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1. Introduction

The objective of this paper is to study the asymptotic behavior of Hamilton-Jacobi equations
with oscillatory spatial dependence and correlated multiplicative noise dependence in time.
More precisely, for small ¢ > 0 and fixed y > 0, we consider problems of the form

S N x it o
u +;;H <Duc, Ew)é <82y,w> =0 in R* x (0,00) xQ and (L1)
u’(x,0,w) = up(x) in R? x Q,
where 1y € UC(R?), the space of uniformly continuous functions on R%, (Q,F,P) is a
given probability space, H = (H',H?,..,H™) : RY x RY x Q — R" is self-averaging in
the spatial variable, and ¢ = (&', &, ..., &™) : [0,00) x Q — R™ is an approximation of
white noise, in the sense that
t — £(t,-) is piecewise continuous with P-probability one and

1 O—
—f(§, ) "~%4B in law, where B:[0,00) X Q — R is a standard Brownian motion;

0
(1.2)

see also (2.1) below. For notational ease, when it does not cause confusion, we suppress
the dependence on the parameter o € Q.
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We then identify a variety of settings in which (1.1) approximates a stochastic partial
differential equation with no spatial oscillations, that is, there exists M € N, a determin-
istic H = (EI,HZ, ...,HM) € C(RY,RM), and a Brownian motion B = (B',B?,...,BM) :
[0,00) x Q — RM such that, as & — 0,u° converges in distribution to the unique sto-
chastic viscosity solution u of

di +HDu)odB=0 in R?x (0,00) and u(-0)=uy in R% (1.3)

We recall some aspects of the Lions-Souganidis theory of stochastic viscosity solutions
in Section 2 below. For more details, see also [1-6].

The parameter y in (1.1) encodes the relationship between the spatial and temporal
oscillations. In most of the results we prove, y > 0 must be sufficiently small, which
means that the mixing in time is mild in relation to the spatial oscillations. This is
motivated by the fact that, in general, the law of the white noise approximation ¢ has a
nontrivial effect on the homogenous Hamiltonian H, and even its dimension M. In
other words, there is no “universal” limit of (1.1) for all fields ¢ that satisfy (1.2).

Problems of the form (1.1) arise in a variety of applications, including differential
games, pathwise optimal control, and front propagation. In the latter example, we con-
sider a family of surfaces {I'}),., C R? evolving according to the prescribed oscillatory
and fluctuating normal velocity

. Lo i x\.ft
V = - A n, — 6 T)w >
&’ P & &“/

where, for each i=1,2,...,m,A": $9! x R x Q — R is continuous in the first two
variables, $! c R? is the unit sphere, and n C $4-1 is the outward unit normal vector
to I'; at the point x. In general, the interface develops singularities and/or discontinu-
ities in finite time, even if all of the data is smooth. A weak sense is given to this prob-
lem with the level-set formulation (see [7] for more details), in which I' is identified
with the zero-level set of u‘(-,t), where u® solves (1.1) with the Hamiltonians

Hi(p,x,w) :Ai<%,x,w> lp| for i=1,2,...m,(p,x,w) € RY x RY x Q.

Under certain structural conditions on A, as ¢ — 0,u° converges locally uniformly and
in distribution to the solution % of
—~( Du _ . md _ . md
dﬁ+A<w> |Di|odB=0 in R?x (0,00) and u(-0)=u, in RY, (1.4)
where A : %' — RM is deterministic and continuous and B :[0,00) x Q — RM is a
Brownian motion. Through the level-set formulation, this corresponds to a collection of
surfaces (T';),-, evolving according to the normal velocity V = —A(n) o dB.

There is an extensive literature on the approximation of stochastic partial differential
equations by equations with mixing time dependence. For instance, results of this type
for linear and semilinear parabolic partial differential equations were obtained by Bouc
and Pardoux [8], Kushner and Huang [9], and Watanabe [10], and partial differential
equations with spatial averaging and time fluctuations have been studied by Campillo,
Kleptsyna, and Piatnitski [11] and Pardoux and Piatnitski [12].
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The main mathematical purpose of this work is to extend the above results to first-
order equations with nonlinear gradient dependence. Due to the oscillatory dependence
in time and the nonlinear nature of the problem, obtaining regularity estimates is far
from straightforward, and, therefore, neither is establishing the tightness of probability
measures or identifying the limiting equation.

1.1. The main results

We now give an informal summary of the main results of the paper. Precise assump-
tions and statements can be found later on. We divide the results into two cases,
depending on whether m =1 (the single-noise case) or m >1 (the multiple-noise case).

1.1.1. The single-noise case
The problem of interest, for some convex and coercive H : R? x R x Q@ — R and a
white noise approximation ¢ : [0,00) X Q — R, is

1 t
u; —|—5H<Du‘g, g,a))é(g,w> =0 in R? x (0,00) and ¥’(-,0) =uy in RA.

(1.5)

Many different assumptions for the dependence of the random Hamiltonian on space
are covered by the results in Section 3. The Hamiltonian may even be allowed to
depend on the “slow” spatial variable, as in

1 x t
uy +;H<Du£,x, g&))f(Ew) =0 in R x (0,00) and u*(-,0)=u, in RY.

The field £, meanwhile, is allowed to be any reasonable approximation of white noise,
or even true white noise dB, where B : Q x [0,00) — R is a standard Brownian motion.
As an example of the types of results available in this setting, we assume here that

the white noise approximation ¢ is piecewise smooth,

p — H(p,x,») is convex and coercive, uniformly for (x,®) € R? x Q, and
either x— H(:,x) is deterministic and periodic, or

(x,w)— H(:,x,®) is a random, stationary-ergodic field.

(1.6)

Theorem 1.1. Let 7 > 0 and uy € UC(RY), and assume that H and ¢ satisfy (1.6). Then
there exists a deterministic, convex, and coercive H : R — R, which depends only on H,
and a Brownian motion B : [0,00) X Q — R such that, as ¢ — 0, the solution u® of (1.5)
converges in distribution to the unique stochastic viscosity solution u of

di+HDu)odB=0 in R? x (0,00) and 7(-0)=1uy in RY. (1.7)

The convergence in probability distribution in Theorem 1.1, and in the subsequent
results below, is understood with the topology of local-uniform convergence. See
Section 2 below for details.

Theorem 1.1 holds without any restrictions on the positive parameter y, or on the
correlation between the random functions H and . This has to do with regularity and
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stability estimates for pathwise Hamilton-Jacobi equations with convex and coercive
Hamiltonians. These estimates, which are of independent interest, are presented in
Appendix A.

1.1.2. The multiple-noise case
We now turn to the study of the initial value problem

1 m ) X 0t )
u; +;ZH’ (Dug, E) & (E,w> =0 in R? x (0,00) and u*(-,0) =u, in RY,
i=1
(1.8)

where ug € UC(]Rd), m>1, and, for each i=1,2,...,m H € C(Rd X ’]I‘d) and &
[0,00) x Q@ — R is a white noise approximation.

We will show that there exist M € N and, for each j=1,2,..,M, a continuous,
deterministic, effective Hamiltonian H’ : R? — R and a Brownian motion B’ such that,
as ¢ — 0,u’® converges locally uniformly and in distribution to the unique stochastic vis-
cosity solution u of

M . .
di+Y H(Du)odB =0 in R?x (0,00) and u(-0)=u in R.  (1.9)
j=1

Despite the similarity of this statement with Theorem 1.1, there are some fundamental
differences in the nature of the problem. Most importantly, the deterministic effective
Hamiltonians, and even their number M, depend on the particular laws of the mix-
ing fields.

Different types of behavior can already be seen by considering the simple problem

e 1 (x\ ,f ¢ . .
e (50) 1 ()2 (G0) 0 mEx0m wa gy

u(,0) =uy in R.

o
I

1
uy +—
P

In particular, the law of the limiting problem depends nontrivially on the law
of (&', ¢%).

Theorem 1.2. Assume that f € C*'(T),uy € UC(R), and 0 <y < 1/2. Then there exist
piecewise smooth white nosie approximations

52(51,52):[0,00)XQ—>R2 and E:(EI’EZ)I[O,OO)XQHRZ’

deterministic functions H € C(R,R?*) and H € C(R,R*), and Brownian motions B :
[0,00) x Q — R* and B :[0,00) x Q — R* such that, if u® and & are the solutions of
(1.10) with respectively the fields & and E, then lim,_o u® = % and lim,_o 2’ = U in dis-
tribution, where T and U are the unique stochastic viscosity solutions of respectively

di+H(i,) odB =0 and dii+ H(i)odB =0 in R x (0,00)

)
with 1(-,0) = u(-,0) = uy in R. Moreover, as C(R x [0,00))-valued random variables, U
and T have different laws for general uy € UC(R?).
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In the above result, £ and E are certain discrete examples satisfying (1.2), but with E
taking on more values than ¢. This property results in a more complicated limiting
Hamiltonian and a higher dimensional noise.

The next result involves a slight modification of (1.10), where ballistic behavior can
be seen if there is nontrivial correlation between the white noise approximations.

Theorem 1.3. For some V € C(T),F € C(R), and independent white noise approxima-
tions &', & 1 [0,00) x Q — R, the following hold:

a. There exists a deterministic H € C(R,R?) and a Brownian motion B : [0,00) x
Q — R such that, if 0 < y < 1/6,uy € UC(R), and u* solves

| X t 1 X t .
ui+;F(”§c)€l (&T?’w) +yv<g>fz(g’w> =0 in Rx (0,00) and
ua(,’0> =uy in R,

then, as ¢ — 0,u® converges in distribution to the unique stochastic viscosity solu-
tion of

du +H(u,)odB=0 in Rx (0,00) and u(-0)=1u in R.

b.  There exists p € R and a deterministic constant ¢ # 0 such that, if 0 < y < 1 and
u® is the solution of
1 t 1 x t
~e |~ on(neel 2 = s 1 > _ .
uy + o F(u)¢ (82},,60) + = V(S)i <£2V’w) =0 in Rx (0,00) and
u*(x,0) =p-x in R,

then, with probability one, for all T> 0, lim, .o Sup, ycrxpo, 77/€’t (%, t) — ct| = 0.

