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Abstract

Rough path analysis is developed in the full Besov scale. This extends, and essentially concludes, an 
investigation started by Prömel and Trabs (2016) [49], further studied in a series of papers by Liu, Prömel 
and Teichmann. A new Besov sewing lemma, a real-analysis result of interest in its own right, plays a key 
role, and the flexibility in the choice of Besov parameters allows for the treatment of equations not available 
in the Hölder or variation settings. Important classes of stochastic processes fit in the present framework.
 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Rough path theory gives meaning to differential equations of the form

dYt = f0(Yt )dt +
n∑

i=1

fi(Yt )dXi
t , (1.1)

where X is an n-dimensional path of regularity α. When α > 1/2, the equation can be understood 
as a Young integral equation, which covers both the α-Hölder and p-variation setting, where 
p = 1/α. When α ≤ 1/2, or p ≥ 2, it was understood by T. Lyons [44] that X needs to be 
enhanced with additional information to restore well-posedness of the problem. The resulting 
rough path interpretation reads

dYt = f0(Yt )dt + f (Yt )dX, (1.2)

where the object X should be thought of as the original path (X1, . . . , Xn) enhanced with 
sufficient extra information, typically interpreted as iterated integrals, to regain analytic well-
posedness. The Hölder case with α > 1/3 is found e.g. in [19], the general “geometric” case 
(that is, the enhanced object X satisfies a first-order calculus) with α > 0, both in the Hölder 
and variation cases, is found in [25], and previous works by Lyons and coworkers focused on 
the continuous p-variation setting.1 The non-geometric setting can be analyzed using branched 
structures [31], but see also [33] for a reduction to the geometric case.

1 The case of discontinuous p-variation rough paths, as required for stochastic processes with jumps, is more recent 
[26].
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This work is devoted to Besov rough path analysis, that is, we consider driving signals be-
longing to the Besov space Bs

pq with 0 < s < 1, 1/s < p ≤ ∞, and 0 < q ≤ ∞. The Hölder 
and variation settings appear as end-points in a Besov-scale of rough path spaces, as indicated 
in Fig. 1, in which regularity s ∈ [0, 1] is plotted against inverse integrability 1/p ∈ [0, 1]. 
When p = q = ∞, Bs

∞,∞ = Cs , the space of s-Hölder continuous paths. On the other hand, 
we have the embeddings B1/p

p,1 ⊂ V p ⊂ B
1/p
p,∞ (see Proposition 2.3 for more precise statements). 

For 1/p < s ≤ ∞, Bs
pq embeds continuously into Cs−1/p, and we prove a generalization of this 

result to paths taking values in a general metric space (Proposition 2.1). Rough analysis begins 
to come into play when s ≤ 1/2, and requires an enhanced state space Bs

pq , depending on the 
level of roughness [1/s] (see Definition 5.1).

In view of these embeddings, the sheer task of solving (1.2) driven by Besov rough paths 
can be accomplished by embedding rough Besov spaces into rough Hölder or variation rough 
path spaces (see [22,20], also Section 5.1.1.) However, in the first case, due to the loss of Hölder 
regularity for finite p, this requires a strong regularity requirement (a large lower bound for s), 
while the second approach (which, in some sense, is taken in [20,42]) provides no estimates with 
Besov (rough-path) metrics.

One of the main contributions of this paper is the well-posedness of RDEs driven by Besov 
rough paths, with local Lipschitz estimates of the solution (a.k.a. Lyons-Itô) map in the correct 
Besov spaces (see Theorems 4.2, 4.3, 5.6, 5.7, and 5.8):

Theorem 1.1. If 0 < α < 1, 1/α < p ≤ ∞, and 0 < q ≤ ∞, then, under natural regularity as-
sumptions on the vector fields, there is a unique solution flow to (1.2) such that the Lyons-Itô 
map X (→ Y is locally Lipschitz continuous in the full Bα

p,q-Besov scale.

Moreover, we succeed in solving (1.2) for Besov driving signals for which the Besov-variation 
embedding is too crude to allow for the use of the variation techniques, even in the Young regime. 
For example, we may treat X ∈ B

1/2
pq , q ≤ 2 < p, with Young integration (Theorem 4.2). On the 

other hand, the variation embedding [41, Proposition 4.1(3)] gives X ∈ V2, which falls outside 
of the Young regime in the variation setting, and indeed, there exists X ∈ B

1/2
pq with q ≤ 2 < p

such that X does not belong to Vr for any r ∈ [1, 2) (see Proposition 2.2).
Rough differential equations in the Besov scale with α > 1/3, p > 3, and q ≥ 1 were studied 

via paracontrolled distributions in [49]. (The authors comment in detail on the difficulties of this 
approach for general α > 0.) In [20], results are obtained for RDEs in a Besov–Nikolskii type 
scale, although the interpolation of non-linear rough paths spaces of Hölder and variation used 
therein fails to yield the precise estimates in the Nikolski scale Nα,p ≡ Bα

p,∞. Further progress 
on RDEs in the Besov–Sobolev scale Bα

p,p = Wα,p , notably existence and uniqueness, is made 
in [42], but estimates of the solution map in terms of the correct Besov-Sobolev norm appeared 
as beyond reach of that paper’s approach [42, Remark 5.3]. Theorem 1.1 essentially completes 
this line of investigation.

1.1. Sewing in the Besov scale

Our method differs from all the aforementioned works, in that we incorporate the Besov scale 
from the very beginning of the analysis, at the level of sewing. We recall that sewing [16,30,17] is 
a real analysis method that not only underlies rough integration, but has become a most versatile 
tool in the field of rough analysis. It yields a generalized integration map
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Fig. 1. Type diagram for rough path spaces. Note monotonicity with respect to both the regularity and - in view of the 
compact domain [0, T ] - integrability parameters. The dotted line helps to visualize the Besov–Hölder embedding; the 
dashed line hints at a close connection between variation and critical Besov spaces (cf. Section 2.2).

(Ast )0≤s≤t≤T (→




tˆ

s

Ar,r+dr





0≤s≤t≤T

for appropriate two-parameter maps A, and also provides a precise estimate for the error

tˆ
s

Ar,r+dr − Ast .

A central contribution of this paper (Theorems 3.1, 3.2, and 3.3) is to generalize the sewing result 
to allow for two-parameter maps A measured with Besov type regularity. That is, the map A is 
taken to satisfy

‖δA‖Bα
pq([0,T ])

:=




T̂

0

(
sup0≤h≤τ sup0≤θ≤1

∥∥A·,·+h − A·,·+θh − A·+θh,·+h

∥∥
Lp([0,T −h]

τγ

)q
dτ

τ




1/q

< ∞

(1.3)
for sufficient parameters γ , p, q > 0 (with the obvious modification if q = ∞), cf. Definition 2.3. 
When p = q = ∞, the requirement (1.3) reads as the standard Hölder type condition
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sup
0≤s<u<t≤T

|Ast − Asu − Aut |
|t − s|γ < ∞,

in which case, as is well-known, the sewing procedure can be carried out as long as γ > 1. In 
the present Besov setting, we similarly require that γ > 1, in addition to γ > 1

p . This secondary 
condition is more than just technical, and it turns out, in the context of solving (1.2), to rule out 
exactly those regimes of Besov regularity that allow for jump discontinuities. Indeed, this is to 
be expected, in view of the analysis in [26], which explains that the presence of jumps requires 
additional augmented information.

We note, however, that more flexibility is allowed in the regularity parameter γ if the sec-
ondary integration parameter q is tuned sufficiently small (thus strengthening the condition 
(1.3)). In particular, if 0 < q ≤ 1 ∧p, then the sewing map can be constructed even if γ = 1 ∨ 1

p . 
One interesting application is the refinement in interpreting multiplication in Besov spaces. In 
particular, in Theorem 4.1 below, the Young integral

(f, g) (→
·ˆ

0

frdgr

may be defined for f and g belonging to critical Besov spaces containing possibly discontinuous 
functions, for example, f, g ∈ B

1/2
2,2 (see Remark 4.1).

A first major difficulty faced in adapting sewing to the Besov setting is the fact that functions 
of Besov regularity are, a priori, only defined pointwise almost everywhere. On the other hand, 
sewing has an inherently pointwise character, as it is based on the Riemann-sum type limit

tˆ
s

Ar,r+dr := lim
‖P‖→0

∑

[u,v]∈P

Auv, P a partition of [s, t]. (1.4)

We work around this challenge by retooling the viewpoint of Riemann sum: for a fixed partition 
P of the unit interval [0, 1], we instead consider the map

(s, t) (→
∑

[u,v]∈P

As+u(t−s),s+v(t−s)

whose limit in the generalized Besov metric, as ‖P ‖ → 0, may be more easily analyzed.
Another obstacle to overcome is that Besov spaces do not (a priori) form an algebra, which 

complicates the task of using the Besov sewing result to construct a unique fixed point to solve 
RDEs. More precisely, the technique for forming solutions of (1.2) is to apply the Besov sewing 
procedure to maps of the form

Ast := f0(Ys)(t − s) +
n∑

i=1

fi(Ys)(X
i
t − Xi

s) + (higher order terms) ,

yet, in the multiplication of f (Y ) with X, integrability may be lost. A fine interplay with em-
beddings is required to “close the loop”. This requires not only classical embeddings as in 
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Proposition 2.1, but also a generalization to two parameter maps belonging to Bα
pq (Proposi-

tion 2.7).
Besov sewing is likely to prove interesting in its own right. Applications of sewing range 

from RDEs, to rough partial differential equations [29,28], mean-field RDEs [1], to the analysis 
of level sets in the Heisenberg group [45], and even as an effective replacement of Itô’s lemma 
when put in a martingale context: Lê’s stochastic sewing [39]. Besov sewing, and possible ram-
ifications thereof along the said extension, is thus likely to be of interest beyond the precise 
application presented in this work. We finally note that the works [34,53] in the context of reg-
ularity structures suggest higher-dimensional generalization of sewing in the spirit of [12], but 
such investigations are not the purpose of this paper.

1.2. Stochastic processes as Besov rough paths

The prototypical example of a (level-2) rough path is the Brownian rough path, that is, (multi-
dimensional) Brownian motion enhanced with iterated integrals in the Itô or Stratonovich sense. 
Its precise “(1/2, ∞−, ∞)” regularity improves the standard (rough path) Hölder regularity 
(1/2−, ∞, ∞). To the best of our knowledge, and despite several works on Besov rough paths, 
this result (Theorem 5.2), despite its fundamental character, appears to be new. (Our only ex-
planation for this is that the original proof of the Brownian motion case [50] is based on Haar 
wavelets and it does not easily extend to rough paths.) The argument also extends to fractional 
Brownian motion, as we briefly point out. (Although this is not pursued here, the works [18,37]
make us confident that a Gaussian rough path theory in the Besov scale is possible, which some-
what interpolates between the Hölder and variational theory introduced in [24].)

Another important class of Besov rough paths arises from semimartingales [11,23,40,8]. The 
key issue here is to handle the local martingale part, which can be done in quantitative way 
employing ideas from harmonic analysis, developed in a series of papers [23,8,38,27] with focus 
on p-variation (rough path) metrics. We formulate as Theorem 5.3 the corresponding statements 
in the Besov scale, relying crucially on the material of Appendix A, kindly contributed to us by 
Pavel Zorin–Kranich.

Semimartingales (and more generally Dirichlet processes) are obtained from a local mar-
tingale M by adding some path V ∈ Bα′

p′,q ′ ⊂ V 1/α′
, provided α′ − 1/p′ > 0. This requires 

understanding the integrals ́ δM ⊗dV, ́ δV ⊗dM, ́ δV ⊗dV in the 2-parameter Besov scale, 
which is possible using the analytic estimate given in Section 4.1.

For the sake of completeness we note that Besov regularity of Feller or Markov processes has 
been studied by several authors, e.g. [32,51], also [21] for a recent contribution. Studying the 
Besov rough path regularity of such processes is not the purpose of this paper. Note however 
that many Feller diffusions can be constructed as Itô SDE solutions, which coincide with the 
solution provided by rough path theory, with Itô Brownian rough driver, whenever both theories 
apply (see e.g. [19, Sec. 9.1]). It is then clear that Besov regularity results for RDE solutions, 
as put forth in this paper, have immediate implications for the Besov regularity of such Markov 
processes.

1.3. Notation

Throughout, fix a finite time horizon T > 0 and set &d(s, t) = {(r1, r2, . . . , rd) ∈ [s, t]d :
r1 ≤ r2 ≤ · · · ≤ rd}, given s < t in [0, T ] and some integer d . Given f : [0, T ] → Rm, we define 
δf : &2(0, T ) → Rm by δfst := ft −fs , (s, t) ∈ &2(0, T ), and, if A : &2(0, T ) → Rm, we define 
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δA : &3(0, T ) → Rm by δAsut := Ast − Asu − Aut for (s, u, t) ∈ &3(0, T ). Note that, for f :
[0, T ] → Rm, δ(δf ) ≡ 0), and, for A : &2(0, T ) → Rm, if δA ≡ 0, then A = δf for some path f
(see Lemma 2.9 below for an “almost-everywhere” version of this statement).

With slight abuse of notation, a map f : [0, T ] → Rm is also understood as a function on 
&2(0, T ) by writing fst = fs for (s, t) ∈ &2(0, T ). Then, for instance, if f, g : [0, T ] → Rm, the 
notation f δg means (f δg)st = fsδgst .
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2. Spaces of Besov type

2.1. Metric space valued-functions

Given a metric space (E, d), measurable f : [0, T ] → E, p ∈ (0, ∞], and τ ∈ [0, T ], we set, 
with the usual modification when p = ∞,

ωp(f, τ ) := sup
0≤h≤τ




T −hˆ

0

d(fs, fs+h)
pds




1/p

. (2.1)

Definition 2.1. Let α ∈ (0, 1) and p, q ∈ (0, ∞]. We say f ∈ Bα
pq([0, T ]; E) if, for some (and 

therefore every) x0 ∈ E, d(f, x0) ∈ Lp([0, T ]), and

[f ]Bα
pq([0,T ]) :=




T̂

0

(
ωp(f, τ )

τα

)q dτ

τ




1/q

< ∞.

Given a non-decreasing function ω : [0, ∞) → [0, ∞) that satisfies limr→0+ ω(r) = 0, we say 
f ∈ Bω

pq([0, T ]; E) if d(f, x0) ∈ Lp([0, T ]) and

[f ]Bω
pq([0,T ]) :=




T̂

0

(
ωp(f, τ )

ω(τ )

)q dτ

τ




1/q

< ∞;

in both cases, the usual modification is made for q = ∞.

Remark 2.1. The definition of the space Bα
pq depends on the choice of metric d used in (2.1), but 

we suppress this explicit dependence, since the choice of metric is usually clear from context.
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Lemma 2.1. Assume f : [0, T ] → E is measurable and, for some 0 < p ≤ ∞,

lim
τ→0

ωp(f, τ )

τ 1∨1/p
= 0.

Then f has a version which is constant on [0, T ].

Remark 2.2. The function f satisfies the assumptions of Lemma 2.1 if, for some 0 < q ≤ ∞
and γ > 1 ∨ 1

p ,

T̂

0

(
ωp(f, τ )

τγ

)q dτ

τ
< ∞.

Thus, Definition 2.1 is vacuous once α > 1 ∨ 1
p .

Proof of Lemma 2.1. For τ ∈ [0, T ], define ρ(τ ) := ωp(f, τ )τ
−

(
1∨ 1

p

)

. Then, for all h ∈ [0, T ], ´ T −h
0 d(ft , ft+h)

pdt !p ρ(h)ph1∨p . Given t ∈ [0, T ] and h ∈ [0, T − t], we may write

d(ft , ft+h) ≤
n∑

k=1

d
(
ft+(k−1)h/n, ft+kh/n

)
.

If p ≥ 1, we then have




T −hˆ

0

d(ft , ft+h)
pdt




1/p

≤
n∑

k=1




T −hˆ

0

d
(
ft+(k−1)h/n, ft+kh/n

)p
dt




1/p

!p ρ

(
h

n

)
h

n→∞−−−→ 0,

while if 0 < p < 1,

T −hˆ

0

d(ft , ft+h)
pdt ≤

n∑

k=1

T −hˆ

0

d
(
ft+(k−1)h/n, ft+kh/n

)p
dt ! nρ

(
h

n

)p

h
n→∞−−−→ 0.

In either case, we conclude that, for all h ∈ [0, T ], d(ft , ft+h) = 0 for Lebesgue almost-every 
t ∈ [0, T −h]. By Fubini’s theorem, this implies that there exists s ∈ [0, T ] such that d(fs, ft ) =
0 for Lebesgue almost every t ∈ [0, T ], and we conclude. !

Remark 2.3. The characterization of Besov spaces given in Definition 2.1 is useful for our pur-
poses, since it reflects that Besov regularity is a generalization of Hölder regularity, wherein 
continuity is measured with the Lp-modulus ωp . Strictly speaking, and similar to Lp = Lp/ ∼
in Lp-theory with f ∼ g iff f = g a.e. on [0, T ], the above defines a space of measurable func-
tions Bα

pq ⊂ Lp , the same quotienting procedure then yields Bα
pq ⊂ Lp . We will not make this 
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distinction explicit in what follows and in any case frequently can work with continuous repre-
sentatives (though there is no a priori assumption in this regard!). In particular, for 0 < α < 1 we 
have Bα

∞,∞ = C0,α , the classical Hölder space of exponent α.
We often write Bα

pq([0, T ]) = Bα
pq([0, T ]; E) when it does not create confusion. A common 

example for E is Rn with the usual Euclidean metric; other choices, such as certain Lie groups, 
also arise naturally in the context of geometric and higher order rough paths (see Section 5). In the 
Euclidean case, Definition 2.1 is equivalent to the standard one, in terms of Fourier analysis and 
Littlewood-Paley blocks, exactly when 0 < α < 1, 1

1+α < p ≤ ∞, and 0 < q ≤ ∞ (see Triebel 
[54]). However, in what follows, nothing is lost by considering the space from Definition 2.1
even when p ≤ 1

1+α .

Suppose E is a Banach space. If 1 ≤ p, q ≤ ∞, then Bα
pq([0, T ]; E) is itself a Banach space. 

Otherwise, ‖·‖Bα
pq

is only a quasi-norm, but Bα
pq([0, T ]) is still a complete metric space, with 

metrics defined as follows:

Definition 2.2. Assume E is a Banach space, ω : [0, ∞) → [0, ∞) is non-decreasing,
limr→0+ ω(r) = 0, and 0 < p, q ≤ ∞. Then Bω

pq([0, T ]; E) is made into a complete metric 
space with the metric given by

dBω
pq([0,T ];E)(f, g)

:=






‖f − g‖p
Lp([0,T ];E) +

T̂

0

(
ωp(f − g, τ )

ω(τ )

)q dτ

τ
if 0 < q ≤ p < 1,

‖f − g‖Lp([0,T ];E) +
T̂

0

(
ωp(f − g, τ )

ω(τ )

)q dτ

τ
if 0 < q < 1 ≤ p,

‖f − g‖p
Lp([0,T ];E) +




T̂

0

(
ωp(f − g, τ )

ω(τ )

)q dτ

τ




p/q

if 0 < p < 1 and q > p.

We refer also to the work [41] on nonlinear Besov spaces, in which a further, discrete char-
acterization is given when α > 1/p. This is precisely when every f ∈ Bα

pq([0, T ]; E) has a 
Hölder-continuous version (see Proposition 2.1 below). The definition given in [41] differs 
from Definition 2.1 in that the Lp-modulus of continuity ωp(f, τ ) in (2.1) is replaced with ´ T −τ

0 d(ft , ft+τ )
pdt . As the next result shows, these two definitions are equivalent.

Lemma 2.2. Assume (E, d) is a complete metric space, and let 0 < α < 1 and 0 < p, q ≤ ∞. 
Then, for all f ∈ Bα

pq([0, T ], E),

[f ]Bα
pq([0,T ],E) !α,p,q

[ ∞∑

n=1

(
(2n/T )α

∥∥d(f·, f·+2−nT )
∥∥

Lp([0,T (1−2−n)])
)q

]1/q

!α,p,q C2[f ]Bα
pq([0,T ],E).
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To prove Lemma 2.2, we require the following standard lemma. It follows immediately from 
subadditivity if 0 < q < 1, and the case q ≥ 1 is [36, Lemma 1.d.20].

Lemma 2.3. Let λ > 1 and 0 < q ≤ ∞. Then, for all nonnegative a0, a1, a2, . . .,

∞∑

n=1



λn
∞∑

j=n−1

aj




q

!λ,q

∞∑

n=0

(λnan)
q .

Proof of Lemma 2.2. The inequality is invariant under scaling in T , so it suffices to consider 
T = 1. Given f ∈ Bα

pq([0, 1], E), the right-hand inequality is established with the chain of in-
equalities

[ ∞∑

n=1

(
2nα

∥∥d(f·, f·+2−n)
∥∥

Lp([0,1−2−n])
)q

]1/q

≤
[ ∞∑

n=1

(
2nαωp(f,2−n)

)q

]1/q

≤ 1
(log 2)1/q




∞∑

n=1

2−nˆ

2−n−1

(
ωp(f,2τ )

τα

)q dτ

τ





1/q

= 2α

(log 2)1/q




∞∑

n=1

2−n+1ˆ

2−n

(
ωp(f, τ )

τα

)q dτ

τ





1/q

= 2α

(log 2)1/q
[f ]Bα

pq([0,1],E).

To obtain the left-hand inequality, we first write

[f ]Bα
pq([0,T ],E) ≤ 2α(log 2)1/q

[ ∞∑

n=1

(
2nαωp(f,2−n)

)q

]1/q

.

Set m0 := 0, choose h1 ∈ [0, 1/2] such that ωp(f, 1/2) = ‖d(f·, f· + h1)‖Lp([0,1−h1]), and let 
m1 = 2, 3, . . . be such that 2−m1 < s ≤ 2−(m1−1). Then, for all n = 1, 2, . . . , m1 − 1,

∥∥d(f·, f·+h1)
∥∥

Lp([0,1−h1]) = ωp(f,2−n).

Continuing inductively, we define sequences 1/2 ≥ h1 > h2 > h3 > · · · → 0 and 2 ≤ m1 <

m2 < · · · → ∞ such that, for k = 1, 2, . . ., we have 2−mk < sk ≤ 2−(mk−1) and, for all n =
mk−1, mk−1 + 2, . . . , mk − 1,

∥∥d(f·, f·+hk )
∥∥

Lp([0,1−hk ]) = ωp(f,2−n).

We thus write
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∞∑

n=1

(
2nαωp(f,2−n)

)q =
∞∑

k=1

mk−1∑

n=mk−1

(
2nαωp(f,2−n)

)q

≤ 1
2αq − 1

∞∑

k=1

(
2mkα

∥∥d(f·, f·+hk )
∥∥

Lp([0,1−hk ])
)q

.

We next take the dyadic expansion of hk, expressed as

hk =
∞∑

j=mk−1

εk
j 2j for εk

j ∈ {0,1},

so that the triangle inequality gives

∥∥d(f·, f·+hk )
∥∥

Lp([0,1−hk ]) ≤






∞∑

j=mk−1

∥∥d(f·, f·+2−j )
∥∥

Lp([0,1−2−j ]) for 1 ≤ p ≤ ∞ and




∞∑

j=mk−1

∥∥d(f·, f·+2−j )
∥∥p

Lp([0,1−2−j ])




1/p

for 0 < p < 1.

