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Such examples come up in certain applications, and they can be

used as modeling tools to numerically approximate more compli-
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1. Introduction

This paper is concerned with deterministic mean field games (MFGs) models in which cer-
tain dimension reduction phenomena can be observed. A variety of situations are consid-
ered, including both the forward-backward system and the master equation, with state
spaces that are finite or infinite. We also study a forward-backward system with strong cou-
pling, often referred to in the literature as “mean field games of controls,” and we give
some well-posedness results based on the occurrence of the dimension reduction.

We emphasize that the reductions considered in this paper are rather straightforward,
and the mathematical developments are kept as simple as possible. The general reduc-
tion phenomena considered here can be observed in some specific applications to eco-
nomics or telecommunications; see for instance [1], where such exact reductions are
observed in an application to trade crowding. In general, the precise assumptions that
give rise to dimension reduction may not be satisfied by more complicated systems, in
particular those that incorporate noise. In such situations, the results of this paper sug-
gest ways to build good approximate models with high dimension reduction. This is
essential for creating models that are both numerically computable and easily interpret-
able, thanks to the small number of reduced variables. As a proof of concept, we pre-
sent an example of a model with noise, for which we prove that the solution is close to
a small-noise expansion that exhibits dimension reduction.

CONTACT Benjamin Seeger @ seeger@math.utexas.edu e University of Texas at Austin, 2515 Speedway, PMA 8.100,
Austin, TX 78712.
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The study of MFGs goes back to the works of Lasry and Lions [2-4] and Huang,
Malhamé, and Caines [5], and, since then, the field has received a great deal of atten-
tion. The models arising in MFG describe differential games between a very large num-
ber of indistinguishable players, or agents. When the games are in a Nash equilibrium
and the number of agents approaches infinity, the model can be described by a system
of two equations: a backward Hamilton-Jacobi-Bellman equation, whose solution is the
value function of a representative player; and a forward Fokker-Planck equation that
describes the evolution of the population. The MFGs system can be reformulated in
terms of the master equation introduced by Lasry and Lions [6], which is a single equa-
tion for the value function that is set on an infinite dimensional space of measures. The
merit of this equation is that it can take into account a variety of extensions and more
complex models that the forward-backward system fails to encompass. In addition, it is
a natural tool to study the infinite-player limit in many situations, including in the pres-
ence of common noise. For more details, see Carmona and Delarue [7] and the book of
Cardaliaguet et al. [8]. Alternatively to the PDE approach, MFGs have also been exten-
sively studied from the probabilistic point of view; for a thorough treatment, see the
books of Carmona and Delarue [9, 10].

1.1. Outline of the paper

For most of the situations considered in this paper, we identify general algebraic condi-
tions that result in a dimension-reduced problem. Such conditions are supported with
simple, but representative, examples. The reduced problem can generally be seen to
admit a classical solution, which then leads to a solution of the original problem. This
is done for a finite state space in Section 2, and for a continuous state space in Section
3. In both sections, both the master equation and the forward-backward system are con-
sidered. In Section 4, we study a forward backward system with strong coupling, and
we present a reduced system that consists of a standard forward-backward system
coupled with an ordinary differential equation, which admits an existence result.
Finally, in Section 5, we return to the finite state space setting and incorporate a small
common noise term, and we justify a formal small noise expansion.

1.2. Notation

The adjoint of a linear map A : R™ — R™ is denoted by A*, and its trace and deter-
minant, respectively, by tr A and det A. The Euclidean inner product on x,y € R" is
denoted by (x,y).

We set

P =P(RY) := {m :m is a positive Borel measure on R? and J m(dx) = 1},
]Rd
and, for g > 1,

P, =Py(RY) := {meP:J

|x|Tm(dx) < oo} .
Rd
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The convex set P, is equipped with the g-Wasserstein distance, which, for m,,m, €
Py, is given by

1/q
dy(my,my) == inf <JJ |x — y|qy(dxdy)> ,
vell(mi, my) RIxR?

where I1(my, m,) is the set of Borel probability measures on R? x R such that y(A x
R%) = m;(A) and y(RY x B) = m,(B) for any Borel subsets A and B of R".

Given x € R% Jx € P denotes the Dirac delta measure centered at x. For m € P(Rd)
and a Borel measurable map f:R? — R", fim € P(R") is the measure defined, for
Borel A C R", by

fim(A) = m(f(A)).

2. Finite state space

We first consider games for which there is a finite number N of discrete states, labeled
with the index set {1,2,..., N}. The variables x' or X' below represent the concentration
of players in the state i, while U’ denotes the value function of a typical player in state
i. We note also that the equations we consider here take the same form as those that
arise in later sections as dimension-reduced problems of some continuous-state
MFGs models.

We emphasize that the equations studied below are slightly more general that those
arising in MFG situations. For more details, see, for instance, [6, 11, 12].

2.1. The general set-up and the master equation

In the finite state space case, the master equation is a non-conservative, hyperbolic
Nx N system of equations given, for some smooth F:RM x RN — RN, G: RN x
RY — RY, and Uy : RN — RY, by

OU+[F(x,U)-V,JU=G(x,U) in RY x (0,T], U(0,-)=1U, in RY, (2.1)

or, coordinate by coordinate, for each i = 1,2,...,N,
aU' + Y F(x,U)d, U = G'(xU).
=1

We will consider different regimes of well-posedness for the equation (2.1). First, the
smoothness of F, G, and U, are enough to ensure that a unique classical solution of
(2.1) exists for a sufficiently small time horizon T>0. This is constructed with the
method of characteristics, as discussed in the next sub-section.