Note that the limiting Hamiltonian and noise in Theorem 1.3(a) are three-dimen-
sional. This is a consequence of the nonconvexity of F, which, as it turns out, causes
certain non-symmetric properties of the potential V to have an effect on the limiting
problem, namely, increasing the dimension of both H and B.

Also, if F: R — R is convex and coercive, then the hypotheses in (1.6) are satisfied
by the Hamiltonian H(p,x) := F(p) + V(x) and the field ¢'. Hence, the example in
Theorem 1.3(b), for which the function F is necessarily non-convex, illustrates that the
convexity assumption in Theorem 1.1 is necessary in general.

Finally, we assume

(& (kk+ 1)), are independent and uniformly distributed over {—1,1}",

m
a e COY(T9) for all i=1,2,...,m, and a'y' # 0 whenever y' € {—1,1}.

i=1

(1.11)

and consider the first order, level set problem
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1 i : x H t . d o . d
Uy ‘f’;; a <E> & (E,w> DU =0 in R?x (0,00) and u(-,0) =u, in R%
(1.12)

A more general result, which covers Theorem 1.4 below, will be proved in Section 4. As
before, the interaction between the various noise coefficients increases the dimension of
the noise, in this case from m to 2.

Theorem 1.4. Assume that 0 <7y < 1/6,uy € UC(RY), and (1.11) holds. Then there
exists A € C(S,R*"") and a Brownian motion B : [0,00) x Q — R*" such that, as
e — 0, the solution u® of (1.12) converges in distribution to the stochastic viscosity solu-
tion u of
_ ([ Duf . . d _ . d
du—l—A(W)wu |odB=0 in R* x (0,00) and u(-,0)=u, in R“.

Recall that (1.12) is the level set equation for a hypersurface evolving according to the
normal velocity —& 7 Y"1 a'(x/e)&'(t/¢*), and the limiting equation in Theorem 1.4
corresponds to the level-set flow with the normal velocity A (n) o dB(t, w).

1.2. Organization of the paper

Section 2 contains some tools and concepts that are used throughout the paper. The
results from the single-noise and multiple-noise cases are proved in respectively
Sections 3 and 4. Finally, the appendix summarizes relevant aspects of the pathwise vis-
cosity solution theory, as well as the computation of a certain effective Hamiltonian.

1.3. Notation

Integration with respect to the probability measure P is denoted by E. For a domain
U € RY, (B)UC(U) is the space of (bounded) uniformly continuous functions on U,
and C2(U) is the space of C* functions f whose Hessian D?f is uniformly bounded. For
H:R? — R,H* is the Legendre transform of H. Given a set A, the function 1, is the
indicator function of A. For a function f:R—R and x;€R,f(x;):=
limy, 0, 4>0f (xo=h) whenever the limit exists. The identity matrix is denoted by Id.
The (d — 1)-dimensional unit sphere in R? is $%~!, the d-dimensional torus is T¢
and T := T".

2. White noise approximations and convergence in distribution

Throughout the paper, we use certain facts about random variables converging in distri-
bution. More details and proofs can be found in the book of Billingsley [13].

Given a Polish space A, that is, a complete and separable metric space, a sequence of
Borel probability measures (,),~, on A is said to converge weakly to u as n — oo if



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 7

n—oo

lim J fdp, = J fdu  for all f € Cy(A).
A A

A sequence of A-valued random variables (X,,),., (not necessarily defined on the same
probability space) is said to converge in distribution to X in the space A, as n — oo, if
the sequence of probability laws of the X,’s converges weakly to the probability law
of X.

In this paper, we focus mainly on the two spaces C(R? x [0,00)) and C([0, 00), RM),
which are endowed with the topology of local-uniform convergence. These spaces are
metrizable with the metrics

Zmax( max |u(x,t) — v(x, t)|,2k> for u,v € C(R? x [0,00))

(x> t)€By %[0, ]

and

imax(maxm C(t)|,2k) for n,{ € C([0,00), RM),

k=1 te(0, K|
and, for u,v € C(R? x [0,00)) and 1, € C([0,00), RM), we use the metric
d((w,n), (v, 0)) := ds(u,v) + dyp(n, 0).

Random variables that take values in these spaces and converge in distribution are said
to converge “locally uniformly and in distribution.”
We call a random field & : [0,00) x Q — R a white noise approximation if

t— f( -) is piecewise continuous with P-probability one and

C‘SO B in distribution in C([0,00),R), where

O,-) = 5jt/ 0 -)ds and B:[0,00) X Q — R is a standard Brownian motion.

(2.1)

A random field ¢ satisfies (2.1) if it is centered, stationary, and sufficiently mixing. Such
fields have been studied by a variety of authors in the context of stochastic ordinary dif-
ferential equations with mixing coefficients, for example, Cogburn, Hersh, and Kac [14],
Khasminskii [15], Papanicolaou and Varadhan [16], and Papanicolaou and Kohler [17].

To give an example satisfying (2.1), we define the mixing rate p : [0,00) — [0, 0)
associated to ¢ by

p(t) =sup sup sup |P(A|B) —P(A)| for t >0, (2.2)
520 A€y, 00 BEF,s

where, for 0 <s <t < 00,F;; CF is the o-algebra generated by (&(r.")),e|; - Then ¢
satisfies (2.1) if

t—E(tw) s stationary, P(sup;epy, o0 [€(5)| < M) =1 for some M >0,
limg oo p(t) =0, [ [p(6)]'2dt < 00, E[E(0)] =0, and 2 [°E[E(0)¢()]dt = 1.
(2.3)



8 @ B. SEEGER

A discrete example, which plays an important role later in the paper, is given by

o0

i(to) = ZXk(w)l[k—l,k)(t) for (t, )€[0,00)xQ, (2.4)
=1

where (Xi);Z,:Q — R are mutually independent and identically distributed with
E[X;] =0 and E[(X;)*] =1 for all k= 1,2,.... For such &, the path {° appearing in
(2.1) is a linearly interpolated random walk, and (2.1) follows from Donsker’s invariance
principle.

3. The single-noise case

In this section, we prove the homogenization results from the introduction for a single
white noise approximation. The results here resemble those in [18], except that the
Hamiltonians need not be smooth or uniformly convex, which allows for the treatment
of level-set problems that model front propagation.

3.1. A general convergence result

The first result we prove in this section is not directly related to homogenization, and is
general enough to be applied to a variety of asymptotic problems. We give more details
on such examples, including the ones stated in the introduction, at the end of
this section.

For an initial datum uy, € UC(R?), paths ()., :[0,00) x Q = R, and

e>0
Hamiltonians (H®) >0 - RY x R x Q — R, we consider, for ¢ > 0, the problems

du® + H*(Dul, %, o) - dl(t,w) =0 in RY x (0,00) and u*(,0) =u, in R? (3.1)

and
du® + H(Du®, x, ) - d°(t,) =0 in R? x (0,00) and u°(-,0) = uy in R%
(3.2)
Let (S%(t)), 150 : (B)UC(R?) — (B)UC(RRY) denote the solution operators for

US ,=H*(DU%,x,0) =0 in R? x (0,00), U%L(-,0)=¢ in RY,

that is, U% (x,t) = S% (t)$(x) for ¢ > 0 and (x,t) € R? x [0,00).
We assume that there exists Qy € F such that P(Q) = 1 and the following hold:

{*(+, w) is continuous for all ¢ > 0 and w € Q, and, (3.3)
as ¢ — 0,{° — {° locally uniformly and in distribution; ’
and
there exist v,7 : [0,00) — [0,00) as in (A.5) such that,
for all £ >0 and w € O, (H*(:, -, ®)),, satisties (A.5), and, for all L, T,0 > 0, (3.4)

lim, o IP’( sup  max |S5()p(x) — S5 (t)p(x)| > 5) =0.

HD‘b”ocSL (x, t)eBp %[0, T]
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Because He(-, -, ) satisfies the coercivity bounds (A.5) for all ¢ > 0 and w € Q,, it fol-
lows from Theorem A.2 that the equations (3.1) and (3.2) admit unique pathwise vis-
cosity solutions by extending the solution operator to continuous paths.

Theorem 3.1. Assume (3.3) and (3.4), and let uy € UC(RY). Then, as ¢ — 0, (1%, (%) con-
verges locally uniformly and in distribution to (u, ().

The key idea in the proof of Theorem 3.1 is to compare with solutions of intermedi-
ate equations driven by more regular paths, by appealing to the stability estimates of
Theorem A.2.

Throughout the proofs below, we consider paths # that satisfy

n:[0,00) =R is piecewise—Cl and, for any T>0, (3.5)

/] changes sign finitely many times on [0,T]. '
Recall that the metric d below, defined in Section 2, metrizes the space C(RY x [0, 00))
with the topology of local uniform convergence.

Lemma 3.1. Assume that vy € UC(R?), 1 : [0,00) X Q — R is such that y(-,w) satisfies
(3.5) for all w € Qo, and (H®),., satisfies (3.4). Let v* and V¥ solve

Vi + HY(Dv, x, 0)i(t, ) =0 in RY x (0, 00),
W4+ H(DV, x,0)if(t,w) =0 in R? x (0,00), and (3.6)
Vi(,0) =1°(,0) =, in R%.

Then, for all § > 0, lim,_o P(d,(+*,+°) > §) = 0.

It is necessary to use the following well-known domain-of-dependence result for vis-
cosity solutions of Hamilton-Jacobi equations. For a proof, see the book of Lions [19].

Lemma 3.2. Suppose that G:R? x R — R is continuous, fix L>0, let U and V be
respectively a sub- and super-solution of U; = G(DU,x) and V, = G(DV,x) in R x
(—00,0) such that  max(||DU| ., ||DV|.) < L, and  suppose that
L= sup(p)x)eBLde‘DpG(p,x)‘ < 0. Then, for all R>0 and —oco < s < t < 00,

max (U(x,t) — V(x,t)) < max (U(x,s) — V(x,s)).

