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HÖLDER REGULARITY OF HAMILTON-JACOBI EQUATIONS

WITH STOCHASTIC FORCING

PIERRE CARDALIAGUET AND BENJAMIN SEEGER

Abstract. We obtain space-time Hölder regularity estimates for solutions of
first- and second-order Hamilton-Jacobi equations perturbed with an additive
stochastic forcing term. The bounds depend only on the growth of the Hamil-
tonian in the gradient and on the regularity of the stochastic coefficients, in a
way that is invariant with respect to a hyperbolic scaling.

1. Introduction

The objective of this paper is to study the Hölder regularity for solutions of
stochastically perturbed equations of the form

(1.1) du + H(Du, x, t)dt = f(x) · dB

and

(1.2) du + F (D2u, Du, x, t)dt = f(x) · dB,

where H : Rd × Rd × R → R and F : Sd × Rd × Rd × R → R are coercive in Du,
F is degenerate elliptic in D2u ∈ Sd, Sd is the space of symmetric d × d matrices,
f ∈ C2

b (Rd, Rm), and B is an m-dimensional Brownian motion defined over a fixed
probability space (Ω,F,P).

More precisely, we are interested in the regularizing effect that comes about from
the coercivity in the Du-variable. The goal is to show that bounded solutions of
(1.1) and (1.2) are locally Hölder continuous with high probability, with a Hölder
bound and exponent that are independent of the regularity of H or F in (x, t), or
the ellipticity in the D2u-variable.

A major motivation for this paper is to study the average long-time, long-range
behavior of solutions of (1.1) and (1.2) with the theory of homogenization. Specif-
ically, if uε(x, t) := εu(x/ε, t/ε) for ε > 0 and (x, t) ∈ Rd × R, then uε solves

(1.3) duε + H

(
Duε,

x

ε
,
t

ε

)
dt = ε1/2f

(x

ε

)
· dBε

or

(1.4) duε + F

(
εD2uε, Duε,

x

ε
,
t

ε

)
dt = ε1/2f

(x

ε

)
· dBε,

where Bε(t) := ε1/2B(t/ε) has the same law as B. Observe that the new coefficients

fε(x) := ε1/2f(x/ε),
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which are required to be continuously differentiable in order to make sense of the
equation (twice in the case of (1.4)), blow up in C1(Rd, Rm) and C2(Rd, Rm) as
ε → 0. A major contribution of this paper is to obtain estimates that, although
they depend on ‖Df‖∞ and

∥∥D2f
∥∥
∞, are bounded independently of ε, and, in

fact, the probability tails of the Hölder semi-norms converge to 0 as ε → 0.

1.1. Main results. We give two types of results, for both first and second or-
der equations. The first is an interior Hölder estimate for bounded solutions on
space-time cylinders. We then use this result to prove an instantaneous Hölder
regularization effect for initial value problems with bounded initial data.

For u defined on the cylinder

Q1 := B1 × [−1, 0] :=
{
(x, t) ∈ Rd × R : |x| ≤ 1, −1 ≤ t ≤ 0

}
,

we show that u is Hölder continuous on the cylinder B1/2 × [−1/2, 0], given that
u is a solution of the appropriate equation, and is nonnegative and has a random
upper bound, that is, for some S : Ω → [0,∞),

(1.5) 0 ≤ u ≤ S in Q1.

Theorem 1.1. Assume, for some A > 1, q > 1, and K > 0, that

(1.6)
1

A
|p|q − A ≤ H(p, x, t) ≤ A|p|q + A for all (p, x, t) ∈ Rd × Rd × [−1, 0],

(1.7) f ∈ C1(Rd, Rm), ‖f‖∞ + ‖f‖∞ · ‖Df‖∞ ≤ K,

and u solves (1.1) in Q1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there
exist α = α(A, q) > 0, σ = σ(A, q) > 0, λ0 = λ0(A, K, M, q) > 0, and C =
C(A, K, M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> λ

)

≤ P ((S − M)+ > λσ) +
C ‖f‖p

∞
λσp

.

To state the assumptions for the regularity results for (1.2), we introduce the
notation, for any X ∈ Sd,

m+(X) := max
|v|≤1

v · Xv and m−(X) := min
|v|≤1

v · Xv.

That is, m+(X) and m−(X) are, respectively, the largest nonnegative and lowest
nonpositive eigenvalue of X. Note that, if F : Sd → R is uniformly continuous and
degenerate elliptic, then, for some constants ν > 0 and A > 0 and for all X ∈ Sd,

−νm+(X) − A ≤ F (X) ≤ −νm−(X) + A.

In order for the coercivity in the gradient to dominate the second-order dependence
of F at small scales, it is necessary to assume that the growth of F in Du is super-
quadratic.

Theorem 1.2. Assume that, for some A > 1, q > 2, ν > 0, and K > 0,

(1.8)





− νm+(X) +

1

A
|p|q − A ≤ F (X, p, x, t) ≤ −νm−(X) + A|p|q + A

for all (X, p, x, t) ∈ Sd × Rd × Rd × [−1, 0],
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(1.9) f ∈ C2(Rd, Rm), ν + ‖f‖∞ + ‖f‖∞ · ‖Df‖∞ + ν ‖f‖∞
∥∥D2f

∥∥
∞ ≤ K,

and u solves (1.2) in Q1 and satisfies (1.5). Fix M > 0 and p ≥ 1. Then there
exist α = α(A, q) > 0, σ = σ(A, q) > 0, λ0 = λ0(A, K, M, q) > 0, and C =
C(A, K, M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> λ

)

≤ P ((S − M)+ > λσ) +
C ‖f‖p

∞
λσp

.

Although the bounds in Theorems 1.1 and 1.2 do depend on the regularity of f ,
the important point is that the dependence is scale-invariant. Indeed, the function
fε defined by fε(x) := ε1/2f(x/ε) satisfies

‖fε‖∞ = ε1/2 ‖f‖∞ , ‖Dfε‖∞ :=
1

ε1/2
‖Df‖∞ ,

and
∥∥D2fε

∥∥
∞ =

1

ε3/2

∥∥D2f
∥∥
∞ .

As a consequence, fε satisfies (1.7) and (1.9) with some K > 0 independent of ε
(the latter because, in (1.8), ν is replaced with εν). This leads to the following
scale-invariant estimates for the regularizing effect of (1.3) and (1.4).

Theorem 1.3. For A > 1, M > 0, and q > 1, assume that

1

A
|p|q − A ≤ H(p, x, t) ≤ A|p|q + A

and f ∈ C1
b (Rd, Rm), and, for 0 < ε < 1, let uε be the solution of (1.3) with

‖uε(·, 0)‖∞ ≤ M . Fix τ > 0, R > 0, and T > 0. Then there exist C =
C(R, τ, T, A, ‖f‖C1 , M, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such that,
for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t) − uε(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

Theorem 1.4. For A > 1, ν > 0, M > 0, and q > 2, assume that

−νm+(X) +
1

A
|p|q − A ≤ F (X, p, x, t) ≤ −νm−(X) + A|p|q + A

and f ∈ C2
b (Rd, Rm), and, for 0 < ε < 1, let uε be the solution of (1.4) with

‖uε(·, 0)‖∞ ≤ M . Fix τ > 0, R > 0, and T > 0. Then there exist C =
C(ν, R, τ, T, A, ‖f‖C2 , M, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0 such
that, for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t) − uε(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

A natural question is whether the methods and results of this paper can be
generalized to treat a fixed, deterministic path B that is, say, κ-Hölder continuous
for some κ ∈ (0, 1). We strongly suspect that Theorems 1.1 and 1.2 can be adapted
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to such a setting in a straightforward manner and, in this case, the bounds in (1.7)
and (1.9) are replaced by, respectively,

‖f‖∞ + ‖f‖κ∞ ‖Df‖1−κ
∞ ≤ K

and ν + ‖f‖∞ + ‖f‖κ∞ ‖Df‖1−κ
∞ + ‖f‖κ∞ (ν

∥∥D2f
∥∥
∞)1−κ ≤ K,

with constants depending additionally on the Hölder semi-norm of B. However,
our Theorems 1.3 and 1.4 regarding Brownian motion do not immediately follow
from such a statement. Indeed, with probability one, Brownian paths are κ-Hölder
continuous if and only if κ < 1/2. The function fε(x) = ε1/2f(x/ε), which arises
due to the hyperbolic scaling in (1.3) and (1.4) as well as the self-similarity of
Brownian motion, then satisfies

‖fε‖κ∞ ‖Dfε‖1−κ
∞ = ε−(1/2−κ) ‖f‖∞ ‖Df‖∞ .

This quantity blows up as ε → 0 if κ < 1/2. We therefore emphasize that the
methods used to prove Theorems 1.1–1.4 are really probabilistic in nature, and use
features of Brownian paths beyond their almost-sure regularity, in particular, the
independence and scaling properties of increments (see Lemmas A.1 and A.2 in the
appendix).

1.2. Background. The regularizing effects of Hamilton-Jacobi-Bellman equations
like

(1.10) ∂tu + F (D2u, Du, x, t) = 0

have been studied by many authors, including Cardaliaguet [2], Cannarsa and
Cardaliaguet [1], Cardaliaguet and Silvestre [3], Chan and Vasseur [4], and Stokols
and Vasseur [16]. In these works, under a coercivity assumption on F in the gradi-
ent variable (but no regularity condition on F ), bounded solutions are seen to be
Hölder continuous, with estimate and exponents depending only on the growth of
the F in Du. These results were used to obtain homogenization results for prob-
lems set on periodic or stationary-ergodic spatio-temporal media; see, for instance,
Schwab [13] and Jing, Souganidis, and Tran [6].

Equations (1.1) and (1.2) do not fit into this framework, due to the singular
term on the right-hand side, which is nowhere pointwise-defined. A simple trans-
formation (see Definition 2.1) leads to a random equation of the form (1.10) that
is everywhere pointwise-defined. More precisely, if u solves (1.2) and

ũ(x, t) = u(x, t) − f(x) · B(t),

then
∂tũ + F (D2ũ + D2f(x) · B(t), Dũ + Df(x) · B(t), x, t) = 0.

However, this strategy does not immediately yield scale-invariant estimates. Indeed,
the transformed equation corresponding to (1.4) is, for ε > 0,

∂tũ
ε + F

(
εD2ũε +

1

ε1/2
D2f

(x

ε

)
Bε(t), Dũε +

1

ε1/2
Df

(x

ε

)
Bε(t),

x

ε
,
t

ε

)
= 0,

for which the results in the above references yield estimates that depend on ε.
These issues were considered by Seeger [14] for equation (1.1) with H indepen-

dent of (x, t) and convex in p. In this paper, we further extend the regularity results
from [14] to apply also to second-order equations and with more complicated (x, t)-
dependence for F and H. To do so, we follow [3] and prove that the equations
exhibit an improvement of oscillation effect at all sufficiently small scales, which is
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a consequence only of the structure of the equation. The main difference with [3]
is the addition of the random forcing term f(x) · dB(t) which obliges to revisit the
analysis of [3] in a substantial way.

1.3. Organization of the paper. In Section 2, we discuss the notion of pathwise
viscosity solutions of equations like (1.1) and (1.2), and we present a number of
lemmas needed throughout the paper. The interior estimates are proved in Sections
3 and 4, and the results for initial value problems are presented in Section 5. Finally,
in Appendix A, we prove some results on controlling certain stochastic integrals.