In order for a unique global solution to exist for arbitrary T >0, further structural
properties are required, which we take here to be monotonicity.

We say a map A : R” — R is monotone if

(A(x) —A(y),x —y) >0 for all x,y € RM, (2.2)

and is strictly monotone if
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(A(x) —A(y),x —y) >0 for all x,y € RM with x # y. (2.3)
We will assume that

{ (G, F) ‘RN RN and Uy :RY — RN are monotone, and

2.4
either F or G is strictly monotone. 24)

2.2. The reduction

A reduction in dimension will be observed if the various data depend on the distribu-
tion x of players only through n reduced quantities, for some integer n < N. We repre-
sent this with a map L satisfying

L:RY - R" js linear and surjective. (2.5)

We denote by L* the adjoint of L. A consequence of the surjectivity of L is that
L*:R" — RY s injective. (2.6)

We will consider two types of “reduced” nonlinearities. First, a map A : RY — R is
said to completely reduce to A : R" — R" if

A(x) = L*A(Lx) for all x € RN, (2.7)

That is, A depends on x only through Lx, and, moreover, Ax is perpendicular to the
fibers of L, since

(A(x),x0) = (A(Lx),Lxo) = 0 for all xo with Lx, = 0.
We say a map A : RY — RV fiber-reduces to A : R" — R" if
LA(x) = A(Lx) for all x € RN, (2.8)

Geometrically, A maps fibers of L to fibers of L. That is, (2.8) is equivalent to requir-
ing that, if Lx; = Lx,, then LA(x;) = LA(x;).

We remark that both concepts of reduction depend on the map L, which remains
fixed throughout this section.

We shall assume that

{ (x— G(x,U)) and U, completely reduce for each fixed U € RY, and (2.9)

(x> F(x, U)) fiber-reduces for each fixed U € RY.

With a slighE relabeling, this means that there exist F:R'xR" - R" G:R"x
R" — R", and U, : R" — R” such that, for all x € RN and u € R",

G(x,L*u) = L'G(Lx,u), LF(x,L*u) = F(Lx,u), and Uy(x) = L*Uy(Lx). (2.10)

This leads, formally, to the #n X n system

0,0 + [ﬁ(y, ). vy} U=3G(U) in R"x (0,T], U(0,") = U,. (2.11)

Theorem 2.1. Assume, for some L satisfying (2.5), that F, G, and U, satisfy (2.4) and
(2.11). Then
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(G,F) :R*™ = R* and U,:R" —R" are monotone (2.12)

and, moreover, there exist unique classical solutions U and U of respectively (2.1) and
(2.11), which are related by

U(t,x) = L*U(t, Lx). (2.13)

Proof. Assume U, is monotone. Then, for all x,y € RY,

0 < (Uo(x) — Up(y), x = y) = (L"(Uo(Lx) — Ug(Ly)), x — y)
= <UO(L’C) - 00<L}’)>Lx — Ly).

The monotonicity of U, then follows from the surjectivity of L.
Now assume that (G, F) is monotone and let (xi,u), (x2,4;) € R" x R". Then there
exist X;, X, € RY such that LX; = xj, j=1, 2. We then compute

(G(x1, 1) — G(x2,tz)s %1 — %2) + (F(x1, 1) — F (3, 1), 4y — 1)
= (G(LX1,u1) — G(LXp, up), L(Xy — X3)) 4 (F(LXy, u1) — F(LXs, ), t4y — )
= <G(X1,L*u1) — G(Xl,L*uz),Xl —X2> + <F(X1,L*u1) — F(Xz,L*Mz),L*ul — L*Ll2> Z 0.

The existence and uniqueness of solutions to both equations is now standard (see
[6]), and the formula (2.13) can be verified with a simple calculation. O

2.3. The system of characteristics

The system of characteristics associated to (2.1) is

{X =F(X,V), X(0)=x

V=G(X,V), V(0)=Up(x), (2.14)

which, of course, is analogous to the mean-field games forward-backward system (here
written only in forward form for simplicity). The relation to (2.1) is through the impli-
cit formula

U(t,X(t)) = V(t) for te]0,T].

The local well-posedness of (2.1) is a consequence of the fact that, for sufficiently
small T>0, x— X(x, t) is invertible for all ¢ € [0, T|, while a simple computation shows
that X is invertible for all ¢ > 0 if (G, F) is monotone.

We now discuss the consequences of the reducibility assumptions for G and F on (2.14).
First, since F fiber-reduces, we find that, if x; and x, belong to the same fiber of L, then,
for all t € [0, T], X(t,x) and X(#,x,) also belong to the same fiber of L; that is, the equa-
tion for X can be interpreted as an evolution of fibers of L.

On the other hand, the fact that G completely reduces means that the evolution of V depends
only on the fiber of X. Moreover, V does not have any motion tangential to the fibers of L.

