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HOLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS
WITH STOCHASTIC FORCING

PIERRE CARDALIAGUET AND BENJAMIN SEEGER

ABSTRACT. We obtain space-time Holder regularity estimates for solutions of
first- and second-order Hamilton-Jacobi equations perturbed with an additive
stochastic forcing term. The bounds depend only on the growth of the Hamil-
tonian in the gradient and on the regularity of the stochastic coefficients, in a
way that is invariant with respect to a hyperbolic scaling.

1. INTRODUCTION

The objective of this paper is to study the Holder regularity for solutions of
stochastically perturbed equations of the form

(1.1) du+ H(Du,z,t)dt = f(x)-dB
and
(1.2) du + F(D?u, Du,z,t)dt = f(z) - dB,

where H : R x R x R — R and F : S x RY x R x R — R are coercive in Du,
F is degenerate elliptic in D?u € S%, S? is the space of symmetric d x d matrices,
f € CHRYR™), and B is an m-dimensional Brownian motion defined over a fixed
probability space (2, F,P).

More precisely, we are interested in the regularizing effect that comes about from
the coercivity in the Du-variable. The goal is to show that bounded solutions of
(LI) and ([L.2) are locally Holder continuous with high probability, with a Hoélder
bound and exponent that are independent of the regularity of H or F' in (z,t), or
the ellipticity in the D?u-variable.

A major motivation for this paper is to study the average long-time, long-range
behavior of solutions of (L1} and (L.2) with the theory of homogenization. Specif-
ically, if u®(z,t) := eu(x/e,t/e) for € > 0 and (z,t) € R? x R, then u® solves

t
(1.3) du5—|—H<Du57E’_) dt:51/2f (E) . dB¢
e €
or
t
(1.4) dua—i—F(EDzua,DuE,g,—) dt =2 ¢ (f) -dB*,
e e €

where B (t) := /2 B(t/¢) has the same law as B. Observe that the new coefficients
Fo(x) =2 f(a/e),
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which are required to be continuously differentiable in order to make sense of the
equation (twice in the case of (L4))), blow up in C'(R? R™) and C?(R¢,R™) as
¢ — 0. A major contribution of this paper is to obtain estimates that, although
they depend on ||Df|| and HD2fH007 are bounded independently of ¢, and, in
fact, the probability tails of the Holder semi-norms converge to 0 as € — 0.

1.1. Main results. We give two types of results, for both first and second or-
der equations. The first is an interior Holder estimate for bounded solutions on
space-time cylinders. We then use this result to prove an instantaneous Holder
regularization effect for initial value problems with bounded initial data.

For u defined on the cylinder

Q1:=DB1 x [-1,0] :={(z,t) e R* xR : |z| <1, -1 <t < 0},

we show that v is Hélder continuous on the cylinder By, x [~1/2,0], given that
u is a solution of the appropriate equation, and is nonnegative and has a random
upper bound, that is, for some S : Q — [0, c0),

(1.5) 0<u<S inQ.
Theorem 1.1. Assume, for some A >1,q¢> 1, and K > 0, that

(1.6) %|p\q — A< H(p,z,t) < Alp|?+ A for all (p,z,t) € R x RY x [1,0],

(1.7) FeC'RLR™), |fllo+ flloc - IDfllo < K,

and uw solves ([L1) in Q1 and satisfies (LA). Fix M > 0 and p > 1. Then there
exist « = a(A4,q) > 0, 0 = o(4,q) > 0, \g = A(4,K,M,q) > 0, and C =
C(A,K,M,p,q) > 0 such that, for all X > X,

P Sup ~|u(x?t) _}‘L(x7t)| - > )\
(@ ),(@DEBy ja x[—1/2,0] [T — F|* + [t — t|o/(a=ala=1)
cf17,
Aop

To state the assumptions for the regularity results for (1.2)), we introduce the
notation, for any X € S¢,

<P((S—M):>\)+

m4(X):=maxv-Xv and m_(X):= minv- Xov.
lv[<1 lv]<1

That is, m4(X) and m_(X) are, respectively, the largest nonnegative and lowest
nonpositive eigenvalue of X. Note that, if F : S* — R is uniformly continuous and
degenerate elliptic, then, for some constants v > 0 and A > 0 and for all X € S¢,

—vmy (X) - A< F(X)< —vm_(X) + A.

In order for the coercivity in the gradient to dominate the second-order dependence
of F' at small scales, it is necessary to assume that the growth of F' in Du is super-
quadratic.

Theorem 1.2. Assume that, for some A >1,q¢>2, v >0, and K >0,
1

(18) —vmy(X)+ Z|p|q —A<F(X,p,z,t) < —vm_(X)+ Alp|?2+ A

for all (X,p,z,t) € ST x RY x RY x [—1,0],
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(19) feC*RLR™), v |fllo+Iflle - I1Dflle + 7 Il [P £l < K,
and u solves (L2) in Q1 and satisfies (L3). Fixr M > 0 and p > 1. Then there

exist « = a(A,q) > 0, 0 = d(A,q) > 0, \g = M(A4,K,M,q) > 0, and C =
C(A,K,M,p,q) > 0 such that, for all A > Ao,

P sup ~|’U,($,t) _;U'(/x(fiﬂ( = > A
(2.4),(E,D)EB, 2 x[~1/2,0] [T — T[> + [t — t[*/la—eld
ClfI1%,
Aop

Although the bounds in Theorems [I.1] and [I.2] do depend on the regularity of f,
the important point is that the dependence is scale-invariant. Indeed, the function
f¢ defined by f¢(z) := /2 f(x/¢) satisfies

<SP((S— M), >\)+

3 € 1
1l =2 1 f s IDf Nl = o7z 1Pl s
1
2 _ 2
and |[D*/*], = 7 [ D*/ll -
As a consequence, f° satisfies (L7) and (L.9) with some K > 0 independent of ¢

(the latter because, in (L8], v is replaced with ev). This leads to the following
scale-invariant estimates for the regularizing effect of (L.3) and (L.4)).

Theorem 1.3. For A>1, M >0, and q > 1, assume that
1
bl = A < Hpz,0) < Apl? + A

and f € CLHRY,R™), and, for 0 < e < 1, let u® be the solution of (L3) with
lus(-,0)[|, < M. Fizt >0, R > 0, and T > 0. Then there exist C =
C(R,7,T,A | fllc: »M,q) >0, a = a(A,q) >0, and 0 = 0(A,q) > 0 such that,
for all X > 0,

€ (5 F p/2
P( s s (2, t) — us (&, )] N CH) ik
(

o)D) eBrx[rT) 1T — E|® + [t — t|o/(a—ala=1)) AP

Theorem 1.4. For A>1,v >0, M >0, and q¢ > 2, assume that
1
v (X) + 5 |pl? —~ A < F(X,p,,) < —vm_(X) + Alpl? + A

and f € CZ(RYL,R™), and, for 0 < € < 1, let u® be the solution of (L4) with
lus(-,0)[|, < M. Fizt >0, R > 0, and T > 0. Then there exist C =
Cw,R,7,T, A || fllc=,M,q) >0, a = a(A,q) > 0, and 0 = o(A,q) > 0 such
that, for all A > 0,

5 e F p/2
P sup |~u (2,1) u (2,1)] o > C+)] < CEU )
(@)@ D) Brx[rT] [T — &|* + [t — t]o/(a=ala=1) AP

A natural question is whether the methods and results of this paper can be
generalized to treat a fixed, deterministic path B that is, say, xk-Holder continuous
for some « € (0,1). We strongly suspect that Theorems [[.T]and [L.2] can be adapted

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



7200 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

to such a setting in a straightforward manner and, in this case, the bounds in (L.7)
and (L9) are replaced by, respectively,

Il + I IDFIS " < K
and v+ || fllo + 115 IDFIS " + % (v | D2 f]| )" < K,

with constants depending additionally on the Holder semi-norm of B. However,
our Theorems [I.3] and [I.4] regarding Brownian motion do not immediately follow
from such a statement. Indeed, with probability one, Brownian paths are k-Hélder
continuous if and only if k < 1/2. The function f(x) = £'/2f(z/¢), which arises
due to the hyperbolic scaling in (L3) and (L4) as well as the self-similarity of
Brownian motion, then satisfies

N NPl = e 2| fl o IDf o -
This quantity blows up as ¢ — 0 if K < 1/2. We therefore emphasize that the
methods used to prove Theorems [[.LTHI.4] are really probabilistic in nature, and use
features of Brownian paths beyond their almost-sure regularity, in particular, the
independence and scaling properties of increments (see Lemmas[A.T and [A.2 in the
appendix).

1.2. Background. The regularizing effects of Hamilton-Jacobi-Bellman equations
like

(1.10) Owu + F(D?*u, Du,z,t) =0

have been studied by many authors, including Cardaliaguet [2], Cannarsa and
Cardaliaguet [1], Cardaliaguet and Silvestre [3], Chan and Vasseur [4], and Stokols
and Vasseur [16]. In these works, under a coercivity assumption on F' in the gradi-
ent variable (but no regularity condition on F'), bounded solutions are seen to be
Holder continuous, with estimate and exponents depending only on the growth of
the F' in Du. These results were used to obtain homogenization results for prob-
lems set on periodic or stationary-ergodic spatio-temporal media; see, for instance,
Schwab [13] and Jing, Souganidis, and Tran [6].

