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Abstract

Rough path analysis is developed in the full Besov scale. This extends, and essentially concludes, an
investigation started by Promel and Trabs (2016) [49], further studied in a series of papers by Liu, Promel
and Teichmann. A new Besov sewing lemma, a real-analysis result of interest in its own right, plays a key
role, and the flexibility in the choice of Besov parameters allows for the treatment of equations not available
in the Holder or variation settings. Important classes of stochastic processes fit in the present framework.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Rough path theory gives meaning to differential equations of the form

Y, = fo(Ypdt + ) fi(YdX], (1.1)

i=1

where X is an n-dimensional path of regularity . When o > 1/2, the equation can be understood
as a Young integral equation, which covers both the «-Holder and p-variation setting, where
p =1/a. When o < 1/2, or p > 2, it was understood by T. Lyons [44] that X needs to be
enhanced with additional information to restore well-posedness of the problem. The resulting
rough path interpretation reads

dY; = fo(Yy)dt + f(Y;)dX, (1.2)

where the object X should be thought of as the original path (X!,..., X") enhanced with
sufficient extra information, typically interpreted as iterated integrals, to regain analytic well-
posedness. The Holder case with o > 1/3 is found e.g. in [19], the general “geometric” case
(that is, the enhanced object X satisfies a first-order calculus) with o > 0, both in the Holder
and variation cases, is found in [25], and previous works by Lyons and coworkers focused on
the continuous p-variation setting.! The non-geometric setting can be analyzed using branched
structures [31], but see also [33] for a reduction to the geometric case.

! The case of discontinuous p-variation rough paths, as required for stochastic processes with jumps, is more recent
[26].
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This work is devoted to Besov rough path analysis, that is, we consider driving signals be-
longing to the Besov space B[S,q with 0 <s <1, 1/s < p <00, and 0 < g < oco. The Holder
and variation settings appear as end-points in a Besov-scale of rough path spaces, as indicated
in Fig. 1, in which regularity s € [0, 1] is plotted against inverse integrability 1/p € [0, 1].
When p = g = o0, Bgo’oo = C¥, the space of s-Holder continuous paths. On the other hand,
we have the embeddings Bll,/ f’ cVPcC B;,/ 2 (see Proposition 2.3 for more precise statements).

For1/p <s < o0, B; q embeds continuously into C* ~U/P and we prove a generalization of this
result to paths taking values in a general metric space (Proposition 2.1). Rough analysis begins
to come into play when s < 1/2, and requires an enhanced state space B}, , depending on the
level of roughness [1/s] (see Definition 5.1).

In view of these embeddings, the sheer task of solving (1.2) driven by Besov rough paths
can be accomplished by embedding rough Besov spaces into rough Holder or variation rough
path spaces (see [22,20], also Section 5.1.1.) However, in the first case, due to the loss of Holder
regularity for finite p, this requires a strong regularity requirement (a large lower bound for s),
while the second approach (which, in some sense, is taken in [20,42]) provides no estimates with
Besov (rough-path) metrics.

One of the main contributions of this paper is the well-posedness of RDEs driven by Besov
rough paths, with local Lipschitz estimates of the solution (a.k.a. Lyons-Itd) map in the correct
Besov spaces (see Theorems 4.2, 4.3, 5.6, 5.7, and 5.8):

Theorem 1.1. I[f 0 <o < 1, /o < p < 00, and 0 < g < 00, then, under natural regularity as-
sumptions on the vector fields, there is a unique solution flow to (1.2) such that the Lyons-Ito
map X +— Y is locally Lipschitz continuous in the full Bg’ q-Besov scale.

Moreover, we succeed in solving (1.2) for Besov driving signals for which the Besov-variation
embedding is too crude to allow for the use of the variation techniques, even in the Young regime.
For example, we may treat X € B [1){]2’ q <2 < p, with Young integration (Theorem 4.2). On the
other hand, the variation embedding [4 1, Proposition 4.1(3)] gives X € V2, which falls outside
of the Young regime in the variation setting, and indeed, there exists X € B Il,éz withg <2< p
such that X does not belong to V" for any r € [1, 2) (see Proposition 2.2).

Rough differential equations in the Besov scale with o > 1/3, p > 3, and ¢ > 1 were studied
via paracontrolled distributions in [49]. (The authors comment in detail on the difficulties of this
approach for general « > 0.) In [20], results are obtained for RDEs in a Besov—Nikolskii type
scale, although the interpolation of non-linear rough paths spaces of Holder and variation used
therein fails to yield the precise estimates in the Nikolski scale N*” = B . Further progress
on RDEs in the Besov—Sobolev scale B;‘y »= W*P notably existence and uniqueness, is made
in [42], but estimates of the solution map in terms of the correct Besov-Sobolev norm appeared
as beyond reach of that paper’s approach [42, Remark 5.3]. Theorem 1.1 essentially completes
this line of investigation.

1.1. Sewing in the Besov scale

Our method differs from all the aforementioned works, in that we incorporate the Besov scale
from the very beginning of the analysis, at the level of sewing. We recall that sewing [16,30,17] is
a real analysis method that not only underlies rough integration, but has become a most versatile

tool in the field of rough analysis. It yields a generalized integration map
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Fig. 1. Type diagram for rough path spaces. Note monotonicity with respect to both the regularity and - in view of the
compact domain [0, T'] - integrability parameters. The dotted line helps to visualize the Besov—Hoélder embedding; the
dashed line hints at a close connection between variation and critical Besov spaces (cf. Section 2.2).

t

(ASI)OfsftsT = /Ar,r+dr

s 0<s<t<T
for appropriate two-parameter maps A, and also provides a precise estimate for the error

t

/Ar,rerr — Agt.

N

A central contribution of this paper (Theorems 3.1, 3.2, and 3.3) is to generalize the sewing result
to allow for two-parameter maps A measured with Besov type regularity. That is, the map A is
taken to satisfy

18415 o7y

1/q

T q
/ SUPo<p <t SUPp<p<1 ||A~,~+h — A. oh — Atoh,+h ”LP([O,T—h] drt

TV T
0
(1.3)
for sufficient parameters y, p, g > 0 (with the obvious modification if ¢ = 00), cf. Definition 2.3.
When p = g = oo, the requirement (1.3) reads as the standard Holder type condition
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|Agt — Agu — Aul
sup

O<s<u<t<T |t —s|V

in which case, as is well-known, the sewing procedure can be carried out as long as y > 1. In
the present Besov setting, we similarly require that y > 1, in addition to y > L. This secondary
condition is more than just technical, and it turns out, in the context of solving (1.2), to rule out
exactly those regimes of Besov regularity that allow for jump discontinuities. Indeed, this is to
be expected, in view of the analysis in [26], which explains that the presence of jumps requires
additional augmented information.

We note, however, that more flexibility is allowed in the regularity parameter y if the sec-
ondary integration parameter g is tuned sufficiently small (thus strengthening the condition
(1.3)). In particular, if 0 < g < 1 A p, then the sewing map can be constructed evenif y =1V %
One interesting application is the refinement in interpreting multiplication in Besov spaces. In
particular, in Theorem 4.1 below, the Young integral

(frg) > / frdg,
0

may be defined for f and g belonging to critical Besov spaces containing possibly discontinuous
functions, for example, f, g € 321/22 (see Remark 4.1).

A first major difficulty faced in adapting sewing to the Besov setting is the fact that functions
of Besov regularity are, a priori, only defined pointwise almost everywhere. On the other hand,
sewing has an inherently pointwise character, as it is based on the Riemann-sum type limit

t

/Ar,r+dr = lim Auy, P apartition of [s, ¢]. (1.4)
IP1—0
s [u,vleP

We work around this challenge by retooling the viewpoint of Riemann sum: for a fixed partition
P of the unit interval [0, 1], we instead consider the map

(s,) > Z As+u(t7s),s+v(tfs)
[u,vleP

whose limit in the generalized Besov metric, as || P|| — 0, may be more easily analyzed.

Another obstacle to overcome is that Besov spaces do not (a priori) form an algebra, which
complicates the task of using the Besov sewing result to construct a unique fixed point to solve
RDEs. More precisely, the technique for forming solutions of (1.2) is to apply the Besov sewing
procedure to maps of the form

Ag = fo(Ys)(t —5)+ > fi(¥)(X! — X1) + (higher order terms) ,
i=1

yet, in the multiplication of f(Y) with X, integrability may be lost. A fine interplay with em-
beddings is required to “close the loop”. This requires not only classical embeddings as in
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Proposition 2.1, but also a generalization to two parameter maps belonging to B?‘,q (Proposi-
tion 2.7).

Besov sewing is likely to prove interesting in its own right. Applications of sewing range
from RDEs, to rough partial differential equations [29,28], mean-field RDEs [1], to the analysis
of level sets in the Heisenberg group [45], and even as an effective replacement of [td’s lemma
when put in a martingale context: L&’s stochastic sewing [39]. Besov sewing, and possible ram-
ifications thereof along the said extension, is thus likely to be of interest beyond the precise
application presented in this work. We finally note that the works [34,53] in the context of reg-
ularity structures suggest higher-dimensional generalization of sewing in the spirit of [12], but
such investigations are not the purpose of this paper.

1.2. Stochastic processes as Besov rough paths

The prototypical example of a (level-2) rough path is the Brownian rough path, that is, (multi-
dimensional) Brownian motion enhanced with iterated integrals in the It6 or Stratonovich sense.
Its precise “(1/2, 00—, 00)” regularity improves the standard (rough path) Holder regularity
(1/2—, 0o, 00). To the best of our knowledge, and despite several works on Besov rough paths,
this result (Theorem 5.2), despite its fundamental character, appears to be new. (Our only ex-
planation for this is that the original proof of the Brownian motion case [50] is based on Haar
wavelets and it does not easily extend to rough paths.) The argument also extends to fractional
Brownian motion, as we briefly point out. (Although this is not pursued here, the works [18,37]
make us confident that a Gaussian rough path theory in the Besov scale is possible, which some-
what interpolates between the Holder and variational theory introduced in [24].)

Another important class of Besov rough paths arises from semimartingales [11,23,40,8]. The
key issue here is to handle the local martingale part, which can be done in quantitative way
employing ideas from harmonic analysis, developed in a series of papers [23,8,38,27] with focus
on p-variation (rough path) metrics. We formulate as Theorem 5.3 the corresponding statements
in the Besov scale, relying crucially on the material of Appendix A, kindly contributed to us by
Pavel Zorin—Kranich.

Semimartingales (and more generally Dirichlet processes) are obtained from a local mar-
tingale M by adding some path V € Bg:’q, C V% provided o’ — 1/p’ > 0. This requires
understanding the integrals [§M ®dV, [§V @dM, [ §V ®dV in the 2-parameter Besov scale,
which is possible using the analytic estimate given in Section 4.1.

For the sake of completeness we note that Besov regularity of Feller or Markov processes has
been studied by several authors, e.g. [32,51], also [21] for a recent contribution. Studying the
Besov rough path regularity of such processes is not the purpose of this paper. Note however
that many Feller diffusions can be constructed as 1t6 SDE solutions, which coincide with the
solution provided by rough path theory, with It6 Brownian rough driver, whenever both theories
apply (see e.g. [19, Sec. 9.1]). It is then clear that Besov regularity results for RDE solutions,
as put forth in this paper, have immediate implications for the Besov regularity of such Markov
processes.

1.3. Notation
Throughout, fix a finite time horizon T > 0 and set Ay4(s,t) = {(r1,r2,...,rq) € [s, t]d :
ri<rp<---<rg},given s <t in [0, T] and some integer d. Given f : [0, T] — R, we define

8f : A2(0,T) = R™ by dfs := fir — fs, (s,1) € A2(0, T), and, if A : A>(0, T) — R™, we define
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8A : A3(0,T) - R™ by §Agyus := Agy — Ay — Ayt for (s,u,t) € Az(0, T). Note that, for f :
[0, T]— R™,8(5f) =0), and, for A: Ar(0,T) - R™,if SA =0, then A =§f for some path f
(see Lemma 2.9 below for an “almost-everywhere” version of this statement).

With slight abuse of notation, a map f : [0, T] — R™ is also understood as a function on
A2(0, T) by writing f; = f; for (s, t) € A>(0, T). Then, for instance, if f, g : [0, T] — R"™, the
notation f§g means (f8g)sr = fs€s:-
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2. Spaces of Besov type
2.1. Metric space valued-functions

Given a metric space (E, d), measurable f:[0,T] — E, p € (0,00], and 7 € [0, T], we set,
with the usual modification when p = oo,

T—h 1/p

wp(fs T):= sup / d(fs, fs+h)pds . 2.1
0

0<h<t

Definition 2.1. Let ¢ € (0, 1) and p, g € (0, 00]. We say f € ng([O, T); E) if, for some (and
therefore every) xo € E, d(f, x9) € LP([0, T]), and

1/q

T
.0\ d
[f]ng([O,T]) = /(M) _T < Q0.
0

T¢ T

Given a non-decreasing function  : [0, 00) — [0, 00) that satisfies lim, ¢+ w(r) = 0, we say
f€By,(10,TT; E) if d(f, x0) € LP([0, T]) and

1/q

T
9 a d
Lf1Bg, (0.17) = /(M) = < 00;
0

w(T) T

in both cases, the usual modification is made for ¢ = oo.

Remark 2.1. The definition of the space Bf depends on the choice of metric d used in (2.1), but
we suppress this explicit dependence, since the choice of metric is usually clear from context.
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Lemma 2.1. Assume f : [0, T] — E is measurable and, for some 0 < p < oo,

wp(f.1)

lim =0.
=0 tlvl/p

Then f has a version which is constant on [0, T'].

Remark 2.2. The function f satisfies the assumptions of Lemma 2.1 if, for some 0 < g < oo
andy > 1V %

T
/ wp(fD\? dt
V) — <
124 T
0
Thus, Definition 2.1 is vacuous once « > 1 Vv %.

_ 1
Proof of Lemma 2.1. For 7 € [0, T], define p(7) := w,(f, T)7 (IV”>. Then, for all & € [0, T],
S acs, fen)Pde Sp p(W)PR'VP. Given 1 € [0, T] and & € [0, T — ], we may write

d(fr, fr+n) < Zd (frttk=Dh/ns frakhn) -

k=1

If p > 1, we then have

T—h 1/p h 1/p

n

T—
h
/ d(fis fr+n)Pdt < Z / d (fiv-k=vhns fivknn)” dt <pp <;) h ==,
0

0 k=1

whileif 0 < p < 1,

~

—h h

T_
n
h\? —
d(fi, fran)Pdt < / d (fisk=tyn/ns frrnn)’ dt Snp <;> h =0,
=1}

o

In either case, we conclude that, for all 4 € [0, T'], d(f;, fi+n) = O for Lebesgue almost-every
t € [0, T — h]. By Fubini’s theorem, this implies that there exists s € [0, T'] such that d(f;, f;) =
0 for Lebesgue almost every ¢ € [0, T'], and we conclude. O

Remark 2.3. The characterization of Besov spaces given in Definition 2.1 is useful for our pur-
poses, since it reflects that Besov regularity is a generalization of Holder regularity, wherein
continuity is measured with the L”-modulus . Strictly speaking, and similar to L? = L?/ ~
in L?-theory with f ~ g iff f = g a.e. on [0, T'], the above defines a space of measurable func-
tions B, C LP, the same quotienting procedure then yields By, C L”. We will not make this

159



PK. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152-231

distinction explicit in what follows and in any case frequently can work with continuous repre-
sentatives (though there is no a priori assumption in this regard!). In particular, for 0 <o < 1 we
have B, o, = €%« the classical Holder space of exponent a.

We often write ijq([O, T) = ng([O, T1; E) when it does not create confusion. A common
example for E is R” with the usual Euclidean metric; other choices, such as certain Lie groups,
also arise naturally in the context of geometric and higher order rough paths (see Section 5). In the
Euclidean case, Definition 2.1 is equivalent to the standard one, in terms of Fourier analysis and
Littlewood-Paley blocks, exactly when 0 < o < 1, ﬁ < p <o00,and 0 < g < oo (see Triebel
[54]). However, in what follows, nothing is lost by considering the space from Definition 2.1
even when p < lea

Suppose E is a Banach space. If 1 < p, g < 0o, then ng([O, T1; E) is itself a Banach space.
Otherwise, ||-|| B, is only a quasi-norm, but ng([O, T]) is still a complete metric space, with
metrics defined as follows:

Definition 2.2. Assume E is a Banach space, w : [0,00) — [0,00) is non-decreasing,
lim, o+ w(r) =0, and 0 < p,q < oco. Then B ([0 T]; E) is made into a complete metric
space with the metric given by

dpe (0.71:6)(f> &)

wp(f —g. 1)\ dr .
||f_g||ip([()j];5)+ N ) if0<g=<p<l,

w(T) T

=3 IS = glleqo, ey + if0<g<1<p,

(a)p(f g, r))q dt

St — N T

w(T) T
T r/q
» wp(f —g 1\ dz .
”f_g”Lp([O’T];E)+ /( 0 () " if0<p<landg > p.
0

We refer also to the work [41] on nonlinear Besov spaces, in which a further, discrete char-
acterization is given when o > 1/p. This is precisely when every f € B, ([0, T]; E) has a
Holder-continuous version (see Proposition 2.1 below). The definition given in [41] differs
from Definition 2.1 in that the L”-modulus of continuity w,(f, t) in (2.1) is replaced with

fOT_T d(f, fi+-)Pdt. As the next result shows, these two definitions are equivalent.

Lemma 2.2. Assume (E,d) is a complete metric space, and let 0 <o <1 and 0 < p,q < oo.
Then, for all f € ng([O, T1, E),

o0

1/q
q
[f]B;‘q(IO,T],E) Saylhq |:§ <(2n/T)a ”d(f, f-+2—"T)HL/?([(),T(pz—n)])) j|

n=1

Se.p.q C2Lf1Bg, (0.71.E)-
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To prove Lemma 2.2, we require the following standard lemma. It follows immediately from
subadditivity if 0 < g < 1, and the case ¢ > 1 is [36, Lemma 1.d.20].

Lemma 2.3. Let A > 1 and 0 < g < o0. Then, for all nonnegative ag, a1, az, ...,

00 oo 4 )
A" Z aj | Sig Z(A”an)q.
n=1 j=n—1 n=0

Proof of Lemma 2.2. The inequality is invariant under scaling in 7, so it suffices to consider
T =1. Given f € B, ([0, 1], E), the right-hand inequality is established with the chain of in-
equalities

00 g 1/q 00 1/q
[Z (2’1“ [d(fs fam LV([O,l—Z*"])) ] = [Z (2" wp(f. 2—n))q]
n=1

n=1
B 9n 1/q
! i/ wp(f,21)\* dr
~ (log2)l/a T¢ T
"le—n—l
B 2—n+] l/q
2% > wp(f, )\ dt
~ (log2)'/a Zl /( o )T
n=l,-n

o

N W[f]szq([o,u,E).