Mathematically, the above remarks mean that the system

% = B(%, V),
‘7

-~ (2.15)
X, V),

Qz

(0) = Uo(x)
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is related to (2.14) by

3. Continuous state space
3.1. The master equation
For a given H : R x P x RY = R and G : RY x P — R, we study the master equation

ou

—E—&—H(x, m, D, U) —i—J D, U(t,x,m,y) - DyH(y,m,D,U(t,y, m)) m(dy) = 0
Rd

U(T,x,m) = G(x,m) in RY x P.
(3.1)
The analogue of the linear map L from the previous section is given, for some ¢ :
R? — R™, by
P> m»—>J ¢(y)m(dy) € R™.
]Rd

Let us assume that

¢ € C'(RLR™), |p(x)| < C(1+ |x[€) for all x € R? and some C >0 and K > 0, and
aC C Pp(RY), where
C:={zeR":z= [pupp(x)m(dx) for some m € Pg}.

(3.2)

We note that (3.2) implies that the convex set C is closed, since, for any x € R,
o) = | o ec

We impose the following algebraic conditions that reflect the fact that the dependence
of (3.1) on the measure variable m is felt only through the quantity | ¢dm :
there exists h : C x R™ — R™ such that
H(x,m, D (x) - ) = ¢(x) - h( [pap(y)m(dy), ) for all (x,m, ) € R? x Px x R™,
(3.3)

and

{for some g:C — R™ and for all (x,m) € R? x Py, (3.4)

G(x,m) = p(x) - g(Jpab(y)m(dy)).

The dimension-reduced problem is then given, for some f : dC x [0, T) — R™, by the
following boundary-terminal-value problem
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—Ow + h(z,u) + z- 0,h(z,u)0,u=0 in [0,T) x C,
u(T,z) = g(z) in C, and (3.5)
u(t,z) = f(t, 2) on 9C x [0, T).
We now impose conditions on g and h, which are related to monotonicity, that make
(3.5), and, hence, (3.1), into a well-posed problem. The conditions on the boundary
value f will be much more restrictive, and, in fact, (3.5) is well-posed for only one

choice of f.
We assume that

(z,u)—(—h(z,u),z - h,(z,u)) is monotone, (3.6)
and

g is strictly monotone in C. (3.7)

Theorem 3.1. Assume (3.2), (3.3), (3.4), (3.6), and (3.7). Then there exists a unique f €
CY(OC x [0, T]) such that (3.5) admits a unique classical solution u. Moreover, the for-
mula

U(t,x,m) = qS(x)u(t, erg{)(y)m(dy)) for (t,x,m) € [0, T] x R? x Px (3.8)

defines a classical solution of (3.1).

Proof. A simple consequence of (3.3) is
Do) - Dyl D3 (3)0) = b4 | om(a)v) for al (s m)

e R? x Py x R.

The unique solution of (3.5) is constructed using the method of characteristics, which
is the system of ordinary differential equations given, for some fixed z € C, by

{Z = —Zh,(Z,U), Z(T,2) =z

U=hEZW),  UTz2) =g). 59

As can be checked, the assumptions (3.6) and (3.7) imply that the map z—Z(z,t) is
strictly monotone for each t € [0, T].

We next claim that, if z € JC, then Z(z,t) C OC for all ¢t € [0,T]. To see this, let
xo € R? be such that ¢(x0) = z. Then (3.3) implies that

H (x0, 0x,» Dp(x0) - v) =z - h(z,v) for all v € R™.
Let n be the normal vector to dC at z and let t € R. Then D¢(x) - n = 0, so, setting
v = u + tn for some u € R,
H(x0, 0x,» Dp(x0) - u) = z - h(z, u + tn).
Differentiating in t and setting t=0 yields
z-hy(z,u) -n=0.



708 J.-M. LASRY ET AL.

In particular, this implies that Z is tangential to dC whenever Z € dC, which yields
the claim.

From this and the monotonicity of Z, it follows that Z(-,t) : C — C is invertible, and
therefore we can implicitly define

u(t,Z(t,z)) =U(t,z) for (t,z) € [0,T] x C,
which is then the unique classical solution of (3.5), as long as
Of (t,z) = h(z,f(t,z)) for (t,z) € [0,T) x C and f(T,z) = g(2).

The fact that (3.8) defines a classical solution of (3.1) follows by calculation. O

3.2. The forward-backward system

The forward-backward associated to (3.1) is

{ —u¢ + H(x,m, Du) = 0, u(T,) = G(-,m(T))

my — div(mD,H (x, m,Du)) =0, m(0) = my, (3.10)

and the reduced version of (3.10) is the system of ordinary differential equations

_l/./ + h(Z, l//) =0, (//(T) — g(z(T))
{”Z-hu(z,ab) =0, 2(0) = z. (3.11)

We note that this system shares a connection with (3.9), but (3.11) is given in a for-
ward-backward form.
The following result is immediate.

Theorem 3.2. Assume (3.2), (3.3), (3.4), (3.6), and (3.7). Then (3.11) has a unique solu-
tion (Y, z) : [0, T] — R x C for every zy € C. Moreover, if u(t,x) = ¢(x) - y(t) and m is
the solution of

m; — div[mD,H(x,m,Du)] =0 in R x (0,T] and m(-,0) = my,

then (u, m) is a solution of (3.10), and

(0= | o0)miy. 0y

3.3. Examples

We present here some examples to which the theory of the previous results can be
applied. In these, ¢ will have a power-like structure.