Equations (L1) and (L.2) do not fit into this framework, due to the singular
term on the right-hand side, which is nowhere pointwise-defined. A simple trans-
formation (see Definition 2.I]) leads to a random equation of the form (L.I0) that
is everywhere pointwise-defined. More precisely, if u solves (L.2) and

w(z,t) = u(z,t) — f(z) - B(t),
then
Ovii + F(D*u+ D?f(x) - B(t), Dio+ Df(x) - B(t),z,t) = 0.
However, this strategy does not immediately yield scale-invariant estimates. Indeed,
the transformed equation corresponding to (L.4) is, for € > 0,

cl/2 c1/2

for which the results in the above references yield estimates that depend on .
These issues were considered by Seeger [14] for equation (1) with H indepen-
dent of (x,t) and convex in p. In this paper, we further extend the regularity results
from [14] to apply also to second-order equations and with more complicated (z,t)-
dependence for F' and H. To do so, we follow [3] and prove that the equations
exhibit an improvement of oscillation effect at all sufficiently small scales, which is

e 2ge 4 L p2e (T gy D+ L D (N B B LY
By +F(5Du +—D f(E)B (t), D + Df(E)B (t),€,€>_ ,
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a consequence only of the structure of the equation. The main difference with [3]
is the addition of the random forcing term f(z) - dB(t) which obliges to revisit the
analysis of [3] in a substantial way.

1.3. Organization of the paper. In Section[2] we discuss the notion of pathwise
viscosity solutions of equations like (1) and (.2, and we present a number of
lemmas needed throughout the paper. The interior estimates are proved in Sections
[Bland @] and the results for initial value problems are presented in Section[5l Finally,
in Appendix [A] we prove some results on controlling certain stochastic integrals.

1.4. Notation. If ¢ and b are real numbers, then we set a Vb = max{a,b}, aAb=
min{a, b} and denote by [a] the smallest integer greater than or equal to a. We let
S be the set of symmetric real matrices of size dx d. We say that a map F : S¢ — R
is degenerate elliptic if, for X, Y € S¢ with X <Y, we have F(X) > F(Y). Given
H:R? — R, H* is defined for o € R? by H*(ar) = sup,epa {a- p — H(p)}. Given
a subset C' of R? and —co < ty < t; < oo, 8*(C X (to,t1)) denotes the parabolic
boundary of C x (tg,t1), namely

8*(0 X (to,tl)) = (C X {f,o}) U (80 X (to,tl)).

For an open domain U C RY, USC(U) (respectively LSC(U)) denotes the space
of upper- (respectively lower-) semicontinuous functions on U, and BUC(U) is the
space of bounded and uniformly continuous functions on U. For a bounded function
u: U — R, we define oscy v := supy; u — infy u.

2. PRELIMINARIES

2.1. Pathwise viscosity solutions. Fix —oo <ty < t; < 0o and let U C R? x
(to,t1) be an open set. For ¢ € C((tg,t1),R™), a degenerate elliptic F € C(S? x
R x U x (tg,t1),R), and f € C?(R% R™), we discuss the meaning of viscosity sub-
and super-solutions of the equation

(2.1) du + F(D?*u, Du,x,t)dt = f(x)-d¢, (z,t) € U.

The general theory of pathwise viscosity solutions, initiated by Lions and Souganidis
[OH12L[15], covers a wide variety of equations for which f may also depend on u or
Du. 1In the case of (1)), the theory is much more tractable, and solutions are
defined through a simple transformation.

Definition 2.1. A function v € USC(U) (resp. uw € LSC(U)) is a sub- (resp.
super-) solution of (2.1)) if the function @ defined, for (x,t) € U, by

w(z,t) = u(z,t) — f(x) - C(t)
is a sub- (resp. super-) solution of the equation
Oyt + F(D*u+ D2 f(x)((t), D+ Df(x)((t),2,t) =0, (x,t) € U.
A solution u € C(U) is both a sub- and super-solution.

We remark that, if F is independent of D?u, then we may take f € C1(R% R™).
We will often denote the fact that u is a sub- (resp. super-) solution of (2.1]), by
writing

du+ F(D*u, Du,x,t)dt < f(z)-d( (resp. du+ F(D*u, Du,z,t)dt > f(z)-d().
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At times, when it does not cause confusion, we also use the notation
Ovu + F(D*u, Du,,t) = f(x) - {(t),

even when ( is not continuously differentiable. This will become particularly useful
in proofs that involve scaling, in which case the argument of ¢ may change.

2.2. Control and differential games formulae. Just as for classical viscosity
solutions, some equations allow for representation formulae with the use of the
theories of optimal control or differential games. Before we explain this, we give
meaning to certain pathwise integrals that come up in the formulae.

Lemma 2.1. Assume that s <t and f € C%1([s,t],R™). Then the map
t . m t . ..
st ™) 3 ¢ [ 50)-Endr = [ ) -Eitryar
s i—17s

extends continuously to ¢ € C([s,t],R™).

Proof. The result is immediate upon integrating by parts, which yields, for ( €
C1([s,t],R™),

t t
/ f(r)¢(rydr = f()¢(E) — f(s)C(s) —/ f(r)¢(r)dr.
O
Lemma 2.2. Assume that s < t, f € C}RLR™), W : [s,t] x A — R is a
Brownian motion on some probability space (A, F,P), a,o : [s,t] x A — R? are

bounded and progressively measurable with respect to the filtration of W, T € [s, 1]
is a W -stopping time, and

dX, = apdr + o.dW forr € [s,t].

Then, the map
Ol 087 3 ¢ v [ 060 L = i [ e i e 2y
eatends continuously to ¢ € C([s,1],R™), and, ;”Loreover,
B | [ £00) - Cohir] =LA ¢(r) - 15 (o)
—E[ [ <o+ (D) -0+ D2 (X )oo) ) ar].
Proof. 1 ¢ € C*([s, #], R™), then 1t0’s formula yields, for i = 1,2,...,m,

A170) - €] = [FOE) + D) 0, r) + (D2 (X))
+ (Dfl(Xr) : Urci(r))dwm
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and so

/ﬁﬂMHMﬂM:f%&K%ﬁ—ﬂMQC@
(2.2) — /T ¢'(r) (Dfi(Xr) Sy + %(Din(Xr)or, 0r>> dr

_ / C()DI(X,) - 0rd WV,
The It6 isometry property implies that
L*([s,t]) 2 ¢' = / CH(r)Df(X,) - 0, dW, € L*(A)

is continuous, and, in particular, the map extends to ¢* € C([s,t]). The result fol-
lows from the fact that the other terms on the right-hand side of (2.2)) are continuous
with respect to ¢* € C([s,]). The final claim follows upon taking the expectation
of both sides of ([2.2]) and appealing to the optional stopping theorem. (Il

For arbitrary continuous (, we freely interchange notations such as

Lvydg and AV@»&@W-

Throughout the paper, ¢ is often taken to be a Brownian motion, defined on a
probability space that is independent of W.

We now consider some equations for which sub- and super-solutions can be com-
pared from above or below with particular formulae. For convenience, we write the
equations backward in time.

Lemma 2.3. Assume C C R is open, xy € C, ty < ti, U is an open domain
containing C x [t1,t0], ¢ € C(R,R™), f € CY(U), and H : R? — R is conver and
superlinear. Let w € C(U) be a pathwise viscosity sub- (resp. super-) solution, in
the sense of Definition 2.1 of

—du+ H(Du)dt = f(z)-d¢ inU.
Then

u(xo, to) < (resp. >) inf{u(”yT,T) —|—/ H* (=4, )dr
to

+ f(%”) ’ dCT HolS WLOO([tO,tl]aRd)a Vto = SCO};
to

where, for fized v € W ([to, t1], R?),
(2.3) T =77 :=1nf{t € (to,t1] : 7+ € IC}.

Proof. We prove the claim for sub-solutions, as it is identical for super-solutions.
Definition R.Ilimplies that if

ie,t) = u(e,t) + [(2) - () for (z,8) € T,
then @ is a sub-solution of the boundary-terminal-value problem
{—ata + H(Du— Df(x)-((t)) =0 inC x [to,t1) and

(24) a(z,t) = u(x, t) + f(z) - C(t) ift=1¢; or x € OC.
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The unique solution of ([2.4) (see [8]) is given by
wle.t) = int {utrr,7) + 130) €07

+ /tT [H*(=3) = 3 - Df(yr) - C(r)] dr =y € WE([t,01], RY), 3 = fv}

where 7 is as in ([2.3]). Integrating by parts gives

[ e Dsn - clrdr = f6060r) = f@)ce) -~ [ 1) - dco)
and, hence,
wi,t) = fE)C() +
wt futreery [T A [0 o) 0 e W0l R, = o).

The result now follows because, by the comparison principle for (2.4), @ < w on
C x [to,tﬂ. U

We next give formulae for solutions of some Hamilton-Jacobi-Bellman and
Hamilton-Jacobi-Isaacs equations.

For —oo < tg < t1 < oo, assume that
(2.5)
W : [to,t1]xA — R is a Brownian motion defined on a probability space (A, F,P),

with associated expectation [E, and define the spaces of admissible controls
¢ = {p e L™ ([to,t1] x A,R?) : pu is adapted with respect to W} and
G i={p e |ull, < M}.

The Isaacs’ equations require us to use the spaces of strategies defined by

S ={B:€ —C: 1 =pzon [tg,t] = B(u1)(t) = B(u2)(t)} and
S ={peS:p(€)CCu}t.
Lemma 2.4. Assume C C R? is open and convez, xo € C, to < t1, U is an open

domain containing C X [to,t1], f € C2(U), H : R? — R is convex and superlinear,
and v > 0. Given (a,0) € € x €, denote by X = X700 the solution of

(2.6) dX, = apdr + o, dW, in [to,t1] and Xy, = xo,
and
(27) 7= 7®%%0t0 . — ipf {t € (to,tl] : X?’mmo’to S 8C} .