To obtain the left-hand inequality, we first write
oo

l/q
[f1Bg,q0.11.E) < 2%(log 2)Va |:Z (2" wp(f, 2_"))qi| .

n=1

Set mg := 0, choose h; € [0, 1/2] such that w,(f,1/2) = |d(f., f. —i—hl)IILp([O’l,th, and let
m;=2,3,...besuchthat 27" < g <2=m~=D Then, foralln=1,2,...,m; — 1,

Hd(fr f+h1 ) || LP([0,1—h,]) = wp(fv 2—n)
Continuing inductively, we define sequences 1/2 > hy > hy > h3 > --- — 0 and 2 <m; <

my < -+ — oo such that, for k = 1,2, ..., we have 27" < s < 2~m=1 and, for all n =
me_1,mg_1+2,...,mp—1,

||d(f9 f-+hk) ”Ll’([O,l—hk]) = a)p(fv 27”)
We thus write
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00 oo mi—1
Z (2n0{wp(f’ 2—}1))(1 — Z Z (Z"awp(f, 2—n))f1
n=1 k=1n=my

IA

1 > q
Qaq _ | Z (kaa lacr. f-+hk)||Lp([o,1—hk])> :

k=1
We next take the dyadic expansion of iy, expressed as
o
— knj k
hie= Y &2l forekefo, 1),
j=mip—1

so that the triangle inequality gives

[e¢)
Z ||d(.f-s f.+2—.i)||Lp([0’1_2,j]) for1 < p <ooand
j=mi—1
Hd(fv f'+hk)”Lp([O,lfhk]) = ~ 1/p
( > dt faa-)] {1,([0,1_2”)) for0<p<1.
j=mp—1

The proof is then finished with the use of Lemma 2.3: if p > 1, then

k=1 k=1 j=mp—1

) e 0 !
mea q mpo
Z (2 ‘ ”d(f" f'+hk)HL”([0,17hk])) = Z (2 ‘ Z ”d(f" f'+2j)||L!’([0,12—-f]))

o0 o0 gl
<> (Zna > ”d(f"f-+2f)||LP([0,1—2f]))

n=1 j:n—l

o0
q
Seqg Y (zna |d(fs famn) Ll’([o,l—z—"])) ’

n=1

and,if0<p <1,

M

q/p
p
LP([0,1-2-/])

oo a/p
(2710{]) Z Hd(f’ f~+2J.)HZp([0,1_2j]))

j=n—1

(zmkal’ Z ||d(f’ f»+27j)|

J=mi—1

Z (zmw |d(fes frm) ||L”([0y1*hk]))q

k=1

»
I

1

=

1M

q
LH[O,]—Z*”])) - u

Sena 20 (2 S 12

n=1
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We often work in the regime where o > 1/p (the extreme case being p = 00), in which case
every f € ng ([0, T]; E) admits a Holder-continuous version.

Proposition 2.1. Assume (E,d) is a complete metric space, 0 <a < 1, 1/a < p < 00, and
0<g <oo. Then, forall Y € ng([O, Tl E),

[Y]Cafl/p ([0,T1) Sa,p,q [Y]ng ([0,77)-

This result is classical when E = R™; see for instance [52,54]. The proof we give, which
is based on the Campanato characterization of Holder continuity, is delegated to Subsection
2.3, where it is seen to follow from an analogous result for two-parameter spaces (see Proposi-
tion 2.7).

Remark 2.4. If E is a Banach space, then, as a consequence of Proposition 2.1, whenever ap >
1, the (quasi-)norm ||-|| BS, is equivalent to both

Y= Yllgeqory +[Y1g, o1y and Y= [Y(O)| +[Y]Be o.1))

with proportionally constants depending on 7 in addition to «, p, and ¢q. In particular, for fixed
y € E, the affine subspace

o . —— o . . —
B2, (0. T E,y) :={¥ € B3, (10,71 B): Y(0) =
is a complete metric space with the metric

[X — Y]B%q ifq > 1 and

(X,Y) > .
[X—Y]pe ifO<g<l.
rq

If y=0and g > 1, then ng([O, T]; E, 0) is a Banach space with the norm [-] g«

pa’

When solving fixed-point problems for differential equations driven by Besov signals, we
need the following result on composing regular functions with Besov paths.

Lemma 2.4. Assume 8 € (0,1], a € (0,1), p,g € (0,00], f € C5(R™), and Y € ng([O, T],
R™). Then

L Ogse <L 1T 7 [V T . (22)

Ifa>1/p, feC" and Y € B% ([0, T)), then

) = fDgse  Sapar IDFles (YT, + P The ) 1Yo~ Tol

Sa
Bzm1/<s

) ) (2.3)
+UDFllers (14 YTy + P T )1V = Plag,.
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Proof. The bound (2.2) is a consequence of Holder’s inequality. To prove (2.3), we first write,
fort € [0, T],

1

70 = fG0 = [ Df (e 1 =007, dr (1, - 7).

0

Then, fort € [0, T — h],

< 1D oo | (¥ = Phyn = (¥ = Py

1+

’(f(Y) — 1) = (rm-rd)

+|¥ = 7| _1DA1es (1¥ern = ¥il? + B = TiP).
and so

w0p(F (V) = f(D),0) < IDf o p(Y = 7.0+ [ ¥ = F|_1Df1es (w3 (¥, 0 + 03 (F. )
Sepia 1DF oo @p (¥ = ¥.7) + (1Yo = Fol +[¥ = Py, 777} [Df 15
x (@3p(¥, ) + 037, 1))

= 1D llao @p(¥ = .00+ (1Yo = Fol +1¥ = P1gy, T7/7) [Df 1o

1-8

x <wp(y, 0+ w, (¥, 1’)5> T .
We conclude that

LFO) = FD g Sap.g IDF o 1Y = ¥1gg, T

1-8

+ (o = Fol +1¥ = P1gg, T/ ) [DF Ies (¥ Ty, +(FTp ) T7
St IDf1es (YT, +[PTy ) 1Yo = Fol
+UDfllcrs (1+ V1 + (Pl )Y = Flag,. O

pq

The regime o > 1/ p also allows for embeddings into variation spaces. For 1 < p < 0o, define

N 1/p
VIO T]LE) = 1 f:10.T) = E: [ flyr i=sup (Zd(ft,.l, f,,)f’) <oog,
i=1

where the supremum is taken over partitions P :={0=1ty < <--- <ty =T} of [0, T]. For
any f € VP([0, T]), write f € VP = VP / ~ for the equivalence class of functions equal to f up
to a set of Lebesgue measure zero. (This is similar to the classical construction of the Lebesgue
spaces L? = LP/ ~.) Note that VP C L°°. Similar to e.g. [5] we set
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Elveo,r1;6) == ;rgf[f lvro,71: ) (2.4)

which is a seminorm, and V? ([0, T']; E) is a normed space with the norm f > [f]y o + [f]y»r.
Note that V7 ([0, T']; E) is complete whenever E is.

In [22,41] itis shown that B, C V", where r = /e if g < p and r = 1 /o + & for some € > 0
if ¢ > p. For the purposes of later discussion, we verify the sharpness of the embedding when
q=p.

Proposition 2.2. Assume 1 < g < p < 00 and o > 1/ p. Then there exists f € B}, ([0, 11) such
that f ¢ V"([0,1]) forany 1 <r < 1/a.

Proof. Define y : R — R to be 1-periodic such that

t if t €0, 1/2] and
Xt =
1—t ifrell/2,1],

and, for n € N and ¢ € [0, 1], define f' = 27*" xon,. Then, for m € N, w,(f",27") <
2-an (1 A 2_’”), so that

00 n—1 [e'¢)
D (27 (f12T) = 2y 2 g 1,
m=1 m=n

m=1

which yields
sup[f"1Bg (0.1 Se.puq 1-

neN

Moreover, extending f” to the rest of R to be 0 gives also
sup [f" 1B, (1a.b1) Sep.g 1

neN

for any interval [0, 1] C [a, b] C R. Meanwhile,
1_
L v oy = 2n(’ a).
For some sequences (ax)reN C [0, 00) and (nx)reny C N and £ € [0, 1], we set
o
fi= Zakfznkk(tfz—k)'
k=1

Then
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e¢]

oo
. Ka=1/p) |
[f]qu([O 1) = Zak I: k( _ k)]Bg 0.11) Z k2 ]Bot ([=1,2k—1])

k=1 g (L% k=1 e

oo
k(a—1
Sa,p,q Zakz (a /P)’
k=1

while the superadditivity of [-]},. yields

o o
r
ni(l— ar)
Lf o1 ZZ [2k( zk)]w Dk 21k = Z 2

We conclude upon choosing a; and n so that the first series converges and the second diverges
for any r < 1/a (for instance, we may take ay =4K@~1/P) and ny =k* fork e N). O

2.2. On scale invariant Besov spaces

We make several remarks in the case that « = 1/p. For any g € (0, co], B ll,/ 5 does not embed
continuously into a space of Holder continuous functions, which is related to the fact that the

Bl/ P norm is invariant under time reparametrization. For 1 < p < oo and ¢ = 1, and for E = R"™,
we have the standard embeddings (see [54]) Bl/ Pc B0 1CC.In fact, more is true, and we can

relate the reparametrization-invariant Besov spaces B) / P to the spaces V” introduced in the
previous subsection as follows:

Proposition 2.3. Assume (E, d) is a complete metric space and 1 < p < 0o. Then we have the
continuous embeddings

B,/I(10,T), E) CcVP(10.T1, E) C VP([0.T1. E) C B)/%(10. T1. E).
where we write cV? for elements in VP with continuous representative, in C N VP,

The proof of the first embedding in (2.3) uses real interpolation methods, much in the same
way as in [6], where analogous inclusions are established for homogenous Besov spaces on the
whole real line. We note that the right-most inclusion is a slight strengthening of [41, Proposition

4.3], which states in our notation that ¢V ? ([0, T']) C B, Y/2.(10, T1) (the proof follows essentially
the same argument). Also note that this result completes the picture of embedding Besov spaces

into variation ones, studied, for instance, in [22,41], where embeddings of the form B, / Pcyp
are proved for r > p.
We first note the following useful equivalent characterization of the V7 seminorm:

Lemma 2.5. Let 1 < p < 00 and assume E is a Banach space. Then f € VP([0,T], E) if and
only if
I/p

F1pnory =sup | D infllf —clZ ] <oo
[s,t]leP
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with || flloo:1 = sup;eg | fi|. Moreover,

1
E[f]vp([O,T]) = 9oy = U lvrqo, 1y

Proof. Since |f; — fs| < infe(|f;y — ¢l + |fs — cl) < 2inf || f — clloo;[s,] 1t 1S clear that
%[f]VF([O,T]) < [f]f)p([()’T])- Conversely,

H p p p
Hgf”f - C”oo;[s,t] = ||f - ff”oo;[s,t] = [f]VP([x,t])

and by super-additivity of the right-hand side we see that %[ flveqory <1 f]f)r'([o,r]) <

Ulyrgory: B

Lemma 2.5 suggests a way to define V? for p = co: we say f € YV if

00 =su max inf|| f — ¢||so: < 00.
Lf1y=qo, 1) PP ([‘ ax,in I/ ||oo,[s,z]>

5.t

Of course, the supremum is attained for the trivial partition P = {0, T'}, and so

sup | fe = fsl,

(5,)€A5(0,T)

N =

[fIveeqo,m =

that is, V*°([0, T'], E) = L°°([0, T'], E), modulo constants.

We next relate the p-variation spaces with different powers using real interpolation. We recall
(see for instance [4]) that two normed space Xy and X are called compatible if they are both
continuously embedded into a common Hausdorff topological vector space, so that, in particular,
the space Xo + X is well-defined. For two such spaces, we define the K-functional, for ¢ > 0
and f € Xo+ X1, by

K(t, f. Xo, X1) =inf {|| follx, + 7 I fillx, : £ = fo+ f1. fi € Xi}, (2.5
and, for 6 € (0, 1) and p € [1, oo], we define the real interpolation space

00 l/p

K(t, f, Xo, X1)\?" dt

(X0, XDo,p =1 f € Xo+ X1 : 1 fllxo.x1), = ) =
0

<00
(2.6)
The following result is a variant of one appearing in [6], as Lemma 2.1.

Lemma 2.6. Let 1 < py < p1 < o0, fix 0 € (0, 1), and assume E is a Banach space. Then we
have the continuous embedding

1-6 6

Po P1

wvre(o, 71, £), VP10, T1, E))e,p C VP(I0, T1, E), where % =
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Proof. Fix f e (WP([0,T], E), VP ([0,T], E))g,p, a partition P ={0=1) <t <--- <ty =
T} of [0,T], and fy € VPO([0,T], E) and f; € VP1([0,T], E) such that f = fo + f1. Let
@, ¢o, 1 : [0, 00) — [0, 00) be the non-increasing, right-continuous rearrangements of respec-
tively the sequences

N N
(inf sup ||f(t)—C||E) . <inf sup IIfo(t)—C||E> ;

c€E te[t;_y,4] C€E reffi_1.1)

i=

i=1
N

and (inf sup ||f1(t)—C||E> ;

LR

i=1

that is, fori =0, 1, ¥ and A > 0, ¢; satisfies

C€Lrelti1.1]

|{t:¢i(t)>k}|=#{ne{1,2,...,N}:ing sup ||ﬁ(t)—c||E>A].
We have

inf sup ||f(1)—cllg<inf sup |[fo(t)—cllg+inf sup [fi(r) —cllg.,
ceE ceE

€L relti1.] relti—1.1] relti—1.1]

and elementary computations then give, for all s > 0, ¢ (s) < ¢o(s/2) + ¢1(s/2). Then, by
Holder’s inequality, for T > 0,

T 1/po

/g () < /¢@sz
0
1/po T 1/po

< /ammvws + /@@ﬂwws
0 0

1 _ 1
S Ndollroo.00y) 70 1 11l L1 ((0,00))

v 1/po
=<Z inf  sup ||f0(f)—c||11;"0>

o1 CSE el

. N 1/p1
+r1’opl( inf  sup |If1(t)—c||§1)

i1 C€E reltiorn]

11
<[folyro +720 P1[filym.

1 _ 1
With the relation # = t(¢) 70 71, upon taking the infimum over all such fj and f;, we find from
Lemma 2.5 that
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)¢ (1)) SK(t, f, VP, V).

Invoking the definition (2.6), as well as the relationship between p, 8, pg, and p1, we conclude
that

00 J 1/p 00 1/p
t
I fllvro,vey 2 /r(t)”/’%(r(t))”t“’p? = /¢(f)pdr
0 0

v 1/p
=< inf sup Ilf(t)—CIIZ> :

io1 C€Ereliionn)
We conclude upon taking the supremum over all partitions P. O

Proof of Proposition 2.3. Only the first embedding is proved here. As we have noted, the second
inclusion follows exactly as in [41, Proposition 4.3].

Recall the Kuratowski embedding: every metric space E can be isometrically embedded in a
Banach space. Thus, we assume without loss of generality that E is a (possibly non-separable)
Banach space.

We next note that we have

BYP(10.T1. E) = (Blﬂ1 (10, T1, E), BY, , (10, T1, E)) 2.7

1
I—F,p

To see this, note first that

)

1/ 1 0
BT, B = (8RB B R E)
T

which is a generalization of [4, Theorem 6.4.5 (3)] to E-valued function spaces, and follows
from the method of retracts [4, Theorem 6.4.2] and general results on interpolation of weighted
vector-valued Lebesgue spaces [4, Theorem 5.6.2].

We then have common continuous extension and restriction maps (see [54])

{B/7@0. 7). B} 100. 71, B ,10. 7D} = | BT ®), B ®R). B, ,®) |,

and so (2.7) is again a consequence of the method of retracts.
From the standard embeddings BII’I(R) c WHI(R) and Bgo,l(R) C C(R), upon restricting
to the interval [0, T'], we have the embeddings

B{ (10, T],E) c W"'([0,T], E) CcV'([0,T],E) and
B2, ([0, T1, E) C C([0, T1, E) =cV>([0, T, E).

We conclude from Lemma 2.6 that

169



PK. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152-231

1

B)/I(0.T].E) = (Bl{l([o, T1, E), B (10, T1, E))1

CcC(0, T, E)N (Vl([O, T1, E), V*°([0, T], E)) . CcVP(0,T] E).
p

-1,

The fact that the proportionality constant is independent of 7" follows from the scale-invariance
of the inequality. O

In what follows 1 < p < oo and (E, d) a general metric space, unless further specified. Recall
VP([0,T], E)y=VP([0,T], E)/ ~ defined in terms of [-]y»r((o,77) given in (2.4). We are grateful
to Pavel Zorin-Kranich for removing an unnecessary use of Helly’s selection principle in an
earlier version of this paper.

Proposition 2.4. (i) The inclusion

VP([0,T], E) C VP([0,T], E)

. 1/p
— {fe L®(0. T, E) : (fl g0 1 = SUP (leclfﬂd(f., c)||{oo;[s’,]) < oo}

holds and is continuous in the sense that [f] pro.r) = [(flveqo,1y) forallfe VP.
(ii) Suppose that E is a separable complete metric space. Then, every equivalence class f €

fH < Ifll+,.
L, Sl

VP has a representative f'of finite p-variation with

Proof. (i) Consider f € V? with representative f € V7. Then, using Lemma 2.5,

I/p
[f] Vr(o,T]) — sup (Z i[gfeSS sup|f(u) — C|) = [f]f}h([oj]) = [f]VP([O,T])

ue(s,t]

(i) Let f € VP([0, T], E). We show that f has an essential Cauchy property at every point, that
is, for every ¢ € (0, T'], we have

(Ve > 0)(36 > 0) esssup d(fs, fsr) <e. (2.8)

s,8'€(t=38,1)

Indeed, suppose that (2.8) fails for some ¢ € (0, 7] and € > 0. Then, we can construct a sequence
of intervals (a;, b;) and points e; € E with the following properties:

bj<ajy1<t, d(ej,ejr1)>3e/4, |{se(aj,bj)ld(s, e;) <e/4}| > 0.

It is then routine to derive a contradiction to the finiteness of the V? norm. In order to construct
such a sequence, let E C E be a countable dense subset. We start with ag = 0, bg = t/2, say, and
any eq € E such that the required positive measure property holds. Given b}, e;, from the failure
of (2.8), we conclude that

esssupd(fs,ej) > €.
s€(bj,1)
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Hence, we can choose ¢ € E such that

s € (bj, ) |d(fs,ej) =€, d(fs,ejq1) <€/4}|>0. (2.9

The non-emptyness of the set in (2.9) guarantees that d(ej, ¢j11) > 3€/4. It remains to choose
an interval [a;41,bj41] C (bj, ) whose intersection with the set in (2.9) has positive measure.

