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Scaling limits and homogenization of mixing
Hamilton-Jacobi equations

Benjamin Seeger

Place du Mar!echal de Lattre de Tassigny, Paris Dauphine University, Paris, France

ABSTRACT
We study the homogenization of nonlinear, first-order equations
with highly oscillatory mixing spatio-temporal dependence. It is
shown in a variety of settings that the homogenized equations are
stochastic Hamilton-Jacobi equations with deterministic, spatially
homogenous Hamiltonians driven by white noise in time. The paper
also contains proofs of some general regularity and path stability
results for stochastic Hamilton-Jacobi equations, which are needed
to prove some of the homogenization results and are of independ-
ent interest.
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1. Introduction

The objective of this paper is to study the asymptotic behavior of Hamilton-Jacobi equations
with oscillatory spatial dependence and correlated multiplicative noise dependence in time.
More precisely, for small e > 0 and fixed c > 0, we consider problems of the form
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¼ 0 in Rd # ð0,1Þ # X and

ueðx, 0,xÞ ¼ u0ðxÞ in Rd # X,
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(1.1)

where u0 2 UCðRdÞ, the space of uniformly continuous functions on Rd, ðX,F,PÞ is a
given probability space, H ¼ ðH1,H2, :::,HmÞ : Rd # Rd # X ! Rm is self-averaging in
the spatial variable, and n ¼ ðn1, n2, :::, nmÞ : ½0,1Þ # X ! Rm is an approximation of
white noise, in the sense that

t 7! nðt, 'Þ is piecewise continuous with P-probability one and
1
d
n

'
d2

, '
# $

!d!0
dB in law, where B : 0,1Þ # X ! R is a standard Brownian motion;½
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:

(1.2)

see also (2.1) below. For notational ease, when it does not cause confusion, we suppress
the dependence on the parameter x 2 X:
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We then identify a variety of settings in which (1.1) approximates a stochastic partial
differential equation with no spatial oscillations, that is, there exists M 2 N, a determin-
istic H ¼ ðH1,H2, :::,HMÞ 2 CðRd,RMÞ, and a Brownian motion B ¼ ðB1,B2, :::,BMÞ :
½0,1Þ # X ! RM such that, as e ! 0, ue converges in distribution to the unique sto-
chastic viscosity solution u of

du þHðDuÞ ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (1.3)

We recall some aspects of the Lions-Souganidis theory of stochastic viscosity solutions
in Section 2 below. For more details, see also [1–6].
The parameter c in (1.1) encodes the relationship between the spatial and temporal

oscillations. In most of the results we prove, c > 0 must be sufficiently small, which
means that the mixing in time is mild in relation to the spatial oscillations. This is
motivated by the fact that, in general, the law of the white noise approximation n has a
nontrivial effect on the homogenous Hamiltonian H , and even its dimension M. In
other words, there is no “universal” limit of (1.1) for all fields n that satisfy (1.2).
Problems of the form (1.1) arise in a variety of applications, including differential

games, pathwise optimal control, and front propagation. In the latter example, we con-
sider a family of surfaces fCe

tÞt)0 * Rd evolving according to the prescribed oscillatory
and fluctuating normal velocity

Ve ¼ + 1
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Xm
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where, for each i ¼ 1, 2, :::,m,Ai : Sd+1 # Rd # X ! R is continuous in the first two
variables, Sd+1 * Rd is the unit sphere, and n * Sd+1 is the outward unit normal vector
to Ce

t at the point x. In general, the interface develops singularities and/or discontinu-
ities in finite time, even if all of the data is smooth. A weak sense is given to this prob-
lem with the level-set formulation (see [7] for more details), in which Ce

t is identified
with the zero-level set of ueð', tÞ, where ue solves (1.1) with the Hamiltonians

Hiðp, x,xÞ ¼ Ai p
jpj

, x,x
! "

jpj for i ¼ 1, 2, :::,m, ðp, x,xÞ 2 Rd # Rd # X:

Under certain structural conditions on A, as e ! 0, ue converges locally uniformly and
in distribution to the solution u of

du þ A
Du
Duj j

! "
Duj ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd,
%% (1.4)

where A : Sd+1 ! RM is deterministic and continuous and B : ½0,1Þ # X ! RM is a
Brownian motion. Through the level-set formulation, this corresponds to a collection of
surfaces ðCtÞt)0 evolving according to the normal velocity V ¼ +AðnÞ ( dB:
There is an extensive literature on the approximation of stochastic partial differential

equations by equations with mixing time dependence. For instance, results of this type
for linear and semilinear parabolic partial differential equations were obtained by Bouc
and Pardoux [8], Kushner and Huang [9], and Watanabe [10], and partial differential
equations with spatial averaging and time fluctuations have been studied by Campillo,
Kleptsyna, and Piatnitski [11] and Pardoux and Piatnitski [12].
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The main mathematical purpose of this work is to extend the above results to first-
order equations with nonlinear gradient dependence. Due to the oscillatory dependence
in time and the nonlinear nature of the problem, obtaining regularity estimates is far
from straightforward, and, therefore, neither is establishing the tightness of probability
measures or identifying the limiting equation.

1.1. The main results

We now give an informal summary of the main results of the paper. Precise assump-
tions and statements can be found later on. We divide the results into two cases,
depending on whether m¼ 1 (the single-noise case) or m> 1 (the multiple-noise case).

1.1.1. The single-noise case
The problem of interest, for some convex and coercive H : Rd # Rd # X ! R and a
white noise approximation n : ½0,1Þ # X ! R, is
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¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd:

(1.5)

Many different assumptions for the dependence of the random Hamiltonian on space
are covered by the results in Section 3. The Hamiltonian may even be allowed to
depend on the “slow” spatial variable, as in
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¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd:

The field n, meanwhile, is allowed to be any reasonable approximation of white noise,
or even true white noise dB, where B : X# ½0,1Þ ! R is a standard Brownian motion.
As an example of the types of results available in this setting, we assume here that

the white noise approximation n is piecewise smooth,
p 7! Hðp, x,xÞ is convex and coercive, uniformly for ðx,xÞ 2 Rd # X, and
either x 7!Hð', xÞ is deterministic and periodic, or
ðx,xÞ 7!Hð', x,xÞ is a random, stationary-ergodic field:

8
>><

>>:
(1.6)

Theorem 1.1. Let c > 0 and u0 2 UCðRdÞ, and assume that H and n satisfy (1.6). Then
there exists a deterministic, convex, and coercive H : Rd ! R, which depends only on H,
and a Brownian motion B : ½0,1Þ # X ! R such that, as e ! 0, the solution ue of (1.5)
converges in distribution to the unique stochastic viscosity solution u of

du þ HðDuÞ ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (1.7)

The convergence in probability distribution in Theorem 1.1, and in the subsequent
results below, is understood with the topology of local-uniform convergence. See
Section 2 below for details.
Theorem 1.1 holds without any restrictions on the positive parameter c, or on the

correlation between the random functions H and n. This has to do with regularity and
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stability estimates for pathwise Hamilton-Jacobi equations with convex and coercive
Hamiltonians. These estimates, which are of independent interest, are presented in
Appendix A.

1.1.2. The multiple-noise case
We now turn to the study of the initial value problem
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¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd,

(1.8)

where u0 2 UCðRdÞ, m> 1, and, for each i ¼ 1, 2, :::,m,Hi 2 CðRd # TdÞ and ni :
½0,1Þ # X ! R is a white noise approximation.
We will show that there exist M 2 N and, for each j ¼ 1, 2, :::,M, a continuous,

deterministic, effective Hamiltonian Hj
: Rd ! R and a Brownian motion Bj such that,

as e ! 0, ue converges locally uniformly and in distribution to the unique stochastic vis-
cosity solution u of

du þ
XM

j¼1

HjðDuÞ ( dBj ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (1.9)

Despite the similarity of this statement with Theorem 1.1, there are some fundamental
differences in the nature of the problem. Most importantly, the deterministic effective
Hamiltonians, and even their number M, depend on the particular laws of the mix-
ing fields.
Different types of behavior can already be seen by considering the simple problem
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juxjn1
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¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R:

8
<

: (1.10)

In particular, the law of the limiting problem depends nontrivially on the law
of ðn1, n2Þ:

Theorem 1.2. Assume that f 2 C0, 1ðTÞ, u0 2 UCðRÞ, and 0 < c < 1=2. Then there exist
piecewise smooth white nosie approximations

n ¼ ðn1, n2Þ : 0,1Þ # X ! R2 and ~n ¼ ð~n1, ~n2Þ : 0,1Þ # X ! R2,
&h

deterministic functions H 2 CðR,R2Þ and ~H 2 CðR,R4Þ, and Brownian motions B :
½0,1Þ # X ! R2 and ~B :½0,1Þ # X ! R4 such that, if ue and ~ue are the solutions of
(1.10) with respectively the fields n and ~n, then lime!0 ue ¼ u and lime!0 ~ue ¼ ~u in dis-
tribution, where u and ~u are the unique stochastic viscosity solutions of respectively

du þHðuxÞ ( dB ¼ 0 and d~u þ ~Hð~uxÞ ( d~B ¼0 in R# ð0,1Þ

with uð', 0Þ ¼ ~uð', 0Þ ¼ u0 in R. Moreover, as CðR# ½0,1ÞÞ-valued random variables, u
and ~u have different laws for general u0 2 UCðRdÞ:
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In the above result, n and ~n are certain discrete examples satisfying (1.2), but with ~n
taking on more values than n. This property results in a more complicated limiting
Hamiltonian and a higher dimensional noise.
The next result involves a slight modification of (1.10), where ballistic behavior can

be seen if there is nontrivial correlation between the white noise approximations.

Theorem 1.3. For some V 2 CðTÞ, F 2 CðRÞ, and independent white noise approxima-
tions n1, n2 : ½0,1Þ # X ! R, the following hold:

a. There exists a deterministic H 2 CðR,R3Þ and a Brownian motion B : ½0,1Þ #
X ! R3 such that, if 0 < c < 1=6, u0 2 UCðRÞ, and ue solves
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¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R,
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:

then, as e ! 0, ue converges in distribution to the unique stochastic viscosity solu-
tion of

du þHðuxÞ ( dB ¼ 0 in R# ð0,1Þ and uð', 0Þ ¼ u0 in R:

b. There exists p 2 R and a deterministic constant c 6¼ 0 such that, if 0 < c < 1 and
~ue is the solution of

~ue
t þ

1
ec
Fð~ue

xÞn
1 t

e2c
,x

! "
þ 1
ec
V

x
e

! "
n1

t
e2c

,x
! "

¼ 0 in R# ð0,1Þ and

~ueðx, 0Þ ¼ p ' x in R,

8
<

:

then, with probability one, for all T> 0, lime!0 supðx, tÞ2R#½0,T, e
cueðx, tÞ + ctj j ¼ 0:

Note that the limiting Hamiltonian and noise in Theorem 1.3(a) are three-dimen-
sional. This is a consequence of the nonconvexity of F, which, as it turns out, causes
certain non-symmetric properties of the potential V to have an effect on the limiting
problem, namely, increasing the dimension of both H and B:
Also, if F : R ! R is convex and coercive, then the hypotheses in (1.6) are satisfied

by the Hamiltonian Hðp, xÞ :¼ FðpÞ þ VðxÞ and the field ni. Hence, the example in
Theorem 1.3(b), for which the function F is necessarily non-convex, illustrates that the
convexity assumption in Theorem 1.1 is necessary in general.
Finally, we assume

ððn1, n2, :::, nmÞð½k, kþ 1Þ, 'ÞÞ1k¼0 are independent and uniformly distributed over f+1, 1gm,

ai 2 C0, 1ðTdÞ for all i ¼ 1, 2, :::,m, and
Xm

i¼1

aiyi 6¼ 0 whenever yi 2 f+1, 1g:

8
><

>:

(1.11)

and consider the first order, level set problem
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Duej ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd:
%%

(1.12)

A more general result, which covers Theorem 1.4 below, will be proved in Section 4. As
before, the interaction between the various noise coefficients increases the dimension of
the noise, in this case from m to 2m+1:

Theorem 1.4. Assume that 0 < c < 1=6, u0 2 UCðRdÞ, and (1.11) holds. Then there
exists A 2 CðSd+1,R2m+1Þ and a Brownian motion B : ½0,1Þ # X ! R2m+1

such that, as
e ! 0, the solution ue of (1.12) converges in distribution to the stochastic viscosity solu-
tion u of

du þ A
Due

Duej j

! "
Duej j ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd:

Recall that (1.12) is the level set equation for a hypersurface evolving according to the
normal velocity +e+cPm

i¼1 a
iðx=eÞniðt=e2cÞ, and the limiting equation in Theorem 1.4

corresponds to the level-set flow with the normal velocity AðnÞ ( dBðt,xÞ:

1.2. Organization of the paper

Section 2 contains some tools and concepts that are used throughout the paper. The
results from the single-noise and multiple-noise cases are proved in respectively
Sections 3 and 4. Finally, the appendix summarizes relevant aspects of the pathwise vis-
cosity solution theory, as well as the computation of a certain effective Hamiltonian.

