q when n = 6.

We first analyze the posets span\V. For a proper nonzero subspace V ⊆ Kn,

observe that

span\V =
{
{v0, v1, . . . , vp} ∈ simp(BAn(O)′)

∣∣∣ Kv0 + Kv1 + · · · + Kvp ⊆ V
}

∼= BA(V ∩ On).

By abuse of notation, for V ⊆ Kn we write BA(V) to denote the complex BA(V ∩ On).

Proposition 3.30 states that the complex BA(V) is (dim(V) − 2)-connected, so

Hq(span\V) = 0 except possibly when q = 0, dim(V) − 1 or dim(V).

First consider the case q = 0. The complex BA(V) is always connected; this

follows from Proposition 3.30 when dim(V) ≥ 2 and because BA(V) is a point when

dim(V) = 1. Thus when q = 0 we find that the functor [V 0→ H0(BA(V)] is the trivial

functor Z. Then E2
p,0

∼= Hp(Tn(K)). By the Solomon–Tits theorem (Theorem 3.2), Tn(K) is

spherical of dimension (n − 2), so the term E2
p,0 = 0 unless p = 0 or p = n − 2, properties

(i) and (iv).

Let q = 1. Because BA(V) is a point when dim(V) = 1, the group H1(BA(V))

can be nonzero only when dim(V) = 2. Thus the functor [V 0→ H1(span\V)] is nonzero

only on elements of a single height. Taking the quotient by V gives an isomorphism

Tn(K)>V → T (Kn/V), and so by Lemma 4.2,

E2
p,1 =

⊕

V⊆Kn

dim(V)=2

H̃p−1(T (Kn/V); H1(BA(V)).
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Bykovskiı̆ Presentation of Steinberg Modules 10395

The Solomon–Tits theorem implies that E2
p,1 = 0 unless p = n − 3, properties (ii) and (v).

Let q ≥ 2. In order to apply Lemma 4.2 to the terms E2
p,q, we will write the

functors [V 0→ Hq(span\V) = Hq(BA(V))] as extensions of functors that are each nonzero

only on elements of a single height. There is a short exact sequence of functors,

0 −→ H ′
q −→ Hq(BA(−)) −→ H ′′

q −→ 0,

with functors H ′
q, H ′′

q given by

H ′
q(V) :=





Hq(BA(V)) if dim(V) = q + 1,

0 otherwise,
H ′′

q(V) :=





Hq(BA(V)) if dim(V) = q,

0 otherwise,

and natural transformations between them given by

We can then apply Lemma 4.2 to the terms in the associated long exact sequence

on homology:
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10396 A. Kupers et al.

Fig. 21. The spectral sequence Er
p,q illustrated for n = 6. (A) The term Er

n−2,0. (B) The term Er
n−3,1.

The Solomon–Tits theorem now implies that for q ≥ 2 the homology groups E2
p,q

can be nonzero only when p + q is equal to n − 1 or n − 2, property (iii). We have verified

our description of the E2 page, as illustrated in Figure 20.

From the structure of the E2 page, we can deduce the terms Er
n−2,0 and Er

n−3,1

are not the source or target of any nonzero differentials for any r ≥ 2. See Figure 21. It

follows that E2
n−2,0

∼= E∞
n−2,0 and E2

n−3,1
∼= E∞

n−3,1. Using formal properties of the spectral

sequence, we see that there is a surjection

Hn−2(BAn(O)′) −→ E2
n−2,0

∼= Hn−2(Tn(K))

and the term E2
n−3,1 is a quotient of the kernel. But

E2
n−3,1

∼=
⊕

V⊆Kn

dim(V)=2

H̃n−4(T (Kn/V); H1(BA(V)) ∼=
⊕

V⊆Kn

dim(V)=2

St(Kn/V) ⊗ H1(BA(V)).

Proposition 3.26 imply that the group H1(BA(V)) is nonzero, and the Steinberg module

St(Kn/V) is nonzero for n ≥ 3, so we conclude E2
n−3,1 #= 0 in this range.

As in the proof of Theorem B, our map Bykn(O) → Stn(K) factors as (since n ≥ 3,

in degree (n − 2) we can conflate reduced and non-reduced homology)

Bykn(O)
∼=−→ Hn−1(BAn(O), BAn(O)′)

∂−→ H̃n−2(BAn(O)′) −→ H̃n−2(Tn(K)) = Stn(K).
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Since Hn−2(BAn(O)) = 0, the connecting homomorphism ∂ is surjective. We have proven

that the map Hn−2(BAn(O)′) → Hn−2(Tn(K)) is not injective, so Bykn(O) → Stn(K) is not

injective. !