X€BR_r(1-s) x<Br

The strategy for the proof of Lemma 3.1 is similar to one used by the author in [18].
However, the argument is more involved here, due to the randomness of both the
Hamiltonian and path, and the fact that the rate of convergence for the limit in (3.4) is
not quantified.

Proof of Lemma 3.1. Observe first that, in view of the contractive property of the equa-
tions in (3.6), it suffices to prove the result for vy € C>'(RY) with ||Dw||,, <L for
some fixed L > 0. Also, it is enough to prove, for any fixed 6 > 0 and T > 0, that
limP( max  [v*(x,t) — " (x, )| > 5) =0.
§—0 (% H)eBpx[0, T
Fix w € Q, so that there exists a partition {0 =ty < t; < f, < --- < ty = T} such that

n(w) is monotone on each interval [t;,t;11]. Fix (x,t) € By x [0, T], let i be such that
t € (t;, ti11], and assume without loss of generality that 1 is decreasing on [t;, tj11].



10 @ B. SEEGER

Set A:=mn, —n,. Because n is monotone on [t;,tiy1],v*(-t) = S (A)V*(-,t;) and
V(1) = S5 (AWV( ;). We then write

V() = V(1) = (S AW (1) (x) = S5 (AW (1) (%))
(S QP 0)) — LAY 0E)-
In view of Theorem A.2, there exists a deterministic constant C; > 0 depending only on

L such that
max(|[ DV ||, DY) < Ci.
The convexity and uniform growth of H?® in the gradient variable then imply that, for

some deterministic constant C, > 0 depending only on L,

sup sup sup |D,H*(p,x,w)| < C,.

e>0 |p|<Cy xeR?

Lemma 3.2 then implies that, for all x € By,

|5 (A (5 1) (x) = SL(ANW° (5 1) (%) < max [v¥(y, i) — V(3. 1),

YEBTicyA

and so
N—1

[ t) =P )] <> ma)? ]|Sﬁ )(y) = SL(OV (8B, (3.7)
i=0 0»7)EBR,x[0,4;
where A, := |n(tiy1) — n(t)| and R; := T+ C, >_r_,' At, and the subscripts +and - for
the solution operators in (3.7) are chosen depending on whether #n is respectively
decreasing or increasing on [t;, tiy1].
For M > 0, define
Ay = {w €Qy:N(w) <M, max Aj(w)<M,Ry-1(w) < M}

i=0,1,2,..,N—1

Then, for any M >0,
}P’< max  [V'(x, 1) — " (x,1)| > 5> = IP’(QO N { max  [V'(x, 1) — v (x, 1) > 5})
(x, t)eBx[0, T] (x, t)€Bx[0, T]

N-1

< P(Qy Ay) +]P’<AM N {Z max |S; (D (1) (y) — S% (f)vo(-,ti)()/){ > 5})

i—0 (n0)eBR,x[0,A]

, 0
P(Qy Ap) + ]P’( sup max  [$% (1)P(x) — SL(1)P(x)| > —),
”Dd)Ho@SCI (x, 7)€Bpg %[0, M] M
and so, in view of (3.4), limsup, P(max pep,xpo, V" (x:t) —1°(x, 1) > 9) <
P(Qy Apr). Sending M — oo yields the result. O
Proof of Theorem 3.1. Appealing to the Portmanteau Theorem (see [13]), it suffices to
show that, for any open set 4/ C C(R? x [0,00)) x C([0,0), R),
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limiglf[F’((ug, Cyeld) >P((u, ) el).
£e—>

Recall that we metrize the space C(R? x [0,00)) x C([0,00),R) with the metric d :=
d;+d, defined in  Section 2. For ¢>0, define  the  open
set Uy := {(v,n) €U : d((v,n), (w, 7)) > o for all (w,7) U}.

As in the proof of Lemma 3.1, it suffices to take uy € C!(R?) with ||Duol|, < L for
some fixed L > 0.

Fix 0 >0, and let 5:[0,00) x Q — R be such that, for all w € Qy,n(w) satisfies
(3.5) and d,(’(w),n(w)) < 6. Let v* and +° be as in the statement of Lemma 3.1 with
the path 7. Theorems A.1 and A.2 then yield a constant C>0 depending only on L
such that, for all w € Q,

(1" (w), V() < Cdp(C(@), () and  ds(u” (), V() < C0.

Lemma 3.1 gives the existence of a deterministic &y > 0 such that, for all ¢ € (0, &), IP(Q?) >
1— 0, where Q0 := {w € Qy: dy(v'(w),°(w)) < §}. Then, forall ¢ € (0, &),

{(,0) € UND S {(V,,8) € Uiesnys % Bs(n) N\
> {<v°,;1, (') € Uicaays X Ba(n)}\ﬂf:

where B;s(17) C C(]0,00),R) denotes the open ball of radius 0 centered at 1 with respect
to the metric d,.

It follows that, for all &€ (0,¢),P((u, (%) € U) > P((v*, 1, (%) € Uiciays x Bs(n)) —
0, which, together with (3.3), yields, after sending ¢ — 0,

liminf P((s, ) € U) > P((VO,n, {) € Uicins % 35(;7)) —

> P((4',0) € Upcrs ) = 0.

The result now follows upon sending 6 — 0. O

3.2. Applications of Theorem 3.1

The assumptions needed for Theorem 3.1, and in particular, those for the Hamiltonians
H?, are general enough to apply to a multitude of settings. For instance, the dependence
of H® on x/¢ can be periodic, almost periodic, or stationary ergodic. All that is needed
is (3.4), that is, convergence to some H° in the solution-operator sense. Here, to have a
simplified presentation, we discuss only the periodic and random settings, with H® given
as a function of x/¢ and possibly x.

We first prove the result from the introduction concerning the initial value problem

1 t
u; —|—AH<Du£, x,w)f(z,a)> =0 in R?x (0,00) and u‘(-,0) =u, in R?
&’ 4 &’
(3.8)
for a fixed y > 0 and uy € UC(RY), a white noise approximation ¢ : [0,00) x Q — R in
the sense of (2.1), and a Hamiltonian H : RY x R? x Q — R for which
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there exists Qy € F with P(Qy) = 1 and deterministic v, 7 : [0,00) — [0,00) as in (A.5)
such that H(-, -, ) satisfies (A.5) uniformly over w € Q,, and

either y— H(-,y) is deterministic and periodic, or

(y,w)— H(-,y,) is a stationary-ergodic random field.

(3.9)

The latter condition for H means that there exists a group of transformations {7} Jerd
Q — Q such that

P=PoT, for all ye R, H(p,x, T,w) = H(p,x+y,») for all (p,x,y,0) € R* x Q, and,
if ECF and T)E=E for all y € R?, then P(E) =1 or P(E) =0.

(3.10)
For (t,w) € [0,00) x Q — R, define
[ 1(". /s
Ctw) = 8*’J E(s, w)ds = TJ 5(7,(1)) ds. (3.11)
0 & Jo \&¥

Corollary 3.1. Let 7 > 0 and uy € UC(R?) and assume that ¢ and H satisfy respectively
(2.1) and (3.9). Then there exist a deterministic, convex H : R? — R satisfying (A.5),
which depends only on H, and a Brownian motion B : [0,00) X Q — R such that, as ¢ —
0, (u*, (") converges locally uniformly and in distribution to (u, B), where U is the unique
stochastic viscosity solution of

di+H(Did)odB=0 in RYx (0,00) and %(-0)=1u, in R% (3.12)

Note that (3.12) is well-posed by merit of Theorem A.1 and the convexity of H.

The corollary is a direct consequence of Theorem 3.1, by taking (* defined as in
(3.11) for ¢>0,°=B, and, for (p,x,w) € R x R x Q, Hé(p,x,w) := H(p,x/e, )
and H°(p,x) = H(p), where H is the deterministic, convex, effective Hamiltonian in
either the periodic or random homogenization settings. The convergence in distribution
of {* to the Brownian motion follows from (2.1).

That H and H satisfy (3.4) is proved in the periodic setting by Lions, Papanicolaou,
and Varadhan [20] and Evans [21], and in the random setting by Souganidis [22] and
Rezakhanlou and Tarver [23] (see also Armstrong and Souganidis [24] for a more gen-
eral result). In either setting, the uniformity of the convergence in (3.4) over ¢ with a
bounded Lipschitz constant is a consequence of the contractive property of the equa-
tions and the compact embedding of C*!(R?) into C(R?). The fact that H satisfies the
bounds in (A.5) follows from standard estimates on the effective Hamiltonian.

Finally, for H satisfying (3.9), the limiting problems for u} + H(Du‘,x/¢) =0 and
ut — H(Dus, ’—:) =0 are, respectively, u, + H(Du) =0 and #, — H(Du) =0, or, more
concisely,

(H) = -H. (3.13)

The identity (3.13) does not hold in general. Here, it is a consequence of the convexity
of H in the gradient variable. For more details, see [18].
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We next consider, for a standard Brownian motion B : Q x [0,00) — R, the problem

du® + H(Duc,

™| R

w) 0dB=0 in R?x (0,00) and u‘(-,0)=u, in RY. (3.14)

Corollary 3.2. Under the same hypotheses of Corollary 3.1, as ¢ — 0, the solution u® of
(3.14) converges locally uniformly and in distribution to the solution of (3.12).

The result follows from Theorem 3.1, taking (H’),, as before and (* =B for
all e > 0.
We now present results about the initial value problems

. 1 ) t )
u; +;H<Du’°, g,x, w)é(;,w) =0 in R?x (0,00) and ¥°(-,0) =uy in R4
(3.15)

and
du’ +H<Du5, ;,x, w> 0dB=0 in R?x (0,00) and u°(0)=1u, in R% (3.16)

The following result is a consequence of Theorem 3.1, as well as the homogenization
results cited above from [20-23], which extend also to this setting.