1.4. Notation. If a and b are real numbers, then we set a∨ b = max{a, b}, a∧ b =
min{a, b} and denote by +a, the smallest integer greater than or equal to a. We let
Sd be the set of symmetric real matrices of size d×d. We say that a map F : Sd → R
is degenerate elliptic if, for X, Y ∈ Sd with X ≤ Y , we have F (X) ≥ F (Y ). Given
H : Rd → R, H∗ is defined for α ∈ Rd by H∗(α) = supp∈Rd {α · p − H(p)}. Given

a subset C of Rd and −∞ < t0 < t1 < ∞, ∂∗(C × (t0, t1)) denotes the parabolic
boundary of C × (t0, t1), namely

∂∗(C × (t0, t1)) = (C × {t0}) ∪ (∂C × (t0, t1)).

For an open domain U ⊂ RN , USC(U) (respectively LSC(U)) denotes the space
of upper- (respectively lower-) semicontinuous functions on U , and BUC(U) is the
space of bounded and uniformly continuous functions on U . For a bounded function
u : U → R, we define oscU u := supU u − infU u.

2. Preliminaries

2.1. Pathwise viscosity solutions. Fix −∞ < t0 < t1 < ∞ and let U ⊂ Rd ×
(t0, t1) be an open set. For ζ ∈ C((t0, t1), Rm), a degenerate elliptic F ∈ C(Sd ×
Rd ×U × (t0, t1), R), and f ∈ C2(Rd, Rm), we discuss the meaning of viscosity sub-
and super-solutions of the equation

(2.1) du + F (D2u, Du, x, t)dt = f(x) · dζ, (x, t) ∈ U.

The general theory of pathwise viscosity solutions, initiated by Lions and Souganidis
[9–12, 15], covers a wide variety of equations for which f may also depend on u or
Du. In the case of (2.1), the theory is much more tractable, and solutions are
defined through a simple transformation.

Definition 2.1. A function u ∈ USC(U) (resp. u ∈ LSC(U)) is a sub- (resp.
super-) solution of (2.1) if the function ũ defined, for (x, t) ∈ U , by

ũ(x, t) = u(x, t) − f(x) · ζ(t)

is a sub- (resp. super-) solution of the equation

∂tũ + F (D2ũ + D2f(x)ζ(t), Dũ + Df(x)ζ(t), x, t) = 0, (x, t) ∈ U.

A solution u ∈ C(U) is both a sub- and super-solution.

We remark that, if F is independent of D2u, then we may take f ∈ C1(Rd, Rm).
We will often denote the fact that u is a sub- (resp. super-) solution of (2.1), by

writing

du + F (D2u, Du, x, t)dt ≤ f(x) · dζ
(
resp. du + F (D2u, Du, x, t)dt ≥ f(x) · dζ

)
.
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At times, when it does not cause confusion, we also use the notation

∂tu + F (D2u, Du, x, t) = f(x) · ζ̇(t),

even when ζ is not continuously differentiable. This will become particularly useful
in proofs that involve scaling, in which case the argument of ζ̇ may change.

2.2. Control and differential games formulae. Just as for classical viscosity
solutions, some equations allow for representation formulae with the use of the
theories of optimal control or differential games. Before we explain this, we give
meaning to certain pathwise integrals that come up in the formulae.

Lemma 2.1. Assume that s < t and f ∈ C0,1([s, t], Rm). Then the map

C1([s, t], Rm) / ζ 0→
∫ t

s
f(r) · ζ̇(r)dr =

m∑

i=1

∫ t

s
f i(r) · ζ̇i(r)dr

extends continuously to ζ ∈ C([s, t], Rm).

Proof. The result is immediate upon integrating by parts, which yields, for ζ ∈
C1([s, t], Rm),

∫ t

s
f(r)ζ̇(r)dr = f(t)ζ(t) − f(s)ζ(s) −

∫ t

s
ḟ(r)ζ(r)dr.

!

Lemma 2.2. Assume that s < t, f ∈ C1
b (Rd, Rm), W : [s, t] × A → R is a

Brownian motion on some probability space (A, F , P), α,σ : [s, t] × A → Rd are
bounded and progressively measurable with respect to the filtration of W , τ ∈ [s, t]
is a W -stopping time, and

dXr = αrdr + σrdW for r ∈ [s, t].

Then the map

C1([s, t], Rm) / ζ 0→
∫ τ

s
f(Xr) · ζ̇(r)dr =

m∑

i=1

∫ τ

s
f i(Xr) · ζ̇i(r)dr ∈ L2(A)

extends continuously to ζ ∈ C([s, t], Rm), and, moreover,

E
[∫ τ

s
f(Xr) · ζ̇(r)dr

]
= E [f(Xτ ) · ζ(τ ) − f(Xs) · ζ(s)]

− E
[∫ τ

s
ζ(r) ·

(
Df(Xr) · αr +

1

2
〈D2f(Xr)σr,σr〉

)
dr

]
.

Proof. If ζ ∈ C1([s, t], Rm), then Itô’s formula yields, for i = 1, 2, . . . , m,

d
[
f i(Xr) · ζi(r)

]
=

[
f i(Xr)ζ̇

i(r) + Df i(Xr) · αrζ
i(r) +

1

2
〈D2f i(Xr)σr,σr〉ζi(r)

]
dr

+ (Df i(Xr) · σrζ
i(r))dWr,
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and so ∫ τ

s
f i(Xr)ζ̇

i(r)dr = f i(Xτ )ζ
i(τ ) − f i(Xs)ζ

i(s)

−
∫ τ

s
ζi(r)

(
Df i(Xr) · αr +

1

2
〈D2f i(Xr)σr,σr〉

)
dr

−
∫ τ

s
ζi(r)Df(Xr) · σrdWr.

(2.2)

The Itô isometry property implies that

L2([s, t]) / ζi 0→
∫ τ

s
ζi(r)Df(Xr) · σrdWr ∈ L2(A)

is continuous, and, in particular, the map extends to ζi ∈ C([s, t]). The result fol-
lows from the fact that the other terms on the right-hand side of (2.2) are continuous
with respect to ζi ∈ C([s, t]). The final claim follows upon taking the expectation
of both sides of (2.2) and appealing to the optional stopping theorem. !

For arbitrary continuous ζ, we freely interchange notations such as
∫ t

s
fr · dζr and

∫ t

s
f(r) · ζ̇(r)dr.

Throughout the paper, ζ is often taken to be a Brownian motion, defined on a
probability space that is independent of W .

We now consider some equations for which sub- and super-solutions can be com-
pared from above or below with particular formulae. For convenience, we write the
equations backward in time.

Lemma 2.3. Assume C ⊂ Rd is open, x0 ∈ C, t0 < t1, U is an open domain
containing C × [t1, t0], ζ ∈ C(R, Rm), f ∈ C1(U), and H : Rd → R is convex and
superlinear. Let u ∈ C(U) be a pathwise viscosity sub- (resp. super-) solution, in
the sense of Definition 2.1, of

−du + H(Du)dt = f(x) · dζ in U.

Then

u(x0, t0) ≤ (resp. ≥) inf

{
u(γτ , τ ) +

∫ τ

t0

H∗(−γ̇r)dr

+

∫ τ

t0

f(γr) · dζr : γ ∈ W 1,∞([t0, t1], Rd), γt0 = x0

}
,

where, for fixed γ ∈ W 1,∞([t0, t1], Rd),

(2.3) τ = τγ := inf{t ∈ (t0, t1] : γt ∈ ∂C}.

Proof. We prove the claim for sub-solutions, as it is identical for super-solutions.
Definition 2.1 implies that if

ũ(x, t) := u(x, t) + f(x) · ζ(t) for (x, t) ∈ U,

then ũ is a sub-solution of the boundary-terminal-value problem

(2.4)

{
−∂tũ + H(Dũ − Df(x) · ζ(t)) = 0 in C × [t0, t1) and

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.
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The unique solution of (2.4) (see [8]) is given by

w(x, t) = inf

{
u(γτ , τ ) + f(γτ ) · ζ(τ )

+

∫ τ

t
[H∗(−γ̇r) − γ̇r · Df(γr) · ζ(r)] dr : γ ∈ W 1,∞([t, t1], Rd), γt = x

}
,

where τ is as in (2.3). Integrating by parts gives
∫ τ

t
γ̇r · Df(γr) · ζ(r)dr = f(γτ )ζ(τ ) − f(x)ζ(t) −

∫ τ

t
f(γr) · dζ(r),

and, hence,

w(x, t) = f(x)ζ(t) +

inf

{
u(γτ , τ ) +

∫ τ

t
H∗(−γ̇r)dr +

∫ τ

t
f(γr) · dζ(r) : γ ∈ W 1,∞([t, t1], Rd), γt = x

}
.

The result now follows because, by the comparison principle for (2.4), ũ ≤ w on
C × [t0, t1]. !

We next give formulae for solutions of some Hamilton-Jacobi-Bellman and
Hamilton-Jacobi-Isaacs equations.

For −∞ < t0 < t1 < ∞, assume that
(2.5)
W : [t0, t1]×A → R is a Brownian motion defined on a probability space (A, F , P),

with associated expectation E, and define the spaces of admissible controls

C :=
{
µ ∈ L∞ (

[t0, t1] × A, Rd
)

: µ is adapted with respect to W
}

and

CM := {µ ∈ C : ‖µ‖∞ ≤ M} .

The Isaacs’ equations require us to use the spaces of strategies defined by

S := {β : C → C : µ1 = µ2 on [t0, t] ⇒ β(µ1)(t) = β(µ2)(t)} and

SM := {β ∈ S : β(C ) ⊂ CM} .

Lemma 2.4. Assume C ⊂ Rd is open and convex, x0 ∈ C, t0 < t1, U is an open
domain containing C × [t0, t1], f ∈ C2(U), H : Rd → R is convex and superlinear,
and ν > 0. Given (α,σ) ∈ C × C , denote by X = Xα,σ,x0,t0 the solution of

(2.6) dXr = αrdr + σrdWr in [t0, t1] and Xt0 = x0,

and

(2.7) τ = τα,σ,x0,t0 := inf
{
t ∈ (t0, t1] : Xα,σ,x0,t0

t ∈ ∂C
}

.

(a) Let u ∈ C(U) be a pathwise viscosity super-solution, in the sense of Defini-
tion 2.1, of

−du +
[
−νm−(D2u) + H(Du)

]
dt = f(x) · dζ in U.

Then

u(x0, t0) ≥ inf
(α,σ)∈C×C√

2ν

E
[
u(Xτ , τ ) +

∫ τ

t0

H∗(−αr)dr +

∫ τ

t0

f(Xr) · dζr

]
.
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(b) Let u ∈ C(U) be a pathwise viscosity sub-solution, in the sense of Definition
2.1, of

−du +
[
−νm+(D2u) + H(Du)

]
dt = f(x) · dζ in U.

Then

u(x0, t0) ≤ inf
α∈C

sup
β∈S√

2ν

E
[
u(Xτ , τ ) +

∫ τ

t0

H∗(−αr)dr +

∫ τ

t0

f(Xr) · dζr

]
,

where X and τ are as in respectively (2.6) and (2.7) with σ = β(α).

Proof. As a preliminary step, assume that (α,σ) ∈ C × C and X and τ are as in
(2.6) and (2.7). Then Lemma 2.2 gives

E
[∫ τ

t
f(Xr) · dζr

]
= E [f(Xτ )ζ(τ ) − f(Xt)ζ(t)]

− E
[∫ τ

t
ζ(r) ·

(
Df(Xr) · αr +

1

2
D2f(Xr)σr · σr

)
dr

]
.

(2.8)

(a) By Definition 2.1, if

ũ(x, t) := u(x, t) + f(x) · ζ(t),

then ũ is a classical viscosity super-solution of
(2.9){
−∂tũ − νm−

(
D2ũ − D2f(x) · ζ(t)

)
+ H (Dũ − Df(x) · ζ(t)) = 0 in C × [t0, t1),

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.