We now prove Theorem C, which says the generalized Bykovskiı̆ presentation

does not hold for Euclidean quadratic number rings that are not generated by units.

Proof of Theorem C. Let OK be a quadratic number ring that is Euclidean but is not

generated by units. By Proposition 3.28, OK has detours. The claim now follows from

Theorem 4.13. !

Remark 4.14. See Section 1.2 for our notation for fundamental classes of apartments.

In this notation, the proof of Theorem C in conjunction with Figure 18 shows that

[[(
1

0

)

,

(√
7

1

)]]

+
[[(√

7

1

)

,

(
8

−3

)]]

+
[[(

8

−3

)

,

(
−3

1

)]]

+
[[(

−3

1

)

,

(
1

0

)]]

= 0

is a relation in St2(Q(
√

7)) that does not follow from the generalized Bykovskiı̆ relations.

5 Open Questions

We end with some open questions. All examples of Euclidean domains for which the

generalized Bykovskiı̆ presentation is known to hold are generated by units. Conversely,

all Euclidean domains for which the generalized Bykovskiı̆ presentation is known to fail

are not generated by units.

Question 5.1. For OK a Euclidean domain, does the generalized Bykovskiı̆ presentation

hold if and only if OK is generated by units?

The following question asks whether all relations in Stn(K) come from St2(K).

Question 5.2. Let Kern(OK) denote the kernel of Bykn(OK) → Stn(K). For OK a

Euclidean domain, is there a natural surjection

IndGLn(OK)
GL2(OK)×GLn−2(OK)Ker2(OK) " Bykn−2(OK) −→ Kern(OK)?

The group Kern(OK) measures relations in the Steinberg module beyond those

appearing in the Bykovskiı̆ presentation. An affirmative answer would imply that
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for n ≥ 4 and all Euclidean domains OK , we have H1(GLn(OK); Stn(K) ⊗ Q) =
H1(SLn(OK); Stn(K) ⊗ Q) = 0.

Vanishing results near the virtual cohomological dimension are the subject

of several conjectures by Church–Farb–Putman [5]. In particular, they conjecture ([6,

Conjecture 2]) that

Hνn−i(SLn(Z); Q) = 0 for i < n − 1.

This is supported by the available computations [9, Remark 5.3], and known for i = 0

by Lee–Szczarba [17, Theorem 1.3] and i = 1 by Church–Putman [8, Theorem A]. It is

natural to ask the same question for other number rings; using [17, Theorem 1.3] and

Theorem A it is also true for i = 0, 1 when we replace Z by the Gaussian integers or

Eisenstein integers.

Conjecture 5.3. Let OK denote the Gaussian integers or Eisenstein integers. Then

Hνn−i(SLn(OK); Q) = Hνn−i(GLn(OK); Q) = 0 for all i < n − 1.

This is supported by the available computations Dutour Sikirić–Gangl–

Gunnells–Hanke–Schürmann–Yasaki [10, Tables 11, 12] or [11, Propositions 2.6, 2.10]:

Hν4−i(GL4(OK); Q) = 0 for i ≤ 2 and OK the Gaussian integers or Eisenstein integers.

For general Euclidean number rings, one might expect a similar vanishing result though

possibly with a worse range.

One can also ask about integral versions of our vanishing result. In [21, Theorem

1.10] it was proven that for n ≥ 6

H1(GLn(Z); Stn(Q)) = H1(SLn(Z); Stn(Q)) = 0.

Question 5.4. Is it true that for n ≥ 6 we have

H1(GLn(OK); Stn(K)) = H1(SLn(OK); Stn(K)) = 0

when OK is the Gaussian integers or Eisenstein integers? Can the range be improved?
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The Bykovskiı̆ presentation is also useful for computing the homology of

congruence subgroups. For an ideal J ⊂ OK , let

2n(J) := Ker
[
GLn(OK) → GLn(OK/J)

]
.

We say an ideal J has the Lee–Szczarba property (see [17, page 28]) if the natural map

Hνn(2n(J); Q) −→ H0(2n(J); Stn(K) ⊗ Q) −→ H̃n−2(Tn(K)/2n(J); Q)

is an isomorphism. For OK = Z, the prime ideals with the Lee–Szczarba property are

(2), (3), and (5); see [17, Theorem 1.2] and [22, Theorem A]. The proof relies on the

Bykovskiı̆ presentation.

Question 5.5. Which prime ideals in the Gaussian integers or Eisenstein integers have

the Lee–Szczarba property?

Often, H̃n−2(Tn(K)/2n(J)) is computable (see [22, Table 1]) so an answer to this

question could yield concrete calculations.
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