Corollary 3.3. Assume that y > 0,uy € UC(R?),B: [0,00) x Q — R is a Brownian
motion, H is uniformly continuous in Bg x R? x R? for each R> 0, and there exist Q €
F and v,v as in (3.9) such that, for each fixed x € Rd,H(~, -,X) satisfies (3.9). Then
there exists a deterministic H € C(R? x RY) satisfying (A.5) such that the following hold:

a. For any £:[0,00) x Q — R satisfying (2.1), if u® is the solution of (3.15) and {*
is as in (3.11), then, as ¢ — 0, (u*, (%) converges locally uniformly and in distribu-
tion to (4, B), where U is the stochastic viscosity solution U of

di + H(D#,x)odB=0 in R? x (0,00) and #(-0)=u, in R%’  (3.17)

b. As & — 0, the solution u® of (3.16) converges locally uniformly and in distribution
to u.

We conclude this subsection by explaining how the above results can be applied to
equations of level-set type. Indeed, if, for some a : Q@ — C(§*! x R? x RY),

H(p,y,x,0) = a(ﬁ,y,x, w> Ipl, (3.18)
then (3.15) and (3.16) become level-set equations for certain first-order interfacial
motions. For some @ € C(S*! x RY), the effective Hamiltonian then has the form
H(p,x) :=a(p/|p|,x)|p| for (p,x) € RY x RY.

The Hamiltonian (3.18) satisfies (3.9) if there exist 0 < a_ < a. such that, with prob-
ability one, a_ < a(n,y,x, ) < a, for all (n,x) € $%' xR% and pra(p/|p, - --)Ip|
is convex.
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4. The multiple-noise case

We now turn to the study of the initial value problem

1S . ot i
uf—l—;ZH’(Dué,g)f’(g,w)—O in ]Rdx(O,oo) and u*(-,0) =uy in R,
=1
(4.1)

Throughout this section, we will assume that each Hamiltonian is deterministic and
periodic in space, and that, for each i = 1,2,...,m, £ is a discrete mixing field satisfying
(2.4), that is,

{ Et,w) = gX}'{(o))l[k_l,k)(t) for (t,w) € [0,00) x Q, where (42)
(Xp)

1, : Q — R are independent and identically distributed with E[X{] =0 and E[(X})’] =

As in (3.11), we set, for each i = 1,2,...,m
1 t/827 .
>t ) = - J E(s,w)ds for (t,w) € [0,00) x Q, (4.3)

so that, in view of Donsker’s invariance principle, for some Brownian motion B':
e—0

[0,00) x Q = R, as ¢ — 0, {'——B'in C([0,00),R) in distribution.

4.1. Difficulties

We begin with a discussion of the general strategy of proof in the multiple noise setting,
and the challenges that arise.

We first make the formal assumption, one which we later justify by choosing y suffi-
ciently small (see Lemma 4.4 below), that 4 is closely approximated by a solution u® of
an equation of the form

1 — t
Uy +§H(Dﬁ”,f(@,w>> =0 in R?x (0,00) and @°(,0)=u in RY, (4.4)

via the expansion u®(x,t) ~ @'(x,t) + ev(x/et) +--- for some v: T x [0,00) — R.
This yields to the following equation for v, for fixed p € R and ¢ € R™ :

zm: H'(Dyv+p,y)& =H(p, &) in R (4.5)

The fixed parameters p and ¢ stand in place of respectively Du®(x, t) and & 7&(t/e%).

Note that, in deriving (4.4), we have assumed that &+— H(-, {) is positively homogen-
ous. Later, we justify this by the fact that, under sufficient conditions on the H', (4.5)
admits periodic solutions for a unique choice of constant H(p,&) on the right hand
side. The positive homogeneity can then be seen from multiplying both sides of (4.5) by
a positive constant.
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If up(x) = po - x for some fixed p, € R, then the solution of (4.4) is given by

e 1 (- s
u’(x, t) :po.x——”J H<p0,§<7>>ds.
&’ 0 &2/

E[H(po, X5, X3, .- X)] = 0, (4.6)

Therefore, if

it then follows that u® converges locally uniformly and in distribution, as ¢ — 0, to py -
x+0(po)B(t), where B is a standard Brownian motion and o(po)’ =
EErﬁ(po,Xé,Xg, ...X"?|. However, the nonlinear nature of the problem makes it diffi-
cult to describe the limit of % as ¢ — 0 for general uy € UC(R?). This distinguishes the
problem from the uniformly parabolic, semilinear equations considered in [8-10].

A further complication arises from the fact that, for two R™-valued random variables

X, and X, as in (4.2),
E[H(p.Xo)*| =E[H(p.X,)?] for all p e R? (4.7)

may fail in general, which indicates that the law of the field ¢ in equation (4.1) can
have a nontrivial effect on the limiting equation.

As shown above, if (4.7) does hold, then, whenever the initial data has the form
up(x) = p - x for some p € RY, the laws of the limiting functions depend only on p, and
not on the laws of X, and XO. However, it can still be the case that the laws of the lim-
iting functions differ for more general initial data.

As an indication of why this is true, consider, for uy € UC(R) and two Brownian
motions B, B : [0,00) x Q — R, the initial value problems

du —u,odB =0, dﬂ—|ﬂx|od]§:0 in R x (0,00), and
u(x,0) = 4(x,0) =up in R.

If up(x) =px for some fixed p € R, then the solutions u(x,t) = px+ pB(t) and
it(x,t) = px + |p|B(t) have the same law as C(R x [0,00))-valued random variables.
However, if ug(x) = |x|, then a simple calculation yields that u(x,t) = |x + B(t)|, while
it is shown in [1, 3, 6] that

u(x,t) = max{\x| + B(t), maxB(s)}.

0<s<t

The C(R X [0,00))-valued random variables u and # evidently do not share the
same law.

4.2. A general class of examples

We now present a class of Hamiltonians and white noise approximations for which,
given any initial data uy € UC(R?), the limit as & — 0 of the solution u® of (4.1) can be
identified as the unique stochastic viscosity solution of a certain initial value problem.
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We assume that the Hamiltonians satisfy
H' e C‘“(Rd x T9), and, for each &€ {—1,1}",

p ZHl )& is either convex or concave and (48)
4.8

lim inf ZH (p,y)& =400 or  lim sup ZH’(p y)¢E

lpl—+00 yeT? 4= lpl—+00 e 4=

Lemma 4.1. Assume (4.8). Then, for all p € R? and & € {—1,1}", there exists a unique
H(p,&) € R such that (4.5) admits a periodic solution. Moreover, p+— H(p,-) is either
convex or concave, and

H(-,A¢) = AH(, &) for all A€ R and ¢ € {—1,1}". (4.9)

Proof. The solvability of the cell problem (4.5) is a direct consequence of the coercivity
assumption in (4.8) and the results of [20, 21], as is the convexity or concavity in the
gradient variable and the homogeneity in (4.9) for 4 > 0. The fact that (4.9) holds for
negative / follows from the identity (3.13). O

The mixing fields are assumed to satisfy, for i = 1, ...,m,

ZXk L ki) () for (t,m) € [0,00) x Q, where (4.10)

(Xk)1:1,2,...,m, k—o,1,.. are independent Rademacher random variables.

Deﬁne Am = {] = (jl,jz,...,jl) Ij,‘ S {1,2,...,m},j1 <j2 < .- <jl}, |]| = |(jlaj2a---)jl)| :
=1, and A := {j € A" : |j| is odd}, and note that #4™ = 2™ — 1 and #A!" = 2""!
For each j = (j1,j2, ..., j1) € A", set
=@ g for ¢ = (8,8 e {-1,1}",
— 1 — . . i i )
H(p) := 7 Z H(p,&)d for p € RY, X (w) =X (0)X () - - - X} (o),
te{— 11}

J(0,0) := ZX Lk, k+1)(t),  and
Ot w) ==& (t/e¥, w) for (t,w) € [0,00) x Q.

(4.11)

For each j € AT,Hj is a difference of convex functions, and (4.9) implies that H =0
whenever |j| is even.

Theorem 4.1. Assume 0 <y < 1/6,uy € UC(R?), (4.8), and (4.10), and let u® be the
solution of (4.1). Then there exist 2™~ independent Brownian motions (Bj)jeAm, such
that, in distribution,

(“C’ (Cj’g)jeA;")gio (ﬁ, (Bj)jeA;n> in C(Rd X [0, oo)) % C({O, oo),]Rzmﬂ),

where U is the unique stochastic viscosity solution of
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di+ Y H(Di)odB =0 in R?x (0,00) and @(-0)=u, in R — (4.12)
JEAS

Ifd=1,or if d=2 and p— H(p,-) is homogenous of degree q > 1, then the result holds
foro<y<1/2.
The result relies on the following lemma about nonlinear functions of {—1,1}".

Lemma 4.2. Let f : {—1,1}"" — R. Then
fO=f+> £, (4.13)

jeA™

where fo =35 3 ccq gy f(E) and fj == 2%256{71’1}mf(§)éj. If f is odd, then fy = 0, and
the sum in (4.13) is taken over j € A"

Proof. Let F™ be the 2™-dimensional space of real-valued functions on {—1,1}". The
2™ functions in P" := {1,(5’.)j€ 4} are linearly independent elements of F™, and
therefore, their span is equal to it.

For f,g € F", define the inner product (f.g)pm := 3w > ey 1ynf(£)g(&). With

respect to (-,-) zm, P" becomes an orthonormal basis, so that, for any f € F", f =

qu oo (f.q) 7»q> which is the desired formula. The statements about odd f now follow
easily. O
As a consequence of Lemma 4.2, and the definition of the functions (Hj)je 4n in
(4.11), the effective Hamiltonian H : RY x {-1,1}" in (4.5) takes the
form H(p, &) :== ZjeA;n H(p)d.
The proof of the following lemma is elementary and thus omitted.

Lemma 4.3. Let {Xj}jm:1 be mutually independent and Rademacher. Then the random
variables defined by X := X' X% --- X0 for j = (j1,j2, .. j1) € A™ are pairwise independ-
ent and Rademacher.