(a) Letu € C(U) be a pathwise viscosity super-solution, in the sense of Defini-
tion 2.1], of

—du+ [—vm_(D*u) + H(Du)] dt = f(z)-d¢ in U.
Then

T

u(zg, to) > inf E |:’U,(XT,T) +

H*(—a,)d X,)-d¢,| .
o1 o (canir + [ 10,) ¢ |

to
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(b) Letwu € C(U) be a pathwise viscosity sub-solution, in the sense of Definition

2.1 of
—du+ [~vmy(D*u) + H(Du)] dt = f(z)-d¢ inU.
Then

u(zo,to) < inf  sup IE{ (XT7T)+/TH*(_aT)dr+/T f(XT).dCT},

a€® BES sz
where X and T are as in respectively (2.6) and R.7) with 0 = ().

Proof. As a preliminary step, assume that (a,0) € € x ¥ and X and 7 are as in

2.6) and [2.17). Then Lemma [2.2] gives
B| [ £00) a6 | =B L6 - F0X0C(0)

—[ [ (2100 o+ 0 (X0, 0 ) ]
(a) By Definition R.1] if
Al 1) = () + £(2) - (1),

then @ is a classical viscosity super-solution of
(2.9)

—9yi—vm_ (D*u— D*f(z)-((t)) + H(Da—Df(zx) - ((t)) =0 inC x [to,t1),
u(x,t) = u(z,t)+ f(z)-¢(t) ift=t; orx € dC.

For (X,p,z,t) € S¢ x R? x U, we have

—vm_ (X = D*f(x)-¢(t)) + H (p— Df () - {(t))

- ap {—éa-xw Lo D)o (1)~ a-p+a- D) () —H*(—a>},
|o|<V2v, acRd

and so standard results from the theory of stochastic control (see Theorem I1.3 in
[8]) imply that the unique solution of (2.9) is given by

w(z,t) = inf E {u(XT, )+ f(X7) - ¢(7)

(,0)ECXE /5

= [ can -0 (- DX + gor - D000, )| ]
—f@) )+ nf { /H o dr+/ F(x dg}},

(,0)ECXE /5y

where the last equality follows from (2.8). The result follows from . the comparison
principle for (2.9), which implies that @(x,t) > w(zx,t) for (z,t) € C X [to, t1].
(b) By Definition 2.1] if
iz, t) = u(z,t) + f(x) - (1),

then @ is a classical viscosity sub-solution of
(2.10)

—0yi —vmy (D*a — D*f(x) - ((t)) + H (D@ — Df(z)-((t)) =0 inC x [to, 1),
a(z,t) = u(x,t) + f(z) - ((t) ift=1t; or z € OC.
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For (X,p,z,t) € S x RY x U, we have

—vmy (X = D*f(z) - (1) + H (p = Df(x) - (1))
= sup inf {—Lr-Xa-&- lcr-sz(:c)a~C(iE) —a-pta-Df(zx)-C(t) —H*(—a)}
acrd lo|<var | 2 2
= inf sup {—Lr-Xa-t— lcT-DQf(:c)a~C(iE) —a-pta-Df(zx)-C(t) —H*(—a)},
lo]<V3v aerd L 2 2
and so standard results from the theory of stochastic differential games (see Theo-

rem 2.6 of [5]) imply that, keeping in mind that ¢ = §(«) below, the unique solution

of (2.10Q) is given by

wia, ) i= inf sup E[uucm R ()
ae%”ﬁeym

T . 1
s [ can = a0 (o DrC6)+ o D200, )| ]
t
— )+ jnf swp B [uXe) + [ Caar+ [0 a6
a€C BeS s t t
where (2.8) gives the last equality. The result follows from the comparison principle

for (2.9), which implies that (z,t) < w(x,t) for (z,t) € C X [to, t1]. O

2.3. Comparison with homogenous equations. We now take ( to be a Brow-
nian motion, and we assume that

(2.11)
B:[-1,0] x Q@ - R™ is a standard Brownian motion on the probability space

(Q,F,P).

In this case, the forcing term >, f*(z)-dB*(t) is nowhere pointwise defined, and
the naive estimate

< I flloo 4Bl

> fi(x)-dB(t)
i=1

cannot be used in comparison principle arguments, as would be the case if B be-
longed to C*.

The results given below provide another way to compare solutions of (L.I)) and
([L2) with equations that are independent of z and ¢. In the new equations, the
forcing term is replaced with a random constant that depends on f only through
quantities as in ([L.7) and ([L.9), at the expense of slightly weakening the coercivity
bounds in the gradient variable. The main tool is to use Lemmas [A.T and [A.2
to control the stochastic integrals that arise from the representation formulae in
Lemmas 2.3 and 2.4

For ¢ > 1, define

q = 4 . and ¢, = (q— 1)~/ @Y,
q—

so that, in particular, for any constant a > 0, the convex conjugate of p — alp|? is
given by

(2.12) (a - 9)" = cqa= @] |
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Lemma 2.5. Let B be as in 211) and fitm >0, K >0, ¢ > 1, and k € (0,1/2).
Then there ezist a random variable D : Q — Ry and Mg = Mo(k, m, K, q) > 0 such
that the following hold:

(a) For any p > 1, there exists a constant C = C(k, K, p,q) > 0 such that, for
all A > Ao,
CmpP
ap

P(D> )\ <
(b) Let f € CY(R? R™) satisfy
[flloo £m and [Ifll A+[Dfll) <K,

and assume that A > 1, 1,69 : Q@ — (0,1), and —1+e3 <rg < 0. Suppose
that, for some R € (0,00], w solves

1 130 ¢ €2 ¢ J
O+ Z|Dwl! = ( =) A< (=) flerz) Blro+est) and

1 €1

qa q
Ow + A|Dwl|? + <i—2) A> <i—2) f(e1z) - B(ro + eat) in Bg x [—1,0],
1 1

fix an open convex set C C Bgr, xg € C, and —1 <t; <ty < 0. Then
¢ —1+nr q'—1+k

e [
’w_(l‘o,to) -2 7 AD < ’w(l‘o,to) < w+(x0,t0) + 2 7 AD
& 1

)

where

Ow_ +2A|Dw_19=0 and

Owy + §|Dw+|q =0 inC X (t1,t0], and
W_ =wy =w on 0*(C x (t1,t0)).
Proof.
Step 1. For (x,t) € Bgx|0,1], define w(x,t) := w(z, —t) and B(t) := B(0)— B(—t).

Then B : [0,1] x 2 — R™ is a Brownian motion, and @ solves

I SR e \” e\’ 5
-0y + Z\Dw|q -\ A< | =) fleix) - B(—ro+e2t) and
1

q q .
-0y + A|Dw|? + <—) A> <—) f(e1z) - B(—=ro +e2t) in Bgr x [0,1].
1
We also define w4 (z,t) = wi(z, —t) and w_(x,t) = w_(z, —t), which solve
—Ow_ +2A|Dw_]?=0 and
1
—3t121+ + ﬁ\Dw+|q = O in C X [—to, —tl), and

w—_ = ’LZI+ =w on (C X {—tl}) U (30 X [—to, —tl]).
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The classical Hopf-Lax formula and ([2.12) then give, for (z,t) € C x [~tg, —t1],

_ld
i (2.1) = inf i oaye -1 BT U
B (1) (y,s>e<cX{tli?u(acwto,t11>{w(y’s)+cq( ) ¢ —sj=1 [
’ - q/
W (z,t) = inf By, ) + e (24)-@ -0 2=y
(@.0) (y,s>e<cX{n})u(aw[to,n]){ (v,5) + cy(24) [t —s[7—1

Step 2. Let € (0,1/2) and D be as in Lemma[A.T. Then, by that lemma, for any
0<d< 1,ve Wl’oo([—to, —tl],Rd), and T € [—to, —tl],
5_2 q T .
€1

f(e1vr) - B(=7o + ear)dr

—to
q —1 —ro+eaT .
€ r+r S
- 2q, / f (617 < 0)) ' B(r)dr
51 —ro—eato €2

(2.13)

IA

q —1 —roteat q’ ¢ —14k
15 / e1.(r+r € D
Z__ 4 / L5 <—0>} dr + 2——— (7 +to)"
el —ro—eate | €2 S
LT , cd' —14n
=04 / |9 |7 drr + 2—— (T + to)".
—to S

Step 3. We prove the upper bound first. By Lemma [2.3] and the equality (2.12)),
we have, with probability one,

T q/
W(xo, —to) < inf {w(%vﬂ + Cqulil/ \;mq'dr * <§_2> A(T +to)
1

—to

q .
+ (?) f(e1yr) - B(—=rg + ear)dr : v € WH([—ty, —tl]Rd)} ;
1 —to

where, as in ([2.3)), we define
T =717 :=inf {t € (—to,—t1] : 7> € OC}.
We then set

S=1A (2(1/—1 _ 1)1/q’c(11/q’A1/q} 7

which, in particular, implies that 67 < cq(2q'*1 — 1)Aq'*1. Then, in view of (2.13)),
for some constant Cy > 0,

(2.14)
@ (0, ~to) < inf {Wﬂﬂ +cg(24)77 / |9 dr oy € W ([—to, —tmd)}
—to
q/
€2 1 _(-x
gq'71+m
< (w9, —to) + A2——(1+ C;D).
€1
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Step 4. We next consider the lower bound. We again use (2.12) and Lemma 2.3 to
obtain

