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ABSTRACT
We present examples of equations arising in the theory of mean
field games that can be reduced to a system in smaller dimensions.
Such examples come up in certain applications, and they can be
used as modeling tools to numerically approximate more compli-
cated problems. General conditions that bring about reduction phe-
nomena are presented in both the finite and infinite state-space
cases. We also compare solutions of equations with noise with their
reduced versions in a small-noise expansion.

ARTICLE HISTORY
Received 30 September 2021
Accepted 24 October 2021

KEYWORDS
Mean field games;
dimension reduction; small
noise expansion

2010 MATHEMATICS
SUBJECT
CLASSIFICATION
49N80

1. Introduction

This paper is concerned with deterministic mean field games (MFGs) models in which cer-
tain dimension reduction phenomena can be observed. A variety of situations are consid-
ered, including both the forward-backward system and the master equation, with state
spaces that are finite or infinite. We also study a forward-backward system with strong cou-
pling, often referred to in the literature as “mean field games of controls,” and we give
some well-posedness results based on the occurrence of the dimension reduction.
We emphasize that the reductions considered in this paper are rather straightforward,

and the mathematical developments are kept as simple as possible. The general reduc-
tion phenomena considered here can be observed in some specific applications to eco-
nomics or telecommunications; see for instance [1], where such exact reductions are
observed in an application to trade crowding. In general, the precise assumptions that
give rise to dimension reduction may not be satisfied by more complicated systems, in
particular those that incorporate noise. In such situations, the results of this paper sug-
gest ways to build good approximate models with high dimension reduction. This is
essential for creating models that are both numerically computable and easily interpret-
able, thanks to the small number of reduced variables. As a proof of concept, we pre-
sent an example of a model with noise, for which we prove that the solution is close to
a small-noise expansion that exhibits dimension reduction.
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Austin, TX 78712.
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The study of MFGs goes back to the works of Lasry and Lions [2–4] and Huang,
Malham!e, and Caines [5], and, since then, the field has received a great deal of atten-
tion. The models arising in MFG describe differential games between a very large num-
ber of indistinguishable players, or agents. When the games are in a Nash equilibrium
and the number of agents approaches infinity, the model can be described by a system
of two equations: a backward Hamilton-Jacobi-Bellman equation, whose solution is the
value function of a representative player; and a forward Fokker-Planck equation that
describes the evolution of the population. The MFGs system can be reformulated in
terms of the master equation introduced by Lasry and Lions [6], which is a single equa-
tion for the value function that is set on an infinite dimensional space of measures. The
merit of this equation is that it can take into account a variety of extensions and more
complex models that the forward-backward system fails to encompass. In addition, it is
a natural tool to study the infinite-player limit in many situations, including in the pres-
ence of common noise. For more details, see Carmona and Delarue [7] and the book of
Cardaliaguet et al. [8]. Alternatively to the PDE approach, MFGs have also been exten-
sively studied from the probabilistic point of view; for a thorough treatment, see the
books of Carmona and Delarue [9, 10].

1.1. Outline of the paper

For most of the situations considered in this paper, we identify general algebraic condi-
tions that result in a dimension-reduced problem. Such conditions are supported with
simple, but representative, examples. The reduced problem can generally be seen to
admit a classical solution, which then leads to a solution of the original problem. This
is done for a finite state space in Section 2, and for a continuous state space in Section
3. In both sections, both the master equation and the forward-backward system are con-
sidered. In Section 4, we study a forward backward system with strong coupling, and
we present a reduced system that consists of a standard forward-backward system
coupled with an ordinary differential equation, which admits an existence result.
Finally, in Section 5, we return to the finite state space setting and incorporate a small
common noise term, and we justify a formal small noise expansion.

1.2. Notation

The adjoint of a linear map A : Rm ! Rm is denoted by A!, and its trace and deter-
minant, respectively, by tr A and det A: The Euclidean inner product on x, y 2 Rm is
denoted by hx, yi:
We set

P ¼ PðRdÞ :¼ m : m is a positive Borel measure on Rd and
ð

Rd
mðdxÞ ¼ 1

" #
,

and, for q % 1,

Pq ¼ PqðRdÞ :¼ m 2 P :

ð

Rd
jxjqmðdxÞ < 1

" #
:
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The convex set Pq is equipped with the q-Wasserstein distance, which, for m1,m2 2
Pq, is given by

dqðm1,m2Þ :¼ inf
c2Pðm1,m2Þ

ð ð

Rd&Rd
jx ' yjqcðdxdyÞ

$ %1=q

,

where Pðm1,m2Þ is the set of Borel probability measures on Rd & Rd such that cðA&
RdÞ ¼ m1ðAÞ and cðRd & BÞ ¼ m2ðBÞ for any Borel subsets A and B of Rd:
Given x 2 Rd, dx 2 P denotes the Dirac delta measure centered at x. For m 2 PðRdÞ

and a Borel measurable map f : Rd ! Rn, f]m 2 PðRnÞ is the measure defined, for
Borel A ( Rn, by

f]mðAÞ :¼ mðf'1ðAÞÞ:

2. Finite state space

We first consider games for which there is a finite number N of discrete states, labeled
with the index set f1, 2, :::,Ng: The variables xi or Xi below represent the concentration
of players in the state i, while Ui denotes the value function of a typical player in state
i. We note also that the equations we consider here take the same form as those that
arise in later sections as dimension-reduced problems of some continuous-state
MFGs models.
We emphasize that the equations studied below are slightly more general that those

arising in MFG situations. For more details, see, for instance, [6, 11, 12].

2.1. The general set-up and the master equation

In the finite state space case, the master equation is a non-conservative, hyperbolic
N&N system of equations given, for some smooth F : RN & RN ! RN , G : RN &
RN ! RN , and U0 : RN ! RN , by

@tU þ Fðx,UÞ *rx½ ,U ¼ Gðx,UÞ in RN & ð0,T,, Uð0, *Þ ¼ U0 in RN , (2.1)

or, coordinate by coordinate, for each i ¼ 1, 2, :::,N,

@tUi þ
XN

j¼1

Fjðx,UÞ@xjUi ¼ Giðx,UÞ:

We will consider different regimes of well-posedness for the equation (2.1). First, the
smoothness of F, G, and U0 are enough to ensure that a unique classical solution of
(2.1) exists for a sufficiently small time horizon T> 0. This is constructed with the
method of characteristics, as discussed in the next sub-section.
In order for a unique global solution to exist for arbitrary T> 0, further structural

properties are required, which we take here to be monotonicity.
We say a map A : RM ! RM is monotone if

hAðxÞ ' AðyÞ, x ' yi % 0 for all x, y 2 RM , (2.2)

and is strictly monotone if
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hAðxÞ ' AðyÞ, x ' yi > 0 for all x, y 2 RM with x 6¼ y: (2.3)

We will assume that

ðG, FÞ : R2N ! R2N and U0 : RN ! RN are monotone, and
either F or G is strictly monotone:

"
(2.4)

2.2. The reduction

A reduction in dimension will be observed if the various data depend on the distribu-
tion x of players only through n reduced quantities, for some integer n<N. We repre-
sent this with a map L satisfying

L : RN ! Rn is linear and surjective: (2.5)

We denote by L! the adjoint of L. A consequence of the surjectivity of L is that

L! : Rn ! RN is injective: (2.6)

We will consider two types of “reduced” nonlinearities. First, a map A : RN ! RN is
said to completely reduce to ~A : Rn ! Rn if

AðxÞ ¼ L!~AðLxÞ for all x 2 RN : (2.7)

That is, A depends on x only through Lx, and, moreover, Ax is perpendicular to the
fibers of L, since

hAðxÞ, x0i ¼ h~AðLxÞ, Lx0i ¼ 0 for all x0 with Lx0 ¼ 0:

We say a map A : RN ! RN fiber-reduces to ~A : Rn ! Rn if

LAðxÞ ¼ ~AðLxÞ for all x 2 RN : (2.8)

Geometrically, A maps fibers of L to fibers of L. That is, (2.8) is equivalent to requir-
ing that, if Lx1 ¼ Lx2, then LAðx1Þ ¼ LAðx2Þ:
We remark that both concepts of reduction depend on the map L, which remains

fixed throughout this section.
We shall assume that

ðx 7!Gðx,UÞÞ and U0 completely reduce for each fixed U 2 RN , and
ðx 7! Fðx,UÞÞ fiber–reduces for each fixed U 2 RN :

"
(2.9)

With a slight relabeling, this means that there exist ~F : Rn & Rn ! Rn, ~G : Rn &
Rn ! Rn, and ~U 0 : Rn ! Rn such that, for all x 2 RN and u 2 Rn,

Gðx, L!uÞ ¼ L!~GðLx, uÞ, LFðx, L!uÞ ¼ ~FðLx, uÞ, and U0ðxÞ ¼ L! ~U 0ðLxÞ: (2.10)

This leads, formally, to the n& n system

@t ~U þ ~Fðy, ~UÞ *ry

h i
~U ¼ ~Gðy, ~UÞ in Rn & ð0,T,, ~Uð0, *Þ ¼ ~U 0: (2.11)

Theorem 2.1. Assume, for some L satisfying (2.5), that F, G, and U0 satisfy (2.4) and
(2.11). Then
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ð~G, ~FÞ : R2n ! R2n and ~U 0 : Rn ! Rn are monotone (2.12)

and, moreover, there exist unique classical solutions U and ~U of respectively (2.1) and
(2.11), which are related by

Uðt, xÞ ¼ L! ~Uðt, LxÞ: (2.13)

Proof. Assume U0 is monotone. Then, for all x, y 2 RN ,

0 - hU0ðxÞ ' U0ðyÞ, x ' yi ¼ hL!ð~U 0ðLxÞ ' ~U 0ðLyÞÞ, x ' yi

¼ h~U 0ðLxÞ ' ~U 0ðLyÞ, Lx ' Lyi:

The monotonicity of ~U 0 then follows from the surjectivity of L.
Now assume that (G, F) is monotone and let ðx1, u1Þ, ðx2, u2Þ 2 Rn & Rn: Then there

exist X1,X2 2 RN such that LXj ¼ xj, j¼ 1, 2. We then compute

h~Gðx1, u1Þ ' ~Gðx2, u2Þ, x1 ' x2iþ h~Fðx1, u1Þ ' ~Fðx2, u2Þ, u1 ' u2i
¼ h~GðLX1, u1Þ ' ~GðLX2, u2Þ, LðX1 ' X2Þiþ h~FðLX1, u1Þ ' ~FðLX2, u2Þ, u1 ' u2i
¼ hGðX1, L!u1Þ ' GðX1, L!u2Þ,X1 ' X2iþ hFðX1, L!u1Þ ' FðX2, L!u2Þ, L!u1 ' L!u2i % 0:

The existence and uniqueness of solutions to both equations is now standard (see
[6]), and the formula (2.13) can be verified with a simple calculation. w

2.3. The system of characteristics

The system of characteristics associated to (2.1) is

_X ¼ FðX,VÞ, Xð0Þ ¼ x
_V ¼ GðX,VÞ, Vð0Þ ¼ U0ðxÞ,

"
(2.14)

which, of course, is analogous to the mean-field games forward-backward system (here
written only in forward form for simplicity). The relation to (2.1) is through the impli-
cit formula

Uðt,XðtÞÞ ¼ VðtÞ for t 2 0,T½ ,:

The local well-posedness of (2.1) is a consequence of the fact that, for sufficiently
small T> 0, x 7!Xðx, tÞ is invertible for all t 2 ½0,T,, while a simple computation shows
that X is invertible for all t> 0 if (G, F) is monotone.
We now discuss the consequences of the reducibility assumptions for G and F on (2.14).

First, since F fiber-reduces, we find that, if x1 and x2 belong to the same fiber of L, then,
for all t 2 ½0,T,, Xðt, x1Þ and Xðt, x2Þ also belong to the same fiber of L; that is, the equa-
tion for X can be interpreted as an evolution of fibers of L.
On the other hand, the fact thatG completely reduces means that the evolution of V depends

only on the fiber ofX. Moreover,V does not have anymotion tangential to the fibers of L.
Mathematically, the above remarks mean that the system

_~X ¼ ~Fð~X , ~V Þ, ~Xð0Þ ¼ x
_~V ¼ ~Gð~X , ~V Þ, ~V ð0Þ ¼ ~U 0ðxÞ

(

(2.15)
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is related to (2.14) by

~XðtÞ ¼ LXðtÞ and VðtÞ ¼ L! ~V ðtÞ:

3. Continuous state space

3.1. The master equation

For a given H : Rd & P & Rd ! R and G : Rd & P ! R, we study the master equation

' @U
@t

þHðx,m,DxUÞ þ
ð

Rd
DmUðt, x,m, yÞ * DpHðy,m,DyUðt, y,mÞÞmðdyÞ ¼ 0

UðT, x,mÞ ¼ Gðx,mÞ in Rd & P:

8
>>><

>>>:

(3.1)

The analogue of the linear map L from the previous section is given, for some / :
Rd ! Rm, by

P!m 7!
ð

Rd
/ðyÞmðdyÞ 2 Rm:

Let us assume that

/ 2 C1ðRd,RmÞ, j/ðxÞj - Cð1þ jxjKÞ for all x 2 Rd and some C > 0 and K > 0, and

@C ( /ðRdÞ, where

C :¼ z 2 Rm : z ¼
Ð
Rd/ðxÞmðdxÞ for some m 2 PK

' (
:

8
>><

>>:

(3.2)

We note that (3.2) implies that the convex set C is closed, since, for any x 2 Rd,

/ðxÞ ¼
ð

Rd
/ðyÞdxðdyÞ 2 C:

We impose the following algebraic conditions that reflect the fact that the dependence
of (3.1) on the measure variable m is felt only through the quantity

Ð
/dm :

there exists h : C & Rm ! Rm such that
Hðx,m,D/ðxÞ * wÞ ¼ /ðxÞ * h

Ð
Rd/ðyÞmðdyÞ,w

) *
for all ðx,m,wÞ 2 Rd & PK & Rm,

"

(3.3)

and

for some g : C ! Rm and for all ðx,mÞ 2 Rd & PK ,
Gðx,mÞ ¼ /ðxÞ * g

Ð
Rd/ðyÞmðdyÞ

) *
:

(

(3.4)

The dimension-reduced problem is then given, for some f : @C & ½0,TÞ ! Rm, by the
following boundary-terminal-value problem

706 J.-M. LASRY ET AL.



'@tuþ hðz, uÞ þ z * @uhðz, uÞ@zu ¼ 0 in ½0,TÞ & C,
uðT, zÞ ¼ gðzÞ in C, and

uðt, zÞ ¼ f ðt, zÞ on @C & ½0,TÞ:

8
><

>:
(3.5)

We now impose conditions on g and h, which are related to monotonicity, that make
(3.5), and, hence, (3.1), into a well-posed problem. The conditions on the boundary
value f will be much more restrictive, and, in fact, (3.5) is well-posed for only one
choice of f.
We assume that

ðz, uÞ7!ð'hðz, uÞ, z * huðz, uÞÞ is monotone, (3.6)

and

g is strictly monotone in C: (3.7)

Theorem 3.1. Assume (3.2), (3.3), (3.4), (3.6), and (3.7). Then there exists a unique f 2
C1ð@C & ½0,T,Þ such that (3.5) admits a unique classical solution u. Moreover, the for-
mula

Uðt, x,mÞ ¼ /ðxÞu t,
ð

Td
/ðyÞmðdyÞ

$ %
for ðt, x,mÞ 2 0,T½ , & Rd & PK (3.8)

defines a classical solution of (3.1).

Proof. A simple consequence of (3.3) is

D/ðxÞ * DpHðx,m,D/ðxÞwÞ ¼ /ðxÞ@wh
ð

Rd
/ðyÞmðdyÞ,w

$ %
for all ðx,m,wÞ

2 Rd & PK & R:

The unique solution of (3.5) is constructed using the method of characteristics, which
is the system of ordinary differential equations given, for some fixed z 2 C, by

_Z ¼ 'ZhuðZ,UÞ, ZðT, zÞ ¼ z,
_U ¼ hðZ,UÞ, UðT, zÞ ¼ gðzÞ:

"
(3.9)

As can be checked, the assumptions (3.6) and (3.7) imply that the map z 7!Zðz, tÞ is
strictly monotone for each t 2 ½0,T,:
We next claim that, if z 2 @C, then Zðz, tÞ ( @C for all t 2 ½0,T,: To see this, let

x0 2 Rd be such that /ðx0Þ ¼ z: Then (3.3) implies that

Hðx0, dx0 ,D/ðx0Þ * vÞ ¼ z * hðz, vÞ for all v 2 Rm:

Let n be the normal vector to @C at z and let t 2 R: Then D/ðx0Þ * n ¼ 0, so, setting
v ¼ uþ tn for some u 2 Rm,

Hðx0, dx0 ,D/ðx0Þ * uÞ ¼ z * hðz, uþ tnÞ:

Differentiating in t and setting t¼ 0 yields

z * huðz, uÞ * n ¼ 0:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 707



In particular, this implies that _Z is tangential to @C whenever Z 2 @C, which yields
the claim.
From this and the monotonicity of Z, it follows that Zð*, tÞ : C ! C is invertible, and

therefore we can implicitly define

uðt,Zðt, zÞÞ ¼ Uðt, zÞ for ðt, zÞ 2 0,T½ , & C,

which is then the unique classical solution of (3.5), as long as

@tf ðt, zÞ ¼ hðz, f ðt, zÞÞ for ðt, zÞ 2 0,T½ , & @C and f ðT, zÞ ¼ gðzÞ:

The fact that (3.8) defines a classical solution of (3.1) follows by calculation. w

3.2. The forward-backward system

The forward-backward associated to (3.1) is

'ut þ Hðx,m,DuÞ ¼ 0, uðT, *Þ ¼ Gð*,mðTÞÞ
mt ' divðmDpHðx,m,DuÞÞ ¼ 0, mð0Þ ¼ m0,

"
(3.10)

and the reduced version of (3.10) is the system of ordinary differential equations

' _w þ hðz,wÞ ¼ 0, wðTÞ ¼ gðzðTÞÞ
_z þ z * huðz,wÞ ¼ 0, zð0Þ ¼ z0:

(

(3.11)

We note that this system shares a connection with (3.9), but (3.11) is given in a for-
ward-backward form.
The following result is immediate.

Theorem 3.2. Assume (3.2), (3.3), (3.4), (3.6), and (3.7). Then (3.11) has a unique solu-
tion ðw, zÞ : ½0,T, ! R& C for every z0 2 C. Moreover, if uðt, xÞ ¼ /ðxÞ * wðtÞ and m is
the solution of

mt ' div mDpHðx,m,DuÞ
+ ,

¼ 0 in Rd & ð0,T, and mð*, 0Þ ¼ m0,

then (u, m) is a solution of (3.10), and

zðtÞ ¼
ð

Rd
/ðyÞmðy, tÞdy:

3.3. Examples

We present here some examples to which the theory of the previous results can be
applied. In these, / will have a power-like structure.
We first look at a one-dimensional example; that is, m¼ 1. Define, for some func-

tions a : ½0,1Þ ! ½0,1Þ, b : ½0,1Þ ! R, and c : ½0,1Þ ! R, and some q % 2,

Hðx,m, pÞ ¼ 1
q0

1
q
aðzÞjpjq þ bðzÞðp * xÞ þ cðzÞjxjq0

- .
for z ¼ 1

q0

ð

Td
jyjq0mðdyÞ:
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Then (3.2) and (3.3) hold with

/ðyÞ ¼ 1
q0
jyjq0 and hðz, uÞ ¼ 1

q
aðzÞjujq þ bðzÞuþ cðzÞ:

Note that, in this example, C ¼ ½0,1Þ:
It remains to check (3.6), which, when m¼ 1, is equivalent to

@h
@z

- 0,
@2h
@u2

% 0, and z
@2h
@u@z

$ %2

- '4
@h
@z

@2h
@u2

: (3.12)

It can be seen from some tedious but straightforward calculations that (3.12) holds if
and only if

a > 0, a0 - 0, c0 - 0, z 7!aðzÞz
4ðq'1Þ

q is nondecreasing,

b is constant if q > 2, and

b0ðzÞ2 - 2a0ðzÞc0ðzÞ if q ¼ 2:

8
><

>:
(3.13)

We remark that one can also come up with sufficient conditions on a, b, and c to
make (3.12) hold in the case where q< 2 (of course, a and b constant and c nonincreas-
ing always works), but deriving the necessary conditions is considerably harder.
We now consider some quadratic type examples, allowing for m> 1. For simplicity of

presentation, we take d¼ 1, although the idea can be generalized to higher dimensions.
We set

Hðx,m, pÞ ¼ 1
2
p2 ' f0ðzÞ ' xf1ðzÞ '

x2

2
f2ðzÞ where z ¼ ðz1, z2Þ ¼

ð

R
y,

y2

2

$ %
mðdyÞ,

and then (3.2) and (3.3) hold with

/ðyÞ ¼ 1, y,
y2

2

$ %
and hðz, uÞ ¼ 1

2
u21 ' f0ðzÞ, u1u2 ' f1ðzÞ, u22 ' f2ðzÞ

$ %
:

Here, u ¼ ðu0, u1, u2Þ ( R3 and z ¼ ðz0, z1, z2Þ belongs to the set

C ¼ f1g& ðz1, z2Þ :
1
2
z21 - z2

" #
:

We claim that h satisfies (3.6) as long as f is monotone. Indeed, for ðz, uÞ, ð~z , ~uÞ 2
C & R3, we compute

' hðz, uÞ ' hð~z, ~uÞð Þ þ z * huðz, uÞ ' ~z * huð~z, ~uÞð Þ ¼ hf ðzÞ ' f ð~zÞ, z ' ~zi

þ 1
2
ðu1 ' ~u1Þ2ðz0 þ ~z0Þ þ

1
2
ðu1 ' ~u1Þðu2 ' ~u2Þðz1 þ ~z1Þ þ ðu2 ' ~u2Þ2ðz2 þ ~z2Þ

% 3
4
ðu1 ' ~u1Þ2 þ

1
8

2z1ðu2 ' ~u2Þ þ u1 ' ~u1ð Þ2 þ 1
8

2~z1ðu2 ' ~u2Þ þ u1 ' ~u1ð Þ2 % 0,

where we have used the fact that z0 ¼ ~z0 ¼ 1, z2 % z21=2, and ~z2 % ~z21=2:
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4. Strongly coupled MFGs

We now turn to mean-field games systems with strong coupling, in which the mean
field interactions of the infinitesimal players depend not only on their empirical distri-
bution, but also on the distribution of the controls.
More precisely, we study systems of the form

' @u
@t

þHðx,Du,m, lÞ ¼ 0 in Rd & 0,T½ ,, uð*,TÞ ¼ Fðx,mð*,TÞÞ
@m
@t

' div DpHðx,Du,m, lÞm
+ ,

¼ 0 in Rd & 0,T½ ,, mð*, 0Þ ¼ m0,

l :¼ Id, ' DpHðx,Du,mÞ
) *

]
m,

8
>>>><

>>>>:

(4.1)

the third condition meaning that, for a bounded continuous function W : Rd & Rd,
ð

Rd&Rd
Wðx, vÞ dlðx, vÞ ¼

ð

Rd
Wðx, ' DpHðx,DutðxÞ,mtÞÞmðdxÞ:

Such systems, which are also known in the literature as “mean field games of con-
trols,” “extended mean field games,” or “mean field games with interacting controls,”
are very natural from the standpoint of applications, see for instance [1]. For various
existence and uniqueness results, see, for instance, [12–16].

4.1. A reduced system

We now demonstrate that, with some structural assumptions on the Hamiltonian that can be
readily verified in some applications, the system (4.1) reduces to a simpler one in which the
evolution of l is reduced to an ordinary differential equation. We present the formal structural
computations here, and in the next subsection we present a simple existence result.
For H : Rd & Rd & Rm ! R, G : Rd & P ! R, m0 2 P, and U : ½0,T, & Rd & Rd !

Rm, we consider the system

' @u
@t

þ Hðx,Du,/Þ ¼ 0 in Rd & 0,T½ ,, uðT, *Þ ¼ Gðx,mðT, *ÞÞ,
@m
@t

' div DpHðx,Du,/Þm
+ ,

¼ 0 in Rd & 0,T½ ,, mð0, *Þ ¼ m0,

/ðtÞ :¼
Ð
RdUðt, y,Duðt, yÞÞmtðdyÞ:

8
>>>><

>>>>:

(4.2)

Note that, if H is strictly convex in p, then p 7!DpHð*, p, *Þ is invertible, so that / is
indeed some functional of l.
The main structural assumption we make is that

there exist A 2 Cð 0,T½ , & Rm,Rm&mÞ and B 2 Cð 0,T½ , & Rm,RmÞ such that,

for all ðt, x, p,/Þ 2 0,T½ , & Rd & Rd & Rm,
@U
@t

ðt, x, pÞ ' DpHðx, p,/Þ * DxUðt, x, pÞ þ DxHðx, p,/Þ * DpUðt, x, pÞ

þ Aðt,/ÞUðt, x, pÞ þ Bðt,/Þ ¼ 0:

8
>>>>><

>>>>>:

(4.3)
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Define f : ½0,T, & Rm ! Rm by

f ðt,/Þ :¼ Aðt,/Þ/þ Bðt,/Þ for ðt,/Þ 2 0,T½ , & Rm (4.4)

and g : P ! Rm by

gðmÞ ¼
ð

Rd
UðT, y,DyGðy,mÞÞmðdyÞ for all m 2 P: (4.5)

We now introduce a reduced system, which is nothing more than a “standard”
mean-field games system coupled with an ordinary differential equation:

' @u
@t

þHðx,Du,/Þ ¼ 0 in Rd & 0,T½ ,, uðT, *Þ ¼ Gðx,mð*,TÞÞ
@m
@t

' div DpHðx,Du,/Þm
+ ,

¼ 0 in Rd & 0,T½ ,, mð0, *Þ ¼ m0,

' _/ðtÞ ¼ f ðt,/ðtÞÞ, /ðTÞ ¼ gðmð*,TÞÞ:

8
>>>><

>>>>:

(4.6)

Proposition 4.1. Assume (4.3). Then the triple ðu,m,/Þ is a classical solution of (4.2) if
and only if it is a classical solution of (4.6).