The proof is then finished with the use of Lemma 2.3: if p ≥ 1, then

∞∑

k=1

(
2mkα

∥∥d(f·, f·+hk )
∥∥

Lp([0,1−hk])
)q

≤
∞∑

k=1



2mkα
∞∑

j=mk−1

∥∥d(f·, f·+2−j )
∥∥

Lp([0,1−2−j ])




q

≤
∞∑

n=1



2nα
∞∑

j=n−1

∥∥d(f·, f·+2−j )
∥∥

Lp([0,1−2−j ])




q

!α,q

∞∑

n=1

(
2nα

∥∥d(f·, f·+2−n)
∥∥

Lp([0,1−2−n])
)q

,

and, if 0 < p < 1,

∞∑

k=1

(
2mkα

∥∥d(f·, f·+hk )
∥∥

Lp([0,1−hk ])
)q

≤
∞∑

k=1



2mkαp
∞∑

j=mk−1

∥∥d(f·, f·+2−j )
∥∥p

Lp([0,1−2−j ])




q/p

≤
∞∑

n=1



2nαp
∞∑

j=n−1

∥∥d(f·, f·+2−j )
∥∥p

Lp([0,1−2−j ])




q/p

!α,p,q

∞∑

n=1

(
2nα

∥∥d(f·, f·+2−n)
∥∥

Lp([0,1−2−n])
)q

. !
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We often work in the regime where α > 1/p (the extreme case being p = ∞), in which case 
every f ∈ Bα

pq([0, T ]; E) admits a Hölder-continuous version.

Proposition 2.1. Assume (E, d) is a complete metric space, 0 < α < 1, 1/α < p ≤ ∞, and 
0 < q ≤ ∞. Then, for all Y ∈ Bα

pq([0, T ], E),

[Y ]Cα−1/p([0,T ]) !α,p,q [Y ]Bα
pq ([0,T ]).

This result is classical when E = Rm; see for instance [52,54]. The proof we give, which 
is based on the Campanato characterization of Hölder continuity, is delegated to Subsection 
2.3, where it is seen to follow from an analogous result for two-parameter spaces (see Proposi-
tion 2.7).

Remark 2.4. If E is a Banach space, then, as a consequence of Proposition 2.1, whenever αp >

1, the (quasi-)norm ‖·‖Bα
pq

is equivalent to both

Y (→ ‖Y‖L∞([0,T ]) + [Y ]Bα
pq ([0,T ]) and Y (→ |Y(0)| + [Y ]Bα

pq ([0,T ]),

with proportionally constants depending on T in addition to α, p, and q . In particular, for fixed 
y ∈ E, the affine subspace

Bα
pq([0, T ];E,y) :=

{
Y ∈ Bα

pq([0, T ];E) : Y(0) = y
}

is a complete metric space with the metric

(X,Y ) (→
{[X − Y ]Bα

pq
if q ≥ 1 and

[X − Y ]qBα
pq

if 0 < q < 1.

If y = 0 and q ≥ 1, then Bα
pq([0, T ]; E, 0) is a Banach space with the norm [·]Bα

pq
.

When solving fixed-point problems for differential equations driven by Besov signals, we 
need the following result on composing regular functions with Besov paths.

Lemma 2.4. Assume δ ∈ (0, 1], α ∈ (0, 1), p, q ∈ (0, ∞], f ∈ Cδ(Rm), and Y ∈ Bα
pq([0, T ],

Rm). Then

[f (Y )]Bδα
p,q/δ

≤ [f ]CδT
1−δ
p [Y ]δBα

pq
. (2.2)

If α > 1/p, f ∈ C1,δ , and Ỹ ∈ Bα
pq([0, T ]), then

[f (Y ) − f (Ỹ )]Bδα
p,q/δ

!α,p,q,T [Df ]Cδ

(
[Y ]δBα

pq
+ [Ỹ ]δBα

pq

)
|Y0 − Ỹ0|

+ ‖Df ‖C1,δ

(
1 + [Y ]δBα

pq
+ [Ỹ ]δBα

pq

)
[Y − Ỹ ]Bα

pq
.

(2.3)
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Proof. The bound (2.2) is a consequence of Hölder’s inequality. To prove (2.3), we first write, 
for t ∈ [0, T ],

f (Yt ) − f (Ỹt ) =
1ˆ

0

Df
(
τYt + (1 − τ )Ỹt

)
dτ

(
Yt − Ỹt

)
.

Then, for t ∈ [0, T − h],
∣∣∣∣
(
f (Y ) − f (Ỹ )

)

t+h
−

(
f (Y ) − f (Ỹ )

)

t

∣∣∣∣ ≤ ‖Df ‖∞
∣∣∣(Y − Ỹ )t+h − (Y − Ỹ )t

∣∣∣

+
∥∥∥Y − Ỹ

∥∥∥
∞

[Df ]Cδ

(
|Yt+h − Yt |δ + |Ỹt+h − Ỹt |δ

)
,

and so

ωp(f (Y ) − f (Ỹ ), τ ) ≤ ‖Df ‖∞ ωp(Y − Ỹ , τ ) +
∥∥∥Y − Ỹ

∥∥∥
∞

[Df ]Cδ

(
ωδp(Y, τ ) + ωδp(Ỹ , τ )

)

!α,p,q ‖Df ‖∞ ωp(Y − Ỹ , τ ) +
(
|Y0 − Ỹ0| + [Y − Ỹ ]Bα

pq
T α−1/p

)
[Df ]Cδ

×
(
ωδp(Y, τ ) + ωδp(Ỹ , τ )

)

≤ ‖Df ‖∞ ωp(Y − Ỹ , τ ) +
(
|Y0 − Ỹ0| + [Y − Ỹ ]Bα

pq
T α−1/p

)
[Df ]Cδ

×
(
ωp(Y, τ )δ + ωp(Ỹ , τ )δ

)
T

1−δ
p .

We conclude that

[f (Y ) − f (Ỹ )]Bδα
p,q/δ

!α,p,q ‖Df ‖∞ [Y − Ỹ ]Bα
pq

T (1−δ)α

+
(
|Y0 − Ỹ0| + [Y − Ỹ ]Bα

pq
T α−1/p

)
[Df ]Cδ

(
[Y ]δBα

pq
+ [Ỹ ]δBα

pq

)
T

1−δ
p

!T [Df ]Cδ

(
[Y ]δBα

pq
+ [Ỹ ]δBα

pq

)
|Y0 − Ỹ0|

+ ‖Df ‖C1,δ

(
1 + [Y ]δBα

pq
+ [Ỹ ]δBα

pq

)
[Y − Ỹ ]Bα

pq
. !

The regime α > 1/p also allows for embeddings into variation spaces. For 1 ≤ p < ∞, define

Vp([0, T ],E) :=




f : [0, T ] → E : [f ]Vp := sup
P

(
N∑

i=1

d(fti−1, fti )
p

)1/p

< ∞




 ,

where the supremum is taken over partitions P := {0 = t0 < t1 < · · · < tN = T } of [0, T ]. For 
any f ∈ Vp([0, T ]), write f ∈ V p = Vp/ ∼ for the equivalence class of functions equal to f up 
to a set of Lebesgue measure zero. (This is similar to the classical construction of the Lebesgue 
spaces Lp = Lp/ ∼.) Note that V p ⊂ L∞. Similar to e.g. [5] we set
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[f]V p([0,T ];E) := inf
f ∈f

[f ]Vp([0,T ];E), (2.4)

which is a seminorm, and V p([0, T ]; E) is a normed space with the norm f (→ [f]L∞ + [f]V p . 
Note that V p([0, T ]; E) is complete whenever E is.

In [22,41] it is shown that Bα
pq ⊂ Vr , where r = 1/α if q ≤ p and r = 1/α + ε for some ε > 0

if q > p. For the purposes of later discussion, we verify the sharpness of the embedding when 
q ≤ p.

Proposition 2.2. Assume 1 ≤ q ≤ p ≤ ∞ and α > 1/p. Then there exists f ∈ Bα
pq([0, 1]) such 

that f /∈ Vr ([0, 1]) for any 1 ≤ r < 1/α.

Proof. Define χ :R → R to be 1-periodic such that

χt :=
{

t if t ∈ [0,1/2] and

1 − t if t ∈ [1/2,1],

and, for n ∈ N and t ∈ [0, 1], define f n
t = 2−αnχ2nt . Then, for m ∈ N , ωp(f n, 2−m) ≤

2−αn
(
1 ∧ 2−m

)
, so that

∞∑

m=1

(
2−mαωp(f n,2−m)

)q ≤
n−1∑

m=1

2(m−n)αq +
∞∑

m=n

2−(1−α)(m−n)q !α,q 1,

which yields

sup
n∈N

[f n]Bα
pq [0,1] !α,p,q 1.

Moreover, extending f n to the rest of R to be 0 gives also

sup
n∈N

[f n]Bα
pq([a,b]) !α,p,q 1

for any interval [0, 1] ⊂ [a, b] ⊂ R. Meanwhile,

[f n]Vr ([0,1]) ≥ 2
n
(

1
r −α

)

.

For some sequences (ak)k∈N ⊂ [0, ∞) and (nk)k∈N ⊂ N and t ∈ [0, 1], we set

ft =
∞∑

k=1

akf
nk

2k(t−2−k)
.

Then
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[f ]Bα
pq([0,1]) ≤

∞∑

k=1

ak

[
f

nk

2k(·−2−k)

]

Bα
pq([0,1])

=
∞∑

k=1

ak2k(α−1/p)
[
f nk

]
Bα

pq([−1,2k−1])

!α,p,q

∞∑

k=1

ak2k(α−1/p),

while the superadditivity of [·]rVr yields

[f ]rVr ([0,1]) ≥
∞∑

k=1

ar
k

[
f

nk

2k(·−2−k)

]r

Vr ([2−k,21−k])
≥

∞∑

k=1

ar
k2nk(1−αr).

We conclude upon choosing ak and nk so that the first series converges and the second diverges 
for any r < 1/α (for instance, we may take ak = 4−k(α−1/p) and nk = k2 for k ∈ N). !

2.2. On scale invariant Besov spaces

We make several remarks in the case that α = 1/p. For any q ∈ (0, ∞], B1/p
p,q does not embed 

continuously into a space of Hölder continuous functions, which is related to the fact that the 
B

1/p
p,q norm is invariant under time reparametrization. For 1 ≤ p ≤ ∞ and q = 1, and for E = Rm, 

we have the standard embeddings (see [54]) B1/p
p,1 ⊂ B0

∞,1 ⊂ C. In fact, more is true, and we can 

relate the reparametrization-invariant Besov spaces B1/p
p,q to the spaces V p introduced in the 

previous subsection as follows:

Proposition 2.3. Assume (E, d) is a complete metric space and 1 < p < ∞. Then we have the 
continuous embeddings

B
1/p
p,1 ([0, T ],E) ⊂ cV p([0, T ],E) ⊂ V p([0, T ],E) ⊂ B

1/p
p,∞([0, T ],E),

where we write cV p for elements in V p with continuous representative, in C ∩ Vp .

The proof of the first embedding in (2.3) uses real interpolation methods, much in the same 
way as in [6], where analogous inclusions are established for homogenous Besov spaces on the 
whole real line. We note that the right-most inclusion is a slight strengthening of [41, Proposition 
4.3], which states in our notation that cV p([0, T ]) ⊂ B

1/p
p,∞([0, T ]) (the proof follows essentially 

the same argument). Also note that this result completes the picture of embedding Besov spaces 
into variation ones, studied, for instance, in [22,41], where embeddings of the form B1/p

r,q ⊂ V p

are proved for r > p.
We first note the following useful equivalent characterization of the Vp seminorm:

Lemma 2.5. Let 1 ≤ p < ∞ and assume E is a Banach space. Then f ∈ Vp([0, T ], E) if and 
only if

[f ]V̄p([0,T ]) := sup
P




∑

[s,t]∈P

inf
c

‖f − c‖p
∞;[s,t]




1/p

< ∞
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with ‖f ‖∞;I = supt∈I |ft |. Moreover,

1
2
[f ]Vp([0,T ]) ≤ [f ]V̄p([0,T ]) ≤ [f ]Vp([0,T ]).

Proof. Since |ft − fs | ≤ infc(|ft − c| + |fs − c|) ≤ 2 infc ‖f − c‖∞;[s,t] it is clear that 
1
2 [f ]Vp([0,T ]) ≤ [f ]V̄p([0,T ]). Conversely,

inf
c

‖f − c‖p
∞;[s,t] ≤ ‖f − fs‖p

∞;[s,t] ≤ [f ]pVp([s,t])

and by super-additivity of the right-hand side we see that 1
2 [f ]Vp([0,T ]) ≤ [f ]V̄p([0,T ]) ≤

[f ]Vp([0,T ]). !

Lemma 2.5 suggests a way to define Vp for p = ∞: we say f ∈ V∞ if

[f ]V∞([0,T ]) := sup
P

(
max

[s,t]∈P
inf
c

‖f − c‖∞;[s,t]

)
< ∞.

Of course, the supremum is attained for the trivial partition P = {0, T }, and so

[f ]V∞([0,T ]) = 1
2

sup
(s,t)∈&2(0,T )

|ft − fs |,

that is, V∞([0, T ], E) = L∞([0, T ], E), modulo constants.
We next relate the p-variation spaces with different powers using real interpolation. We recall 

(see for instance [4]) that two normed space X0 and X1 are called compatible if they are both 
continuously embedded into a common Hausdorff topological vector space, so that, in particular, 
the space X0 + X1 is well-defined. For two such spaces, we define the K-functional, for t > 0
and f ∈ X0 + X1, by

K(t, f,X0,X1) = inf
{‖f0‖X0

+ t ‖f1‖X1
: f = f0 + f1, fi ∈ Xi

}
, (2.5)

and, for θ ∈ (0, 1) and p ∈ [1, ∞], we define the real interpolation space

(X0,X1)θ,p :=





f ∈ X0 + X1 : ‖f ‖(X0,X1)θ,p

:=




∞̂

0

(
K(t, f,X0,X1)

tθ

)p dt

t




1/p

< ∞





.

(2.6)
The following result is a variant of one appearing in [6], as Lemma 2.1.

Lemma 2.6. Let 1 ≤ p0 < p1 ≤ ∞, fix θ ∈ (0, 1), and assume E is a Banach space. Then we 
have the continuous embedding

(Vp0([0, T ],E),Vp1([0, T ],E))θ,p ⊂ Vp([0, T ],E), where
1
p

= 1 − θ

p0
+ θ

p1
.
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Proof. Fix f ∈ (Vp0([0, T ], E), Vp1([0, T ], E))θ,p , a partition P = {0 = t0 < t1 < · · · < tN =
T } of [0, T ], and f0 ∈ Vp0([0, T ], E) and f1 ∈ Vp1([0, T ], E) such that f = f0 + f1. Let 
φ, φ0, φ1 : [0, ∞) → [0, ∞) be the non-increasing, right-continuous rearrangements of respec-
tively the sequences

(

inf
c∈E

sup
t∈[ti−1,ti ]

‖f (t) − c‖E

)N

i=1

,

(

inf
c∈E

sup
t∈[ti−1,ti ]

‖f0(t) − c‖E

)N

i=1

,

and

(

inf
c∈E

sup
t∈[ti−1,ti ]

‖f1(t) − c‖E

)N

i=1

;

that is, for i = 0, 1, ∅ and λ ≥ 0, φi satisfies

| {t : φi (t) > λ} | = #

{

n ∈ {1,2, . . . ,N} : inf
c∈E

sup
t∈[ti−1,ti ]

‖fi(t) − c‖E > λ

}

.

We have

inf
c∈E

sup
t∈[ti−1,ti ]

‖f (t) − c‖E ≤ inf
c∈E

sup
t∈[ti−1,ti ]

‖f0(t) − c‖E + inf
c∈E

sup
t∈[ti−1,ti ]

‖f1(t) − c‖E ,

and elementary computations then give, for all s > 0, φ(s) ≤ φ0(s/2) + φ1(s/2). Then, by 
Hölder’s inequality, for τ > 0,

τ 1/p0φ(τ ) ≤




T̂

0

φ(s)p0ds




1/p0

≤




τˆ

0

φ0(s/2)p0ds




1/p0

+




τˆ

0

φ1(s/2)p0ds




1/p0

! ‖φ0‖Lp0 ([0,∞)) + τ
1

p0
− 1

p1 ‖φ1‖Lp1 ([0,∞))

=
(

N∑

i=1

inf
c∈E

sup
t∈[ti−1,ti ]

‖f0(t) − c‖p0
E

)1/p0

+ τ
1

p0
− 1

p1

(
N∑

i=1

inf
c∈E

sup
t∈[ti−1,ti ]

‖f1(t) − c‖p1
E

)1/p1

≤ [f0]Vp0 + τ
1

p0
− 1

p1 [f1]Vp1 .

With the relation t = τ (t)
1

p0
− 1

p1 , upon taking the infimum over all such f0 and f1, we find from 
Lemma 2.5 that
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τ (t)1/p0φ(τ (t)) ! K(t, f,Vp0 ,Vp1).

Invoking the definition (2.6), as well as the relationship between p, θ , p0, and p1, we conclude 
that

‖f ‖(V p0 ,V p1 ) "




∞̂

0

τ (t)p/p0φ(τ (t))pt−θp dt

t




1/p

4




∞̂

0

φ(τ )pdτ




1/p

=
(

N∑

i=1

inf
c∈E

sup
t∈[ti−1,ti ]

‖f (t) − c‖p
E

)1/p

.

We conclude upon taking the supremum over all partitions P . !

Proof of Proposition 2.3. Only the first embedding is proved here. As we have noted, the second 
inclusion follows exactly as in [41, Proposition 4.3].

Recall the Kuratowski embedding: every metric space E can be isometrically embedded in a 
Banach space. Thus, we assume without loss of generality that E is a (possibly non-separable) 
Banach space.

We next note that we have

B
1/p
p,1 ([0, T ],E) =

(
B1

1,1([0, T ],E),B0
∞,1([0, T ],E)

)

1− 1
p ,p

. (2.7)

To see this, note first that

B
1/p
p,1 (R,E) =

(
B1

1,1(R,E),B0
∞,1(R,E)

)

1− 1
p ,p

,

which is a generalization of [4, Theorem 6.4.5 (3)] to E-valued function spaces, and follows 
from the method of retracts [4, Theorem 6.4.2] and general results on interpolation of weighted 
vector-valued Lebesgue spaces [4, Theorem 5.6.2].

We then have common continuous extension and restriction maps (see [54])

{
B

1/p
p,1 ([0, T ]),B1

1,1([0, T ]),B0
∞,1([0, T ])

}
#

{
B

1/p
p,1 (R),B1

1,1(R),B0
∞,1(R)

}
,

and so (2.7) is again a consequence of the method of retracts.
From the standard embeddings B1

1,1(R) ⊂ W 1,1(R) and B0
∞,1(R) ⊂ C(R), upon restricting 

to the interval [0, T ], we have the embeddings

B1
1,1([0, T ],E) ⊂ W 1,1([0, T ],E) ⊂ cV 1([0, T ],E) and

B0
∞,1([0, T ],E) ⊂ C([0, T ],E) = cV ∞([0, T ],E).

We conclude from Lemma 2.6 that
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B
1/p
p,1 ([0, T ],E) =

(
B1

1,1([0, T ],E),B0
0,∞([0, T ],E)

)

1− 1
p ,p

⊂ C([0, T ],E) ∩
(
V1([0, T ],E),V∞([0, T ],E)

)

1− 1
p ,p

⊂ cVp([0, T ],E).

The fact that the proportionality constant is independent of T follows from the scale-invariance 
of the inequality. !

In what follows 1 ≤ p < ∞ and (E, d) a general metric space, unless further specified. Recall 
V p([0, T ], E) = Vp([0, T ], E)/ ∼ defined in terms of [·]V p([0,T ]) given in (2.4). We are grateful 
to Pavel Zorin-Kranich for removing an unnecessary use of Helly’s selection principle in an 
earlier version of this paper.

Proposition 2.4. (i) The inclusion

V p([0, T ],E) ⊂ V̂ p([0, T ],E)

:=
{

f ∈ L∞([0, T ],E) : [f]V̂ p([0,T ]) ≡ sup
(∑

inf
c

‖d(f·, c)‖p
L∞;[s,t]

)1/p
< ∞

}

holds and is continuous in the sense that [f]V̂ p([0,T ]) ≤ [f]V p([0,T ]) for all f ∈ V p .
(ii) Suppose that E is a separable complete metric space. Then, every equivalence class f ∈

V̂ p has a representative f̃ of finite p-variation with 
∥∥∥f̃

∥∥∥
Vp

! ‖f‖V̂ p .

Proof. (i) Consider f ∈ V p with representative f ∈ Vp . Then, using Lemma 2.5,

[f]V̂ p([0,T ]) = sup

(
∑

inf
c

ess sup
u∈[s,t]

|f (u) − c|
)1/p

≤ [f ]V̄p([0,T ]) ≤ [f ]Vp([0,T ])

(ii) Let f ∈ V̂ p([0, T ], E). We show that f has an essential Cauchy property at every point, that 
is, for every t ∈ (0, T ], we have

(∀ε > 0)(∃δ > 0) ess sup
s,s′∈(t−δ,t)

d(fs, fs′) < ε. (2.8)

Indeed, suppose that (2.8) fails for some t ∈ (0, T ] and ε > 0. Then, we can construct a sequence 
of intervals (aj , bj ) and points ej ∈ E with the following properties:

bj < aj+1 < t, d(ej , ej+1) > 3ε/4, |{s ∈ (aj , bj )|d(s, ej ) < ε/4}| > 0.

It is then routine to derive a contradiction to the finiteness of the V̂ p norm. In order to construct 
such a sequence, let Ẽ ⊆ E be a countable dense subset. We start with a0 = 0, b0 = t/2, say, and 
any e0 ∈ Ẽ such that the required positive measure property holds. Given bj , ej , from the failure 
of (2.8), we conclude that

ess sup
s∈(bj ,t)

d(fs, ej ) ≥ ε.
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Hence, we can choose ej+1 ∈ Ẽ such that

|{s ∈ (bj , t) | d(fs, ej ) ≥ ε, d(fs, ej+1) < ε/4}| > 0. (2.9)

The non-emptyness of the set in (2.9) guarantees that d(ej , ej+1) > 3ε/4. It remains to choose 
an interval [aj+1, bj+1] ⊂ (bj , t) whose intersection with the set in (2.9) has positive measure.

The essential Cauchy condition (2.8) implies the existence of an essential left limit ft− ∈ E, 
which is the unique point such that

(∀ε > 0)(∃δ > 0) ess sup
s∈(t−δ,t)

d(fs, ft−) < ε. (2.10)

Analogously, one can construct the essential right limits ft+. Applying the Lebesgue differenti-
ation theorem to the functions t (→ d(e, ft ) for each e ∈ Ẽ (local integrability of these functions 
follows e.g. from the existence of left and right essential limits), we obtain a full measure subset 
X ⊆ [0, T ] such that, for every t ∈ X and e ∈ Ẽ, we have

lim
δ→0

δ−1

tˆ

t−δ

|d(e, ft ) − d(e, fs)|ds = 0.

For any e ∈ Ẽ and t ∈ X, by the definition of ft− and the above identity, it follows that

d(ft , ft−) ≤ d(ft , e) + lim sup
δ→0

δ−1

tˆ

s=t−δ

d(e, fs) + d(fs, ft−)ds

= d(ft , e) + lim sup
δ→0

δ−1

tˆ

s=t−δ

d(e, fs)ds

= d(ft , e) + lim sup
δ→0

δ−1

tˆ

s=t−δ

d(e, ft )ds

= 2d(ft , e).

Since e ∈ Ẽ was arbitrary, it follows that ft = ft−. Let

f̃t :=
{

f0+, t = 0,

ft−, t > 0.

This function coincides with f almost everywhere, and we have f̃0+ = f̃0 and f̃t− = f̃t for all 
t > 0. It is easy to see that 

∥∥∥f̃
∥∥∥

Vp
! ‖f ‖

V̂ p . !