Now, for the H' and (s as in (4.11), let %* be the viscosity solution of the equation

w4+ Y B0 (o) =0 in R x(0,00) and #(,0)=u, in R (4.14)
JEAT

Lemma 4.4. Assume (4.8) and (4.10), and let u® and u® be the solutions of respectively
(4.1) and (4.14). Then, for any L >0, there exists C = C; > 0 such that, with probability
one, whenever ||Duyl||,, < L,e > 0 and T> 0,
sup  [uf(x,t) — @ (x, 1) < C(1+ T)e'*72.
(x,t)€R? %[0, T]
If d=1, or if d=2 and p— H(p,-) is q-homogenous for some q > 1, then &/*>~%
becomes &' =%,

We do not give the full details of the proof of Lemma 4.4, as it is a simpler version
of Lemma 3.1 (see also Lemma 5.2 from [18]). The argument follows by applying results
on rates of convergence for periodic homogenization of Hamilton-Jacobi equations
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(which are listed below) on each of the O(1/¢?) intervals on which &°(t) is constant.
The effective equation on each of those intervals is given by u¢ + H(Du®, ¢ 7&(t/e¥)) =
0, which is exactly equation (4.14).

Lemma 4.5. Assume that H is coercive in the gradient variable, periodic in the space vari-
able, and locally Lipschitz. Let u® and u be the solutions of the initial value problems

uf + H(Dus, z> =0 and % +H(D#)=0 in RYx (0,00), and
w(0) =u(-0) =uy in R

a.  (Capuzzo-Dolcetta, Ishii [25]) For all L > 0, there exists C = Cp > 0 such that, if
|Dug||, < L, then

sup  |uf(x,t) —T(x,t)| < C(1+T)e'/® for all T > 0. (4.15)
(%, )ER? %[0, T

The exponent can be improved from 1/3 to 1 if ug(x) = p - x for some fixed p € R%.

b. (Mitake, Tran, Yu [26]) If d = 1 and p— H(p,-) is convex, or if d = 2 and
p— H(p,-) is convex and positively homogenous of degree q > 1, then the exponent
1/3 in (4.15) can be replaced with 1.

Proof of Theorem 4.1. Because the solution operators are contractive in the initial data,
it suffices to assume that uy € C*'(RY).

The choice of y and Lemma 4.4 imply that, with probability one, lim, ¢ d,(u*, u") =
0, where dj is the metric on C(R? x [0,00)) defined in Section 2.

In view of Lemma 4.3, the path (*:= (Cj’g)jeAg« € C([0,00),R*"") is a random walk
which, as ¢— 0, converges in distribution to a 2™ !'-dimensional Brownian
motion B := (Bj)jeAm.

For the fixed initial datum uy € C*'(RY), let S: C([0,00), R*" ") — C(R? x [0,0))
be the solution operator for the equation

dv + Z H(Dv)-di =0 in R?x (0,00) and v(-0)=u in R%
JEAY
that is, S({) = v. The stability result in Theorem A.1 implies that S is continuous, and,
therefore, so is the graph map

(s, 1) : ¢([0,00), B )30 = (n,0) € C(R? x [0,00)) x €([0,00),B>"").

The result now follows from the Mapping Theorem and Slutsky’s Theorem (see [13]).
In particular, the Mapping Theorem implies that, if %#° is the solution of (4.14), then, as
e — 0,(u% (*) converges in distribution to (% B) in C(R? x [0,00)) x C([0, T],RZWH).
We then conclude by appealing to Slutsky’s Theorem. O
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4.3. A one-dimensional example

For uy € C%1(R), L E : [0,00) x Q@ — R as in (4.10), and f € C*'(T), consider the
equation

& 1 ezl t 1 X 2 t _ .
ut+;‘ux|é <377’w) +87f<g>é (g,ﬂ)) =0 in R x (0,00) and (416)
u’(-,0)

=uy in R.

Theorem 4.1 implies that, if 0 < y < 1/2, then, as & — 0, (u, ("%, (**) converges in dis-
tribution to (#,B', B?), where {* and CZ ¢ are as in (4.3), B' and B are independent
Brownian motions, and, for some H,H” : R — R, 7 is the unique stochastic viscosity
solution of
dii + H' (i) odB' + H (tiy) odB> =0 in R x (0,00) and #(,0) =u, in R.
(4.17)

To compute H' and H’, we appeal to the followmg lemma, whose proof is omitted
(see [20] for similar computations). Below, define (V) := jo V(y)dy for any V € C(T).

Lemma 4.6. Let F € C(T). Then, for any p € R, the equation

p+vV()|+Fy)=H(p) inT (4.18)

admits a viscosity solution v € C(T) if and only if H(p) = max{max,erF(y), |p| + (F) }.
Using the formulae in (4 11) and Lemma 4.6, with either f or - f taking the place of
F, we explicitly compute H' and H, depending on two cases.

If 0 < maxf — (f) < (f) — minf, then

max f — min f

By _ if |p| < maxf — (f),
HO =3 Dl () —ming) if maxf — {f) < [pl < () ~ min,
?l if |p| > (f) — minf,
and

maxf + minf if |p| < maxf — (f),

. 2

HO=0 Dol 5 () + ming) i maxf —{f) < |pl < {f) — minf,
0 if |p| > (f) — minf.

If 0 < (f) — minf < maxf — (f), then

max f — minf

if Ip| < () — minf,

—_— 2
HOI=0 Dipl 5 (maxf — (1) if () — minf < |pl < maxf — {7},
I i Ip| > maxf — (f),
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and

maxf + minf if [p| < (f) — minf,

o 2
)= D1l 45 (maxf — () if () — min < |pl < maxf — (),
{f) if |p| > maxf — (f).

4.4. Interfacial motions

Theorem 4.1 can be used to prove Theorem 1.4 from the Introduction, concerning the
first-order, level-set problem

I /x\ [t
" —g 2V —, 0 ) |Dufl =0 in R? x (0, d u(0) = in RY,
ut—i-gy i_lcz('g)é(gzy w)‘ u’| in x (0,00) and u°(-,0) =uy in
(4.19)

where
& satisfies (4.10) and a' € C*'(T9) for all i =1,2,...,m, and

Zakfk #0 on T for all &€ {-1,1}". (4.20)
k=1

The Hamiltonians H'(p,x) := a'(x)|p| then satisfy (4.8). In this case, the effective
Hamiltonian H given by (4.5) is positively homogenous in the gradient variable, and,
from the formula in (4.11), so are each of the H' for jE< Ag". Therefore, each H has
the form H' (p) := @ (p/|p|)|p| for some @ : $9~' — R. For some independent Brownian
motions (Bj)je 4> the limiting equation is then

. [ Du® ) .
du + Z a@ i |D@’|odB =0 in R? x (0,00) and #(-,0) =u, in RY.
jeAr |Du’|

4.5 A nonconvex example

We now turn to Theorem 1.3 from the introduction. The relevant objects are defined
just as in the work of Luo, Tran, and Yu [27].
Let F: R — R be a smooth, even function such that

{for some 0 < 05 < 0> < 01, F(0) = 0, F(6;) — %,F(Gl) — F(63) = % lim F(r) = +o0,
F is strictly increasing on [0, 0,] U [0y, + 00) and strictly decreasing on [0, 0;],

(4.21)
and, for 0 < s < 1, define V;: R — R to be periodic such that
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if 0 <x<s and

o (4.22)
if s<x<l1.

1—s

— | R

Vi(x) ==

For &' and & as in (4.10), we consider the equation

s 1 engol [ F 1 X\ ,of t - .
ut +;F(”x)é (E,w) +§VS(E)6 <&Tw> =0 in R x (0,00) and
us(-,O) = Uy in R.
(4.23)

If F is replaced with a convex function, then (4.23) falls within the scope of Theorem
4.1, and the limiting equation resembles (4.17). However, the nonconvexity of F and the
“crooked” structure of V, for s 1/2 imply that the effective Hamiltonian H :
R x {—~1,1}* — R given by the cell problem

Fp+v ()¢ + V)& =H(p. ¢, &%) in R
is not fully 1-homogenous in the {—1, l}z—variable. As a result, in the decomposition
H-E) =H +H'E+ B +H"7EE for 8,8 € {-1,1}

given by Lemma 4.2, the term H{l’z} does not vanish. However, it is the case, as we
show below, that H = 0, so that (4.23) does not exhibit ballistic behavior as ¢ — 0.

Let H, be the effective Hamiltonian associated to the Hamiltonian Hi(p, x) := F(p) —
V,(x). In Appendix B, we obtain an explicit formula for H,, and deduce, in particular, that
H, satisfies (A.4). Moreover, as was established in [27], we have H, # Hy unless s = .

Simple manipulations of the cell problem, properties of viscosity solutions, and the
symmetry properties

Vil—x)=V;_4(x) and Vi(x)=1-—Vi_(x—s) foralse(0,1),xeT

lead to the identities H(-,1,1)=H, (+1, H(- 1, —1)=H,, H(-, —1,1) = —H,_,,
and H(-, — 1, — 1) = —H, — 1, and so Lemma 4.2 gives
—0 —1 H{+H _+1 2 1 H

_ _ H, .—H
H =0, H =TT 0 g’ and g¥ oo T s
2 2 2

A similar proof as for Theorem 4.1 then gives the following:
Theorem 4.2. Assume 0 <y < 1/6,uy € UC(R), F and V, are as in (4.21) and (4.22), &'
and & are as in (4.10), the paths (Cl’s)jE_AZ are defined as in (4.11), and u® is the solution

of (4.23). Then, as ¢ — 0, (u*, ({*);c g2) converges locally uniformly and in distribution to
(4, (Bj)jeA2>’ where U is the unique stochastic viscosity solution of

H,(@,) + Hi_(tx) + 1 1 Hy_(4,) — H.(u
{dqu s(h) + 21 o(i) + odBl+Eode+ModB{l’z}:0 in R x (0,00) and

u(,0) =uy in R.
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To finish this discussion and the proof of Theorem 1.3, we mention that the inde-
pendence of the fields ¢' and & is used in the above result, in particular, through the
application of Lemma 4.3. Indeed, for a single field ¢ satisfying (4.10), consider the
equation

& 1 & X t . € .
u; —I—; (F(ux) — V5<Z>>§<E> =0 in Rx (0,00) and u°(-,0)=wuy in R.