The essential Cauchy condition (2.8) implies the existence of an essential left limit f;_ € E,
which is the unique point such that

(Ve > 0)(38 > 0) esssup d(fs, fi—) <e. (2.10)

se(t—48,1)

Analogously, one can construct the essential right limits f;1. Applying the Lebesgue differenti-
ation theorem to the functions ¢ — d(e, f;) for each e € E (local integrability of these functions
follows e.g. from the existence of left and right essential limits), we obtain a full measure subset
X C [0, T] such that, for every r € X and e € E, we have

t
lim 57! / ld(e, f;) —d(e, f)|ds =0.
§—0
t—48

For any e € E and ¢ € X, by the definition of f;_ and the above identity, it follows that

t

d(fi fi) =dfe) +limsups ™! [ dt.p+ac s
s=t—3§
t
=d(f;,e)+limsups~! /d(e,fs)ds
5=0 s=t—3§
t

=d(f;,e)+limsups~! / d(e, f1)ds
§—0

s=t—3§

=2d(f;,e).

Since e € E was arbitrary, it follows that f; = f;_. Let

r 04> 1= 05
fei= Jo
fi—, t>0.
This function coincides with f almost everywhere, and we have f0+ = fo and f,_ = ﬂ for all

t > 0. It is easy to see that HfHV SIfllygy. O
P
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We finish this subsection with a discussion of the finer regularity properties of paths in scale-
invariant Besov spaces. A representative example is the Heaviside function

0 if0<t<1/2,
1 ifl/2<t<1,

t =

which satisfies [H]Bl/p =1 for all 0 < p < 00, and we see that B[],/go ¢ C. As it turns out,
p.oo

100 ([0,11)
such jump discontinuities are not permissible for functions in B 117/ 5 as soon as q is finite.

Proposition 2.5. Let 1 < p <ocand 1 <g < oo, f:[0,T]— R™, and tg € (0, T). Assume that

f has a left and right limit at to that differ. Then [f]Bl/p = Q.
p.q (10,T])

Proof. There exists © > 0 such that, for all sufficiently small ¢ > 0, if s € (f9p — 7,7) and ¢ €
(to, to+ 1), then | f; — f;| > w. Therefore, for some sufficiently small o € (0, T) and all0 < 7 <
TO’

1o
0, (fu 1) = / rve — filPdi = Tu,
nh—T

0
and so

70

T

wp(f, )\ dt g [d7 _
[ () e [Fme o
0 0

Proposition 2.5 rules out jump discontinuities for Bll,,/ 5 -functions with 1 < p < oo and 1 <
q < oo. However, if g > 1, some discontinuities are still allowed, and functions may even be
nowhere locally bounded.

Proposition 2.6. Let x : R — R be smooth, even, supported in [—1/2,1/2], and equal to 1 in
[—1/4,1/4], and define

ft = x:log|logt| forte[—1,1].

Then f € B,l,{g([—l, 1]) forany 1 < p <ocoand 1 < g < oc.

Proof. If n =3,4, ..., then, because f is even,
1—2—" 1—2—n 277171
[ e = sirdi=2 [ o= firare2 [ iy, - s
—1 0 0

We compute
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1l =x/log|logt| — x: for t #0.

t|logt|

Fixm=0,1,2,...,andr € 271, 27"]. If m =0, 1,2, ..., n, the mean value theorem gives

» om\ P np < 2m—n)p
—n — =, | lo — ] 2 R
[ frazn = fi p( gm+m> S

while forke Nandm=n+k,n+k+1,...,

| fi42-n — fil?l 1 fany — fil? Sp | fi? 5p (logm)?.

Finally, if r € [277%, 27"~1], then the mean value theorem again gives

k
| fi2-n — fil <log|log2™"7%)| —log|log2™ "' +27")| <log(n + k) —log(n — 1) < .

. . _ P k . . . .
and similarly | f,-»_, — f;|” < . Combining all three estimates gives

1-27" p—n—1
frvan — filPdi + / \faons — filPdt
0 0
OO 27"1 m 27m
-y / sz — filPdi+ Y /|fzfn_t—ft|1’dr
m=02,m,1 m=n=127m71

n o0
kP
—np (p—Dm . —p —-m 4 -n>_
Sp2 52 m— ¥ 4 E 27" (logm)? +2 o
m=1 m=n+k

kP
<p 27" P 427" Klog(n + k)P +27"—.

npP
Choosing k < logn yields

1—27" 27;1—]

_ (logn\?
[ V= svars [ g - gvan, o (221)

0 0

and we conclude that

l—o—n 1/p

2n/p /|f,+z—n—f,|"dt <p

—1

logn

n

is £9-summable in n if 1 < g < oo. The proof is finished in view of Lemma 2.2. O
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By constructing a convergent series in the space B p/ ! of appropriate translations of the func-
tion f from Proposition 2.6, we immediately have the following.

FeA

Corollary 2.1.If 1 < p <oco and 1 < q < oo, then B 0, T1) contains functions that are

unbounded on every sub-interval of [0, T].
2.3. Two-parameter Besov spaces

Let A: A>(0, T) — R™ be measurable and, for p € (0,o00] and 0 < 7 < T, we define

1/p
QP(Av T):= sup / |Ar,r+h|p dr
0<h<t
For a three-parameter map A : A3(0, ) — R™, we define
T—h I/p
Qp(A. )= sup sup / \Arsonrenl? dr
0<6<10<h<t

The dependence of €2 and  on the interval [0, T] is suppressed for notational convenience. Note
that, for f: [0, T] — R™, we have Q,(8f, 1) = w,(f, 1).

Definition 2.3. Fix o > 0 and p, g € (0, co]. We define, for A : A»(0, T) — R™,
1/q

o m r Q (A O\ dt
BE, (0. TD =1 A: As(s.1) = R™ [ Allgg, 0,7y /( ) g Q.
0

We also set, for A : A3(0, T) — R™,

T , q 1/q
A . QpA, 1)\ dr
I ”E‘;qqo,rb = TV T
0
Finally, for a non-decreasing function w : [0, 0c0) — [0, 00) satisfying lim, _, o+ w (r) = 0, we set
1/q
Q,(A, )\ dr
w . . m . o P T -
B ([0, T1) := { A: Aals, 1) = R™ : | Allge, o,1)) = /(70)@) ) . <00
0

and, for A : A3([0, T], R™),

T
Q,(A, 1)
0
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We note that, when p = g = oo, ||'||B;“,q measures Holder-type regularity, and we use the
notation

CU([0. TD =B, ([0, TD.

As before, when 1 < p, g < o0, ||‘||B;q is a norm and ng is a Banach space. In all cases, ng
is a complete metric space:

Definition 2.4. Assume « > 0 and 0 < p, g < co. Then [B%‘;‘]q([O, T1,R™) is a complete metric
space with the metric

HA—A’BQ Q07D if 1 <p,qg <oo,
T
5 /(Q (A — AT)) — if0<g<landg < p, and
dIB?;q([O,T])(A7A) =10 T (2.11)
T r/q
/(Q p(A— Ar)) - if0<p<landg > p.
0

The same holds if 7 — t* is replaced with an arbitrary modulus w.

We now present a useful Besov-Holder embeddings in the two-parameter setting. The differ-
ence between ng([o, T1,R™) and B . (0. T1, R™) is that elements A of B do not in general
satisfy § A = 0, and therefore, in order to generalize Proposition 2.1, some condltion is needed on
3A. The one we present here is a kind of mixed continuity condition. A more general condition
can perhaps be devised; however, the continuity condition for §A is in practice easy to check in
our applications, and it usually reduces to the case of Proposition 2.1.

Proposition 2.7. Assume that A : A2(0, T) — R™ is measurable, 0 < p,q < 00, w: [0, 00) —
[0, 00) is non-decreasing, lim, o+ @ (r) =0,

wQ2t) Sw(t) forallt >0, (2.12)
1IAp
[0,00)2 T ¢(T):= (wl(/r)) satisfies
Ti/p

(2.13)

/((h)a;l—h <K¢(T) forsomeK >0andall T >0,

||A||B(;,)q([0,T]) < 00, and, for some 6 € (0,1/2] and M > 0,
\/l

18 Al = M (= 5) At =) (W =5)V (& - s))l—e)1 g 2.14)
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Then there exists a continuous version of A, denoted also by A, such that

sup [Ast]
0<s<t<T @ — ) — s)~1/p

SK.p.g.0 ”A”]B‘;;q([O,T]) + M. (2.15)
Remark 2.5. The modulus w satisfies the assumptions of Proposition 2.7 if, for instance,
B 1
w(r)=r"|log(r A1/2)|P for some y > — and 8 > 0.
p

Proposition 2.7 is proved by taking advantage of some Campanato-type characterizations of
Holder continuity, which, for the Besov-type spaces in question, are routine to verify. More
precisely, if E is a Banach space, f : [0, T] — E, and 8 > 0, then the S-Holder semi-norm of f
is equivalent to

fo+r to+r
11 1
Sup o fi—— | fids| dt,
10€l0,T10<r <tonT—1g TF 21 2r
ro—r to—r E

a result which goes back at least to related work of Campanato [7]. The analytic essence of this
result is contained in the following estimate, which we already formulate in a way applicable to
two-parameter functions (in the one-parameter case, the approximate triangle inequality (2.19)
can be replaced by a genuine triangle inequality).

Proposition 2.8. Let ¢ : [0, 00) — [0, 00) be a non-decreasing function such that

c@ry<e(r) forallr >0, (2.16)

and

T

dh
/{(h)TSK;“(T) for some K >0andall T > 0. 2.17)
0

Let p : [0, T1? = [0, o0) be a locally integrable function such that, for all to € (0,T) and r <
toNT —to,

to+r to+r

%2/ /ﬂszdtdssi(r) (2.18)

to—rto—r

and, for some 0 € (0,1/2] and all r,s,t € [0, T],
pri = prs + pa +¢ (s = rl At =D (s = r v Jr =51 ). (2.19)
Then, there exists a full measure subset X C [0, T such that
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Pst

sup ——— p.x L.
s, teX,s#t §(|t —s))

Proof. For brevity, we denote averages by fab =b-—a)"! fab.
Step 1. Fixtg € (0, T), r <tg A(T —1ty), and n > 1, and set

to+2""r to+r
oy (ty) == ][ ][ psidtds. (2.20)

to—2""rto—r
Using (2.19), we write, for all s, u, t with |s — o] < 27"r, |t —to| < r, lu — to] <27"F1r,

Pst < Psu + Pur + (4 - 27"9")-

Averaging in s, t, u, we obtain

to+27"r fg+27"r 104+27"r tg+r
an () < f ][ psudsdu + ][ ][ pudtdu + ¢(4-27"%r)
to—2""+r 1g—27"r to—2~"typlo—r
=141 +1IL

From (2.18), we obtain

to+27" g2t
I<2 ][ ][ psududs <2027 < @7,

10_27)1+1r t0_2*71+1r

We also have Il = o, (f), and, by (2.16), IIT <y ;(2’”9r). ‘We conclude that

o (tg) — ay—1(to) S {(2_}1}”) + é-(z—ner) 5 {(2_’197‘),

By hypothesis, ag < ¢(r), and so, taking n — o0 in (2.20) and using the Lebesgue differentiation
theorem gives, for every r > 0,

to+r

1 o0
esssup —— / Pro.rdt ST(r) + Z t27"r) So.k (),

toe(r,1—r) I

to—r n=1

where we used (2.17) in the last step. Using the above inequality for a countable dense set of r’s
and (2.16), we see that there exists a full measure subset X C (0, T') such that, for every 79 € X,
and every r < min(t, T — tp), we have

totr totr

][ Prg,rdt + ][ Pr.1dt So.k (1), (2.21)

to—r to—r
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the second term being bounded by employing a symmetric argument.
Step 2. Fix s, t € X such that

ri= |t —s| <dist({s, 1}, {0, T}).

By (2.19), foru € (s A t,s V 1), we have

Pst < Psu + Pur + ¢ (r).

Averaging this inequality in u and using (2.21), we obtain pg Sk ¢(|t — s1).

Step 3. Fix0<s <t <T/2withs,t € X ands <t/2.Choose t =19 > t] > ... >ty =s such
thatt;/2 <tj41 < tj/ﬁ andtj € X forall j =0, ...,k — 1. By induction on [, using (2.19), we
obtain

-1
Pst = Pst; + ZPI,-HZJ- +L(tj — ).
j=0

Using this inequality with [ = k — 1 and the result from Step 2, we obtain

k k—2 k—1
Pst <D P+ Y Lt —5) Sax Dot —s) Sk Lt —s).
j=1 j=0

j=0

A symmetric argument gives similar estimates for 7/2 <s <t < T, as well as for p. It is then
easy to conclude forall s,t € X. O

Proposition 2.8 can be specialized to a Campanato-type characterization of Holder continuity
for functions with values in a metric space. We thank Pavel Zorin-Kranich for stream-lining an

earlier proof of ours.

Proposition 2.9. If f : [0, T] — E is measurable and 8 € (0, 1), then

p 1 i to+r to+r
7(]%’]33) =g sup sup _,3—2/ /d(szfl)dtdS. (2.22)
(s.0en.7) (=) 0e©.1)0<r<toAT—1o P )7 J S
0—rio—

More precisely, when the right-hand side is finite, there exists a version of f which is f-Holder
continuous, and the equivalence of semi-norms holds.

Proof. The 24 estimate is obvious. To prove the <g direction, we invoke Proposition 2.8 with

pst =d(fs, fr) and ¢(r) = Cr? to conclude that there exists a full measure subset X C [0, T']
such that, for every s,7 € X,

d(fs, f) Sls—tlP.

It follows that f|x can be extended to a 8-Holder continuous function on [0, 7'] that coincides
with fonX. O
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As an immediate consequence, we present the proof of Proposition 2.1.
Proof of Proposition 2.1. For f € ng([O, T1; E), we have, forall h € (0, T),

T—h 1/p

/ d(frvn, fr)dt Sf1Be A

]
0

Forany tp € (0,T) and 0 < r < tg A (T — ty), we have

to+r to+r

1
o / / d(fi. f)drds
to—r to—r
to+rtot+r—s
= W d(fs+h, fs)dhds
to—rto—r—s
: 2r to+r—hy
- a5 / / d(fosn. fy)dsdh
—2rto—r+h_
2r T—hy 1/p
1 _
=Gy / @r — |h)!=P / d(fopn, f)Pds | dh
—2r h_
2r
Lflsg, [ 4
< mESYR / h®*dh
0

< . a—1/p
S s, r :
The result now follows from Proposition 2.9. O
Remark 2.6. Proposition 2.1 can also be proved by immediately appealing to Proposition 2.7.
We finally present the proof of the two-parameter Besov-Holder embedding.
Proof of Proposition 2.7. If p = oo, then the result is trivial, so assume p < co.
The map A is defined only for (s, #) with s < ¢. To match the setting of Proposition 2.8, for
s >t,weset A; = —Ayg. Then |§ A, | remains constant over all permutations of r, s, ¢ € [0, T].
Therefore, (2.14) continues to hold regardless of the order of s, u, and ¢, and, for 7 € [0, T],
T 1/p

sup /|A,,,_h|”dt =Q,(A, 7).

O<h<t
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Forall0 <h < T, we have

1/p

T /p T—h
Jlaelar |+ [ Al ar| o 141s, 0.
h 0

Now fix tg € (0, T) andr <tg AT —ty. If 1 < p < 00, then

lotrtotr to+r to+r—s
1 1
_2/ /lAst|det:—2/ / |As,s+h|dhds
r r
lo—rig—r to—r tg—r—s
2r to+r—hy
1
=—2/ / |Ag,s4n| dsdh
r
—2r tg—r+h_
iy 2T /p
21-4p »
5r1+1/p/ / |Ag.sin|” ds dh
—2r h_
1 2r
Spa PIESY IAlBg, /w(lhl)dh
—2r

S lAlsg, £ ().

Thus, (2.18) and (2.19) are satisfied with pg5; = |Ay|. It is easy to see that ¢ satisfies the as-
sumptions of Proposition 2.8 (the implicit constants depend additionally on p). Proposition 2.8
implies that (2.15) holds for s, 7 in a full measure subset X C [0, T']. Using (2.14), we can extend
A|x«x to a continuous function on [0, T)? that still satisfies (2.15).

If 0 < p < 1, then a similar computation yields

to+r to+r
1

p
- / / (Anl? dsdi S 141G, £0),

to—r to—r
and so the result follows upon appealing to Proposition 2.8 with pg; = |Ag|P. O

Proposition 2.7 will often be paired with the following interpolation estimate, which allows
for a simultaneous loss of regularity and gain of integrability.

Lemma 2.7. Assume that 0 <a <y, 0< p <r <00, 0 < g < 00, and, for some § > 0,

a<’;—p+5(1—§). (2.23)

Then, for all A : A»(0,T) — R™,
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S(1=2)+22—q | 41— F i
| ANBg, (0.7) Sey.porg.s TOTTF " WAl ga oy 1Ay o

Proof. We compute

_Pr
QA7) £ Qoo(A, D) QA D)7 < Al P07 P)Q,4, 1)F

and so

P
Q- (A, 1) 1-2 sq_pyyre_o  Qp(A,T)\ 7
—— <Al =5+ <—p .
T 124

We take the L9 (dt/7) (quasi)-norm on both sides and conclude by Holder’s inequality that

T l/q

pq
1-2 YR Q,(A, 7))\ " drt
r q[é(l ,_)+ - Ot] p
AllBe, < 1Al cs /T o7 -

0

1-2 P
<SA=DF e a1 LT IALL, . O
~ co 1 2lgy

Lemma 2.7 can be extended to allow for more general moduli; the proof is almost identical,
and thus we omit it.

Lemma 2.8. Assume that o > 0,0 < p <r <00, 0 < g <00, w, p : [0, 00) — [0, 00) are non-
decreasing and satisfy lim;_, g+ w(t) =lim,_, o+ p(t) =0, and

Then, forall A : A>(0,T) — R™,

e
”A”Bf}‘q([O,T]) Sa,p,r,q a(T) ”A”(Cp([O,T]) ”A”B;’,q([O,T]) .

We conclude with a result which is instrumental in overcoming the difficulty that functions in
B, are a priori only defined up to sets of Lebesgue measure zero.

Eemma 2.9. Let A: A2(0,T) — R™ be measurable, and assume that, for some 0 < p < 00,
Q2,8A,t)=0forall T € (0, T]. Then there exists a measurable function F : [0, T] — R™ and
a version of A, denoted also by A, such that A =6F.

Proof. For 0 <t <s <T, define A;; := —A;;, and then extend the definition of §A, ;; to all
(r,s,1) €[0,T]?. We have, forall h € (0, T]and 0 <6 < 1,
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T—h 1/p

/ 8 ArssonsenlPdt | =0,
0

with the obvious modification if p = oo, and, therefore, there exists Ng j C [0, T — k] such that
[Ng.n| =0 and

8A; 146n1+n =0 forallt €[0,T —h]\Ny .