1.3. Notation

Integration with respect to the probability measure P is denoted by E: For a domain
U 2 RN , ðBÞUCðUÞ is the space of (bounded) uniformly continuous functions on U,
and C2

bðUÞ is the space of C2 functions f whose Hessian D2f is uniformly bounded. For
H : Rd ! R,H- is the Legendre transform of H. Given a set A, the function 1A is the
indicator function of A. For a function f : R ! R and x0 2 R, f ðx60 Þ :¼
limh!0, h>0 f ðx06hÞ whenever the limit exists. The identity matrix is denoted by Id:
The ðd + 1Þ-dimensional unit sphere in Rd is Sd+1, the d-dimensional torus is Td,
and T :¼ T1:

2. White noise approximations and convergence in distribution

Throughout the paper, we use certain facts about random variables converging in distri-
bution. More details and proofs can be found in the book of Billingsley [13].
Given a Polish space A, that is, a complete and separable metric space, a sequence of

Borel probability measures ðlnÞn)1 on A is said to converge weakly to l as n ! 1 if
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lim
n!1

ð

A
fdln ¼

ð

A
fdl for all f 2 CbðAÞ:

A sequence of A-valued random variables ðXnÞn)1 (not necessarily defined on the same
probability space) is said to converge in distribution to X in the space A, as n ! 1, if
the sequence of probability laws of the Xn’s converges weakly to the probability law
of X.
In this paper, we focus mainly on the two spaces CðRd # ½0,1ÞÞ and Cð½0,1Þ,RMÞ,

which are endowed with the topology of local-uniform convergence. These spaces are
metrizable with the metrics

dsðu, vÞ :¼
X1

k¼1

max max
ðx, tÞ2Bk# 0, k½ ,

uðx, tÞ + vðx, tÞj j, 2+k
! "

for u, v 2 CðRd # 0,1ÞÞ½

and

dpðg, fÞ :¼
X1

k¼1

max max
t2 0, k½ ,

gðtÞ + fðtÞj j, 2+k
! "

for g, f 2 Cð 0,1Þ,RMÞ,
&

and, for u, v 2 CðRd # ½0,1ÞÞ and g, f 2 Cð½0,1Þ,RMÞ, we use the metric

dððu, gÞ, ðv, fÞÞ :¼ dsðu, vÞ þ dpðg, fÞ:

Random variables that take values in these spaces and converge in distribution are said
to converge “locally uniformly and in distribution.”
We call a random field n : ½0,1Þ # X ! R a white noise approximation if

t 7! nðt, 'Þ is piecewise continuous with P-probability one and

fd !d!0
B in distribution in Cð½0,1Þ,RÞ, where

fdðt, 'Þ :¼ d
Ð t=d
0 nðs, 'Þds and B : ½0,1Þ # X ! R is a standard Brownian motion:

8
><

>:

(2.1)

A random field n satisfies (2.1) if it is centered, stationary, and sufficiently mixing. Such
fields have been studied by a variety of authors in the context of stochastic ordinary dif-
ferential equations with mixing coefficients, for example, Cogburn, Hersh, and Kac [14],
Khasminskii [15], Papanicolaou and Varadhan [16], and Papanicolaou and Kohler [17].
To give an example satisfying (2.1), we define the mixing rate q : ½0,1Þ ! ½0,1Þ

associated to n by

qðtÞ ¼ sup
s)0

sup
A2Fsþt,1

sup
B2F0, s

PðAjBÞ + PðAÞj j for t ) 0, (2.2)

where, for 0 . s . t . 1,Fs, t * F is the r-algebra generated by ðnðr, 'ÞÞr2½s, t,: Then n
satisfies (2.1) if

t 7! nðt,xÞ is stationary, Pðsupt2½0,1Þ jnðt, 'Þj . MÞ ¼ 1 for some M > 0,

limt!1 qðtÞ ¼ 0,
Ð1
0 ½qðtÞ,1=2dt < 1, E½nð0Þ, ¼ 0, and 2

Ð1
0 E½nð0ÞnðtÞ,dt ¼ 1:

(

(2.3)
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A discrete example, which plays an important role later in the paper, is given by

nðt,xÞ ¼
X1

k¼1

XkðxÞ1 k+1, kÞðtÞ for ðt,xÞ2 0,1Þ#X,½½ (2.4)

where ðXi
kÞ

1
k¼1 : X ! R are mutually independent and identically distributed with

E½Xk, ¼ 0 and E½ðXkÞ2, ¼ 1 for all k ¼ 1, 2, :::: For such n, the path fd appearing in
(2.1) is a linearly interpolated random walk, and (2.1) follows from Donsker’s invariance
principle.

3. The single-noise case

In this section, we prove the homogenization results from the introduction for a single
white noise approximation. The results here resemble those in [18], except that the
Hamiltonians need not be smooth or uniformly convex, which allows for the treatment
of level-set problems that model front propagation.

3.1. A general convergence result

The first result we prove in this section is not directly related to homogenization, and is
general enough to be applied to a variety of asymptotic problems. We give more details
on such examples, including the ones stated in the introduction, at the end of
this section.
For an initial datum u0 2 UCðRdÞ, paths ðfeÞe)0 : ½0,1Þ # X ! R, and

Hamiltonians ðHeÞe)0 : Rd # Rd # X ! R, we consider, for e > 0, the problems

due þHeðDue, x,xÞ ' dfeðt,xÞ ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd (3.1)

and

du0 þ H0ðDu0, x,xÞ ' df0ðt,xÞ ¼ 0 in Rd # ð0,1Þ and u0ð', 0Þ ¼ u0 in Rd:

(3.2)

Let ðSe6ðtÞÞe, t)0 : ðBÞUCðR
dÞ ! ðBÞUCðRdÞ denote the solution operators for

Ue
6, t6HeðDUe

6, x,xÞ ¼ 0 in Rd # ð0,1Þ, Ue
6ð', 0Þ ¼ / in Rd,

that is, Ue
6ðx, tÞ ¼ Se6ðtÞ/ðxÞ for e ) 0 and ðx, tÞ 2 Rd # ½0,1Þ:

We assume that there exists X0 2 F such that PðX0Þ ¼ 1 and the following hold:

feð',xÞ is continuous for all e ) 0 and x 2 X0, and,
as e ! 0, fe ! f0 locally uniformly and in distribution;

)
(3.3)

and

there exist ! , ! : ½0,1Þ ! ½0,1Þ as in ðA:5Þ such that,

for all e ) 0 and x 2 X0, ðHeð', ' ,xÞÞe)0 satisfies ðA:5Þ, and, for all L,T, d > 0,

lime!0 P
#

sup
kD/k1.L

max
ðx, tÞ2BT#½0,T,

jSe6ðtÞ/ðxÞ + S06ðtÞ/ðxÞj > d
$
¼ 0:

8
>>><

>>>:
(3.4)
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Because Heð', ' ,xÞ satisfies the coercivity bounds (A.5) for all e ) 0 and x 2 X0, it fol-
lows from Theorem A.2 that the equations (3.1) and (3.2) admit unique pathwise vis-
cosity solutions by extending the solution operator to continuous paths.

Theorem 3.1. Assume (3.3) and (3.4), and let u0 2 UCðRdÞ. Then, as e ! 0, ðue, feÞ con-
verges locally uniformly and in distribution to ðu0, f0Þ:
The key idea in the proof of Theorem 3.1 is to compare with solutions of intermedi-

ate equations driven by more regular paths, by appealing to the stability estimates of
Theorem A.2.
Throughout the proofs below, we consider paths g that satisfy

g : ½0,1Þ!R is piecewise+C1 and, for any T>0,

_g changes sign finitely many times on ½0,T,:
(3.5)

Recall that the metric ds below, defined in Section 2, metrizes the space CðRd # ½0,1ÞÞ
with the topology of local uniform convergence.

Lemma 3.1. Assume that v0 2 UCðRdÞ, g : ½0,1Þ # X ! R is such that gð',xÞ satisfies
(3.5) for all x 2 X0, and ðHeÞe)0 satisfies (3.4). Let ve and v0 solve

vet þHeðDve, x,xÞ _gðt,xÞ ¼ 0 in Rd # ð0,1Þ,
v0t þ HðDv0, x,xÞ _gðt,xÞ ¼ 0 in Rd # ð0,1Þ, and
veð', 0Þ ¼ v0ð', 0Þ ¼ v0 in Rd:

8
<

: (3.6)

Then, for all d > 0, lime!0 Pðdsðve, v0Þ > dÞ ¼ 0:

It is necessary to use the following well-known domain-of-dependence result for vis-
cosity solutions of Hamilton-Jacobi equations. For a proof, see the book of Lions [19].

Lemma 3.2. Suppose that G : Rd # Rd ! R is continuous, fix L> 0, let U and V be
respectively a sub- and super-solution of Ut ¼ GðDU, xÞ and Vt ¼ GðDV , xÞ in Rd #
ð+1,1Þ such that maxðkDUk1, kDVk1Þ . L, and suppose that
L :¼ supðp, xÞ2BL#Rd DpGðp, xÞ

%% %% < 1. Then, for all R> 0 and +1 < s < t < 1,

max
x2BR+Lðt+sÞ

Uðx, tÞ + Vðx, tÞð Þ . max
x2BR

Uðx, sÞ + Vðx, sÞð Þ:

The strategy for the proof of Lemma 3.1 is similar to one used by the author in [18].
However, the argument is more involved here, due to the randomness of both the
Hamiltonian and path, and the fact that the rate of convergence for the limit in (3.4) is
not quantified.

Proof of Lemma 3.1. Observe first that, in view of the contractive property of the equa-
tions in (3.6), it suffices to prove the result for v0 2 C0, 1ðRdÞ with kDv0k1 . L for
some fixed L> 0. Also, it is enough to prove, for any fixed d > 0 and T> 0, that

lim
e!0

P max
ðx, tÞ2BT# 0,T½ ,

veðx, tÞ + v0ðx, tÞ
%% %% > d

! "
¼ 0:

Fix x 2 X0, so that there exists a partition f0 ¼ t0 < t1 < t2 < ' ' ' < tN ¼ Tg such that
gðxÞ is monotone on each interval ½ti, tiþ1,: Fix ðx, tÞ 2 BT # ½0,T,, let i be such that
t 2 ðti, tiþ1,, and assume without loss of generality that g is decreasing on ½ti, tiþ1,:
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Set D :¼ gt + gti : Because g is monotone on ½ti, tiþ1,, veð', tÞ ¼ SeþðDÞveð', tiÞ and
v0ð', tÞ ¼ S0þðDÞv0ð', tiÞ: We then write

veðx, tÞ + v0ðx, tÞ ¼ SeþðDÞv
eð', tiÞðxÞ + SeþðDÞv

0ð', tiÞðxÞ
# $

þ SeþðDÞv
0ð', tiÞðxÞ + S0þðDÞv

0ð', tiÞðxÞ
# $

:

In view of Theorem A.2, there exists a deterministic constant C1 > 0 depending only on
L such that

maxðkDvek1, kDv0k1Þ . C1:

The convexity and uniform growth of He in the gradient variable then imply that, for
some deterministic constant C2 > 0 depending only on L,

sup
e>0

sup
jpj.C1

sup
x2Rd

DpHeðp, x,xÞ
%% %% . C2:

Lemma 3.2 then implies that, for all x 2 BT ,

SeþðDÞv
eð', tiÞðxÞ + SeþðDÞv

0ð', tiÞðxÞ
%% %% . max

y2BTþC2D

veðy, tiÞ + v0ðy, tiÞ
%% %%,

and so

veðx, tÞ + v0ðx, tÞ
%% %% .