T q/
w(xg, —to) > inf {ﬁ;(yﬁr) + ch,(q 71)/ 4|9 dir — <z_2> A(T + o)
1

—to

61 —to

c q’ T ) -
+(2) ﬂqw»B«ﬁﬁfﬂvaewﬁw@%m4mR%}.
Choosing
§:=1A c;/ql(l — o=@ =1)1/d" y=1/a

yields 57 < cq(1 — 2_(‘1/_1))/1_(‘1/_1). As a consequence, Jensen’s inequality and
([2.13) yield, for some C;, > 0,

(2.15)
W(wo, —tg) > inf {@(%,7) + Cq(QA)_(q/_l)/ el y € W ([—to, —tﬂ)}
—to
eq’71+n
_ & A1+ CD)
&
sq/71+n
> w_(xo, —to) - 7 A(l + C;D)
&

Step 5. We set D := 1+ (C, v C})D, so that, after performing a time change, (2.14)
and (2.13) lead to

gq'flJrK B gq'flJrn B
w_(zg,t9) — 2 7 AD < w(zg,ty) < wy(zo,to) + A2 7 D.
€1 €1

Let \g be as in Lemma [A.T. Then, for all
A> o= (14 (Cy VDo) V 2,

we have, for C = C(k,m, K,p,q) > 0 as in Lemma [AT]

]

- — C(CyvChr  20C(Cy Vv CHP
P('D>/\):P<'D> A 1>§ (Cq ) (Cq q).

CyV QY A=1p — AP
Lemma 2.6. Let B be as in 211), and fix m > 0, K > 0, ¢ > 1, v > 0,

and k € (0,1/2). Then there exist a random variable € : @ — Ry and Ay =
Xo(k,m, K, q) > 0 such that the following hold:

(a) For any p > 1, there exists a constant C = C(k, K, p,q) > 0 such that, for
all A > Ao,

Cm?P
P>\ < SR
(b) Let f € C*(R%,R™) satisfy

[flle <m and ||fll (14 Dfll, +v||D*f]) <K,
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and assume that A > 1, rg € (=1,0], 1,62 : 2 = (0,1) and —14e3 <rg <
0. Suppose that, for some R € (0,00], w solves

159} 1 g9 ql g2 ql .
dw — Svmy (D*w) + —|Dw|? — (—) A< <—) f(e1x) - B(ro + e3t)
&1 A €1
and

€9 2 I3 a E2 7 .
Oyw — g—ym (D*w) + A Dw|?+ (= | A> = f(e1x) - B(ro + €2t)
1

1 1

m

in Br X [—1,0],

fix a convexr open set C C Bgr, xg € C, and —1 <t1 <tg < 0. Then

q'—1+r ¢ —1+r

w_(xg,tp) — —2 . AE < w(xo,to) < wy(wo,tg) + 2 7 A€,
&1 1
where
Opw_ — E—;ym_(DQw_) +2A|Dw_1 = and
€1
1
Oywy — S—ng+(D2’LU+) + —|Dw4|9=0 inC x (t1,tp), and
€4 24
Wo =wy =w on 9 (C x [t1,%0])-

Proof.

Step 1. For (z,t) € Br x [0,1], define w(z,t) := w(z, —t), wi(z,1) := wi(z, 1),
and B(t) := B(0) — B(—t). Then B : [0,1] x Q — R™ is a Brownian motion, and
W, W4 solve
. & o v 1 e\ e\ 2
-0y — zvmy (D*0) + —|Dw|? — | = | A< | =) flewx) B(—ro+eat)
&1 A €1 €1
and

€2 2 ~ - E9 ¢ £ ¢ 2
-0y — E—I/’ITL (D*w) + A|Dw|? + <—> A> <—> f(e1z) - B(—ro + eat)

1 1 €1

™

in Bg x [0, 1]

and

3

—Oyi_ — E_gym_(pzw_) +2A|Dw_|?=0 and
1

— Oy — ? vm (D*,) + —|Dw+|q =0 inC x [~tg,—t1), and
1
W_ =Wy =W on (C x {—t1}) U (9C x [—to, —t1]).

Step 2. Let W : [0,1] x A — R be a Brownian motion defined on a probability
space (A, F,P) independent of (2, F,P), fix (a,) € € x €~ 1 /355, Assume that
X : [~to, —t1] x A is adapted with respect to W and

er = Ob,nd’l” + O'TdWT in [—to, —tl],

and let 7 € [—tg, —t1] be a W-stopping time.
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For rg — eatyg < r < —rp + 97, we then set

E-(jr
Il
m
A
<
A/~
=
_|_
=
(=)
~—

W, = e)/? [W (”—TO> - W(—to)} ,

and we let € and €y be defined just as € and @, but with respect to the filtration
of the Brownian motion W. Then (&,5) € CxXE o X is adapted with respect to

W, —rg + eo7 is a W- -stopping time, and
dX, = a,dr + 5,dW, for —rg—eotog <1 < —1 + €97

It now follows from Lemmal[A.2 that, for some £ as in the statement of that lemma,
and for all 0 < § <1,

q’ T
E l<5—2> fler X)) - B( ro +Eg7”)d’l"]
€1 —to
Eq'fl —ro+eaT _ .
—2 [ ) B
(2 16) 61 —T0—€2t0
’ Eq/fl , —roteaT , o4 14k
<24t E/ |G| dr + 2 (7 4 10)"
e? —ro—eato S
! T q Eg e K
=0k | |* dr + — (T +1o)".
o T

Step 3. We now proceed with the proof of the lower bound. By Lemma [2.4)(a), we
have

(2.17)
w(CUOa—tO)
T q
> inf E [@(X,,7)+c, A1 ‘”/ |ov |7 dr— <5—2> A(T+to)
(a,a)e%x%gl,l@ —to €1

€1

+ (E—2)q ’ fea1X,) - é(—ro -‘1-627‘)(1’)”] ,
—to

where, as in that lemma, for fixed (a,0) € € x € _- o X = X7 and T =797

EqU?
satisfy
dX, = apdr + 0,.dW, for r € [—tg, —t1], X_4 = o,

(2.18) and 7 :=inf{t € [~to, —t1] : X; € OC}.

‘We now set
§:=1A Cé/q/(l — 2—(11/—1))1/11'14—1/117
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. . . . . / —(a’'—1 —(q’'—1 .
which implies, in particular, that 67 < ¢, (1 —2 (@=1)A=(@' =1 Invoking (2.16),

we find that, for some constant C;; > 0,

€1

El(?y tof(elX) B(— r0+52r)dr]

q '—1+k
> —c,(1—2"@-ya-l —UJE/ o7 dr — C,AZ2 E.
to El
The inequality ([2.17) now becomes
w(zg, —to) > inf E {w(xﬂ ) + ¢g(24) (@D / |arq/dr}
(a,U)E%X%&Eflm —to
€2 ¢ —(1 K)
—(2) A1+ Ve
€1
quflJrn
> W (20, —to) — 27— A(1 + Cy€).
1

Step 4. We next obtain the upper bound. Lemma 2.4(b) gives
(2.19)

q/
w(xg, —tg) < inf sup E [w(X;,7)+c AT _1/ |ae | d?"—f—( ) A(T+10)
a€%5€y71 — to €1

e q T .
+ (—2> f(e1X,) - B(—ro + EQ’I‘)d’I“| )
51 _t(]

where, as in that lemma, for fixed @ € ¢ and 8 € .7 - 1 sy With 0 = = B(a),

X = X*% and 7 = 7% are as in (2.18)). The inequality (Im) then implies that,
for all 6 € (0,1),

w(xg, —tg) < inf sup E |:U~)(X~,-,T) + (chq/_l + 5‘1/)/ |ar|q/dr]
aE? BGY 1\/@ —to
q 14k
g9 €q &
2) A i
+ (5) PR

‘We then set
S=1A (Qq’—l — 1)1/q’c;/q’A1/q,

which, in particular, implies that §9° < ¢,(29 ' —1)A9 1, and so, for some Cy >0,

w(xg, —tp) < inf sup E |:1I)(XT,T) + cq(QA)ql_l/ |arq/dr}
ae(gﬁey —lm —to
5:q’—l-‘,-,‘ﬁ
+ 22— AL+ C8)
&
Sq’71+n
:1I}+($0,—lf0)+ 2 7 A(1+C(’18)
€1
The claimed upper bound for w now follows from another time reversal. O
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We now introduce some smooth sub- and super-solutions of the homogenous
second order equations that arise in the previous result, which will be used in
Section Ml The following lemma is proved in [3], in particular, as Lemmas 4.2 and
4.6 and Corollary 4.3.

Lemma 2.7. Let g > 2 and A > 1. Then there exist C = C(q, A,d) > 0 (which can
be chosen arbitrarily large), vy = vo(q, A,d) > 0 (which can be chosen arbitrarily
small), and 0y = 6p(q, A,d) > 0 such that the following hold:

(a) If n >0,

(> +nt)e/
a1

U(z,t):=C for (z,t) € R? x (0, 00),

and 0 < v < vy, then
1
U — vm, (D?U) + 51/PUI" =0 in R x (0, 00).
(b) Let R > 0, and assume that b : R — R is smooth and nonincreasing,
b(r) =1 for 7 < 3/4, and b(t) =0 for 7 > 1. If0 < 6 < RY and
|| t) Cvo

o e[t d
V(z,t) :== 30b ( 7 + 1 2 t  for (z,t) € R* x (0,1),

then
oV —vm_(D?*V) +2AIDV]T <0 in R x (0,1).
2.4. Improvement of oscillation. The main tool used in this paper is to establish

an improvement of oscillation of solutions on all small scales. The next result
explains how this leads to Holder regularity estimates.