By Fubini’s theorem, there exists N C [0, T]® with |N| = 0 such that §A = 0 in [0, T]’\N.
Another application of Fubini’s theorem implies that there exists » € (0, T') such that

8A, =0 foralmostevery (s, t) € [0, T]2.
We now define F; := A, ; for t € [0, T]. Then, for almost every (s, t) € [0, T]z,
FF—F=A4+68A 5, =Ay. O
3. The Besov “sewing lemma”

The goal of this section is to generalize the “sewing lemma,” which has been proved in Holder
and variation contexts [16,30,17], to the Besov scale. Given A : A,(0, T) — R™ for which

AlBg, ,, qo.rn + 184Ny qo.ry <0

for appropriate parameters 0 < @ < y and p1, p2,4q1, g2 € (0, 00], we construct a generalized
integral as a limit of Riemann sums. Due to the various cases involving different regimes of
parameters, the result is split up into three theorems. In Theorem 3.1, the regularity satisfies a
strict inequality y > 1 Vv é, while in Theorem 3.2, the case y =1V lz can be treated as long
as 0 < g2 <1 A p». Finally, Theorem 3.3 combines the previous theorems with the generalized
Holder embedding Proposition 2.7 in order to regain integrability, especially in the case where

pP1 > p2.
3.1. The statements
Given A : A(0,T) — R™ and a partition P := {0 =19 < 71 <--- < Ty = 1} of the unit in-

terval [0, 1], we define, for (s,1) € A»(0,T),

N

fPAst = ZAS-‘rTi—l(T—S),S-FTi(T—S) and %pA = pr —A.

i=1
Theorem 3.1. Assume that 0 < p1, p2,q1,q2 <00, 0<a <1,y >1V é, and

”A“B%l‘ql ([0,7D + ||6A||E221612([0’T]) < 0o0.
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Then there exist ¥ A € B

o Apngivg, (0, T]) and ZA € BJ, 4, ([0, T1) such that

1
lim ||.ZpA — (SJAHB;N = lim ||ZpA —%AH[%N =0 forallr >qyandr > ;

IPI—0 IPII—0

3.1

Moreover, we have the bounds

< _
||=%’A||B;2,q2<[o,ﬂ) ~P2.a2,Y ”‘SA”[%_%([QT]) (3.2)
and
y—a _

[jA]Bgl/\pz,q]W[z([o’T]) gT,Pl,PZJIlJ]Z,V ”A”B%]vﬁ + T ||8A||]B;2142([0,T]) . (33)

Remark 3.1. In Theorem 3.1, if p, > 1, then the condition on y reads simply y > 1, which is
familiar from other versions of the sewing lemma. However, once 0 < p» < 1, it is necessary to
assume that y > 1/p>. This is more than just a technical difficulty. For instance, in the Young
integration regime, this condition puts restrictions on the types of discontinuities allowed by the
paths (see Remark 4.1).

If g2 > 1/y, then the limit of .#p A along arbitrary partitions with mesh-size tending to 0 may
be taken in Bgz‘qz- Otherwise, if g2 < 1/y, the convergence is weaker. We note that, in the course
of the proof, it will be shown that the convergence along dyadic partitions always holds in ]B%;Mz.

We next address an interesting endpoint case that does not arise in the Holder or variation
sewing frameworks. By tuning the secondary integration parameter g, lower, the regularity pa-
rameter y for §A may be taken down to y =1V (1/p>). The price paid is that the “remainder

1

map” ZA no longer has the same regularity modulus t V2 as 8A, and there is some at-
most-logarithmic loss (compare (3.2) to (3.7) below).
Throughout the rest of the paper, we fix (£,)o<r<co : [0, T]— [0, 00) satisfying

for each r € (0, o0], £, : [0, T] — [0, 00) is non-increasing,
T
/ 1 "dh
— < 00, and
£, (h) h
0

)
dh
/z,(h)"hf7 Srne £:(8)18% foralln, ¢, 8 > 0.
0

(3.4)

For instance, we may take £, (h) = |log(h A 1/2)|Y/7%¢ for & > 0if r < 00, and £+, = 1. We then
set

1
wr(h) :=h" 72 0,(h) forh [0, T]and 0 < r < 0. (3.5)
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Theorem 3.2. Assume that 0 < p1,q1 <00, 0< gy <1Ap2, 0<a <1, and

||A||I59ty 4, (10, T IBA|l_ vk < 00.

pyy (0D

o
Then there exist S A € B ), 4 va,

([0, T1) and R A € (), c(g.00 Bpn.r ([0, T1) such that

relgz,o0]

m [7pA =57 Al k= lim | ZpA—ZA| ,,1 =0. (3.6)
1P -0 P2

P2,%0 pp,00

IIPH

Moreover, we have the bounds

12 AlBe; . 0,71) Spa.r ISAI SV forallr € [g2, 0], (3.7
172
B,, /2 (0.7])
and
v
[T AL 1y a1van (0.TD STop1 g 1AIBE +T( ) “Lgy (T) IS A] v - (3.8)

L <[0 n

In order to use the general Besov sewing machinery to solve fixed point problems arising
in the study of rough differential equations, it is important that the “integral path” increments
3.7 A belong to the same space as A, that is, for A € Bpl 1> We should have JAe B;‘] g+ As
indicated by (3.3) and (3.8), this is the case when p; < p, and g1 > ¢>. However, we will need to
consider the case p; > p», because A usually arises as a (tensor) product of increments of paths,
which leads to a loss in integrability (for the same reason, we usually will have g1 > g2, so this
parameter does not present a problem). In order to deal with this issue, we take advantage of the

Besov-Holder embeddings for the space BY , given by Proposition 2.7.
Theorem 3.3. Let 0 < py, p2,q1, g2 <ococand 0 <a <y and A: Ar(0,T) — R™.

(a) Under the same conditions as Theorem 3.1, assume in addition that 0 < py < p; < 09,
y — é > — %, and, for some 0 € (0,1/2) and M > 0 and for all (s,u,t) € A3(0,T),

18Asur] < M ((u — ) A (2 —)YVP) (u—5) v (1 —5)) 1D =12 3.9)
Then
IZ Al cr-11m j0.77) Sp2aa.v.0 IIBAIIEZM2 +M, (3.10)
and
1 1
[ ALY, gy (0.TD) Spipadngray IAlBs +T7 (||3A||E;M2 +M>. (3.11)
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(b) Under the same conditions as Theorem 3.2, assume in addition that 0 < g» <1 < py < p1 <
00,0<qg1 <00, 0<a<1, l—é >0 — %, and, for some M > 0 and 6 € (0, 1/2) and all
(s,u,t) € A3(0,T),

18Asur] <M ((u—s) At —s)?DVP) ((u—5) v (1 — 5)) TP (3.12)

Then

|Z At
< SA|- M, 3.13
O<s<i<T U)qz(t — S)(t —s)—l/Pz ~K,p2,q2,60 ” ||B;2.q2 + ( )
and
1--L ot L
a < " _ .
[T ALBg, iy Sprpraras.ancok |AllBy + T 727" 7Ly (T) (”‘SA”B;,Q,% + M)

(3.14)
Remark 3.2. The functions of T in the various bounds (3.3), (3.11), and (3.14) are used to estab-
lish the local Lipschitz continuity of the It6-Lyons map for the differential equations considered
later. We note that the proof of the contractive property alone in the Picard iteration to construct
solutions does not require this, as long as g < oo, which can be seen as another (mild) advantage
of the Besov setting.

3.2. The proofs of Theorems 3.1, 3.2, and 3.3

An important first step is to establish convergence along the dyadic partitions

k
Py = (—) , n=0,1,2,.... (3.15)
2 k=1,2,...,2"

Lemma 3.1. Assume 0 < py,q2 <00 and A : Ar(0,T) = R™. Then, forall1 <m <n < o0
and 0 < h <T,

Q,,(#p, A — Zp, A, h)

h27m+1_
Q,B8A,1)d
h / %% if1 < p2,q2 <00,
0
h27m+1 1/1?2
Q, 8A, T)P2dT
Spra hl/p2 / —pz( ) — if0 < py <1 and q3 > pa,
’ T T
0
h27m+l - @ 1/q2
e Q,,B8A, T dt
B2 / (%) - if0 <qgx<1landq < p3.
0 T P2
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Proof. We first compute, forn =0,1,2,...,h€[0,T],andr € [0, T — h],

2n+1
K74 K74 = ZSA 2%—2 2%—1 % . 3.16
P’+] rrth P” rrth = Pt bvEay h,r +2n+1 h,r U avn h ( )

Case 1: 1 < ps,q> < oo. Taking the LP2 norm over r € [0, T — h] on both sides of (3.16)
yields

Qp, (Zp, A — Rp, A h) <27T1Q,, (8A, 27,

and so
n—1 n—1 .
Qp, (%, A~ Hp, A ) <3 Qpy (B A—Tp, A R) <220, <8A, hz—‘f)

{=m {=m
B h27m+l_
Z @ (4027 _ / Q,,(8A, 1) de

h2 ¢ ~ T T

{=m 0

dCase 2:0< py < land g > pr. We have Q72 (Zp,, A — Zp, A, h) < 2"+1§§§(5A, h27"),
and So

n—1
QP2 Rp, A — Ap, A h) <2 2'Q (A h270). (3.17)

l=m

We then argue similarly as in Case 1.
Case 3: 0 < g < 1 < p,. Taking the g» power on both sides of the inequality 2,,(Zp, A

Rp, A, h) <23 ! 2 26Q,, (8A, h27"), using that 0 < g2 < 1, and arguing similarly as in Case
1, we obtain

n—1 h27m+1 - ®
_ Q,,(5A, d
Qp, (Bp, A — R, A, )P <27 3 2902 (54, h27Y) <y, h® / (M> aly

T T
l=m 0

Case 4: 0 < g2 < p» < 1. We raise both sides of (3.17) to the power g>/p2 € (0, 1], use
sub-additivity, and proceed as in Case 3. O

Proof of Theorem 3.1. Step I: convergence along dyadic partitions. We begin by showing that
the sequence (%‘pnA) ~o is Cauchy in ( .0 ([0, T, d]By ) as defined in Definition 2.4

(and therefore so is (.#p, A);2, in view of the identity .#p, A Ip, A=Xp,A— Z%p, A for all
m, n > 0). We do this by establishing the identity, for 0 <m < n,
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1/q2

T
/(sz(%P,,A —e@pmA,h)>q2 dt

hY T
0
(3.18)

o-m+lp . 1/q2
Q,,(8A, r)) dr

< =my—(1V1/p) / dr
~P2,92;Y TV T
0

Case 1: 1 < pa, g2 < co. We divide both sides of the identity in Lemma 3.1 by A and take
the g» power, whence, because g2 > 1 and y > 1, Jensen’s inequality gives

T
/ o (%Zp, A — %p, A1)\ dh
hY h
0
T | 7m+l q2
< 2_”"12()’—1) 2”1(}/*) 7= 1Qp2(8A 7) dT ﬁ
~q2 hyfl - A
0
T h2~ »
Sgpy 2@ D= 1/ / - 1( p2(8A, T)) drdh
’ hy~1 124 T h
0
o—m+lp T . o
e[|t [ Lt (Bano)e
hY— v T’
am=lg

The term in brackets satisfies

T
7 / Llﬁ _ b (27<m71)(y71> _ THT}H) 2 e,
W h T y—1 =

om=lg

and so (3.18) holds.
Case 2: 0 < pr <1, qg»> p>. We have g2/p> > 1 and y > é, and so, arguing as in Case 1

with Jensen’s inequality and Fubini’s theorem yields

T

/ pz(%pnA %pmA mM\% dh
T

0

+1 q2/p2
Q) (8A, ®) yppotdT dh

T
< o=m(yp2—1gq2/p2 -
~q2 hyp2—12— m(ypz 1) VP2 T h
0 0

—m
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T h27m+l o 0

< 2—m(yp2—1)(q2—p2)/ p2 w .L—sz—ld_tﬁ
~P2,92:Y hyp2—1 124 T h
0 0

p—m+lp - ®
< omypr—Dar/p2 / 2,04, 1)) dT
~DP2,Y v T

0

Case 3: 0 < g2 < 1 < py. Using Lemma 3.1 and Fubini’s theorem as in the previous cases,

T T hamtl @
pz(,@pnA %gnA h)\? dh _ 1 Qp,(8A,7) py—ndrdh
W~ | e o )T T
0

0 0
2—m+l T ,_ ®
< ymp-D) / 2p,0A4,7)) " dr
~4q2,Y % T
0

Case 4: 0 < g3 < p» < 1. Arguing as in Case 3,

T

T
/( PZ(‘%PnA %pmA h))qz drt
0

T ho—m+1 - @
< _ 25,84, 7) qu(y—l/pz)d_T
~P2e@ [ pga(y—1/p2) TV T

0 0
p—m+lp T o o
= V) dh | [Qp,(8A,7)\ " dT
hqz(y 1/p2) h v T
0 om— 1.[

m+IT

_ Q ((SA 7)

1 p
Spaary 2 a2y =1/p2) / ( : ) T
0

We conclude in all cases that, as n — 00, #Zp, A has a limit ZA € B;z’qz ([0, T]). We deduce
(3.2) upon sending n — o0, letting m = 1, and noting the bound ||<@1A ||By < ||8A||EV
P2.92 P2:92

Step 2: additivity. We next show that the two-parameter map JA = A+ RA =
lim,,_, o -#p, A is the increment of a path in B¢ that is, for some .# A € BY

PIAP2:91Vq2°
FIA=38IA.
For 6 € (0,1) and A : A2(0, T) — R™, define

PIADP2,91Vq2°

89 Ast i =08As,01+(1—0)s,0 = Ast — Ag 01+(1-60)s — Ar+(1—-0)s.1-
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Fix N=1,2,...and K =1,2,...,2V

— 1, and seté)zzﬁ,\, and L :=2N
[0, T1],

— K. Then, for h €

zn
e]P Ay ,s+6h —ZA (i-DK

iK )
2)H~N h,s+ h

+N
i=1 z
2n
Ip, A = Z A he and
s+6h,s+h = — Y+0h+(1n+1)v h, Y+0h+2n+Nh’
on+N

]PJrN ss—i—h—ZA

2n+N hos+Soew 2n+N h

Therefore, Sp,, \ Ass+n — TP, As,s+0n — I, As+ons+n =1+ 11, where

271
I::—Z A DK ZA K—K+0—1 K—K+¢
- s+ hs+ 5o h — KR s+
=
2 K—1
=— Z Z 8AS 1K2n1:_+( Ly, S+1K K+eh H‘zrfho
i=1 =1
and
on L
= _Z; As+0h+(’n+11)\fh s+0h+Lirh XEAs+9h+’L Ll p, +6h+’Ln++N”’h
j= m=
on
__ZZ‘SA +0h+fL L=l h s+oh+ Lt s+on+ Lo ne
vt | s TN n+N
vl

If 1 < pa < o0, then the triangle inequality gives

||ﬂPn+NA'q'+h - anA~«+9h - anA--i-Gh,--i-h ”Lpz( 0,T—h])
2" K—1

< Z Z 8A | ik-K+e-1 IK K+e

= + hy+ hy+
i=1 (=1 2 7o LP2((0,T—h1)
2" L—1

+ZZ L—Ltm—1 L =
j=1m=1 A0 LR 0 DR b 0ht iy

LP2([0,T —h])
<2"NQ,, (8A,27"h),

and we conclude that
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T ® /a2
/ | Pin At = IR A von = I, Acson ot | Lo qo.r—ipy - dh
hY h
0
T lq -y " g
S +N / 2(8A 2 nh) «n =2N2—n(y—1) / sz((SA,h) ﬁ
h hY h
0 0

(3.19)

Otherwise, if 1/y < p2 < 1, then the sub-additivity of ||-||£§,2([0 T—h) gives

|- ron Ao = T, A

n

o 4+0h — anA +60h,-+h ”LPZ([O T—h]) = 2n+NQP2 (6A,27 nh)

and thus
T @ 1/g2
/ |75 n A in — Ip, Ao — I, Ao sh ”L”Z([O,Tfh]) dh
hY h
0
yny o 1/q2 (3.20)
< pNo—n(y=1/p2) / M ﬁ
- hY h
0
In either case, taking n — oo and invoking Step 1 gives H89 (FA) ‘ y =0 for all dyadic
B, .4, (0, TT)

0.
If p» < oo, then, for any 4, 6 — H(Sg(jA).,.Jrh‘

is continuous, and therefore equal
LP2([0,T—h]

to O forall 8 € (0, 1). In particular, [J A]BV =0, and we conclude from Lemma 2.9 that there
P2:92

exists .# A such that, for almost every (s, 1) € A2(0,T), FA, — FA; = jAst. If pp = oo, then
we have H(Sg (jA) ‘

B (0. = 0 for all dyadic 6 and r < p;, and we argue as above.
r.q) s
The bound (3.3) now follows upon invoking (3.2) and taking the L7142 (dt/7)-(quasi)-norm

on both sides of

Wpiapy (FA,T)

< QA7) +Ty_a§2p2(,%’A,r)'
-Lr()f

~T,p1.p2 o 77

Step 3: convergence along arbitrary partitions. We finish by proving (3.1). Below, we always
take r > 1/y and r > ¢».