XN+1

i¼0

max
ðy, sÞ2BRi# 0,Di½ ,

Se6ðsÞv
0ð', tiÞðyÞ + S06ðsÞv

0ð', tiÞðyÞ
%% %%, (3.7)

where Di :¼ gðtiþ1Þ + gðtiÞj j and Ri :¼ T þ C2
PN+1

k¼i Dk, and the subscriptsþ and – for
the solution operators in (3.7) are chosen depending on whether g is respectively
decreasing or increasing on ½ti, tiþ1,:
For M> 0, define

AM :¼ x 2 X0 : NðxÞ . M, max
i¼0, 1, 2, :::,N+1

DiðxÞ . M,RNðxÞ+1ðxÞ . M
n o

:

Then, for any M> 0,

P max
ðx, tÞ2BT# 0,T½ ,

veðx, tÞ + v0ðx, tÞ
%% %% > d

! "
¼ P X0 \ max

ðx, tÞ2BT# 0,T½ ,
veðx, tÞ + v0ðx, tÞ
%% %% > d

) *! "

. P X0 AMð Þ þ P AM \
XN+1

i¼0

max
ðy, sÞ2BRi# 0,Di½ ,

Se6ðsÞv
0ð', tiÞðyÞ + S06ðsÞv

0ð', tiÞðyÞ
%% %% > d

( ) !

. P X0 AMð Þ þ P sup
kD/k1.C1

max
ðx, sÞ2BM# 0,M½ ,

Se6ðsÞ/ðxÞ + S06ðsÞ/ðxÞ
%% %% > d

M

 !
,

and so, in view of (3.4), limsupe!0 Pðmaxðx, tÞ2BT#½0,T, veðx, tÞ + v0ðx, tÞj j > dÞ .
PðX0 AMÞ: Sending M ! 1 yields the result. w

Proof of Theorem 3.1. Appealing to the Portmanteau Theorem (see [13]), it suffices to
show that, for any open set U * CðRd # ½0,1ÞÞ # Cð½0,1Þ,RÞ,
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liminf
e!0

P ðue, feÞ 2 U
+ ,

) P ðu0, f0Þ 2 U
+ ,

:

Recall that we metrize the space CðRd # ½0,1ÞÞ # Cð½0,1Þ,RÞ with the metric d :¼
ds þ dp defined in Section 2. For r > 0, define the open
set Ur :¼ ðv, gÞ 2 U : dððv, gÞ, ðw, sÞÞ > r for all ðw, sÞ 62 U

- .
:

As in the proof of Lemma 3.1, it suffices to take u0 2 C0, 1ðRdÞ with kDu0k1 . L for
some fixed L> 0.
Fix d > 0, and let g : ½0,1Þ # X ! R be such that, for all x 2 X0, gðxÞ satisfies

(3.5) and dpðf0ðxÞ, gðxÞÞ < d: Let ve and v0 be as in the statement of Lemma 3.1 with
the path g. Theorems A.1 and A.2 then yield a constant C> 0 depending only on L
such that, for all x 2 X0,

dsðueðxÞ, veðxÞÞ . CdpðfeðxÞ, gðxÞÞ and dsðu0ðxÞ, v0ðxÞÞ . Cd:

Lemma 3.1 gives the existence of a deterministic e0 > 0 such that, for all e 2 ð0, e0Þ,PðXd
e Þ )

1+ d, whereXd
e :¼ x 2 X0 : dsðveðxÞ, v0ðxÞÞ < d

- .
: Then, for all e 2 ð0, e0Þ,

ðue, feÞ 2 U
- .

nXd
e / ðve, g, feÞ 2 UðCþ1Þd # BdðgÞ

- .
nXd

e

/ ðv0, g, feÞ 2 UðCþ2Þd # BdðgÞ
n o

nXd
e ,

where BdðgÞ * Cð½0,1Þ,RÞ denotes the open ball of radius d centered at g with respect
to the metric dp.
It follows that, for all e 2 ð0, e0Þ,Pððue, feÞ 2 UÞ ) Pððv0, g, feÞ 2 UðCþ2Þd # BdðgÞÞ +

d, which, together with (3.3), yields, after sending e ! 0,

liminf
e!0

P ðue, feÞ 2 U
+ ,

) P ðv0, g, fÞ 2 UðCþ2Þd # BdðgÞ
# $

+ d

) P ðu0, fÞ 2 Uð2Cþ3Þd

# $
+ d:

The result now follows upon sending d ! 0: w

3.2. Applications of Theorem 3.1

The assumptions needed for Theorem 3.1, and in particular, those for the Hamiltonians
He, are general enough to apply to a multitude of settings. For instance, the dependence
of He on x=e can be periodic, almost periodic, or stationary ergodic. All that is needed
is (3.4), that is, convergence to some H0 in the solution-operator sense. Here, to have a
simplified presentation, we discuss only the periodic and random settings, with He given
as a function of x=e and possibly x.
We first prove the result from the introduction concerning the initial value problem

uet þ
1
ec
H Due,

x
e
,x

! "
n

t
e2c

,x
! "

¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd

(3.8)

for a fixed c > 0 and u0 2 UCðRdÞ, a white noise approximation n : ½0,1Þ # X ! R in
the sense of (2.1), and a Hamiltonian H : Rd # Rd # X ! R for which
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there exists X0 2 F with PðX0Þ ¼ 1 and deterministic ! , ! : ½0,1Þ ! ½0,1Þ as in ðA:5Þ
such that Hð', ' ,xÞ satisfies ðA:5Þ uniformly over x 2 X0, and
either y 7!Hð', yÞ is deterministic and periodic, or
ðy,xÞ 7!Hð', y,xÞ is a stationary-ergodic random field:

8
>><

>>:

(3.9)

The latter condition for H means that there exists a group of transformations fTygy2Rd :
X ! X such that

P ¼ P ( Ty for all y 2 Rd, Hðp, x,TyxÞ ¼ Hðp, x þ y,xÞ for all ðp, x, y,xÞ 2 R3d # X, and,
if E 2 F and TyE ¼ E for all y 2 Rd, then PðEÞ ¼ 1 or PðEÞ ¼ 0:

)

(3.10)

For ðt,xÞ 2 ½0,1Þ # X ! R, define

feðt,xÞ :¼ ec
ðt=e2c

0
nðs,xÞds ¼ 1

ec

ðt

0
n

s
e2c

,x
! "

ds: (3.11)

Corollary 3.1. Let c > 0 and u0 2 UCðRdÞ and assume that n and H satisfy respectively
(2.1) and (3.9). Then there exist a deterministic, convex H : Rd ! R satisfying (A.5),
which depends only on H, and a Brownian motion B : ½0,1Þ # X ! R such that, as e !
0, ðue, feÞ converges locally uniformly and in distribution to ðu,BÞ, where u is the unique
stochastic viscosity solution of

du þ HðDuÞ ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (3.12)

Note that (3.12) is well-posed by merit of Theorem A.1 and the convexity of H :
The corollary is a direct consequence of Theorem 3.1, by taking fe defined as in

(3.11) for e > 0, f0 ¼ B, and, for ðp, x,xÞ 2 Rd # Rd # X,Heðp, x,xÞ :¼ Hðp, x=e,xÞ
and H0ðp, xÞ ¼ HðpÞ, where H is the deterministic, convex, effective Hamiltonian in
either the periodic or random homogenization settings. The convergence in distribution
of fe to the Brownian motion follows from (2.1).
That H and H satisfy (3.4) is proved in the periodic setting by Lions, Papanicolaou,

and Varadhan [20] and Evans [21], and in the random setting by Souganidis [22] and
Rezakhanlou and Tarver [23] (see also Armstrong and Souganidis [24] for a more gen-
eral result). In either setting, the uniformity of the convergence in (3.4) over / with a
bounded Lipschitz constant is a consequence of the contractive property of the equa-
tions and the compact embedding of C0, 1ðRdÞ into CðRdÞ: The fact that H satisfies the
bounds in (A.5) follows from standard estimates on the effective Hamiltonian.
Finally, for H satisfying (3.9), the limiting problems for uet þ HðDue, x=eÞ ¼ 0 and

uet + H Due, xe
+ ,

¼ 0 are, respectively, ut þ HðDuÞ ¼ 0 and ut + HðDuÞ ¼ 0, or, more
concisely,

ðHÞ ¼ +H : (3.13)

The identity (3.13) does not hold in general. Here, it is a consequence of the convexity
of H in the gradient variable. For more details, see [18].
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We next consider, for a standard Brownian motion B : X# ½0,1Þ ! R, the problem

due þ H Due,
x
e
,x

! "
( dB ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd: (3.14)

Corollary 3.2. Under the same hypotheses of Corollary 3.1, as e ! 0, the solution ue of
(3.14) converges locally uniformly and in distribution to the solution of (3.12).

The result follows from Theorem 3.1, taking ðHeÞe)0 as before and fe ¼ B for
all e ) 0:
We now present results about the initial value problems

uet þ
1
ec
H Due,

x
e
, x,x

! "
n

t
e2c

,x
! "

¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd

(3.15)

and

due þH Due,
x
e
, x,x

! "
( dB ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd: (3.16)

The following result is a consequence of Theorem 3.1, as well as the homogenization
results cited above from [20–23], which extend also to this setting.

Corollary 3.3. Assume that c > 0, u0 2 UCðRdÞ,B : ½0,1Þ # X ! R is a Brownian
motion, H is uniformly continuous in BR # Rd # Rd for each R> 0, and there exist X0 2
F and ! , ! as in (3.9) such that, for each fixed x 2 Rd,Hð', ' , xÞ satisfies (3.9). Then
there exists a deterministic H 2 CðRd # RdÞ satisfying (A.5) such that the following hold:

a. For any n : ½0,1Þ # X ! R satisfying (2.1), if ue is the solution of (3.15) and fe

is as in (3.11), then, as e ! 0, ðue, feÞ converges locally uniformly and in distribu-
tion to ðu,BÞ, where u is the stochastic viscosity solution u of

du þ HðDu, xÞ ( dB ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (3.17)

b. As e ! 0, the solution ue of (3.16) converges locally uniformly and in distribution
to u:

We conclude this subsection by explaining how the above results can be applied to
equations of level-set type. Indeed, if, for some a : X ! CðSd+1 # Rd # RdÞ,

Hðp, y, x,xÞ ¼ a
p
jpj

, y, x,x
! "

jpj, (3.18)

then (3.15) and (3.16) become level-set equations for certain first-order interfacial
motions. For some a 2 CðSd+1 # RdÞ, the effective Hamiltonian then has the form
Hðp, xÞ :¼ aðp=jpj, xÞjpj for ðp, xÞ 2 Rd # Rd:
The Hamiltonian (3.18) satisfies (3.9) if there exist 0 < a+ < aþ such that, with prob-

ability one, a+ . aðn, y, x,xÞ . aþ for all ðn, xÞ 2 Sd+1 # Rd, and p 7! aðp=jpj, ' ', 'Þjpj
is convex.
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4. The multiple-noise case

We now turn to the study of the initial value problem

uet þ
1
ec
Xm

i¼1

Hi Due,
x
e

! "
ni

t
e2c

,x
! "

¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd:

(4.1)

Throughout this section, we will assume that each Hamiltonian is deterministic and
periodic in space, and that, for each i ¼ 1, 2, :::,m, ni is a discrete mixing field satisfying
(2.4), that is,

niðt,xÞ ¼
X1

k¼1

Xi
kðxÞ1½k+1, kÞðtÞ for ðt,xÞ 2 ½0,1Þ # X, where

ðXi
kÞ

1
k¼1 : X ! R are independent and identically distributed with E½Xi

k, ¼ 0 and E½ðXi
kÞ

2, ¼ 1:

8
><

>:
(4.2)

As in (3.11), we set, for each i ¼ 1, 2, :::,m,

fi, eðt,xÞ :¼ 1
ec

ðt=e2c

0
niðs,xÞds for ðt,xÞ 2 0,1Þ # X,½ (4.3)

so that, in view of Donsker’s invariance principle, for some Brownian motion Bi :
½0,1Þ # X ! R, as e ! 0, fi///!e!0

Bi in Cð½0,1Þ,RÞ in distribution.