For (X, p, x, t) ∈ Sd × Rd × U , we have

− νm−
(
X − D2f(x) · ζ(t)

)
+ H (p − Df(x) · ζ(t))

= sup
|σ|≤

√
2ν, α∈Rd

{
−1

2
σ · Xσ +

1
2
σ · D2f(x)σ · ζ(t) − α · p + α · Df(x) · ζ(t) − H∗(−α)

}
,

and so standard results from the theory of stochastic control (see Theorem II.3 in
[8]) imply that the unique solution of (2.9) is given by

w(x, t) := inf
(α,σ)∈C×C√

2ν

E
[
u(Xτ , τ ) + f(Xτ ) · ζ(τ )

+

∫ τ

t

[
H∗(−αr) − ζ(r) ·

(
αr · Df(Xr) +

1

2
σr · D2f(Xr)σr

)]
dr

]

= f(x) · ζ(t) + inf
(α,σ)∈C×C√

2ν

E
[
u(Xτ , τ ) +

∫ τ

t
H∗(−αr)dr +

∫ τ

t
f(Xr) · dζr

]
,

where the last equality follows from (2.8). The result follows from the comparison
principle for (2.9), which implies that ũ(x, t) ≥ w(x, t) for (x, t) ∈ C × [t0, t1].

(b) By Definition 2.1, if

ũ(x, t) := u(x, t) + f(x) · ζ(t),

then ũ is a classical viscosity sub-solution of
(2.10){
−∂tũ − νm+

(
D2ũ − D2f(x) · ζ(t)

)
+ H (Dũ − Df(x) · ζ(t)) = 0 in C × [t0, t1),

ũ(x, t) = u(x, t) + f(x) · ζ(t) if t = t1 or x ∈ ∂C.
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For (X, p, x, t) ∈ Sd × Rd × U , we have

− νm+

(
X − D2f(x) · ζ(t)

)
+ H (p − Df(x) · ζ(t))

= sup
α∈Rd

inf
|σ|≤

√
2ν

{
−1

2
σ · Xσ +

1
2
σ · D2f(x)σ · ζ(t) − α · p + α · Df(x) · ζ(t) − H∗(−α)

}

= inf
|σ|≤

√
2ν

sup
α∈Rd

{
−1

2
σ · Xσ +

1
2
σ · D2f(x)σ · ζ(t) − α · p + α · Df(x) · ζ(t) − H∗(−α)

}
,

and so standard results from the theory of stochastic differential games (see Theo-
rem 2.6 of [5]) imply that, keeping in mind that σ = β(α) below, the unique solution
of (2.10) is given by

w(x, t) := inf
α∈C

sup
β∈S√

2ν

E
[
u(Xτ , τ ) + f(Xτ ) · ζ(τ )

+

∫ τ

t

[
H∗(−αr) − ζ(r) ·

(
αr · Df(Xr) +

1

2
σr · D2f(Xr)σr

)]
dr

]

= f(x) · ζ(t) + inf
α∈C

sup
β∈S√

2ν

Ex,t

[
u(Xτ , τ ) +

∫ τ

t
H∗(−αr)dr +

∫ τ

t
f(Xr) · dζr

]
,

where (2.8) gives the last equality. The result follows from the comparison principle
for (2.9), which implies that ũ(x, t) ≤ w(x, t) for (x, t) ∈ C × [t0, t1]. !

2.3. Comparison with homogenous equations. We now take ζ to be a Brow-
nian motion, and we assume that
(2.11)
B : [−1, 0] × Ω → Rm is a standard Brownian motion on the probability space

(Ω,F,P).

In this case, the forcing term
∑m

i=1 f i(x) · dBi(t) is nowhere pointwise defined, and
the naive estimate ∣∣∣∣∣

m∑

i=1

f i(x) · dBi(t)

∣∣∣∣∣ ≤ ‖f‖∞ ‖dB‖∞

cannot be used in comparison principle arguments, as would be the case if B be-
longed to C1.

The results given below provide another way to compare solutions of (1.1) and
(1.2) with equations that are independent of x and t. In the new equations, the
forcing term is replaced with a random constant that depends on f only through
quantities as in (1.7) and (1.9), at the expense of slightly weakening the coercivity
bounds in the gradient variable. The main tool is to use Lemmas A.1 and A.2
to control the stochastic integrals that arise from the representation formulae in
Lemmas 2.3 and 2.4.

For q > 1, define

q′ :=
q

q − 1
and cq := (q − 1)q−q/(q−1),

so that, in particular, for any constant a > 0, the convex conjugate of p 0→ a|p|q is
given by

(2.12) (a| · |q)∗ = cqa
−(q′−1)| · |q

′
.
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Lemma 2.5. Let B be as in (2.11) and fix m > 0, K > 0, q > 1, and κ ∈ (0, 1/2).
Then there exist a random variable D : Ω → R+ and λ0 = λ0(κ, m, K, q) > 0 such
that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ, K, p, q) > 0 such that, for
all λ ≥ λ0,

P(D > λ) ≤ Cmp

λp
.

(b) Let f ∈ C1(Rd, Rm) satisfy

‖f‖∞ ≤ m and ‖f‖∞ (1 + ‖Df‖∞) ≤ K,

and assume that A > 1, ε1, ε2 : Ω → (0, 1), and −1 + ε2 ≤ r0 ≤ 0. Suppose
that, for some R ∈ (0,∞], w solves






∂tw +
1

A
|Dw|q −

(
ε2

ε1

)q′

A ≤
(
ε2

ε1

)q′

f(ε1x) · Ḃ(r0 + ε2t) and

∂tw + A|Dw|q +

(
ε2

ε1

)q′

A ≥
(
ε2

ε1

)q′

f(ε1x) · Ḃ(r0 + ε2t) in BR × [−1, 0],

fix an open convex set C ⊂ BR, x0 ∈ C, and −1 ≤ t1 < t0 ≤ 0. Then

w−(x0, t0) −
εq′−1+κ
2

εq′

1

AD ≤ w(x0, t0) ≤ w+(x0, t0) +
εq′−1+κ
2

εq′

1

AD,

where





∂tw− + 2A|Dw−|q = 0 and

∂tw+ +
1

2A
|Dw+|q = 0 in C × (t1, t0], and

w− = w+ = w on ∂∗(C × (t1, t0)).

Proof.

Step 1. For (x, t) ∈ BR×[0, 1], define w̃(x, t) := w(x,−t) and B̃(t) := B(0)−B(−t).
Then B̃ : [0, 1] × Ω → Rm is a Brownian motion, and w̃ solves






−∂tw̃ +
1

A
|Dw̃|q −

(
ε2

ε1

)q′

A ≤
(
ε2

ε1

)q′

f(ε1x) · ˙̃B(−r0 + ε2t) and

−∂tw̃ + A|Dw̃|q +

(
ε2

ε1

)q′

A ≥
(
ε2

ε1

)q′

f(ε1x) · ˙̃B(−r0 + ε2t) in BR × [0, 1].

We also define w̃+(x, t) = w+(x,−t) and w̃−(x, t) = w−(x,−t), which solve






−∂tw̃− + 2A|Dw−|q = 0 and

−∂tw̃+ +
1

2A
|Dw+|q = 0 in C × [−t0,−t1), and

w̃− = w̃+ = w̃ on (C × {−t1}) ∪ (∂C × [−t0,−t1]).
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The classical Hopf-Lax formula and (2.12) then give, for (x, t) ∈ C × [−t0,−t1],

w̃+(x, t) = inf
(y,s)∈(C×{−t1})∪(∂C×[−t0,−t1])

{
w̃(y, s) + cq(2A)q′−1 |x − y|q′

|t − s|q′−1

}
and

w̃−(x, t) = inf
(y,s)∈(C×{−t1})∪(∂C×[−t0,−t1])

{
w̃(y, s) + cq(2A)−(q′−1) |x − y|q′

|t − s|q′−1

}
.

Step 2. Let κ ∈ (0, 1/2) and D be as in Lemma A.1. Then, by that lemma, for any
0 < δ < 1, γ ∈ W 1,∞([−t0,−t1], Rd), and τ ∈ [−t0,−t1],

(
ε2

ε1

)q′ ∣∣∣∣
∫ τ

−t0

f(ε1γr) · ˙̃B(−r0 + ε2r)dr

∣∣∣∣

=
εq′−1
2

εq′

1

∣∣∣∣
∫ −r0+ε2τ

−r0−ε2t0

f

(
ε1γ

(
r + r0

ε2

))
· ˙̃B(r)dr

∣∣∣∣

≤ εq′−1
2

εq′

1

δq′
∫ −r0+ε2τ

−r0−ε2t0

∣∣∣∣
ε1

ε2
γ̇

(
r + r0

ε2

)∣∣∣∣
q′

dr +
εq′−1+κ
2

εq′

1

D
δq

(τ + t0)
κ

= δq′
∫ τ

−t0

|γ̇r|q
′
dr +

εq′−1+κ
2

εq′

1

D
δq

(τ + t0)
κ.

(2.13)

Step 3. We prove the upper bound first. By Lemma 2.3 and the equality (2.12),
we have, with probability one,

w̃(x0,−t0) ≤ inf

{
w̃(γτ , τ ) + cqA

q′−1

∫ τ

−t0

|γ̇r|q
′
dr +

(
ε2

ε1

)q′

A(τ + t0)

+

(
ε2

ε1

)q′ ∫ τ

−t0

f(ε1γr) · ˙̃B(−r0 + ε2r)dr : γ ∈ W 1,∞([−t0,−t1], Rd)

}
,

where, as in (2.3), we define

τ = τγ := inf {t ∈ (−t0,−t1] : γτ ∈ ∂C} .

We then set

δ = 1 ∧
[
(2q′−1 − 1)1/q′

c1/q′

q A1/q
]
,

which, in particular, implies that δq′ ≤ cq(2q′−1−1)Aq′−1. Then, in view of (2.13),
for some constant Cq > 0,

w̃(x0,−t0) ≤ inf

{
w̃(γτ , τ ) + cq(2A)q′−1

∫ τ

−t0

|γ̇r|q
′
dr : γ ∈ W 1,∞([−t0,−t1], Rd)

}

+ A

(
ε2

ε1

)q′ [
1 +

1

δq
ε−(1−κ)
2 D

]

≤ w̃+(x0,−t0) + A
εq′−1+κ
2

εq′

1

(1 + CqD).

(2.14)
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Step 4. We next consider the lower bound. We again use (2.12) and Lemma 2.3 to
obtain

w̃(x0,−t0) ≥ inf

{
w̃(γτ , τ ) + cqA

−(q′−1)

∫ τ

−t0

|γ̇r|q
′
dr −

(
ε2

ε1

)q′

A(τ + t0)

+

(
ε2

ε1

)q′ ∫ τ

−t0

f(ε1γ̇r) · ˙̃B(−r0 + ε2r)dr : γ ∈ W 1,∞([−t0,−t1], Rd)

}
.

Choosing

δ := 1 ∧ c1/q′

q (1 − 2−(q′−1))1/q′
A−1/q

yields δq′ ≤ cq(1 − 2−(q′−1))A−(q′−1). As a consequence, Jensen’s inequality and
(2.13) yield, for some C ′

q > 0,

w̃(x0,−t0) ≥ inf

{
w̃(γτ , τ ) + cq(2A)−(q′−1)

∫ τ

−t0

|γ̇r|q
′
dr : γ ∈ W 1,∞([−t0,−t1])

}

− εq′−1+κ
2

εq′

1

A(1 + C ′
qD)

≥ w−(x0,−t0) −
εq′−1+κ
2

εq′

1

A(1 + C ′
qD).