Lemma 2.8. Let R,7,¢ > 0, assume that u : Br x [—7,0] satisfies
0<u<c¢ onBgx][-T1,0],

fzae (0,1),8>0,0<pu<1l,and0<a< R and 0 < b < 1. Assume that,
whenever (xg,tg) € Br—q X [—7 +b,0], the function

u(zg + ax, to + bt)

v(z,t) == for (z,t) € By x [-1,0]
c
satisfies
if 0<r<1 and osc v <71?% then 0S¢ v < (pr)®.
BTX[—T‘ﬁ,O] BMTX[_(F”")ﬁvO]
Then

sup - /B = @ \aa Ve
(@), () EBR o x [—r+b,0) [T — E[* + [t = ]2/ = p* \a> = b/B

lu(z,t) —u(@ D) ¢ (1 L1 )

Proof. Choose (xg,t9) € Br—q X [—7+b,0] and define v as in the statement of the
lemma. Then oscp, x[-1,00v < 1, and so an inductive argument implies that
0sc v<pk forall k=0,1,2,....
B,k X[—p#?,0]
Now choose r € (0,1] and let k& € N be such that g**! < r < p*. Then

,r,a
osc v < ,uko‘ <

B, x[—18,0] ue
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Fix (y,s) € By x [~1,0] and set r := |y| VV |s|'/#. We then have
v
e e
Rescaling back to u, this means that, whenever (z,t), (#,f) € Br_, X [—7 + b,0]
satisfy

TO(

[v(0,0) — v(y, s)| <

|t — % <a and [t—1]<b,
we have
pl< Lyt I L
ju(a,s) (@Dl < -2 (v gap ) (ke =21+ 1= 87).
The result now follows easily, because, for |z — Z| > a,

lu(z,t) — u(z, 1) <

|z — Z|e + [t —t|o/B ~ a*

and if [t — | > b, then

lu(z,t) — u(z,1)| < ©
|z — F|* + [t — /P — be/B’

3. FIRST ORDER EQUATIONS

In this section, we prove the interior regularity results for first order equations.
We assume that

(31) B:[-1,0] xQ—R™
is a standard Brownian motion on some probability space (Q,F,P),
and, for fixed

(3.2) K>0 A>1, ¢g>1, and S§:Q—[0,00),
we assume that
(3.3) feC'®R' xR™) and ||fllo + I/l IDfll < K
and

du + BDW - } zm: 2)dB(t
(3.4) ks

du + [A|Du|? + A]d Z 2)dBi(t), and
=1
0<u<S§ inB;x [—1,0].

Theorem 3.1. Assume (BI)-B.4), and let 0 < k < 1/2 and M > 1. Then there
exist « = a(k, A, q) € (0,1), c =c(k,a,q) >0, A\g = Xo(k, A, K, M,q) > 0 and, for
allp>1, C=C(k, A, K,M,p,q) > 0 such that, for all A > Ao,

. . () —ulp |
(@.9), (.)€ By o x [~1/2,0] |T — y|* + [s — t|o/(a=ela=1))
ClfIZ

\e(g—a(g—1))p"

P ((S= M)y >eX =) +
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Proof. We first specify the parameters that determine the Holder exponents, which
depend only on k, A, and ¢q. Choose i so that

1 1 ’ ’ ’
(3.5) 0<p<sg and 512chAQ*1/ﬂ<1,
and then take 6 sufficiently small that

1 1. / , .,
(36)  0<b#<g, 512%¢A7 Lt <140, and 20 < ¢ (24)79 9
‘We now set

(3.7) a = min <10g(1 — 9), 4 )
log it kq+1—kK

and

(3.8) B=q—a(g—1).

Note that f—a = ¢(1—«) > 0, and (8.7) and (3.8) together imply that Sx—a > 0.
We next identify a random scale p at which the improvement of oscillation effect
is seen. Let D be the random variable as in Lemma [2.5] set

S:=1VS,
and define
1 0\~
(3.9) pi= 53 A (E) .
Note then that
p <1, pS < %, and p"IAD < 4.
In what follows, for (zg,to) € R? x R, we define

Qr(x0,t0) := Br(x0) X [to — rﬁ,to] and Q, :=Q,(0,0).
Step 1 (The initial zoom-in). Fix (z0,%0) € By/2 x [~1/2,0] and set

u(xo + pSz, to + piSt)
S
which is well-defined for (z,t) € By x [—1,0] in view of (8.9). Then v satisfies

v(z,t) ==

b

O + A[Do|* + pTA > p? f (o + pSz) - Blto + p'St),

(3.10) Ov + %|Dv|q — plA < pf(xo+ pSz) - B(to + piSt), and
0<wv<1lin By x[-1,0].

Step 2 (Induction step). We next show that

(3.11) if 0<r<1 and oscv<r® then oscv < (ur)®.

r wr

Let r € (0,1] be such that oscg, v < r*. We then set

v(rz,7Pt) —infg, v

w(z,t) = for (x,t) € Q1,

TOt
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which satisfies

’

q
8tw—|— |Dw|q <€—2> A< (5 > f($0+61$)-B(t0+€2t),
1

/

dyw + A|Dw|? + (€2> A> ( ) f(mo—l—elx)-B(to—l—egt), and
0<w<1lin B, >< —-1,0

where &1 := Spr and &5 := S pqrﬁ. As a consequence of (8.9), the random variables
1 and e take values in (0,1/2], so that the hypotheses in part (b) of Lemma [2.5]
are satisfied. We also compute, using (8.7) and (3.8),

5% '—1+k (Spqrﬁ)q/—l-i-n plﬁqrﬁfi—a

— = 5 = ~ < pte
el (Spr)? S
To prove (B.11)), we show that either
(3.12) w(r,t) <1—0 forall (x,t) € B, x [—u”,0]
or
(3.13) w(x,t) >0 for all (x,t) € B, x [—1?,0].

We consider the two following cases:
Case 1. Assume first that

(3.14) inf w(-,—1) < 26.

2p
Fix (z,t) € B, x [-p”,0]. Then, by Lemma 2.5 we have

q'71+m
w(z,t) <wy(z,t)+ £2 7—AD < wy (x,t) + p™AD < wy(z,t) + 0,
€1

where

q
£ = inf 24 q—l&
we (@) <y,s>ea*<1§m[Lt]){w(y’sHCQ( ) (t—s)7t

‘We have

t+1>1—p4° > and |:E—y\ql <374 for all y € By,

and so, by (3.4),

N | =

yEBz‘L (t+1)q
<69¢c ,(2A4)1 Iy 1nf w( -1)

7 - q/
wy(x,t) < inf {w(y, —1) + c4(24)1 1|SE—y|,_1}

< 1—49+29_1—29.
It follows that w(z,t) <1—-20+6 =1—6, and so (8.12) holds in this case.
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Case 2. Assume now that
(3.15) w(y,—1) > 26 for all y € By,.
Let (v,t) € B, x [-p#,0]. Then, similarly as in Step [I, Lemma [2.5] gives
w(x,t) > inf w(y,s) + cq(ZA)lfq/M — 4.
T (y,5)€0* (Bau X[~ 1,t]) (t—s)r—1

If y € By, and s = —1, then (8.15) implies that
1—q’ |y - x‘q/ o o
w(y, s) + cq(24) 57T 6>20—0=46,

while, if s € [-1,t] and y € OBs,,, then |y — x| > p, and so, using (3.6) and the fact
that w > 0,

q/ |’y—$‘ql 17(11 q/

Either way, it is evident that (8.13) holds.
Combining (8.12) and (3.13) with the definition of a in (B.7), we obtain

w(y, s) + cq(QA)lf

oscw <1—60<pu%,

“w

which, after rescaling back to v, yields

oscv < (ur)®.

ur

Step 3 (The Holder estimate). We now invoke Lemma 2.8 with the values

a:= pS‘, b= pqS, and c¢:=S8,
and, using (B.5) and (8.9), we get, for some constant C; = C1(k, 4,¢q) > 0,

t) —u(z,t
. u(e.0) = 5.5
(.8),(3.D)EB, jax|—1/2,0] |T — Z|* + [t —T|*

L, LY _ 1 (& s
ac " pe/B ) T ope \pe T paalB
1 1 1
il —a/B
= e <21—0‘p v 21a/5p1+(q1)a/ﬁ> =Cip ’

In view of (3.6) and (3.9)), for some Cy = Cs(k, A, q) > 0,

IA

c
«

I

~ "LB ~ 1
p~9/8 = (28)Q/B vV (%) < Oy (Sq/ﬂ _,_Dm) )

Since M is chosen to be larger than 1, we have (S — M), = (S — M), and so, for
some C3 = C5(k, A, q) > 0,

sup

(2.6).(3.5)€B, o x[~1/2,0) [T — E|[* + [t =1

|o/8 =
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Therefore, for any A > 0,

P ( wup ju(, t) —u(@ D] A)

(2.0),(5.D)EB, jax[—1/2,0] |T — Z|* + [t — tje/p

1 _ q/B
§P<(S—M)1/B+D7ﬁ>ﬂ>
Cs
A — C3M/B L A= C3MYPB
<P((S-MYP 22537 )ip(pw >l ).
< <(S )$T > 20, + > 2C,

Taking A > 2C5M9/? yields
\— C3Ma/B A

205 4Gy
so that
. . jule,t) (@D _
(,),(EDEBy o x[~1/2,0] [T — T + [t — t|*/8

<P((S—M)"> ANip(pH s 2

- + 405 4C4 '
Finally, if Ao is as in Lemma [2.5] then further taking \ > 403/\(1)/ (%) yields the
claim in view of the properties of D. |