171



P.K. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152–231

We finish this subsection with a discussion of the finer regularity properties of paths in scale-
invariant Besov spaces. A representative example is the Heaviside function

Ht =
{

0 if 0 ≤ t < 1/2,

1 if 1/2 ≤ t ≤ 1,

which satisfies [H ]
B

1/p
p,∞([0,1]) = 1 for all 0 < p < ∞, and we see that B1/p

p,∞ 8⊂ C. As it turns out, 

such jump discontinuities are not permissible for functions in B1/p
p,q as soon as q is finite.

Proposition 2.5. Let 1 < p < ∞ and 1 ≤ q < ∞, f : [0, T ] → Rm, and t0 ∈ (0, T ). Assume that 
f has a left and right limit at t0 that differ. Then [f ]

B
1/p
p,q ([0,T ]) = ∞.

Proof. There exists µ > 0 such that, for all sufficiently small τ > 0, if s ∈ (t0 − τ, t0) and t ∈
(t0, t0 + τ ), then |fs −ft | > µ. Therefore, for some sufficiently small τ0 ∈ (0, T ) and all 0 < τ <

τ0,

ωp(f, τ )p ≥
t0ˆ

t0−τ

|ft+τ − ft |pdt ≥ τµp,

and so

T̂

0

(
ωp(f, τ )

τ 1/p

)q dτ

τ
≥ µq

τ0ˆ

0

dτ

τ
= ∞. !

Proposition 2.5 rules out jump discontinuities for B1/p
p,q -functions with 1 < p < ∞ and 1 ≤

q < ∞. However, if q > 1, some discontinuities are still allowed, and functions may even be 
nowhere locally bounded.

Proposition 2.6. Let χ : R → R be smooth, even, supported in [−1/2, 1/2], and equal to 1 in 
[−1/4, 1/4], and define

ft = χt log | log t | for t ∈ [−1,1].

Then f ∈ B
1/p
p,q ([−1, 1]) for any 1 < p < ∞ and 1 < q ≤ ∞.

Proof. If n = 3, 4, . . ., then, because f is even,

1−2−nˆ

−1

|ft+2−n − ft |pdt = 2

1−2−nˆ

0

|ft+2−n − ft |pdt + 2

2−n−1ˆ

0

|f2−n−t − ft |pdt.

We compute
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f ′
t = χ ′

t log | log t | − χt
1

t | log t | for t 8= 0.

Fix m = 0, 1, 2, . . ., and t ∈ [2−m−1, 2−m]. If m = 0, 1, 2, . . . , n, the mean value theorem gives

|ft+2−n − ft |p 4p

(
logm + 2m

m

)p

2−np !p
2(m−n)p

mp
,

while for k ∈ N and m = n + k, n + k + 1, . . .,

|ft+2−n − ft |p + |f2−n−t − ft |p !p |ft |p !p (logm)p.

Finally, if t ∈ [2−n−k, 2−n−1], then the mean value theorem again gives

|ft+2−n − ft | ≤ log | log 2−n−k)| − log | log(2−n−1 + 2−n)| ≤ log(n + k) − log(n − 1) ! k

n
,

and similarly |f2−n−t − ft |p ! k
n . Combining all three estimates gives

1−2−nˆ

0

|ft+2−n − ft |pdt +
2−n−1ˆ

0

|f2−n−t − ft |pdt

=
∞∑

m=0

2−mˆ

2−m−1

|ft+2−n − ft |pdt +
∞∑

m=n=1

2−mˆ

2−m−1

|f2−n−t − ft |pdt

!p 2−np
n∑

m=1

2(p−1)mm−p +
∞∑

m=n+k

2−m(logm)p + 2−n kp

np

!p 2−nn−p + 2−n−k log(n + k)p + 2−n kp

np
.

Choosing k 4 logn yields

1−2−nˆ

0

|ft+2−n − ft |pdt +
2−n−1ˆ

0

|f2−n−t − ft |pdt !p 2−n

(
logn

n

)p

,

and we conclude that

2n/p




1−2−nˆ

−1

|ft+2−n − ft |pdt





1/p

!p
logn

n

is .q -summable in n if 1 < q ≤ ∞. The proof is finished in view of Lemma 2.2. !
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By constructing a convergent series in the space B1/p
p,q of appropriate translations of the func-

tion f from Proposition 2.6, we immediately have the following.

Corollary 2.1. If 1 < p < ∞ and 1 < q ≤ ∞, then B1/p
p,q ([0, T ]) contains functions that are 

unbounded on every sub-interval of [0, T ].

2.3. Two-parameter Besov spaces

Let A : &2(0, T ) → Rm be measurable and, for p ∈ (0, ∞] and 0 < τ ≤ T , we define

/p(A, τ ) := sup
0≤h≤τ




T −hˆ

0

|Ar,r+h|p dr




1/p

.

For a three-parameter map A : &3(0, T ) → Rm, we define

/p(A, τ ) := sup
0≤θ≤1

sup
0≤h≤τ




T −hˆ

0

|Ar,r+θh,r+h|p dr




1/p

.

The dependence of / and / on the interval [0, T ] is suppressed for notational convenience. Note 
that, for f : [0, T ] → Rm, we have /p(δf, t) = ωp(f, t).

Definition 2.3. Fix α > 0 and p, q ∈ (0, ∞]. We define, for A : &2(0, T ) → Rm,

Bα
pq([0, T ]) :=





A : &2(s, t) →Rm : ‖A‖Bα

pq([0,T ]) :=




T̂

0

(
/p(A, τ )

τα

)q dτ

τ




1/q

< ∞





.

We also set, for A : &3(0, T ) → Rm,

‖A‖Bα
pq([0,T ]) :=




T̂

0

(
/p(A, τ )

τγ

)q
dτ

τ




1/q

.

Finally, for a non-decreasing function ω : [0, ∞) → [0, ∞) satisfying limr→0+ ω(r) = 0, we set

Bω
pq([0, T ]) :=





A : &2(s, t) → Rm : ‖A‖Bα

pq([0,T ]) :=




T̂

0

(
/p(A, τ )

ω(τ )

)q dτ

τ




1/q

< ∞






and, for A : &3([0, T ], Rm),

‖A‖Bω
pq([0,T ]) :=




T̂

0

(
/p(A, τ )

ω(τ )

)q
dτ

τ




1/q

.
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We note that, when p = q = ∞, ‖·‖Bα
pq

measures Hölder-type regularity, and we use the 
notation

Cα([0, T ]) := Bα
∞,∞([0, T ]).

As before, when 1 ≤ p, q ≤ ∞, ‖·‖Bα
pq

is a norm and Bα
pq is a Banach space. In all cases, Bα

pq

is a complete metric space:

Definition 2.4. Assume α > 0 and 0 < p, q ≤ ∞. Then Bα
pq([0, T ], Rm) is a complete metric 

space with the metric

dBα
pq([0,T ])(A, Ã) :=






∥∥∥A − Ã
∥∥∥
Bα

pq([0,T ])
if 1 ≤ p,q ≤ ∞,

T̂

0

(
/p(A − Ã, τ )

τα

)q
dτ

τ
if 0 < q < 1 and q ≤ p, and




T̂

0

(
/p(A − Ã, τ )

τα

)q
dτ

τ




p/q

if 0 < p < 1 and q > p.

(2.11)

The same holds if τ (→ τα is replaced with an arbitrary modulus ω.

We now present a useful Besov-Hölder embeddings in the two-parameter setting. The differ-
ence between Bω

pq([0, T ], Rm) and Bω
pq([0, T ], Rm) is that elements A of Bω

pq do not in general 
satisfy δA = 0, and therefore, in order to generalize Proposition 2.1, some condition is needed on 
δA. The one we present here is a kind of mixed continuity condition. A more general condition 
can perhaps be devised; however, the continuity condition for δA is in practice easy to check in 
our applications, and it usually reduces to the case of Proposition 2.1.

Proposition 2.7. Assume that A : &2(0, T ) → Rm is measurable, 0 < p, q ≤ ∞, ω : [0, ∞) →
[0, ∞) is non-decreasing, limr→0+ ω(r) = 0,

ω(2τ )! ω(τ ) for all τ > 0, (2.12)





[0,∞) 9 τ (→ ζ(τ ) :=
(

ω(τ )

τ 1/p

)1∧p

satisfies

T̂

0

ζ(h)
dh

h
≤ Kζ(T ) for some K > 0 and all T > 0,

(2.13)

‖A‖Bω
pq([0,T ]) < ∞, and, for some θ ∈ (0, 1/2] and M > 0,

|δAsut | ≤ Mζ
(
((u − s) ∧ (t − s))θ ((u − s) ∨ (t − s))1−θ

)1∨ 1
p

. (2.14)
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Then there exists a continuous version of A, denoted also by A, such that

sup
0≤s<t≤T

|Ast |
ω(t − s)(t − s)−1/p

!K,p,q,θ ‖A‖Bω
pq([0,T ]) + M. (2.15)

Remark 2.5. The modulus ω satisfies the assumptions of Proposition 2.7 if, for instance,

ω(r) = rγ | log(r ∧ 1/2)|β for some γ >
1
p

and β ≥ 0.

Proposition 2.7 is proved by taking advantage of some Campanato-type characterizations of 
Hölder continuity, which, for the Besov-type spaces in question, are routine to verify. More 
precisely, if E is a Banach space, f : [0, T ] → E, and β > 0, then the β-Hölder semi-norm of f
is equivalent to

sup
t0∈[0,T ]

sup
0<r<t0∧T −t0

1
rβ

1
2r

t0+rˆ
r0−r

∥∥∥∥∥∥
ft − 1

2r

t0+rˆ
t0−r

fsds

∥∥∥∥∥∥
E

dt,

a result which goes back at least to related work of Campanato [7]. The analytic essence of this 
result is contained in the following estimate, which we already formulate in a way applicable to 
two-parameter functions (in the one-parameter case, the approximate triangle inequality (2.19)
can be replaced by a genuine triangle inequality).

Proposition 2.8. Let ζ : [0, ∞) → [0, ∞) be a non-decreasing function such that

ζ(2r) ! ζ(r) for all r > 0, (2.16)

and

T̂

0

ζ(h)
dh

h
≤ Kζ(T ) for some K > 0 and all T > 0. (2.17)

Let ρ : [0, T ]2 → [0, ∞) be a locally integrable function such that, for all t0 ∈ (0, T ) and r <

t0 ∧ T − t0,

1
r2

t0+rˆ
t0−r

t0+rˆ
t0−r

ρst dtds ≤ ζ(r) (2.18)

and, for some θ ∈ (0, 1/2] and all r, s, t ∈ [0, T ],

ρrt ≤ ρrs + ρst + ζ
(
(|s − r| ∧ |t − s|)θ (|s − r| ∨ |t − s|)(1−θ)

)
. (2.19)

Then, there exists a full measure subset X ⊆ [0, T ] such that
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sup
s,t∈X,s 8=t

ρst

ζ(|t − s|) !θ,K 1.

Proof. For brevity, we denote averages by 
ffl b
a := (b − a)−1 ´ b

a .
Step 1. Fix t0 ∈ (0, T ), r < t0 ∧ (T − t0), and n ≥ 1, and set

αn(t0) :=
t0+2−nr 

t0−2−nr

t0+r 
t0−r

ρst dtds. (2.20)

Using (2.19), we write, for all s, u, t with |s − t0| < 2−nr , |t − t0| < r , |u − t0| < 2−n+1r ,

ρst ≤ ρsu + ρut + ζ(4 · 2−nθ r).

Averaging in s, t, u, we obtain

αn(t0) ≤
t0+2−n+1r 

t0−2−n+1r

t0+2−nr 

t0−2−nr

ρsudsdu +
t0+2−n+1r 

t0−2−n+1r

t0+r 
t0−r

ρutdtdu + ζ(4 · 2−nθ r)

= I + II + III.

From (2.18), we obtain

I ≤ 2

t0+2−n+1r 

t0−2−n+1r

t0+2−n+1r 

t0−2−n+1r

ρsududs ≤ 2ζ(2−n+1r) ! ζ(2−nr).

We also have II = αn−1(t0), and, by (2.16), III !θ ζ(2−nθ r). We conclude that

αn(t0) − αn−1(t0)! ζ(2−nr) + ζ(2−nθ r) ! ζ(2−nθ r).

By hypothesis, α0 ≤ ζ(r), and so, taking n → ∞ in (2.20) and using the Lebesgue differentiation 
theorem gives, for every r > 0,

ess sup
t0∈(r,1−r)

1
2r

t0+rˆ
t0−r

ρt0,t dt ! ζ(r) +
∞∑

n=1

ζ(2−nθ r) !θ,K ζ(r),

where we used (2.17) in the last step. Using the above inequality for a countable dense set of r’s 
and (2.16), we see that there exists a full measure subset X ⊆ (0, T ) such that, for every t0 ∈ X, 
and every r < min(t0, T − t0), we have

t0+r 
t0−r

ρt0,t dt +
t0+r 

t0−r

ρt,t0dt !θ,K ζ(r), (2.21)
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the second term being bounded by employing a symmetric argument.
Step 2. Fix s, t ∈ X such that

r := |t − s| < dist({s, t}, {0, T }).

By (2.19), for u ∈ (s ∧ t, s ∨ t), we have

ρst ≤ ρsu + ρut + ζ(r).

Averaging this inequality in u and using (2.21), we obtain ρst !K,θ ζ(|t − s|).
Step 3. Fix 0 < s < t ≤ T/2 with s, t ∈ X and s ≤ t/2. Choose t = t0 > t1 > . . . > tk = s such 

that tj /2 < tj+1 ≤ tj /
√

2 and tj ∈ X for all j = 0, . . . , k − 1. By induction on l, using (2.19), we 
obtain

ρst ≤ ρstl +
l−1∑

j=0

ρtj+1tj + ζ(tj − s).

Using this inequality with l = k − 1 and the result from Step 2, we obtain

ρst ≤
k∑

j=1

ρtj ,tj−1 +
k−2∑

j=0

ζ(tj − s) !θ,K

k−1∑

j=0

ζ(tj − s) !K,θ ζ(t − s).

A symmetric argument gives similar estimates for T/2 ≤ s < t < T , as well as for ρts . It is then 
easy to conclude for all s, t ∈ X. !

Proposition 2.8 can be specialized to a Campanato-type characterization of Hölder continuity 
for functions with values in a metric space. We thank Pavel Zorin-Kranich for stream-lining an 
earlier proof of ours.

Proposition 2.9. If f : [0, T ] → E is measurable and β ∈ (0, 1), then

sup
(s,t)∈&2(0,T )

d(fs, ft )

(t − s)β
4β sup

t0∈(0,T )

sup
0<r<t0∧T −t0

1
rβ

1
(2r)2

t0+rˆ
t0−r

t0+rˆ
t0−r

d(fs, ft )dtds. (2.22)

More precisely, when the right-hand side is finite, there exists a version of f which is β-Hölder 
continuous, and the equivalence of semi-norms holds.

Proof. The "β estimate is obvious. To prove the !β direction, we invoke Proposition 2.8 with 
ρst = d(fs, ft ) and ζ(r) = Crβ to conclude that there exists a full measure subset X ⊂ [0, T ]
such that, for every s, t ∈ X,

d(fs, ft ) ! |s − t |β .

It follows that f |X can be extended to a β-Hölder continuous function on [0, T ] that coincides 
with f on X. !
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As an immediate consequence, we present the proof of Proposition 2.1.

Proof of Proposition 2.1. For f ∈ Bα
pq([0, T ]; E), we have, for all h ∈ (0, T ),




T −hˆ

0

d(ft+h, ft )dt




1/p

! [f ]Bα
pq

hα.

For any t0 ∈ (0, T ) and 0 < r < t0 ∧ (T − t0), we have

1
(2r)2

t0+rˆ
t0−r

t0+rˆ
t0−r

d(ft , fs)dtds

= 1
(2r)2

t0+rˆ
t0−r

t0+r−sˆ
t0−r−s

d(fs+h, fs)dhds

= 1
(2r)2

2rˆ

−2r

t0+r−h+ˆ

t0−r+h−

d(fs+h, fs)dsdh

≤ 1
(2r)2

2rˆ

−2r

(2r − |h|)1−1/p





T −h+ˆ

h−

d(fs+h, fs)
pds





1/p

dh

!
[f ]Bα

pq

r1+1/p

2rˆ

0

hαdh

! [f ]Bα
pq

rα−1/p.

The result now follows from Proposition 2.9. !

Remark 2.6. Proposition 2.1 can also be proved by immediately appealing to Proposition 2.7.

We finally present the proof of the two-parameter Besov-Hölder embedding.

Proof of Proposition 2.7. If p = ∞, then the result is trivial, so assume p < ∞.
The map A is defined only for (s, t) with s ≤ t . To match the setting of Proposition 2.8, for 

s > t , we set Ast = −Ats . Then |δArst | remains constant over all permutations of r, s, t ∈ [0, T ]. 
Therefore, (2.14) continues to hold regardless of the order of s, u, and t , and, for τ ∈ [0, T ],

sup
0<h<τ




T̂

h

∣∣At,t−h

∣∣p dt




1/p

= /p(A, τ ).
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For all 0 < h < T , we have




T̂

h

∣∣At,t−h

∣∣p dt




1/p

+




T −hˆ

0

∣∣At,t+h

∣∣p dt




1/p

!p,q ‖A‖Bω
pq

ω(h).

Now fix t0 ∈ (0, T ) and r < t0 ∧ T − t0. If 1 ≤ p < ∞, then

1
r2

t0+rˆ
t0−r

t0+rˆ
t0−r

|Ast |dsdt = 1
r2

t0+rˆ
t0−r

t0+r−sˆ
t0−r−s

∣∣As,s+h

∣∣dhds

= 1
r2

2rˆ

−2r

t0+r−h+ˆ

t0−r+h−

∣∣As,s+h

∣∣dsdh

≤ 21−1/p

r1+1/p

2rˆ

−2r





T −h+ˆ

h−

∣∣As,s+h

∣∣p ds





1/p

dh

!p,q
1

r1+1/p
‖A‖Bω

pq

2rˆ

−2r

ω(|h|)dh

! ‖A‖Bω
pq

ζ(r).

Thus, (2.18) and (2.19) are satisfied with ρst = |Ast |. It is easy to see that ζ satisfies the as-
sumptions of Proposition 2.8 (the implicit constants depend additionally on p). Proposition 2.8
implies that (2.15) holds for s, t in a full measure subset X ⊂ [0, T ]. Using (2.14), we can extend 
A|X×X to a continuous function on [0, T ]2 that still satisfies (2.15).

If 0 < p < 1, then a similar computation yields

1
r2

t0+rˆ
t0−r

t0+rˆ
t0−r

|Ast |p dsdt !p,q ‖A‖p
Bω

pq
ζ(r),

and so the result follows upon appealing to Proposition 2.8 with ρst = |Ast |p . !

Proposition 2.7 will often be paired with the following interpolation estimate, which allows 
for a simultaneous loss of regularity and gain of integrability.

Lemma 2.7. Assume that 0 < α < γ , 0 < p < r ≤ ∞, 0 < q ≤ ∞, and, for some δ > 0,

α <
γp

r
+ δ

(
1 − p

r

)
. (2.23)

Then, for all A : &2(0, T ) → Rm,
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‖A‖Bα
r,q ([0,T ]) !α,γ ,p,r,q,δ T δ

(
1− p

r

)
+ γp

r −α ‖A‖1− p
r

Cδ([0,T ]) ‖A‖
p
r

Bγ
p,q ([0,T ]) .

Proof. We compute

/r (A, τ ) ≤ /∞(A, τ )1− p
r /p(A, τ )

p
r ≤ ‖A‖1− p

r

Cδ τ δ
(
1− p

r

)
/p(A, τ )

p
r

and so

/r (A, τ )

τα
≤ ‖A‖1− p

r

Cδ τ δ
(
1− p

r

)
+ γp

r −α

(
/p(A, τ )

τγ

) p
r

.

We take the Lq(dτ/τ ) (quasi)-norm on both sides and conclude by Hölder’s inequality that

‖A‖Bα
r,q

≤ ‖A‖1− p
r

Cδ




T̂

0

τ q
[
δ
(
1− p

r

)
+ γp

r −α
] (

/p(A, τ )

τγ

) pq
r dτ

τ




1/q

! T δ
(
1− p

r

)
+ γp

r −α ‖A‖1− p
r

Cδ ‖A‖
p
r

Bγ
p,q

. !

Lemma 2.7 can be extended to allow for more general moduli; the proof is almost identical, 
and thus we omit it.

Lemma 2.8. Assume that α > 0, 0 < p < r ≤ ∞, 0 < q ≤ ∞, ω, ρ : [0, ∞) → [0, ∞) are non-
decreasing and satisfy limτ→0+ ω(τ ) = limτ→0+ ρ(τ ) = 0, and

σ (T ) :=




T̂

0

(
ρ(τ )ω(τ )

p
r−p

τ
αr

r−p

)q
dτ

τ





r−p
rq

< ∞.

Then, for all A : &2(0, T ) → Rm,

‖A‖Bα
r,q ([0,T ]) !α,p,r,q σ (T )‖A‖1− p

r

Cρ([0,T ]) ‖A‖
p
r

Bω
p,q ([0,T ]) .

We conclude with a result which is instrumental in overcoming the difficulty that functions in 
Bα

pq are a priori only defined up to sets of Lebesgue measure zero.

Lemma 2.9. Let A : &2(0, T ) → Rm be measurable, and assume that, for some 0 < p ≤ ∞, 
/p(δA, τ ) = 0 for all τ ∈ (0, T ]. Then there exists a measurable function F : [0, T ] → Rm and 
a version of A, denoted also by A, such that A = δF .

Proof. For 0 ≤ t < s ≤ T , define As,t := −As,t , and then extend the definition of δAr,s,t to all 
(r, s, t) ∈ [0, T ]3. We have, for all h ∈ (0, T ] and 0 < θ < 1,
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


T −hˆ

0

|δAt,t+θh,t+h|pdt




1/p

= 0,

with the obvious modification if p = ∞, and, therefore, there exists Nθ,h ⊂ [0, T − h] such that 
|Nθ,h| = 0 and

δAt,t+θh,t+h = 0 for all t ∈ [0, T − h]\Nθ,h.

By Fubini’s theorem, there exists N ⊂ [0, T ]3 with |N | = 0 such that δA = 0 in [0, T ]3\N . 
Another application of Fubini’s theorem implies that there exists r ∈ (0, T ) such that

δAr,s,t = 0 for almost every (s, t) ∈ [0, T ]2.

We now define Ft := Ar,t for t ∈ [0, T ]. Then, for almost every (s, t) ∈ [0, T ]2,

Ft − Fs = Ast + δAr,s,t = Ast . !

3. The Besov “sewing lemma”

The goal of this section is to generalize the “sewing lemma,” which has been proved in Hölder 
and variation contexts [16,30,17], to the Besov scale. Given A : &2(0, T ) → Rm for which

‖A‖Bα
p1,q1

([0,T ]) + ‖δA‖Bγ
p2,q2

([0,T ]) < ∞

for appropriate parameters 0 < α < γ and p1, p2, q1, q2 ∈ (0, ∞], we construct a generalized 
integral as a limit of Riemann sums. Due to the various cases involving different regimes of 
parameters, the result is split up into three theorems. In Theorem 3.1, the regularity satisfies a 
strict inequality γ > 1 ∨ 1

p2
, while in Theorem 3.2, the case γ = 1 ∨ 1

p2
can be treated as long 

as 0 < q2 ≤ 1 ∧ p2. Finally, Theorem 3.3 combines the previous theorems with the generalized 
Hölder embedding Proposition 2.7 in order to regain integrability, especially in the case where 
p1 > p2.