(4.24)

This equation is not covered by the result in the single-noise case, due to the fact that
(3.13) fails if s # 1/2 : (H;) = —H;_; # —H,. As a consequence, we have the following:

Theorem 4.3. Assume 0 <y < 1, F and V are as in (4.21) and (4.22), & is as in (4.10),
and, for some fixed py € R,u® is the solution of (4.24) with uy(x) = po - x. Then, with
probability one, for all T >0,

Hi—s(po) — Hs(po)

lim  sup 3

gut(x,t) —
520 (4, 1)eRx [0, T]

=0

Proof. The solution u* of the initial value problem

1 t t
ﬂ;‘f'_H ﬁ;,f —",CL) )f _,)a) :0 IHRX(0,00) and
v 32/ 32“/

u%(x,0) =po-x inR

takes the form w°(x,t) = po - x + & Ot/ CZA/H(po,f(s),é(s))ds. A similar argument as for

Lemma 4.4 gives, for some constant C > 0,
sup  |&'uf(x,t) — &u(x, t)] < C(1+ T)e' 7.
(x, t)ERX[0, T]
The exponent is 1 —y, rather than 1/3 —y, because of the form of the initial datum
and Lemma 4.5(a).
Finally, the formula for H and the law of large numbers yield, with probability one,
e H —s - HS
lim  sup dut(x, 1) — — (po) (o) t =
#=0 (, eRIx [0, T] 2

0.

4.6. Dependence of the limit on the noise approximation

We return to the equation

1 t 1 [x t
& I PN — — 2 — = i
up+ |lui|& ((gzy,w) +s“«’f<g>é (Szy,co> 0 in R x (0,00) and (4.25)
u*(-,0) =up in R,
but we define the white noise approximations in such a way that the limiting equation

has a different law than (4.17), which, along with the computations in subsection 4.3,
proves Theorem 1.2 from the introduction.
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Let (Xk. Yk Zk)pe, be a collection of independent, Rademacher random variables, let
0 < b < a be such that a* + b* = 2 and a(maxf — {f)) < b({f) — minf), and set

a+b a—2>b
Y,
;T

X := X and X} = 7.

Note that X,i and X,% are independent for each k, and
E[x]]=0 and E[X]"=1. (4.26)

For i=1, 2, define Ci(O) =0 and

o0

(o) = d(to) =3 K@) gt and (o) = 20/, 0),

k=0

and, for je {{1},{2},{3},{1,2,3}}, define the approximating paths o) =
&0 (t/e¥), where

C{l},z: — Cl,s, Ooél{Z}(O) — C{S}(O) — C{I,Z,S}(O) — 00’0
() = 3V lgrn (@, £ (60) =D Zdo) g (0, and

k=0 k=0

‘{1)2’3}(& w) = ixk(w)yk(w)zk(w)l(k’“”(t)'
Py

{

Equation (4.25) can then be written as

. A > € +b P 5 & - b b , & .
{u;+u;|g“} (r,w)+“2 f@gm (t,w)+“7f<§>g“} (b0) =0 inEx(0,00) and oo

u(-,0) =uy in R.
Applying Theorem 4.1 then gives that, if 0 <y < 1/2, then, for some independent
Brownian motions B with j € {{1},{2},{3},{1,2,3}},
(u*’,C{l}‘g,C{z}‘g,Cm‘g,C“'z’ﬂ'g)s:?(ﬁ,B{l},B{Z},B{3},B{l’2‘3}) locally uniformly and in distribution,

where % is the stochastic viscosity solution of

di + H" @) o dBM + B (@,) 0 dB® + H (@) 0 dBB
+H"* (@) 0dB123 =0 in R x (0,00) and (4.28)
u(-,0) =uy in R.

The formulae for the effective Hamiltonians are given below, and, as can be checked,
the laws of the solutions of (4.17) and (4.28) differ in general, even when uy(x) := po - x
for some fixed py € R? :
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7" (p) =

2% (p) =

2 (p) =

and

1,2,3
7Y (p) =

Funding

Partially supported by the National Science Foundation Mathematical Sciences Postdoctoral

a+b

(max f — minf)

1 a , b .
Z\p| +Z(maxf— minf) +Z(<f> — minf)
2 ()~ ming)

3 a .
~lpl + 5 ({f) — min)
Ip|

a+b

Ll +
217

(max f + minf)

Sy

1 a . .
Z\P| +Z(maxf+m1nf) + - ({f) + minf)

4

1 .
1ol + 2 (4f) + min)
1 a . b
Lol + () + minf) + 241
anrb<f)

a—>b .
1 (max f 4+ minf)

1 a . b .
—Z\P|+Z(maxf+mmf)—z((f>+mmf)
—b

({f) + minf)

4

1 a . b
Llpl+ 2 + minf) ~ 241
a—>b

)

a

_b )
1 (maxf — minf)

1 a . b .
_ZLD' +Z(maxf—mmf) —Z((f) — minf)

a—>b .
()~ min)

1 a .
el + 5 ((f) + minf)
0

if 0 < |p| <b(maxf — (f)),
if b(maxf — (f)) < |p| < a(maxf — (f)),
if a(maxf — (f)) < |p| < b({f) — minf),

if b({f) —minf) < |p| < a((f) — minf),
if |p| > a((f) — minf),
if 0 < |p| < b(maxf —{f)),

if b(maxf — {f)) < [p| < a(maxf — (1)),
if a(maxf — (f)) < |p| < b((f) ~ minf),
if b({f) — minf) < |p| < a((f) — minf),
if [p| > a((f) — minf),

if 0 < [p| < b(maxf — (f)),

if b(maxf — () < [p| < a(maxf — (1)),
if a(maxf — (f)) < p| < b({f) — minf),
if b((f) — minf) < |p| < a((f) — minf),
if [p| > a((f) ~ minf),

if 0 < |p| < b(maxf — (f)),
if b(maxf — (f)) < |p| < a(maxf — (f)),
if a(maxf — (f)) < |p| < b((f) — minf),

if b({f) — minf) < |p| < a((f) — minf),
if [p] > a((f) — minf).

Research Fellowship under Grant Number DMS-1902658.
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Appendix A Pathwise Hamilton-Jacobi equations

We give a brief overview of some facts that are needed in this paper regarding pathwise, or sto-
chastic, viscosity solutions of the initial value problems

du = H(Du,x) -d{ in R? x (0,00) and u(-,0) =uy in R? (A.1)

and

m
du = ZHi(Du) -dl" in R? x (0,00) and u(-,0) =u, in RY (A2)
i=1
where H € C(RY x RY),H',H?, .., H" € C(R?),(, (", (%, ..., (™ € C([0,00),R), and uy € UC(R?).
For more details, including the definitions of stochastic viscosity sub- and super-solutions and
proofs of well-posedness, see [1-6, 18, 28, 29].

Both problems (A.1) and (A.2) fall under the scope of the classical viscosity solution theory if
the driving paths are continuously differentiable, or, more generally, have finite total variation.
See [30] for details on the former and [31, 32] for the latter. The theory of pathwise viscosity sol-
utions was developed by Lions and Souganidis [3, 4, 6] to study equations like (A.1) and (A.2)
when the driving paths are merely continuous.

The pathwise viscosity solution of (A.1) or (A.2) may be identified by extending the solution
operator for the equation from smooth to continuous paths. More precisely, for a fixed uy €
UC(RY), let S,, : C'([0,00)) — C(R? x (0,00)) denote either the solution operator for (A.1) or
(A.2), both of which, under certain structural conditions on the Hamiltonians, are well-defined
with the classical viscosity solution theory.
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We then say that (A.1) or (A.2) has a unique extension to continuous paths if

{ Sy, = C1([0,00)) — C(R? x [0,00)) extends continuously (A.3)

to C([0,00)) for any uy € UC(RY).

As in the classical viscosity theory, there is also a notion of continuous stochastic viscosity solu-
tions that is defined using semi-continuous sub- and super-solutions, for which a comparison
principle has been proved in a variety of settings. The existence of the unique solution can then
be proved alternatively through Perron’s method, as by the author in [29]. The notions of path-
wise sub- and super-solutions are not used in this work, so we do not focus on them in this sec-
tion. In view of the stability properties of pathwise stochastic viscosity solutions, it is always the
case that the solution of (A.1) or (A.2) obtained by extending the solution operator is a pathwise
viscosity sub- and super-solution.

There is a wide class of Hamiltonians for which the spatially homogenous equation (A.2) is
well-posed, as was shown by Lions and Souganidis in [3]. In fact, the equation is well-posed if
and only if each Hamiltonian is a difference of convex functions. In the context of the homogen-
ization results in the body of this paper, this is important because the effective Hamiltonians
need not be smooth in general.

Theorem A.l1 (Lions, Souganidis [3]). The solution operator for (A.2) extends continuously in
the sense of (A.3) if and only if each Hamiltonian H' satisfies
H=H,—H, for some convex Hj,H, : RY — R. (A.4)

Moreover, given L> 0, there exists C = Cp > 0 such that, for all uy € C*>'(R?) with ||Duo||, <L
and {,,¢, € C([0,00), R™), if S, : C([0,00),R™) — C(R? x [0,00)) is the solution operator for
(A.2), then

sup  [Su, (§1)(36 1) = Sy (&) (36 1)| < Cmaxeepo, 1|1 (8) — (1))
(x, t)€R %[0, T]

The nontrivial spatial dependence in (A.1) makes the question of well-posedness more compli-
cated. It has been proved for certain classes of Hamiltonians (see [1, 6, 18, 28]). We prove here a
quantitative form of (A.3) under less stringent regularity and structural requirements, as long as
the Hamiltonian is convex and has uniform growth in the gradient variable:

H e C(R? x RY), pr— H(p,x) is convex for all x € R and
there exist convex, increasing functions v,7 : [0,00) — R such that v(|p|) < H(p,x) <7(|p|) for all (p,x) € R x RY.