Proof. If ðu,m,/Þ solves (4.2), then a straightforward calculation and (4.3) imply that /
solves the equation in (4.6). Conversely, assume that ðu,m,/Þ solves (4.6) and set

wðtÞ :¼
ð

Rd
Uðt, y,Duðt, yÞÞmðt, yÞdy:

Then both / and w solve the terminal value problem

' _XðtÞ ¼ aðtÞXðtÞ þ bðtÞ, XðTÞ ¼ gðmðT, *ÞÞ,

where

aðtÞ :¼ Aðt,/ðtÞÞ and bðtÞ :¼ Bðt,/ðtÞÞ for t 2 0,T½ ,,

from which we conclude that / ¼ w, and therefore ðu,m,/Þ solves (4.2). w

4.2. Existence of solutions

We demonstrate the existence of a solution of (4.6), which, by virtue of Proposition 4.1,
gives rise to a solution of (4.2).
Based on examples that we discuss later, the growth estimates for the various data

will be in terms of some powers

q > 1, r % q, and c :¼ r
q' 1

% q0: (4.7)

We shall assume

there exists C > 0 such that, for allðt, y, pÞ 2 0,T½ , & Rd & Rd,

jUðt, y, pÞj - Cð1þ jpjrÞ, jDpUðt, y, pÞj - Cð1þ jpjr'1Þ, and

jDxUðt, y, pÞj - Cð1þ jpjr'qþ1Þ,

8
>><

>>:
(4.8)

m0 2 Pk for some k > c, (4.9)
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H 2 C1, 1ðRd & Rd & RmÞ is convex in the gradient variable,

for some C > 0 and for all ðp, x,/Þ 2 Rd & Rd & Rm,

jHðp, xÞjþ jDxHðx, p,/Þj - Cð1þ jpjqÞ, jDpHðx, p,/Þj - Cð1þ jpjq'1Þ,
D2

xxHðx, p,/Þ - 0, and jD2
pxHðx, p,/Þj - C,

8
>>>>><

>>>>>:

(4.10)

for all m 2 Pc,Gð*,mÞ 2 C1, 1ðRdÞ is convex, and, for all x 2 Rd and some C > 0,

jGðx,mÞj - Cð1þ jxjq0Þ, jDxGðx,mÞj - Cð1þ jxjq
0'1Þ, and jD2

xGðx,mÞj - Cð1þ jxjÞq
0'2,

(
(4.11)

and

there exists a modulus x : ½0,1Þ ! ½0,1Þ such that, for all m1,m2 2 Pc,

jGðx,m1Þ ' Gðx,m2Þjþ jDxGðx,m1Þ ' DxGðx,m2Þj - Cð1þ jxjq0Þxðdcðm1,m2ÞÞ:

"

(4.12)

With regards to the coefficients A and B from (4.3), we will need to assume

sup
t2 0,T½ ,

kAðt, *ÞkC0, 1ðRdÞ þ kBðt, *ÞkC0, 1ðRdÞ

/ 0
< 1: (4.13)

We first present, without proof, some standard results on the solvability of the
Hamilton-Jacobi, continuity, and ordinary differential equations.

Lemma 4.1.
a. Assume that H satisfies (4.10), / 2 C1ð½0,T,Þ, and ~G 2 C1, 1ðRdÞ satisfies, for

some constant C > 0 and all (almost all for the last inequality) x 2 Rd,

j~GðxÞj - Cð1þ jxjq0Þ, jDx~GðxÞj - Cð1þ jxjq0'1Þ,

and jD2
x
~GðxÞj - Cð1þ jxjÞq0'2:

Then there exists a unique solution u 2 C1, 1ðRd & ½0,T,Þ of the terminal value prob-
lem

'ut þHðx,Du,/Þ ¼ 0 in Rd & 0,TÞ and uðT, *Þ ¼ ~G on Rd
+

which, for some C> 0 depending on the bounds in (4.10) and the bounds for ~G, sat-
isfies the bounds

sup
ðt, xÞ2 0,T½ ,&Rd

juðt, xÞj
1þ jxjq0

þ jDuðt, xÞj
1þ jxjq0'1 þ

D2uðxÞ
ð1þ jxjÞq0'2

 !
- C and D2uðt, xÞ % 0:

(4.14)

b. Assume that m0 satisfies (4.9) and b 2 Cð½0,T,,C1ðRdÞÞ satisfies

sup
t2 0,T½ ,

jbðt, xÞj
1þ jxj

þ jDxbðt, xÞj
$ %

< 1:

Then there exists a unique classical solution of the continuity equation

@m
@t

' div bðt, xÞm½ , ¼ 0 in Rd & ð0,T, and mð0, *Þ ¼ m0 in Rd,

which, for some C> 0 depending on
Ð
Rd jxjkm0ðdxÞ and the bounds for b, satisfies
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maxt2 0,T½ ,

ð

Rd
jxjkmtðdxÞ - C: (4.15)

c. Assume (4.13), let f be defined by (4.4), and let ~g 2 R. Then there exists a unique
solution of

' _/ðtÞ ¼ f ðt,/ðtÞÞ for t 2 0,TÞ and /ðTÞ ¼ ~g
+

and, for some constant C> 0 depending only on the bound for (4.13),

max
t2 0,T½ ,

j/ðtÞj - Cj~g j:

The next result gives a quantitative estimate for the modulus of continuity of the func-
tion g defined by (4.5).

Lemma 4.2. Assume that g is given by (4.5). Then, for some constant C> 0 depending
only on the bounds for G and U in (4.8), (4.11), and (4.12),

gðm1Þ ' gðm2Þj j - C 1þ
ð

Rd
jxjcðm1ðxÞ þm2ðxÞÞdx

$ %
xðdcðm1,m2ÞÞ

for all m1,m2 2 Pc,

where x is the modulus from (4.12).

In the proof below, the constant C> 0, which depends only on the bounds in the
given assumptions, may change from line to line.

Proof of Lemma 4.2. We first write

gðm1Þ ' gðm2Þ ¼ Iþ II,

where

I :¼
ð

Rd
UðT, y,DyGðy,m1ÞÞðm1ðyÞ 'm2ðyÞÞdy

and

II :¼
ð

Rd
UðT, y,DyGðy,m1ÞÞ ' UðT, y,DyGðy,m2ÞÞ
) *

m2ðyÞdy:

We then fix p 2 Pðm1,m2Þ and estimate

jIj -
ð

Rd
UðT, x,DyGðx,m1ÞÞm1ðxÞdx'

ð

Rd
UðT, y,DyGðy,m1ÞÞm2ðyÞdy

1111

1111

-
ð ð

Rd&Rd
jUðT, x,DyGðx,m1ÞÞ ' UðT, y,DyGðy,m1ÞÞjpðdxdyÞ

- C
ð ð

Rd&Rd
ð1þ jDxGðx,m1Þjr'qþ1 þ jDyGðy,m1Þjr'qþ1Þjx ' yjpðdxdyÞ

þ C
ð ð

Rd&Rd
ð1þ jDxGðx,m1Þjr'1 þ jDyGðy,m1Þjr'1ÞjDxGðx,m1Þ ' DyGðy,m1jpðdxdyÞ

- C
ð ð

Rd&Rd
ð1þ jxjc'1 þ jyjc'1Þjx ' yjpðdxdyÞ

- C 1þ
ð

Rd
jxjcm1ðdxÞ þ

ð

Rd
jyjcm2ðdyÞ

$ %c'1
c

ð

Rd&Rd
jx' yjcpðdxdyÞ

$ %1=c

,
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so that taking the infimum over p 2 Pðm1,m2Þ gives

jIj - C 1þ
ð

Rd
jxjcm1ðdxÞ þ

ð

Rd
jyjcm2ðdyÞ

$ %c'1
c

dcðm1,m2Þ:

The estimate is complete upon computing

IIj j - C
ð

Rd
ð1þ jDyFðy,m1Þjr'1 þ jDyFðy,m2Þjr'1ÞjDyFðy,m1Þ ' DyFðy,m2Þjm2ðdyÞ

- C
ð

Rd
ð1þ jyjcÞm2ðdyÞxðdcðm1,m2ÞÞ:

w

We now introduce the fixed point problem that will yield a solution of (4.6). We define
a map T : Pc ! Pc in two steps as follows. First, given #m 2 Pc, we solve the two ter-
minal value problems

' @u
@t

þHðx,Du,/Þ ¼ 0 in Rd & 0,T½ ,, uðT, *Þ ¼ Gðx, #mÞ

' _/ðtÞ ¼ f ðt,/ðtÞÞ in Rd & 0,T½ ,, /ðTÞ ¼ gð#mÞ:

8
<

: (4.16)

More precisely, the ordinary differential equation is solved first, and its solution / is
then fed into the Hamilton-Jacobi equation. We then solve the continuity equation

@m
@t

' div DpHðx,Du,/Þm
+ ,

¼ 0, mð*, 0Þ ¼ m0, (4.17)

and we set T #m :¼ mðTÞ:
Let us first check that this map is well-defined.

Lemma 4.3. Assume (4.7) - (4.13). Then the map T defined through (4.16) and (4.17) is
well-defined and continuous from Pc to Pk, and, moreover, there exists a constant C> 0
depending only on the various bounds in (4.7) - (4.13) such that, for all m 2 Pc,

ð

Rd
jxjkðT mÞðdxÞ - C: (4.18)

Proof. Lemma 4.1(c) implies that the ordinary differential equation in (4.16) has a
unique, continuously differentiable solution. Then, by (4.11) and Lemma 4.1(a), the
Hamilton-Jacobi equation has a unique classical u satisfying (4.14).
Now set

bðt, xÞ :¼ DpHðx,Duðt, xÞ,/ðtÞÞ for ðt, xÞ 2 0,T½ , & Rd:

Then, by (4.10) and (4.14),

jbðt, xÞj - C 1þ jDuðt, xÞjq'1
) *

- Cð1þ jxjÞ

and

Dxbðt, xÞ ¼ DpxHðx,Duðt, xÞ,/ðtÞÞ þ D2
ppHðx,Duðt, xÞ,/ðtÞÞD2uðt, xÞ,

and so
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jDxbðt, xÞj - C:

Then Lemma 4.1(b) implies that (4.17) admits a unique classical solution with mðtÞ 2
Pk for all t 2 ½0,T,, and, moreover, the bound in (4.18) is satisfied.
We now turn to the continuity of the map T : Let ð#mnÞNn¼1 ( Pc and #m 2 Pc be such

that

lim
n!1

dcð#mn, #mÞ ¼ 0:

For n 2 N, let ðun,/nÞ and ðu,/Þ be the solutions of (4.16) corresponding to respect-
ively #mn and #m, and let mn and m be the corresponding solutions of (4.17).
In view of the fact that

sup
n2N

ð

Rd
jxjc #mnðdxÞ < 1,

we have, by Lemma 4.2,

lim
n!1

gð#mnÞ ¼ gð#mÞ:

Also, (4.12) implies that, as n ! 1, Gð*, #mnÞ and DxGð*, #mnÞ converge locally uni-
formly to respectively Gð*, #mÞ and DxGð*, #mÞ: Therefore, we also have that, as n ! 1,
un and Dun converge locally uniformly to respectively u and Du, as can be seen from
the method of characteristics.
As a consequence, we see that, as n ! 1, the vector field bn defined by

bnðt, xÞ :¼ DpHðx,Dunðt, xÞ,/nÞ for ðt, xÞ 2 0,T½ , & Rd

converges locally uniformly to b :¼ DpHð*,Du,/Þ: Also, by (4.14) and Lemma 4.1(b),
we have that ðmnÞ1n¼1 is uniformly bounded in Cð½0,T,,PkÞ, and is therefore relatively
compact in the weak-! topology. The result then follows upon showing that the only
weak-! limit point of ðmnÞ1n¼1 is m. Indeed, given q 2 C1ð½0,T, & RdÞ with compact
support, we have, for all t 2 ½0,T,,

ð

Rd
qðt, xÞmnðtÞðdxÞ ¼

ð

Rd
qð0, xÞm0ðdxÞ

þ
ðt

0

ð

Rd
@tqðs, xÞ ' bnðs, xÞ * Dxqðs, xÞ½ ,mnðsÞðdxÞ,

and so every limit point of mn is a weak solution of (4.17), and hence equal to m. w

We now present the existence result.

Theorem 4.1. Assume (4.7)–(4.13).Then there exists a classical solution of (4.6).

Proof. By Lemma 4.3, the map T is continuous from Pc into a bounded subset of Pk:
Since k > c, bounded sets of Pk are precompact in Pc with respect to the dc-metric,
and therefore, by Schauder’s fixed point theorem, T has a fixed point. It is then clear
that the resulting triple ðu,m,/Þ is a classical solution of (4.6). w
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4.3. Examples

We consider a general example in which the dependence of the Hamiltonian on the
measure l is through an affine drift term:

' @u
@t

þ HðDuÞ ' bðx,/Þ * Du ¼ 0 in Rd & 0,T½ ,, uð*,TÞ ¼ Gðx,mÞ
@m
@t

' div ðDHðDuÞ ' bðx,/ÞÞm½ , ¼ 0 in Rd & 0,T½ ,, mð*, 0Þ ¼ m0,

/ðtÞ :¼
Ð
RdUðDuðt, yÞÞmtðdyÞ for t 2 0,T½ ,:

8
>>>><

>>>>:

(4.19)

We assume that

U 2 C1ðRd,RmÞ and, for some matrix A 2 Rm&m,DUðpÞ * p ¼ AUðpÞ for all p

2 Rd,

(4.20)

and we assume that b is affine in x, that is, for some functions a 2 C0, 1ðRm,RÞ and b 2
C0, 1ðRm,RdÞ, F takes the form

bðx,/Þ ¼ að/Þx þ bð/Þ:

A straightforward computation then shows that (4.3) is satisfied with

Aðt,/Þ :¼ að/ÞA and Bðt,/Þ . 0:

If we also assume that G satisfies (4.11) and

H 2 C1, 1ðRdÞ is convex and, for some C > 0,

supp2Rd
jHðpÞj
1þ jpjq

þ jDHðpÞj
1þ jpjq'1

 !
< 1,

8
>><

>>:

then all of the assumptions of Theorem 4.1 are satisfied, and therefore, by Proposition
4.1, there exists a classical solution of (4.19).
With some further structure, the entire system (4.19) reduces to a system of ordinary

differential equations. We consider a single spatial dimension for simplicity, and, for
p> 1, we study the system