3.1. The statements

Given A : &2(0, T ) → Rm and a partition P := {0 = τ0 < τ1 < · · · < τN = 1} of the unit in-
terval [0, 1], we define, for (s, t) ∈ &2(0, T ),

IP Ast :=
N∑

i=1

As+τi−1(t−s),s+τi (t−s) and RP A := IP A − A.

Theorem 3.1. Assume that 0 < p1, p2, q1, q2 ≤ ∞, 0 < α < 1, γ > 1 ∨ 1
p2

, and

‖A‖Bα
p1,q1

([0,T ]) + ‖δA‖Bγ
p2,q2

([0,T ]) < ∞.
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Then there exist I A ∈ Bα
p1∧p2,q1∨q2

([0, T ]) and RA ∈ Bγ
p2,q2([0, T ]) such that

lim
‖P‖→0

‖IP A − δI A‖Bγ
p2,r

= lim
‖P‖→0

‖RP A − RA‖Bγ
p2,r

= 0 for all r ≥ q2 and r >
1
γ

.

(3.1)
Moreover, we have the bounds

‖RA‖Bγ
p2,q2 ([0,T ]) !p2,q2,γ ‖δA‖Bγ

p2,q2
([0,T ]) (3.2)

and

[I A]Bα
p1∧p2,q1∨q2

([0,T ]) !T ,p1,p2,q1,q2,γ ‖A‖Bα
p1,q1

+ T γ−α ‖δA‖Bγ
p2,q2

([0,T ]) . (3.3)

Remark 3.1. In Theorem 3.1, if p2 ≥ 1, then the condition on γ reads simply γ > 1, which is 
familiar from other versions of the sewing lemma. However, once 0 < p2 < 1, it is necessary to 
assume that γ > 1/p2. This is more than just a technical difficulty. For instance, in the Young 
integration regime, this condition puts restrictions on the types of discontinuities allowed by the 
paths (see Remark 4.1).

If q2 > 1/γ , then the limit of IP A along arbitrary partitions with mesh-size tending to 0 may 
be taken in Bγ

p2,q2 . Otherwise, if q2 ≤ 1/γ , the convergence is weaker. We note that, in the course 
of the proof, it will be shown that the convergence along dyadic partitions always holds in Bγ

p2,q2 .

We next address an interesting endpoint case that does not arise in the Hölder or variation 
sewing frameworks. By tuning the secondary integration parameter q2 lower, the regularity pa-
rameter γ for δA may be taken down to γ = 1 ∨ (1/p2). The price paid is that the “remainder 

map” RA no longer has the same regularity modulus τ (→ τ
1∨ 1

p2 as δA, and there is some at-
most-logarithmic loss (compare (3.2) to (3.7) below).

Throughout the rest of the paper, we fix (.r)0<r≤∞ : [0, T ] → [0, ∞) satisfying






for each r ∈ (0,∞], .r : [0, T ] → [0,∞) is non-increasing,

T̂

0

(
1

.r (h)

)r dh

h
< ∞, and

δˆ

0

.r (h)ηhζ dh

h
!r,η,ζ .r (δ)

ηδζ for all η, ζ, δ > 0.

(3.4)

For instance, we may take .r (h) = | log(h ∧ 1/2)|1/r+ε for ε > 0 if r < ∞, and .∞ ≡ 1. We then 
set

ωr (h) := h
1∨ 1

p2 .r (h) for h ∈ [0, T ] and 0 < r ≤ ∞. (3.5)
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Theorem 3.2. Assume that 0 < p1, q1 ≤ ∞, 0 < q2 ≤ 1 ∧ p2, 0 < α < 1, and

‖A‖Bα
p1,q1

([0,T ]) + ‖δA‖
B

1∨ 1
p2

p2,q2 ([0,T ])
< ∞.

Then there exist I A ∈ Bα
p1∧p2,q1∨q2

([0, T ]) and RA ∈ ⋂
r∈[q2,∞] B

ωr
p2,r ([0, T ]) such that

lim
‖P‖→0

‖IP A − δI A‖
B

1∨ 1
p2

p2,∞
= lim

‖P‖→0
‖RP A − RA‖

B
1∨ 1

p2
p2,∞

= 0. (3.6)

Moreover, we have the bounds

‖RA‖Bωr
p2,r ([0,T ]) !p2,r ‖δA‖

B
1∨ 1

p2
p2,q2 ([0,T ])

for all r ∈ [q2,∞], (3.7)

and

[I A]Bα
p1∧p2,q1∨q2

([0,T ]) !T ,p1,p2,q1,q2,κ ‖A‖Bα
p1,q1

+ T

(
1∨ 1

p2

)
−α

.q2(T )‖δA‖
B

1∨ 1
p2

p2,q2 ([0,T ])
. (3.8)

In order to use the general Besov sewing machinery to solve fixed point problems arising 
in the study of rough differential equations, it is important that the “integral path” increments 
δI A belong to the same space as A, that is, for A ∈ Bα

p1,q1
, we should have I A ∈ Bα

p1,q1
. As 

indicated by (3.3) and (3.8), this is the case when p1 ≤ p2 and q1 ≥ q2. However, we will need to 
consider the case p1 > p2, because A usually arises as a (tensor) product of increments of paths, 
which leads to a loss in integrability (for the same reason, we usually will have q1 > q2, so this 
parameter does not present a problem). In order to deal with this issue, we take advantage of the 
Besov-Hölder embeddings for the space Bα

pq given by Proposition 2.7.

Theorem 3.3. Let 0 < p1, p2, q1, q2 ≤ ∞ and 0 < α < γ and A : &2(0, T ) → Rm.

(a) Under the same conditions as Theorem 3.1, assume in addition that 0 < p2 < p1 ≤ ∞, 
γ − 1

p2
> α − 1

p1
, and, for some θ ∈ (0, 1/2) and M > 0 and for all (s, u, t) ∈ &3(0, T ),

|δAsut | ≤ M ((u − s) ∧ (t − s))θ(γ−1/p2) ((u − s) ∨ (t − s))(1−θ)(γ−1/p2) . (3.9)

Then

‖RA‖Cγ−1/p2 ([0,T ]) !p2,q2,γ ,θ ‖δA‖Bγ
p2,q2

+ M, (3.10)

and

[I A]Bα
p1,q1∨q2

([0,T ]) !p1,p2,q1,q2,α,γ ‖A‖Bα
p1,q1

+T
γ− 1

p2
−α+ 1

p1

(
‖δA‖Bγ

p2,q2
+ M

)
. (3.11)
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(b) Under the same conditions as Theorem 3.2, assume in addition that 0 < q2 ≤ 1 < p2 < p1 ≤
∞, 0 < q1 ≤ ∞, 0 < α < 1, 1 − 1

p2
> α − 1

p1
, and, for some M > 0 and θ ∈ (0, 1/2) and all 

(s, u, t) ∈ &3(0, T ),

|δAsut | ≤ M ((u − s) ∧ (t − s))θ(1−1/p2) ((u − s) ∨ (t − s))(1−θ)(1−1/p2) . (3.12)

Then

sup
0≤s≤t≤T

|RAst |
ωq2(t − s)(t − s)−1/p2

!K,p2,q2,θ ‖δA‖
B

1
p2,q2

+ M, (3.13)

and

[I A]Bα
p1,q2∨q2

!p1,p2,q1,q2,α,κ,θ,K ‖A‖Bα
p1,q1

+ T
1− 1

p2
−α+ 1

p1 .q2(T )

(
‖δA‖

B
1
p2,q2

+ M

)
.

(3.14)

Remark 3.2. The functions of T in the various bounds (3.3), (3.11), and (3.14) are used to estab-
lish the local Lipschitz continuity of the Itô-Lyons map for the differential equations considered 
later. We note that the proof of the contractive property alone in the Picard iteration to construct 
solutions does not require this, as long as q < ∞, which can be seen as another (mild) advantage 
of the Besov setting.

3.2. The proofs of Theorems 3.1, 3.2, and 3.3

An important first step is to establish convergence along the dyadic partitions

Pn :=
(

k

2n

)

k=1,2,...,2n

, n = 0,1,2, . . . . (3.15)

Lemma 3.1. Assume 0 < p2, q2 < ∞ and A : &2(0, T ) → Rm. Then, for all 1 ≤ m < n ≤ ∞
and 0 < h < T ,

/p2(RPnA − RPmA,h)

!p2,q2






h

h2−m+1ˆ

0

/p2(δA, τ )

τ

dτ

τ
if 1 ≤ p2, q2 ≤ ∞,

h1/p2




h2−m+1ˆ

0

/p2(δA, τ )p2

τ

dτ

τ





1/p2

if 0 < p2 < 1 and q2 > p2,

h
1∨ 1

p2




h2−m+1ˆ

0

(
/p2(δA, τ )

τ
1∨ 1

p2

)q2
dτ

τ





1/q2

if 0 < q2 < 1 and q2 ≤ p2.
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Proof. We first compute, for n = 0, 1, 2, . . ., h ∈ [0, T ], and r ∈ [0, T − h],

RPn+1Ar,r+h − RPnAr,r+h =
2n+1∑

k=1

δAr+ 2k−2
2n+1 h,r+ 2k−1

2n+1 h,r+ 2k

2n+1 h. (3.16)

Case 1: 1 ≤ p2, q2 ≤ ∞. Taking the Lp2 norm over r ∈ [0, T − h] on both sides of (3.16)
yields

/p2

(
RPn+1A − RPnA,h

)
≤ 2n+1/p2(δA,h2−n),

and so

/p2

(
RPnA − RPmA,h

)
≤

n−1∑

.=m

/p2

(
RP.+1A − RP.A,h

)
≤ 2

n−1∑

.=m

2./p2

(
δA,h2−.

)

= 2h

n−1∑

.=m

/p2

(
δA,h2−.

)

h2−.
! h

h2−m+1ˆ

0

/p2(δA, τ )

τ

dτ

τ
.

Case 2: 0 < p2 < 1 and q2 > p2. We have /p2
p2

(
RPn+1A − RPnA,h

)
≤ 2n+1/

p2
p2

(δA, h2−n), 
and so

/
p2
p2(RPnA − RPmA,h) ≤ 2

n−1∑

.=m

2./
p2
p2

(δA,h2−.). (3.17)

We then argue similarly as in Case 1.
Case 3: 0 < q2 < 1 ≤ p2. Taking the q2 power on both sides of the inequality /p2(RPnA −

RPmA, h) ≤ 2 
∑n−1

.=m 2./p2(δA, h2−.), using that 0 < q2 < 1, and arguing similarly as in Case 
1, we obtain

/p2(RPnA − RPmA,h)q2 ≤ 2q2

n−1∑

.=m

2.q2/
q2
p2

(δA,h2−.)!q2 hq2

h2−m+1ˆ

0

(
/p2(δA, τ )

τ

)q2
dτ

τ
.

Case 4: 0 < q2 ≤ p2 < 1. We raise both sides of (3.17) to the power q2/p2 ∈ (0, 1], use 
sub-additivity, and proceed as in Case 3. !

Proof of Theorem 3.1. Step 1: convergence along dyadic partitions. We begin by showing that 
the sequence (RPnA)∞n=0 is Cauchy in 

(
Bγ

p2,q2([0, T ]),dBγ
p2,q2

)
, as defined in Definition 2.4

(and therefore so is (IPnA)∞n=0 in view of the identity IPnA − IPmA = RPnA − RPmA for all 
m, n ≥ 0). We do this by establishing the identity, for 0 ≤ m < n,
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


T̂

0

(
/p2(RPnA − RPmA,h)

hγ

)q2 dτ

τ




1/q2

!p2,q2,γ 2−m(γ−(1∨1/p2))




2−m+1Tˆ

0

(
/p2(δA, τ )

τγ

)q2
dτ

τ





1/q2

.

(3.18)

Case 1: 1 ≤ p2, q2 ≤ ∞. We divide both sides of the identity in Lemma 3.1 by hγ and take 
the q2 power, whence, because q2 ≥ 1 and γ > 1, Jensen’s inequality gives

T̂

0

(
/p2

(
RPnA − RPmA,h

)

hγ

)q2
dh

h

!q2 2−mq2(γ−1)

T̂

0




2m(γ−1)

hγ−1

h2−m+1ˆ

0

τγ−1 /p2(δA, τ )

τγ

dτ

τ





q2

dh

h

!q2,γ 2−m(q2−1)(γ−1)

T̂

0

1
hγ−1

h2−m+1ˆ

0

τγ−1

(
/p2(δA, τ )

τγ

)q2
dτ

τ

dh

h

= 2−m(q2−1)(γ−1)

2−m+1Tˆ

0



τγ−1

T̂

2m−1τ

1
hγ−1

dh

h





(
/p2(δA, τ )

τγ

)q2
dτ

τ
.

The term in brackets satisfies

τγ−1

T̂

2m−1τ

1
hγ−1

dh

h
= 1

γ − 1

(
2−(m−1)(γ−1) − τγ−1T γ−1

)
≤ 2γ−1

γ − 1
2−m(γ−1),

and so (3.18) holds.
Case 2: 0 < p2 < 1, q2 ≥ p2. We have q2/p2 ≥ 1 and γ > 1

p2
, and so, arguing as in Case 1 

with Jensen’s inequality and Fubini’s theorem yields

T̂

0

(
/p2(RPnA − RPmA,h)

hγ

)q2 dh

h

!q2 2−m(γp2−1)q2/p2

T̂

0




1

hγp2−12−m(γp2−1)

h2−m+1ˆ

0

/
p2
p2

(δA, τ )

τγp2
τγp2−1 dτ

τ





q2/p2

dh

h
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!p2,q2,γ 2−m(γp2−1)(q2−p2)/p2

T̂

0

1
hγp2−1

h2−m+1ˆ

0

(
/p2(δA, τ )

τγ

)q2

τγp2−1 dτ

τ

dh

h

!p2,γ 2−m(γp2−1)q2/p2

2−m+1Tˆ

0

(
/p2(δA, τ )

τγ

)q2
dτ

τ
.

Case 3: 0 < q2 < 1 ≤ p2. Using Lemma 3.1 and Fubini’s theorem as in the previous cases,

T̂

0

(
/p2(RPnA − RPmA,h)

hγ

)q2 dh

h
!q2

T̂

0

1
hq2(γ−1)

h2−m+1ˆ

0

(
/p2(δA, τ )

τγ

)q2

τ q2(γ−1) dτ

τ

dh

h

!q2,γ 2−mq2(γ−1)

2−m+1Tˆ

0

(
/p2(δA, τ )

τγ

)q2
dτ

τ
.

Case 4: 0 < q2 ≤ p2 < 1. Arguing as in Case 3,

T̂

0

(
/p2(RPnA − RPmA,h)

hγ

)q2 dτ

τ

!p2,q2

T̂

0

1
hq2(γ−1/p2)

h2−m+1ˆ

0

(
/p2(δA, τ )

τγ

)q2

τ q2(γ−1/p2)
dτ

τ

=
2−m+1Tˆ

0



τ q2(γ−1/p2)

T̂

2m−1τ

1
hq2(γ−1/p2)

dh

h





(
/p2(δA, τ )

τγ

)q2
dτ

τ

!p2,q2,γ 2−mq2(γ−1/p2)

2−m+1Tˆ

0

(
/p2(δA, τ )

τγ

)q2
dτ

τ
.

We conclude in all cases that, as n → ∞, RPnA has a limit RA ∈ Bγ
p2,q2([0, T ]). We deduce 

(3.2) upon sending n → ∞, letting m = 1, and noting the bound 
∥∥R1A

∥∥
Bγ

p2,q2
≤ ‖δA‖Bγ

p2,q2
.

Step 2: additivity. We next show that the two-parameter map Ĩ A := A + RA =
limn→∞ IPnA is the increment of a path in Bα

p1∧p2,q1∨q2
, that is, for some I A ∈ Bα

p1∧p2,q1∨q2
, 

Ĩ A = δI A.
For θ ∈ (0, 1) and A : &2(0, T ) → Rm, define

δθAst := δAs,θ t+(1−θ)s,t = Ast − As,θ t+(1−θ)s − Aθ t+(1−θ)s,t .
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Fix N = 1, 2, . . . and K = 1, 2, . . . , 2N − 1, and set θ = K
2N and L := 2N − K . Then, for h ∈

[0, T ],

IPnAs,s+θh =
2n∑

i=1

A
s+ (i−1)K

2n+N h,s+ iK

2n+N h
,

IPnAs+θh,s+h =
2n∑

j=1

A
s+θh+ (j−1)L

2n+N h,s+θh+ jL

2n+N h
, and

IPn+N As,s+h =
2n+N∑

k=1

As+ k−1
2n+N h,s+ k

2n+N h.

Therefore, IPn+N As,s+h − IPnAs,s+θh − IPnAs+θh,s+h = I + II, where

I := −
2n∑

i=1

(

A
s+ (i−1)K

2n+N h,s+ iK

2n+N h
−

K∑

.=1

As+ iK−K+.−1
2n+N h,s+ iK−K+.

2n+N h

)

= −
2n∑

i=1

K−1∑

.=1

δAs+ iK−K+.−1
2n+N h,s+ iK−K+.

2n+N h,s+ iK

2n+N h

and

II := −
2n∑

j=1

(

A
s+θh+ (j−1)L

2n+N h,s+θh+ jL

2n+N h
−

L∑

m=1

A
s+θh+ jL−L+m−1

2n+N h,s+θh+ jL−+m

2n+N h

)

= −
2n∑

j=1

L−1∑

m=1

δA
s+θh+ jL−L+m−1

2n+N h,s+θh+ jL−+m

2n+N h,s+θh+ jL

2n+N h
.

If 1 ≤ p2 ≤ ∞, then the triangle inequality gives

∥∥IPn+N A·,·+h − IPnA·,·+θh − IPnA·+θh,·+h

∥∥
Lp2 ([0,T −h])

≤
2n∑

i=1

K−1∑

.=1

∥∥∥∥δA·+ iK−K+.−1
2n+N h,·+ iK−K+.

2n+N h,·+ iK

2n+N h

∥∥∥∥
Lp2 ([0,T −h])

+
2n∑

j=1

L−1∑

m=1

∥∥∥∥δA·+θh+ jL−L+m−1
2n+N h,·+θh+ jL−+m

2n+N h,·+θh+ jL

2n+N h

∥∥∥∥
Lp2 ([0,T −h])

≤ 2n+N/p2(δA,2−nh),

and we conclude that
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


T̂

0

(∥∥IPn+N A·,·+h − IPnA·,·+θh − IPnA·+θh,·+h

∥∥
Lp2 ([0,T −h])

hγ

)q2
dh

h




1/q2

≤ 2n+N




T̂

0

(
/p2(δA,2−nh)

hγ

)q2
dh

h




1/q2

= 2N2−n(γ−1)




2−nTˆ

0

(
/p2(δA,h)

hγ

)q2
dh

h





1/q2

.

(3.19)

Otherwise, if 1/γ < p2 < 1, then the sub-additivity of ‖·‖p2
Lp2 ([0,T −h]) gives

∥∥IPn+N A·,·+h − IPnA·,·+θh − IPnA·+θh,·+h

∥∥p2
Lp2 ([0,T −h]) ≤ 2n+N/

p2
p2

(δA,2−nh),

and thus




T̂

0

(∥∥IPn+N A·,·+h − IPnA·,·+θh − IPnA·+θh,·+h

∥∥
Lp2 ([0,T −h])

hγ

)q2
dh

h




1/q2

≤ 2N 2−n(γ−1/p2)




2−nTˆ

0

(
/p2(δA,h)

hγ

)q2
dh

h





1/q2

.

(3.20)

In either case, taking n → ∞ and invoking Step 1 gives 
∥∥∥δθ (Ĩ A)

∥∥∥
Bγ

p2,q2 ([0,T ])
= 0 for all dyadic 

θ .
If p2 < ∞, then, for any h, θ (→

∥∥∥δθ (Ĩ A)·,·+h

∥∥∥
Lp2 ([0,T −h]

is continuous, and therefore equal 

to 0 for all θ ∈ (0, 1). In particular, [Ĩ A]Bγ
p2,q2

= 0, and we conclude from Lemma 2.9 that there 

exists I A such that, for almost every (s, t) ∈ &2(0, T ), I At − I As = Ĩ Ast . If p2 = ∞, then 
we have 

∥∥∥δθ (Ĩ A)
∥∥∥
Bγ

r,q2 ([0,T ])
= 0 for all dyadic θ and r < p2, and we argue as above.

The bound (3.3) now follows upon invoking (3.2) and taking the Lq1∨q2(dτ/τ )-(quasi)-norm 
on both sides of

ωp1∧p2(I A, τ )

τα
!T ,p1,p2

/p1(A, τ )

τα
+ τγ−α /p2(RA, τ )

τγ
.

Step 3: convergence along arbitrary partitions. We finish by proving (3.1). Below, we always 
take r > 1/γ and r ≥ q2.

Let P := {0 = τ0 < τ1 < · · · < τN = 1} be an arbitrary partition of [0, 1], and, for i =
1, 2, . . . , N , define δi := τi − τi−1. Fix h ∈ [0, T ] and s ∈ [0, T − h]. Then

δI As,s+h − IP As,s+h =
N∑

i=1

[
δI As+τi−1h,s+τih − As+τi−1h,s+τih

]
=

N∑

i=1

RAs+τi−1h,s+τih,

and so
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/p2(δI A − IP A,h)1∧p2 ≤
N∑

i=1

/p2(RA, δih)1∧p2 . (3.21)

Assume first that 1 ≤ p2 ≤ ∞. If r ≥ 1, then Minkowski’s inequality yields




T̂

0

(
/p2(δI A − IP A,h)

hγ

)r dh

h




1/r

≤
N∑

i=1




T̂

0

(
/p2(RA, δih)

hγ

)r dh

h




1/r

≤
N∑

i=1

δ
γ
i




δiTˆ

0

(
/p2(RA,h)

hγ

)r dh

h





1/r

!p1,q1,p2,q2,r,γ T ‖P ‖γ−1 ‖δA‖Bγ
p2,q2

,

and otherwise, if 1/γ < r < 1, then

T̂

0

(
/p2(δI A − IP A,h)

hγ

)r dh

h
≤

N∑

i=1

T̂

0

(
/p2(RA, δih)

hγ

)r dh

h

!p1,q1,p2,q2,r,γ T ‖P ‖γ r−1 ‖δA‖q2

B
γ
p2,q2

Assume next that 1/γ < p2 < 1. If 1/γ < r ≤ p2 < 1, then

T̂

0

(
/p2(δI A − IP A,h)

hγ

)r dh

h
≤

T̂

0

(∑N
i=1 /p2(RA, δih)p2

hγp2

)r/p2
dh

h

≤
N∑

i=1

T̂

0

(
/p2(RA, δih)p2

hγ

)r dh

h

!p1,q1,p2,q2,r,γ T ‖P ‖γ r−1 ‖δA‖q2

B
γ
p2,q2

.

Otherwise, if 1/γ < p2 < 1 and r ≥ p2, then, by Minkowski’s inequality with the exponent r/p2,




T̂

0

(
/p2(δI A − IP A,h)

hγ

)r dh

h




p2/r

≤




T̂

0

(∑N
i=1 /p2(RA, δih)p2

hγp2

)r/p2
dh

h




p2/r

≤
N∑

i=1




T̂

0

(
/p2(RA, δih)

hγ

)r dh

h




p2/r

!p1,q1,p2,q2,r,γ T ‖P ‖γp2−1 ‖δA‖p2

B
γ
p2,q2

.
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In all cases, we conclude upon sending ‖P ‖ → 0. !