4.1. Difficulties

We begin with a discussion of the general strategy of proof in the multiple noise setting,
and the challenges that arise.
We first make the formal assumption, one which we later justify by choosing c suffi-

ciently small (see Lemma 4.4 below), that ue is closely approximated by a solution ue of
an equation of the form

ue
t þ

1
ec
H Due, n

t
e2c

,x
! "! "

¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd, (4.4)

via the expansion ueðx, tÞ 0 ueðx, tÞ þ evðx=e, tÞ þ ' ' ' for some v : Td # ½0,1Þ ! R:
This yields to the following equation for v, for fixed p 2 Rd and n 2 Rm :

Xm

i¼1

HiðDyvþ p, yÞni ¼ Hðp, nÞ in Rd: (4.5)

The fixed parameters p and n stand in place of respectively Dueðx, tÞ and e+cnðt=e2cÞ:
Note that, in deriving (4.4), we have assumed that n 7!Hð', nÞ is positively homogen-

ous. Later, we justify this by the fact that, under sufficient conditions on the Hi, (4.5)
admits periodic solutions for a unique choice of constant Hðp, nÞ on the right hand
side. The positive homogeneity can then be seen from multiplying both sides of (4.5) by
a positive constant.
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If u0ðxÞ ¼ p0 ' x for some fixed p0 2 R, then the solution of (4.4) is given by

ueðx, tÞ ¼ p0 ' x+
1
ec

ðt

0
H p0, n

s
e2c

! "! "
ds:

Therefore, if

E Hðp0,X1
0 ,X

2
0 , :::,X

m
0 Þ

& 0
¼ 0, (4.6)

it then follows that ue converges locally uniformly and in distribution, as e ! 0, to p0 '
xþ rðp0ÞBðtÞ, where B is a standard Brownian motion and rðp0Þ2 :¼
E Hðp0,X1

0 ,X
2
0 , :::,X

m
0 Þ

2
h i

: However, the nonlinear nature of the problem makes it diffi-
cult to describe the limit of ue as e ! 0 for general u0 2 UCðRdÞ: This distinguishes the
problem from the uniformly parabolic, semilinear equations considered in [8–10].
A further complication arises from the fact that, for two Rm-valued random variables

X0 and ~X0 as in (4.2),

E Hðp,X0Þ2
& 0

¼ E Hðp, ~X0Þ2
& 0

for all p 2 Rd (4.7)

may fail in general, which indicates that the law of the field n in equation (4.1) can
have a nontrivial effect on the limiting equation.
As shown above, if (4.7) does hold, then, whenever the initial data has the form

u0ðxÞ ¼ p ' x for some p 2 Rd, the laws of the limiting functions depend only on p, and
not on the laws of X0 and ~X0: However, it can still be the case that the laws of the lim-
iting functions differ for more general initial data.
As an indication of why this is true, consider, for u0 2 UCðRÞ and two Brownian

motions B, ~B : ½0,1Þ # X ! R, the initial value problems

du+ ux ( dB ¼ 0, d~u + j~uxj ( d~B ¼ 0 in R# ð0,1Þ, and
uðx, 0Þ ¼ ~uðx, 0Þ ¼ u0 in R:

)

If u0ðxÞ ¼ px for some fixed p 2 R, then the solutions uðx, tÞ ¼ px þ pBðtÞ and
~uðx, tÞ ¼ pxþ jpj~BðtÞ have the same law as CðR# ½0,1ÞÞ-valued random variables.
However, if u0ðxÞ ¼ jxj, then a simple calculation yields that uðx, tÞ ¼ jx þ BðtÞj, while
it is shown in [1, 3, 6] that

~uðx, tÞ ¼ max jxjþ ~BðtÞ, max
0.s.t

~BðsÞ
n o

:

The CðR# ½0,1ÞÞ-valued random variables u and ~u evidently do not share the
same law.

4.2. A general class of examples

We now present a class of Hamiltonians and white noise approximations for which,
given any initial data u0 2 UCðRdÞ, the limit as e ! 0 of the solution ue of (4.1) can be
identified as the unique stochastic viscosity solution of a certain initial value problem.
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We assume that the Hamiltonians satisfy

Hi 2 C0, 1ðRd # TdÞ, and, for each n 2 f+1, 1gm,

p 7!
Xm

i¼1

Hiðp, 'Þni is either convex or concave and

lim
jpj!þ1

inf
y2Td

Xm

i¼1

Hiðp, yÞni ¼ þ1 or lim
jpj!þ1

sup
y2Td

Xm

i¼1

Hiðp, yÞni ¼ +1:

8
>>>>>><

>>>>>>:

(4.8)

Lemma 4.1. Assume (4.8). Then, for all p 2 Rd and n 2 f+1, 1gm, there exists a unique
Hðp, nÞ 2 R such that (4.5) admits a periodic solution. Moreover, p 7!Hðp, 'Þ is either
convex or concave, and

Hð', knÞ ¼ kHð', nÞ for all k 2 R and n 2 f+1, 1gm: (4.9)

Proof. The solvability of the cell problem (4.5) is a direct consequence of the coercivity
assumption in (4.8) and the results of [20, 21], as is the convexity or concavity in the
gradient variable and the homogeneity in (4.9) for k > 0: The fact that (4.9) holds for
negative k follows from the identity (3.13). w

The mixing fields are assumed to satisfy, for i ¼ 1, :::,m,

niðt,xÞ ¼
X1

k¼0

Xi
kðxÞ1ðk, kþ1ÞÞðtÞ for ðt,xÞ 2 ½0,1Þ # X, where

ðXi
kÞi¼1, 2, :::,m, k¼0, 1, ::: are independent Rademacher random variables:

8
><

>:
(4.10)

Define Am :¼ fj ¼ ðj1, j2, :::, jlÞ : ji 2 f1, 2, :::,mg, j1 < j2 < ' ' ' < jlg, jjj ¼ ðj1, j2, :::, jlÞj j :
¼ l, and Am

o :¼ fj 2 Am : jjj is oddg, and note that #Am ¼ 2m + 1 and #Am
o ¼ 2m+1:

For each j ¼ ðj1, j2, :::, jlÞ 2 Am, set

nj :¼ nj1nj2 ' ' ' njl for n ¼ ðn1, n2, :::, nmÞ 2 f+1, 1gm,
H jðpÞ :¼ 1

2m
X

n2f+1, 1gm
Hðp, nÞnj for p 2 Rd, Xj

kðxÞ :¼ Xj1
k ðxÞX

j2
k ðxÞ ' ' 'X

jl
k ðxÞ,

fjð0,xÞ :¼ 0, _f
jðt,xÞ :¼

X1

k¼0

Xj
kðxÞ1ðk, kþ1ÞðtÞ, and

fj, eðt,xÞ :¼ ecfjðt=e2c,xÞ for ðt,xÞ 2 ½0,1Þ # X:

8
>>>>>>>><

>>>>>>>>:

(4.11)

For each j 2 Am
o ,H

j is a difference of convex functions, and (4.9) implies that H j ¼ 0
whenever jjj is even.

Theorem 4.1. Assume 0 < c < 1=6, u0 2 UCðRdÞ, (4.8), and (4.10), and let ue be the
solution of (4.1). Then there exist 2m+1 independent Brownian motions ðBjÞj2Am

o
, such

that, in distribution,

ue, ðfj, eÞj2Am
o

# $
!e!0

u, ðBjÞj2Am
o

# $
in C

#
Rd #

h
0,1

$$
# C

#h
0,1

$
,R2m+1

$
,

where u is the unique stochastic viscosity solution of
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du þ
X

j2Am
0

H jðDuÞ ( dBj ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd: (4.12)

If d¼ 1, or if d¼ 2 and p 7!Hðp, 'Þ is homogenous of degree q ) 1, then the result holds
for 0 < c < 1=2:
The result relies on the following lemma about nonlinear functions of f+1, 1gm:

Lemma 4.2. Let f : f+1, 1gm ! R. Then

f ðnÞ ¼ f0 þ
X

j2Am

fjn
j, (4.13)

where f0 :¼ 1
2m
P

n2f+1, 1gm f ðnÞ and fj :¼ 1
2m
P

n2f+1, 1gm f ðnÞn
j. If f is odd, then f0 ¼ 0, and

the sum in (4.13) is taken over j 2 Am
o :

Proof. Let Fm be the 2m-dimensional space of real-valued functions on f+1, 1gm: The
2m functions in Pm :¼ f1, ðnjÞj2Amg are linearly independent elements of Fm, and
therefore, their span is equal to it.
For f , g 2 Fm, define the inner product hf , giFm :¼ 1

2m
P

n2f+1, 1gm f ðnÞgðnÞ: With
respect to h', 'iFm ,Pm becomes an orthonormal basis, so that, for any f 2 Fm, f ¼
X

q2Pmhf , qiFmq, which is the desired formula. The statements about odd f now follow

easily. w

As a consequence of Lemma 4.2, and the definition of the functions ðHjÞj2Am
o

in
(4.11), the effective Hamiltonian H : Rd # f+1, 1gm in (4.5) takes the
form Hðp, nÞ :¼

P
j2Am

o
H jðpÞnj:

The proof of the following lemma is elementary and thus omitted.

Lemma 4.3. Let fXjgmj¼1 be mutually independent and Rademacher. Then the random
variables defined by Xj :¼ Xj1Xj2 ' ' 'Xjl for j ¼ ðj1, j2, :::, jlÞ 2 Am are pairwise independ-
ent and Rademacher.

Now, for the H j and fj’s as in (4.11), let ue be the viscosity solution of the equation

ue
t þ

X

j2Am
o

H jðDueÞ _fj, eðt,xÞ ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd: (4.14)

Lemma 4.4. Assume (4.8) and (4.10), and let ue and ue be the solutions of respectively
(4.1) and (4.14). Then, for any L> 0, there exists C ¼ CL > 0 such that, with probability
one, whenever kDu0k1 . L, e > 0 and T> 0,

sup
ðx, tÞ2Rd# 0,T½ ,

ueðx, tÞ + ueðx, tÞj j . Cð1þ TÞe1=3+2c:

If d¼ 1, or if d¼ 2 and p 7!Hðp, 'Þ is q-homogenous for some q ) 1, then e1=3+2c

becomes e1+2c:

We do not give the full details of the proof of Lemma 4.4, as it is a simpler version
of Lemma 3.1 (see also Lemma 5.2 from [18]). The argument follows by applying results
on rates of convergence for periodic homogenization of Hamilton-Jacobi equations
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(which are listed below) on each of the Oð1=e2cÞ intervals on which neðtÞ is constant.
The effective equation on each of those intervals is given by ue

t þHðDue, e+cnðt=e2cÞÞ ¼
0, which is exactly equation (4.14).

Lemma 4.5. Assume that H is coercive in the gradient variable, periodic in the space vari-
able, and locally Lipschitz. Let ue and u be the solutions of the initial value problems

uet þ H Due,
x
e

! "
¼ 0 and ut þ HðDuÞ ¼ 0 in Rd # ð0,1Þ, and

ueð', 0Þ ¼ uð', 0Þ ¼ u0 in Rd:

8
><

>:

a. (Capuzzo-Dolcetta, Ishii [25]) For all L > 0, there exists C ¼ CL > 0 such that, if
kDu0k1 . L, then

sup
ðx, tÞ2Rd# 0,T½ ,

ueðx, tÞ + uðx, tÞj j . Cð1þ TÞe1=3 for all T > 0: (4.15)

The exponent can be improved from 1/3 to 1 if u0ðxÞ ¼ p ' x for some fixed p 2 Rd:

b. (Mitake, Tran, Yu [26]) If d ¼ 1 and p 7!Hðp, 'Þ is convex, or if d ¼ 2 and
p 7!Hðp, 'Þ is convex and positively homogenous of degree q ) 1, then the exponent
1/3 in (4.15) can be replaced with 1.