'ut þ
1
p0

1
p
juxjp ' xað/Þux

$ %
¼ 0, uðT, xÞ ¼ 1

p0
jxjp0gðzÞ,

mt '
1
p0

m uxjuxjp'2 ' xað/Þ
) *+ ,

x ¼ 0, mð0, xÞ ¼ m0ðxÞ,

zðtÞ ¼ 1
p0

ð

R
jyjp0mðy, tÞdy,

/ðtÞ ¼ 1
q

ð

R
juyðy, tÞjqmðy, tÞdy:

8
>>>>>>>>>>><

>>>>>>>>>>>:

(4.21)

Above, we assume that

g : R ! R is Lipschitz, nonnegative, and nondecreasing, (4.22)

and
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a : R ! R is Lipschitz and bounded: (4.23)

We can reduce by formally setting

uðt, xÞ ¼ 1
p0
jxjp0wðtÞ:

This leads to the system

' _w þ 1
p
jwjp ' að/Þw ¼ 0 wðTÞ ¼ gðzðTÞÞ,

_z þ z wjwjp'2 ' að/Þ
) *

¼ 0 zð0Þ ¼ z0,
_/ þ q

p0
að/Þ/ ¼ 0 /ð0Þ ¼ a0jwð0Þjq,

8
>>>><

>>>>:

(4.24)

where

z0 :¼
1
p0

ð
jyjp0m0ðdyÞ and a0 :¼

1
q

ð
jxjqðp

0'1Þm0ðdxÞ:

The results in the previous sub-section then guarantee the existence of a solution of
(4.24). Notice also that, for some constants 0 < c0 < C0 depending only on bounds for
g, z0, and a0, any solution satisfies

c0 - wðtÞ - C0 and c0 - zðtÞ - C0 for all t 2 0,T½ ,: (4.25)

We finish by looking at the particular case in which p¼ q, and we present a unique-
ness result with an additional assumption.
If p¼ q, then, in fact, for all t 2 ½0,T,,

/ðtÞ ¼ zðtÞjwðtÞjq:

In that case, the solvability of (4.24) reduces to a system involving only z and w,
namely

' _w þ 1
p
jwjp ' aðzjwjpÞw ¼ 0 wðTÞ ¼ gðzðTÞÞ,

_z þ z wjwjp'2 ' aðzjwjpÞ
) *

¼ 0 zð0Þ ¼ z0:

8
<

: (4.26)

We now introduce the assumption that

there exist 0 < d0 < d1, such that
d0 < /1=pa0ð/Þ - d1 for all / > 0:

"
(4.27)

Proposition 4.2. Assume (4.22), (4.23), and (4.27). Then, if d1 > 0 is sufficiently small,
the solution of (4.26) is unique.

Proof. To simplify the notation, let us write, for w, z 2 Rþ,

Aðw, zÞ :¼ 1
p
wp ' a zwp

) *
w and Bðw, zÞ ¼ wp'1 ' aðzwpÞ,

so that (4.26) can be written as
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' _w þ Aðw, zÞ ¼ 0 wðTÞ ¼ gðzðTÞÞ,
_z þ zBðw, zÞ ¼ 0 zð0Þ ¼ z0:

(

(4.28)

Given two solutions ðw1, z1Þ and ðw2, z2Þ of (4.28), define
XðtÞ ¼ ðw1ðtÞ ' w2ðtÞÞðz1ðtÞ ' z2ðtÞÞ for t 2 0,T½ ,:

For s 2 ½0, 1,, define also

ws :¼ sw1 þ ð1' sÞw2 and zs :¼ sz1 þ ð1' sÞz2:

Then

_XðtÞ ¼ Aðw1, z1Þ ' Aðw2, z2Þð Þðz1 ' z2Þ ' ðw1 ' w2Þ z1Bðw1, z1Þ ' z2Bðw2, z2Þð Þ

¼ '
ð1

0
zsBwðws, zsÞdsðw1 ' w2Þ

2

þ
ð1

0
Awðws, zsÞ ' Bðws, zsÞ ' zsBzðws, zsÞ
) *

dsðw1 ' w2Þðz1 ' z2Þ

þ
ð1

0
Azðws, zsÞdsðz1 ' z2Þ2:

We claim that, if d1 in (4.27) is sufficiently small, then, for some constant e0 > 0,

_XðtÞ - 'e0 ðw1ðtÞ ' w2ðtÞÞ
2 þ ðz1ðtÞ ' z2ðtÞÞ2

) *
,

which will follow in turn from the strict negativity of matrix

Mðw, zÞ :¼
'zBwðw, zÞ

1
2

Awðw, zÞ ' Bðw, zÞ ' zBðw, zÞ
) *

1
2

Awðw, zÞ ' Bðw, zÞ ' zBðw, zÞ
) *

Azðw, zÞ

0

B@

1

CA

for all w, z satisfying (4.25). We note that

Azðw, zÞ ¼ 'a0ðzwpÞwpþ1 - 'd0z'1=pwp - 'd0
cp0
C1=p
0

and

zBwðw, zÞ ¼ zwp'2 p' 1' pzwa0ðzwpÞ
+ ,

% zwp'2 p' 1' d1pz1'1=p
h i

% zwp'2 p' 1' C1'1=p
0 pd1

h i
,

and, therefore, tr Mðw, zÞ < 0 as long as

d1 -
p' 1

pC1'1=p
0

:

We also compute

Awðw, zÞ ' Bðw, zÞ ' zBðw, zÞ ¼ 'ðp' 1Þzwpa0ðzwpÞ,

and, hence,
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det Mðw, zÞ ¼ a0ðzwpÞzw2p'1 p' 1' pzwa0ðzwpÞ
+ ,

' ðp' 1Þ2

4
z2w2pa0ðzwpÞ2

¼ a0ðzwpÞzw2p'1 p' 1' pþ ðp' 1Þ2

4

$ %
zwa0ðzwpÞ

- .

% a0ðzwpÞzw2p'1 p' 1' d1 pþ ðp' 1Þ2

4

$ %
z1'1=p

- .

% a0ðzwpÞzw2p'1 p' 1' C1'1=p
0 d1 pþ ðp' 1Þ2

4

$ %- .
:

Further restricting d1 yields

detMðw, zÞ > 0,

and we conclude that the largest eigenvalue Mðw, zÞ is negative and bounded away
from zero.
As a consequence, we find that, using the fact that z1ð0Þ ¼ z2ð0Þ ¼ z0,

gðz1ðTÞÞ ' gðz2ðTÞÞ
) *

ðz1ðTÞ ' z2ðTÞÞ ¼ XðTÞ ' Xð0Þ ¼
ðT

0

_XðtÞdt

- 'e0

ðT

0
ðw1ðtÞ ' w2ðtÞÞ

2 þ ðz1ðtÞ ' z2ðtÞÞ2
) *

dt:

By (4.22), we get w1 ¼ w2 and z1 ¼ z2, as desired. w

5. Small noise expansions

We return to the setting of the generalized master equation in a finite state space as in
Section 2, and add a small noise term, which, in general, breaks the algebraic conditions
that allow for a reduced problem. This motivates comparing the solution of the noisy
MFGs problem to a formal small noise expansion.