Proof of Theorem 3.2. Step 1: convergence along dyadic partitions. Fix r ∈ [q2, ∞] and 1 ≤
m < n. The third case of Lemma 3.1 and Minkowski’s inequality yield, for all T ′ ∈ [0, T ],




T ′ˆ

0

(
/p2(RPnA − RPmA,h)

ωr (h)

)r dh

h





1/r

!p2,q2




T ′ˆ

0

(
1

.r (h)

)r




h2−m+1ˆ

0

(
/p2(δA, τ )

τ
1∨ 1

p2

)q2
dτ

τ





r/q2

dh

h





1/r

≤




2−m+1T ′ˆ

0




T ′ˆ

2m−1τ

(
1

.r (h)

)r dh

h





q2/r (
/p2(δA, τ )

τ
1∨ 1

p2

)q2
dτ

τ





1/q2

!.r




2−m+1T ′ˆ

0

(
/p2(δA, τ )

τ
1∨ 1

p2

)q2
dτ

τ





1/q2

.

We conclude as in the proof of Theorem 3.1 that (RPnA)∞n=0 ⊂ Bωr
p2,r ([0, T ]) is Cauchy, and thus 

has a limit RA ∈ B
ωq2
p2,q2([0, T ]) that satisfies, for all T ′ ∈ [0, T ],




T ′ˆ

0

(
/p2(RA,h)

ωr (h)

)r dh

h





1/r

!p2,q2,.r




T ′ˆ

0

(
/p2(δA, τ )

τ
1∨ 1

p2

)q2
dτ

τ





1/q2

, (3.22)

and thus in particular (3.7).
Step 2: additivity. We argue as in Step 2 of Theorem 3.1: given θ = K

2N for some N = 1, 2, . . .
and K = 1, 2, . . . , 2N − 1, we deduce as in (3.19) and (3.20) that




T̂

0

(∥∥IPn+N A·,·+h − IPnA·,·+θh − IPnA·+θh,·+h

∥∥
Lp2 ([0,T −h])

h
1∨ 1

p2

)q2
dh

h




1/q2

≤ 2N




2−nTˆ

0

(
/p2(δA,h)

h
1∨ 1

p2

)q2
dh

h





1/q2

.

Taking n → ∞ gives /p2(δθA, h) = 0 for all h ∈ [0, T ] and dyadic θ ∈ (0, 1). The conclusion 
that Ĩ A = δI A and the bound (3.8) then follow exactly as in Theorem 3.1.
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Step 3: convergence along arbitrary partitions. As in the proof of Theorem 3.1, let P = {0 =
τ0 < τ1 < · · · < τN = 1} be a partition of [0, 1] and write δi := τi − τi−1 for i = 1, 2, . . . , N . 
Then (3.21) and (3.22) with r = ∞ give

‖δI A − IP A‖1∧p2

B
1∨ 1

p2
p2,∞

≤
N∑

i=1

sup
0≤h≤T

/p2(RA, δih)1∧p2

h

≤ T sup
0≤h≤‖P‖T

/p2(RA,h)1∧p2

h

!p2,q2 T




‖P‖Tˆ

0

(
/p2(δA,h)

h
1∨ 1

p2

)q2
dh

h





1∧p2
q2

,

and we conclude upon sending ‖P ‖ → 0. !

Remark 3.3. For γ > 0 and 0 < p ≤ ∞, we introduce the following closed subspace of Bγ
p,∞:

Bγ
p,∞;◦([0, T ]) :=

{

A ∈ Bγ
p,∞([0, T ]) : lim

τ→0+
sup

0<h≤τ

/p(A, τ )

τγ
= 0

}

.

Then the bound (3.22) implies that, with r = ∞ and .∞ ≡ 1, in the setting of Theorem 3.2, we in 

fact have RA ∈ B
1∨ 1

p2
p2,∞;◦([0, T ]). We will use this observation later to make sense of some rough 

differential equations in the Davie sense (see Proposition 5.3).

Proof of Theorem 3.3. In view of the relation δRA = δ (δI A − A) = −δA, we see that (3.9)
and (3.12) in respectively parts (a) and (b) are satisfied with RA in place of A.

In part (a), we have γ > 1/p2. We may then apply Proposition 2.7 with ω(r) = rγ , which, 
combined with (3.2), immediately yields (3.10). We now apply the interpolation estimate 
Lemma 2.7 with p = p2, r = p1, and δ = γ − 1/p2, for which the hypotheses are satisfied 
because of the condition on γ and α, to obtain

‖RA‖Bα
p1,q2

([0,T ]) !α,γ ,p1,p2,q2 T
γ− 1

p2
−α+ 1

p1 ‖RA‖
1− p2

p1

C
γ− 1

p2 ([0,T ])
‖RA‖

p2
p1
Bγ

p2,q2 ([0,T ])

!p2,q2,γ ,θ T
γ− 1

p2
−α+ 1

p1

(
‖δA‖Bγ

p2,q2
([0,T ]) + M

)1− p2
p1 ‖δA‖

p2
p1

B
γ
p2,q2

([0,T ])

≤ T
γ− 1

p2
−α+ 1

p1

(
‖δA‖Bγ

p2,q2
([0,T ]) + M

)
.

This concludes part (a) in view of the estimate

[I A]Bα
p1,q1∨q2

([0,T ]) !q1,q2 ‖A‖Bα
p1,q1

([0,T ]) + ‖RA‖Bα
p1,q2

([0,T ]) . (3.23)
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In part (b), the estimate (3.13) follows as in part (a) from Proposition 2.7 and (3.7). Setting

ω = ωq2, ρ(τ ) = ωq2(τ )

τ 1/p2
, p = p2, r = p1, and q = q2

gives, with the notation of Lemma 2.8,

σ (T ) =




T̂

0

τ
p1q2

p1−p2

(
1− 1

p2
−α+ 1

p1

)

.q2(τ )
p1q2

p1−p2
dτ

τ





p1−p2
p1q2

!p1,p2,q1,q2,α T
1− 1

p2
−α+ 1

p1 .q2(T ),

where we have used the final condition in (3.4). Applying Lemma 2.8 to RA yields

‖RA‖Bα
p1,q2

!α,p1,p2,q2 T
1− 1

p2
−α+ 1

p1 .q2(T )

(

sup
0≤s<t≤T

|RAst |
ωq2(t − s)(t − s)−1/p2

)1− p2
p1

× ‖RA‖
p2
p1
Bω

p2,q2

!α,p2,q2,K,θ T
1− 1

p2
−α+ 1

p1 .q2(T )

(
‖δA‖

B
1
p2,q2

+ M

)1− p2
p1 ‖δA‖

p2
p1

B
1
p2,q2

≤ T
1− 1

p2
−α+ 1

p1 .q2(T )

(
‖δA‖

B
1
p2,q2

+ M

)
.

We conclude in conjunction with (3.23). !

4. The Young regime

Theorems 3.1, 3.2, and 3.3 are used to obtain results on integrating Besov-regular paths. This 
recovers some existing results and also provides some refinements. The results are related to the 
question of making sense of the product of two Besov distributions. These integration results and 
the precise estimates that accompany them are used to solve differential equations with Besov 
driving signals in the Young regime.

4.1. Young integration

Given two measurable real-valued (the finite-dimensional vector-valued setting can be re-
covered component by component) f : [0, T ] → R and g : [0, T ] → R, we define, for (s, t) ∈
&2(0, T ) and a partition P = {0 = τ0 < τ1 < · · · < τN = 1} of [0, 1],

I P
st =

N∑

k=1

fs+τk−1(t−s)δgs+τk−1(t−s),s+τk(t−s).

We recall the definition of the families (.r)0<r≤∞ in (3.4) and (ωr )0<r≤∞ in (3.5).
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Theorem 4.1. Let α0, α1 ∈ (0, 1) and 0 < p0, p1, q0, q1 ≤ ∞, define

γ = α0 + α1,
1
p2

= 1
p0

+ 1
p1

, and
1
q2

= 1
q0

+ 1
q1

,

and assume that f ∈ B
α0
p0,q0([0, T ]) and g ∈ B

α1
p1,q1([0, T ]).

(a) If γ > 1 ∨ 1
p2

, then there exists I ∈ B
α1
p2,q1([0, T ]), which we write as

It :=
tˆ

0

fsdgs for t ∈ [0, T ],

such that, for all r ∈ (0, ∞) such that r > 1/γ and r ≥ q2 (note that if q2 > 1/γ , taking 
r = q2 is allowed),

lim
‖P‖→0

∥∥∥I P − δI
∥∥∥
Bγ

p2,r ([0,T ])
= 0. (4.1)

Moreover,

‖δI − f δg‖Bγ
p2,q2 ([0,T ]) !γ ,p2,q2 [f ]

B
α0
p0,q0

[g]Bα1
p1,q1

, (4.2)

and

[I ]Bα1
p2,q1

!α0,α1,p0,p1,q0,q1

(
‖f ‖Lp0 ([0,T ]) + T α0 [f ]

B
α0
p0,q0

)
[g]Bα1

p1,q1
. (4.3)

If, in addition, α0 > 1
p0

and α1 > 1
p1

, then

[I ]Bα1
p1,q1

!α0,α1,p0,p1,q0,q1

(
|f (0)| + T

α0− 1
p0 [f ]

B
α0
p0,q0

)
[g]Bα1

p1,q1
. (4.4)

(b) If γ = 1 ∨ 1
p2

≤ 1
q2

, then

lim
‖P‖→0

∥∥∥I P − δI
∥∥∥
B

1∨ 1
p2

p2,∞ ([0,T ])
= 0, (4.5)

‖δI − f δg‖Bωr
p2,r ([0,T ]) !κ,p2,r [f ]

B
α0
p0,q0

[g]Bα1
p1,q1

for all r ∈ [q2,∞], (4.6)

and

[I ]Bα1
p2,q1

!α0,α1,p0,p1,q0,q1,κ

(
‖f ‖Lp0 ([0,T ]) + T α0.q2(T )[f ]

B
α0
p0,q0

)
[g]Bα1

p1,q1
. (4.7)

If, in addition, α0 > 1
p0

and α1 > 1
p1

(note that this implies γ = 1), then

[I ]Bα1
p1,q1

!α0,α1,p0,p1,q0,q1

(
|f (0)| + T

α0− 1
p0 (1 + .q2(T ))[f ]

B
α0
p0,q0

)
[g]Bα1

p1,q1
. (4.8)
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Remark 4.1. The requirement throughout Theorem 4.1 that γ ≥ 1/p2 puts restrictions on the 
types of discontinuities that f or g may have. For instance, if α0 ≤ 1/p0, which means that 
f can be discontinuous, then α1 > 1/p1, so that Proposition 2.1 gives g ∈ Cα1−1/p1 (and vice 
versa). Of course, the bounds (4.4) and (4.8) require that both f and g are Hölder continuous, 
albeit with less Hölder regularity than is required in the pure-Hölder Young regime.

According to part (b), in the critical case, we may take f ∈ B
1/p0
p0,q0 and g ∈ B

1/p1
p1,q1 with

1 ≤ 1
p0

+ 1
p1

≤ 1
q0

+ 1
q1

.

This implies that one of q0 or q1 is finite, and, indeed, if both are finite, then both f and g are 
allowed to have discontinuities, or even be nowhere locally bounded; see for instance Proposi-
tion 2.6 or Corollary 2.1. However, in view of Proposition 2.5, they are not allowed to both have 
jump discontinuities. Moreover, as soon as one of q0 or q1 is ∞, the other must be no greater 
than 1, which means that, if one of f or g has jump discontinuities, the other must be continuous.

These observations are in line with the theory of rough paths with jumps put forward in [26]. 
Indeed, the Heaviside function

Ht =
{

0 if 0 ≤ t < 1/2,

1 if 1/2 ≤ t ≤ 1

satisfies ‖H‖
B

1/p
p,∞

= 1 for all 0 < p < ∞, and the integral ́ 1
0 ftdHt cannot be defined as limits of 

arbitrary Riemann sums if f itself has a jump discontinuity at t = 1/2 (formally, dHt = δ1/2(t)).

Remark 4.2. It has been known since [43] that the continuous bilinear map defining I does not 
extend from C1 × C1 to spaces on which the Wiener measure is supported. This is consistent 
with Theorem 4.1; indeed, if q < ∞, then, with probability one, Brownian paths do not belong 
to B1/2

p,q for any p.

Proof of Theorem 4.1. The map A : &2(0, T ) → R defined by Ast := fs(gt − gs) satisfies 
δArst := −δfrsδgst . Hölder’s inequality yields

‖δA‖Bγ
p2,q2

! [f ]
B

α0
p0,q0

[g]Bα1
p1,q1

and ‖A‖Bα1
p2,q1

≤ ‖f ‖Lp0 ([0,T ]) [g]Bα1
p1,q1

.

With the notation from Section 3, we have I P = IP A and I = I A. The convergence state-
ments (4.1) and (4.5) and the bounds (4.2), (4.3), and (4.6) follow immediately from Theo-
rems 3.1 and 3.2.

If αi > 1/pi for i = 0, 1, then Proposition 2.1 gives, for all 0 ≤ s ≤ u ≤ t ≤ T ,

|δAsut | ≤ |δfsu| |δgut | ≤ [f ]Cα0−1/p0 [g]Cα1−1/p1 (u − s)α0−1/p0(t − u)α1−1/p1

!α0,α1,p0,p1,q0,q1 [f ]
B

α0
p0,q0

[g]Bα1
p1,q1

(u − s)α0−1/p0(t − u)α1−1/p1

and

‖A‖Bα1
p1,q1

≤ ‖f ‖∞ [g]Bα1
p1,q1

!α0,p0,q0

(
|f (0)| + T α0−1/p0[f ]

B
α0
p0,q0

)
[g]Bα1

p1,q1
.
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The bounds (4.4) and (4.8) are then consequences of Theorem 3.3, respectively parts (a) and 
(b). !

4.2. Differential equations: Young regime

For f :Rm → Rm ⊗Rn, X : [0, T ] → Rm, and y ∈ Rm, we consider the initial value problem

dYt = f (Yt ) · dXt in [0, T ] and Y0 = y (4.9)

in the Young regime, which, in the Besov context, means






1
2

≤ α < 1,
1
α

< p ≤ ∞,

0 < q ≤ ∞ if α >
1
2
, and

0 < q ≤ 2 if α = 1/2,

(4.10)

with the nonlinearity satisfying






f ∈ C1,δ(Rm;Rm ⊗Rn) if α >
1
2
, where (1 + δ)α > 1 and δα > 1/p,

f ∈ C2(Rn;Rm ⊗Rn) if α = 1
2
.

(4.11)

Theorem 4.2. Assume (4.10), and fix X ∈ Bα
pq([0, T ]; Rn) and f satisfying (4.11). Then, for 

every fixed y ∈Rm, there exists a unique solution Y ∈ Bα
pq([0, T ]; Rm) of (4.9). Moreover, there 

exists a constant M depending only on α, p, q , T , ‖f ‖C1 , and [X]Bα
pq

such that [Y ]Bα
pq

≤ M .

Remark 4.3. As was mentioned in the introduction, a possible shortcut to solving (4.9) is to use 
embeddings to reduce the problem to the variation setting. However, the power of the Besov 
sewing results of Section 3 is that one can read off all the estimates on the Besov scale, which 
not only immediately yields the contraction property for the fixed-point map in the proof of 
Theorem 4.2, but also leads to the local Lipschitz continuity of the solution map in the Besov 
metric (see Theorem 4.3 below), something that could not be accomplished in, for example, [42].

Moreover, upon embedding Besov- into variation-spaces, some information may actually be 
lost. For example, in the borderline regime of (4.10), that is, when X ∈ B

1/2
pq with q ≤ 2 < p, 

the known variation embeddings give X ∈ V2 [41, Proposition 4.1(3)], which falls outside of the 
Young regime in the variation setting. Meanwhile, there exists X ∈ B

1/2
pq with q ≤ 2 < p such 

that X does not belong to Vr for any r ∈ [1, 2) (see Proposition 2.2) so Theorem 4.2 does indeed 
strictly expand the Young regime of solvability for (4.9).

Proof of Theorem 4.2. For M > 0 and 0 < T0 ≤ 1 ∧ T , define

XM :=
{
Y ∈ Bα

pq([0, T0]) : Y0 = y, [Y ]Bα
pq

≤ M
}

,
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which, equipped with the metric (Y, Ỹ ) (→ [Y − Ỹ ]1∧q
Bα

pq([0,T0]), is a complete metric space (see Re-
mark 2.4). We will show that, for some sufficiently large M and sufficiently small T0, depending 
only on f and X, the map

(MY)t = y +
tˆ

0

f (Ys) · dXs for t ∈ [0, T0],

defined in the sense of Theorem 4.1, has a fixed point in XM .
Step 1: M (XM) ⊂ XM . Let Y ∈ XM . By Lemma 2.4, if α > 1/2, then f (Y ) ∈ Bδα

p,q/δ , and, 
if α = 1/2, then f (Y ) ∈ Bα

p,q . In any case, Theorem 4.1 implies that Z := MY ∈ Bα
pq([0, T0])

is well-defined. Moreover, if α > 1/2, then (4.4) gives

[Z]Bα
pq

!α,p,q

(
|f (Y0)| + T

α−1/p
0 [f (Y )]Bδα

p,q/δ

)
[X]Bα

pq

!α,p,q

(
‖f ‖∞ + T

α−1/p
0 [f ]Cδ [Y ]δBα

pq

)
[X]Bα

pq
,

and, if α = 1/2 (and thus q ≤ 2), then (4.8) yields

[Z]
B

1/2
pq

!p,q

(
‖f ‖∞ + T

1/2−1/p
0 (1 + .q/2(T0))[f ]C1 [Y ]

B
1/2
pq

)
[X]

B
1/2
pq

.

In either case, choosing first M sufficiently large and then T0 sufficiently small makes the right-
hand side no greater than M , as desired.

Step 2: M : XM → XM is a contraction. For Y, Ỹ ∈ XM , define Z = MY and Z̃ = M Ỹ , 
so that

Zt − Z̃t =
tˆ

0

(
f (Ys) − f (Ỹs)

)
· dXs.

Appealing once more to Theorem 4.1 and Lemma 2.4, we have, for α > 1/2,

[Z − Z̃]Bα
pq([0,T0]) !α,p,q T

δα−1/p
0 [f (Y ) − f (Ỹ )]Bδα

p,q/δ
[X]Bα

pq

!M T
δα−1/p

0 ‖f ‖C1,δ [Y − Ỹ ]Bα
p,q

[X]Bα
pq

,

and, if α = 1/2 and q ≤ 2,

[Z − Z̃]
B

1/2
pq ([0,T0]) !β,p,q T

1/2−1/p
0 (1 + .q/2(T0))[f (Y ) − f (Ỹ )]

B
1/2
p,q

[X]
B

1/2
pq

!M T
1/2−1/p
0 (1 + .q/2(T0))‖f ‖C1,δ [Y − Ỹ ]

B
1/2
p,q

[X]
B

1/2
pq

.

The contraction property is seen upon taking T0 sufficiently small. Because of the choice of T0, 
this process may be iterated on [T0, 2T0], [2T0, 3T0], and so on, and we conclude. !

We conclude this section with the local Lipschitz continuity of the Itô-Lyons map.
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Theorem 4.3. Assume (4.10), fix M , and let X1, X2 ∈ Bα
pq([0, T ]), f 1, f 2 satisfying (4.11), and 

y1, y2 ∈ Rm be such that [X1]Bα
pq

∨ [f 1]C1,δ ∨ [X2]Bα
pq

∨ [f 2]C1,δ ≤ M (with C1,δ replaced by 
C2 if α = 1/2). Then the solutions Y 1 and Y 2 of (4.9) corresponding to respectively (X1, f 1, y1)

and (X2, f 2, y2) satisfy

[Y 1 − Y 2]Bα
pq

!α,p,q,M,T

(
|y1 − y2| + [X1 − X2]Bα

pq
+

∥∥∥f 1 − f 2
∥∥∥

Cδ

)
.

Proof. We write

Y 1
t − Y 2

t =y1 − y2 +
tˆ

0

(
(f 1 − f 2)(Y 1)

)
dX1

s

︸ ︷︷ ︸
I

+
tˆ

0

[
f 2(Y 1

s ) − f 2(Y 2
s )

]
dX1

s

︸ ︷︷ ︸
II

+
tˆ

0

f 2(Y 2
s )d

[
X1

s − X2
s

]

︸ ︷︷ ︸
III

.

We estimate I, II, and III with the use of Theorem 4.1 and Lemma 2.4, noting first that, by 
Theorem 4.2, [Y 1]Bα

pq
∨ [Y 2]Bα

pq
!M,T 1. If α > 1/2, then

[I]Bα
pq

!α,δ,p,q,M,T

∥∥∥f 1 − f 2
∥∥∥

∞
+ [(f 1 − f 2)(Y 1)]Bδα

p,q/δ
!M,α,δ,p,q

∥∥∥f 1 − f 2
∥∥∥

∞

+ [f 1 − f 2]Cδ ,

[II]Bα
pq

!α,p,q,δ,M |f 2(y1) − f 2(y2)| + T δα−1/p[f 2(Y 1) − f 2(Y 2)]Bδα
p,q/δ

!M,α,δ,p,q |y1 − y2| + T δα−1/p[Y 1 − Y 2]Bα
p,q

,

and [III]Bα
pq

!α,p,q,M,δ [X1 − X̃2]Bα
pq

. Combining the estimates for I, II, and III and taking T0
sufficiently small, depending only on M , we obtain the desired estimate on [0, T0]. The estimate 
on the whole of [0, T ], for a constant C depending additionally on T , can be obtained by iterating 
the estimate on the intervals [T0, 2T0], [2T0, 3T0], etc. The argument for α = 1/2 and q ≤ 2
proceeds in exactly the same way, replacing f ∈ C1,δ with f ∈ C2, and the factors of T α−1/p

0

with T 1/2−1/p
0 (1 + .q/2(T0)). !

5. The rough path setting

This section develops the theory of rough paths and rough differential equations with Besov 
regularity. We first introduce a general definition of Besov rough paths with arbitrarily low regu-
larity. We give a full description of controlled paths in the level-2 case, and, with the use of the 
sewing techniques from Section 3, prove well-posedness for controlled rough differential equa-
tions driven by Besov rough signals. We also outline the framework that leads to the same results 
for level-N geometric rough paths for N ≥ 3.
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5.1. Besov rough paths

For N ∈N , define the truncated tensor algebra of level N by

T (N)(Rn) = R⊕
N⊕

k=1

(Rn)⊗k,

with the noncommutative tensor product ⊗. For a ∈R, define also

T (N)
a (Rn) :=

{

a +
N∑

k=1

vj ∈ T (N)(Rn), vk ∈ (Rn)⊗k

}

.

For λ > 0 and k = 0, 1, 2, . . . , N , we define δλ : T (N)(Rn) → T (N)(Rn) and τk : T (N)(Rn) →
T (k)(Rn) as follows: for v = v0 + v1 + · · · + vN ∈ T (N)(Rn) with vk ∈ (Rn)⊗k ,

δλv = v0 + λv1 + λ2v2 + · · · + λNvN and τkv = v0 + v1 + · · · + vk.

The level-N Besov rough path regime shall be described with the parameters






1
N + 1

≤ α < 1,
1
α

< p ≤ ∞,

0 < q ≤ ∞ if α >
1

N + 1
, and

0 < q ≤ N + 1 if α = 1
N + 1

.