Proof of Theorem 4.1. Because the solution operators are contractive in the initial data,
it suffices to assume that u0 2 C0, 1ðRdÞ:
The choice of c and Lemma 4.4 imply that, with probability one, lime!0 dsðue, ueÞ ¼

0, where ds is the metric on CðRd # ½0,1ÞÞ defined in Section 2.
In view of Lemma 4.3, the path fe :¼ ðfj, eÞj2Am

o
2 Cð½0,1Þ,R2m+1Þ is a random walk

which, as e ! 0, converges in distribution to a 2m+1-dimensional Brownian
motion B :¼ ðBjÞj2Am

o
:

For the fixed initial datum u0 2 C0, 1ðRdÞ, let S : Cð½0,1Þ,R2m+1Þ ! CðRd # ½0,1ÞÞ
be the solution operator for the equation

dvþ
X

j2Am
0

H jðDvÞ ' dfj ¼ 0 in Rd # ð0,1Þ and vð', 0Þ ¼ u0 in Rd,

that is, SðfÞ ¼ v: The stability result in Theorem A.1 implies that S is continuous, and,
therefore, so is the graph map

ðS, IdÞ : C ½0,1Þ,R2m+1
# $

!f 7! ðv, fÞ 2 CðRd # ½0,1ÞÞ # C ½0,1Þ,R2m+1
# $

:

The result now follows from the Mapping Theorem and Slutsky’s Theorem (see [13]).
In particular, the Mapping Theorem implies that, if ue is the solution of (4.14), then, as
e ! 0, ðue, feÞ converges in distribution to ðu,BÞ in CðRd # ½0,1ÞÞ # Cð½0,T,,R2m+1Þ:
We then conclude by appealing to Slutsky’s Theorem. w
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4.3. A one-dimensional example

For u0 2 C0, 1ðRÞ, n1, n2 : ½0,1Þ # X ! R as in (4.10), and f 2 C0, 1ðTÞ, consider the
equation

uet þ
1
ec
juexjn

1 t
e2c

,x
! "

þ 1
ec
f

x
e

! "
n2

t
e2c

,x
! "

¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R:

8
<

: (4.16)

Theorem 4.1 implies that, if 0 < c < 1=2, then, as e ! 0, ðue, f1, e, f2, eÞ converges in dis-
tribution to ðu,B1,B2Þ, where f1, e and f2, e are as in (4.3), B1 and B2 are independent
Brownian motions, and, for some H1,H2

: R ! R, u is the unique stochastic viscosity
solution of

du þ H1ðuxÞ ( dB1 þH2ðuxÞ ( dB2 ¼ 0 in R# ð0,1Þ and uð', 0Þ ¼ u0 in R:
(4.17)

To compute H1 and H2, we appeal to the following lemma, whose proof is omitted
(see [20] for similar computations). Below, define hVi :¼

Ð 1
0 VðyÞdy for any V 2 CðTÞ:

Lemma 4.6. Let F 2 CðTÞ. Then, for any p 2 R, the equation
jpþ v0ðyÞjþ FðyÞ ¼ HðpÞ in T (4.18)

admits a viscosity solution v 2 CðTÞ if and only if HðpÞ ¼ max maxy2TFðyÞ, jpjþ hFi
- .

:
Using the formulae in (4.11) and Lemma 4.6, with either f or – f taking the place of

F, we explicitly compute H1 and H2, depending on two cases.
If 0 . max f + hf i < hf i+min f , then

H1ðpÞ ¼

max f +min f
2

if jpj . max f + hf i,
1
2
jpjþ 1

2
hf i+min f
+ ,

if max f + hf i < jpj . hf i+min f ,

jpj if jpj > hf i+min f ,

8
>>><

>>>:

and

H2ðpÞ ¼

max f þmin f
2

if jpj . max f + hf i,
1
2
jpjþ 1

2
hf iþmin f
+ ,

if max f + hf i < jpj . hf i+min f ,

hf i if jpj > hf i+min f :

8
>>><

>>>:

If 0 . hf i+min f < max f + hf i, then

H1ðpÞ ¼

max f +min f
2

if jpj . hf i+min f ,
1
2
jpjþ 1

2
max f + hf i
+ ,

if hf i+min f < jpj . max f + hf i,
jpj if jpj > max f + hf i,

8
>>><

>>>:
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and

H2ðpÞ ¼

max f þmin f
2

if jpj . hf i+min f ,
1
2
jpjþ 1

2
max f + hf i
+ ,

if hf i+min f < jpj . max f + hf i,
hf i if jpj > max f + hf i:

8
>>><

>>>:

4.4. Interfacial motions

Theorem 4.1 can be used to prove Theorem 1.4 from the Introduction, concerning the
first-order, level-set problem

uet þ
1
ec
Xm

i¼1

ai
x
e

! "
ni

t
e2c

,x
! "

Duej ¼ 0 in Rd # ð0,1Þ and ueð', 0Þ ¼ u0 in Rd,
%%

(4.19)

where

ni satisfies ð4:10Þ and ai 2 C0, 1ðTdÞ for all i ¼ 1, 2, :::,m, and
Xm

k¼1

aknk 6¼ 0 on Td for all n 2 f+1, 1gm:

8
><

>:
(4.20)

The Hamiltonians Hiðp, xÞ :¼ aiðxÞjpj then satisfy (4.8). In this case, the effective
Hamiltonian H given by (4.5) is positively homogenous in the gradient variable, and,
from the formula in (4.11), so are each of the H j for j 2 Am

o : Therefore, each H j has
the form H jðpÞ :¼ ajðp=jpjÞjpj for some aj : Sd+1 ! R: For some independent Brownian
motions ðBjÞj2Am

o
, the limiting equation is then

du þ
X

j2Am
o

aj
Due

Duej j

! "
Duej j ( dBj ¼ 0 in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd:

4.5 A nonconvex example

We now turn to Theorem 1.3 from the introduction. The relevant objects are defined
just as in the work of Luo, Tran, and Yu [27].
Let F : R ! R be a smooth, even function such that

for some 0 < h3 < h2 < h1, Fð0Þ ¼ 0, Fðh2Þ ¼
1
2
, Fðh1Þ ¼ Fðh3Þ ¼

1
3
, lim
r!1

FðrÞ ¼ þ1,

F is strictly increasing on ½0, h2, [ ½h1, þ1Þ and strictly decreasing on ½h2, h1,,

(

(4.21)

and, for 0 < s < 1, define Vs : R ! R to be periodic such that
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VsðxÞ :¼

x
s

if 0 . x . s and
1+ x
1+ s

if s < x . 1:

8
><

>:
(4.22)

For n1 and n2 as in (4.10), we consider the equation

uet þ
1
ec
FðuexÞn

1 t
e2c

,x
! "

þ 1
ec
Vs

x
e

! "
n2

t
e2c

,x
! "

¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R:

8
<

:

(4.23)

If F is replaced with a convex function, then (4.23) falls within the scope of Theorem
4.1, and the limiting equation resembles (4.17). However, the nonconvexity of F and the
“crooked” structure of Vs for s 6¼ 1=2 imply that the effective Hamiltonian H :
R# f+1, 1g2 ! R given by the cell problem

Fðpþ v0ðyÞÞn1 þ VsðyÞn2 ¼ Hðp, n1, n2Þ in R

is not fully 1-homogenous in the f+1, 1g2-variable. As a result, in the decomposition

Hð', n1, n2Þ ¼ H0 þ H1
n1 þ H2

n2 þ Hf1, 2g
n1n2 for n1, n2 2 f+1, 1g

given by Lemma 4.2, the term Hf1, 2g does not vanish. However, it is the case, as we
show below, that H0 ¼ 0, so that (4.23) does not exhibit ballistic behavior as e ! 0:
Let Hs be the effective Hamiltonian associated to the Hamiltonian Hsðp, xÞ :¼ FðpÞ +

VsðxÞ: In Appendix B, we obtain an explicit formula for Hs, and deduce, in particular, that
Hs satisfies (A.4). Moreover, as was established in [27], we have Hs 6¼ Hs0 unless s ¼ s0:
Simple manipulations of the cell problem, properties of viscosity solutions, and the

symmetry properties

Vsð1+ xÞ ¼ V1+sðxÞ and VsðxÞ ¼ 1+ V1+sðx + sÞ for all s 2 ð0, 1Þ, x 2 T

lead to the identities Hð', 1, 1Þ ¼ H1+s þ 1, Hð', 1, + 1Þ ¼ Hs, Hð', + 1, 1Þ ¼ +H1+s,
and Hð', + 1, + 1Þ ¼ +Hs + 1, and so Lemma 4.2 gives

H0 ¼ 0, H1 ¼ Hs þ H1+s þ 1
2

, H2 ¼ 1
2
, and Hf1, 2g ¼ H1+s + Hs

2
:

A similar proof as for Theorem 4.1 then gives the following:

Theorem 4.2. Assume 0 < c < 1=6, u0 2 UCðRÞ, F and Vs are as in (4.21) and (4.22), n1

and n2 are as in (4.10), the paths ðfj, eÞj2A2 are defined as in (4.11), and ue is the solution
of (4.23). Then, as e ! 0, ðue, ðfj, eÞj2A2Þ converges locally uniformly and in distribution to
ðu, ðBjÞj2A2Þ, where u is the unique stochastic viscosity solution of

du þHsðuxÞ þH1+sðuxÞ þ 1
2

( dB1 þ 1
2
( dB2 þH1+sðuxÞ +HsðuxÞ

2
( dBf1, 2g ¼ 0 in R# ð0,1Þ and

uð', 0Þ ¼ u0 in R:

8
<

:
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To finish this discussion and the proof of Theorem 1.3, we mention that the inde-
pendence of the fields n1 and n2 is used in the above result, in particular, through the
application of Lemma 4.3. Indeed, for a single field n satisfying (4.10), consider the
equation

uet þ
1
ec

FðuexÞ + Vs
x
e

! "! "
n

t
e2c

! "
¼ 0 in R# ð0,1Þ and ueð', 0Þ ¼ u0 in R:

(4.24)

This equation is not covered by the result in the single-noise case, due to the fact that
(3.13) fails if s 6¼ 1=2 : ðHsÞ ¼ +H1+s 6¼ +Hs: As a consequence, we have the following:

Theorem 4.3. Assume 0 < c < 1, F and V are as in (4.21) and (4.22), n is as in (4.10),
and, for some fixed p0 2 R, ue is the solution of (4.24) with u0ðxÞ ¼ p0 ' x. Then, with
probability one, for all T> 0,

lim
e!0

sup
ðx, tÞ2R# 0,T½ ,

ecueðx, tÞ + H1+sðp0Þ + Hsðp0Þ
2

t
%%%%

%%%% ¼ 0:

Proof. The solution ue of the initial value problem

ue
t þ

1
ec
H ue

x, n
t
e2c

,x
! "

, n
t
e2c

,x
! "! "

¼ 0 in R# ð0,1Þ and

ueðx, 0Þ ¼ p0 ' x in R

8
<

:

takes the form ueðx, tÞ ¼ p0 ' xþ ec
Ð t=e2c
0 Hðp0, nðsÞ, nðsÞÞds: A similar argument as for

Lemma 4.4 gives, for some constant C> 0,

sup
ðx, tÞ2R# 0,T½ ,

ecueðx, tÞ + ecueðx, tÞj j . Cð1þ TÞe1+c:

The exponent is 1+ c, rather than 1=3+ c, because of the form of the initial datum
and Lemma 4.5(a).
Finally, the formula for H and the law of large numbers yield, with probability one,

lim
e!0

sup
ðx, tÞ2Rd# 0,T½ ,

ecueðx, tÞ + H1+sðp0Þ + Hsðp0Þ
2

t
%%%%

%%%% ¼ 0:

4.6. Dependence of the limit on the noise approximation

We return to the equation

uet þ
1
ec
juexjn

1 t
e2c

,x
! "

þ 1
ec
f

x
e

! "
n2

t
e2c

,x
! "

¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R,

8
<

: (4.25)

but we define the white noise approximations in such a way that the limiting equation
has a different law than (4.17), which, along with the computations in subsection 4.3,
proves Theorem 1.2 from the introduction.
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Let ðXk ,Yk ,ZkÞ1k¼0 be a collection of independent, Rademacher random variables, let
0 < b < a be such that a2 þ b2 ¼ 2 and aðmaxf + hf iÞ < bðhf i+minf Þ, and set

X1
k :¼ Xk and X2

k :¼
aþ b
2

Yk þ
a+ b
2

Zk:

Note that X1
k and X2

k are independent for each k, and

E Xi
k

& 0
¼ 0 and E Xi

k

& 02 ¼ 1: (4.26)

For i¼ 1, 2, define fið0Þ ¼ 0 and

_f
iðt,xÞ ¼ niðt,xÞ :¼

X1

k¼0

Xi
kðxÞ1ðk, kþ1ÞðtÞ and fi, eðt,xÞ ¼ ecfiðt=e2c,xÞ,

and, for j 2 f1g, f2g, f3g, f1, 2, 3gf g, define the approximating paths fj, eðtÞ :¼
ecfjðt=e2cÞ, where

ff1g, e :¼ f1, e, ff2gð0Þ ¼ ff3gð0Þ ¼ ff1, 2, 3gð0Þ :¼ 0,

_f
f2gðt,xÞ :¼

X1

k¼0

YkðxÞ1ðk, kþ1ÞðtÞ, _f
f3gðt,xÞ :¼

X1

k¼0

ZkðxÞ1ðk, kþ1ÞðtÞ, and

_f
f1, 2, 3gðt,xÞ :¼

X1

k¼0

XkðxÞYkðxÞZkðxÞ1ðk, kþ1ÞðtÞ:

8
>>>>>><

>>>>>>:

Equation (4.25) can then be written as

uet þ juexj _f
f1g, eðt,xÞ þ aþ b

2
f

x
e

! "
_f
f2g, eðt,xÞ þ a+ b

2
f

x
e

! "
_f
f3g, eðt,xÞ ¼ 0 in R# ð0,1Þ and

ueð', 0Þ ¼ u0 in R:

8
><

>:
(4.27)

Applying Theorem 4.1 then gives that, if 0 < c < 1=2, then, for some independent
Brownian motions Bj with j 2 ff1g, f2g, f3g, f1, 2, 3gg,

ðue, ff1g, e, ff2g, e, ff3g, e, ff1, 2, 3g, eÞ!e!0ðu,Bf1g,Bf2g,Bf3g,Bf1, 2, 3gÞ locally uniformly and in distribution,

where u is the stochastic viscosity solution of

du þHf1gðuxÞ ( dBf1g þ Hf2gðuxÞ ( dBf2g þHf3gðuxÞ ( dBf3g

þHf1, 2, 3gðuxÞ ( dBf1, 2, 3g ¼ 0 in R# ð0,1Þ and
uð', 0Þ ¼ u0 in R:

8
><

>:
(4.28)

The formulae for the effective Hamiltonians are given below, and, as can be checked,
the laws of the solutions of (4.17) and (4.28) differ in general, even when u0ðxÞ :¼ p0 ' x
for some fixed p0 2 Rd :
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Hf1gðpÞ :¼

aþ b
4

ðmax f +min f Þ if 0 . jpj . bðmax f + hf iÞ,

1
4
jpjþ a

4
ðmax f +min f Þ þ b

4
ðhf i+min f Þ if bðmax f + hf iÞ . jpj . aðmax f + hf iÞ,

1
2
jpjþ aþ b

4
ðhf i+min f Þ if aðmax f + hf iÞ . jpj . bðhf i+min f Þ,

3
4
jpjþ a

4
ðhf i+min f Þ if bðhf i+min f Þ . jpj . aðhf i+min f Þ,

jpj if jpj ) aðhf i+min f Þ,

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Hf2gðpÞ :¼

aþ b
4

ðmax f þmin f Þ if 0 . jpj . bðmax f + hf iÞ,

1
4
jpjþ a

4
ðmax f þmin f Þ þ b

4
ðhf iþmin f Þ if bðmax f + hf iÞ . jpj . aðmax f + hf iÞ,

1
2
jpjþ aþ b

4
ðhf iþmin f Þ if aðmax f + hf iÞ . jpj . bðhf i+min f Þ,

1
4
jpjþ a

4
ðhf iþmin f Þ þ b

2
hf i if bðhf i+min f Þ . jpj . aðhf i+min f Þ,

aþ b
2

hf i if jpj ) aðhf i+min f Þ,

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Hf3gðpÞ :¼

a+ b
4

ðmax f þmin f Þ if 0 . jpj . bðmax f + hf iÞ,

+ 1
4
jpjþ a

4
ðmax f þmin f Þ + b

4
ðhf iþmin f Þ if bðmax f + hf iÞ . jpj . aðmax f + hf iÞ,

a+ b
4

ðhf iþmin f Þ if aðmax f + hf iÞ . jpj . bðhf i+min f Þ,

1
4
jpjþ a

4
ðhf iþmin f Þ + b

2
hf i if bðhf i+min f Þ . jpj . aðhf i+min f Þ,

a+ b
2

hf i if jpj ) aðhf i+min f Þ,

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

and

Hf1, 2, 3gðpÞ :¼

a+ b
4

ðmaxf +minf Þ if 0 . jpj . bðmaxf + hf iÞ,

+ 1
4
jpjþ a

4
ðmaxf +minf Þ + b

4
ðhf i+minf Þ if bðmaxf + hf iÞ . jpj . aðmaxf + hf iÞ,

a+ b
4

ðhf i+minf Þ if aðmaxf + hf iÞ . jpj . bðhf i+minf Þ,

+ 1
4
jpjþ a

4
ðhf iþminf Þ if bðhf i+minf Þ . jpj . aðhf i+minf Þ,

0 if jpj ) aðhf i+minf Þ:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:
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Appendix A Pathwise Hamilton-Jacobi equations

We give a brief overview of some facts that are needed in this paper regarding pathwise, or sto-
chastic, viscosity solutions of the initial value problems

du ¼ HðDu, xÞ ' df in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd (A.1)

and

du ¼
Xm

i¼1

HiðDuÞ ' dfi in Rd # ð0,1Þ and uð', 0Þ ¼ u0 in Rd, (A.2)

where H 2 CðRd # RdÞ,H1,H2, :::,Hm 2 CðRdÞ, f, f1, f2, :::, fm 2 Cð½0,1Þ,RÞ, and u0 2 UCðRdÞ:
For more details, including the definitions of stochastic viscosity sub- and super-solutions and
proofs of well-posedness, see [1–6, 18, 28, 29].

Both problems (A.1) and (A.2) fall under the scope of the classical viscosity solution theory if
the driving paths are continuously differentiable, or, more generally, have finite total variation.
See [30] for details on the former and [31, 32] for the latter. The theory of pathwise viscosity sol-
utions was developed by Lions and Souganidis [3, 4, 6] to study equations like (A.1) and (A.2)
when the driving paths are merely continuous.

The pathwise viscosity solution of (A.1) or (A.2) may be identified by extending the solution
operator for the equation from smooth to continuous paths. More precisely, for a fixed u0 2
UCðRdÞ, let Su0 : C

1ð½0,1ÞÞ ! CðRd # ð0,1ÞÞ denote either the solution operator for (A.1) or
(A.2), both of which, under certain structural conditions on the Hamiltonians, are well-defined
with the classical viscosity solution theory.
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We then say that (A.1) or (A.2) has a unique extension to continuous paths if

Su0 : C
1ð½0,1ÞÞ ! CðRd # ½0,1ÞÞ extends continuously

to Cð½0,1ÞÞ for any u0 2 UCðRdÞ:

(

(A.3)

As in the classical viscosity theory, there is also a notion of continuous stochastic viscosity solu-
tions that is defined using semi-continuous sub- and super-solutions, for which a comparison
principle has been proved in a variety of settings. The existence of the unique solution can then
be proved alternatively through Perron’s method, as by the author in [29]. The notions of path-
wise sub- and super-solutions are not used in this work, so we do not focus on them in this sec-
tion. In view of the stability properties of pathwise stochastic viscosity solutions, it is always the
case that the solution of (A.1) or (A.2) obtained by extending the solution operator is a pathwise
viscosity sub- and super-solution.

There is a wide class of Hamiltonians for which the spatially homogenous equation (A.2) is
well-posed, as was shown by Lions and Souganidis in [3]. In fact, the equation is well-posed if
and only if each Hamiltonian is a difference of convex functions. In the context of the homogen-
ization results in the body of this paper, this is important because the effective Hamiltonians
need not be smooth in general.

Theorem A.1 (Lions, Souganidis [3]). The solution operator for (A.2) extends continuously in
the sense of (A.3) if and only if each Hamiltonian Hi satisfies

H ¼ H1 +H2 for some convex H1,H2 : Rd ! R: (A.4)

Moreover, given L> 0, there exists C ¼ CL > 0 such that, for all u0 2 C0, 1ðRdÞ with kDu0k1 . L
and f1, f2 2 Cð½0,1Þ,RmÞ, if Su0 : Cð½0,1Þ,RmÞ ! CðRd # ½0,1ÞÞ is the solution operator for
(A.2), then

sup
ðx, tÞ2Rd# 0,T½ ,

Su0ðf1Þðx, tÞ + Su0ðf2Þðx, tÞj j . Cmaxt2 0,T½ , f1ðtÞ + f2ðtÞj j:

The nontrivial spatial dependence in (A.1) makes the question of well-posedness more compli-
cated. It has been proved for certain classes of Hamiltonians (see [1, 6, 18, 28]). We prove here a
quantitative form of (A.3) under less stringent regularity and structural requirements, as long as
the Hamiltonian is convex and has uniform growth in the gradient variable:

H 2 CðRd # RdÞ, p 7!Hðp, xÞ is convex for all x 2 Rd, and

there exist convex, increasing functions ! , ! : 0,1Þ ! R such that !ðjpjÞ . Hðp, xÞ . !ðjpjÞ for all ðp, xÞ 2 Rd # Rd:
&

(

(A.5)

For two smooth (or piecewise smooth) paths f1, f2 : ½0,1Þ ! R and u10, u
2
0 2 C0, 1ðRdÞ, consider

the viscosity solutions u1 and u2 of

ujt ¼ HðDuj, xÞ _fj in Rd # ð0,1Þ and ujð', 0Þ ¼ uj0 in Rd: (A.6)

Theorem A.2. Set L :¼ maxðkDu10k1, kDu20k1Þ. Then, for all t> 0 and for j¼ 1, 2,

kDujð', tÞk1 . !+1 !ðLÞð Þ,
and, for all T> 0,

max
ðx, tÞ2Rd# 0,T½ ,

u1ðx, tÞ + u2ðx, tÞ
%% %% . max

x2Rd
u10ðxÞ + u20ðxÞ
%% %%þ !ðLÞmax

t2 0,T½ ,
f1ðtÞ + f2ðtÞ
%% %%

þ !ð0Þ+ max
t2 0,T½ ,

f1ðtÞ + f2ðtÞ
%% %%+ ðf1ðTÞ + f2ðTÞÞ

! "
:

We remark that a similar result was obtained by Gassiat, Gess, Lions, and Souganidis [33] using
slightly different methods, as a tool to study some finer properties of solutions, such as the can-
celation of oscillations and speed of propagation.
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Both results in Theorem A.2 follow from the next proposition. The hypotheses require more
regularity for the Hamiltonian than is specified by (A.5). The proof of Theorem A.2 then involves
a further regularization of H, and the result will follow upon obtaining estimates that do not
depend on the regularization parameter.

The proof below uses similar strategies as those in [1, 18, 28].

Proposition A.1. Assume that H satisfies (A.5),

H 2 C2
bðBR # RdÞ for all R > 0, and D2

pH isstrictly positive: (A.7)

For u0, v0 2 UCðRdÞ and f, g 2 C1ð½0,1ÞÞ with f0 ¼ g0, let u be a sub-solution of

ut ¼ HðDu, xÞ _fðtÞ in Rd # ð0,1Þ, uð', 0Þ ¼ u0 on Rd,

and v a super-solution of

vt ¼ HðDv, xÞ _gðtÞ in Rd # ð0,1Þ, vð', 0Þ ¼ v0 on Rd:

Then, for all T> 0 and 0 < k < ðmax0.t.Tðft + gtÞ+Þ
+1,

sup
ðx, y, tÞ2Rd#Rd# 0,T½ ,

uðx, tÞ + vðy, tÞ + 1
k
þ ft + gt

! "
! - kjx+ yj

1þ kðft + gtÞ

! " !

. sup
ðx, yÞ2Rd#Rd

u0ðxÞ + v0ðyÞ +
1
k
!-ðkjx+ yjÞ

! "
:

Equipped with Proposition A.1, we proceed with the
Proof of Theorem A.2. Step 1. Assume first that H satisfies (A.7) in addition to (A.5).