(A.5)

For two smooth (or piecewise smooth) paths {',(* : [0,00) — R and u}, u3 € C*'(R?), consider
the viscosity solutions u' and u* of

) = HDW,x)? in RYx (0,00) and #/(-0) =, in R (A.6)

Theorem A.2. Set L := max(||Du} ||, |Du3|l..)- Then, for all t>0 and for j=1, 2,
1DV (- 1)l < 27 (@(L)),
and, for all T> 0,

max ’ul(x, t) — u?(x, t)‘ < max|u(1)(x) — u(z)(x)’ +7(L) max|C1(t) — Zz(t)|
(x, t)eR %[0, T] xeRd t€[0, 7]

+u(0) (max|c1<t> — ()| - (1) - c2<T>>>.

tef0, T

We remark that a similar result was obtained by Gassiat, Gess, Lions, and Souganidis [33] using
slightly different methods, as a tool to study some finer properties of solutions, such as the can-
celation of oscillations and speed of propagation.
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Both results in Theorem A.2 follow from the next proposition. The hypotheses require more
regularity for the Hamiltonian than is specified by (A.5). The proof of Theorem A.2 then involves
a further regularization of H, and the result will follow upon obtaining estimates that do not
depend on the regularization parameter.

The proof below uses similar strategies as those in [1, 18, 28].

Proposition A.1. Assume that H satisfies (A.5),
H € Ci(Bg x R%)  for all R >0, and D;H isstrictly positive. (A7)
For ug, vy € UC(R?) and {,n € C'([0,00)) with {y = n,, let u be a sub-solution of
uy = H(Du,x){(t) in RY x (0,00), u(-,0) =uy on RY,
and v a super-solution of
v = H(Dv,x)ij(t) in R? x (0, 00), v(,0) =vy on R’

Then, for all T>0 and 0 < /. < (maxo<;<7({ — 1) )"

1 Ax =yl
wp [ ulmt) — vt - ( th—n )g* (—
(1575 1) R xR 0, T] ( A ' 1+ AL — )

< s () 17D

(%, y)€R?xR?

Equipped with Proposition A.1, we proceed with the

Proof of Theorem A.2. Step 1. Assume first that H satisfies (A.7) in addition to (A.5).
Applying Proposition A.l to the case u=v=u' and (=n={" yields, for all
(x,,t) € R? x RY x (0, 00),

u'(x,t) —u'(y,t) < inf {ly*(ﬂnx —y|) + sup {Ls - iz_/*(is)}}
>0 | A >0 A

— ' W)k — 1.

o d 2 Gl =) + () }
A>0 A

Thus | Dul(-t)||, < vz~ (P(L)), and similarly for u’.
Now setting (u,v,{, 1) := (u',u2, (', %) in Proposition A.1 gives

1 1
W) = 2Ge0) < (G- 6 =D ) )+ maxlio) - @] + 7).
xeRd v
We conclude with 4 = (maXefo, g |Csl — Cf|)71 and not-

ing v*(0) = —min»or(r) = —1(0) < ¢(0)_.

Step 2. We now return to the general case, where H satisfies only (A.5). Let ¢ € C*(R%) be
nonnegative and supported in B,(0) with [¢ =1, and, for p >0, define ¢,(z) := p~4d(z/p)
and

o) = plol + [ | H@)d,0— 00, =) da .

It is straightforward to verify that lim,_.o H, = H locally uniformly, and H,, satisfies both (A.5)
and (A.7) with the growth functions 7,(s) := ps*> + 7(s + p) and v ,(s) := ps*> + v((s — p)_).

Let uj, and u7 be as in the statement of Theorem A.2 for H,. As proved above, u, and u;, sat-
isfy the Lipschitz bound and stability estimate for 7, and v,. Classical arguments from the the-
ory of viscosity solutions yield the local uniform convergence, as p — 0, of u, to « for j=1, 2,
where 1/ are as in the statement of Theorem A.2 for H. Since v, and v, converge, as p — 0, to
v and v, the proof is complete. |
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We now prove Proposition A.1, which is a generalization of Proposition A.2 in [18].
For x,y € R? and © > 0, define A(x,y,17) := {y € W>>([0,7],R?) : 9y = x,7, = y} and

L(x,y,7) := inf{JT H' (=7, 7)ds 1y € A(x, , ‘c)} (A.8)

0

We summarize the main properties of this distance function in the next lemma. We omit the
proof, as it follows more or less in the same way as in Lemma A.1 of [18].
For R> 0, define Ag := {(x,y) € R x R?: |x — y| < R}.

Lemma A.1. Assume that H satisfies (A.7). Then the following hold:

a. L is a viscosity solution of % = H(D,L,x) and % = H(—D,L,y) in R x R? x (0,00).

b. Forall x,y € R? and © > 0,10"* (@) <L(x,p,1) <’ (@) Furthermore, there exists y €
A(x,y,7) such that L(x,y,t) = [; H (=},7,)ds, and, for some c¢>1 and almost every
s€ 0,1,

X — . Cclx —
B <y <22

T T
c. Forall R > 0, there exists a constant C = Cg > 0 such that

1
ID{L| +|DyL| < C and D’L<CId on Ag X [E,R}

The upper bound on D?L means that L is semiconcave in space. As the next result demonstrates,
this allows L to be used as a test function at an important point in the proof of Proposition A.1,
despite the fact that L is not in general C'.

Lemma A.2. Under the same assumptions as Lemma A.1, assume that ¢ € C*(R? x RY) and
L(-, -,70) — ¢ attains a local minimum at (xy, y,). Then L is differentiable at (xo, yo, 7o) with

(DxL(0, Y0, T0)> DyL(x0, 0, T0)) = (Dx¢(x0, ¥0), Dyp(x0,y0)) and

OL
5 (%05 Y0, T0) = H(DxL(x0, y0, T0)> %0) = H(—DyL(X0, Y0, T0)» ¥o)-

Proof. In view of the semiconcavity of L(-, -,17) on R? x RY, the super-differential of L(-, -
,To) is nonempty at every point. Meanwhile, (po, qo) := D¢ (x0, yo) belongs to the sub-differential
of L(-, -, 7o) at (xo, ¥o). This implies that L(-, -, 7o) is differentiable at (xo, yo), and the first line
above holds.

Choose ¥, y~ € C3(RY x RY) such that ¥~ < L(- -,70) < ¥, ¥ (x0,30) = L(%0> Y0, T0) =
W (x0,¥0), and Dy~ (xo,y0) = D (x0, ¥0) = (o> qo). The method of characteristics then gives,
for sufficiently small i > 0, solutions W= € C*(R? x R? x (g — p, 7o + p)) of the equations

o™
ot
The comparison principle and Lemma A.1(a) then yield

(%,9,7) = H(D,¥™ (x,,7),x) in R? x R? x (19 — p, 70 + 11).

Y (x%,9,7) <L(xy1) <P (x,p1)  for all (x,y,17) € R x R? x (19 — pt, 7o + 1) (A9)
Finally, the regularity of H and the equations for ¥~ allow for the Taylor expansion

Y= (x,, ) = L(x0, y0, T0) +P'2(x — o) +ta 5 *)’0)2
+H(po,%0)(t — t0) + O(Jx — x0|” + [y — yo|” + |t — 70]")-
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Together with (A.9), this shows that L is differentiable at (xo, yo, 7o) and

oL
E(Xo,yo,fo) = H(DyL(x0, 0, T0)>X0)-

A similar argument using the equation 4¥ = H(—D,¥, y) gives the final desired equality
0L

E(xo,yoﬂ'o) = H(—DyL(x0, ¥0,70)> Yo)-

Proof of Proposition A.1. We first note that it suffices to assume that u, and v, are bounded.
Because the resulting estimates do not depend on ||ug|,, or ||vo||,, the general result can be
obtained through an approximation procedure and the local uniform stability of the equations
with respect to the initial data.

Classical viscosity solution arguments show that z(x,y,t) := u(x,t) — v(y,t) is a sub-solution
of

2z = H(Dyz,x){ — H(=Dyz,y)ii in R? x R? x (0, 00). (A.10)

For 0 < 2 < (maxo<i<1({, —n,)_) ", define ®;(x,y,t) := L(x,3, A" 4+, — n,). A simple compu-
tation and Lemma A.1(a) reveal that @ satisfies (A.10) at any point (x, y, t) of differentiability.
Next, for 0 < f < 1 and p > 0, define

o pt) = i ) — v 1) ~ @alopt) — 5 (o + ) — e

The comparison princ dple from the classical viscosity solution theory yields that |u(x,t)| <M
and |v(x,t)] < M on R? x [0, T], where

M= maX{Iluon + max(|z(0)], [7(0)1) max [(£)], [vollo + max(]u(0)], IP(O)I)maXIH(t)I}

0<t<T

Therefore, ¥ attains a maximum on R? x RY x [0, T] at some (X, j, ) that depends on f, A, and
1. Assume for the sake of contradiction that ¢ > 0.
Rearranging terms in the inequality W(0,0,¢) < W(x,y,t) gives

PP+ ) < wl 1) — v, 1) — (u(0,) — v(0,1)) < ab1. (A11)

The inequality ¥(5,7,t) < W(x,7,t) and Lemma A.1(b) yield

(3+6- )v*(f’j)é't—m)_ wxd) —up ) HGE - <o )

and

P
00, T?

[l 7> but independent of B, (x,7) € Qg 5, where

1/2 _
Qg g :=Ar N Bygrpp = {(x,y) eRY xR : (x> + y*) / <RFYV? and |x—y| < R}.