(5.1)

Definition 5.1. For N ∈ N and α, p, and q as in (5.1), X : &2(0, T ) → T
(N)
1 (Rn) is a level-N

Bα
pq([0, T ])-rough path if

Xst ⊗ Xtu = Xsu for all (s, t, u) ∈ &3(0, T ) (5.2)

and

‖|X‖|Bα
pq([0,T ]) :=

N∑

k=1

∥∥∥X(k)
∥∥∥

1/k

Bkα
p/k,q/k

< ∞. (5.3)

To emphasize the level-N setting, we write also Bα
pq = Bα

pq;N and omit the “N” when it does 
not create confusion. The space Bα

pq([0, T ]) is a complete metric space equipped with

ρBα
pq([0,T ])(X,Y) :=

N∑

k=1

dBkα
p/k,q/k

(
X(k),Y(k)

)
, (5.4)

where the metric dBkα
p/k,q

is defined as in (2.11).
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Remark 5.1. When N = 2, Definition 5.1 allows for a complete theory of rough differential 
equations, as discussed in Subsections 5.2 and 5.3. For N ≥ 3, and for non-linear equations, 
additional algebraic considerations are necessary, as discussed in Subsection 5.4.

Remark 5.2. Even if p, q ≥ N (and thus p/k, q/k ≥ 1 for all k = 1, 2, . . . , N ), the quantity 
(5.3) defines only a quasi-norm. We have the following useful homogeneity property: for λ ∈R
and X ∈ Bα

pq , δλX is a level-N Bα
pq rough path, with

‖|δλX‖|Bα
pq

= λ‖|X‖|Bα
pq

.

Remark 5.3. With slight abuse of notation, we set Xt := X0,t . Then (5.2) implies that X is a bona 
fide path taking values in T(N)

1 (Rn), and in fact Xs,t = X−1
s ⊗ Xt .

For x, y ∈ T
(N)
1 (Rn), we define a metric d by d(x, y) =

∥∥∣∣x−1 ⊗ y
∥∥∣∣

∗, where ‖|x‖|∗ :=
1
2

(
N(x) + N(x−1)

)
and N(x) = maxk=1,2,...,N

(
k!|x(k)|

)1/k
, and the norm | · | on (Rn)⊗k is taken 

to be permutation-invariant; see [19] for more details. It is then easy to see that

‖|X‖|Bα
pq

4α,p,q,N




T̂

0

(
sup0<h<τ ‖d(X·,X·+h)‖Lp([0,T −h])

τα

)q
dτ

τ




1/q

= [X]
Bα

pq([0,T ],T (N)
1 (Rn))

;

that is, Bα
pq([0, T ]) = Bα

pq

(
[0, T ], T (N)

1 (Rn)
)

.

5.1.1. Hölder embeddings
For a level-N rough path X ∈ Bα

pq , because α > 1
p , X is Hölder continuous, and, moreover, 

the distance between two such rough paths in the Hölder distance is controlled by the Besov one, 
as demonstrated by the next result. Throughout the rest of the section, we thus may work with 
the continuous version of X.

Proposition 5.1. Assume (5.1) and let X, X̃ be level-N Bα
pq rough paths. Then, for all k =

1, 2, . . . , N ,

∥∥∥X(k)
∥∥∥

1/k

Ck(α−1/p)([0,T ])
!α,p,q ‖|τkX‖|Bα

pq([0,T ]), (5.5)

and
∥∥∥X(k) − X̃(k)

∥∥∥
Ck(α−1/p)([0,T ])

!α,p,q

k∑

j=1

(
‖|τkX‖|Bα

pq([0,T ]) ∨
∥∥∣∣τkX̃

∥∥∣∣
Bα

pq([0,T ])
)k−j ∥∥∥X(j) − X̃(j)

∥∥∥
Bjα

p/j,q/j ([0,T ])
.

(5.6)

Proposition 5.1 is proved with an application of Proposition 2.7. Note also that (5.5) follows 
from Proposition 2.1, in view of Remark 5.3.
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Proof of Proposition 5.1. The proof of (5.5) follows by induction. First, Chen’s relations imply 
that δX(1) ≡ 0, so Proposition 2.7 gives the estimate for X(1) (alternatively, we have X(1)

st =
Xt − Xs for some X ∈ Bα

pq , and so the result is classical).
Now let n ≥ 2 be fixed and assume the estimate holds for each X(m) with m < n. Chen’s 

relations then imply that, for 0 ≤ s ≤ u ≤ t ≤ T ,

δX(n)
sut =

n−1∑

m=1

X(m)
su ⊗ X(n−m)

ut .

The inductive hypothesis then yields

∣∣∣δX(n)
sut

∣∣∣ !
n−1∑

m=1

‖|τmX‖|mBα
pq

‖|τn−mX‖|n−m
Bα

pq
(u − s)m(α−1/p)(t − u)(n−m)(α−1/p)

! ‖|τnX‖|nBα
pq

[(u − s) ∨ (t − u)]α−1/p [(u − s) ∧ (t − u)](n−1)(α−1/p) ,

and we conclude by appealing to Proposition 2.7.
To prove (5.6), we note first that δ(X(1) − X̃(1)) = 0, so that the estimate for X(1) − X̃(1) is a 

consequence of Proposition 2.7.
Fix n ≥ 2 and assume that the result holds for all m < n. We then have, for 0 ≤ s ≤ u ≤ t ≤ T ,

δ(X(n) − X̃(n))sut =
n−1∑

m=1

(
X(m)

su ⊗ X(n−m)
ut − X̃(m)

su ⊗ X̃(n−m)
ut

)

=
n−1∑

m=1

[(
X(m)

su − X̃(m)
su

)
⊗ X(n−m)

ut + X̃(m)
su ⊗

(
X(n−m)

ut − X̃(n−m)
ut

)]
.

Then both the inductive hypothesis and (5.5) imply that
∣∣∣δ(X(n) − X̃(n))sut

∣∣∣

!
n−1∑

m=1

[

‖|τn−mX‖|n−m
Bα

pq

m∑

k=1

(
‖|τmX‖|Bα

pq
∨

∥∥∣∣τmX̃
∥∥∣∣

Bα
pq

)m−k ∥∥∥X(k) − X̃(k)
∥∥∥
Bkα

p/k,q

+
∥∥∣∣τmX̃

∥∥∣∣m
Bα

pq

n−m∑

.=1

(
‖|τn−mX‖|Bα

pq
∨

∥∥∣∣τn−mX̃
∥∥∣∣

Bα
pq

)n−m−. ∥∥∥X(l) − X̃(l)
∥∥∥
B.α

p/.,q

]

· (s − u)m(α−1/p)(t − u)(n−m)(α−1/p)

!
n−1∑

m=1

(
‖|τnX‖|Bα

pq
∨

∥∥∣∣τnX̃
∥∥∣∣

Bα
pq

)n−m ∥∥∥X(m) − X̃(m)
∥∥∥
Bmα

p/m,q

· [(u − s) ∨ (t − u)]α−1/p [(u − s) ∧ (t − u)](n−1)(α−1/p) .

The result now follows from Proposition 2.7. !
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Inspired by the Campanato characterization of Hölder continuity, we record here the following 
result for Besov rough paths, which follows from Proposition 2.9.

Corollary 5.1. Assume that X : [0, T ] → T (N)(Rm) satisfies Chen’s relation (5.2) and, for some 
C > 0 and β ∈ (0, 1),

1
b − a

bˆ
a

∣∣∣∣∣∣
1

b − a

bˆ
a

X(n)
st ds

∣∣∣∣∣∣
dt ≤ C(b − a)βn for all a < b and n = 1, ..,N. (5.7)

Then there exists M = Mβ > 0 such that

∣∣∣X(n)
st

∣∣∣
1/n

≤ MC|t − s|β for all (s, t) ∈ [0, T ]2.

Along with Lemma 2.7, Proposition 5.1 allows for the following estimates that trade regularity 
for integrability.

Lemma 5.1. Assume (5.1) and let X, X̃ ∈ Bα
pq([0, T ]). Then, for all j, k ∈ {1, 2, . . . , N} with 

j < k,

∥∥∥X(k)
∥∥∥
Bjα

p/j,q/j ([0,T ])
!α,p,q T (k−j)(α−1/p)‖|τkX‖|kBα

pq([0,T ])

and

∥∥∥X(k) − X̃(k)
∥∥∥
Bjα

p/j,q/j ([0,T ])
!α,p,q T (k−j)(α−1/p)

k∑

i=1

(
‖|τkX‖|Bα

pq([0,T ]) ∨
∥∥∣∣τkX̃

∥∥∣∣
Bα

pq([0,T ])
)k−i

·
∥∥∥X(i) − X̃(i)

∥∥∥
Biα

p/i,q/i ([0,T ])

Proof. Lemma 2.7 and Proposition 5.1 immediately yield

∥∥∥X(k)
∥∥∥
Bjα

p/j,q/j ([0,T ])
!α,p,q T (k−j)(α−1/p)

∥∥∥X(k)
∥∥∥

k−j
k

Ck(α−1/p)

∥∥∥X(k)
∥∥∥

j
k

Bkα
p/k,q/j

!α,p,q T (k−j)(α−1/p)‖|τkX‖|k−j
Bα

pq([0,T ])
∥∥∥X(k)

∥∥∥
j
k

Bkα
p/k,q/k

≤ T (k−j)(α−1/p)‖|τkX‖|kBα
pq([0,T ]).

The estimate for X(k) − X̃(k) follows in the same way, using the second estimate in Proposi-
tion 5.1. !
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5.1.2. Lyons extension theorem
We next present our first application of Besov sewing in the rough path context, which is a 

version of the Lyons extension theorem on the Besov scale. For the reader interested in solving 
Besov rough differential equations, the subsequent result can be skipped over at no loss.

Theorem 5.1. Assume that 1
M+1 < α < 1, 1/α < p ≤ ∞, and 0 < q ≤ ∞. Then, for any N ≥ M , 

there exists a continuous map E : Bα
pq;M → Bα

pq;N such that, given X, X̃ ∈ Bα
pq,M , for all k =

1, 2, . . . , M ,

(E X)(k) = X(k),

and, for all k = M + 1, M + 2, . . . , N ,

∥∥∥(E X)(k)
∥∥∥
Bkα

p/k,q/k

!M,N,α,p,q ‖|X‖|kBα
pq;M

(5.8)

and

∥∥∥(E X)(k) − (E X̃)(k)
∥∥∥
Bkα

p/k,q/k

!M,Nα,p,q

M∑

j=1

∥∥∥Xj − X̃j
∥∥∥
Bjα

p/j,q/j

(
‖|X‖|Bα

pq;M
∨

∥∥∣∣X̃
∥∥∣∣

Bα
pq;M

)k−j

.

(5.9)

Proof. It suffices to consider the case where N = M + 1, and the general statement then follows 
by induction. For (s, t) ∈ &2(0, T ), define

Ast :=
M∑

k=1

XM−k+1
0,s ⊗ X(k)

s,t .

Then, for (s, u, t) ∈ &3(0, T ),

δAsut =
M∑

k=1

(
−X(M−k+1)

su ⊗ X(k)
ut − δX(M−k+1)

0su ⊗ X(k)
ut + X(M−k+1)

0s ⊗ δX(k)
sut

)

= −
M∑

k=1

X(M−k+1)
su ⊗ X(k)

ut −
M∑

k=1

M−k+1∑

j=1

X(j)
0s ⊗ X(M−k+1−j)

su ⊗ X(k)
ut

+
M∑

k=1

X(M−k+1)
0s ⊗

k∑

j=1

X(j)
su ⊗ X(k−j)

ut

= −
M∑

k=1

X(M−k+1)
su ⊗ X(k)

ut ,

and so
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‖δA‖
B

(M+1)α
p/(M+1),q/(M+1)

!q

M∑

k=1

∥∥∥X(M−k+1)
∥∥∥
B(M−k+1)α

p/(M−k+1),q/(M−k+1)

∥∥∥X(k)
∥∥∥
Bkα

p/k,q/k

! ‖|X‖|M+1
Bα

pq
.

The estimate (3.2) from Theorem 3.1 then yields

‖RA‖
B

(M+1)α
p/(M+1),q/(M+1)

!α,p,q ‖|X‖|M+1
Bα

pq
.

Setting (E X)(M+1) := RA, it is easy to check that Chen’s relations (5.2) hold. This establishes 
the existence of the map and the bound (5.8). To prove (5.9), we take X̃ ∈ Bα

pq and set

Ãst :=
M∑

k=1

X̃M−k+1
0,s ⊗ X̃(k)

s,t .

Then

δAst − δÃst = −
M∑

k=1

X(M−k+1)
su ⊗ X(k)

ut +
M∑

k=1

X̃(M−k+1)
su ⊗ X̃(k)

ut ,

whence

∥∥∥δA − δÃ
∥∥∥
B

(M+1)α
p/(M+1),q/(M+1)

!p,q

M∑

k=1

∥∥∥X(k) − X̃(k)
∥∥∥
Bkα

p/k,q/k

(
‖|X‖|Bα

pq;M
∨

∥∥∣∣X̃
∥∥∣∣

Bα
pq;M

)M+1−k

.

The bound (5.9) then follows from another application of the sewing lemma estimate (3.2). !

Remark 5.4. Theorem 5.1 is proved in the regime of (5.1) where α > 1
M+1 . When α = 1

M+1
and 0 < q ≤ M + 1, there is the subtlety that the component (E X)(M+1) constructed with The-
orem 3.2 belongs, not to B(M+1)α

p/(M+1),q/(M+1), but to Bω
p/(M+1),q/(M+1) for some modulus ω that 

is a bit worse (by, say, a logarithmic correction) than τ (→ τ (M+1)α . One can conceive of a gen-
eralization of Definition 5.1 in which the regularity of the various components is given by more 
general moduli than the powers τα , τ 2α , τ 3α , etc., for which an extension result in the endpoint 
case could be proved, but we do not pursue this here.

These remarks are consistent with Theorem 4.1, which can be seen as a generalization of 
Theorem 5.1 when M = 1. Indeed, Theorem 4.1 implies that, for X ∈ B

1/2
p,q ([0, T ], Rm) with 

q ≤ 2 < p, the well-defined iterated integrals

&2(0, T ) 9 (s, t) (→Xst :=
tˆ

s

δXs,r ⊗ dXr ∈ Rn ⊗Rn

belong, not to B1
p/2,q/2, but rather Bω

p/2,q/2 for some modulus ω involving a logarithmic correc-
tion of τ (→ τ .
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5.1.3. Multidimensional stochastic processes as Besov rough paths
Brownian and fractional Brownian motion. A classical result of Z. Ciesielski [9] asserts 

that, for p < ∞, the paths W(ω) of the standard n-dimensional Brownian motion are almost 
surely in ∈ B

1/2
p∞([0, T ]). A more precise Orlicz space version appears in [10], see also [50] and 

[48, Theorem 3.2] for corresponding moment estimates. Corresponding results for the fractional 
Brownian motion appear in [55, Corollary 5.3]. Let W(ω) be Itô- or Stratonovich Brownian 
rough paths over Rn, see e.g. [19, Ch.3]. The following regularity results appear to be new, even 
in the Brownian rough path case.

Theorem 5.2. Almost surely, W(ω) ∈ B1/2
p∞([0, T ]) for every p < ∞, and W(ω) /∈ B1/2

∞∞([0, T ]). 
For fractional Brownian rough paths with Hurst parameter H ∈ (1/4, 1/2], the analogous state-
ment holds with B1/2

p∞([0, T ]) replaced by BH
p∞([0, T ]).

Proof. The negative inclusion is immediate from the corresponding (well-known) statement for 
(fractional) Brownian motion, together with the fact that the rough Besov norm of any rough path 
over some path X dominates the classical Besov norm of some X. We show the first statement, 
in the Brownian case H = 1/2. By Lemma 2.2, it suffices to check that, with probability one, 
(Ynp)∞n=0 is bounded in n, where

Y
p
np := 2np/2

1ˆ

0

d(Wt ,Wt+2−n)pdt

and d is the metric introduced in Remark 5.3. By basic properties of Brownian (rough) paths, 
and homogeneity of the metric, it is clear that 2np/2d(Wt , Wt+2−n)p has the same law as 
d(W(0), W(1))p , with (finite) mean cp

p . This is also the mean of Yp
np , and one estimates without 

problem that the variance of Yp
np goes to zero, with rate 2−n. A Borel-Cantelli argument then 

shows a.s. convergence Yp
np → c

p
p . This implies the desired boundedness, and the proof is fin-

ished. (See [35] for a similar argument, applied to Banach valued Brownian motion.) Using basic 
facts about fractional Brownian rough paths, in particular existence for H > 1/4 and their nat-
ural scaling properties (see e.g. [19] in case H > 1/3, and [25] for the general case), the above 
argument extends immediately to the fractional setting. !

Remark 5.5. The case H > 1/2 is not excluded, but (as level-1 rough path) is not particularly 
challenging. On the other hand, the construction of higher order iterated integrals in Theorem 5.1
with the correct Besov (rough path) regularity, is non-trivial even in case H > 1/2.

Remark 5.6. It should be possible to device a theory of Besov Gaussian rough paths, based 
on suitable 2D Besov-variation conditions on the covariance, for which the well-developed 
Hölder/variation theory [24] appears as end-point cases.

Local martingales. We first recall the BDG inequality in the Besov scale. For a (continuous) 
local martingale (Mt : 0 ≤ t ≤ T ) with (γ0, p0, q0)-Besov regularity, γ0 − 1/p0 > 0, and r ∈
[1, ∞), one has

∥∥∥‖M‖
B

γ0
p0,q0

∥∥∥
Lr(/)

!
∥∥∥‖SM‖Bγ0

p0,q0

∥∥∥
Lr(/)

, (5.10)

206



P.K. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152–231

where

SMs,t := (〈M〉t − 〈M〉s)1/2, (5.11)

the square-root of the quadratic variation of M , is conveniently measured in 2-parameter Besov 
sense. (This is essentially found in [50], and also follows from taking F ≡ 1 in Appendix A.2.) 
Note that the employed left-hand Besov norm on [0, T ] dominates the uniform norm of M , so 
that the classical BDG inequality immediately shows that one can replace ! above by a two-sided 
sandwich estimate.

A multidimensional local martingale M = (M1, . . . , Mn) can be enhanced to a rough process 
via the 2-parameter process

Ms,t :=
tˆ

u=s

δMs,u− ⊗ dMu,

where the integration is taken in the Itô sense. For this enhanced process, an estimate analogous 
to (5.10) holds with the homogenous Besov rough path norm defined in (5.3).

Theorem 5.3 (Rough BDG in Besov scale). Let r ∈ (1, ∞), p, q ∈ (2, ∞), and α ∈ (1/3, 1) with 
α − 1/p > 0. Let M be an n-dimensional local martingale, and M = (M, M) the resulting Itô 
local martingale rough path over Rn. Then the following BDG type estimate holds,

∥∥∥‖|M‖|Bα
p,q

∥∥∥
Lr(/)

!α,p,q,r

∥∥∥‖SM‖Bα
p,q

∥∥∥
Lr(/)

, (5.12)

where the square-root of the quadratic variation SM is defined as in (5.11).

We do not claim that the ranges of exponents in Theorem 5.3 are optimal.
As can be seen from analogous results in p-variation scale [23,8,38,27], it is illuminating to 

consider results such as Theorem 5.3 in an anisotropic setting, in which different components of 
the martingale are measured in different norms. This is the content of Appendix A.

Proof of Theorem 5.3. Apply Theorem A.3 pairwise to the components of M , and use (5.10) to 
replace Besov norms of M that appear by 2-parameter Besov norms of SM . !

Finally, note that ‖|M‖|Bα
p,q

on the left-hand side of (5.12) can be strengthened to the ho-
mogenous Besov rough path norm of the canoncial level-N lift of M, which is supplied by 
Theorem 5.1.
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5.2. Controlled rough paths: the level-2 case

For the remainder of Subsections 5.2 and 5.3, we consider the level-2 case, that is,






1
3

≤ α < 1,
1
α

< p ≤ ∞,

0 < q ≤ ∞ if α >
1
3
, and

0 < q ≤ 3 if α = 1
3
.

(5.13)

We also follow notation similar to, say, [19,30], and write X = (X(1), X(2)) = (δX, X), with the 
convention that X0 ≡ 0.

Definition 5.2. Assume (5.13) and let X ∈ Bα
pq([0, T ], Rn). Then (Y, Y ′) : [0, T ] → Rm ×Rn ⊗

(Rm) is called an X-controlled rough path over Rm, and (Y, Y ′) ∈ Bα
pq,X([0, T ], Rm), if

Y ∈ Bα
pq([0, T ],Rm), Y ′ ∈ Bα

pq([0, T ],Rn ⊗Rm), and

RY := δY − Y ′δX ∈ B2α
p/2,q/2([0, T ],Rm). (5.14)

We define

[(Y,Y ′)]Bα
pq,X

:= [Y ′]Bα
pq

+
∥∥∥RY

∥∥∥
B2α

p/2,q/2

,

and, given X, X̃ ∈ Bα
pq , (Y, Y ′) ∈ Bα

pq,X, and (Ỹ , Ỹ ′) ∈ Bα
pq,X̃

,

dX,X̃,Bα
pq

(Y,Y ′; Ỹ , Ỹ ′) = dBα
pq

(Y ′, Ỹ ′) + dB2α
p/2,q/2

(RY ,RỸ ).

If X = X̃, we write dX,Bα
pq

:= dX,X,Bα
pq

.

Lemma 5.2. Assume (5.13) and let X ∈ Bα
pq and (Y, Y ′) ∈ Bα

pq,X. Then, for all β satisfying 
α + 1

p < β ≤ 2α,

∥∥∥RY
∥∥∥
Cβ−2/p([0,T ])

!α,β,p,q

∥∥∥RY
∥∥∥
Bβ

p/2,q/2

+ [Y ′]Bα
pq

[X]Bα
pq

(5.15)

and

[Y ]Bα
pq

!α,p,q |Y ′
0|[X]Bα

pq
+ (T β−α−1/p ∨ T α−1/p)

(
[Y ′]Bα

pq
[X]Bα

pq
+

∥∥∥RY
∥∥∥
Bβ

p/2,q/2

)
. (5.16)

If also X̃ ∈ Bα
pq and (Ỹ , Ỹ ′) ∈ Bα

pq,X̃
, then
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∥∥∥RY − RỸ
∥∥∥
Cβ−2/p([0,T ])

!α,β,p,q

(∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

+ [Y ′ − Ỹ ′]Bα
pq

[X]Bα
pq

+ [Ỹ ′]Bα
pq

[X − X̃]Bα
pq

)
(5.17)

and

[Y − Ỹ ]Bα
pq

!α,p,q |Y ′
0 − Ỹ ′

0|[X]Bα
pq

+ |Ỹ ′
0|[X − X̃]Bα

pq

+ T β−α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
[X]Bα

pq
+ [Ỹ ′]Bα

pq
[X − X̃]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
.

(5.18)

Proof. For (s, u, t) ∈ &3(0, T ), we have δRY
sut = δY ′

s,uδXu,t , and so Proposition 2.1 gives

|δRY
sut |!α,p,q [Y ′]Bα

pq
[X]Bα

pq
(u − s)α−1/p(t − u)α−1/p.

Because RY ∈ Bβ
p/2,q/2 and β − 2

p > α − 1/p > 0, (5.15) is now a consequence of Proposi-
tion 2.7. The bound (5.17) is proved analogously, from the fact that

∣∣∣δ(RY − RỸ )sut

∣∣∣ ≤ |δY ′
su − δỸ ′

su||δXut | + |δỸ ′
su||δXut − δX̃ut |

!α,p,q

(
[Y ′ − Ỹ ′]Bα

pq
[X]Bα

pq
+ [Ỹ ′]Bα

pq
[X − X̃]Bα

pq

)
(u − s)α−1/p(t − u)α−1/p.