We first look at a one-dimensional example; that is, m = 1. Define, for some func-
tions a : [0,00) — [0,00), b: [0,00) — R, and ¢ : [0,00) — R, and some g > 2,

Hesmp) = [ a(@lpl +be) - ) + el for 2= [ bim(dy)
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Then (3.2) and (3.3) hold with
1 , 1
o) :?|y|q and  h(z u) zaa(z)|u\q + b(2)u + ¢(z).

Note that, in this example, C = [0, c0).
It remains to check (3.6), which, when m =1, is equivalent to

%<0 @>0 and <ﬂ>2<—4%@ (3.12)
0z~ our~— " Nouwoz) = “ozow ’

It can be seen from some tedious but straightforward calculations that (3.12) holds if
and only if

4q-1) | .
a>0, d<0, <0, z—a(z)z 7 is nondecreasing,

b is constant if g > 2, and (3.13)
V(z)* < 2d(2)c (2) if q=2.

We remark that one can also come up with sufficient conditions on a, b, and c to
make (3.12) hold in the case where g <2 (of course, a and b constant and ¢ nonincreas-
ing always works), but deriving the necessary conditions is considerably harder.

We now consider some quadratic type examples, allowing for m > 1. For simplicity of
presentation, we take d =1, although the idea can be generalized to higher dimensions.

We set

2

Homp) =30~ fols)  xfi(z) 5 f(e) where z=<zl,zz>=jR<y,%)m<dy>,

and then (3.2) and (3.3) hold with

2

600 = (102) and he = (2~ @ 5@ ).

Here, u = (ug, u1, up) C R?and z = (20,21, 22) belongs to the set

C= {1} x {(zl,zz) :%zf < zz}.

We claim that h satisfies (3.6) as long as f is monotone. Indeed, for (z,u),(z,u) €
C x R?, we compute

— (h(z,u) = h(z,4)) + (z - hu(z,u) — 2 - hu(2,w)) = {f(2) — f(2), 2 — 2)
+%(lx[1 — 1:11)2(20 + 20) +%(H1 — 1711)(1/{2 — 17[2)(21 +%1) + (uz — 112)2(22 +22)
Z Z(ul — 111)2 +%(221(u2 — ljlz) =+ u; — 17[1)2 —I—%(z%l(l/lz — ljtz) + u; — ﬁ1)2 Z 0,

where we have used the fact that zy = zg = 1, z, > 22/2, and Z, > z3/2.
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4. Strongly coupled MFGs

We now turn to mean-field games systems with strong coupling, in which the mean
field interactions of the infinitesimal players depend not only on their empirical distri-
bution, but also on the distribution of the controls.

More precisely, we study systems of the form

—@—FH(x,Du, m, i) =0 in RY x [0, T], u(-,T) = F(x,m(-, T))

%—T— div[DpH(x,Du, m, ,u)m] =0 in RYx[0,T], m(-0)=my,

p:= (Id, — D,H(x,Du,m))

(4.1)

¢

the third condition meaning that, for a bounded continuous function ¥ : R x R,
J Y(x,v)du(x,v) = J W (x, — DpH(x, Duy(x), m;)) m(dx).
RYxR? R?

Such systems, which are also known in the literature as “mean field games of con-
trols,” “extended mean field games,” or “mean field games with interacting controls,”
are very natural from the standpoint of applications, see for instance [1]. For various
existence and uniqueness results, see, for instance, [12-16].

4.1. A reduced system

We now demonstrate that, with some structural assumptions on the Hamiltonian that can be
readily verified in some applications, the system (4.1) reduces to a simpler one in which the
evolution of y is reduced to an ordinary differential equation. We present the formal structural
computations here, and in the next subsection we present a simple existence result.

For H:R!xR!xR" =R, G:RIxP =R, myeP, and ®:[0,T] x R x R —
R™, we consider the system

% M Dwd) =0 in RYx [0,T], (T, ") = Glx, m(T, ),

88—’? — div[D,H(x, Du, ¢)m] =0 in RY x [0, 7], m(0,") = my, (42

b(t) = [pa®(t,y, Du(t, y))mi(dy).

Note that, if H is strictly convex in p, then p+~— D,H(-,p,-) is invertible, so that ¢ is
indeed some functional of u.
The main structural assumption we make is that
there exist A € C([0, T] x R™,R™™) and B € C([0, T] x R™,R™) such that,
for all (t,x,p,¢) € [0, T] x RY x R x R™,

oD
7 (b%p) = DpH(xp> §) - Dy®(t, %, p) + DeH (% p> §) - Dy®@(t, %, p)

+ A(t, ¢)D(t,x,p) + B(t, ) = 0.
(4.3)
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Define f : [0, T] x R™ — R"™ by
f(t¢) :=A(t,¢)¢ + B(t,¢) for (t,¢) € [0, T] x R™ (4.4)
and g: P — R™ by
g(m) = J O(T,y,D,G(y,m))m(dy) for all m € P. (4.5)
Rd
We now introduce a reduced system, which is nothing more than a “standard”

mean-field games system coupled with an ordinary differential equation:

_Ou

o + H(x,Du,¢) =0 in R? x [0, T], u(T,-) = G(x,m(-, T))
%—T — div[D,H(x, Du, p)m| =0 in RY % [0, T]), m(0,-) = my, (4.6)
—¢(t) = f(t, $(1)), ¢(T) = g(m(-, T)).

Proposition 4.1. Assume (4.3). Then the triple (u,m, ) is a classical solution of (4.2) if
and only if it is a classical solution of (4.6).