Applying Proposition A.1 to the case u ¼ v ¼ u1 and f ¼ g ¼ f1 yields, for all
ðx, y, tÞ 2 Rd # Rd # ð0,1Þ,

u1ðx, tÞ + u1ðy, tÞ . inf
k>0

1
k
! -ðkjx+ yjÞ þ sup

s)0
Ls+ 1

k
!-ðksÞ

) *( )

¼ inf
k>0

! -ðkjx+ yjÞ þ !ðLÞ
k

)

¼ !+1ð!ðLÞÞ x+ yj:j

8
<

:

Thus kDu1ð', tÞk1 . !+1ð!ðLÞÞ, and similarly for u2.
Now setting ðu, v, f, gÞ :¼ ðu1, u2, f1, f2Þ in Proposition A.1 gives

u1ðx, tÞ + u2ðx, tÞ . 1
k
+ ðf1t + f2t Þ

! "
! -ð0Þ þmax

x2Rd
u10ðxÞ + u20ðxÞ
%% %%þ 1

k
!ðLÞ:

We conclude with k ¼ ðmaxs2½0, t, f
1
s + f2s

%% %%Þ+1 and not-
ing ! -ð0Þ ¼ +minr)0!ðrÞ ¼ +!ð0Þ . !ð0Þ+:

Step 2. We now return to the general case, where H satisfies only (A.5). Let / 2 C2ðRdÞ be
nonnegative and supported in B1ð0Þ with

Ð
/ ¼ 1, and, for q > 0, define /qðzÞ :¼ q+d/ðz=qÞ

and

Hqðp, xÞ :¼ qjpj2 þ
ð ð

Rd#Rd
Hðq, yÞ/qðp+ qÞ/qðx+ yÞ dq dy:

It is straightforward to verify that limq!0 Hq ¼ H locally uniformly, and Hq satisfies both (A.5)
and (A.7) with the growth functions !qðsÞ :¼ qs2 þ !ðsþ qÞ and ! qðsÞ :¼ qs2 þ !ððs+ qÞþÞ:

Let u1q and u2q be as in the statement of Theorem A.2 for Hq: As proved above, u1q and u2q sat-
isfy the Lipschitz bound and stability estimate for !q and ! q: Classical arguments from the the-
ory of viscosity solutions yield the local uniform convergence, as q ! 0, of ujq to uj for j¼ 1, 2,
where uj are as in the statement of Theorem A.2 for H. Since !q and ! q converge, as q ! 0, to
! and ! , the proof is complete. w
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We now prove Proposition A.1, which is a generalization of Proposition A.2 in [18].
For x, y 2 Rd and s > 0, define Aðx, y, sÞ :¼ c 2 W1,1ð½0, s,,RdÞ : c0 ¼ x, cs ¼ y

- .
and

Lðx, y, sÞ :¼ inf
ðs

0
H- + _cs, csð Þds : c 2 Aðx, y, sÞ

) *
: (A.8)

We summarize the main properties of this distance function in the next lemma. We omit the
proof, as it follows more or less in the same way as in Lemma A.1 of [18].

For R> 0, define DR :¼ ðx, yÞ 2 Rd # Rd : jx+ yj . R
- .

:

Lemma A.1. Assume that H satisfies (A.7). Then the following hold:

a. L is a viscosity solution of @L
@s ¼ HðDxL, xÞ and @L

@s ¼ Hð+DyL, yÞ in Rd # Rd # ð0,1Þ:

b. For all x, y 2 Rd and s > 0, s!- jx+yj
s

# $
. Lðx, y, sÞ . s! - jx+yj

s

# $
. Furthermore, there exists c 2

Aðx, y, sÞ such that Lðx, y, sÞ ¼
Ð s
0 H

-ð+ _cs, csÞds, and, for some c ) 1 and almost every
s 2 ½0, s,,

jx+ yj
cs

. j _csj .
cjx+ yj

s
:

c. For all R > 0, there exists a constant C ¼ CR > 0 such that

jDxLjþ jDyLj . C and D2L . C Id on DR #
1
R
,R

1 2
:

The upper bound on D2L means that L is semiconcave in space. As the next result demonstrates,
this allows L to be used as a test function at an important point in the proof of Proposition A.1,
despite the fact that L is not in general C1.

Lemma A.2. Under the same assumptions as Lemma A.1, assume that / 2 C2ðRd # RdÞ and
Lð', ' , s0Þ + / attains a local minimum at (x0, y0). Then L is differentiable at ðx0, y0, s0Þ with

ðDxLðx0, y0, s0Þ,DyLðx0, y0, s0ÞÞ ¼ ðDx/ðx0, y0Þ,Dy/ðx0, y0ÞÞ and
@L
@s

ðx0, y0, s0Þ ¼ HðDxLðx0, y0, s0Þ, x0Þ ¼ Hð+DyLðx0, y0, s0Þ, y0Þ:

8
<

:

Proof. In view of the semiconcavity of Lð', ' , s0Þ on Rd # Rd, the super-differential of Lð', '
, s0Þ is nonempty at every point. Meanwhile, ðp0, q0Þ :¼ D/ðx0, y0Þ belongs to the sub-differential
of Lð', ' , s0Þ at (x0, y0). This implies that Lð', ' , s0Þ is differentiable at (x0, y0), and the first line
above holds.

Choose wþ,w+ 2 C2ðRd # RdÞ such that w+ . Lð', ' , s0Þ . wþ,w+ðx0, y0Þ ¼ Lðx0, y0, s0Þ ¼
wþðx0, y0Þ, and Dw+ðx0, y0Þ ¼ Dwþðx0, y0Þ ¼ ðp0, q0Þ: The method of characteristics then gives,
for sufficiently small l > 0, solutions W6 2 C2ðRd # Rd # ðs0 + l, s0 þ lÞÞ of the equations

@W6

@s
ðx, y, sÞ ¼ HðDxW6ðx, y, sÞ, xÞ in Rd # Rd # ðs0 + l, s0 þ lÞ:

The comparison principle and Lemma A.1(a) then yield

W+ðx, y, sÞ . Lðx, y, sÞ . Wþðx, y, sÞ for all ðx, y, sÞ 2 Rd # Rd # ðs0 + l, s0 þ lÞ: (A.9)

Finally, the regularity of H and the equations for W6 allow for the Taylor expansion

W6ðx, y, sÞ ¼ Lðx0, y0, s0Þ þ p ' ðx+ x0Þ þ q ' ðy+ y0Þ
þHðp0, x0Þðs+ s0Þ þ Oðjx+ x0j2 þ jy+ y0j2 þ js+ s0j2Þ:
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Together with (A.9), this shows that L is differentiable at ðx0, y0, s0Þ and
@L
@s

ðx0, y0, s0Þ ¼ HðDxLðx0, y0, s0Þ, x0Þ:

A similar argument using the equation dW
ds ¼ Hð+DyW, yÞ gives the final desired equality

@L
@s

ðx0, y0, s0Þ ¼ Hð+DyLðx0, y0, s0Þ, y0Þ:

Proof of Proposition A.1. We first note that it suffices to assume that u0 and v0 are bounded.
Because the resulting estimates do not depend on ku0k1 or kv0k1, the general result can be
obtained through an approximation procedure and the local uniform stability of the equations
with respect to the initial data.

Classical viscosity solution arguments show that zðx, y, tÞ :¼ uðx, tÞ + vðy, tÞ is a sub-solution
of

zt ¼ HðDxz, xÞ_f +Hð+Dyz, yÞ _g in Rd # Rd # ð0,1Þ: (A.10)

For 0 < k < ðmax0.t.Tðft + gtÞ+Þ
+1, define Ukðx, y, tÞ :¼ Lðx, y, k+1 þ ft + gtÞ: A simple compu-

tation and Lemma A.1(a) reveal that U satisfies (A.10) at any point (x, y, t) of differentiability.
Next, for 0 < b < 1 and l > 0, define

Wðx, y, tÞ :¼ uðx, tÞ + vðy, tÞ + Ukðx, y, tÞ +
b
2
ðjxj2 þ jyj2Þ + lt:

The comparison principle from the classical viscosity solution theory yields that juðx, tÞj . M
and jvðx, tÞj . M on Rd # ½0,T,, where

M ¼ max ku0k1 þmaxðj!ð0Þj, j!ð0ÞjÞmax
0.t.T

jfðtÞj, kv0k1 þmaxðj!ð0Þj, j!ð0ÞjÞmax
0.t.T

jgðtÞj
n o

:

Therefore, W attains a maximum on Rd # Rd # ½0,T, at some ðx̂, ŷ, t̂Þ that depends on b, k, and
l. Assume for the sake of contradiction that t̂ > 0:

Rearranging terms in the inequality Wð0, 0, t̂Þ . Wðx̂, ŷ, t̂Þ gives
b
2
ðjx̂j2 þ jŷj2Þ . uðx̂, t̂Þ + vðŷ, t̂Þ + ðuð0̂, t̂Þ + vð0̂, t̂ÞÞ . 4M: (A.11)

The inequality Wðŷ, ŷ, t̂Þ . Wðx̂, ŷ, t̂Þ and Lemma A.1(b) yield

1
k
þ ft̂ + gt̂

! "
!- kjx+ yj

1þ kðft̂
+ gt̂ Þ

! "
. uðx̂, t̂Þ + uðŷ, t̂Þ þ b

2
ðjŷj2 + jx̂j2Þ . 6M: (A.12)

Then (A.11) and (A.12) together imply that, for some R> 0 depending on k, M, kfk1,T , and
kgk1,T , but independent of b, ðx̂, ŷÞ 2 XR,b, where

XR,b :¼ DR \ BRb+1=2 ¼ ðx, yÞ 2 Rd # Rd : jxj2 þ jyj2
+ ,1=2 . Rb+1=2 and jx+ yj . R

n o
:

In the arguments that follow, the constant C> 0 depends only on R, and may change from line
to line.

For 0 < d < 1, set

Wdðx, y, z,w, tÞ :¼ uðx, tÞ + vðy, tÞ + 1
2d

ðjx+ zj2 þ jy+ wj2Þ + Ukðz,w, tÞ

+ b
2
ðjzj2 þ jwj2Þ + lt + 1

2
jx+ x̂j2 þ jy+ ŷj2 þ jt + t̂j2
+ ,

and assume that the maximum of Wd on XR,b # XR, b # ½0,T, is attained at ðxd, yd, zd,wd, tdÞ:
Similar arguments as in the proof of Proposition A.2 from [18] then yield
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jxd + zdjþ jyd + wdjþ jxd + x̂j2 þ jyd + ŷj2 þ jtd + t̂j2 . Cd:

Therefore, for all small d, ðxd, yd, zd,wd, tdÞ is a local interior maximum point of Wd
in XR,b # XR, b # ð0,TÞ:

Since

ðx, y, tÞ 7! uðx, tÞ + vðy, tÞ + 1
2d

jx+ zdj2 þ jy+ wdj2
+ ,

+Ukðzd,wd, tÞ + lt + 1
2

jx+ x̂j2 + jy+ ŷj2 + jt + t̂j2
+ ,

attains an interior maximum at ðxd, yd, tdÞ, the definition of viscosity solutions yields

lþ td + t̂ þ Uk, tðzd,wd, tdÞ . H
xd + zd

d
þ xd + x̂, xd

! "
_ftd +H + yd + wd

d
+ ðyd + ŷÞ, yd

! "
_gtd :

Next, ðzd,wdÞ is a minimum point of

ðz,wÞ 7!Ukðz,w, tdÞ þ
1
2d

ðjxd + zj2 þ jyd + wj2Þ þ b
2
ðjzj2 þ jwj2Þ:

In view of Lemma A.2, Uk is differentiable at ðzd,wd, tdÞ, and so

DxUkðzd,wd, tdÞ ¼
xd + zd

d
+ bzd,

DyUkðzd,wd, tdÞ ¼
yd + wd

d
+ bwd, and

Uk, tðzd,wd, tdÞ ¼ HðDxUkðzd,wd, tdÞ, zdÞ _ftd +Hð+DyUkðzd,wd, tdÞ,wdÞ _gtd :

8
>>><

>>>:

It follows that

lþ td + t̂ þ Uk, tðzd,wd, tdÞ . H DxUkðzd,wd, tdÞ þ bzd þ xd + x̂, xdð Þ _ntd
+H +DyUkðzd,wd, tdÞ + bwd + ðyd + ŷÞ, yd

+ , _ftd :

The bounds for ðx̂, ŷ, t̂Þ and ðxd, yd, zd,wd, tdÞ and the local Lipschitz regularity of H yield

l . Cðb1=2 þ d1=2 þ dÞ k _nk1,T þ k _fk1,T

# $
:

We obtain a contradiction for sufficiently small enough d and b.
Therefore, for all l > 0 and t 2 ½0,T,,

lim
b!0

sup
ðx, yÞ2Rd#Rd

uðx, tÞ + vðy, tÞ + Ukðx, y, tÞ +
b
2
ðjxj2 þ jyj2Þ

! "

¼ sup
ðx, yÞ2Rd#Rd

uðx, tÞ + vðy, tÞ + Ukðx, y, tÞ
+ ,

. sup
ðx, yÞ2Rd#Rd

u0ðxÞ + v0ðyÞ + Lðx, y, 1=kÞ
+ ,

þ lt:

The desired inequality is established upon letting l ! 0 and using the bounds in Lemma
A.1(b). w
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Appendix B Calculation of a nonconvex effective Hamiltonian

Let F : R ! R be a smooth, even function such that

for some 0 < h3 < h2 < h1, Fð0Þ ¼ 0, Fðh2Þ ¼
1
2
, Fðh1Þ ¼ Fðh3Þ ¼

1
3
, lim
r!1

FðrÞ ¼ þ1,

F is strictly increasing on 0, h2½ , [ h1, þ1Þ and strictly decreasing on h2, h1½ ,,
&

8
<

:

(B.1)

and, for 0 < s < 1, define the 1-periodic function Vs : T ! T by

VsðxÞ :¼

x
s

if 0 . x . s and
1+ x
1+ s

if s < x . 1:

8
><

>:

The goal is to obtain a formula for the effective Hamiltonian associated
to Hsðp, xÞ ¼ FðpÞ + VsðxÞ:

Some elements of the proof below are used in [27], where it is shown that Hs ¼ Hs0 if and
only if s ¼ s0: For our purposes, in view of Theorem A.1, it is necessary to establish that Hs satis-
fies (A.4), which does not follow immediately from standard results from periodic homogeniza-
tion. The formula in Proposition B.1 implies, in particular, that Hs is Lipschitz and piecewise
smooth, and, hence, (A.4) is satisfied.