Let P:={0=t19 <71 <--- <71y =1} be an arbitrary partition of [0, 1], and, for i =
1,2,...,N,define §; :=t1; —t;_1.Fix he€[0,T] and s € [0, T — h]. Then

N

8jAs,s+h - jPAS,H-h = Z [8ﬂAs+r,'_|h,x+r[h - AS+I,'_1h,S+‘[,'h] = Z%As—i-t,-_lh,s—ﬁ—nh’
i=1 i=1

and so
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N
Qpy(6IA— IpA )2 <> Q, (RA, 5ih)' P2, (3.21)
i=1

Assume first that 1 < pr < oo. If r > 1, then Minkowski’s inequality yields

T 1/r 1/r
/ Qp,(BIA— IpA. )\ dh i / pz(%’A 5:h)
B I . h
0
N Y, @A\ dh v
12 P2 ’ -
=20 [ (P=5) 5
1= 0

-1
§p|,q1,p2,q2,r,y T ”P”y ”(SA”EZz.qz s

and otherwise, if 1/y <r < 1, then

/T< pz(aﬂA IpA, h)) dh _ Z]( pz(%A (Sh))
h = n
0 0

i=1

1
Spianpraary TIPITTT |I6A||By
P2:92

Assume nextthat 1/y < po < 1.If 1/y <r < pp <1, then

T

T N P r/p2
2(MA IpA,h) YN Q,, (%A, 8ih) dh
hYp2 h
0

s
- h
0

i=1

S

1
Seravprary TIPIT T ISAN,
P2:92

Otherwise, if 1/y < p2> < 1 and r > p», then, by Minkowski’s inequality with the exponent r/ p>,

T p2/r T r/pa p2/r
Qp,8IA—IpA,h)\ dh - SN Q,, (ZA,8:h)P dh
hY h - hyp2 n
0 0
N T p2/r
-y /( pz(%A 8h)) dh
i=1 0 h
Sovaparry TIPITPTHISAIE

P2-92
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In all cases, we conclude upon sending || P|| - 0. O

Proof of Theorem 3.2. Step 1: convergence along dyadic partitions. Fix r € [¢q2,00] and 1 <
m < n. The third case of Lemma 3.1 and Minkowski’s inequality yield, for all 7’ € [0, T],

, 1/r
T
/ sz(%pnA—%pmA,h) "dh
wy(h) h
T! h2—m+l o o ’/42 l/r
< /( 1 )r / QPZ(SA,‘L') dt dh
~DP2:92 / fr(h) / TIV% T h
gmmtlp [T q2/r . o Vaa
S G) (w) dr
= 1
0 om—1g &) " TIVE i
2—m+1T/ o P 1/‘]2
<, / QPZ(SA,‘E) d_‘r
~otry ) .L_lvé T

We conclude as in the proof of Theorem 3.1 that (Zp, A)52, C B(;,); ([0, T]) is Cauchy, and thus
has a limit ZA € 15%2;’3,,2([0, T1) that satisfies, for all T’ € [0, T],

» 1r - 142

Q. (ZA, W)\ dh Q,, 64,0\ d
/ M - §1’2 Dl / Llr) ar , (3.22)
o, (h) h a2 s T
0 0

T

and thus in particular (3.7).
Step 2: additivity. We argue as in Step 2 of Theorem 3.1: given 6 = 2£N forsome N=1,2,...

and K =1,2,...,2Y — 1, we deduce as in (3.19) and (3.20) that

T P 1/q2
/ ( H'ﬂPnJFNA"“H’l - anAw-l—@h - anA'-‘r@/’l,'-'rh ”L”N[O,Th])) dh
/ hlvﬁ h
2-nT » 1/(12
Y / (sz(aA,h)) dh
— 1
/ hlvE h

Taking n — oo gives ,,(5¢A, h) =0 for all h € [0, T'] and dyadic 6 € (0, 1). The conclusion
that .# A = 8.7 A and the bound (3.8) then follow exactly as in Theorem 3.1.
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Step 3: convergence along arbitrary partitions. As in the proof of Theorem 3.1, let P = {0 =
T9 <171 <--- <ty = 1} be a partition of [0, 1] and write §; :=17; — ;1 fori =1,2,..., N.
Then (3.21) and (3.22) with r = oo give

N

Qp, (ZA, §ih)! P2
I6.7A—FpAI" <> sup n i)
2 i=10=h=T h

P2,

Qp, (ZA, h)' NP2

<T sup
0<h=|[P|IT h
1npy
1PIr ,_ o @
- /(sz((SA,h)> dh
~P2,92 lvi h )
0 h

and we conclude upon sending ||P|| — 0. O

Remark 3.3. For y > 0 and 0 < p < oo, we introduce the following closed subspace of BZ‘OO

(0. 7] = { A €B) (0. TD: lim sup 2247 _g
p o030 - p,oo 'r—>0+ 0<hI<)r o7 = .

Then the bound (3.22) implies that, with = co and £, = 1, in the setting of Theorem 3.2, we in
1

fact have ZA € B ” gi_o([O, T]). We will use this observation later to make sense of some rough
differential equations in the Davie sense (see Proposition 5.3).

Proof of Theorem 3.3. In view of the relation %A =8 (8. # A — A) = —5§ A, we see that (3.9)
and (3.12) in respectively parts (a) and (b) are satisfied with Z A in place of A.

In part (a), we have y > 1/p,. We may then apply Proposition 2.7 with w(r) = r?, which,
combined with (3.2), immediately yields (3.10). We now apply the interpolation estimate
Lemma 2.7 with p = pp, r = p1, and § = y — 1/p,, for which the hypotheses are satisfied
because of the condition on y and «, to obtain

! pz pz
”%A”B“ [0,T] Sa,y,p , D24’ Ty_pz pl ”%A” ”%A” Y
b1.02 (07D LP2q2 R (0.T)) B}, .4, (10.7])
< /7 (A ) " 15417,
) P - +
~p2.42.7.0 B, 4, (10.71) B, 4, (0.T])
1 1
y——o-—+ -
<T" n Pl (||8A||Ez2vq2([0’ﬂ) + M) .
This concludes part (a) in view of the estimate
[ AlBg  ve@0.7D) Sara 1Ay oy + 1#AlBe o1y - (3.23)
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In part (b), the estimate (3.13) follows as in part (a) from Proposition 2.7 and (3.7). Setting

wq, (T)
1;1/172

w=w4, p)= . p=p2 r=p, ad g=q

gives, with the notation of Lemma 2.8,

P1=P2
T r192

P2 (-1 _ 4oL P12 dr 1 _ L
o(T) = /-Cprpz (1 ) “+m>eq2(f)p1—pz_ < 1=y —aty) €4, (T),
T

~P1:P2,91,92,% r
0

where we have used the final condition in (3.4). Applying Lemma 2.8 to Z A yields

_D

1ol gL |2 Ast| "
ZAlge < T n rig, (T su
I ”Bm,qz ~Qa,P1,P2.q2 (12( ) 0§s<]t;)§T wg (t —s)(t —s5)~ 1/,

P2

m
x | ZAIG,
P2-92

-2 )

-1 o+L Pl T
Semaqko T 70N fm(T)(nMnBl +M) IsANZ

2,492 P2.42

N ST
< TR, (T) (||8A||§1 +M>.
P2-92

We conclude in conjunction with (3.23). O
4. The Young regime

Theorems 3.1, 3.2, and 3.3 are used to obtain results on integrating Besov-regular paths. This
recovers some existing results and also provides some refinements. The results are related to the
question of making sense of the product of two Besov distributions. These integration results and
the precise estimates that accompany them are used to solve differential equations with Besov
driving signals in the Young regime.

4.1. Young integration
Given two measurable real-valued (the finite-dimensional vector-valued setting can be re-

covered component by component) f : [0,7] — R and g : [0, T] — R, we define, for (s,7) €
A>(0, T) and a partition P ={0=19 <171 <--- <ty = 1} of [0, 1],

N
%IID = Z fs+rk,1(t—s)58s+rk,1(t—s),s+rk(t—s)-
k=1
We recall the definition of the families (£,)o<r<o0o in (3.4) and (@, )o<r<oo in (3.5).
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Theorem 4.1. Let ap, a1 € (0, 1) and 0 < po, p1, qo, g1 < 00, define

1 1 1 1 1 1
y=ot+a, —=—+—, and —=—+—,
P2 po P 92 490 41

and assume that f € Bpo (0, T]) and g € Bpl ¢ ([0, TD.

(a) If y > 1 Vo , then there exists I € sz 41 ([0, T]), which we write as

t
I :=/fxdgs fort €[0,T],

such that, for all r € (0, 00) such that r > 1/y and r > gy (note that if q» > 1/y, taking

r = qy is allowed),

lim ”,ﬂ - M) -
I Pll—0 B}, (10,7
Moreover,
6.7 — f‘Sg“]BV ¥a) Ny P2.q2 [f]B“O [g]BP} o’
and

[']]Bgm Seo.ai1,p0,p1,q0.41 (||f||LPo([0,T]) + Tao[f]Bgo )[8]3“1

P11

If, in addition, ag > p— and o > o0 , then

[j]Bal

P1-91

_L
Sao.a1.p0.p1.40.41 ('f(0)| + 7% [f]B ) (8]

prar

(b) IfJ/=1\/pl qi then

lim .77 - MH =0,
|P|—0 ’)2 P2 (10,1

1.7 = £8glBe;, q0.71) Separ [f]ngyqo (elg,  forallr €lga, 00

and

[f]B;‘;_q] Se0.a1,p0,p1,d0:41,¢ (||f||LP0([0,T]) + Taoﬂqg(T)[f]Bﬁg_%) [g]B;'Il_q]

If; in addition, oy > % and a1 > % (note that this implies y = 1), then

[]]BE’I

P41
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Remark 4.1. The requirement throughout Theorem 4.1 that y > 1/p, puts restrictions on the
types of discontinuities that f or g may have. For instance, if o9 < 1/pg, which means that
f can be discontinuous, then a; > 1/p1, so that Proposition 2.1 gives g € C*1~1/71 (and vice
versa). Of course, the bounds (4.4) and (4.8) require that both f and g are Holder continuous,
albeit with /ess Holder regularity than is required in the pure-Holder Young regime.

According to part (b), in the critical case, we may take f € B %ﬁfo and g e B ;{ f;]l with

1 1 1 1
I<—+—=<—+4+—.
po  P1r 40 91
This implies that one of gg or g is finite, and, indeed, if both are finite, then both f and g are
allowed to have discontinuities, or even be nowhere locally bounded; see for instance Proposi-
tion 2.6 or Corollary 2.1. However, in view of Proposition 2.5, they are not allowed to both have
Jjump discontinuities. Moreover, as soon as one of gg or g; is 0o, the other must be no greater
than 1, which means that, if one of f or g has jump discontinuities, the other must be continuous.
These observations are in line with the theory of rough paths with jumps put forward in [26].
Indeed, the Heaviside function

0 if0<tr<1/2,
1 ifl/2<tr<l1

satisfies || H || pl/p = 1 forall 0 < p < o0, and the integral fol fid H; cannot be defined as limits of
p.oo
arbitrary Riemann sums if f itself has a jump discontinuity at # = 1/2 (formally, d H; = §1,2(¢)).

Remark 4.2. It has been known since [43] that the continuous bilinear map defining .# does not
extend from C!' x C! to spaces on which the Wiener measure is supported. This is consistent
with Theorem 4.1; indeed, if ¢ < oo, then, with probability one, Brownian paths do not belong

to B}){g for any p.

Proof of Theorem 4.1. The map A : A>(0,7) — R defined by Ay := fs(g: — gs) satisfies
8Ast := —08f,508s:. Holder’s inequality yields

(SA — < 7 o A a < o .
I ||[Bﬁ2.qzN[f]gpg,qo[g]Bpllyql and || ”]Bp;.ql =< 1 f lzeo o, 1) [e1par

With the notation from Section 3, we have .#¥ = #pA and .# = .# A. The convergence state-
ments (4.1) and (4.5) and the bounds (4.2), (4.3), and (4.6) follow immediately from Theo-
rems 3.1 and 3.2.

If o; > 1/p; fori =0, 1, then Proposition 2.1 gives, forall 0 <s <u <t <T,

18 Agur| < 18fsul 188ur| < [f 1 coo—1/no (8] et —1/m (u — $)X07 /PO (¢ — )1 =1/P1

ap—1/po a1—1/p
50{0,“1,1’(),1?1»110’61| [f]BZS.qo [g]BZ}-ql (u—s) (t—u

and

@ o < @0—1/po (7 ) o
1ANgs, < 1Fllol8lger  Saapon (17O +TO7/PLf 10 Ylglye

41 :
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The bounds (4.4) and (4.8) are then consequences of Theorem 3.3, respectively parts (a) and
b). O

4.2. Differential equations: Young regime
For f:R™ - R"®@R", X :[0,T] — R™, and y € R™, we consider the initial value problem
dY, = f(Y;)-dX, in[0,T] and Yy=y 4.9

in the Young regime, which, in the Besov context, means

1 1

—<a<l, —<p<oo,

2 o

1
0<g <00 ifoz>§, and (4.10)
0<g<2 ifa=1/2,
with the nonlinearity satisfying
feCYW®R™ R"QR") ifa> -, where (1+8)a > 1and sa > 1/p,

“4.11)

= N =

feC?*®R:R"QR")  ifa=-.
Theorem 4.2. Assume (4.10), and fix X € By, ([0, TI; R") and [ satisfying (4.11). Then, for
every fixed y € R™, there exists a unique solution Y € By, (10, T1; R™) of (4.9). Moreover, there
exists a constant M depending onlyona, p, q, T, || f |1, and [X]ng such that [Y]ng <M.

Remark 4.3. As was mentioned in the introduction, a possible shortcut to solving (4.9) is to use
embeddings to reduce the problem to the variation setting. However, the power of the Besov
sewing results of Section 3 is that one can read off all the estimates on the Besov scale, which
not only immediately yields the contraction property for the fixed-point map in the proof of
Theorem 4.2, but also leads to the local Lipschitz continuity of the solution map in the Besov
metric (see Theorem 4.3 below), something that could not be accomplished in, for example, [42].

Moreover, upon embedding Besov- into variation-spaces, some information may actually be
lost. For example, in the borderline regime of (4.10), that is, when X € B,l,{f with g <2 < p,
the known variation embeddings give X € V2 [41, Proposition 4.1(3)], which falls outside of the
Young regime in the variation setting. Meanwhile, there exists X e B,l,éz with ¢ <2 < p such
that X does not belong to V" for any r € [1, 2) (see Proposition 2.2) so Theorem 4.2 does indeed
strictly expand the Young regime of solvability for (4.9).

Proof of Theorem 4.2. For M >0and 0 < Ty < 1 A T, define

Zia =¥ € B0, To]) o=, [¥1gy, < M),

rq —
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which, equipped with the metric (Y, Y) [Y —Y ];@q([o ol is a complete metric space (see Re-
Pq ’

mark 2.4). We will show that, for some sufficiently large M and sufficiently small 7y, depending

only on f and X, the map

(///Y)z=y+/f(Ys)-dXs for 1 € [0, To],

defined in the sense of Theorem 4.1, has a fixed point in 2.

Step 1: M (Zy) C Zy. LetY € Zy. By Lemma 2.4, if o > 1/2, then f(Y) € B‘S"‘ /50 and,
ifa=1/2,then f(Y) € B"‘ ».q- In any case, Theorem 4.1 implies that Z := .#ZY € BO‘ ([0 oD
is well-defined. Moreover, if o > 1/2, then (4.4) gives

(2103, Saupa (L OO+ T3 Dl ) X1,
Sepa (1 oo+ T3P 1o ¥ ) (X1,

and, if « = 1/2 (and thus g < 2), then (4.8) yields
(21512 S (1£100+ T3 77Ut g o@D 11 1Y D12 ) X g1

In either case, choosing first M sufficiently large and then T sufficiently small makes the right-
hand side no greater than M, as desired. 3 ~ N

Step 2: M : Ty — Ly is a contraction. For Y, Y € Xy, define Z=.#Y and Z = . /Y,
so that

t

zi-2,= [ (00 - 5 00) - ax

0

Appealing once more to Theorem 4.1 and Lemma 2.4, we have, for o > 1/2,

) Sty _
[Z = Z1sg, 00700 Sepa Ty~ "LF D) = fF(Dlge [X]g,
Su Ty PN fllers [Y = Ylgg, [X1ps,

~

and,ifa=1/2and g <2,
~ 21 ~
(Z = Z1g112 10,1y Soma To "7 P+ g2 (ToDLF (V) = F ()] 1l X] g1
1/2-1 =
Sum To/ P +Lg2(To) 1 fllcrs [Y — Y]B,‘,{ﬁ[x]g;éf‘

The contraction property is seen upon taking 7y sufficiently small. Because of the choice of Ty,
this process may be iterated on [Ty, 27p], [2Tp, 37p], and so on, and we conclude. O

We conclude this section with the local Lipschitz continuity of the It6-Lyons map.
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Theorem 4.3. Assume (4.10), fix M, and let X', X* € B, ([0, T1), f', f* satisfying (4.11), and
yl', y> € R™ be such that [Xl]ggq \Y [fl]cl.s \Y [XQ]ng \Y, [f2]cl.5 < M (with C'? replaced by
C? ifa = 1/2). Then the solutions Y"' and Y? of (4.9) corresponding to respectively (X', f1, y1)
and (X2, f2,y?) satisfy

CS) '

[Yl - Yz]ng Sa,p,q,M,T (|y1 - y2| + [Xl - Xz]ng + ”fl — f2

Proof. We write

t t
evi=ytote (= pah)axi+ [ [fah - pad)ax]
0 0

I II

+/f2(Y3)d [X}—Xf].
0

111

We estimate I, II, and IIT with the use of Theorem 4.1 and Lemma 2.4, noting first that, by
Theorem 4.2, [Y‘]ng v [Yz]ng Sm.r 1.Ifa > 1/2, then

(HBg, Se.s.p.q.M.T Hfl —f? Hoo +1(f - fz)(Yl)]Bf;_xq/lS SMa.8,p.q Hfl — f? Hoo
+1f = e,
(Mg, Sapgom 120D = OO+ TPLAD = 2]

SM,D{,(S,]),L] |yl _y2| + T&)til/p[y1 — YZ]B;’;yqs

and [III]ng Sﬂ’p,q,M,g [X1 — f(z]B;;q. Combining the estimates for I, II, and III and taking Ty
sufficiently small, depending only on M, we obtain the desired estimate on [0, Tp]. The estimate
on the whole of [0, T], for a constant C depending additionally on 7', can be obtained by iterating
the estimate on the intervals [Ty, 27p], [270, 3Tp], etc. The argument for « = 1/2 and g < 2
proceeds in exactly the same way, replacing f € C'% with f € C?, and the factors of T(;x —lr

with 7,272 (1 4 £,5(Tp)). O
5. The rough path setting

This section develops the theory of rough paths and rough differential equations with Besov
regularity. We first introduce a general definition of Besov rough paths with arbitrarily low regu-
larity. We give a full description of controlled paths in the level-2 case, and, with the use of the
sewing techniques from Section 3, prove well-posedness for controlled rough differential equa-
tions driven by Besov rough signals. We also outline the framework that leads to the same results
for level-N geometric rough paths for N > 3.
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5.1. Besov rough paths
For N € N, define the truncated tensor algebra of level N by
N
T(N)(Rn) =R® @(Rn)(&k7
k=1
with the noncommutative tensor product ®. For a € R, define also
N
TM(R") == {a +) v e TM®R"Y), v € RS
k=1

ForA>0and k=0,1,2,..., N, we define 8, : T™(R") - T (R") and 13 : T™ (R") —
T® (R™) as follows: for v = vy + v + - - + vy € TN (R") with vy € (R™)®k,

5Av=vo+kv1+kzv2+-~+ANUN and Twv=v9+ vl +---+ V.

The level-N Besov rough path regime shall be described with the parameters

<a<l, —<p<oo,
o

N+1
1
0 < f , and 5.1
<g <00 10{>N+1 an G.D
1
0 <N+1 ifa=——.
<g=<N+ il o N1

Definition 5.1. For N € N and «, p, and ¢ as in (5.1), X : A2(0, T) — T, (R") is a level-N
B‘[”,q ([0, T'1)-rough path if

Xy @ Xy =Xy forall (s, 7, u) € A3(0, T) (5.2)
and
1/k
X &)
X, .77 ZH | 53)
P/k q/k

To emphasize the level-N setting, we write also B‘I",q = BZ a:N and omit the “N” when it does
not create confusion. The space B‘;, ([0, T']) is a complete metric space equipped with

pBs, 0.7 (X, Y) 1= ZdB (x®.Y®), (5.4)

p/ k.q/k
where the metric dEkak is defined as in (2.11).
plk.q
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Remark 5.1. When N = 2, Definition 5.1 allows for a complete theory of rough differential
equations, as discussed in Subsections 5.2 and 5.3. For N > 3, and for non-linear equations,
additional algebraic considerations are necessary, as discussed in Subsection 5.4.