(2.15)

Step 5. We set D̃ := 1+(Cq ∨C ′
q)D, so that, after performing a time change, (2.14)

and (2.15) lead to

w−(x0, t0) −
εq′−1+κ
2

εq′

1

AD̃ ≤ w(x0, t0) ≤ w+(x0, t0) + A
εq′−1+κ
2

εq′

1

D̃.

Let λ0 be as in Lemma A.1. Then, for all

λ ≥ λ̃0 := (1 + (Cq ∨ C ′
q)λ0) ∨ 2,

we have, for C = C(κ, m, K, p, q) > 0 as in Lemma A.1,

P(D̃ > λ) = P

(
D >

λ− 1

Cq ∨ C ′
q

)
≤

C(Cq ∨ C ′
q)

p

(λ− 1)p
≤

2pC(Cq ∨ C ′
q)

p

λp
. !

Lemma 2.6. Let B be as in (2.11), and fix m > 0, K > 0, q > 1, ν > 0,
and κ ∈ (0, 1/2). Then there exist a random variable E : Ω → R+ and λ0 =
λ0(κ, m, K, q) > 0 such that the following hold:

(a) For any p ≥ 1, there exists a constant C = C(κ, K, p, q) > 0 such that, for
all λ ≥ λ0,

P(E > λ) ≤ Cmp

λp
.

(b) Let f ∈ C2(Rd, Rm) satisfy

‖f‖∞ ≤ m and ‖f‖∞
(
1 + ‖Df‖∞ + ν

∥∥D2f
∥∥
∞
)
≤ K,
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and assume that A > 1, r0 ∈ (−1, 0], ε1, ε2 : Ω → (0, 1) and −1+ε2 ≤ r0 ≤
0. Suppose that, for some R ∈ (0,∞], w solves






∂tw − ε2

ε2
1

νm+(D2w) +
1

A
|Dw|q −

(
ε2

ε1

)q′

A ≤
(
ε2

ε1

)q′

f(ε1x) · Ḃ(r0 + ε2t)

and

∂tw − ε2

ε2
1

νm−(D2w) + A|Dw|q +

(
ε2

ε1

)q′

A ≥
(
ε2

ε1

)q′

f(ε1x) · Ḃ(r0 + ε2t)

in BR × [−1, 0],

fix a convex open set C ⊂ BR, x0 ∈ C, and −1 ≤ t1 < t0 ≤ 0. Then

w−(x0, t0) −
εq′−1+κ
2

εq′

1

AE ≤ w(x0, t0) ≤ w+(x0, t0) +
εq′−1+κ
2

εq′

1

AE ,

where





∂tw− − ε2

ε2
1

νm−(D2w−) + 2A|Dw−|q = 0 and

∂tw+ − ε2

ε2
1

νm+(D2w+) +
1

2A
|Dw+|q = 0 in C × (t1, t0), and

w− = w+ = w on ∂∗(C × [t1, t0]).

Proof.

Step 1. For (x, t) ∈ BR × [0, 1], define w̃(x, t) := w(x,−t), w̃±(x, t) := w±(x,−t),
and B̃(t) := B(0) − B(−t). Then B̃ : [0, 1] × Ω → Rm is a Brownian motion, and
w̃, w̃± solve





−∂tw̃ − ε2

ε2
1

νm+(D2w̃) +
1

A
|Dw̃|q −

(
ε2

ε1

)q′

A ≤
(
ε2

ε1

)q′

f(ε1x) · ˙̃B(−r0 + ε2t)

and

−∂tw̃ − ε2

ε2
1

νm−(D2w̃) + A|Dw̃|q +

(
ε2

ε1

)q′

A ≥
(
ε2

ε1

)q′

f(ε1x) · ˙̃B(−r0 + ε2t)

in BR × [0, 1]

and





−∂tw̃− − ε2

ε2
1

νm−(D2w̃−) + 2A|Dw̃−|q = 0 and

−∂tw̃+ − ε2

ε2
1

νm+(D2w̃+) +
1

2A
|Dw̃+|q = 0 in C × [−t0,−t1), and

w̃− = w̃+ = w̃ on (C × {−t1}) ∪ (∂C × [−t0,−t1]).

Step 2. Let W : [0, 1] × A → R be a Brownian motion defined on a probability
space (A, F , P) independent of (Ω,F,P), fix (α,β) ∈ C × Cε−1

1

√
2ε2ν

, assume that

X : [−t0,−t1] × A is adapted with respect to W and

dXr = αrdr + σrdWr in [−t0,−t1],

and let τ ∈ [−t0,−t1] be a W -stopping time.
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For r0 − ε2t0 ≤ r ≤ −r0 + ε2τ , we then set





X̃r = ε1X

(
r + r0

ε2

)
,

α̃r =
ε1

ε2
α

(
r + r0

ε2

)
,

σ̃r =
ε1

ε1/2
2

σ

(
r + r0

ε2

)
, and

W̃r = ε1/2
2

[
W

(
r + r0

ε2

)
− W (−t0)

]
,

and we let C̃ and C̃M be defined just as C and CM , but with respect to the filtration
of the Brownian motion W̃ . Then (α̃, σ̃) ∈ C̃ × C̃√

2ν , X̃ is adapted with respect to

W̃ , −r0 + ε2τ is a W̃ -stopping time, and

dX̃r = α̃rdr + σ̃rdW̃r for − r0 − ε2t0 ≤ r ≤ −r0 + ε2τ.

It now follows from Lemma A.2 that, for some E as in the statement of that lemma,
and for all 0 < δ ≤ 1,

∣∣∣∣∣E
[(

ε2

ε1

)q′ ∫ τ

−t0

f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]∣∣∣∣∣

=
εq′−1
2

εq′

1

∣∣∣∣E
∫ −r0+ε2τ

−r0−ε2t0

f(X̃r) · ˙̃B(r)dr

∣∣∣∣

≤ εq′−1
2

εq′

1

δq′
E
∫ −r0+ε2τ

−r0−ε2t0

|α̃r|q
′
dr +

εq′−1+κ
2

εq′

1

E
δq

(τ + t0)
κ

= δq′
E
∫ τ

−t0

|αr|q
′
dr +

εq′−1+κ
2

εq′

1

E
δq

(τ + t0)
κ.

(2.16)

Step 3. We now proceed with the proof of the lower bound. By Lemma 2.4(a), we
have

w̃(x0,−t0)

≥ inf
(α,σ)∈C×C

ε−1
1

√
2ε2ν

E
[
w̃(Xτ , τ )+cqA

−(q′−1)

∫ τ

−t0

|αr|q
′
dr−

(
ε2

ε1

)q′

A(τ+t0)

+

(
ε2

ε1

)q′ ∫ τ

−t0

f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]
,

(2.17)

where, as in that lemma, for fixed (α,σ) ∈ C ×Cε−1
1

√
2ε2ν

, X = Xα,σ and τ = τα,σ

satisfy

(2.18)
dXr = αrdr + σrdWr for r ∈ [−t0,−t1], X−t0 = x0,

and τ := inf {t ∈ [−t0,−t1] : Xτ ∈ ∂C} .

We now set

δ := 1 ∧ c1/q′

q (1 − 2−(q′−1))1/q′
A−1/q,
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which implies, in particular, that δq′ ≤ cq(1 − 2−(q′−1))A−(q′−1). Invoking (2.16),
we find that, for some constant Cq > 0,

E
[(

ε2

ε1

)q′ ∫ τ

−t0

f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]

≥ −cq(1 − 2−(q′−1))A−(q′−1)E
∫ τ

−t0

|αr|q
′
dr − CqA

εq′−1+κ
2

εq′

1

E .

The inequality (2.17) now becomes

w̃(x0,−t0) ≥ inf
(α,σ)∈C×C

ε−1
1

√
2ε2ν

E
[
w̃(Xτ , τ ) + cq(2A)−(q′−1)

∫ τ

−t0

|αr|q
′
dr

]

−
(
ε2

ε1

)q′

A
[
1 + Cqε

−(1−κ)
2 E

]

≥ w̃−(x0,−t0) −
εq′−1+κ
2

εq′

1

A(1 + CqE).

Step 4. We next obtain the upper bound. Lemma 2.4(b) gives

w̃(x0,−t0)≤ inf
α∈C

sup
β∈S

ε−1
1

√
2ε2ν

E
[
w̃(Xτ , τ )+cqA

q′−1

∫ τ

−t0

|αr|q
′
dr+

(
ε2

ε1

)q′

A(τ+t0)

+

(
ε2

ε1

)q′ ∫ τ

−t0

f(ε1Xr) · ˙̃B(−r0 + ε2r)dr

]
,

(2.19)

where, as in that lemma, for fixed α ∈ C and β ∈ Sε−1
1

√
2ε2ν

with σ = β(α),

X = Xα,σ and τ = τα,σ are as in (2.18). The inequality (2.16) then implies that,
for all δ ∈ (0, 1),

w̃(x0,−t0) ≤ inf
α∈C

sup
β∈S

ε−1
1

√
2ε2ν

E
[
w̃(Xτ , τ ) + (cqA

q′−1 + δq′
)

∫ τ

−t0

|αr|q
′
dr

]

+

(
ε2

ε1

)q′

A +
εq′−1+κ
2

εq′

1

E
δq

.

We then set
δ = 1 ∧ (2q′−1 − 1)1/q′

c1/q′

q A1/q,

which, in particular, implies that δq′ ≤ cq(2q′−1−1)Aq′−1, and so, for some C ′
q > 0,

w̃(x0,−t0) ≤ inf
α∈C

sup
β∈S

ε−1
1

√
2ε2ν

E
[
w̃(Xτ , τ ) + cq(2A)q′−1

∫ τ

−t0

|αr|q
′
dr

]

+
εq′−1+κ
2

εq′

1

A(1 + C ′
qE)

= w̃+(x0,−t0) +
εq′−1+κ
2

εq′

1

A(1 + C ′
qE).

The claimed upper bound for w now follows from another time reversal. !
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We now introduce some smooth sub- and super-solutions of the homogenous
second order equations that arise in the previous result, which will be used in
Section 4. The following lemma is proved in [3], in particular, as Lemmas 4.2 and
4.6 and Corollary 4.3.

Lemma 2.7. Let q > 2 and A > 1. Then there exist C = C(q, A, d) > 0 (which can
be chosen arbitrarily large), ν0 = ν0(q, A, d) > 0 (which can be chosen arbitrarily
small), and θ0 = θ0(q, A, d) > 0 such that the following hold:

(a) If η > 0,

U(x, t) := C
(|x|2 + ηt)q′/2

tq′−1
for (x, t) ∈ Rd × (0,∞),

and 0 < ν < ην0, then

∂tU − νm+(D2U) +
1

2A
|DU |q ≥ 0 in Rd × (0,∞).

(b) Let R > 0, and assume that b : R → R is smooth and nonincreasing,
b(τ ) = 1 for τ < 3/4, and b(τ ) = 0 for τ > 1. If 0 < θ < θ0Rq′

and

V (x, t) := 3θb

(
|x|
R

+
t

4

)
− Cνθ

R2
t for (x, t) ∈ Rd × (0, 1),

then

∂tV − νm−(D2V ) + 2A|DV |q ≤ 0 in Rd × (0, 1).

2.4. Improvement of oscillation. The main tool used in this paper is to establish
an improvement of oscillation of solutions on all small scales. The next result
explains how this leads to Hölder regularity estimates.

Lemma 2.8. Let R, τ, c > 0, assume that u : BR × [−τ, 0] satisfies

0 ≤ u ≤ c on BR × [−τ, 0],

fix α ∈ (0, 1), β > 0, 0 < µ < 1, and 0 < a < R and 0 < b < τ . Assume that,
whenever (x0, t0) ∈ BR−a × [−τ + b, 0], the function

v(x, t) :=
u(x0 + ax, t0 + bt)

c
for (x, t) ∈ B1 × [−1, 0]

satisfies

if 0 < r ≤ 1 and osc
Br×[−rβ,0]

v ≤ rα, then osc
Bµr×[−(µr)β,0]

v ≤ (µr)α.