Lemma 2.7 and (5.15) now give

∥∥∥RY
∥∥∥
Bα

p,q

!α,β,p,q T
β−α− 1

p

∥∥∥RY
∥∥∥

1/2

Cβ−1/p

∥∥∥RY
∥∥∥
Bβ

p/2,q

!α,β,p,q T
β−α− 1

p

(∥∥∥RY
∥∥∥
Bβ

p/2,q/2

+ [Y ′]Bα
pq

[X]Bα
pq

)
,

and so (5.16) follows from the estimate (using Proposition 2.1)

[Y ]Bα
pq

!q

∥∥Y ′∥∥
∞ [X]Bα

pq
+

∥∥∥RY
∥∥∥
Bα

pq

!α,p,q |Y0|[X]Bα
pq

+ T α−1/p[X]Bα
pq

+
∥∥∥RY

∥∥∥
Bα

pq

.

The bound (5.18) is obtained through virtually identical arguments, with the use of (5.17). !

For a rough path X, a controlled rough path (Y, Y ′), and a partition P = {0 = τ0 < τ1 < · · · <
τN = 1} of [0, 1], we define

I P
st =

N∑

i=1

(
Ys+τi−1(t−s)δXs+τi−1(t−s),s+τi (t−s) + Y ′

s+τi−1(t−s)Xs+τi−1(t−s),s+τi (t−s)

)
,

with the aim to construct the integral of Y against X:
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Zt − Zs =
tˆ

s

YrdXr := lim
‖P‖→0

I P
s,t for (s, t) ∈ &2(0, T ).

Through the remainder of the section, we set

ω(τ ) :=
{

τ 3α if α > 1/3 and

τ.q/3(τ ) if α = 1/3,
(5.19)

where .q/3 satisfies (3.4).

Theorem 5.4. Assume (5.13), X ∈ Bα
pq([0, T ], Rn), and (Y, Y ′) ∈ Bα

pq,X([0, T ], Rm ⊗ Rn). 
Then there exists (Z, Z′) ∈ Bα

pq,X([0, T ], Rm) such that Z′ = Y ,






lim
‖P‖→0

∥∥∥I P − δZ
∥∥∥
Bω

p/3,r

= 0 if α >
1
3
, for all r >

1
3α

and r ≥ q

3
, and

lim
‖P‖→0

∥∥∥I P − δZ
∥∥∥
B1

p/3,∞
= 0 if α = 1

3
,

(5.20)

∥∥δZ − Y δX − Y ′X
∥∥
Bω

p/3,q/3([0,T ]) !α,p,q

∥∥∥RY
∥∥∥
B2α

p/2,q/2

[X]Bα
pq

+ [Y ′]Bα
pq

‖X‖B2α
p/2,q/2

, (5.21)






if α = 1/3, then δZ − Y δX − Y ′X ∈ B1
p/3,∞;◦([0, T ]) and

∥∥δZ − Y δX − Y ′X
∥∥
B1

p/3,∞([0,T ]) !α,p,q

∥∥∥RY
∥∥∥
B2α

p/2,q/2

[X]Bα
pq

+ [Y ′]Bα
pq

‖X‖B2α
p/2,q/2

,
(5.22)

and

∥∥∥RZ
∥∥∥
B2α

p/2,q/2

!α,p,q |Y ′
0|‖X‖B2α

p/2,q/2
+ ω(T )

T 2α+1/p
[(Y,Y ′)]Bα

pq,X

(
‖|X‖|Bα

pq
∨ ‖|X‖|2Bα

pq

)
. (5.23)

Proof. For (s, t) ∈ &2(0, T ), set Ast := Ys(Xt − Xs) + Y ′
sXst . Then, for all r < s < t ,

δArst = −RY
rs(Xt − Xs) + (Y ′

r − Y ′
s)Xst ,

and so

‖δA‖
B

3α
p/3,q/3

≤
∥∥∥RY

∥∥∥
B2α

p/2,q/2

[X]Bα
p,q

+ [Y ′]Bα
pq

‖X‖B2α
p/2,q/2

.

Lemma 5.1 yields

‖A‖Bα
pq

!p,q ‖Y‖∞ [X]Bα
pq

+
∥∥Y ′∥∥

∞ ‖X‖Bα
pq

!α,p,q ‖Y‖∞ [X]Bα
pq

+ T α−1/p
∥∥Y ′∥∥

∞ ‖|X‖|2Bα
pq

.

Finally, we note that, by Proposition 5.1 and Lemma 5.2,
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|δArst | ≤ |RY
rs ||Xt − Xs | + |Y ′

r − Y ′
s ||Xst |

≤
(∥∥∥RY

∥∥∥
C2α−1/p

[X]Cα−1/p + [Y ′]Cα−1/p ‖X‖C2(α−1/p)

)

× [(s − r) ∨ (t − s)]2(α−1/p) [(s − r) ∧ (t − s)]α−1/p

!α,p,q M [(s − r) ∨ (t − s)]2(α−1/p) [(s − r) ∧ (t − s)]α−1/p

where

M :=
∥∥∥RY

∥∥∥
B2α

p/2,q/2

[X]Bα
pq

+ [Y ′]Bα
pq

‖|X‖|2Bα
pq

.

The convergence statement (5.20) and the bounds (5.21) and (5.22) then follow from Theo-
rems 3.1 and 3.2, (as well as Remark 3.3) because, with the notation of those theorems,

RAst = δZst − YsδXst − Y ′
sXst for (s, t) ∈ &2(0, T ).

Moreover, because 3α − 3
p > α − 1

p , Theorem 3.3 implies that Z ∈ Bα
pq , as well as

sup
(s,t)∈&2(0,T )

|RAst |
ω(t − s)(t − s)−3/p

!α,p,q ‖δA‖
B

3α
p/3,q/3

+ M

!α,p,q

∥∥∥RY
∥∥∥
B2α

p/2,q

[X]Bα
pq

+ [Y ′]Bα
pq

‖|X‖|2Bα
pq

! [(Y,Y ′)]Bα
pq,X

(
‖|X‖|Bα

pq
∨ ‖|X‖|2Bα

pq

)
.

Lemma 2.8 (with ρ(τ ) = ω(τ )/τp/3) yields

‖RA‖B2α
p/2,q/2

!α,p,q
ω(T )

T 2α+1/p
‖RA‖1/3

Cρ ‖RA‖2/3
Bω

p/3,q/3

!α,p,q
ω(T )

T 2α+1/p
[(Y,Y ′)]Bα

pq,X

(
‖|X‖|Bα

pq
∨ ‖|X‖|2Bα

pq

)
.

The bound (5.23) now follows from writing RZ = RA + Y ′X, and the fact that, by Proposi-
tion 2.1,

∥∥Y ′X
∥∥
B2α

p/2,q/2
≤

∥∥Y ′∥∥
∞ ‖X‖B2α

p/2,q/2

!α,p,q |Y ′
0|‖X‖B2α

p/2,q/2
+ T α−1/p[Y ′]Bα

pq
‖X‖B2α

p/2,q/2
. !

Theorem 5.5. Assume (5.13), let X, X̃ ∈ Bα
pq , (Y, Y ′) ∈ Bα

pq,X, and (Ỹ , Ỹ ′) ∈ Bα
pq,X̃

, fix M > 0, 
assume

(
|Y0| + |Y ′

0| +
∥∥(Y,Y ′)

∥∥
Bα

pq,X

)
∨

(

|Ỹ0| + |Ỹ ′
0| +

∥∥∥(Ỹ , Ỹ ′)
∥∥∥

Bα
pq,X̃

)

∨ ‖|X‖|Bα
pq

∨
∥∥∣∣X̃

∥∥∣∣
Bα

pq
≤ M,
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and define

Zt =
tˆ

0

YsdXs and Z̃t =
tˆ

0

ỸsdX̃s .

Then, if α > 1/3 and 
(
α + 1

p

)
∨ (1 − α) < β ≤ 2α,

dX,X̃,Bα
pq

((Z,Z′), (Z̃, Z̃′)) !M,T ρBα
pq

(X, X̃) + |Y0 − Ỹ0| + |Y ′
0 − Ỹ ′

0|

+ T β−α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
,

and, if α = 1/3,

dX,X̃,B1/3
pq

((Z,Z′), (Z̃, Z̃′)) !p,q,M,T ρB1/3
pq

(X, X̃) + |Y0 − Ỹ0| + |Y ′
0 − Ỹ ′

0|

+ T 1/3−1/p.q/3(T )dX,X̃,B1/3
pq

((Y,Y ′), (Ỹ , Ỹ ′)).

Proof. For ease of presentation, define β = 2/3 whenever α = 1/3. Proposition 2.1 and 
Lemma 5.2 give

‖Y‖∞ ∨
∥∥∥Ỹ

∥∥∥
∞

∨
∥∥Y ′∥∥

∞ ∨
∥∥∥Ỹ ′

∥∥∥
∞

!α,p,q,M 1,

∥∥∥Y ′ − Ỹ ′
∥∥∥

∞
!α,p,q |Y ′

0 − Ỹ ′
0| + T α−1/p[Y ′ − Ỹ ′]Bα

pq
,

and
∥∥∥Y − Ỹ

∥∥∥
∞

!α,p,q |Y0 − Ỹ0| + T α−1/p[Y − Ỹ ]Bα
pq

!α,p,q,M,T |Y0 − Ỹ0| + |Y ′
0 − Ỹ ′

0| + [X − X̃]Bα
pq

+ T α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
,

and Lemma 5.1 yields ‖X‖Bα
pq([0,T ]) !α,p,q,M,T 1 and

∥∥∥X− X̃
∥∥∥
Bα

pq([0,T ])
!α,p,q,M,T ρBα

pq
(X, X̃).

For (s, t) ∈ &2(0, T ), we set Ast = Ys(Xt − Xs) + Y ′
sXst and Ãst = Ỹs(X̃t − X̃s) + Ỹ ′

sX̃st , and 
write

Ast − Ãst = (Ys − Ỹs)δXst + Ỹs(δXst − δX̃st ) + (Y ′
s − Ỹ ′

s)Xst + Ỹ ′
s(Xst − X̃st ).

Then
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∥∥∥A − Ã
∥∥∥
Bα

pq

!q

∥∥∥Y − Ỹ
∥∥∥

∞
[X]Bα

pq
+

∥∥∥Ỹ
∥∥∥

∞
[X − X̃]Bα

pq
+

∥∥∥Y ′ − Ỹ ′
∥∥∥

∞
‖X‖Bα

pq

+
∥∥∥Ỹ ′

∥∥∥
∞

∥∥∥X− X̃
∥∥∥
Bα

pq

!α,p,q,M,T |Y0 − Ỹ0| + |Y ′
0 − Ỹ ′

0| + ρBα
pq

(X, X̃)

+ T α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
.

For (r, s, t) ∈ &3(0, T ),

δ(A − Ã)rst = −RY
rs(Xt − Xs) + RỸ

rs(X̃t − X̃s) + (Y ′
r − Y ′

s)Xst − (Ỹ ′
r − Ỹ ′

s)X̃st ,

so

∥∥∥δA − δÃ
∥∥∥
B

α+β
p/3,q/3

!α,p,q,M [X−X̃]Bα
pq

+
∥∥∥X− X̃

∥∥∥
B2α

p/2,q/2

+[Y ′− Ỹ ′]Bα
pq

+
∥∥∥RY − RỸ

∥∥∥
Bβ

p/2,q/2

,

and, by Lemma 5.2,

∣∣∣δ(A − Ã)rst

∣∣∣ !M,α,p,q

(
[X − X̃]Bα

pq
+ [Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)

× (s − r)β−2/p(t − s)α−1/p

+
(

[Y ′ − Ỹ ′]Bα
pq

+
∥∥∥X− X̃

∥∥∥
B2α

p/2,q/2

+ [X − X̃]Bα
pq

)

× (s − r)α−1/p(t − s)2(α−1/p).

When α > 1/3, we have α + β − 3
p > α − 1/p, and thus, by Theorems 3.1 and 3.3,

∥∥∥R(A − Ã)
∥∥∥
Bα+β

p/3,q/3

+
∥∥∥RA − RÃ

∥∥∥
Cα+β−3/p

!α,p,q,M ρBα
pq

(X, X̃) + [Y ′ − Ỹ ′]Bα
pq

+
∥∥∥RY − RỸ

∥∥∥
Bβ

p/2,q/2

,

and then Lemma 2.7 gives

∥∥∥R(A − Ã)
∥∥∥
B2α

p/2,q/2([0,T ])
!α,p,q T β−α−1/p

∥∥∥R(A − Ã)
∥∥∥

2/3

Bα+β
p/3,q/3

∥∥∥RA − RÃ
∥∥∥

1/3

Cα+β−3/p

!α,p,q,M,T ρBα
pq

(X, X̃)

+ T β−α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
.

When α = 1/3, Theorems 3.2 and 3.3 yield
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∥∥∥R(A − Ã)
∥∥∥
Bω

p/3,q/3

+ sup
(s,t)∈&2(0,T )

|(RA − RÃ)st |
ω(t − s)(t − s)−3/p

!p,q,M [X − X̃]
B

1/3
pq

+
∥∥∥X− X̃

∥∥∥
B2/3

p/2,q/2

+ [Y ′ − Ỹ ′]
B

1/3
pq

+
∥∥∥RY − RỸ

∥∥∥
B2/3

p/2,q/2

so that Lemma 2.8 gives

∥∥∥R(A − Ã)
∥∥∥
B2/3

p/2,q/2([0,T ])
!p,q,M,T ρB1/3

pq
(X, X̃) + T

1
3 − 1

p .q/3(T )dX,X̃,B1/3
pq

((Y,Y ′), (Ỹ , Ỹ ′)).

The desired estimate for dX,X̃,Bα
pq

((Z, Z′), (Z̃, Z̃′)) now follows from the fact that Z′ = Y and 

Z̃′ = Ỹ , which, by Lemma 5.2, gives

[Z′ − Z̃′]Bα
pq

=[Y − Ỹ ]Bα
pq

!M,T,α,p,q |Y ′
0 − Ỹ ′

0| + [X − X̃]Bα
pq

+ T β−α−1/p

(
[Y ′ − Ỹ ′]Bα

pq
+

∥∥∥RY − RỸ
∥∥∥
Bβ

p/2,q/2

)
,

as well as the equality RZ − RZ̃ = Y ′X − Ỹ ′X̃+ R(A − Ã) and the estimate obtained above for 
R(A − Ã) in B2α

p/2,q/2. !

Proposition 5.2. Assume (5.13) and let X ∈ Bα
pq([0, T ], Rn), Y ∈ Bα

pq,X([0, T ], Rm), and f ∈
C2(Rm). Then (f (Y ), f (Y )′) ∈ Bα

pq,X, where f (Y )′ = Df (Y )Y ′, and

[(f (Y ), f (Y )′)]Bα
pq,X

!α,p,q,T ‖f ‖C2

(
1 + [X]Bα

pq

)[(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)
∨

(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)2
]

.

If X̃ ∈ Bα
pq , Ỹ ∈ Bα

pq,X̃
, δ ∈ (0, 1], f ∈ C2,δ , and

(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)
∨

(
|Ỹ ′

0| + [(Ỹ , Ỹ ′)]Bα
pq,X̃

)
≤ M and [X]Bα

pq
∨ [X̃]Bα

pq
≤ M,

then

[f (Y )′ − f (Ỹ )′]Bα
pq

!α,p,q,M,T ‖f ‖C2

(
[X − X̃]Bα

pq
+ |Y ′

0 − Ỹ ′
0| + dX,X̃,Bα

pq
(Y,Y ′, Ỹ , Ỹ ′)

)

and

∥∥∥Rf (Y) − Rf (Ỹ )
∥∥∥
B(1+δ)α

p/2,q/2

!α,p,q,δ,M,T ‖f ‖C2,δ

×
(
|Y0 − Ỹ0| + |Y ′

0 − Ỹ ′
0| + dX,X̃,Bα

pq
(Y,Y ′, Ỹ , Ỹ ′) + [X − X̃]Bα

pq

)
.
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Proof. Set Z := f (Y ) and Z′ = Df (Y )Y ′. Then

RZ
st := δZst − Z′

sδXst

=
1ˆ

0

Df (τYt + (1 − τ )Ys)dτRY
st +

1ˆ

0

[Df (τYt + (1 − τ )Ys) − Df (Ys)]dτY ′
s(Xt − Xs)

=
1ˆ

0

Df (τYt + (1 − τ )Ys)dτRY
st

+
1ˆ

0

(1 − τ )D2f (τYt + (1 − τ )Ys)dτ (Yt − Ys)Y
′
s (Xt − Xs).

(5.24)

For τ ∈ [0, T ], we have

ωp(Df (Y )Y ′, τ ) ≤ ‖Df ‖∞ ωp(Y ′, τ ) +
∥∥Y ′∥∥

∞

∥∥∥D2f
∥∥∥

∞
ωp(Y, τ ),

from which it follows from Lemma 5.2 that

[Df (Y )Y ′]Bα
pq

!q ‖Df ‖∞ [Y ′]Bα
pq

+
∥∥∥D2f

∥∥∥
∞

∥∥Y ′∥∥
∞ [Y ]Bα

pq

!α,p,q,T ‖f ‖C2

(
1 + [X]Bα

pq

)

×
[(

|Y ′
0| + [(Y,Y ′)]Bα

pq,X

)
∨

(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)2
]

From the last line of (5.24), we obtain, using Hölder’s inequality and Lemma 5.2,

∥∥∥RZ
∥∥∥
B2α

p/2,q/2

!q ‖Df ‖∞
∥∥∥RY

∥∥∥
B2α

p/2,q/2

+
∥∥∥D2f

∥∥∥
∞

∥∥Y ′∥∥
∞ [Y ]Bα

pq
[X]Bα

pq

!α,p,q,T ‖f ‖C2

(
1 + [X]Bα

pq

)

×
[(

|Y ′
0| + [(Y,Y ′)]Bα

pq,X

)
∨

(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)2
]

.

We now set Z̃ := f (Ỹ ) and Z̃′ := Df (Ỹ )Ỹ ′, and note that, by Lemma 5.2,

[Y − Ỹ ]Bα
pq

!α,p,q,M,T [X − X̃]Bα
pq

+ |Y ′
0 − Ỹ ′

0| + dX,X̃,Bα
pq

(Y,Y ′, Ỹ , Ỹ ′),

so that
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[f (Y )′ − f (Ỹ )′]Bα
pq

= [Df (Y )Y ′ − Df (Ỹ )Ỹ ′]Bα
pq

!q ‖Df ‖∞ [Y ′ − Ỹ ′]Bα
pq

+ [Df (Y ) − Df (Ỹ )]Bα
pq

∥∥Y ′∥∥
∞

!α,p,q,M ‖Df ‖∞ [Y ′ − Ỹ ′]Bα
pq

+
∥∥∥D2f

∥∥∥
∞

[Y − Ỹ ]Bα
pq

!α,p,q,M ‖f ‖C2 [X − X̃]Bα
pq

+ ‖f ‖C2

(
|Y ′

0 − Ỹ ′
0| + dX,X̃,Bα

pq
(Y,Y ′, Ỹ , Ỹ ′)

)
.

Next, defining RZ̃ as in (5.24), with Y and X replaced with Ỹ and X̃, we write RZ − RZ̃ =
I + II + III, where

Ist :=
1ˆ

0

Df (τYt + (1 − τ )Ys)dτRY
st −

1ˆ

0

Df (τ Ỹt + (1 − τ )Ỹs)dτRỸ
st ,

IIst :=
1ˆ

0

[
Df (τ Ỹt + (1 − τ )Ỹs) − Df (Ỹs)

]
dτ

(
Y ′

sδXst − Ỹ ′
sδX̃st

)

=
1ˆ

0

(1 − τ )D2f (τ Ỹt + (1 − τ )Ỹs)dτδỸst

(
Y ′

sδXst − Ỹ ′
sδX̃st

)
,

and

IIIst :=




1ˆ

0

1ˆ

0

D2f (σ [τYt + (1 − τ )Ys] + (1 − σ )[τ Ỹt + (1 − τ )Ỹs])dσ

×
(
τ (Yt − Ỹt ) + (1 − τ )(Ys − Ỹs)

)
dτ

−
1ˆ

0

D2f (σYs + (1 − σ )Ỹs)dσ (Ys − Ỹs)



Y ′
sδXst .

Lemma 5.2 immediately yields

‖I‖B2α
p/2,q/2

!q ‖Df ‖∞
∥∥∥RY − RỸ

∥∥∥
B2α

p/2,q/2

+
∥∥∥D2f

∥∥∥
∞

∥∥∥Y − Ỹ
∥∥∥

∞

∥∥∥RY
∥∥∥
B2α

p/2,q/2

!α,p,q,M,T ‖f ‖C2

(
|Y0 − Ỹ0| + |Y ′

0 − Ỹ ′
0| + dX,X̃,Bα

pq
((Y,Y ′), (Ỹ , Ỹ ′))

)

+
∥∥∥D2f

∥∥∥
∞

[X − X̃]Bα
pq

and
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‖II‖B2α
p/2,q/2

!α,p,q,M,T

∥∥∥D2f
∥∥∥

∞

(
[Y ′ − Ỹ ′]Bα

pq
+ [X − X̃]Bα

pq

)
.

We next write III := (IIIa + IIIb)Y ′δX, where, for (s, t) ∈ &2(0, T ),

IIIast :=
1ˆ

0

( 1ˆ

0

D2f
(
σ [τYt + (1 − τ )Ys] + (1 − σ )[τ Ỹt + (1 − τ )Ỹs]

)
dτ

− D2f (σYs + (1 − σ )Ỹs)

)

dσ (Ys − Ỹs)

and

IIIbst :=
1ˆ

0

τ

1ˆ

0

D2f
(
σ [τYt + (1 − τ )Ys] + (1 − σ )[τ Ỹt + (1 − τ )Ỹs]

)
dσdτ

(
δYst − δỸst

)
.

We then have

∣∣IIIast
∣∣ ! [D2f ]Cδ

(
|δYst |δ + |δỸst |δ

)∥∥∥Y − Ỹ
∥∥∥

∞
and

∣∣∣IIIbst
∣∣∣!

∥∥∥D2f
∥∥∥

∞

∣∣∣δYst − δỸst

∣∣∣ ,

and so, by Hölder’s inequality,

/p/2(III, τ ) !
∥∥Y ′∥∥

∞ ωp(X, τ )
[
[D2f ]Cδ

(
ωp(Y, τ )δ + ωp(Ỹ , τ )δ

)∥∥∥Y − Ỹ
∥∥∥

∞

+
∥∥∥D2f

∥∥∥
∞

ωp(Y − Ỹ , τ )
]
.

Thus, by Lemma 5.2,

‖III‖B(1+δ)α
p/2,q/2

!
∥∥Y ′∥∥

∞ [X]Bα
pq

[
[D2f ]Cδ

(
[Y ]δBα

pq
+ [Ỹ ]δBα

pq

)∥∥Y − Ỹ
∥∥

∞ +
∥∥D2f

∥∥
∞[Y − Ỹ ]Bα

pq

]

!α,p,q,M,T ‖f ‖C2,δ

(
|Y0 − Ỹ0| + [Y − Ỹ ]Bα

pq

)

!α,p,q,M,T ‖f ‖C2,δ

(
|Y0 − Ỹ0| + |Y ′

0 − Ỹ ′
0| + dX,X̃,Bα

pq
(Y,Y ′, Ỹ , Ỹ ′)

+ [X − X̃]Bα
pq

)
.

Combining all estimates and using the fact that B2α
p/2,q/2 ⊂ B(1+δ)α

p/2,q/2 gives the result. !

5.3. Rough differential equations with Besov signals: the level-2 case

We now consider the initial value problem

dYt = f (Yt ) · dXt in [0, T ] and Y0 = y, (5.25)
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where y ∈ Rm, X ∈ Bα
pq with α, p, and q satisfying the level-2 conditions (5.13), and the non-

linearity satisfies






f ∈ C2,δ(Rm;Rm ⊗Rn) if α > 1/3, where (2 + δ)α > 1 and δα > 1/p,

f ∈ C3(Rn;Rm ⊗Rn) if α = 1
3
.