4. SECOND ORDER EQUATIONS

We now turn to the case of second order equations. We let B be a Brownian
motion as in ([B.1)), and, for fixed

(4.1) v>0, K>0, A>1, ¢>2 and §:Q—[0,00),
we assume that
(4.2) feC?*RLR™) and v+ ||l + 1 flloo IDflle + ¥ 1l | D*f|| . < K

and

1 mo ‘
2 4 4
du + |—vmy(D*u) + Z|Du|q — A] dt < E [ (z) - dB*(t),

du+ [—vm_(D?u) + A|Du|? + A] dt > Zm: f(z)-dB'(t), and

0<u<S in B;x[-1,0]

Theorem 4.1. Assume B.I) and (41)-3), and let 0 < K < 1/2 and M > 1.
Then there exist o = a(k, A, q) € (0,1), ¢ = ¢(k,a,q) > 0, \g = Ao(k, A, K, M,q)
>0, and, for allp > 1, C = C(k, A, K, M,p,q) > 0 such that, for all A > g,

|U(l‘, 5) — u(ya t)‘
P ( sup ) > A

(2:9), (1) €B1 /2 x [~1/2,0] [ & = Y| + [s — |/ (a=e

<P ((5 - M)y > cAI*a/q') ro Mk
= + \elg—alg=1)p"
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Proof. We set up the various parameters similarly as in the proof of Theorem [3.1]
with a few changes to account for the second order terms.
We first choose p such that
1 C .
(4.4) O<p< 1 and 56’1 pd <1,

where C' = C(q, A,d) > 49 is the constant from Lemma 2.7 and we then take 0
sufficiently small that

1 c ,
(4.5) 0<f< 2 56‘1 p? <1-56, and 6 <4u? by,
where 0y = 6y(g, A,d) > 0 is as in Lemma 2.7
Set
. {g—2 log(1-10) Kq
4. =
(4.6) @ mm{q—l’ logp "kKqg+1—k
and
(4.7) B=q—alg-1).

Observe that ([4.6) and (A7) together imply that
1-60<p®, B—-—a=q(l—a), Pr—a>0, and S >2.
As in the proof of Theorem B.1 we define, for (zo,%y) € R? x R,
Qr(x0,t0) := Br(x0) X [to — rﬁ,to] and @, = Q,(0,0).
We now set
S:=85V1,

and, for £ the random variable from Lemma [2.6] and C' and vy the values from
Lemma 2.7} the random variable p is the largest value such that

1
a O0<p< =,
(@) P<o3
rq
(4.8) (b) pMAE <0,
(c) 2‘1,*1C’Kq,/QuO_q//qul(‘172)/2 <40, and
(d) Cp%2 < 4p>

Step 1 (The initial zoom-in). Fix (xo,t0) € By x [~1/2,0] and set

(z0 + pSz, to + pISt)
S
which is well-defined for (z,t) € By x [—1,0] in view of (4.8)(a). Then v satisfies
(4.9)
a—2 R . R
By — ”pg m_(D*v) + A|Dv|? + pTA > pi f(zo + pSz) - B(to + piSt),

b

v(x,t) == 4

q—2 1 ~ . ~
Opv — ”pg m(D*) + | Dol = pTA < o (wo + pSa) - B(to + p*81), and

0<wv<1inBx][-1,0].
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Step 2 (Induction step). We next show that
(4.10) if 0<r<1 and oscv<r® then oscv < (ur)®.

- wr
Let r € (0,1] be such that oscg, v < r*. We then set

v(rz,7Pt) —infg, v

w(z,t) = for (x,t) € By x [-1,0],

710(
which satisfies
9] .

q q
8tw—5—§um+(D2w)+l|Dw|q— (—) A< (E—2) f(zoterx) - B(to+eat),
7 A €1 €1

ql ql

-G (D*u)+ A+ (2) 42 (2) faoten) Blro+en), and
1 1 1

0<w<1in B; x[-1,0],

where g1 := Spr and ey := SpurP. Tt is a consequence of (A8)(a) that 1,e5 €
(0,1/2], and, moreover, just as in the proof of Theorem [B.1] using the fact that
BE > a,

8(21 —1+k rq
g =P
€1
To prove (4.10)), we show that either
(4.11) w(z,t) <1—0 forall (z,t) € B, x [—p®,0]
or
(4.12) w(x,t) >0 for all (x,t) € B, x [—1?,0].

We consider the two following cases:

Case 1. Assume first that

inf w(y,—1) < 26.
ot (y,—-1) <

Let (4,f) € B, x [-p”,0]. Then (48)(b) and the upper bound from Lemma [2.6]
imply that

where

52 2 1 .
w, — —= D —|Dw,|9=0 in Ba, x (—1,0] and
(4.13) T3 vm(D7wy) + 571Dyl i By x (=1,0] an

Wy =w on 9" (Bay, x [—1,0]).
Note that, by the maximum principle, we have 0 < w4 < 1. Let C' > 49" and vy be
as in Lemma 2.7 and, for y € By, and (z,t) € By, x [—1,0], set

C K pi—2 7/
e, 0)i= 0~ + gy (le =P+ o))

‘We compute

€ a—2pB-2y, Kp1—2
—gy = p4A < qu_2 < d 1,
S 0
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and therefore, by Lemma [2.7(a), w, is a super-solution of ({.13)). In addition,
+00 if x £y,
wy(m, =1) = {w(y, -1) ifz =y,
and, for any (z,t) € 9By x [—1,0],
wy(w,t) = C(1=21)2) % > C4~7 > 1> wy(a,1),

in view of the choice of C' > 49" and of y < 1/4. So w, > wy in By x [~1,0] by the
comparison principle. Because ¢ € [—u?, 0], it follows that 1 +7 > 1 — pu? > %, and

s0, by (.5) and (.8)(c),

YyEBa,,

. ) C . ) qu—2 R q'/2
wi(2,1) < inf {w(y’ -1)+ m <.’E -yl + Z/—O(t + 1)>

< 16‘1/0#‘1, + 2‘1/710Kq,/2uo_q//2pql(q72)/2 + inf w(y,—1)
2 YyEB2,,
<1-50+0+420=1-20.
We conclude that w(#,1) <1—20+6 =1 — 6, so that (411 holds in this case.

Case 2. We now assume that

inf ,—1) > 26.
ygéz“w(y )

Fix (#,%) € B, x [-p#,0]. As in Step [I] Lemma [2.6] gives
w(iatA) > w—(jvf) - 97

where

Oyw_ — 6—21/m,(D2w,) +2A|Dw_|?=0 in By, x (—1,0] and
(4.14) €1

w_ =w on 0*(Bay, x [—1,0]).
For (z,t) € By, x [-1,0] and for b and C' as in Lemma [2.7(b), define

t+1y Cp?=20
4 42
Then, by (4.3) and Lemma [2.7(b), V is a sub-solution of (4.14). In addition,
V<0 ondBy, x[-1,0] and V <26 on By, x {—1},

V(z,t) = 30 (2% + (t+1).

and so V < w_ on 0*(By, x [—1,0]). The comparison principle now implies that
V <w_ in all of By, x [—1,0], and, in particular, using (4.8)(d) and the fact that
b(3/4) =1 and b is nonincreasing,

- - |z t+1 Cp=20
— > = —_— J—
w_(&,t) > V(&,t) = 36b <2ﬂ + 1 1

. 3
(t+1)>360b (Z) —60=20.
Thus, in this case, ([4.12]) holds.

Whether (4.11) or (4.12) is satisfied, we have

oscv =71 0sC1 < (1=0)r* < (ur)?,

nr Iz

and so (4I0) is established.
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Step 3 (The Holder estimate). As in the proof of Theorem B.1] we use Lemma [2.8]
and (4.8)(a) to conclude that, for some C; = C1(k, 4,¢q) > 0,

|u(x,t) _u(:i‘vt)l < Clp—Q/ﬁ_

sup ~ = <

(,),(EDEBy o x[~1/2,0] [T — F|* + [t — t|*/8
All of the parts of (48) imply that, for some Cy = Ca(k,A,q) > 0 and C3 =
C3(’£7A5K7 q) > Oa

p—q/ﬂ < 612(5'11/5 + gl/(ﬂﬁ)) + Cs,

and the rest of the proof follows as in the proof of Theorem B.1] and the properties
of £ outlined in Lemma 2.6

O

5. APPLICATIONS

In this section, we show how Theorems [3.1] and [4.1] can be used to prove a regu-
larizing effect for certain initial value problems. Moreover, the regularity estimates
are independent of a certain large-range, long-time scaling, which is useful in the
theory of homogenization.

We fix a finite time horizon T' > 0 and an initial condition

(5.1) uy € BUC(RY).

The uniform continuity of uy ensures the well-posedness of the equations below,
but we note that the regularizing effects we prove depend only on |ug|| -
Throughout,
(5.2)
B:[0,7T] x 2 = R™ is a Brownian motion over a probability space (Q2, F,P).

We first consider equations of first order, and we assume that, for some A > 1
and ¢ > 1,

H e C(RY x RY x [0,00)) satisfies

(5.3)

%|p|q — A< H(p,z,t) < Alp|]?+ A for all (p,z,t) € R? x R x [0,T7,
and
(5.4) f € CHRY,R™).