Then

sup
(x,t),(x̃,t̃)∈BR−a×[−τ+b,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ c

µα

(
1

aα
∨ 1

bα/β

)
.

Proof. Choose (x0, t0) ∈ BR−a × [−τ + b, 0] and define v as in the statement of the
lemma. Then oscB1×[−1,0] v ≤ 1, and so an inductive argument implies that

osc
Bµk×[−µkβ,0]

v ≤ µkα for all k = 0, 1, 2, . . . .

Now choose r ∈ (0, 1] and let k ∈ N be such that µk+1 < r ≤ µk. Then

osc
Br×[−rβ,0]

v ≤ µkα ≤ rα

µα
.
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Fix (y, s) ∈ B1 × [−1, 0] and set r := |y| ∨ |s|1/β . We then have

|v(0, 0) − v(y, s)| ≤ rα

µα
≤ |y|α ∨ |s|α/β

µα
.

Rescaling back to u, this means that, whenever (x, t), (x̃, t̃) ∈ BR−a × [−τ + b, 0]
satisfy

|x − x̃| ≤ a and |t − t̃| ≤ b,

we have

|u(x, s) − u(x̃, t̃)| ≤ c

µα

(
1

aα
∨ 1

bα/β

)(
|x − x̃|α + |t − t̃|α/β

)
.

The result now follows easily, because, for |x − x̃| > a,

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ c

aα

and if |t − t̃| > b, then

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ c

bα/β
.

!

3. First order equations

In this section, we prove the interior regularity results for first order equations.
We assume that

(3.1) B : [−1, 0] × Ω → Rm

is a standard Brownian motion on some probability space (Ω,F,P),

and, for fixed

(3.2) K > 0, A > 1, q > 1, and S : Ω → [0,∞),

we assume that

(3.3) f ∈ C1(Rd × Rm) and ‖f‖∞ + ‖f‖∞ ‖Df‖∞ ≤ K

and

(3.4)






du +

[
1

A
|Du|q − A

]
dt ≤

m∑

i=1

f i(x)dBi(t),

du + [A|Du|q + A] dt ≥
m∑

i=1

f i(x)dBi(t), and

0 ≤ u ≤ S in B1 × [−1, 0].

Theorem 3.1. Assume (3.1)–(3.4), and let 0 < κ < 1/2 and M ≥ 1. Then there
exist α = α(κ, A, q) ∈ (0, 1), c = c(κ,α, q) > 0, λ0 = λ0(κ, A, K, M, q) > 0 and, for
all p ≥ 1, C = C(κ, A, K, M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,s),(y,t)∈B1/2×[−1/2,0]

|u(x, s) − u(y, t)|
|x − y|α + |s − t|α/(q−α(q−1))

> λ

)

≤ P
(
(S − M)+ > cλ1−α/q′

)
+

C ‖f‖p
∞

λκ(q−α(q−1))p
.
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Proof. We first specify the parameters that determine the Hölder exponents, which
depend only on κ, A, and q. Choose µ so that

(3.5) 0 < µ <
1

2
and

1

2
12q′

cqA
q′−1µq′

< 1,

and then take θ sufficiently small that

(3.6) 0 < θ <
1

2
,

1

2
12q′

cqA
q′−1µq′

≤ 1 − 4θ, and 2θ ≤ cq(2A)1−q′
µq′

.

We now set

(3.7) α = min

(
log(1 − θ)

log µ
,

κq

κq + 1 − κ

)

and

(3.8) β := q − α(q − 1).

Note that β−α = q(1−α) > 0, and (3.7) and (3.8) together imply that βκ−α > 0.
We next identify a random scale ρ at which the improvement of oscillation effect

is seen. Let D be the random variable as in Lemma 2.5, set

Ŝ := 1 ∨ S,

and define

(3.9) ρ :=
1

2Ŝ
∧
(

θ

AD

) 1
κq

.

Note then that

ρ ≤ 1, ρŜ ≤ 1

2
, and ρκqAD ≤ θ.

In what follows, for (x0, t0) ∈ Rd × R, we define

Qr(x0, t0) := Br(x0) × [t0 − rβ , t0] and Qr := Qr(0, 0).

Step 1 (The initial zoom-in). Fix (x0, t0) ∈ B1/2 × [−1/2, 0] and set

v(x, t) :=
u(x0 + ρŜx, t0 + ρqŜt)

Ŝ
,

which is well-defined for (x, t) ∈ B1 × [−1, 0] in view of (3.9). Then v satisfies

(3.10)






∂tv + A|Dv|q + ρqA ≥ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt),

∂tv +
1

A
|Dv|q − ρqA ≤ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt), and

0 ≤ v ≤ 1 in B1 × [−1, 0].

Step 2 (Induction step). We next show that

(3.11) if 0 < r ≤ 1 and osc
Qr

v ≤ rα, then osc
Qµr

v ≤ (µr)α.

Let r ∈ (0, 1] be such that oscQr v ≤ rα. We then set

w(x, t) :=
v(rx, rβt) − infQr v

rα
for (x, t) ∈ Q1,
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which satisfies





∂tw +
1

A
|Dw|q −

(
ε2

ε1

)q′

A ≤
(
ε2

ε1

)q′

f(x0 + ε1x) · Ḃ(t0 + ε2t),

∂tw + A|Dw|q +

(
ε2

ε1

)q′

A ≥
(
ε2

ε1

)q′

f(x0 + ε1x) · Ḃ(t0 + ε2t), and

0 ≤ w ≤ 1 in B1 × [−1, 0],

where ε1 := Ŝρr and ε2 := Ŝρqrβ. As a consequence of (3.9), the random variables
ε1 and ε2 take values in (0, 1/2], so that the hypotheses in part (b) of Lemma 2.5
are satisfied. We also compute, using (3.7) and (3.8),

εq′−1+κ
2

εq′

1

=
(Ŝρqrβ)q′−1+κ

(Ŝρr)q′ =
ρκqrβκ−α

Ŝ
≤ ρκq.

To prove (3.11), we show that either

(3.12) w(x, t) ≤ 1 − θ for all (x, t) ∈ Bµ × [−µβ , 0]

or

(3.13) w(x, t) ≥ θ for all (x, t) ∈ Bµ × [−µβ , 0].

We consider the two following cases:

Case 1. Assume first that

(3.14) inf
B2µ

w(·,−1) ≤ 2θ.

Fix (x, t) ∈ Bµ × [−µβ , 0]. Then, by Lemma 2.5, we have

w(x, t) ≤ w+(x, t) +
εq′−1+κ
2

εq′

1

AD ≤ w+(x, t) + ρκqAD ≤ w+(x, t) + θ,

where

w+(x, t) = inf
(y,s)∈∂∗(B2µ×[−1,t])

{
w(y, s) + cq(2A)q′−1 |x − y|q′

(t − s)q′−1

}
.

We have

t + 1 ≥ 1 − µβ ≥ 1

2
and |x − y|q

′
≤ 3q′

µq′
for all y ∈ B2µ,

and so, by (3.6),

w+(x, t) ≤ inf
y∈B2µ

{
w(y,−1) + cq(2A)q′−1 |x − y|q′

(t + 1)q′−1

}

≤ 6q′
cq(2A)q′−1µq′

+ inf
y∈B2µ

w(y,−1)

≤ 1 − 4θ + 2θ = 1 − 2θ.

It follows that w(x, t) ≤ 1 − 2θ + θ = 1 − θ, and so (3.12) holds in this case.
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Case 2. Assume now that

(3.15) w(y,−1) ≥ 2θ for all y ∈ B2µ.

Let (x, t) ∈ Bµ × [−µβ , 0]. Then, similarly as in Step 1, Lemma 2.5 gives

w(x, t) ≥ inf
(y,s)∈∂∗(B2µ×[−1,t])

{
w(y, s) + cq(2A)1−q′ |x − y|q′

(t − s)q′−1

}
− θ.

If y ∈ B2µ and s = −1, then (3.15) implies that

w(y, s) + cq(2A)1−q′ |y − x|q′

(t − s)q′−1
− θ ≥ 2θ − θ = θ,

while, if s ∈ [−1, t] and y ∈ ∂B2µ, then |y−x| ≥ µ, and so, using (3.6) and the fact
that w ≥ 0,

w(y, s) + cq(2A)1−q′ |y − x|q′

(t − s)q′−1
− θ ≥ −θ + cq(2A)1−q′

µq′
≥ θ.

Either way, it is evident that (3.13) holds.
Combining (3.12) and (3.13) with the definition of α in (3.7), we obtain

osc
Qµ

w ≤ 1 − θ ≤ µα,

which, after rescaling back to v, yields

osc
Qµr

v ≤ (µr)α.

Step 3 (The Hölder estimate). We now invoke Lemma 2.8 with the values

a := ρŜ, b := ρqŜ, and c := Ŝ,

and, using (3.5) and (3.9), we get, for some constant C1 = C1(κ, A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ c

µα

(
1

aα
∨ 1

bα/β

)
=

1

µα

(
Ŝ1−α

ρα
∨ Ŝ1−α/β

ρqα/β

)

≤ 1

µα

(
1

21−αρ
∨ 1

21−α/βρ1+(q−1)α/β

)
≤ C1ρ

−q/β.

In view of (3.6) and (3.9), for some C2 = C2(κ, A, q) > 0,

ρ−q/β = (2Ŝ)q/β ∨
(

AD
θ

) 1
κβ

≤ C2

(
Ŝq/β + D

1
κβ

)
.

Since M is chosen to be larger than 1, we have (Ŝ −M)+ = (S −M)+, and so, for
some C3 = C3(κ, A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ C3

(
Mq/β + (S − M)q/β

+ + D
1
κβ

)
.
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Therefore, for any λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

> λ

)

≤ P

(
(S − M)q/β

+ + D
1
κβ >

λ− C3Mq/β

C3

)

≤ P

(
(S − M)q/β

+ >
λ− C3Mq/β

2C3

)
+ P

(
D

1
κβ >

λ− C3Mq/β

2C3

)
.

Taking λ > 2C3Mq/β yields

λ− C3Mq/β

2C3
>

λ

4C3
,

so that

P

(
sup

(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

> λ

)

≤ P

(
(S − M)q/β

+ >
λ

4C3

)
+ P

(
D

1
κβ >

λ

4C3

)
.

Finally, if λ0 is as in Lemma 2.5, then further taking λ > 4C3λ
1/(κβ)
0 yields the

claim in view of the properties of D. !

4. Second order equations

We now turn to the case of second order equations. We let B be a Brownian
motion as in (3.1), and, for fixed

(4.1) ν > 0, K > 0, A > 1, q > 2, and S : Ω → [0,∞),

we assume that

(4.2) f ∈ C2(Rd, Rm) and ν + ‖f‖∞ + ‖f‖∞ ‖Df‖∞ + ν ‖f‖∞
∥∥D2f

∥∥
∞ ≤ K

and

(4.3)






du +

[
−νm+(D2u) +

1

A
|Du|q − A

]
dt ≤

m∑

i=1

f i(x) · dBi(t),

du +
[
−νm−(D2u) + A|Du|q + A

]
dt ≥

m∑

i=1

f i(x) · dBi(t), and

0 ≤ u ≤ S in B1 × [−1, 0].