Remark 5.2. Even if p,g > N (and thus p/k,q/k > 1 for all k =1,2,..., N), the quantity
(5.3) defines only a quasi-norm. We have the following useful homogeneity property: for A € R

and X € ng, 5, X is a level-N B‘;q rough path, with

118Xl = * 11X g, -

Remark 5.3. With slight abuse of notation, we set X; := X¢ ;. Then (5.2) implies that X is a bona
fide path taking values in TgN)(R"), and in fact X ; = XS_l R X;.
For x,y € TI(N)(R”), we define a metric d by d(x,y) = H|x_1 ® y’ o

L(N®) + N(x1)) and N(x) = maxg1 2,y (k!1x®1)""*, and the norm | -| on (R™)® is taken
to be permutation-invariant; see [19] for more details. It is then easy to see that

where [|[x]l, =

1/q

T
SUPg<ph <t ldX., X 1) ”LP([O,T—h]) Tdr
X llBy, <a.p.q.n -

T¢ T

=[X],, ) oy 5
B2, (0.71.7Y ®"))

that is, B2, ([0, T) = B%, ([o, 1, 7Y (R”)).

5.1.1. Holder embeddings

For a level-N rough path X € B‘;q, because o > l, X is Holder continuous, and, moreover,
the distance between two such rough paths in the Holder distance is controlled by the Besov one,
as demonstrated by the next result. Throughout the rest of the section, we thus may work with
the continuous version of X.

Proposition 5.1. Assume (5.1) and let X, X be level-N B‘;‘,q rough paths. Then, for all k =
1,2,...,N,

HX(k)‘ <1C/1:thl/p>([oj]) S“ap,q |||TkX|||B§;q([o,T]), (5.5)
and
x5
Cke=1/p) ([0,T])
ST o{ (S P N PR I
o j=1 pe %, (10.71) B (o)

Proposition 5.1 is proved with an application of Proposition 2.7. Note also that (5.5) follows
from Proposition 2.1, in view of Remark 5.3.
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Proof of Proposition 5.1. The proof of (5.5) follows by induction. First, Chen’s relations imply
that §X) = 0, so Proposition 2.7 gives the estimate for X! (alternatively, we have XS) =

X, — X, for some X € ng, and so the result is classical).

Now let n > 2 be fixed and assume the estimate holds for each X with m < n. Chen’s
relations then imply that, for0 <s <u <t <T,

n—1
DRSPS SHECD s
m=1
The inductive hypothesis then yields

D

n—1

< m n—m.. __ m(@=1/p).. _ N(n—m)(@—1/p)
NZl|||rmX|||B;q|||rn7mX|||B%q (=) (t =)

m=

S NaXligy [ —s) v (=] [ =) A 0 =)D,

and we conclude by appealing to Proposition 2.7.

To prove (5.6), we note first that §(X(D — XMy =0, so that the estimate for XV — XD is a
consequence of Proposition 2.7.

Fix n > 2 and assume that the result holds for all m < n. We then have, forO <s <u <t <T,

n—1

SX =X = Y (X0 @ X - X 0 X )

m=1
n—1

=2 [(x% X o xi ™ + X e (X5 - X)),
m=1

Then both the inductive hypothesis and (5.5) imply that

‘5(X(n) - X(n))sut

n—1 m . m—k ~
=53 [nm_mxmgg > (e Xlmg, v e[y, )" [x© =X,
m=1 k=1 r/k.q
IR % b ) _ g0
+ Xl 3 (X, v lea-nXllyg )" X -X0]
=1 p/¢,
(s —u)"@=P) (¢ — gy (rmmie=1/p)
n—1 ~ n—m }
< (Xl v 2 Xy, )" |x™—x|
m=1 b IBp/m.q

=)V (@ =P —5) A — )]V
The result now follows from Proposition 2.7. O
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Inspired by the Campanato characterization of Holder continuity, we record here the following
result for Besov rough paths, which follows from Proposition 2.9.

Corollary 5.1. Assume that X : [0, T] — T (R™M) satisfies Chen’s relation (5.2) and, for some
C>0and B €(0,1),

b b

1 1
: b—/Xf,’,l)ds dt <C(b—a)P" foralla <bandn=1,..,N. (5.7)
—a —a

a a

Then there exists M = Mg > 0 such that

’X(n) <MClt—s|P forall (s,1) €0, TV

Along with Lemma 2.7, Proposition 5.1 allows for the following estimates that trade regularity
for integrability.

Lemma 5.1. Assume (5.1) and let X, X e B%q([O, TY). Then, for all j, k € {1,2,..., N} with
Jj <k,

Hx(k)‘ T k=) (@= l/p)|||‘L'kX|||
o B¢, (0.7
Bi)// q//([0 T])
and
HX(k) —_xX® H < 7 k=) (@=1/p) i (|||‘L’kX||| " Vi w.[kf(m )k_i
B% 2, 10.TD INTN ) _ Bg, (10,T]) B2, ([0,T])
i=1
: me (Z)H
B/ (0.7)
Proof. Lemma 2.7 and Proposition 5.1 immediately yield
k=i
Hx(k)’ q T=D@=1/p) HX<1<> e
Bé/z q/J([O T]) Che=t/p) Bllil;k qlj
I
k—j)(a—1 (|| *
N T( e /p)|||ka|||Bu (0.7 HX Bke
r/k.q/k

< T(kij)(ail/p)”lTkX”V](}%q([O,T])'

The estimate for X*) — X® follows in the same way, using the second estimate in Proposi-
tion5.1. O
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5.1.2. Lyons extension theorem

We next present our first application of Besov sewing in the rough path context, which is a
version of the Lyons extension theorem on the Besov scale. For the reader interested in solving
Besov rough differential equations, the subsequent result can be skipped over at no loss.

Theorem 5.1. Assume that 3, 1 <a<l,1/a<p<oo,and0 < g <oo. Then, forany N > M,

there exlsts a continuous map &:B
1,2,...,

qu—>B N such that, given X, XeBp o Jorall k=

(éEX)(k) — X(k),

and, forallk =M+ 1,M+2,...,N

k
‘ SM.N.a.p.g IXlge (5.8)
Bk gk pa;M
and
M k—j
(L J_XJ <
%) Swtvapa Y|X =X <|||X|||Bc;q;Mv|||X|||Ba .M) |
P/k‘I/k j=1 pli.qli Pq;

(5.9)

Proof. It suffices to consider the case where N = M + 1, and the general statement then follows
by induction. For (s, t) € A>(0, T'), define

M
Ay =Y XY @ XY
k=1
Then, for (s, u,t) € A3(0,T),
M
JYESS (—Xg? D@ xX® XM o xE X g 5X§’;{)
k=1
M M M—k+1
— XM gX® 3§ XD XU g XD
k=1 j=1

+ZX<M k+1>®ZX<n x k=)

M
k
_ _ngy kD g x®)

and so
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< M+1
e SUXIE

p/(M—k+1).q/(M—k+1) plk.alk

M
M—k+1) (k)
I8 Al —m+1) < E HX( H 3 HX ‘
B/ 1.q/M+1) qk:1 Bt

The estimate (3.2) from Theorem 3.1 then yields

M+1
172 Allgn-a Sepg IXNE
p/(M+1),q/(M+1) Pq

Setting (&X)M+D .= ZA, it is easy to check that Chen’s relations (5.2) hold. This establishes
the existence of the map and the bound (5.8). To prove (5.9), we take X € B(;q and set

M
= < M— & (k
Ag =) XYH @ X,
k=1
Then
M M
e — k < (M— <& (k
Ay —8Ayq ==Y XM @ X[ + 3 XM HD o X[,
k=1 k=1
whence
~ M . . M+1—k
84 =8A) wune  Spa 2| X %9 (|||X|||Ba V1K e ) .
B+ 1.0/ 41) /2 Bk pat | H’B”"‘M

The bound (5.9) then follows from another application of the sewing lemma estimate (3.2). O

Remark 5.4. Theorem 5.1 is proved in the regime of (5.1) where o > ﬁ When o = ﬁ
and 0 < g < M + 1, there is the subtlety that the component (£X)™+D constructed with The-
orem 3.2 belongs, not to Béﬁf(ﬁﬁ),q/(MH), but to B;)/(MH),q/(MH) for some modulus w that
is a bit worse (by, say, a logarithmic correction) than 7 > ¥+ _Qne can conceive of a gen-
eralization of Definition 5.1 in which the regularity of the various components is given by more
general moduli than the powers t¢, 72% 3¢ etc. for which an extension result in the endpoint
case could be proved, but we do not pursue this here.

These remarks are consistent with Theorem 4.1, which can be seen as a generalization of
Theorem 5.1 when M = 1. Indeed, Theorem 4.1 implies that, for X € B,/7([0, T], R™) with
q <2 < p, the well-defined iterated integrals

t
A2(0,T) > (5,1) > Xy 1= /ax ®dX, cR" @R"

N

bplong, not to B p/2.q)2" but rather B b/2.4)2 for some modulus w involving a logarithmic correc-
tionof 7~ 7.
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5.1.3. Multidimensional stochastic processes as Besov rough paths

Brownian and fractional Brownian motion. A classical result of Z. Ciesielski [9] asserts
that, for p < oo, the paths W(w) of the standard n-dimensional Brownian motion are almost
surely in € B },é%([O, T1). A more precise Orlicz space version appears in [10], see also [50] and
[48, Theorem 3.2] for corresponding moment estimates. Corresponding results for the fractional
Brownian motion appear in [55, Corollary 5.3]. Let W(w) be It6- or Stratonovich Brownian
rough paths over R”, see e.g. [19, Ch.3]. The following regularity results appear to be new, even
in the Brownian rough path case.
Theorem 5.2. Almost surely, W(w) € Bj/;([o, T]) for every p < 0o, and W(w) ¢ Bééio [0, T).
For fractional Brownian rough paths with Hurst parameter H € (1/4, 1/2], the analogous state-

ment holds with B /s ([0, T1) replaced by B ([0, T1).

Proof. The negative inclusion is immediate from the corresponding (well-known) statement for
(fractional) Brownian motion, together with the fact that the rough Besov norm of any rough path
over some path X dominates the classical Besov norm of some X. We show the first statement,
in the Brownian case H = 1/2. By Lemma 2.2, it suffices to check that, with probability one,
(Yup)i2 is bounded in n, where

1
Y,Z; = znp/z/d(wtth+2*")pdl
0

and d is the metric introduced in Remark 5.3. By basic properties of Brownian (rough) paths,
and homogeneity of the metric, it is clear that 2"7/2d(W,, W, ,-)P has the same law as
d(W(0), W(1))?, with (finite) mean cg. This is also the mean of Y,{;,, and one estimates without
problem that the variance of anp goes to zero, with rate 27"*. A Borel-Cantelli argument then
shows a.s. convergence Y,,’;, — cf;. This implies the desired boundedness, and the proof is fin-
ished. (See [35] for a similar argument, applied to Banach valued Brownian motion.) Using basic
facts about fractional Brownian rough paths, in particular existence for H > 1/4 and their nat-
ural scaling properties (see e.g. [19] in case H > 1/3, and [25] for the general case), the above
argument extends immediately to the fractional setting. O

Remark 5.5. The case H > 1/2 is not excluded, but (as level-1 rough path) is not particularly
challenging. On the other hand, the construction of higher order iterated integrals in Theorem 5.1
with the correct Besov (rough path) regularity, is non-trivial even in case H > 1/2.

Remark 5.6. It should be possible to device a theory of Besov Gaussian rough paths, based
on suitable 2D Besov-variation conditions on the covariance, for which the well-developed
Holder/variation theory [24] appears as end-point cases.

Local martingales. We first recall the BDG inequality in the Besov scale. For a (continuous)
local martingale (M; : 0 <t < T) with (yp, po, qo)-Besov regularity, yp — 1/po > 0, and r €
[1, 00), one has

HIIMlle (5.10)

P0-90

< |1sMilgy

P0-90

L7 (Q) Lr(Q)’
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where

SM, := ((M), — (M)5)'/?, (5.11)

the square-root of the quadratic variation of M, is conveniently measured in 2-parameter Besov
sense. (This is essentially found in [50], and also follows from taking F =1 in Appendix A.2.)
Note that the employed left-hand Besov norm on [0, 7] dominates the uniform norm of M, so
that the classical BDG inequality immediately shows that one can replace < above by a two-sided
sandwich estimate.

A multidimensional local martingale M = (M, ..., M™) can be enhanced to a rough process
via the 2-parameter process

t

MS,[ = /(SMX’M_@dMu,

u=s

where the integration is taken in the It6 sense. For this enhanced process, an estimate analogous
to (5.10) holds with the homogenous Besov rough path norm defined in (5.3).

Theorem 5.3 (Rough BDG in Besov scale). Let r € (1,00), p,q € (2,00), and @ € (1/3, 1) with
o —1/p > 0. Let M be an n-dimensional local martingale, and M = (M, M) the resulting Ito
local martingale rough path over R". Then the following BDG type estimate holds,

<

~o,p.q,r

(5.12)

™y 15Mligg

L") allrr@’

where the square-root of the quadratic variation SM is defined as in (5.11).

We do not claim that the ranges of exponents in Theorem 5.3 are optimal.

As can be seen from analogous results in p-variation scale [23,8,38,27], it is illuminating to
consider results such as Theorem 5.3 in an anisotropic setting, in which different components of
the martingale are measured in different norms. This is the content of Appendix A.

Proof of Theorem 5.3. Apply Theorem A.3 pairwise to the components of M, and use (5.10) to
replace Besov norms of M that appear by 2-parameter Besov norms of SM. O

Finally, note that |||M|||B% , on the left-hand side of (5.12) can be strengthened to the ho-
mogenous Besov rough path norm of the canoncial level-N lift of M, which is supplied by
Theorem 5.1.
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5.2. Controlled rough paths: the level-2 case

For the remainder of Subsections 5.2 and 5.3, we consider the level-2 case, that is,

1

—<a<l, —<p=<oo,
3 o
1
0<g<o0 ifa>§, and (5.13)
. 1
0<g<3 1foz=§.

We also follow notation similar to, say, [19,30], and write X = (X(l), X(2)) = (6X,X), with the
convention that Xo = 0.

Definition 5.2. Assume (5.13) and let X € B‘;,q([O, T1,R™).Then (Y,Y):[0,T] = R" xR" ®
(R™) is called an X-controlled rough path over R™, and (Y, Y’) € %Zq <0, T],R™), if

Y € B,, ([0, T],R™), V= By, ([0, T],R" ®R™), and
RY :=8Y —Y'§X € Bfglm([o, T1,R™). (5.14)

We define

)

. Y/)]'%%qvx = [Y/]ng + ”RY)

2a
B P/2.4/2

: X o / o vV o
and, given X, X € qu, Y, Y e @pq’x, and (Y,Y") e %’MX,

dy g gu (VY 7, 7)) =dge (Y, 7)) +dp (RY,RY).
XX, qu( ) =dpe ( )+ Bi/z‘q/z( )
If X = X, we write dx, a5, = dX X, 75,

Lemma 5.2. Assume (5.13) and let X € BY and (Y, Y') e c%’gq’x. Then, for all B satisfying
o+ % < B <2a,

RYH < HRYH Y15 [X] g 5.15
H cr-2rqo,ry) ~P P B2 By B o1
and
Vg, S I, + TP 1) (18 g, + [R50
r/2.q

v o v/
Ifalso X € B%q and (Y,Y') e @zq’i, then
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Lty
CH=2/r((0,T))

Se.B.pq (HRY RYH + Y — 17’]13;4 [X1pe, + [?']ng[x - X]ng) (5.17)

/2 q/2

and
[Y = ¥1gs, Sapg 1Yo — VolIX1sg, + 1FI[X — X1p

T,B—oz—l/p <[Y/ ]B”‘ [X]Bo( + [Y ]Bnt [X — X]Ba + H RY RYH > .
+ p/2 q/2
(5.18)

Proof. For (s, u,t) € A3(0, T), we have SRSM, = SYS”MSX,,‘,, and so Proposition 2.1 gives

IaRsut' NN N [y’ ]B‘Y [X1ge (u—s)*~ 1/[’(l‘ )Ot—l/p.

prq

Because RY e B? , and 8 — ; >a—1/p >0, (5.15) is now a consequence of Proposi-
tion 2.7. The bound (5.17) is proved analogously, from the fact that

S(RY = R )sur| < 18Y7, = 8Y{ 118X ur| + 18], 18X s — 8 X |

Sea (1Y = 71ag, [Xn, + 71y, [X = Klp, ) (= 9)°~7 0 = )*=/7.

Pq
Lemma 2.7 and (5.15) now give

HI/Z

Y B— a——
HR HB(; Naﬂ‘"qT B=1/p

5
B2

Sa.B.p.q (i (H RY H + [Y/]ng [X]B;’jq> ,
17/2 q/2
and so (5.16) follows from the estimate (using Proposition 2.1)

005, o 1Y oo X0, + [ RY | S 110Xy, + 77 X0, + [RY]

17‘1

The bound (5.18) is obtained through virtually identical arguments, with the use of (5.17). O

For a rough path X, a controlled rough path (Y, Y’), and a partition P ={0=19 < 7] <--- <
ty = 1} of [0, 1], we define

N

P
S =Z<Ys+r, 1= X sty (1—s).s+1: (t—s) T ¥ +r, 1(t— s)XH-Tz 1(1=s),5+7; (1= S))
i=1

with the aim to construct the integral of Y against X:
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t

Z: — Zs =/Yrer = Hlll\m L for (s.1) € A2(0,T).
S

Through the remainder of the section, we set

{13"‘ if o > 1/3 and
w(t) = (5.19)

wly3(t) ifa=1/3,
where £,3 satisfies (3.4).