For 0 < € < 1, we consider solutions of the scaled, forced equation

x t "y .
5.5) du+H (Du,=, - |dt=¢"2)"f' (=) dB(¢t
59 it it (Dt L D)= g (2) am)
in R x (0,7] and u°(-,0) =ug on R%
and we prove the following result:

Theorem 5.1. Assume (BI)-(E4), and, for 0 < e <1, let u be the solution of
GR). Fixp>1,7>0 and R > 0. Then there exist

C=C(R,7,T,A|fllcr; vl pq) >0, = a(A,q) >0,
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and o0 = 0(A,q) > 0 such that, for all A > 0,

e t) — ul (7 { C p/2
P sup [u (2, 1) u (2,1)] i >C+A]| < EU )
(0,6),(3,5)€Brx[rT] [T — T|® + [t — t]e/(a=ala=1) AP

Proof. We first note that we can assume, without loss of generality, that 7 > 1/2.
Indeed, otherwise, we consider the function

1 T
o (x,t) == Zu€(27'$,27't) for (z,t) € R? x [O, E} )

which solves
dis + H dt—sl/QZfl( ) LdB(t) mRIx (0, L
T 2T
and %°(-,0) =iy on RY,

where, for (p,z,t) € R? x R? x [0, L],

~ 1
H(p,x,t) = H(p7 2T£L',2Tt)7 ’ﬂ,o(.’L’) = _u0(27—$)7

2T
~ 1 ~ 1
flx) = ﬁf(%'x), and B(t) = ﬁB(QTt).

Then H satisfies (B3) with A and ¢ unchanged, and B is a Brownian motion
n [0,277]. As a consequence, o = a(A,q) > 0 remains unchanged, and the 7-
dependence can be absorbed into R, T, || f|lo1, and [ug|| o
Crucially, if f%(z) := /2 f(z/¢), then

1l =21/l and (I IDF e = 1/l IDfll

As a consequence, we may choose a fixed constant K > 0 such that the conclusions
of Lemma [2.5] and Theorem [B.1] hold with the function f¢, for all £ € (0, 1].
In what follows, we fix 0 < k < %

Step 1 (u is bounded). We first use Lemma [2.5] to describe the L>°-bound for u on
R? x [0,T]. In view of (5.3), Lemma 2.5 with e; = e2 = 1, R = 400, and C = R?
gives

uf (x,t) < uy(x,t) + AD; on R x [0,1],

where, for some A\; = A1 (~, || f||o15¢) > 0 and, given p > 1, some
C= C(K’ Hf”Cl » D,y Q) > 07

Cep/?

P(D;>)\)< for all A > Ny

and
1
Opuy + ﬂ|Du+\q =0 onR¥x[0,1], and uy(-,0) =uy onR%
The comparison principle yields u4 (z,t) < ||ugl| . It follows that

u(z,t) < Jluoll, +C(1+D1) on R x [0,1].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



7224 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

Set N := [T'|. An inductive argument then gives random variables Do, D3, ..., Dy :
Q — Ry and Az, A2, ..., Ay depending on &, ||f||o1, and g such that

N
uf(z,1) < |luolloe + A Dy on R x [0, 7]
k=1
and, for all k =1,2,...,N, p>1, and some C = C(k, || f|| o1 ,p,q) > 0,
C'eP/2
P

A similar argument, using the lower bound of Lemma [2.5] gives

P(Dp>\< for all A > .

N
uf(z,t) > — |luollog — AY_Dn on R x [0, 7).
k=1

Adding a random constant to u°, which does not affect the equation solved by u¢,
we may then write
0<u®<S onR?x[0,T],

where
N

S:=2|u |, +24) Dy
k=1
Setting M := 1V (2 |lug| ), we then have, for all p > 1, A > A\; VA3 V- V Ay,
and some constant C' = C(k, ||f]|c1,A4,p,¢,T) > 0,

N
A Cep/?
(5.6) P((S—M)+>A)<P<;Dk>ﬂ> <=

Step 2 (The Holder estimate). Because 7 > 1/2, we can cover Br x [r,T] with
cylinders on which, by Theorem [3.1] u is Holder continuous. More precisely, there
exists a, Ag and C' as in the statement of the current theorem, and ¢ = ¢(k, a, q) > 0,
such that, for all p > 1 and A > A,

e €5 F
p sup \~u (z,t) u (Z,t)] s )
(o.0). (D) Brx (1] [T — E|* + [t — o/ (a=ala=1))

Cer/?
\e(g—a(g—1))p"

<P((8= M)y > e~y 4

Making Ao larger if necessary, depending on &, || f||-:, and ¢, we invoke (5.6) and
obtain the result with

o= (1-5) Atnla - ata= 1) = (g alg=1) (5 ).
O

The next result is for the second-order case. Assume that, for some A > 1,
v>0,and q > 2,

F e C(S? x RY x R x [0, 00)) satisfies
1
(5.7) —vmy(X) + 2lpl? = A< F(X,p,a,t) < —vm—(X) + Alp|* + A
for all (X,p,z,t) € S x R? x R x [0, T7,
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and
(5.8) f € C2(RYR™).

For 0 < € < 1, the scaled equation we consider is
(5.9) du + F (D%, Dur, = L dt:swiﬂ (f) -dB'(t)
' ’ ‘ele P €

in R x (0,7] and w°(-,0) =up on R%
and we prove the following result:
Theorem 5.2. Assume (6.1), (5.2), (6.7), and (B.8), and, for 0 <e <1, let u® be
the solution of (8.9). Fizxp > 1, 7 > 0 and R > 0. Then there exists a constant

C=C(R,7,T,A | fllcz s [lwoll o »2,q) >0, o = a(A,q) >0, and 0 = 0(A,q) >0
such that

€ t) — ue (7 { p/2
P sup |~u (@,1) u (2,0) > C+A] < Ci .
(0.6),(35)eBrx[rT] [T — T + [t — t]e/(a=ala=1) AoP

Proof. Arguing as in the proof of Theorem [5.1] we may assume without loss of
generality that 7 > 1/2. Notice also that

t
FE(X,p,x,t):=F (5X,p, z —> for (X,p,z,t) € S¢ x R x RY x [0, T
g €

satisfies (5.3) with ev replacing v, and, therefore, if we define f(z) := /2 f(x/e),
we have || f¢|| . =&'/?|/f| ., and

e + [Nl IS5 Mloo + e 1 1D?F5]| oo < v+ 1Flloo IDflloe + 1f 1l [ D] -

As a consequence, we may choose a constant K > 0 independently of ¢ > 0 for
which the conclusions of Lemma [2.6] and Theorem [4.1] hold with the function f¢.
The rest of the proof then follows exactly as in the proof of Theorem [5.11 O

APPENDIX A. CONTROLLING STOCHASTIC INTEGRALS

Throughout the paper, we use the following results that give uniform control
over certain stochastic integrals. Assume below that

(A1) B:[-1,0] xQ—R™
is a standard Brownian motion over the probability space (2, F, P).

Lemma A.1l. Let m > 0, K > 0, ¢ > 1, and k € (0,1/2). Then there exists a
random variable D : Q — Ry and A\g = Ao(k, K, q) > 0 such that

(a) for any p > 1 and some constant C = C(k, K,p,q) > 0,
P
P(D>)\) < CA—”; for all A > Ao,

and
(b) for all v € WH>°([-1,0],R%), § € (0,1], =1 < s <t <0, and f satisfying
[flloe <m and [|fll (L+[Df]) < K,

we have

t
/ / D
<o [ fltdr+ 5t -

t
| 160)-a5, 5q
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Assume now that

W:[-1,0] x A= R
is a Brownian motion defined over a probability space (A, F,P).

The probability space A is independent of 2. Below, we prove a statement that
is true for P-almost every sample path B of the Brownian motion from (A.T),
which involves taking the expectation with respect to the Brownian motion W.
Effectively, B and W are independent Brownian motions, and [E can be interpreted
as the expectation conditioned with respect to B.

Lemma A.2. Let g > 1,0 < Kk < %, m > 0, and K > 0. Then there exist a
random variable £ : Q@ — Ry and Ao := Ao(k, K, q) > 0 such that
(a) for any p > 1 and some constant C = C(k, K,p,q) > 0,
C'mpP
P(€>X\) < <o for all A > o,

and
(b) for all 0 < § < 1; processes (o, 0, X) : [-1,0] x A — R% x R x R? that are
W -adapted such that
(A2) a,0€ L™(-1,00xA) and dX,=aydr+o.dW, forre[-1,0];
W -stopping times —1 < s <t < 0; and f € C*(RY,R™) satisfying
(A.3) £l <m and |Ifllo A+ DSl + oo 1D f]l) < K

we have
t , t , g
E {/ (X - dBT} <4 E/ |ae.|T dr + (5_‘1(t —s)".
S S

We note that the integrals against dB appearing in Lemmas [A.T and [A2 are
interpreted as in Section 2] and, in particular, subsection 2.2

The proof of Lemmal[A.1 can be found in [14]. The arguments for LemmalA.2 are
similar, but some further details are needed to account for the use of It6’s formula
and the interaction between B and W.

We first give a parameter-dependent variant of Kolmogorov’s continuity criterion.
Its statement and proof are very similar to that in [14].

Lemma A.3. Define A := {(s,t) € [-1,0], s <t} and fix a parameter set M. Let
(M) pem : Q= Ry and (Z,)pem : A x Q = Ry be such that

(Ad) Z,(s,u) < Z,(s,t)+ Z,(t,u) forallpe Mand —1<s<t<u<0,
and, for some constants a >0, 8 € (0,1), p > 1,
Z,(s,t) p
sup E | sup <”7—M >
(syen |uem \(t—s)Pt/e 0]

Then, for all 0 < k < 8, there exist C; = C1(k) > 0 and Co = Cs(p, K, 5) > 0 such
that, for all A > 1,

Z
P (Sup sup (M - C1Mu> > )\> < %.