Proof. If (u,m, ¢) solves (4.2), then a straightforward calculation and (4.3) imply that ¢
solves the equation in (4.6). Conversely, assume that (u,m, ¢) solves (4.6) and set

00 = | 00 Dute )iy

Then both ¢ and  solve the terminal value problem
—X(t) = a(t)X(t) + b(t), X(T) = g(m(T,")),
where
a(t) := A(t,¢(t)) and b(t) :=B(t, ¢(t)) for t €[0,T],
from which we conclude that ¢ =/, and therefore (u, m, ¢) solves (4.2). O

4.2. Existence of solutions

We demonstrate the existence of a solution of (4.6), which, by virtue of Proposition 4.1,
gives rise to a solution of (4.2).
Based on examples that we discuss later, the growth estimates for the various data

will be in terms of some powers
r

q—1

g>1, r>gq, and y:= >4q. (4.7)

We shall assume

there exists C > 0 such that, for all(t,y,p) € [0, T] x R? x RY,
[@(t,3,p)] < L+ [pl"),  [Dp®(ty,p)| < C(1+[p|"™), and (4.8)
IDx(t,y,p)| < C(1+ |p[™*™),

my € P, for some 1>, (4.9)
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He C'Y(R? x R? x R™) is convex in the gradient variable,
for some C > 0 and for all (p,x,¢) € R x R x R™,

3 (4.10)
|H(p,x)| + [D:H(x.p, ¢)] < C(1+ |pl"),  |DH(x,p,§) < C(1+ [pl™),
DL H(xp,¢) <0, and |DjH(xp ¢)| <G,
for all m € P, G(-,m) € Cv1(R?) is convex, and, for all x € R? and some C > 0, (4.11)
Gl m)] < C(1+ "), [DGlem)| < C1+[x77"), and |D2G(x,m)| < C(1+|x))7 %, '

and

{there exists a modulus o : [0,00) — [0,00) such that, for all m;,m, € P,,
|G(x, my) — G(x,m3)| + |DyG(x, my) — DG(x, my)| < C(1 + |x|")o(d, (my, my)).
(4.12)

With regards to the coefficients A and B from (4.3), we will need to assume

sup (HA(L')HC""(]W) +[1B(t, ')HCO»](Rd)) < 0. (4.13)
€0, T|

We first present, without proof, some standard results on the solvability of the
Hamilton-Jacobi, continuity, and ordinary differential equations.

Lemma 4.1.
a. Assume that H satisfies (4.10), ¢ € C'([0,T]), and G € C*'(R?) satisfies, for
some constant C > 0 and all (almost all for the last inequality) x € R,

G| < CL+[x]7),  ID:G(x)| < CL+ |x[*7),
and |D2G(x)| < C(1 + |x[)7>.
Then there exists a unique solution u € C*'(R? x [0, T]) of the terminal value prob-
lem
—u; + H(x,Du,¢) =0 in R*x [0,T) and u(T,-)=G on R?

which, for some C> 0 depending on the bounds in (4.10) and the bounds for G, sat-
isfies the bounds

u(t, 0] | Du(t)]  Dulx)
T T+ T (L )T

sup

< C and D’u(tx)>0.
(t, x)€[0, T]xR?

(4.14)
b. Assume that m, satisfies (4.9) and b € C([0, T], C'(R?)) satisfies

|b(t, )| )
su + |Dyb(t,x)| ) < 0.
te[o,pT] (1 + || ID:b(t:)

Then there exists a unique classical solution of the continuity equation

88_711_ div[b(t,x)m] =0 in R? x (0,T] and m(0,-) =m in RY

which, for some C> 0 depending on fRd|x\Am0(dx) and the bounds for b, satisfies
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maXe(o, 7| ,[Rd |x|“my(dx) < C. (4.15)

c. Assume (4.13), let f be defined by (4.4), and let g € R. Then there exists a unique
solution of

—¢(t) =f(t.p(t)) for t€[0,T) and ¢(T)=3
and, for some constant C > 0 depending only on the bound for (4.13),

1) < Clzl.
tg[lo'«}f;]w( )| < Clg|

The next result gives a quantitative estimate for the modulus of continuity of the func-
tion g defined by (4.5).

Lemma 4.2. Assume that g is given by (4.5). Then, for some constant C> 0 depending
only on the bounds for G and ® in (4.8), (4.11), and (4.12),

gtm) = gtm) = €1+ [ s 0m(5) + mac)e ol )

for all my,m, € P,,
where o is the modulus from (4.12).

In the proof below, the constant C>0, which depends only on the bounds in the
given assumptions, may change from line to line.