In the arguments that follow, the constant C >0 depends only on R, and may change from line
to line.
For 0 <4 <1, set

1
Ws(x, y,2,w, t) == u(x, t) —v(y, t) — %ﬂx — 2 +y—w]) — Di(zwt)
B 1 R . .
e ) — =5 (= 3+ -5+ 1 )

and assume that the maximum of ¥s on Qg p x Qg g % [0,T] is attained at (xs,ys,2s, Ws» £5)-
Similar arguments as in the proof of Proposition A.2 from [18] then yield
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|xs — zs| + lys — wa| + |xs — %> + |ys — 3 + |ts — £]* < C9.

Therefore, for all small 0, (xs,¥s, 25 Ws,ts) is a local interior maximum point of W5
in QR’/g X QR,ﬁ X (0, T)
Since

1
()= ulxt) = vl t) = 5= (1x = 2 + ly = wal’)
1 N . X
(0w t) — it = (jx = % = [y =3 = |e ~ )

attains an interior maximum at (xs, ¥s,ts), the definition of viscosity solutions yields
- X5 — 25 ~ p )’5 — W5 A .
ftts =+ @ 1(25, wor t5) < H(T +x5 = x,x¢s> {yy — H<_T - —y),yé)%-
Next, (z5,ws) is a minimum point of

() @32, 5) + 3 (15 — 2 - ys = w2) 5 (2 + i),

20

In view of Lemma A.2, @, is differentiable at (z;, wg, t5), and so

D (I)?(Zr)a wss ()) - 5 ﬁZO)
D q))(z(3> wWs, ()) _ya ﬁ wss and
(D/'\,t(z& wss t5) = (D (D).(Zé: wss té), Z&)ét(; - H(ny(D/l(Zé; ws, té)) Wﬁ)’;]tﬁ .

It follows that

Aty — 1+ @ (25, ws t5) < H(Dx®; (25, ws, t5) + Pzs + x5 — X,%5) &,
_H(_qu))v(zﬁr wss t()) - ﬁW5 ()’b - ) )’b)Cz;

The bounds for (x,7,%) and (xs, ys, 25, Ws, t5) and the local Lipschitz regularity of H yield

1< OB 48+ 8) (€l r + Nl r)-

We obtain a contradiction for sufficiently small enough 6 and .
Therefore, for all 4 > 0 and ¢ € [0, T],

};im sup <u(x, ) —v(yt) — Di(x 3. 1) —§(|x\2 + |}’|2)>

(% y)ERY xR?

= sup (u(xt) —v(yt) — Oi(x, 1))

(,7)€R*xR?
< sup (uo(x) —wo(y) — L(x,y,1/2)) + ut.
(x,7)€R*xR?

The desired inequality is established upon letting u — 0 and using the bounds in Lemma
A.1(b). |
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Appendix B Calculation of a nonconvex effective Hamiltonian
Let F: R — R be a smooth, even function such that

1 1
for some 0 < 03 < 0, < 0,,F(0) =0,F(0,) = E’F(Hl) =F(05) = 3 lim F(r) = +o0,
F is strictly increasing on [0, 0,] U [91, + o) and strictly decreasing on [0, 0],

(B.1)
and, for 0 < s < 1, define the 1-periodic function Vs : T — T by
X if 0 <x<s and
Vi(x) := i _x
if s<x<I.
1—s

The goal is to obtain a formula for the effective Hamiltonian associated
to Hy(p,x) = F(p) — Vi(x). L

Some elements of the proof below are used in [27], where it is shown that H; = Hy if and
only if s = s'. For our purposes, in view of Theorem A.l, it is necessary to establish that H; satis-
fies (A.4), which does not follow immediately from standard results from periodic homogeniza-
tion. The formula in Proposition B.1 implies, in particular, that H is Lipschitz and piecewise
smooth, and, hence, (A.4) is satisfied.

As in [27], define the functions

b= (Flu) ™ |
{

1
g) +OO> - [01) +OO))

Yy = (F|[0z,91])_1 :

11
g,i} — [02,0:], and

b= (Pl ™+ [0.3] = 0031

We identify the following points 0 < p, ; < g < q+, between which H; changes its shape:

pes =l Uy + [, v dy + [ [0 (0) + (1= ) ()] dy,
IW W)y + 13 [s9,(7) + (1 = $)¥5(»)] dy, and (B2)
f“l// (7)dy.

Proposition B.1. The function H, can be characterized as follows:

a. If0<p<p,, then Hyp) = 0.
b. Ifp.s<p<q_ then Hy(p) is the unique constant /. € [0,1/3] for which
1/2

1/3 144
=] wo | L O Jm [50:) + (1 — 3] dy

A

¢ Ifq . <p<qy then Hlp) =3.
d. Ifp > qy, then Hy(p) is the unique constant 4 > for which

p=[ " no

a

e. Ifp <0, then H(p) = H, (—p).

Obtaining the formula for H,(p) involves constructing viscosity solutions of the equation

FW(®) - Vi(y) =4 inR (B.3)
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such that w(x) — px is periodic, which is possible only for the unique constant A = H,(p). We
make use of the following lemma, whose proof is a consequence of the definition of viscos-
ity solutions:

Lemma B.1. Assume that F(f(y)) + Vi(y) = 4 at all points y € R at which f is continuous, and,
whenever

yo €R, pr:=f(yy), and pr:=f(y5)s
then F(p1) = F(p2) = A+ Vi(y) and

p1 < p2 = F(p) > 24 Vi(y) for p € [p1,pa)s
P1>p = F(p) < A+ V()/()) for p e [pz,pl]

Then {y— w(y) := [J f(x)dx} is a viscosity solution of (B.3), and H( jo x)dx) = 4.

For the rest of the section, we construct correctors using Lemma B.1 as a blueprint, that is, for
each p € R, we construct f as in the hypotheses of Lemma B.1 for the correct constant H(p).
Define the points pg ; < ps < p3 < p2 < p1 < p4,s by

pos = (25— 1) [Py )y + (25 — 1) [} v (0)dys
:m—wlﬁw Wdy+ [0 0y + 175 [0 () + (1= sy ()] dy,
=(@s-1) [y mwmﬁw@@+ﬂﬂwo>u—s<ﬂw, (B.4)
—(2s—1) ], 1/3 AWy + [ dy+ 15 [0, (0) — (1= ), (9)]dy,  and
pai=(2s—1) ] 1/3 )dy+f1/21p(ydy+ (2s—1 fl/zlﬁ(ydy

The formula for H;(p) will be established for all p > po s» and the formula for the remaining gra-
dients follows because po,;_s = —po.s and H;_((p) := Hs(—p).
Case 1: p; < p <p,,and A=0. Define t € [0,1/3] uniquely by

\_/\_/v\_/

1/3 1/2

p=Gs=1 | vo)r |

T

wmwwj bmw+u—n%mww[mmw@

1/3

$s(Vi(x))  if x € (o,—) (HS 1 - (175)>

IR e lfxe(;l_'_)

—p5(V, (x)) if xe(1—1(1-5s),1).
Case 2: p, < p < p; and 4 =0. Define 7 € [1/3,1/2] uniquely by
p=s=1) [P ys0dy+ [[; v () — (1= )y ()] dy
+ [ [0 () — (U= )] dy + [}, ¥ )y

and set

1%

w

and set

b3(Vi(x)) if xe (0, ;) U (1 ;rs,l —11 —s)>,

=9 g v e (5.157),
-5 (Vi(x)) if xe (1—-1(1-5s),1).
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Case 3: p; < p <p,and A=0.

Define 7 € [1/3,1/2] uniquely by

p=s—1) [y dy + [ [0 () — (1 = ()] dy
+ [ [s0n () = (1= O] dy + [}, v () dy

and set

Case 4: p, <p <ps;and A=0.

R |

and set

V5 (Vi(x)) if xe€

(
U(Vs(x)) if xe ( ,
(

=, (Vi(x)) if x€
= (Vs(x)) if xe (1
Define 7 € [1/3,1/2] uniquely by

1

1/2
ﬁmw@+J[wm><1@%wajm%w@

T

W5 (Vi(x)) if xe (0,

W[«
N~

(V) ﬁxeéfjﬁ,
) it xe (s -9),
Y, (Vi(x) if xe (1 —t(1-), 2;”),
(Vi) if xe (2 el 1).

Case 5: po; < p < ps and 4 =0. Define 7 € [1/2, 1] uniquely by

and set

1/3 T 1
p:uwww)%m@+@wﬁﬁm%mw+j%w@
Ui(Vi(x))  if x€ (o, g)
% 1—1(1—5))

=, (Vi(x)) if x€

—,(Vi(x)) if x €

(
U (Vi(x)) if xe ( ,

(

(
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Case 6: p s <p <q_,and 1€ [0,1/3] satisfies

p= L")y + [ 0 Gy + [ 500 (0) + (1= 9)95() ] dy.

) %u+w@)ﬁse@myg?ijﬁiu¢Q
%M+%@)ﬁx€<ﬂfﬁg,2s+ﬂkﬂg‘

Before moving on to the next case, we define

4/3 1/2

0= w00+ 0= 9w
1/2 1/3

Case 7: q_ s < p < ¢q; and /. = 1/3. There exists a unique t € [1/3,1/2] such that

1/2 4/

¥y (y)dy.

1/2

p= [ 02 0) + (1 = )]y + |

1/3 T

5010+ (1 = s )]y + |

Let p € [(5+5)/6,1] be defined by

1+1—,u€ 11
T== ==
3 1-—s 3°2

and define
%UB+%@)ﬁxe(Q%?)

Ua(1/3 1+ Vi) if x e (525,#)
Wy (1/3 4 Vi(x)) if x € (1, 1).

Case 8: q; < p < g, and 1 = 1/3. There exists a unique 7 € [1/3,1/2] such that

f(x) =

4/3

p= | o)+ 0= 9wl | o

1/3 T
Let pu € [(5+5)/6,1] be defined by

1 1-—
1:7+T—%GUBJQL

3
and define
Flx) o= § W3+ Vi) i x€ (0 p),
' v,(1/3+ Vi(x)) if x € (u,1).
Case If p>q.s and A€][1/3,00) satisfies p= J"AH/" W, (y)dy, then define

9:
J(x) =y, (A + Vi(x)).
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