As in [27], define the functions

w1 :¼ ðFj½h1,1ÞÞ
+1 :

1
1
3
, þ1

"
! ½h1, þ1Þ,

w2 :¼ ðFj½h2, h1,Þ
+1 :

1
1
3
,
1
2

2
! ½h2, h1,, and

w3 :¼ ðFj½0, h2,Þ
+1 :

1
0,

1
2

2
! ½0, h2,:

8
>>>>>>><

>>>>>>>:

We identify the following points 0 < pþ, s < q+, s < qþ, between which Hs changes its shape:

pþ, s :¼
Ð 1=3
0 w3ðyÞdyþ

Ð 1
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ þ ð1+ sÞw3ðyÞ

& 0
dy,

q+, s :¼
Ð 4=3
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ þ ð1+ sÞw3ðyÞ

& 0
dy, and

qþ :¼
Ð 4=3
1=3 w1ðyÞdy:

8
>>><

>>>:
(B.2)

Proposition B.1. The function Hs can be characterized as follows:

a. If 0 . p . pþ, s, then HsðpÞ ¼ 0:
b. If pþ, s . p . q+, s then HsðpÞ is the unique constant k 2 ½0, 1=3, for which

p ¼
ð1=3

k
w3ðyÞdyþ

ð1þk

1=2
w1ðyÞdyþ

ð1=2

1=3
sw1ðyÞ þ ð1+ sÞw3ðyÞ
& 0

dy:

c. If q+, s . p . qþ, then HsðpÞ ¼ 1
3 :

d. If p ) qþ, then HsðpÞ is the unique constant k ) 1
3 for which

p ¼
ð1þk

k
w1ðyÞdy:

e. If p < 0, then HsðpÞ ¼ H1+sð+pÞ:
Obtaining the formula for HsðpÞ involves constructing viscosity solutions of the equation

Fðw0ðyÞÞ + VsðyÞ ¼ k in R (B.3)

32 B. SEEGER



such that wðxÞ + px is periodic, which is possible only for the unique constant k ¼ HsðpÞ: We
make use of the following lemma, whose proof is a consequence of the definition of viscos-
ity solutions:

Lemma B.1. Assume that Fðf ðyÞÞ þ VsðyÞ ¼ k at all points y 2 R at which f is continuous, and,
whenever

y0 2 R, p1 :¼ f ðy+0 Þ, and p2 :¼ f ðyþ0 Þ,

then Fðp1Þ ¼ Fðp2Þ ¼ kþ Vsðy0Þ and
p1 < p2 ) FðpÞ ) kþ Vsðy0Þ for p 2 p1, p2½ ,,
p1 > p2 ) FðpÞ . kþ Vsðy0Þ for p 2 p2, p1½ ,:

Then fy 7!wðyÞ :¼
Ð y
0 f ðxÞdxg is a viscosity solution of (B.3), and Hð

Ð 1
0 f ðxÞdxÞ ¼ k:

For the rest of the section, we construct correctors using Lemma B.1 as a blueprint, that is, for
each p 2 R, we construct f as in the hypotheses of Lemma B.1 for the correct constant HsðpÞ:

Define the points p0, s < p4 < p3 < p2 < p1 < pþ, s by

p0, s :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ ð2s+ 1Þ

Ð 1
1=3 w1ðyÞdy,

p1 :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð 1
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ þ ð1+ sÞw3ðyÞ

& 0
dy,

p2 :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð 1
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ + ð1+ sÞw3ðyÞ

& 0
dy,

p3 :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð 1
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ + ð1+ sÞw2ðyÞ

& 0
dy, and

p4 :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð 1
1=2 w1ðyÞdyþ ð2s+ 1Þ

Ð 1=2
1=3 w1ðyÞdy:

8
>>>>>>>><

>>>>>>>>:

(B.4)

The formula for HsðpÞ will be established for all p ) p0, s, and the formula for the remaining gra-
dients follows because p0, 1+s ¼ +p0, s and H1+sðpÞ :¼ Hsð+pÞ:

Case 1: p1 . p . pþ, s and k5 0. Define s 2 ½0, 1=3, uniquely by

p ¼ ð2s+ 1Þ
ðs

0
w3ðyÞdyþ

ð1=3

s
w3ðyÞdyþ

ð1=2

1=3
sw1ðyÞ þ ð1+ sÞw3ðyÞ
& 0

dyþ
ð1

1=2
w1ðyÞdy

and set

f ðxÞ :¼

/3ðVsðxÞÞ if x 2 0,
s
3

! "
[ 1þ s

2
, 1+ sð1+ sÞ

! "
,

/1ðVsðxÞÞ if x 2 s
3
,
1þ s
2

! "
,

+/3ðVsðxÞÞ if x 2 1+ sð1+ sÞ, 1ð Þ:

8
>>>>><

>>>>>:

Case 2: p2 . p . p1 and k5 0. Define s 2 ½1=3, 1=2, uniquely by

p ¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð s
1=3 sw1ðyÞ + ð1+ sÞw3ðyÞ

& 0
dy

þ
Ð 1=2
s sw1ðyÞ + ð1+ sÞw3ðyÞ

& 0
dyþ

Ð 1
1=2 w1ðyÞdy

and set

f ðxÞ :¼

/3ðVsðxÞÞ if x 2 0,
s
3

! "
[ 1þ s

2
, 1+ sð1+ sÞ

! "
,

/1ðVsðxÞÞ if x 2 s
3
,
1þ s
2

! "
,

+/3ðVsðxÞÞ if x 2 1+ sð1+ sÞ, 1ð Þ:

8
>>>>><

>>>>>:
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Case 3: p3 . p . p2 and k5 0. Define s 2 ½1=3, 1=2, uniquely by

p :¼ ð2s+ 1Þ
Ð 1=3
0 w3ðyÞdyþ

Ð s
1=3 sw1ðyÞ + ð1+ sÞw3ðyÞ

& 0
dy

þ
Ð 1=2
s sw1ðyÞ + ð1+ sÞw2ðyÞ

& 0
dyþ

Ð 1
1=2 w1ðyÞdy

and set

f ðxÞ :¼

w3ðVsðxÞÞ if x 2 0,
s
3

! "
,

w1ðVsðxÞÞ if x 2 s
3
,
1þ s
2

! "
,

+w2ðVsðxÞÞ if x 2 1þ s
2

, 1+ sð1+ sÞ
! "

,

+w3ðVsðxÞÞ if x 2 1+ sð1+ sÞ, 1ð Þ:

8
>>>>>>>>><

>>>>>>>>>:

Case 4: p4 . p . p3 and k5 0. Define s 2 ½1=3, 1=2, uniquely by

p :¼ ð2s+ 1Þ
ð1=3

0
w3ðyÞdyþ ð2s+ 1Þ

ðs

1=3
w1ðyÞdyþ

ð1=2

s
sw1ðyÞ + ð1+ sÞw2ðyÞ
& 0

dyþ
ð1

1=2
w1ðyÞdy

and set

f ðxÞ :¼

w3ðVsðxÞÞ if x 2 0,
s
3

! "
,

w1ðVsðxÞÞ if x 2 s
3
,
1þ s
2

! "
,

+w2ðVsðxÞÞ if x 2 1þ s
2

, 1+ sð1+ sÞ
! "

,

+w1ðVsðxÞÞ if x 2 1+ sð1+ sÞ, 2þ s
3

! "
,

+w3ðVsðxÞÞ if x 2 2þ s
3

, 1

! "
:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Case 5: p0, s . p . p4 and k5 0. Define s 2 ½1=2, 1, uniquely by

p :¼ ð2s+ 1Þ
ð1=3

0
w3ðyÞdyþ ð2s+ 1Þ

ðs

1=3
w1ðyÞdyþ

ð1

s
w1ðyÞdy

and set

f ðxÞ :¼

w3ðVsðxÞÞ if x 2 0,
s
3

! "
,

w1ðVsðxÞÞ if x 2 s
3
, 1+ sð1+ sÞ

! "
,

+w1ðVsðxÞÞ if x 2 1+ sð1+ sÞ, 2þ s
3

! "
,

+w3ðVsðxÞÞ if x 2 2þ s
3

, 1

! "
:

8
>>>>>>>>>>><

>>>>>>>>>>>:
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Case 6: pþ, s . p . q+, s and k 2 ½0, 1=3, satisfies

p ¼
Ð 1=3
k w3ðyÞdyþ

Ð 1þk
1=2 w1ðyÞdyþ

Ð 1=2
1=3 sw1ðyÞ þ ð1+ sÞw3ðyÞ

& 0
dy:

f ðyÞ :¼
w3ðkþ VsðxÞÞ if s 2 0, ð1+ 3kÞ s

3

! "
[ 1þ s

2
þ kð1+ sÞ, 1

! "

w1ðkþ VsðxÞÞ if x 2 ð1+ 3kÞ s
3
,
1þ s
2

þ kð1+ sÞ
! "

:

8
>>><

>>>:

Before moving on to the next case, we define

q1 :¼
ð4=3

1=2
w1ðyÞdyþ

ð1=2

1=3
sw1ðyÞ þ ð1+ sÞw2ðyÞ
& 0

dy:

Case 7: q+, s . p . q1 and k ¼ 1=3: There exists a unique s 2 ½1=3, 1=2, such that

p ¼
ðs

1=3
sw1ðyÞ þ ð1+ sÞw2ðyÞ
& 0

dyþ
ð1=2

s
sw1ðyÞ þ ð1+ sÞw3ðyÞ
& 0

dyþ
ð4=3

1=2
w1ðyÞdy:

Let l 2 ½ð5þ sÞ=6, 1, be defined by

s ¼ 1
3
þ 1+ l

1+ s
2 1

3
,
1
2

1 2
,

and define

f ðxÞ :¼

w1ð1=3þ VsðxÞÞ if x 2 0,
5þ s
6

! "
,

w3ð1=3þ VsðxÞÞ if x 2 5þ s
6

, l
! "

w2ð1=3þ VsðxÞÞ if x 2 l, 1ð Þ:

8
>>>>><

>>>>>:

Case 8: q1 . p . qþ and k ¼ 1=3: There exists a unique s 2 ½1=3, 1=2, such that

p ¼
ðs

1=3
sw1ðyÞ þ ð1+ sÞw2ðyÞ
& 0

dyþ
ð4=3

s
w1ðyÞdy:

Let l 2 ½ð5þ sÞ=6, 1, be defined by

s ¼ 1
3
þ 1+ l

1+ s
2 1=3, 1=2½ ,,

and define

f ðxÞ :¼ w1ð1=3þ VsðxÞÞ if x 2 ð0, lÞ,
w2ð1=3þ VsðxÞÞ if x 2 ðl, 1Þ:

)

Case 9: If p ) qþ, s and k 2 ½1=3,1Þ satisfies p ¼
Ð 1þk
k w1ðyÞdy, then define

f ðxÞ :¼ w1ðkþ VsðxÞÞ:
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