Theorem 5.4. Assume (5.13), X € ng([o, T1,R"), and (Y,Y') € %’qux([o, T],R™ @ R™).
Then there exists (Z,Z') € %gqx([o, T1,R™) such that Z' =Y,

1 1
lim H,ﬂp—zSZH =0 ifot>—,f0rallr>—andrzz, and
| PI—0 BY s, 3 3a 3
| (5.20)
lim Hﬂp =0 ifa=-,
I Pll—0 p/g i 3
/ < Y a o "
|6z —¥sX = ¥'Xlgy oy Sara |R ]B%W (X1ag, +1¥ 1y, IXlg2g, . (5:21)
ifa=1/3, then5Z — Y5X —Y'X € B}, 3 . ([0.T]) and
|6z — vsx — Y'X|| < HRY [X1ge + Y15 IX] (5:22)
B /3,00 (0.T]) ~% P4 B, , Bpg VB, 2
and
z o(T) / ( 2 )
|7 (Biw Sapa Y01 Xllg2s, oo YD, (WX, v X ) (5:23)

Proof. For (s,1) € Ay(0, T), set A := Y5 (X; — X5) + Y/ X Then, forall r < s <1,
8Arsi =—R} (X, — X5) + (Y] = YD) X,
and so

Y /
18Alge  <[RY] .,  (XIsg, + Y1y, 1 g2
B /3.4/3 a2 P4 b4 Byln.as

Lemma 5.1 yields
1AlBg, Spag 1Y oo (XTmg, + [V 1XIBg, Sap.q 1Y lloo [XTmg, + T2 Y] 11Xy

Finally, we note that, by Proposition 5.1 and Lemma 5.2,
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|8Ar9t|<|R ||Xt Xs|+|Yr/_Ys/||Xst|
< (HRY H(cm—l/p [X)ca—1/p + [Y ] ca-1/p IIXllczm—l/p))

X [(s —r) v (t —)PCYP [(s —r) A (t —5)]*7 1P

Sepg MIGs =)V (& =P VP [(s —r) A (£ — )12 /P

where

||

/ 2
o [Xag, + 1Y ag, I

r/2.4/2

The convergence statement (5.20) and the bounds (5.21) and (5.22) then follow from Theo-
rems 3.1 and 3.2, (as well as Remark 3.3) because, with the notation of those theorems,

%AstZ(SZ”—YS(SXS,—YS/XS, fOI‘ (S,I)GAQ(O, T).

Moreover, because 3o — F >0 — - Theorem 3.3 implies that Z € qu, as well as
RA
sup P A 75 Sapg 184l +M
(s.0)€00,7) @ —8)(t — )72/ B33
S |[R |y, DX0ag, + 01 g, WXl
pr/aq

SLO s, (11X, v X1, ) -

Lemma 2.8 (with p(7) = w(t)/t?/3) yields

1/3 2/3
R AN 1R Al

T
1% Algas o)
p/2.q9 /3 q/3

G202 P TR ]p |
w(T)
Sama 7 L Y0, (Xl v IX1g, ) -

The bound (5.23) now follows from writing R%Z = ZA + Y'X, and the fact that, by Proposi-
tion 2.1,

YX[ere <17 1X]r2e
[ HB;,/W—H oo 1XI1 2
< Y IX p2e — + T VP1¥15e 1X lm2e

Sapog Yol ll IIBMW2 [Y'15g I IIBP/Wz

Theorem 5.5. Assume (5.13), let X, X € qu, Y, YHe %gq,x’ and (Y,Y') € %qu,ﬁx M >0,

assume
vy
gg‘;qyx) (

<|Y0| + ¥+ || (¥, Y)

- ) v X g, v |||5<|||ng <M,
rq.X
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and define

t t
th/stXS and Z:/f’sdf(s.
0 0

Then, ifa > 1/3 and (a—}-%) v —a)<p <2,
dy 5.5, (2. Z).(Z. ') S.1 pmg, (X.K) + [Yo — Yol + ¥ — ¥
B—a—1/p ’_ </ " Y _ f’
A P L W}
P/2.4/2
and, ifa =1/3,
dy g (2. 2. (Z.2) S gt pyts K. K) + Yo — Yol + ¥ — ¥

+ TP 3(Tydy g pa (YY), (VX))
Proof. For ease of presentation, define § = 2/3 whenever o« = 1/3. Proposition 2.1 and
Lemma 5.2 give

<

1Y 1l v H?Hmv 1Y v H?’ _ Sapam L

” Y/ _ ?1

Sepq 1Y = Yl + TPy — V'] |
o)
and
[¥ = 7| Sepg 10— ol + ToVr1y — Py,
(0.¢]
Sep.g.m.r 1Yo — Yol + 1Yy — Yol +[X — X]pa,

a—1/p N 25 T Y _ pY

+T <[Y g, + [ R - R HBﬁ )
p/2.4/2

and Lemma 5.1 yields ||X||lex)q([oﬂ) Sa,p.g.m,7 1 and

- %]

< « (X, X).
By 0.7y~ 00T P95 %0

For (s,1) € A2(0, T), we set Ay = Y (X, — X;) + Y/Xy, and Ay, = Yi(X, — X) + V!X, and
write

Ayt — Ay = (Ys — Y)8 Xy + V(8 X5 — 8X0) + (Y] = YD X0 + Y (Xgr — Xy0).
Then
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e % v v / v/
|4-4l5, o[y =7]  0mg, + |7 1 = R, + [ =7 i,
7] 2%
o0 B,

Sepg.m1 1Yo = Yol + Y5 = Yol + ppg, (X, X)
a—1/p 7 Y _ pY
T ([Y Y]ng—i—HR R HBﬁ )
r/2.q/2
For (r,s,1) € A3(0,T),
8(A — A)rg = —RY (X, — Xo) + RN (X, — X) + (V] = Y)X — (V] = YK,
SO

HSA—&A’

/ >/ Y Y
+[Y—Y]ng+HR R HBﬁ ,

r/2.9/2

Ewﬁ S,ot,p,q,M [X_X]ng'F”X—X‘

2
p/3.q/3 ch;lq/Z

and, by Lemma 5.2,

8(a = A)yg

SMoa.pg ([X - X]ng +[Y — ?/]ng + HRY - RYHBﬂ )
r/2.9/2

x (s —r)P=HP @ — )2 lp

n ([Y’ — V'lag, + ”X _ X‘

" —HX—m@J
B2.as

x (s =)@ VP (p — 5)2=1/p),

When o > 1/3, we have o + 8 — % > a — 1/p, and thus, by Theorems 3.1 and 3.3,

faa-

e+ H%A _ A H

p/3al3 Cath=3/

Sa,p,q,M PB‘;gq (X, X) + [Y/ - i/]ng + HRY - RY HBﬂ ’

p/2.q/2
and then Lemma 2.7 gives
8 ] 12/ 1173
H%(A - A)‘ . Squpg TFOUP H%’(A - A)‘ v |#a- %A‘ "
Byj2.q200:TD B/ Ceep=3ir

Se.p.q,M,T PBe, X, X)
B—a=1/p " _ ¥ ra Y _ pt
+7 OY Plag, + | R[], )
r/2.q/2

When o = 1/3, Theorems 3.2 and 3.3 yield
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RA — R A
H%(A A H +  sup ¢ )jf3| /
BY s as (5,0en0,T) @ —8)( — )77

& > Y Y
Spaut X = X pus + X—X‘Bm +[Y’—Y’]B%3+HR _R ‘ ;s
p/2.q/2 p/2.q/2

so that Lemma 2.8 gives

s,

< 1_1 ~ ~
Spam 1 pytp KX+ 737703 (Tdy g s (VY. (7, 7).

2/3
B)/2.4/20.TD

The desired estimate for dy . ((Z, Z'), (Z, Z')) now follows from the fact that Z’ = ¥ and
X, X, A
S Fpg

7' =Y, which, by Lemma 5.2, gives
[Z' = Z'Nps, =1Y — Y1y, SmToapg 1Yo — Yol + X — Xlgg,

+Tﬂ—“—”f’([ — P1gg, + |R = R7|, )
p/2q/2

as well as the equality RZ —RZ=y'X-V'X + (A — A) and the estimate obtained above for
H(A — A) 1n]Bp/2q/2 O

Proposition 5.2. Assume (5.13) and let X € B“ 70, T1, R™), Y € %“q x(0,T],R™), and f €

C2(R™). Then (f(Y), f(Y)) e ‘%)pq x» Where f(Y)’ Df(Y)Y', and

[, FO)azs,

Sepat £l (1+1X1ag,) [(|Y(g| + 10 Y, ) v (Y110, Y’)],%ﬁqu] .

IfXeB%,, Y e,@Zq 0 0€01] fe C?%, and

rq’

(%614 100 Y1, ) v (1511 P00 ) <M and (X1, v X1y, < M.
then

LFOY = £ D)1y, Sepaquinr 1l (1X = Klag, +1¥6 = Tl +dy g sz (V.Y 7. 7))
and

HRf(Y) _ RfM HIB(”‘”" Sapgsm.1 1 fllcas

p/2.q9/2

x (|Y0 — Tol + ¥ = ¥l +dy g 30, (V¥ 7.7 +1X - X]ng) .
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Proof. Set Z := f(Y) and Z' = Df(Y)Y'. Then

RZ:=8Zy — Z.6Xy
1

0

1
— /Df(tY[ + (1 —1)Y,)dTR},
0

1
+ /(1 C 0D’ (Y, + (1 — DY) (Yi — Y)Y!(X; — X,).
0

For 7 € [0, T], we have

0p(DF Y, 7) < IDf o wp(Y', 0) + V'] HszHooa)p(Y, ),
from which it follows from Lemma 5.2 that

2
[DF ()Y Iy, Sq IDF oo 1Y g, + | D27 Y] 1YL,
Separ 1 flcz (14 1X1sg,)
| (0110 Y1, ) v (109110 Y1, )
0 ’ #ryx 0 ’ &y x

From the last line of (5.24), we obtain, using Holder’s inequality and Lemma 5.2,

|#*

<4 10711 |RY |

I 1 I P e oS

2
B, PI2.a/2

r/2.q/2

Sapar e (14 [X1s,)
x | (1Yol + [(Y, Y] e v (1Yl + (Y, Y)]ge ’
0 ’ '%pq,X 0 ’ %pq,x :
We now set Z := f(Y) and Z’' := Df(Y)Y’, and note that, by Lemma 5.2,
Y — Vlag, Sapgarr [X = Xlgg, + 1Yo = Yl +dy 5 gy (VY7 V),

so that
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[f(¥) = f(¥)1gs, =[Df (V)Y = Df(V)¥']pq,
Sg IDf oo 1Y = ¥'lgg, +[DF () = Df (Dlgg, | V']
Sapa IDF oV = Vlig -+ D2 £ |17 = P,
o0
Sepgm | fllc2 [X — Xlpe,
+1fllex (15 = Bl + dy g g, (V.Y T, F))

Next, defining RZ asin (5.24), with Y and X replaced with ¥ and X, we write RZ — R% =
I+ 1II + III, where

1 1
Iy = / Df(tY: + (1 —1)Y)dTR}, — / Df(x¥, + (1 — 1)¥,)d7RY |
0 0

1
10, = / [Df(ﬂ?, L (-0 - Df(?s)]dr (YS’(SXS, _ 17;55(5,)
0

1
_ /(1 DD f(¥, + (1 — 1)¥,)dTsTy (Y;8Xst - 17;5)@) ,
0

and

1 1
I, := //sz(o[tY;—l-(l—t)YS]—i-(l—a)[r?,%—(l—r)f’s])da
0 0

x (r(Yt — V) 4+ —1)Y, — 170) dt
1
- / D2 f (oY, + (1 — ) Fydo (Y, — Ty) | ¥[8 X.
0

Lemma 5.2 immediately yields

Upe <, |D HRY—R?’
Mgz, Sq I1DFllc

2 v Y
o L1 W L W LY

r/2.4/2 r/2.9/2

Sapamt 1fller (1Yo = Fol +1¥5 = Tl + dy g . (.Y (7, 7))
+|p2r| 1x = Xisy,
o0
and

216



PK. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152-231

W2, Sapgrr |D2F] (1 = Plg, +1X = Xgg, ).
o)

p/2.q/2
We next write III := (III¢ + IIIb)Y’SX, where, for (s,1) € Ay(0,T),

1 1
1, ;:/(/sz (a[rY,—l—(l — Y]+ (1 —o)tT; + (1 —I)YS])dr

0 "0

— D> (oY, + (1 — a)?s))dom — 1)
and
1 1
e, :=/‘L’/D2f <a[rY,+(1—r)YS]+(1—o)[fﬁ+(1—T)Ys])dadr (8YS,—8}75,).
0 0

‘We then have

9

1| S (D2 fles (18%tl® +16%,0°) | ¥ = ?”m and |11t

<)o _[ovs o

and so, by Holder’s inequality,

QLT S Y], @p(X, ‘L’)[[sz]ca (a)p(Y, D+ wp (¥, 1)5) H Y — ?HOO
+ 02| epr-7.0].
x
Thus, by Lemma 5.2,
IMgaese S Y] o X Tas, [ (D2 Fles (1Y Ty, + [T ) Y = ¥l + [ D2f | ¥ = P, |
Byan ™ o Pq ¢ pq By 00 00 pa
Sepgmr 1 lcas (1Yo = Tol +1¥ = Py, )
Sapamt fllcs (1Yo = Fol +1¥5 = Tl + dy g g (V.Y 7, 7)
+1X = Ry, ).
Combining all estimates and using the fact that B?)‘;z, a2 C B;l/gfsq)‘;z gives the result. O
5.3. Rough differential equations with Besov signals: the level-2 case
We now consider the initial value problem
dY;=f(¥;)-dX;, in[0,T] and Yo=y, (5.25)
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where y € R™, X € Bj, with «, p, and ¢ satisfying the level-2 conditions (5.13), and the non-
linearity satisfies

feC”R™R"QR") ifa>1/3, where 2+8)a > 1andda > 1/p,

| (5.26)
feC}R";R"QR") ifa= 3

More precisely, we seek a unique X-controlled path (Y, Y’) € %’z q’X([O, T1, R™) satisfying the
integral relation

t
Y :y+/f(Ys)'dXs- (5.27)
0

Theorem 5.6. Assume (5.13), and fix X € B‘[")q([O, T1; R™) and f satisfying (5.26). Then, for
every fixed y € R™, there exists a unique solution (Y,Y’) € %zq <0, T]; R™) of (5.25). More-
over, there exists a constant M depending only on «, p, q, T, || fllc2, and |||X|||B%q such that

/
[(y,Y )]@;q_x <M.

Proof. Define 2 := {(Y, Yy e 22, (0. TLR™) : Yo=y, Yj= f(y)} and, for (Y, Y') € 2,

T, Y= y+/f(Ys)-dXs,f(Y)
0

Theorem 5.4 and Proposition 5.2 imply that .7 is well-defined from 2" to Z". As per Re-
mark 2.4, it is easy to see that 2" is a complete metric space under the metric dx_ 7,

Step 1. Define (Y,Y')e 2 by Y, := y + f(y)X, and 7; := f(y) for t € [0, T], and, for
M > 0, define

Loy ={(V.Y) € 2 tdugg x (V.Y V.Y = M},
which is again a complete metric space. We first show that, for M > 0 sufficiently large and
0 < Tp < 1 sufficiently small, depending only on «, p, g, || fllc2, and |||X|||B%q, J maps Zy
into 2.

Assume that (Y, Y") € 2y and set (Z,Z) := 7 (Y,Y’) € Z". By Lemmas 2.4 and 5.2,

(Z'— JOIBe, =1fM]lag, <IDflleo [Y]Bg,

rq BZot

Saona 107 e (17X, + 77 (17 g, X0, + [ R7] L, )
r/2.9/2
< IDflloo I f oo [X18s, + (1 + [X1pe )YMT~/P,
and Theorem 5.4 gives (recall the definition of w from (5.19))

218



PK. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152-231

|#*

By Proposition 5.2, we find that

w(T)
T2a+1/p "

1 2
o, Soon 1 oo Xl +1G7C0- SO (IIXltsg, v X1, )

[ FO s, St 1 e (14 X sy, )

[(lYél + 10 Y, ) v (Y110, Y')]%Zq,x)z] '

Combining these estimates gives, for some constant C; = C; (a, D¢ I fllczs |||X|||ng> >0,

12/~ )y, + |RZ|

2a
1>/2 q

<c (1 RCICORPYY M2)> . (5.28)

72 +1/p
Ty

We then set M :=2C}, in which case (5.28) becomes

M w(To)
<= +Ci1vacy) 7 i M-

17/2 q/2

12/~ f0)lay, + |R?] .,

We then conclude by choosing Ty > 0 sufficiently small that

w(Ty) - 1
T02a+l/p —2C1(1v2C))’

Step 2.~ \Ye next show that, shrinking Tp if necessary, (? is a cqntr~acti0n on Z). Let
Y, YN, (Y, Y)e Zy,and set (Z,Z2"y =7, Y)and (Z,Z)=T(,Y'). If @ > 1/3, then
B:=(1+ ) satisfiesa + 8 > 1 and 8 > « + 1/p, and so, by Theorem 5.5,

Sa—1/
dx. 9,2, Z', 2, Z") Sasp.alfiea iXigg, To* "

x ([f(Y)’ — P gy, + RO —RID| ) -

r/2.q/2

Proposition 5.2 then yields

dx 5 (Z,Z', 2, Z) Sa5.p.0.11 F s IX g “ray s, (VY Y, Y,

prq

and we conclude upon shrinking 7y as needed. A similar argument holds for when o = 1/3, in
which case Theorem 5.5 and Proposition 5.2 instead give

—1 -~ -~
dy 5132, 2, 2, 2) Sp.g i fl . IX| W Ty~ Pt 3 (Toddy s (V.Y YY),

The fixed-point construction can then be iterated to build the unique solution on all of [0, T]. O
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The notion of controlled-rough path solution of (5.25) can equivalently be characterized in
the Davie sense. More precisely, the increment Y; — Y, minus an appropriate level-2 expansion,
belongs to a Besov space of appropriately higher-order regularity.

Proposition 5.3. Assume (5.13), y € R™, f satisfies (5.26), and Y € B“ ([0, T1, R™). Then
(Y, Y') belongs to A, x and is a solution of (5.25) if and only ifY = f(Y) and

D =Y — Y5 — FX)X — X)) — Df (X)) f(Y)Xg  for (s,t) € A2(0,T)

satisfies

L1
B3 ,300, TLR™)  ifa > 3 and
7< 1 (5.29)
BJs.co(0. TLR") o=

Proof. Given a solution of (5.25) in the sense of rough integrals, the conclusion is an imme-
diate consequence of (5.21) and (5.22) from Theorem 5.4. Conversely, assume that (Y, Y’) =
(Y, f(Y)) and 2 satisfies (5.29). Lemma 2.4 gives f(Y) € B, (0, T,R" ® R™). We then set

R{f =Y —Y - f(Ys)(Xt - X)) = Df(Ys)f(Ys)Xst + Yy for (s, 1) € A2(0,T).