< a.

peM (syea \ (t —s)~F

The next result gives an estimate for moments of sums of certain centered and
independent random variables.
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Lemma A.4. Let (Y)}_, : @ — R be a sequence of centered and independent
random variables such that, for all p > 1 and for some u >0 and C = C(p) > 0,

E|Y1|p S C/.Lp
Then there exists a constant C' = C(p) > 0 such that

P
< Cvnp/Zﬂp_

n

S

k=1

E

Proof. Let (ex)j_, be a sequence of independent Rademacher random variables,
that is,

1
Pler=1)=P(er =-1) = 3 forall k=1,2,...,n,

such that (ex)}_, is independent of the sequence (Y%)7_,. It then follows (see
Kahane [7]) that
P

P
E < 2PE

n n
Sovi| < 7B[3 e
k=1 k=1
Therefore, upon replacing Yy with £;Yy, we may assume without loss of generality

that each Y} is symmetric, that is, Y, and —Y} are identically distributed.
Observe next that if the result holds for some p > 1, then, for any ¢ < p, by

Holder’s inequality,
q
< <E

S| < (B n
k=1 k=1

Therefore, it suffices to prove the result for p = 2m with m € N.
We compute

p\ 4/P y
E > < (Cvnp/2up)q P < (jq/an/2,uq'

n 2m
_ JivJz | yie
Z Y - Z Ykl Yk2 Yke ’
k=1

where the sum is taken over 1 < k1 < ky < -+ < ky <mnand j1 +jo+---+jo = 2m.
In view of the symmetry and independence of the Y, all summands for which one
or more of the j; values is odd have zero expectation. Thus,

> Y
k=1

where the sum is taken over 1 < k1 < ko < ---<ky<mnand iy +io+---+1ip =m.
A combinatorial argument implies that the cardinality of such terms is equal to

(m:f; 1), while Holder’s inequality gives

2m

21 21 21
E :ZEYMIYkzz”'YkZz’

2y 1,2 2i myi1/m myi2/m myte/m m
BY Yo Y < (BYm) T (BYE) T (BYT) T < ot
and, therefore,

2m

< C<m+n_ 1)M2m < C,anQm.

= n—1 s

Finally, we turn to the proof of Lemma [A.2.
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Proof of Lemma [A2. Let %, x be the space consisting of («, 0, X, f) satisfying
(A2) and (A.3), define the parameter set

M :=(0,1) X €.k,
and, for each p = (§,,0, X, f) € M and (s,t) € A, the stochastic process

¢ ¢
(A5) Z,(5,8) = (’]E {5‘1/ F(X,) - dBT} - 5q+Q’E/ |aﬂ’dr> ,
s S —+
which can easily be seen to satisfy (A4).
We first show that there exist constants M7 = M7 (K, q) > 0 and My = Ms (K, p, q)

> 0 such that
Z,(s,t P
sup (L’IL — M1> < MoymP.
pneM (t - 5) / +

(A.6) sup E

—1<s<t<0

Fix s,t € [-1,0] with s < ¢. We split into two cases, depending on the size of
the interval [s, ¢].

Case 1. Assume first that

118 1/l
(A.7) t—s< oo = .
DA% oot la (1.0 1P*fll

By Lemma 2.2
5[/ R B, | ~BIF(X): (B~ B.)

-E Ut <Df(7r) cap + %tr(araﬁD2f(Xr))> (B, — Bs)dr] .

Setting
A:= max |By — By,

71,72 €[s,t]

and invoking (A7) and the Young and Holder inequalities then gives, for some
constant C' = C(K,q) > 0,

‘E { / ) ~dBT}

t
1
< |fll A+ HDfHOOAE/ v, | dr + 3 ||O'o't||oo HD2f||OOA(t—S)

3 t , 1/q’
<|Iflls <§A+A<]E/ o, |7 dr) >

3 CA1 / ¢ /
<lfll (58 + 55 ) + 078 [ ol ar

and so

sup Z,(s,t) <m <§A+0Aq> .
pneM 2

Raising both sides to the power p, taking the expectation E over {2, and invoking the
scaling properties of Brownian motion yield, for some constant C = C(K,p,q) > 0
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that changes from line to line,

E {Sup Z,(s, t)p} < OmP (EAP + EAPY)
neM

< CmP(t — s)P/?,
and (A.G) then follows in this case.

Case 2. Assume now that

Tk 1Al
(A.8) t—s> == A = .
DAL " Tootlm 10 1D2 11
Set
11 L 11
A.9 h = o.5] t_ S q A [ee]
(4.9) o | N oot 1D

and let N € N be such that

t—s t—s
<N 1.
A
Note that (A.8) implies that h <t — s, and so
(A.10) t—s<Nh<2(t—s).

For k=0,1,2,...,N — 1, set 7, := s+ kh and 7y = ¢, and, for k =1,2,..., N,
define

Ar= max |B,— B,|.

UVE[Th—1,Tk]

Using Lemma [2.2] we write

: N "
E [/ F(X,) ~dBr} -3 l/ f(X,)-dB,

=1-1I-1II,
where
N
I:= ZE [f(XTk) : (BTk - B'Tk—l)] )
k=1
N -
II:= ZE / Df(X,.)a, - (B, — BTkl)dr] ,
k=1 Tk—1
and

b tr(o,0! D*f(X,)) - (B, — BTkl)dr] :

1 N
111:_§I;E[/T

We estimate

1

N

h N
U< Ifle YA and 1] < 2 [loo’]| , [ D2]], - A,
k=1 k=1
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and, for all € > 0, Young’s inequality yields

N -
1| < Dfll. S AE / v |dr
k=1

Tk—1

N - 1/q'
< IDf 1S A (B / o | dr
k=1 Th—1
N

1 qu t ’
< D7 /" (—Eq Soap+ S8 o dr) .
gt ¢ Js

Combining the three estimates gives

t
\E[/ f<XT>-dBT] (||f| gl 1P )ZAk
1 N
1
+ DSl hVe (;Z + —JE/ o dr) -

k=1

q/ 1/4'
e =0 ——— .
(o 7)

, q/(gq’ (¢)9 164
=——— and 9= ——-———
1D £l b1/ IDf|2 " hia

so that (A.IT) becomes, for some C = C(q) > 0
¢ h
[ ro-am]| < (1 + § oo I%1.) 3o

C al : :
+5—q||Df||gthAZ+6qIE/ gl dr.
k=1 s

(A.11)

‘We now set

In particular,

g4

For k=1,2,..., N, the constants

ap :==EA, and by :=EA]
satisfy, for some a > 0 and b = b(q) > 0,

ar < ah? and by, < bh?/2.

Then (A.9) and (A.1Q) give
(Ifll 5 Il 12271 )Zak

3 _
< Sl NRY20 < 3a ] (¢ = 5)h ™12

< 3a(t — ) A1 ([IDA1L2 (¢ = )7 CO] v [[loot |2 [ 021)1227])
< 3aK'Y2(t — 5)1/?
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and

N
IDFI% 1> by < bDFIIL NRYF12 < 2b(t — s) | Df||%, h?/?

+1

< 20t — ) [IfI1Z2 DL (8 = 5)27 < 2K (t = 5)"5 .
Therefore, because 0 < § < 1, we find that, for some constant My = M, (K, q,m) >
N

07
N
ZAk—ak ZAq—bk )

The collections (Ag, —ay)_; and (A7 — b)Y, consist of independent and centered
random variables. The scaling properties of Brownian motion yield, for any k& =
1,2,..., N and pg > 0 and constants A1 = A;(py) > 0 and Ay = As(po,q) > 0,

E|Ak —ak|p° < Alhpo/Z and E|AZ _bk‘po < A2hp0q/2.

(Zu(s,t) = (e =97

(A.12)

<M (Ifll +C|DfIIS

It is then a consequence of (A.10) and Lemma [A4 that, for some constants A; =
Al(p) > 0 and A2 = AQ(p7 q) > Oa

N p
E|) (A —ar)| <A NP2 <oPI2 4 (t — 5)P/?
k=1
and
N p
E Z(AZ —by)| < AgNP/2pral? < op/2 Ay (t — s)P/2ppla=1)/2,
k=1
The latter estimate and (A9) give
N p
IDFIPE WPE S (AL = by)| < 27/2 A5 | DFIPE (¢ — )P/ 2P D)2
k=1

< 99122, | P2 D R o - ()
< P2 A KPAD/2 | £|IP (¢ — 5)P/2)

and so, raising (A.12) to the power p and taking the expectation gives, for some
M2 = MQ(vavpv q) > Oa

1/2\P p/2
E | sup (Zu(s,t) — Mi(t—s) ) < My(t — s)P/2,
HEM +
Dividing by (t — 5)P/? leads to (A.6).

We now take p large enough that

<1 1
K< ===
2 p

Then (A6) and Lemma [A3] imply that, for some C = C(x,m, K,p,q) > 0 and
M = M(k,m,K,q) >0, and for all A > 1 and
2

>
P=1"9
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we have

Z,(s,t CmP
P(sup sup M>M‘|’)\>S m.
peM —1<s<t<o (t — )" AP

By changing C' in a way that depends only on m and p, the same can be accom-
plished for all p > 1. The proof is finished upon setting

Z,(s,t
Ao :=2M, &E:= sup sup M,
peM —1<s<t<o (t — )"

and replacing C' with 2PC. |
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