Proof of Lemma 4.2. We first write
g(mi) —g(mz) =1 +1L

where

I:= JRd(D(T,y,DyG()/, my))(mi(y) — ma(y))dy

and
II:= ,[Rd ((I)(T,y, D,G(y,m1)) — ®(T,y,D,G(y, mz)))mz(y)dy.
We then fix © € I1(m;, m,) and estimate
1 || 005,605 () [ 0(1.3.0,6000m) 1m0

< J.[WXRJ@(T,JC,D)/G(X,ml)) — @(T, y, D,G(y, m1))|n(dxdy)

r—q+1)

< CJ J ) d(l + (DG, my)| '+ [D,G(y, my) |x — y|m(dxdy)
RxR
CJJ d 4(1 ID«G(x, my)|"" + D, Gy, m1)|")|DsG(x, m1) — D, G(y, my |n(dxdy)
RIXR

<cf[ sl Yl - yln(andy)
RxR
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so that taking the infimum over n € I1(m;, m,) gives

y—1

i

] < C(l —l—J |x|"m (dx) —|—J |y|ym2(dy)> d,(my, my).
R? R?
The estimate is complete upon computing

I < C[_ (1 D, )7+ 1D, Fly ) )|D, s ) = D,y ) )
<c| @ prmad)od,om m))
O

We now introduce the fixed point problem that will yield a solution of (4.6). We define
amap 7 : P, — P, in two steps as follows. First, given m € P,, we solve the two ter-
minal value problems

—%—l—H(x,Du, $) =0 in R?x [0, T], u(T,) = G(x,m)

~p(t) =f(t,¢()) in R?x[0,T], o(T) = g(m).

More precisely, the ordinary differential equation is solved first, and its solution ¢ is
then fed into the Hamilton-Jacobi equation. We then solve the continuity equation

%—T — div[D,H(x, Du, ¢)m| = 0, m(-,0) = my, (4.17)
and we set 7m := m(T).
Let us first check that this map is well-defined.

(4.16)

Lemma 4.3. Assume (4.7) - (4.13). Then the map T defined through (4.16) and (4.17) is
well-defined and continuous from P, to 'P,, and, moreover, there exists a constant C> 0
depending only on the various bounds in (4.7) - (4.13) such that, for all m € P,,

J x|*(Tm)(dx) < C. (4.18)
]Rd

Proof. Lemma 4.1(c) implies that the ordinary differential equation in (4.16) has a
unique, continuously differentiable solution. Then, by (4.11) and Lemma 4.1(a), the
Hamilton-Jacobi equation has a unique classical u satisfying (4.14).

Now set

b(t,x) := DpH(x, Du(t,x), ¢(t)) for (t,x) € [0, T] x R%.
Then, by (4.10) and (4.14),
[b(t,2)] < C(1+ [Du(t,)|"") < C(1 + [x])
and
D,b(t,x) = Dy H(x, Du(t, x), p(t)) + DIZ,PH(x, Du(t, x), ¢(t))D*u(t, x),

and so
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ID,b(t,x)| < C.

Then Lemma 4.1(b) implies that (4.17) admits a unique classical solution with m(t) €
P, for all t € [0, T], and, moreover, the bound in (4.18) is satisfied.

We now turn to the continuity of the map 7. Let (rhn)ljzl C P, and m € P, be such
that

lim d,(m,, m) = 0.

For n € N, let (u,, ¢,) and (u, ¢) be the solutions of (4.16) corresponding to respect-
ively m, and m, and let m, and m be the corresponding solutions of (4.17).

In view of the fact that

supJ x|, (dx) < oo,
neN JR?

we have, by Lemma 4.2,

lim g(m,) = g(m).

n—oo

Also, (4.12) implies that, as n — oo, G(-,m,) and D,G(-,m,) converge locally uni-
formly to respectively G(-,m) and D,G(-,m). Therefore, we also have that, as n — oo,
u, and Du, converge locally uniformly to respectively u and Du, as can be seen from
the method of characteristics.

As a consequence, we see that, as n — 0o, the vector field b, defined by

b,(t,x) := D,H(x, Du,(t,x), $,) for (t,x) € [0, T] x RY

converges locally uniformly to b := D,H(-,Du, ¢). Also, by (4.14) and Lemma 4.1(b),
we have that (m,) ~, is uniformly bounded in C([0, T],P;), and is therefore relatively
compact in the weak-* topology. The result then follows upon showing that the only
weak-* limit point of (m,), is m. Indeed, given p € C'([0,T] x R?) with compact
support, we have, for all t € [0, T],

Jde(t’x)m”(t)(dx) :J dp(0>x)mo<dx)

R
" J JW [91(5,%) = bu(s,) - Dap(s,)]ma(s) (),

and so every limit point of m,, is a weak solution of (4.17), and hence equal to m. O
We now present the existence result.

Theorem 4.1. Assume (4.7)-(4.13).Then there exists a classical solution of (4.6).

Proof. By Lemma 4.3, the map 7 is continuous from P, into a bounded subset of P;.
Since 4 >y, bounded sets of P, are precompact in P, with respect to the d,-metric,
and therefore, by Schauder’s fixed point theorem, 7 has a fixed point. It is then clear
that the resulting triple (u,m, ¢) is a classical solution of (4.6). O
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4.3. Examples

We consider a general example in which the dependence of the Hamiltonian on the
measure 4 is through an affine drift term:

ou

—E—F H(Du) — b(x,¢)-Du=0 in R x [0, T], u(-, T) = G(x,m)
%—T _ div[(DH(Du) — b(x, §))m] =0 in RY x [0,T], m(-0) = mo, (4.19)
G(t) = [ga®(Du(t,y))m(dy) for t € [0, T].