Because « > 1/p, Propositions 2.1 and 5.1 imply that 2 € C*~1/7([0, T],R™), and so, by

Lemma 2.7, 9 € Bi/z /2 The properties of f and Y give (Df(Ys) f(Ys)Xs1)(s,)en00,T) €

]Bp/Z,q/z’ and we conclude that RY € 33772,(1/2’ and, therefore, (Y,Y’) € ‘@Zq,x
As 1n Theorem 5.4, we define

Y=y + / f(¥s)dXs,
0

and (5.21) and (5.22) immediately give

1
P/3 q/3([0 TL,R™) ifa> 3 and
8Y — f(Y)SX = Df(Y) f(Y)X € 1
Bé/&oo,o([O, TL,LR™) ifa= 3
It follows that

. 1
B> .30, TLR™) ifa > 3 and
Y-Ye

B! ([0, T, R™) ifa:l,
p/3,00,0 3

and so Lemma 2.1 and the fact that Yo = Yo = y give Y = Y, as desired. O
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Remark 5.7. In the proof of Proposition 5.3, the (¢ — 1/p)-Holder regularity of the Davie’s
remainder & was used in order to regain integrability (from p/3 to p/2), but the exact value
of the Holder exponent was not important. After the fact, we actually see that ¥ € C*, where
p(t) =w(t)t =3/ whichis a consequence of (3.10) and (3.13) from Theorem 3.3.

We finish this section by proving that the [t6-Lyons map is locally Lipschitz continuous in the
data.

Theorem 5.7. Assume (5.13), fix M > 0, and let y,5 € R™, fl, 2 satisfying (5.26), and
X', X% € B, be such that

2
V] v Il <.
i=1
with C*% replaced by C> when o = 1/3. Then, for i = 1,2, the solutions (Y', f(Y')) € ﬁz
of (5.25) corresponding to respectively y', fi, and X' satisfy

for) H|B‘;q =

q, X!

dy x5, (V1 D O FO)) Sapaganr (I8 =221+ £ = 2

c28 + pB%q X, X)> ’
Proof. By Theorem 5.6, we have [(Y, Y/)]%ﬁq <V (Y, Y]z < Sa.,p.g,m,7 1. Define now
) rq,

Wi, (WD) = (£, DFL (Y ('Y) fori=1,2 and
(W, W)= (fL (D, DFLrH ).

Theorem 5.5 now gives, for some non-increasing function o : [0, 00) — [0, co) satisfying
lim,_, o+ o (7) =0,

dyi x5 (V! FOYD. Y2, f(Y?)

S opg, XX+ 116D = 22O+ IDF OO OD = DFGHFOA)
wiv)

+ o () (LYY = W'hgg, + W = (WY I, + | R = Y|

+0(T) ([(WU’ = (W) Iy, + | R = R

< e (XL X2) + [y =2

prq

(14+8)a
B2

+ ”RW—RWZ

(14+8)a )’
Bp/lq/l

with § = 1 when o = 1/3. Proposition 5.2 yields
1v/ 7! _ 1 Iy rl 2N/ [x
(WD) = Wipe =[f"(¥) = f (X)]pe,

SIX' = X20gg, +1y" =321+ dy g g (V1 F VD Y2 P2O),
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wl W _ it £lr?)
HR - R HIB(IJrS)a = ”R —R B+
r/2.q/2 r/2.4/2

Sy =2+ X = XPge +dg g g VL LY, YR PR,
e 7]

prq

and

o 2y/ W pw? —1fl 2y (y2 (fF'=rHa?
W = (W2 lag, o+ [RY = R0, =107 = 122y, | R o

p/2.9/2 p/2.9/2

s|rt-r

c?’
Combining all terms, we conclude that
dxi x5, (VL SOV P S I =32+ £ 1

+o (To)dx1 x2 a5, (V! F1 YD, Y2, F2(0).

1 w2
o g, (XX

It follows that, if Ty is sufficiently small, then, upon rearranging terms, we have the desired result
on [0, To]. The estimate can be extended iteratively to the rest of [0, 7] as before. O

5.4. Beyond level-2 Besov rough paths

When N > 3, solving nonlinear differential equations driven by level-N rough paths in-
evitably leads to iterated integrals with branching, as, for example,

/ $XH(©XxHadxk, vs. the non-branching /// dxidx’dx*, (5.30)

which are not meant to be well-defined, but rather are part of the augmented information supplied
by some rough path. The second, non-branching term in (5.30) is precisely contained in the
(R™")y®3_yalued third level tier of X, as introduced in Definition 5.1. On the other hand, this is
not the case for the first, branching, information. The situation can be resolved by imposing a
chain-rule, in this specific example,

BXH(8X7) = // dxidx’ + // dxidxi,

which leads to the notion of geometric rough path. Alternatively, one can work with branched
rough paths, where the state space TI(N) (R™) is replaced by a (truncated) Hopf algebra of trees
that allows to encode the full branching information. A complete theory of branched rough paths
and differential equations in the Holder setting is found in [31,33], and in a cadlag p-variation
setting in [26]. Although the branched setting is at first sight more involved (one needs to in-
troduce the Connes—Kreimer and Grossmann-Larson Hopf algebras), the absence of algebraic
constraints ultimately leads to simplifications, notably when it comes to establishing the stabil-
ity of controlled rough paths under composition with regular functions. Perhaps for this reason,
a detailed discussion of level-N geometric rough differential equations in the controlled rough
paths perspective is fairly recent; see for instance [2] and [3]. (For a development of geometric
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rough paths theory without controlled structures, following Davie’s direct approach, we refer to
[25])

For the sake of brevity, we discuss in what follows only the geometric case. Adaptions to
a branched Besov rough paths setting are then straightforward (and easier in a sense).” As in
Definition 5.1, throughout this subsection, we fix «, p, and g satisfying (5.1).

Definition 5.3. A level-N Besov rough path X € ng([O, T1), in the sense of Definition 5.1, is
called geometric if, for all (s, 1) € A,(0, T),

X, € GMR" c TN RY),

where GV (R") is the free step-N nilpotent group, a.k.a. (truncated) character group of the
shuffle Hopf-algebra. (This precisely encodes the chain rule.)

Definition 5.4. A path
N—-1
Y— (Y<°>, Yo Y<N—1>) 110,71 - @D LR R™)
k=0

is called a controlled Besov rough path over R™ with respect to X, and we write G%Z qu( [0, 7Y,
if the “remainders” defined by, for 0 <i <N — 1,

Y -y -y IXO)ifo<i <N -2,

820.1)3 (. 0) > Ry o= {Yle) _yvD ifi=N-1

satisfy

< Q.

Wi = 3 ¢

(N=i)a
Bl’/(N i),q/(N—i)

3 e BiyN—1 .
For geometric X,X e B% , Y € t%’;q’x and Y € '%)Zq,f(’ if (R');_, denote the corresponding

rq’
remainder terms for Y, we define

dag,xx (V.¥) = Z L] e
p/(N=i),q/(N—
Remark 5.8. Definition 5.4 is consistent with Definition 5.2 when N = 2, and, if (Y,Y’) is a

level-2 controlled rough path in the sense of Definition 5.2, then, with the notation of Defini-
tion54,Y =YO, ¥ =YD 5y = R!, and RY = RO.

2 As in [33] one could also go on to embed the branched case into a suitably extended geometric setting, though this
will not (easily) lead to optimal estimates.

223



PK. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152-231

We now outline the steps required to generalize the results from the level-2 case.
First, just as in Theorem 5.4, one checks that

A2(0,T) 3 (s.1) > Ay i=YOXP 4 4 yW-Dx™)

satisfies the assumptions of the Besov sewing results, Theorems 3.1, 3.2, and 3.3. This gives the
rough integral of Y against X, and the estimates from the sewing theorems yield control of the

. . . . o (N+Da
dl(fvfirle)nce between the increments of the integral and A in B 2/(NF1).q/(N+1)°
T o

modified by a logarithmic correction as in (5.22) when o = 1/(N + 1). By proving a
result similar to Lemma 5.2, and with repeated use of Lemma 5.1, one then shows that the rough
integral is a controlled Besov rough path in the sense of Definition 5.4, which we may denote
by [ YdX. Yet another application of the sewing lemma shows that the Besov rough integral
is a bounded linear map on the space of controlled Besov rough paths, and locally Lipschitz
continuous as a function of the integrating Besov rough paths; cf. Theorem 5.5. (This step does
not rely on the geometric property, and one would proceed identically in a branched setting, still
using Theorems 3.1, 3.2, and 3.3, but now with A of a different form.)

Next, the stability of controlled Besov rough paths under composition with a regular map f
must be established. The correct image f(Y), as a higher order controlled rough path, involves
N — 1 derivatives of f. In this (geometric) context, the precise form can be found in [2, Theorem
2.11], or in formula (4.2) of [3]. Checking the required controlled Besov regularity then relies on
the same analytic ideas as were presented in Proposition 5.2.

Finally, using the above results, a Picard fixed point argument yields a unique X-controlled
path Y € L@Z 4.X satisfying the integral relation

asin (5.21), or with

t
Yt=y+/f(YS)'dXs» (5.31)
0

with

f e CN3, where § € (0, 1] satisfies

I 1
(N+8&a>1 and Sa> > ifor > Nl and (5.32)
1
5:1 .f = d <N 1-
ifo=——7andg < +

Theorem 5.8. For N € N, assume (5.1), and fix a geometric rough path X € B}, and f satisfying
(5.32). Then, for every fixed y € R™, there exists a unique solution Y € %gq’x([o, T1,R™) of
(5.31). Moreover; there exists a constant M depending only on N, a, p, q, T, || flc~, and
|||X|||B¢;,q such that [Y]%Zq,X < M. Finally, the solution map is locally Lipschitz continuous in

0, [,X) eR" x CV? x BY .

Remark 5.9. Both here and in the general level-2 case, under a corresponding local condition on
f, existence of a unique solution may only hold on [0, T*) for some explosion time 7*.
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Remark 5.10. The solution is equivalently characterized by a Davie expansion. More precisely,
as in Proposition 5.3, an X-controlled rough path Y is a solution of (5.31) if and only if the

difference of §Y with 1an appropriate expansion belongs to Bg\/];\}fﬁ)’ 4/ (N+1)? if ¢ > N+Ll, or
B

ifo=+w=

1
p/(N+1),00;0 +1°

Appendix A. By P. Zorin-Kranich: pathwise Besov estimate for stochastic integrals

As a proof of concept, we show here a pathwise Besov space estimate for Itd integrals in the
spirit of [27]. In order to keep things simple, we stay at the level of complexity of the rough path
BDG inequality [8,38].

A.l. Vector-valued BDG inequality

In this section, we quickly recall how vector-valued inequalities can be deduced from
weighted inequalities. The basic tool for that purpose is the Rubio de Francia extrapolation theo-
rem, the sharp form of which on R” was proved in [15]. The probabilistic version below is taken
from [14, Theorem 8.1].

A weight on a probability space is an integrable function with values in (0, c0). To a weight
w on a filtered probability space, for any p € (1, 00), is associated the A, characteristic

0pw)=lwls, = sup |E@FIE@PIF)PT| el ool

T stopping time

A weight is said to be an A, weight if its A, characteristic is finite. We will mostly use the
theory of weights as a black box, with the exception of the facts that [w]a, = (w1 A, for any
weight w, and [I]Ap =1 for any p € (1, 00).

The extrapolation theorem for random variables reads as follows.

Theorem A.1 (Rubio de Francia extrapolation [14, Theorem 8.1]). Let r € (1,00) and N; :
(0, 00) — (0, 00) an increasing function. Then, for every p € (1, 00), there exists an increasing
Sunction Ny : (0, 00) — (0, 00) such that the following holds.

Let X, Y be positive random variables defined on the same filtered probability space 2. If for
every weight w € A, on Q, we have

X112y == EAXT w)" < N Qwla) 1Y 1l 2r ) » (A.1)

then, for every weight w € A, on Q, we have

IX N 2r )y < Np(wla,) 1Y 2r ) -

In order to discourage an overly optimistic interpretation of the notation, we note that the
function N, above depends (in a known, explicit way) on r, p, N,.. In particular, if we apply this
theorem twice to go from L" to L?, and then back to L”, we will get a worse (larger) function.

Suppose that we have measurable families of random variables X ™% and Y% such that
(A.1) holds uniformly in 7, s, which vary over some further measure space. Applying Theo-
rem A.l, we obtain a similar inequality with p € (1, 00) in place of r. By Fubini’s theorem, it
follows that
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o

< Np(wla,) H [y

P 4 ’
EllLe Lllizr

uniformly in t. Applying Theorem A.1 again with some g € (1, 00), we obtain

H Hx(r,s) ) < Nq([w]Aq) H Hy(r,s) ) )
L5 || La (w) L5 | La (w)
By Fubini’s theorem, it follows that
x @) <N Hy(w)
H H H L\ g = Nallwls) ‘H Ly g
Il La(w) tlLa(w)
Applying Theorem A.1 one more with some r € (1, 00), we obtain
[x=| , =N Qula) || |[r=] , (A2)
LY || e ! e,
Tl L (w) TILr (w)

One can iterate this indefinitely, obtaining vector-valued inequalities with ever more nested
norms, but we will stop here and specialize to w = 1.

Now we state the weighted martingale inequalities that we will use. The sharp A, weighted
martingale maximal inequality [13] says that, for any real-valued martingale f and any weight
w € Ao, we have

||Mf||L2(w) 5 [w]A2 ||f||L2(w)- (A.3)

The endpoint weighted versions of the BDG inequalities were proved by Osekowski in [47,
46]. In particular, in [46] it was proved that EM f - w < ESf - Mw for any real-valued martingale
f and any weight w, where M denotes the martingale maximal and S the martingale square

function. It is well-known that such estimates imply A, weighted estimates of the form (A.1).
Indeed, by the result of [46], for any real-valued martingale f and weights w, u, we have

EMf-u-w<ESf-Muw) < ES)>w)2EM uw))?wH/2.
By (A.3), we have
EM uw)*w™H? < w4, E@w)’w™HY? = [wla, Eu’w)' /2.
By duality, it follows that
LIMSf < [wla, L2 SS.

By extrapolation (A.2), we obtain the following vector-valued BDG inequality. It is also a special
case of [56, Theorem 1.1].
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Theorem A.2 (Vector-valued BDG). Let p, q,r € (1, 00) and let X% be a measurable family
of real-valued martingales defined on the same probability space 2. Then, we have

gp,q,r

1=
L7($2)

o

LY ||, 4 LY | ;4 ’
s Lz s Lz L7 (Q)

It is likely possible to allow the exponents to be 1, but this would require a different proof.
A.2. Martingale paraproduct estimate

For a discrete time adapted process (F; ;) and a discrete time martingale (g,), the martingale
paraproduct is defined by

My (F.g)i= Y Fojdgj= Y Foj(gjr1—g)). (A4)

s<j<t s<j<t

Using Theorem A.2 in place of [27, Lemma 2.4], we easily obtain the following analog of
[27, Proposition 2.5].

Proposition A.1. Let 0 < r,r; <00, 1 <rop, p,q, po,qo <00, 1 < p1,q1 <o0. Let yp, y1 € R.
Assume

I/p=1/po+1/p1, 1/g=1/q0+1/q1, 1/r=1/ro+1/r.

Then, for any measurable families of discrete time martingales g*), two-parameter adapted
process FYY) | and stopping times T, , < Tx,y on a filtered probability space 2, we have

sz*VO*VlLé’ sup ‘H(F(x‘y%g(x’y))r;vy,t

’
Tgy<I=<Ty,y

L (A5)

S

Li'x™ LI sup
r<\’._),<t§rx,y

(x,y)
Frjévy,t

q0 .—yo 7 PO g, (X, ¥)
HLx X Ly ng,é,vaX,y L) .

L)

Proposition A.1 readily extends to continuous time processes upon replacing I ; (F, g) by the
1t6 integral f; Fy ,—dgy, if F . is cadlag. Indeed, as explained in [27, Section 4], Proposition A.1,
together with a stopping time construction, provides a construction of the It6 integral that comes
directly with the claimed estimate.

Recall Definition 2.3:

T
_ drl/q
IAllgy, == [/(r yoilzgr [ A sn HLp[o,T—h])qT] :
, <
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For a martingale g and an adapted two-parameter process F on a time interval [0, T'], denote

t

As,t ::/Fs,u—dgw

u=s
In order to simplify notation, we extend g; = gr and Fy ; = Fs r fort > T.

Let y =99+ y1 and let p, g, r, etc. be as in Proposition A.1. By the continuous time version
of Proposition A.1, we obtain

<
Lr(@) —

q1 L/q1
< H [fOT (t*m Isupon<e [F.tn] | Loy [O,T]) dTT]

90 4,71/90
: H [foT (T_yo S8+ ”LI’O[O,T]) dr_r]

q 1/q
I:fOT (.C*V ”Sup0<h§T |A.,-+h|”LP[O,T]> d?r:l

A
l14s;,

L7()

(A.6)

L'1(S)

(A7)

L70(R) .

Setting F' =1, y1 =0, and p; = g1 = r1 = 00, this recovers the non-endpoint Besov norm BDG
inequality (5.10); we refer to [50, Thm. 1] for the endpoints. When g is the Brownian motion,
the norm (A.7) is finite for any y < 1/2 and gg € (1, 00).

Now we can show the anisotropic version of Theorem 5.3.

Theorem A.3. Let p, q, r, po, q0, 70, P1, 41, F1 be as in Proposition A.1. Let yy, y1 € [0, 00) with
y1 > 1/p1 and y = yo + y1. Let f be a cadlag adapted process, g a cadlag martingale, and

t

Agyim / 87,0 dgu.

u=s

Then, with S defined as in (5.11), we have

<l

x [158lg (A8)

P0-490

Allry .
1415y, oo

L7 () L'(Q)
If f is also a martingale, then, by (5.10), f can be replaced by Sf on the right-hand side
of (A.8). It is instructive to note that, in this case, the product (s, f) — 8 f; 885, related to the

“paraproduct” A by It6’s product rule, has the same 2-parameter regularity.

Proof of Theorem A.3. Specializing the previous discussion to F = §f, it suffices to estimate
(A.6). Assuming that y; > 1/p1, we will show that

T 1/q1

q1 dr
! bt <
/ (r ) — | Sy, - (A9)
LP1[0,T]

0

sup |8f...+4]

O<h<t
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Indeed, the hypothesis ensures that f is (a.e. equal to) a (y; — 1/p1)-Holder function (see
e.g. Proposition 2.1). Therefore, the supremum can be replaced by the supremum over & €
- (0,11 N Z[1/2]), where Z[1/2] is the set of rational numbers with denominator that is a
power of 2. By the monotone convergence theorem, it suffices to consider & € T - Dy, where
Dy ={1,...,2M} / 2N as long as we obtain a bound independent of N. Note that

sup |8fs,s+h| = sup |8fs,s+h|
hetDy1 he(t/2)DyU((t/2) Dy +1/2)
= sup (|5fs,s+h|p1 + |5fs,s+r/2-+—h|p])1/pl
he(t/2)Dy

< sup  (|8fsstn|” + [8fsresstesen] TP+ [8fs shep2] -
he(t/2)Dy

Taking LP! norm in s, we obtain

sup  [8f. 4| <27l sup  |8f. 4] +[8f 2] o -
hetDy+1 J221 he(t/2)Dy LP1

Iterating this, we obtain a uniform estimate in N provided that y; > 1/p;. This shows (A.9),
which in turn implies (A.8). O
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