Theorem 4.1. Assume (3.1) and (4.1)–(4.3), and let 0 < κ < 1/2 and M ≥ 1.
Then there exist α = α(κ, A, q) ∈ (0, 1), c = c(κ,α, q) > 0, λ0 = λ0(κ, A, K, M, q)
> 0, and, for all p ≥ 1, C = C(κ, A, K, M, p, q) > 0 such that, for all λ ≥ λ0,

P

(
sup

(x,s),(y,t)∈B1/2×[−1/2,0]

|u(x, s) − u(y, t)|
|x − y|α + |s − t|α/(q−α(q−1))

> λ

)

≤ P
(
(S − M)+ > cλ1−α/q′

)
+ C

‖f‖p
∞

λκ(q−α(q−1))p
.
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Proof. We set up the various parameters similarly as in the proof of Theorem 3.1,
with a few changes to account for the second order terms.

We first choose µ such that

(4.4) 0 < µ <
1

4
and

C

2
6q′

µq′
< 1,

where C = C(q, A, d) > 4q′
is the constant from Lemma 2.7, and we then take θ

sufficiently small that

(4.5) 0 < θ <
1

2
,

C

2
6q′

µq′
≤ 1 − 5θ, and θ < 4µq′

θ0,

where θ0 = θ0(q, A, d) > 0 is as in Lemma 2.7.
Set

(4.6) α := min

{
q − 2

q − 1
,
log(1 − θ)

log µ
,

κq

κq + 1 − κ

}

and

(4.7) β = q − α(q − 1).

Observe that (4.6) and (4.7) together imply that

1 − θ ≤ µα, β − α = q(1 − α), βκ− α ≥ 0, and β ≥ 2.

As in the proof of Theorem 3.1, we define, for (x0, t0) ∈ Rd × R,

Qr(x0, t0) := Br(x0) × [t0 − rβ , t0] and Qr := Qr(0, 0).

We now set

Ŝ := S ∨ 1,

and, for E the random variable from Lemma 2.6, and C and ν0 the values from
Lemma 2.7, the random variable ρ is the largest value such that

(4.8)






(a) 0 < ρ ≤ 1

2Ŝ
,

(b) ρκqAE ≤ θ,

(c) 2q′−1CKq′/2ν−q′/2
0 ρq′(q−2)/2 ≤ θ, and

(d) Cρq−2 ≤ 4µ2.

Step 1 (The initial zoom-in). Fix (x0, t0) ∈ B1/2 × [−1/2, 0] and set

v(x, t) :=
u(x0 + ρŜx, t0 + ρqŜt)

Ŝ
,

which is well-defined for (x, t) ∈ B1 × [−1, 0] in view of (4.8)(a). Then v satisfies
(4.9)




∂tv − νρq−2

Ŝ
m−(D2v) + A|Dv|q + ρqA ≥ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt),

∂tv − νρq−2

Ŝ
m+(D2v) +

1

A
|Dv|q − ρqA ≤ ρqf(x0 + ρŜx) · Ḃ(t0 + ρqŜt), and

0 ≤ v ≤ 1 in B1 × [−1, 0].
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Step 2 (Induction step). We next show that

(4.10) if 0 < r ≤ 1 and osc
Qr

v ≤ rα, then osc
Qµr

v ≤ (µr)α.

Let r ∈ (0, 1] be such that oscQr v ≤ rα. We then set

w(x, t) :=
v(rx, rβt) − infQr v

rα
for (x, t) ∈ B1 × [−1, 0],

which satisfies





∂tw− ε2

ε2
1

νm+(D2w)+
1

A
|Dw|q−

(
ε2

ε1

)q′

A≤
(
ε2

ε1

)q′

f(x0+ε1x) · Ḃ(t0+ε2t),

∂tw− ε2

ε2
1

νm−(D2w)+A|Dw|q+

(
ε2

ε1

)q′

A≥
(
ε2

ε1

)q′

f(x0+ε1x) · Ḃ(t0+ε2t), and

0 ≤ w ≤ 1 in B1 × [−1, 0],

where ε1 := Ŝρr and ε2 := Ŝρqrβ. It is a consequence of (4.8)(a) that ε1, ε2 ∈
(0, 1/2], and, moreover, just as in the proof of Theorem 3.1, using the fact that
βκ ≥ α,

εq′−1+κ
2

εq′

1

≤ ρκq.

To prove (4.10), we show that either

(4.11) w(x, t) ≤ 1 − θ for all (x, t) ∈ Bµ × [−µβ , 0]

or

(4.12) w(x, t) ≥ θ for all (x, t) ∈ Bµ × [−µβ , 0].

We consider the two following cases:

Case 1. Assume first that
inf

y∈B2µ

w(y,−1) ≤ 2θ.

Let (x̂, t̂) ∈ Bµ × [−µβ , 0]. Then (4.8)(b) and the upper bound from Lemma 2.6
imply that

w(x̂, t̂) ≤ w+(x̂, t̂) +
εq′−1+κ
2

εq′

1

AE ≤ w+(x̂, t̂) + ρκqAE ≤ w+(x̂, t̂) + θ,

where

(4.13)





∂tw+ − ε2

ε2
1

νm+(D2w+) +
1

2A
|Dw+|q = 0 in B2µ × (−1, 0] and

w+ = w on ∂∗(B2µ × [−1, 0]).

Note that, by the maximum principle, we have 0 ≤ w+ ≤ 1. Let C ≥ 4q′
and ν0 be

as in Lemma 2.7, and, for y ∈ B2µ and (x, t) ∈ B2µ × [−1, 0], set

wy(x, t) := w(y,−1) +
C

(t + 1)q′−1

(
|x − y|2 +

Kρq−2

ν0
(t + 1)

)q′/2

.

We compute
ε2

ε2
1

ν =
ρq−2rβ−2ν

Ŝ
≤ νρq−2 ≤

(
Kρq−2

ν0

)
ν0,
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and therefore, by Lemma 2.7(a), wy is a super-solution of (4.13). In addition,

wy(x,−1) =

{
+∞ if x 4= y,

w(y,−1) if x = y,

and, for any (x, t) ∈ ∂B1 × [−1, 0],

wy(x, t) ≥ C((1 − 2µ)2)
q′
2 ≥ C4−q′

≥ 1 ≥ w+(x, t),

in view of the choice of C ≥ 4q′
and of µ < 1/4. So wy ≥ w+ in B1 × [−1, 0] by the

comparison principle. Because t̂ ∈ [−µβ , 0], it follows that 1 + t̂ > 1− µβ > 1
2 , and

so, by (4.5) and (4.8)(c),

w+(x̂, t̂) ≤ inf
y∈B2µ

{
w(y,−1) +

C

(t̂ + 1)q′−1

(
|x̂ − y|2 +

Kρq−2

ν0
(t̂ + 1)

)q′/2
}

≤ 1

2
6q′

Cµq′
+ 2q′−1CKq′/2ν−q′/2

0 ρq′(q−2)/2 + inf
y∈B2µ

w(y,−1)

≤ 1 − 5θ + θ + 2θ = 1 − 2θ.

We conclude that w(x̂, t̂) ≤ 1 − 2θ + θ = 1 − θ, so that (4.11) holds in this case.

Case 2. We now assume that

inf
y∈B2µ

w(y,−1) > 2θ.

Fix (x̂, t̂) ∈ Bµ × [−µβ , 0]. As in Step 1, Lemma 2.6 gives

w(x̂, t̂) ≥ w−(x̂, t̂) − θ,

where

(4.14)





∂tw− − ε2

ε2
1

νm−(D2w−) + 2A|Dw−|q = 0 in B2µ × (−1, 0] and

w− = w on ∂∗(B2µ × [−1, 0]).

For (x, t) ∈ B2µ × [−1, 0] and for b and C as in Lemma 2.7(b), define

V (x, t) = 3θb

(
|x|
2µ

+
t + 1

4

)
− Cρq−2θ

4µ2
(t + 1).

Then, by (4.5) and Lemma 2.7(b), V is a sub-solution of (4.14). In addition,

V ≤ 0 on ∂B2µ × [−1, 0] and V ≤ 2θ on B2µ × {−1},

and so V ≤ w− on ∂∗(B2µ × [−1, 0]). The comparison principle now implies that
V ≤ w− in all of B2µ × [−1, 0], and, in particular, using (4.8)(d) and the fact that
b(3/4) = 1 and b is nonincreasing,

w−(x̂, t̂) ≥ V (x̂, t̂) = 3θb

(
|x̂|
2µ

+
t̂ + 1

4

)
− Cρq−2θ

4µ2
(t̂ + 1) ≥ 3θb

(
3

4

)
− θ = 2θ.

Thus, in this case, (4.12) holds.
Whether (4.11) or (4.12) is satisfied, we have

osc
Qµr

v = rα osc
Qµ

w ≤ (1 − θ)rα ≤ (µr)α,

and so (4.10) is established.
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Step 3 (The Hölder estimate). As in the proof of Theorem 3.1, we use Lemma 2.8
and (4.8)(a) to conclude that, for some C1 = C1(κ, A, q) > 0,

sup
(x,t),(x̃,t̃)∈B1/2×[−1/2,0]

|u(x, t) − u(x̃, t̃)|
|x − x̃|α + |t − t̃|α/β

≤ C1ρ
−q/β.

All of the parts of (4.8) imply that, for some C2 = C2(κ, A, q) > 0 and C3 =
C3(κ, A, K, q) > 0,

ρ−q/β ≤ C̃2(Ŝq/β + E1/(κβ)) + C3,

and the rest of the proof follows as in the proof of Theorem 3.1 and the properties
of E outlined in Lemma 2.6.

!

5. Applications

In this section, we show how Theorems 3.1 and 4.1 can be used to prove a regu-
larizing effect for certain initial value problems. Moreover, the regularity estimates
are independent of a certain large-range, long-time scaling, which is useful in the
theory of homogenization.

We fix a finite time horizon T > 0 and an initial condition

(5.1) u0 ∈ BUC(Rd).

The uniform continuity of u0 ensures the well-posedness of the equations below,
but we note that the regularizing effects we prove depend only on ‖u0‖∞.

Throughout,
(5.2)

B : [0, T ] × Ω → Rm is a Brownian motion over a probability space (Ω,F,P).

We first consider equations of first order, and we assume that, for some A > 1
and q > 1,

(5.3)






H ∈ C(Rd × Rd × [0,∞)) satisfies

1

A
|p|q − A ≤ H(p, x, t) ≤ A|p|q + A for all (p, x, t) ∈ Rd × Rd × [0, T ],

and

(5.4) f ∈ C1
b (Rd, Rm).

For 0 < ε < 1, we consider solutions of the scaled, forced equation

(5.5) duε + H

(
Duε,

x

ε
,
t

ε

)
dt = ε1/2

m∑

i=1

f i
(x

ε

)
· dBi(t)

in Rd × (0, T ] and uε(·, 0) = u0 on Rd,

and we prove the following result:

Theorem 5.1. Assume (5.1)–(5.4), and, for 0 < ε ≤ 1, let uε be the solution of
(5.5). Fix p ≥ 1, τ > 0 and R > 0. Then there exist

C = C(R, τ, T, A, ‖f‖C1 , ‖u‖∞ , p, q) > 0,α = α(A, q) > 0,
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and σ = σ(A, q) > 0 such that, for all λ > 0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t) − uε(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

Proof. We first note that we can assume, without loss of generality, that τ > 1/2.
Indeed, otherwise, we consider the function

ũε(x, t) :=
1

2τ
uε(2τx, 2τ t) for (x, t) ∈ Rd ×

[
0,

T

2τ

]
,

which solves

dũε + H̃

(
Dũε,

x

ε
,
t

ε

)
dt = ε1/2

m∑

i=1

f̃ i
(x

ε

)
· dB̃i(t) in Rd ×

(
0,

T

2τ

)

and ũε(·, 0) = ũ0 on Rd,

where, for (p, x, t) ∈ Rd × Rd ×
[
0, T

2τ

]
,

H̃(p, x, t) := H(p, 2τx, 2τ t), ũ0(x) =
1

2τ
u0(2τx),

f̃(x) =
1√
2τ

f(2τx), and B̃(t) =
1√
2τ

B(2τ t).