We assume that
® e C'(RY,R™) and, for some matrix A € R™™, D®(p)-p = Ad(p) for all p
€ RY,
(4.20)

and we assume that b is affine in x, that is, for some functions a € C*!(R™,R) and b €
C>(R™ RY), F takes the form

b(x, ) = a($)x + b(¢).
A straightforward computation then shows that (4.3) is satisfied with
A(t,p) :=a(p)A and B(t,¢) =0.
If we also assume that G satisfies (4.11) and

H e C“Y(R?) is convex and, for some C > 0,

[H(p)| | IDH(p)|
*Pper! (1 Tl i) T

then all of the assumptions of Theorem 4.1 are satisfied, and therefore, by Proposition
4.1, there exists a classical solution of (4.19).

With some further structure, the entire system (4.19) reduces to a system of ordinary
differential equations. We consider a single spatial dimension for simplicity, and, for
p > 1, we study the system

1 /1 1
g (13 usl? xa<¢>ux) =0, u(Ty) = (),
my — = [m(ugue’ ™ = xa(¢))], =0, m(0,x) = mo(x),
p ) (4.21)
20 = | Pty
Pl R
80 = | 1,0y, ).
qJr
Above, we assume that
g:R — R is Lipschitz, nonnegative, and nondecreasing, (4.22)

and
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a:R — R is Lipschitz and bounded. (4.23)

We can reduce by formally setting
1
u(t,x) = I el (8).

This leads to the system

4zl —a(¢)) =0 2(0) = 2, (4.24)

where
1 1 _
2o 1= | bmoldy) and = [0 m(a)

The results in the previous sub-section then guarantee the existence of a solution of
(4.24). Notice also that, for some constants 0 < ¢y < Cy depending only on bounds for
g 2o, and ap, any solution satisfies

o <Y(t) <Cy and ¢y <z(t) < Cy for all t€|0,T]. (4.25)

We finish by looking at the particular case in which p=g, and we present a unique-
ness result with an additional assumption.
If p =g, then, in fact, for all ¢t € [0, T],

o(t) = 2Ol (O)]".

In that case, the solvability of (4.24) reduces to a system involving only z and y,
namely

{ W~ ali ) =0 Y(T) = gl=(T)), w26
24z —aelyl) =0 2(0) = 2.
We now introduce the assumption that
there exist 0 < dy < d;, such that
{ So < $VPa(¢) < 6y for all ¢ > 0. “27)

Proposition 4.2. Assume (4.22), (4.23), and (4.27). Then, if 61 > 0 is sufficiently small,
the solution of (4.26) is unique.

Proof. To simplify the notation, let us write, for {,z € R,
1 _
A2) =W —alay) and B2) =Y —a(ay)

so that (4.26) can be written as
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—+AW.2) =0 Y(T) =g(=(T)),
{ Z+zB(Y,z) =0  z(0) = 2. (4.28)

Given two solutions (/;,z1) and (¥/,,2,) of (4.28), define
X(t) = (i (t) =¥, (0)(21 (1) — 22(t))  for £ €[0,T].
For 7 € [0,1], define also
Vo=t + (1 =1y, and zF =121+ (1 —1)z.
Then
X(t) = (AW 21) — Ay 22)) (21 — 22) — (Y1 — o) (21B(Y1,21) — 22B(Y2,22))

= - ZTBt//(lpTaZTMT(‘//l - Wz)z
], (Ay(¥'.2°) = B(Y",2") — 2'B. (Y%, 2%) ) de (b, — ¥,) (21 — 22)

1

+ | A (Y5 25dt(z — 22)2.
Jo

We claim that, if 6; in (4.27) is sufficiently small, then, for some constant g > 0,

X(1) < —ao((h (1) =¥ ()" + (21(1) = 22(1)°),
which will follow in turn from the strict negativity of matrix
1
—zBy (Y, —(Ay(Y,z) — B(y,z) — zB(,
e | 2By (42) - (Ay(,2) — B(Y2) — 2B(412)
> (Ap,2) — B, 2) — 2B(1,2)) A-2)
for all , z satisfying (4.25). We note that

&
A7) = —a (@ WP < —dgz PP < 52
CO

and
2By (Y,2) = 2y *[p — 1 — paya (2y)]
> zyP? {p -1- 51pzl’1/1’}
> 202 [p—1- ¢ rpe),
and, therefore, tr M(,z) < 0 as long as

513%.
Pl

We also compute
Ay(Y,z) = B(Y,z) — zB(Y,z) = —(p — DzpPar(zy’),

and, hence,



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 719

2
det M(1,2) = o (292 [p 1 — pe (29)] ~ L 2yorat ey’

= d(ay)zy! :p -1- (p L@ _4 l)z)zwa’(zw )]
> d (2?2 ! :p —1-9 (p + (=1 ) - 1/"]

a/(zwp)szp—l p— 1 l/pé1 P+(p >:|

Further restricting J; yields
detM(y,z) > 0,

and we conclude that the largest eigenvalue M(y,z) is negative and bounded away
from zero.
As a consequence, we find that, using the fact that z,(0) = z,(0) = z,

T
((21(T)) — g(z2(T))) (21(T) — 22(T)) = X(T) — X(0) = J X(t)dt

T
< | (0100 = 90 + (@1(0) — 20 ek
By (4.22), we get Y, =, and z; = z,, as desired. O

5. Small noise expansions

We return to the setting of the generalized master equation in a finite state space as in
Section 2, and add a small noise term, which, in general, breaks the algebraic conditions
that allow for a reduced problem. This motivates comparing the solution of the noisy
MFGs problem to a formal small noise expansion.