5.1. A stability result

For smooth, monotone maps ðG, FÞ : R2N ! R2N and U0 : RN ! RN , an affine map
T : RN ! RN , and k > 0, we consider the equation

@tU þ Fðx,UÞ *rx½ ,U þ k Uðt, xÞ ' T !Uðt, T xÞ
) *

¼ Gðx,UÞ in RN & ð0,T,,

Uð0, *Þ ¼ U0:
(5.1)

This is similar to the equation (2.1) from Section 2. The interpretation of the term
involving T is that, at random times with an exponential law of parameter k, the play-
ers are rearranged by the map T :
The inclusion of the map T as in (5.1) is just one of many ways to model a common

noise effect in finite state space MFGs. Other examples can be found in [12].
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We assume a stricter sort of monotonicity for G; in particular, for some a > 0,

hGðx,UÞ ' Gðy,VÞ, x ' yiþ hFðx,UÞ ' Fðy,VÞ,U ' Vi % ajx' yj2

for all ðx, y,U ,VÞ 2 R4N :
(5.2)

Under the above assumptions, (5.1) has a unique classical solution, and moreover
[11, 12], there exists a constant L0 > 0 depending only on a, T,
kDxFk1, kDxGk1, kDU0k1, kT k, and an upper bound for k such that

sup
t2 0,T½ ,

kDxUðt, *Þk1 - L0: (5.3)

We next suppose that, for some smooth and bounded R : ½0,T, & RN ! RN , V :
½0,T, & RN ! RN satisfies

@tV þ Fðx,VÞ *rx½ ,V þ k Vðt, xÞ ' T !Vðt, T xÞ
) *

¼ Gðx,VÞ þ Rðt, xÞ in RN & ð0,T,,

Vð0, *Þ ¼ U0:

(5.4)

We then have the following result:

Theorem 5.1. Assume (5.2) and that U and V solve respectively (5.1) and (5.4). Then

sup
ðt, xÞ2 0,T½ ,&RN

Uðt, xÞ ' Vðt, xÞj j -
L0T
a

$ %1=2

kRk1:

Proof. Define

Wðt, x, yÞ ¼ hUðt, xÞ ' Vðt, yÞ, x' yi

which satisfies the equation

@tW þ Fðx,UÞ *rxW þ Fðy,VÞ *ryW þ k W 'Wð*, T x, T yÞ
) *

¼ hGðx,UÞ ' Gðy,VÞ, x' yiþ hFðx,UÞ ' Fðy,VÞ,U ' Vi' hRðt, xÞ, x' yi,
Wð0, x, yÞ ¼ hU0ðxÞ ' U0ðyÞ, x ' yi:

8
<

:

(5.5)

In view of (5.2), the right-hand side satisfies

hGðx,UÞ ' Gðy,VÞ, x ' yiþ hFðx,UÞ ' Fðy,VÞ,U ' Vi' hRðt, xÞ, x ' yi

% ajx' yj2 ' kRk1jx ' yj % ' kRk21
4a

:

As a consequence, the maximum principle implies that, for all
ðt, x, yÞ 2 ½0,T, & RN & RN ,

hUðt, xÞ ' Vðt, yÞ, x ' yi % ' kRk21T
4a

:
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Fix d > 0 and n 2 B1, and let x ¼ y þ dn: Then this inequality becomes

hUðt, yþ dnÞ ' Vðt, yÞ, ni % ' kRk21T
4ad

:

Using the Lipschitz bound (5.3), we then have

hUðt, yÞ ' Vðt, yÞ, ni % ' kRk21T
4ad

' L0d,

and so, because n is arbitrary,

kU ' Vk1 - kRk21T
4ad

þ L0d:

The estimate is optimized, and the result proved, upon choosing

d :¼ T
4aL0

$ %1=2

kRk1:

w

5.2. Small noise expansions

We apply the stability estimate from the previous sub-section in order to prove some
small-noise expansion results.
We consider, for some e 2 ð0, 1Þ, the equation

@tUe þ Fðx,UeÞ *rx½ ,Ue þ e Ueðt, xÞ ' T !Ueðt, T xÞ
) *

¼ Gðx,UeÞ in RN & ð0,T,,

Ueð0, *Þ ¼ U0

(5.6)

as well as its deterministic counterpart

@tU þ Fðx,UÞ *rx½ ,U ¼ Gðx,UÞ in RN & ð0,T,, Uð0, *Þ ¼ U0: (5.7)

We also consider the solution V : ½0,T, & RN ! RN of the linearized problem

@tV þ ½Fðx,VÞ *r,U þ ðruFðx,UÞ *rU 'ruGðx,UÞÞV þ U ' T!Uðt,TxÞ ¼ 0 in RN & ½0,T,,
Vð0, xÞ ¼ 0 in RN :

(

(5.8)

Formally, the first-order expansion

Veðt, xÞ :¼ Uðt, xÞ þ eVðt, xÞ

approximates Ue to an error of order better than e, which we make precise with the fol-
lowing result.

Theorem 5.2. There exists a constant C> 0 depending only on a, T, kDFkC2 , kDGkC2 ,
kDU0k1, and kT k such that
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sup
ðt, xÞ2 0,T½ ,&RN

Ueðt, xÞ ' Veðt, xÞj j - Ce2:

Proof. Routine computations reveal that there exists Re : ½0,T, & RN ! RN such that,
for some constant C> 0 depending only on kD2Fk1 and kD2Gk1,

sup
ðt, xÞ2RN

jReðt, xÞj - Ce2

and

@tVe þ ½Fðx,VeÞ *rx,Ve þ eðVeðt, xÞ ' T !Veðt, T xÞÞ ¼ Gðx,VeÞ þ Reðt, xÞ in RN & ð0,T,,
Veð0, *Þ ¼ U0:

"

(5.9)

The result now follows from Theorem 5.1. w

We finish this section by relating the above discussion to the reduction phenomena
observed in Section 2. In particular, it is unreasonable to expect that, if L is the linear
map defined there, then, for some ~T : Rn ! Rn such that

LT ¼ ~TL:

This implies that the noisy map T maps fibers of L to fibers of L, and, in most prac-
tical applications, there is no reason to expect that the source of common noise inter-
acts so well with the reduced quantities. In this case, even though (5.6) does not fully
reduce, Theorem 5.2 gives a way to relate, up to small error, the reduced version of
(5.7) to the solution of (5.6).
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