Then H̃ satisfies (5.3) with A and q unchanged, and B̃ is a Brownian motion
on [0, 2τT ]. As a consequence, α = α(A, q) > 0 remains unchanged, and the τ -
dependence can be absorbed into R, T , ‖f‖C1 , and ‖u0‖∞.

Crucially, if fε(x) := ε1/2f(x/ε), then

‖fε‖∞ = ε1/2 ‖f‖∞ and ‖fε‖∞ ‖Dfε‖∞ = ‖f‖∞ ‖Df‖∞ .

As a consequence, we may choose a fixed constant K > 0 such that the conclusions
of Lemma 2.5 and Theorem 3.1 hold with the function fε, for all ε ∈ (0, 1].

In what follows, we fix 0 < κ < 1
2 .

Step 1 (u is bounded). We first use Lemma 2.5 to describe the L∞-bound for u on
Rd × [0, T ]. In view of (5.3), Lemma 2.5 with ε1 = ε2 = 1, R = +∞, and C = Rd

gives

uε(x, t) ≤ u+(x, t) + AD1 on Rd × [0, 1],

where, for some λ1 = λ1(κ, ‖f‖C1 , q) > 0 and, given p ≥ 1, some

C = C(κ, ‖f‖C1 , p, q) > 0,

P (D1 > λ) ≤ Cεp/2

λp
for all λ ≥ λ1

and

∂tu+ +
1

2A
|Du+|q = 0 on Rd × [0, 1], and u+(·, 0) = u0 on Rd.

The comparison principle yields u+(x, t) ≤ ‖u0‖∞. It follows that

uε(x, t) ≤ ‖u0‖∞ + C(1 + D1) on Rd × [0, 1].
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Set N := +T ,. An inductive argument then gives random variables D2, D3, . . . , DN :
Ω → R+ and λ2,λ2, . . . ,λN depending on κ, ‖f‖C1 , and q such that

uε(x, t) ≤ ‖u0‖∞ + A
N∑

k=1

Dn on Rd × [0, T ]

and, for all k = 1, 2, . . . , N , p ≥ 1, and some C = C(κ, ‖f‖C1 , p, q) > 0,

P (Dk > λ) ≤ Cεp/2

λp
for all λ ≥ λk.

A similar argument, using the lower bound of Lemma 2.5, gives

uε(x, t) ≥ −‖u0‖∞ − A
N∑

k=1

Dn on Rd × [0, T ].

Adding a random constant to uε, which does not affect the equation solved by uε,
we may then write

0 ≤ uε ≤ S on Rd × [0, T ],

where

S := 2 ‖uε‖∞ + 2A
N∑

k=1

Dk.

Setting M := 1 ∨ (2 ‖u0‖∞), we then have, for all p ≥ 1, λ ≥ λ1 ∨ λ2 ∨ · · · ∨ λN ,
and some constant C = C(κ, ‖f‖C1 , A, p, q, T ) > 0,

(5.6) P ((S − M)+ > λ) ≤ P

(
N∑

k=1

Dk >
λ

2A

)
≤ Cεp/2

λp
.

Step 2 (The Hölder estimate). Because τ > 1/2, we can cover BR × [τ, T ] with
cylinders on which, by Theorem 3.1, u is Hölder continuous. More precisely, there
exists α, λ0 and C as in the statement of the current theorem, and c = c(κ,α, q) > 0,
such that, for all p ≥ 1 and λ ≥ λ0,

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t) − uε(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> λ

)

≤ P((S − M)+ > cλ1−α/q′
) +

Cεp/2

λκ(q−α(q−1))p
.

Making λ0 larger if necessary, depending on κ, ‖f‖C1 , and q, we invoke (5.6) and
obtain the result with

σ =

(
1 − α

q′

)
∧ (κ(q − α(q − 1))) = (q − α(q − 1))

(
1

q
∧ κ

)
.

!

The next result is for the second-order case. Assume that, for some A > 1,
ν > 0, and q > 2,

(5.7)






F ∈ C(Sd × Rd × Rd × [0,∞)) satisfies

− νm+(X) +
1

A
|p|q − A ≤ F (X, p, x, t) ≤ −νm−(X) + A|p|q + A

for all (X, p, x, t) ∈ Sd × Rd × Rd × [0, T ],
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and

(5.8) f ∈ C2
b (Rd, Rm).

For 0 < ε < 1, the scaled equation we consider is

(5.9) duε + F

(
εD2uε, Duε,

x

ε
,
t

ε

)
dt = ε1/2

m∑

i=1

f i
(x

ε

)
· dBi(t)

in Rd × (0, T ] and uε(·, 0) = u0 on Rd,

and we prove the following result:

Theorem 5.2. Assume (5.1), (5.2), (5.7), and (5.8), and, for 0 < ε ≤ 1, let uε be
the solution of (5.9). Fix p ≥ 1, τ > 0 and R > 0. Then there exists a constant
C = C(R, τ, T, A, ‖f‖C2 , ‖u0‖∞ , p, q) > 0, α = α(A, q) > 0, and σ = σ(A, q) > 0
such that

P

(
sup

(x,t),(x̃,t̃)∈BR×[τ,T ]

|uε(x, t) − uε(x̃, t̃)|
|x − x̃|α + |t − t̃|α/(q−α(q−1))

> C + λ

)
≤ Cεp/2

λσp
.

Proof. Arguing as in the proof of Theorem 5.1, we may assume without loss of
generality that τ > 1/2. Notice also that

F ε(X, p, x, t) := F

(
εX, p,

x

ε
,
t

ε

)
for (X, p, x, t) ∈ Sd × Rd × Rd × [0, T ]

satisfies (5.3) with εν replacing ν, and, therefore, if we define fε(x) := ε1/2f(x/ε),
we have ‖fε‖∞ = ε1/2 ‖f‖∞ and

εν + ‖fε‖∞ ‖Dfε‖∞ + εν ‖fε‖∞
∥∥D2fε

∥∥
∞ ≤ ν + ‖f‖∞ ‖Df‖∞ + ‖f‖∞

∥∥D2f
∥∥
∞ .

As a consequence, we may choose a constant K > 0 independently of ε > 0 for
which the conclusions of Lemma 2.6 and Theorem 4.1 hold with the function fε.
The rest of the proof then follows exactly as in the proof of Theorem 5.1. !

Appendix A. Controlling stochastic integrals

Throughout the paper, we use the following results that give uniform control
over certain stochastic integrals. Assume below that

(A.1) B : [−1, 0] × Ω → Rm

is a standard Brownian motion over the probability space (Ω,F,P).

Lemma A.1. Let m > 0, K > 0, q > 1, and κ ∈ (0, 1/2). Then there exists a
random variable D : Ω → R+ and λ0 = λ0(κ, K, q) > 0 such that

(a) for any p ≥ 1 and some constant C = C(κ, K, p, q) > 0,

P(D > λ) ≤ Cmp

λp
for all λ ≥ λ0,

and
(b) for all γ ∈ W 1,∞([−1, 0], Rd), δ ∈ (0, 1], −1 ≤ s ≤ t ≤ 0, and f satisfying

‖f‖∞ ≤ m and ‖f‖∞ (1 + ‖Df‖∞) ≤ K,

we have ∣∣∣∣
∫ t

s
f(γr) · dBr

∣∣∣∣ ≤ δq′
∫ t

s
|γ̇r|q

′
dr +

D
δq

(t − s)κ.
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Assume now that

W : [−1, 0] × A → R
is a Brownian motion defined over a probability space (A, F , P).

The probability space A is independent of Ω. Below, we prove a statement that
is true for P-almost every sample path B of the Brownian motion from (A.1),
which involves taking the expectation with respect to the Brownian motion W .
Effectively, B and W are independent Brownian motions, and E can be interpreted
as the expectation conditioned with respect to B.

Lemma A.2. Let q > 1, 0 < κ < 1
2 , m > 0, and K > 0. Then there exist a

random variable E : Ω → R+ and λ0 := λ0(κ, K, q) > 0 such that

(a) for any p ≥ 1 and some constant C = C(κ, K, p, q) > 0,

P(E > λ) ≤ Cmp

λp
for all λ ≥ λ0,

and
(b) for all 0 < δ ≤ 1; processes (α,σ, X) : [−1, 0]×A → Rd ×Rd ×Rd that are

W -adapted such that

(A.2) α,σ ∈ L∞([−1, 0] × A) and dXr = αrdr + σrdWr for r ∈ [−1, 0];

W -stopping times −1 ≤ s ≤ t ≤ 0; and f ∈ C1(Rd, Rm) satisfying

(A.3) ‖f‖∞ ≤ m and ‖f‖∞
(
1 + ‖Df‖∞ +

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞
)
≤ K;

we have∣∣∣∣E
[∫ t

s
f(Xr) · dBr

]∣∣∣∣ ≤ δq′
E
∫ t

s
|αr|q

′
dr +

E
δq

(t − s)κ.

We note that the integrals against dB appearing in Lemmas A.1 and A.2 are
interpreted as in Section 2, and, in particular, subsection 2.2.

The proof of Lemma A.1 can be found in [14]. The arguments for Lemma A.2 are
similar, but some further details are needed to account for the use of Itô’s formula
and the interaction between B and W .

We first give a parameter-dependent variant of Kolmogorov’s continuity criterion.
Its statement and proof are very similar to that in [14].

Lemma A.3. Define 6 := {(s, t) ∈ [−1, 0], s ≤ t} and fix a parameter set M. Let
(Mµ)µ∈M : Ω → R+ and (Zµ)µ∈M : 6× Ω → R+ be such that

(A.4) Zµ(s, u) ≤ Zµ(s, t) + Zµ(t, u) for all µ ∈ M and − 1 ≤ s ≤ t ≤ u ≤ 0,

and, for some constants a > 0, β ∈ (0, 1), p ≥ 1,

sup
(s,t)∈*

E

[
sup
µ∈M

(
Zµ(s, t)

(t − s)β+1/p
− Mµ

)p

+

]
≤ a.

Then, for all 0 < κ < β, there exist C1 = C1(κ) > 0 and C2 = C2(p,κ,β) > 0 such
that, for all λ ≥ 1,

P

(
sup
µ∈M

sup
(s,t)∈*

(
Zµ(s, t)

(t − s)κ
− C1Mµ

)
> λ

)
≤ C2a

λp
.

The next result gives an estimate for moments of sums of certain centered and
independent random variables.
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Lemma A.4. Let (Yk)n
k=1 : Ω → R be a sequence of centered and independent

random variables such that, for all p ≥ 1 and for some µ > 0 and C = C(p) > 0,

E|Y1|p ≤ Cµp.

Then there exists a constant C̃ = C̃(p) > 0 such that

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

p

≤ C̃np/2µp.

Proof. Let (εk)n
k=1 be a sequence of independent Rademacher random variables,

that is,

P(εk = 1) = P(εk = −1) =
1

2
for all k = 1, 2, . . . , n,

such that (εk)n
k=1 is independent of the sequence (Yk)n

k=1. It then follows (see
Kahane [7]) that

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

p

≤ 2pE

∣∣∣∣∣

n∑

k=1

εkYk

∣∣∣∣∣

p

.

Therefore, upon replacing Yk with εkYk, we may assume without loss of generality
that each Yk is symmetric, that is, Yk and −Yk are identically distributed.

Observe next that if the result holds for some p ≥ 1, then, for any q < p, by
Hölder’s inequality,

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

q

≤
(

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

p)q/p

≤
(
C̃np/2µp

)q/p
≤ C̃q/pnq/2µq.