5.1. A stability result

For smooth, monotone maps (G,F) : R* — R?* and U, : RY — RY, an affine map
7 :RY - RY, and 1 > 0, we consider the equation

OU + [F(x,U) - V,JU+ A(U(t,x) = T*U(t,Tx)) = G(x,U) in RN x (0, 7],

(5.1)
U(o,-) = U,.

This is similar to the equation (2.1) from Section 2. The interpretation of the term
involving 7 is that, at random times with an exponential law of parameter 4, the play-
ers are rearranged by the map 7.

The inclusion of the map 7 as in (5.1) is just one of many ways to model a common
noise effect in finite state space MFGs. Other examples can be found in [12].
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We assume a stricter sort of monotonicity for G; in particular, for some a > 0,
(G, U) = G, V),x = y) + (F(x, U) = F(, V), U = V) > ofx — [’

(5.2)
for all (x,y, U, V) € R¥,

Under the above assumptions, (5.1) has a unique classical solution, and moreover
[11, 12], there exists a constant Ly >0 depending only on o T,
|D+F|| > IDxGll o> [[PUol|o> |7, and an upper bound for 4 such that

sup ||ID:U(t )|l < Lo. (5.3)
t€[0, T)

oo

We next suppose that, for some smooth and bounded R:[0,T] x RN — RN, v :
[0, T] x RN — RN satisfies

OV +[F(x, V) -VV+i(V(tx) = TV(t,Tx)) = G(x, V) + R(t,x) in RY x (0,T],
V(0,-) = Up.
(5.4)
We then have the following result:
Theorem 5.1. Assume (5.2) and that U and V solve respectively (5.1) and (5.4). Then

1/2
LyT
swp — [0(60) - v < (40) Rl

(t,x)€[0, T]xRY

Proof. Define
W(txy) = (U(tx) = V(Ly),x =)
which satisfies the equation
OW 4+ F(x,U) - ViW + F(y, V) - V,W + A(W = W(, Tx,Ty))
=(G(x,U) =G, V),x—y) + (F(x,U) — F(y, V), U — V) — (R(t,x),x — ¥),
W(0,x,y) = (Uo(x) — Up(y), x = )-
(5.5)

In view of (5.2), the right-hand side satisfies
(G(x,U) — G(», V), x — y) + (F(x, U) — F(y, V), U = V) — (R(t, x), x — )

: IR,
> afx =y = Rl Jr =yl 2 — =

As a consequence, the maximum principle implies that, for all
(t,x,y) €0, T] x RY x RN,

2
[IRIST

(U(t,x) = V(ty),x—y) > — i
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Fix 0 > 0 and ¢ € By, and let x = y + d&. Then this inequality becomes

2
IRET

Uty +08) = V(). &) =

Using the Lipschitz bound (5.3), we then have
IRI%T
U(t,y) — V(t,y), &) > ——=2— — Lyo,
(Ulty) = Vity)c) =2 ==, % 0
and so, because ¢ is arbitrary,
IR T

U-V], <
U= Vi <

+ Lyd.

The estimate is optimized, and the result proved, upon choosing

T \ /2
o= ) IRl
40(L()

5.2. Small noise expansions

We apply the stability estimate from the previous sub-section in order to prove some
small-noise expansion results.
We consider, for some ¢ € (0,1), the equation

OU* + [F(x, U%) - V,JU* + &(U*(t,x) — T*U(t, Tx)) = G(x,U°) in RN x (0, 7],

U*(0,-) = Uy
(5.6)
as well as its deterministic counterpart
OU+[F(x,U)-V,]JU=G(x,U) in RY x (0,T], U(0,-) = U. (5.7)

We also consider the solution V : [0, T] x RN — RN of the linearized problem

{ OV + [E(x, V) - VU + (V4E(x, U) - VU — V,G(x, U))V + U — T*U(t, Tx) = 0 in RN x [0, 7],
V(0,x) =0 in RN,
(5.8)
Formally, the first-order expansion
Vi(t,x) := U(t,x) + eV(t,x)

approximates U’ to an error of order better than &, which we make precise with the fol-
lowing result.

Theorem 5.2. There exists a constant C> 0 depending only on o, T, |DF||q, ||DG| >
|DUo|| o, and ||T|| such that
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sup  |U%(t,x) — V¥(t,x)| < Ce?.
(t, x)€[0, T|xRN

Proof. Routine computations reveal that there exists R : [0, T] x RY — RY such that,
for some constant C >0 depending only on ||D*F|| and ||D*G]|,

sup |Ré(t,x)| < Cée?

(t, x)eRY
and
{atvc + [F(x, VE) - V]V + e(VE(tx) — T*VE(t, Tx)) = G(x, V¥) + R¥(t,x) in RN x (0, 7],
VE(0,-) = Up.
(5.9)

The result now follows from Theorem 5.1. O

We finish this section by relating the above discussion to the reduction phenomena
observed in Section 2. In particular, it is unreasonable to expect that, if L is the linear
map defined there, then, for some T : R” — R”" such that

LT =TL.

This implies that the noisy map T maps fibers of L to fibers of L, and, in most prac-
tical applications, there is no reason to expect that the source of common noise inter-
acts so well with the reduced quantities. In this case, even though (5.6) does not fully
reduce, Theorem 5.2 gives a way to relate, up to small error, the reduced version of
(5.7) to the solution of (5.6).
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