Therefore, it suffices to prove the result for p = 2m with m ∈ N.
We compute ∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

2m

=
∑

Y j1
k1

Y j2
k2

· · · Y j%
k%

,

where the sum is taken over 1 ≤ k1 < k2 < · · · < k* ≤ n and j1 +j2 + · · ·+j* = 2m.
In view of the symmetry and independence of the Yk, all summands for which one
or more of the ji values is odd have zero expectation. Thus,

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

2m

=
∑

EY 2i1
k1

Y 2i2
k2

· · ·Y 2i%
k%

,

where the sum is taken over 1 ≤ k1 < k2 < · · · < k* ≤ n and i1 + i2 + · · · + i* = m.
A combinatorial argument implies that the cardinality of such terms is equal to(m+n−1

n−1

)
, while Hölder’s inequality gives

EY 2i1
k1

Y 2i2
k2

· · ·Y 2i%
k%

≤
(
EY 2m

k1

)i1/m (
EY 2m

k2

)i2/m · · ·
(
EY 2m

k%

)i%/m ≤ Cµ2m,

and, therefore,

E

∣∣∣∣∣

n∑

k=1

Yk

∣∣∣∣∣

2m

≤ C

(
m + n − 1

n − 1

)
µ2m ≤ Cnmµ2m.

!

Finally, we turn to the proof of Lemma A.2.
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Proof of Lemma A.2. Let Cm,K be the space consisting of (α,σ, X, f) satisfying
(A.2) and (A.3), define the parameter set

M := (0, 1) × Cm,K ,

and, for each µ = (δ,α,σ, X, f) ∈ M and (s, t) ∈ 6, the stochastic process

(A.5) Zµ(s, t) :=

(∣∣∣∣E
[
δq

∫ t

s
f(Xr) · dBr

]∣∣∣∣− δq+q′
E
∫ t

s
|αr|q

′
dr

)

+

,

which can easily be seen to satisfy (A.4).
We first show that there exist constants M1 = M1(K, q) > 0 and M2 = M2(K, p, q)

> 0 such that

(A.6) sup
−1≤s≤t≤0

E

[
sup
µ∈M

(
Zµ(s, t)

(t − s)1/2
− M1

)p

+

]
≤ M2m

p.

Fix s, t ∈ [−1, 0] with s ≤ t. We split into two cases, depending on the size of
the interval [s, t].

Case 1. Assume first that

(A.7) t − s ≤
‖f‖q

∞
‖Df‖q

∞
∧

‖f‖∞
‖σσt‖∞,[−1,0] ‖D2f‖∞

.

By Lemma 2.2,

E
[∫ t

s
f(Xr) · dBr

]
= E [f(Xt) · (Bt − Bs)]

− E
[∫ t

s

(
Df(γr) · αr +

1

2
tr(σrσ

t
rD

2f(Xr))

)
· (Br − Bs)dr

]
.

Setting

∆ := max
r1,r2∈[s,t]

|Br1 − Br2 |

and invoking (A.7) and the Young and Hölder inequalities then gives, for some
constant C = C(K, q) > 0,

∣∣∣∣E
[∫ t

s
f(Xr) · dBr

]∣∣∣∣

≤ ‖f‖∞ ∆ + ‖Df‖∞ ∆E
∫ t

s
|αr|dr +

1

2

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞ ∆(t − s)

≤ ‖f‖∞

(
3

2
∆ + ∆

(
E
∫ t

s
|αr|q

′
dr

)1/q′)

≤ ‖f‖∞
(

3

2
∆ +

C∆q

δq

)
+ δq′

E
∫ t

s
|αr|q

′
dr,

and so

sup
µ∈M

Zµ(s, t) ≤ m

(
3

2
∆ + C∆q

)
.

Raising both sides to the power p, taking the expectation E over Ω, and invoking the
scaling properties of Brownian motion yield, for some constant C = C(K, p, q) > 0
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that changes from line to line,

E

[
sup
µ∈M

Zµ(s, t)p

]
≤ Cmp (E∆p + E∆pq)

≤ Cmp(t − s)p/2,

and (A.6) then follows in this case.

Case 2. Assume now that

(A.8) t − s >
‖f‖q

∞
‖Df‖q

∞
∧

‖f‖∞
‖σσt‖∞,[−1,0] ‖D2f‖∞

.

Set

(A.9) h :=

[
‖f‖∞
‖Df‖∞

(t − s)1/q′
]
∧

‖f‖∞
‖σσt‖∞ ‖D2f‖∞

and let N ∈ N be such that

t − s

h
≤ N <

t − s

h
+ 1.

Note that (A.8) implies that h ≤ t − s, and so

(A.10) t − s ≤ Nh < 2(t − s).

For k = 0, 1, 2, . . . , N − 1, set τk := s + kh and τN = t, and, for k = 1, 2, . . . , N ,
define

∆k = max
u,v∈[τk−1,τk]

|Bu − Bv| .

Using Lemma 2.2, we write

E
[∫ t

s
f(Xr) · dBr

]
=

N∑

k=1

E
[∫ τk

τk−1

f(Xr) · dBr

]

= I − II − III,

where

I :=
N∑

k=1

E
[
f(Xτk) · (Bτk − Bτk−1)

]
,

II :=
N∑

k=1

E
[∫ τk

τk−1

Df(Xr)αr · (Br − Bτk−1)dr

]
,

and

III :=
1

2

N∑

k=1

E
[∫ τk

τk−1

tr(σrσ
t
rD

2f(Xr)) · (Br − Bτk−1)dr

]
.

We estimate

|I| ≤ ‖f‖∞
N∑

k=1

∆k and |III| ≤ h

2

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞

N∑

k=1

∆k,
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and, for all ε > 0, Young’s inequality yields

|II| ≤ ‖Df‖∞
N∑

k=1

∆kE
∫ τk

τk−1

|αr|dr

≤ ‖Df‖∞ h1/q
N∑

k=1

∆k

(
E
∫ τk

τk−1

|αr|q
′
dr

)1/q′

≤ ‖Df‖∞ h1/q

(
1

qεq

N∑

k=1

∆q
k +

εq′

q′
E
∫ t

s
|αr|q

′
dr

)
.

Combining the three estimates gives
∣∣∣∣E

[∫ t

s
f(Xr) · dBr

]∣∣∣∣ ≤
(
‖f‖∞ +

h

2

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞

) N∑

k=1

∆k

+ ‖Df‖∞ h1/q

(
1

qεq

N∑

k=1

∆q
k +

εq′

q′
E
∫ t

s
|αr|q

′
dr

)
.

(A.11)

We now set

ε := δ

(
q′

‖Df‖∞ h1/q

)1/q′

.

In particular,

εq′
=

q′δq′

‖Df‖∞ h1/q
and εq =

(q′)q−1δq

‖Df‖q−1
∞ h1/q′

,

so that (A.11) becomes, for some C = C(q) > 0,
∣∣∣∣E

[∫ t

s
f(Xr) · dBr

]∣∣∣∣ ≤
(
‖f‖∞ +

h

2

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞

) N∑

k=1

∆k

+
C

δq
‖Df‖q

∞ h
N∑

k=1

∆q
k + δq′

E
∫ t

s
|αr|q

′
dr.

For k = 1, 2, . . . , N , the constants

ak := E∆k and bk := E∆q
k

satisfy, for some a > 0 and b = b(q) > 0,

ak ≤ ah1/2 and bk ≤ bhq/2.

Then (A.9) and (A.10) give

(
‖f‖∞ +

h

2

∥∥σσt
∥∥
∞

∥∥D2f
∥∥
∞

) N∑

k=1

ak

≤ 3

2
‖f‖∞ Nh1/2a ≤ 3a ‖f‖∞ (t − s)h−1/2

≤ 3a(t − s) ‖f‖1/2
∞

([
‖Df‖1/2

∞ (t − s)−1/(2q′)
]
∨
[∥∥σσt

∥∥1/2

∞

∥∥D2f
∥∥1/2

∞

])

≤ 3aK1/2(t − s)1/2



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HAMILTON-JACOBI EQUATIONS WITH STOCHASTIC FORCING 7231

and

‖Df‖q
∞ h

N∑

k=1

bk ≤ b ‖Df‖q
∞ Nh1+q/2 ≤ 2b(t − s) ‖Df‖q

∞ hq/2

≤ 2b(t − s) ‖f‖q/2
∞ ‖Df‖q/2

∞ (t − s)
q

2q′ ≤ 2bK
q
2 (t − s)

q+1
2 .

Therefore, because 0 < δ ≤ 1, we find that, for some constant M1 = M1(K, q, m) >
0,

(
Zµ(s, t) − M1(t − s)1/2

)

+

≤ M1

(
‖f‖∞

∣∣∣∣∣

N∑

k=1

(∆k − ak)

∣∣∣∣∣ + C ‖Df‖q
∞ h

∣∣∣∣∣

N∑

k=1

(∆q
k − bk)

∣∣∣∣∣

)
.

(A.12)

The collections (∆k −ak)N
k=1 and (∆q

k − bk)N
k=1 consist of independent and centered

random variables. The scaling properties of Brownian motion yield, for any k =
1, 2, . . . , N and p0 > 0 and constants A1 = A1(p0) > 0 and A2 = A2(p0, q) > 0,

E |∆k − ak|p0 ≤ A1h
p0/2 and E |∆q

k − bk|p0 ≤ A2h
p0q/2.

It is then a consequence of (A.10) and Lemma A.4 that, for some constants Ã1 =
Ã1(p) > 0 and Ã2 = Ã2(p, q) > 0,

E

∣∣∣∣∣

N∑

k=1

(∆k − ak)

∣∣∣∣∣

p

≤ Ã1N
p/2hp/2 ≤ 2p/2Ã1(t − s)p/2

and

E

∣∣∣∣∣

N∑

k=1

(∆q
k − bk)

∣∣∣∣∣

p

≤ Ã2N
p/2hpq/2 ≤ 2p/2Ã2(t − s)p/2hp(q−1)/2.

The latter estimate and (A.9) give

‖Df‖pq
∞ hpE

∣∣∣∣∣

N∑

k=1

(∆q
k − bk)

∣∣∣∣∣

p

≤ 2p/2Ã2 ‖Df‖pq
∞ (t − s)p/2hp(q+1)/2

≤ 2p/2Ã2 ‖f‖p(q+1)/2
∞ ‖Df‖p(q−1)/2

∞ (t − s)
p
(

1
2+ q+1

2q′

)

≤ 2p/2Ã2K
p(q−1)/2 ‖f‖p

∞ (t − s)p/2,

and so, raising (A.12) to the power p and taking the expectation gives, for some
M2 = M2(m, K, p, q) > 0,

E

[
sup
µ∈M

(
Zµ(s, t) − M1(t − s)1/2

)p

+

]
≤ M2(t − s)p/2.

Dividing by (t − s)p/2 leads to (A.6).
We now take p large enough that

κ <
1

2
− 1

p
.

Then (A.6) and Lemma A.3 imply that, for some C = C(κ, m, K, p, q) > 0 and
M = M(κ, m, K, q) > 0, and for all λ ≥ 1 and

p >
2

1 − 2κ
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7232 PIERRE CARDALIAGUET AND BENJAMIN SEEGER

we have

P

(
sup
µ∈M

sup
−1≤s≤t≤0

Zµ(s, t)

(t − s)κ
> M + λ

)
≤ Cmp

λp
.

By changing C in a way that depends only on m and p, the same can be accom-
plished for all p ≥ 1. The proof is finished upon setting

λ0 := 2M, E := sup
µ∈M

sup
−1≤s≤t≤0

Zµ(s, t)

(t − s)κ
,

and replacing C with 2pC. !
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