(5.26)

More precisely, we seek a unique X-controlled path (Y, Y ′) ∈ Bα
pq,X([0, T ], Rm) satisfying the 

integral relation

Yt = y +
tˆ

0

f (Ys) · dXs . (5.27)

Theorem 5.6. Assume (5.13), and fix X ∈ Bα
pq([0, T ]; Rn) and f satisfying (5.26). Then, for 

every fixed y ∈ Rm, there exists a unique solution (Y, Y ′) ∈ Bα
pq,X([0, T ]; Rm) of (5.25). More-

over, there exists a constant M depending only on α, p, q , T , ‖f ‖C2 , and ‖|X‖|Bα
pq

such that 
[(Y, Y ′)]Bα

pq,X
≤ M .

Proof. Define X :=
{
(Y,Y ′) ∈ Bα

pq,X([0, T ],Rm) : Y0 = y, Y ′
0 = f (y)

}
and, for (Y, Y ′) ∈ X ,

T (Y,Y ′) :=



y +
·ˆ

0

f (Ys) · dXs , f (Y )



 .

Theorem 5.4 and Proposition 5.2 imply that T is well-defined from X to X . As per Re-
mark 2.4, it is easy to see that X is a complete metric space under the metric dX,Bα

pq
.

Step 1. Define (Y , Y ′
) ∈ X by Y t := y + f (y)Xt and Y ′

t := f (y) for t ∈ [0, T ], and, for 
M > 0, define

XM :=
{
(Y,Y ′) ∈ X : dBα

pq ,X((Y,Y ′), (Y ,Y
′
)) ≤ M

}
,

which is again a complete metric space. We first show that, for M > 0 sufficiently large and 
0 < T0 ≤ 1 sufficiently small, depending only on α, p, q , ‖f ‖C2 , and ‖|X‖|Bα

pq
, T maps XM

into XM .
Assume that (Y, Y ′) ∈ XM and set (Z, Z′) := T (Y, Y ′) ∈ X . By Lemmas 2.4 and 5.2,

[Z′ − f (y)]Bα
pq

= [f (Y )]Bα
pq

≤ ‖Df ‖∞ [Y ]Bα
pq

!α,p,q ‖Df ‖∞

(
|f (Y0)|[X]Bα

pq
+ T α−1/p

(
[Y ′]Bα

pq
[X]Bα

pq
+

∥∥∥RY
∥∥∥
B2α

p/2,q/2

))

≤ ‖Df ‖∞ ‖f ‖∞ [X]Bα
pq

+ (1 + [X]Bα
pq

)MT α−1/p,

and Theorem 5.4 gives (recall the definition of ω from (5.19))
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∥∥∥RZ
∥∥∥
B2α

p/2,q/2

!α,p,q ‖f ‖∞ ‖X‖B2α
p/2,q/2

+ [(f (Y ), f (Y )′)]Bα
pq,X

(
‖|X‖||Bα

pq
∨ ‖|X‖|2Bα

pq

) ω(T )

T 2α+1/p
.

By Proposition 5.2, we find that

[(f (Y ), f (Y )′)]Bα
pq,X

!α,p,q,T ‖f ‖C2

(
1 + [X]Bα

pq

)

[(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)
∨

(
|Y ′

0| + [(Y,Y ′)]Bα
pq,X

)2
]

.

Combining these estimates gives, for some constant C1 = C1

(
α,p, q,‖f ‖C2 ,‖|X‖|Bα

pq

)
> 0,

[Z′ − f (y)]Bα
pq

+
∥∥∥RZ

∥∥∥
B2α

p/2,q

≤ C1

(

1 + ω(T0)

T
2α+1/p
0

(M ∨ M2)

)

. (5.28)

We then set M := 2C1, in which case (5.28) becomes

[Z′ − f (y)]Bα
pq

+
∥∥∥RZ

∥∥∥
B2α

p/2,q/2

≤ M

2
+ C1(1 ∨ 2C1)

ω(T0)

T
2α+1/p
0

M.

We then conclude by choosing T0 > 0 sufficiently small that

ω(T0)

T
2α+1/p
0

≤ 1
2C1(1 ∨ 2C1)

.

Step 2. We next show that, shrinking T0 if necessary, T is a contraction on XM . Let 
(Y, Y ′), (Ỹ , Ỹ ′) ∈ XM , and set (Z, Z′) = T (Y, Y ′) and (Z̃, Z̃′) = T (Ỹ , Ỹ ′). If α > 1/3, then 
β := (1 + δ)α satisfies α + β > 1 and β > α + 1/p, and so, by Theorem 5.5,

dX,Bα
pq

(Z,Z′, Z̃, Z̃′)!α,δ,p,q,‖f ‖
C2 ,‖|X‖|Bα

pq
T

δα−1/p
0

×
(

[f (Y )′ − f (Ỹ )′]Bα
pq

+
∥∥∥Rf (Y ) − Rf (Ỹ )

∥∥∥
B(1+δ)α

p/2,q/2

)
.

Proposition 5.2 then yields

dX,Bα
pq

(Z,Z′, Z̃, Z̃′) !α,δ,p,q,‖f ‖
C2,δ ,‖|X‖|Bα

pq
T

δα−1/p
0 dX,Bα

pq
(Y,Y ′, Ỹ , Ỹ ′),

and we conclude upon shrinking T0 as needed. A similar argument holds for when α = 1/3, in 
which case Theorem 5.5 and Proposition 5.2 instead give

dX,B1/3
pq

(Z,Z′, Z̃, Z̃′) !p,q,‖f ‖
C3 ,‖|X‖|

B1/3
pq

T
α−1/p
0 .q/3(T0)dX,B1/3

pq
(Y,Y ′, Ỹ , Ỹ ′).

The fixed-point construction can then be iterated to build the unique solution on all of [0, T ]. !
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The notion of controlled-rough path solution of (5.25) can equivalently be characterized in 
the Davie sense. More precisely, the increment Yt − Ys , minus an appropriate level-2 expansion, 
belongs to a Besov space of appropriately higher-order regularity.

Proposition 5.3. Assume (5.13), y ∈ Rm, f satisfies (5.26), and Y ∈ Bα
pq([0, T ], Rm). Then 

(Y, Y ′) belongs to Bα
pq,X and is a solution of (5.25) if and only if Y ′ = f (Y ) and

Dst := Yt − Ys − f (Ys)(Xt − Xs) − Df (Ys)f (Ys)Xst for (s, t) ∈ &2(0, T )

satisfies

D ∈






B3α
p/3,q/3([0, T ],Rm) if α >

1
3

and

B1
p/3,∞,◦([0, T ],Rm) if α = 1

3
.

(5.29)

Proof. Given a solution of (5.25) in the sense of rough integrals, the conclusion is an imme-
diate consequence of (5.21) and (5.22) from Theorem 5.4. Conversely, assume that (Y, Y ′) =
(Y, f (Y )) and D satisfies (5.29). Lemma 2.4 gives f (Y ) ∈ Bα

pq([0, T ], Rm ⊗Rn). We then set

RY
st := Yt − Ys − f (Ys)(Xt − Xs) = Df (Ys)f (Ys)Xst + Dst for (s, t) ∈ &2(0, T ).

Because α > 1/p, Propositions 2.1 and 5.1 imply that D ∈ Cα−1/p([0, T ], Rm), and so, by 
Lemma 2.7, D ∈ B2α

p/2,q/2. The properties of f and Y give (Df (Ys)f (Ys)Xst )(s,t)∈&2(0,T ) ∈
B2α

p/2,q/2, and we conclude that RY ∈ B2α
p/2,q/2, and, therefore, (Y, Y ′) ∈ Bα

pq,X.
As in Theorem 5.4, we define

Ỹt := y +
tˆ

0

f (Ys)dXs ,

and (5.21) and (5.22) immediately give

δỸ − f (Y )δX − Df (Y )f (Y )X ∈






B3α
p/3,q/3([0, T ],Rm) if α >

1
3

and

B1
p/3,∞,◦([0, T ],Rm) if α = 1

3
.

It follows that

Y − Ỹ ∈






B3α
p/3,q/3([0, T ],Rm) if α >

1
3

and

B1
p/3,∞,◦([0, T ],Rm) if α = 1

3
,

and so Lemma 2.1 and the fact that Y0 = Ỹ0 = y give Y = Ỹ , as desired. !
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Remark 5.7. In the proof of Proposition 5.3, the (α − 1/p)-Hölder regularity of the Davie’s 
remainder D was used in order to regain integrability (from p/3 to p/2), but the exact value 
of the Hölder exponent was not important. After the fact, we actually see that D ∈ Cρ , where 
ρ(τ ) = ω(τ )τ−3/p , which is a consequence of (3.10) and (3.13) from Theorem 3.3.

We finish this section by proving that the Itô-Lyons map is locally Lipschitz continuous in the 
data.

Theorem 5.7. Assume (5.13), fix M > 0, and let y, ỹ ∈ Rm, f 1, f 2 satisfying (5.26), and 
X1, X2 ∈ Bα

pq be such that

2∨

i=1

∥∥∥f i
∥∥∥

C2,δ
∨

∥∥∣∣Xi
∥∥∣∣

Bα
pq

≤ M,

with C2,δ replaced by C3 when α = 1/3. Then, for i = 1, 2, the solutions (Y i, f (Y i)) ∈ Bα
pq,Xi

of (5.25) corresponding to respectively yi , f i , and Xi satisfy

dX,X̃,Bα
pq

(
(Y 1, f (Y 1)), (Y 2, f (Y 2))

)
!α,p,q,M,T

(
|y1 − y2| +

∥∥∥f 1 − f 2
∥∥∥

C2,δ
+ ρBα

pq
(X, X̃)

)
.

Proof. By Theorem 5.6, we have [(Y, Y ′)]Bα
pq,X

∨ [(Ỹ , Ỹ ′)]Bα
pq,X̃

!α,p,q,M,T 1. Define now

(Wi, (Wi)′) := (f i(Y i),Df i(Y i)(Y i)′) for i = 1,2 and

(W̃ , W̃ ′) := (f 1(Y 2),Df 1(Y 2)(Y 2)′).

Theorem 5.5 now gives, for some non-increasing function σ : [0, ∞) → [0, ∞) satisfying 
limτ→0+ σ (τ ) = 0,

dX1,X2,Bα
pq

(Y 1, f (Y 1), Y 2, f (Y 2))

! ρBα
pq

(X1,X2) + |f 1(y1) − f 2(y2)| + |Df 1(y1)f 1(y1) − Df (y2)f (y2)|

+ σ (T )

(
[(W 1)′ − (W 2)′]Bα

pq
+

∥∥∥RW 1 − RW 2
∥∥∥
B(1+δ)α

p/2,q

)

! ρBα
pq

(X1,X2) + |y1 − y2|

+ σ (T )
(
[(W 1)′ − W̃ ′]Bα

pq
+ [W̃ ′ − (W 2)′]Bα

pq
+

∥∥∥RW 1 − RW̃
∥∥∥
B(1+δ)α

p/2,q/2

+
∥∥∥RW̃ − RW 2

∥∥∥
B(1+δ)α

p/2,q/2

)
,

with δ = 1 when α = 1/3. Proposition 5.2 yields

[(W 1)′ − W̃ ′]Bα
pq

= [f 1(Y 1)′ − f 1(Y 2)′]Bα
pq

! [X1 − X2]Bα
pq

+ |y1 − y2| + dX,X̃,Bα
pq

(Y 1, f 1(Y 1), Y 2, f 2(Y 2)),
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∥∥∥RW 1 − RW̃
∥∥∥
B(1+δ)α

p/2,q/2

=
∥∥∥Rf 1(Y 1) − Rf 1(Y 2)

∥∥∥
B(1+δ)α

p/2,q/2

! |y1 − y2| + [X1 − X2]Bα
pq

+ dX,X̃,Bα
pq

(Y 1, f 1(Y 1), Y 2, f 2(Y 2)),

and

[W̃ ′ − (W 2)′]Bα
pq

+
∥∥∥RW̃ − RW 2

∥∥∥
B(1+δ)α

p/2,q/2

= [(f 1 − f 2)(Y 2)]Bα
pq

+
∥∥∥R(f 1−f 2)(Y 2)

∥∥∥
B(1+δ)α

p/2,q/2

!
∥∥∥f 1 − f 2

∥∥∥
C2

.

Combining all terms, we conclude that

dX1,X2,Bα
pq

(Y 1, f (Y 1), Y 2, f (Y 2)) ! |y1 − y2| +
∥∥∥f 1 − f 2

∥∥∥
C2

+ ρBα
pq

(X1,X2)

+ σ (T0)dX1,X2,Bα
pq

(Y 1, f 1(Y 1), Y 2, f 2(Y 2)).

It follows that, if T0 is sufficiently small, then, upon rearranging terms, we have the desired result 
on [0, T0]. The estimate can be extended iteratively to the rest of [0, T ] as before. !

5.4. Beyond level-2 Besov rough paths

When N ≥ 3, solving nonlinear differential equations driven by level-N rough paths in-
evitably leads to iterated integrals with branching, as, for example,

ˆ
(δXi)(δXj)dXk, vs. the non-branching

˚
dXidXjdXk, (5.30)

which are not meant to be well-defined, but rather are part of the augmented information supplied 
by some rough path. The second, non-branching term in (5.30) is precisely contained in the 
(Rn)⊗3-valued third level tier of X, as introduced in Definition 5.1. On the other hand, this is 
not the case for the first, branching, information. The situation can be resolved by imposing a 
chain-rule, in this specific example,

(δXi)(δXj) =
¨

dXidXj +
¨

dXjdXi,

which leads to the notion of geometric rough path. Alternatively, one can work with branched
rough paths, where the state space T (N)

1 (Rn) is replaced by a (truncated) Hopf algebra of trees 
that allows to encode the full branching information. A complete theory of branched rough paths 
and differential equations in the Hölder setting is found in [31,33], and in a càdlàg p-variation 
setting in [26]. Although the branched setting is at first sight more involved (one needs to in-
troduce the Connes–Kreimer and Grossmann-Larson Hopf algebras), the absence of algebraic 
constraints ultimately leads to simplifications, notably when it comes to establishing the stabil-
ity of controlled rough paths under composition with regular functions. Perhaps for this reason, 
a detailed discussion of level-N geometric rough differential equations in the controlled rough 
paths perspective is fairly recent; see for instance [2] and [3]. (For a development of geometric 
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rough paths theory without controlled structures, following Davie’s direct approach, we refer to 
[25].)

For the sake of brevity, we discuss in what follows only the geometric case. Adaptions to 
a branched Besov rough paths setting are then straightforward (and easier in a sense).2 As in 
Definition 5.1, throughout this subsection, we fix α, p, and q satisfying (5.1).

Definition 5.3. A level-N Besov rough path X ∈ Bα
pq([0, T ]), in the sense of Definition 5.1, is 

called geometric if, for all (s, t) ∈ &2(0, T ),

Xs,t ∈ G(N)(Rn) ⊂ T
(N)
1 (Rn),

where G(N)(Rn) is the free step-N nilpotent group, a.k.a. (truncated) character group of the 
shuffle Hopf-algebra. (This precisely encodes the chain rule.)

Definition 5.4. A path

Y =
(

Y(0),Y(1), . . . ,Y(N−1)
)

: [0, T ] →
N−1⊕

k=0

L((Rn)⊗k;Rm)

is called a controlled Besov rough path over Rm with respect to X, and we write ∈Bα
pq,X([0, T ]), 

if the “remainders” defined by, for 0 ≤ i ≤ N − 1,

&2(0, T ) 9 (s, t) (→ Ri
s,t :=

{
Y(i)

t − Y(i)
s − ∑N−1−i

j=1 Y(i+j)
s X(j)

s,t , if 0 ≤ i ≤ N − 2,

Y(N−1)
t − Y(N−1)

s , if i = N − 1,

satisfy

[Y]Bα
pq,X

:=
N−1∑

i=0

∥∥∥Ri
∥∥∥
B(N−i)α

p/(N−i),q/(N−i)

< ∞.

For geometric X, X̃ ∈ Bα
pq , Y ∈ Bα

pq,X and Ỹ ∈ Bα
pq,X̃

, if (R̃i)N−1
i=0 denote the corresponding 

remainder terms for Ỹ, we define

dBα
pq ,X,X̃

(
Y, Ỹ

)
:=

N−1∑

i=0

∥∥∥Ri − R̃i
∥∥∥
B(N−i)α

p/(N−i),q/(N−i)

.

Remark 5.8. Definition 5.4 is consistent with Definition 5.2 when N = 2, and, if (Y, Y ′) is a 
level-2 controlled rough path in the sense of Definition 5.2, then, with the notation of Defini-
tion 5.4, Y = Y(0), Y ′ = Y(1), δY = R1, and RY = R0.

2 As in [33] one could also go on to embed the branched case into a suitably extended geometric setting, though this 
will not (easily) lead to optimal estimates.
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We now outline the steps required to generalize the results from the level-2 case.
First, just as in Theorem 5.4, one checks that

&2(0, T ) 9 (s, t) (→ Ast := Y(0)
s X(1)

st + ... + Y(N−1)
s X(N)

st

satisfies the assumptions of the Besov sewing results, Theorems 3.1, 3.2, and 3.3. This gives the 
rough integral of Y against X, and the estimates from the sewing theorems yield control of the 
difference between the increments of the integral and A in B(N+1)α

p/(N+1),q/(N+1), as in (5.21), or with 
τ (N+1)α modified by a logarithmic correction as in (5.22) when α = 1/(N + 1). By proving a 
result similar to Lemma 5.2, and with repeated use of Lemma 5.1, one then shows that the rough 
integral is a controlled Besov rough path in the sense of Definition 5.4, which we may denote 
by 

´
YdX. Yet another application of the sewing lemma shows that the Besov rough integral 

is a bounded linear map on the space of controlled Besov rough paths, and locally Lipschitz 
continuous as a function of the integrating Besov rough paths; cf. Theorem 5.5. (This step does 
not rely on the geometric property, and one would proceed identically in a branched setting, still 
using Theorems 3.1, 3.2, and 3.3, but now with A of a different form.)

Next, the stability of controlled Besov rough paths under composition with a regular map f
must be established. The correct image f (Y), as a higher order controlled rough path, involves 
N − 1 derivatives of f . In this (geometric) context, the precise form can be found in [2, Theorem 
2.11], or in formula (4.2) of [3]. Checking the required controlled Besov regularity then relies on 
the same analytic ideas as were presented in Proposition 5.2.

Finally, using the above results, a Picard fixed point argument yields a unique X-controlled 
path Y ∈ Bα

pq,X satisfying the integral relation

Yt = y +
tˆ

0

f (Ys) · dXs, (5.31)

with






f ∈ CN,δ, where δ ∈ (0,1] satisfies

(N + δ)α > 1 and δα >
1
p

if α >
1

N + 1
and

δ = 1 if α = 1
N + 1

and q ≤ N + 1.

(5.32)

Theorem 5.8. For N ∈ N , assume (5.1), and fix a geometric rough path X ∈ Bα
pq and f satisfying 

(5.32). Then, for every fixed y ∈ Rm, there exists a unique solution Y ∈ Bα
pq,X([0, T ], Rm) of 

(5.31). Moreover, there exists a constant M depending only on N , α, p, q , T , ‖f ‖CN , and 
‖|X‖|Bα

pq
such that [Y]Bα

pq,X
≤ M . Finally, the solution map is locally Lipschitz continuous in 

(y, f, X) ∈ Rm × CN,δ × Bα
pq .

Remark 5.9. Both here and in the general level-2 case, under a corresponding local condition on 
f , existence of a unique solution may only hold on [0, T ∗) for some explosion time T ∗.
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Remark 5.10. The solution is equivalently characterized by a Davie expansion. More precisely, 
as in Proposition 5.3, an X-controlled rough path Y is a solution of (5.31) if and only if the 
difference of δY with an appropriate expansion belongs to B(N+1)α

p/(N+1),q/(N+1), if α > 1
N+1 , or 

B1
p/(N+1),∞;◦ if α = 1

N+1 .

Appendix A. By P. Zorin-Kranich: pathwise Besov estimate for stochastic integrals

As a proof of concept, we show here a pathwise Besov space estimate for Itô integrals in the 
spirit of [27]. In order to keep things simple, we stay at the level of complexity of the rough path 
BDG inequality [8,38].

A.1. Vector-valued BDG inequality

In this section, we quickly recall how vector-valued inequalities can be deduced from 
weighted inequalities. The basic tool for that purpose is the Rubio de Francia extrapolation theo-
rem, the sharp form of which on Rn was proved in [15]. The probabilistic version below is taken 
from [14, Theorem 8.1].

A weight on a probability space is an integrable function with values in (0, ∞). To a weight 
w on a filtered probability space, for any p ∈ (1, ∞), is associated the Ap characteristic

Qp(w) = [w]Ap := sup
τ stopping time

∥∥∥E(w|Fτ )E(w1/(1−p)|Fτ )
p−1

∥∥∥
L∞ ∈ [1,∞].

A weight is said to be an Ap weight if its Ap characteristic is finite. We will mostly use the 
theory of weights as a black box, with the exception of the facts that [w]A2 = [w−1]A2 for any 
weight w, and [1]Ap = 1 for any p ∈ (1, ∞).

The extrapolation theorem for random variables reads as follows.

Theorem A.1 (Rubio de Francia extrapolation [14, Theorem 8.1]). Let r ∈ (1, ∞) and Nr :
(0, ∞) → (0, ∞) an increasing function. Then, for every p ∈ (1, ∞), there exists an increasing 
function Np : (0, ∞) → (0, ∞) such that the following holds.

Let X, Y be positive random variables defined on the same filtered probability space /. If for 
every weight w ∈ Ar on /, we have

‖X‖Lr(w) := E(|X|r w)1/r ≤ Nr([w]Ar )‖Y‖Lr(w) , (A.1)

then, for every weight w ∈ Ap on /, we have

‖X‖Lp(w) ≤ Np([w]Ap)‖Y‖Lp(w) .

In order to discourage an overly optimistic interpretation of the notation, we note that the 
function Np above depends (in a known, explicit way) on r, p, Nr . In particular, if we apply this 
theorem twice to go from Lr to Lp , and then back to Lr , we will get a worse (larger) function.

Suppose that we have measurable families of random variables X(τ,s) and Y (τ,s) such that 
(A.1) holds uniformly in τ, s, which vary over some further measure space. Applying Theo-
rem A.1, we obtain a similar inequality with p ∈ (1, ∞) in place of r . By Fubini’s theorem, it 
follows that
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∥∥∥∥
∥∥∥X(τ,s)

∥∥∥
L

p
s

∥∥∥∥
Lp(w)

≤ Np([w]Ap)

∥∥∥∥
∥∥∥Y (τ,s)

∥∥∥
L

p
s

∥∥∥∥
Lp(w)

,

uniformly in τ . Applying Theorem A.1 again with some q ∈ (1, ∞), we obtain

∥∥∥∥
∥∥∥X(τ,s)

∥∥∥
L

p
s

∥∥∥∥
Lq(w)

≤ Nq([w]Aq )

∥∥∥∥
∥∥∥Y (τ,s)

∥∥∥
L

p
s

∥∥∥∥
Lq(w)

.

By Fubini’s theorem, it follows that

∥∥∥∥∥

∥∥∥∥
∥∥∥X(τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lq(w)

≤ Nq([w]Aq )

∥∥∥∥∥

∥∥∥∥
∥∥∥Y (τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lq(w)

.

Applying Theorem A.1 one more with some r ∈ (1, ∞), we obtain

∥∥∥∥∥

∥∥∥∥
∥∥∥X(τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lr(w)

≤ Nr([w]Aq )

∥∥∥∥∥

∥∥∥∥
∥∥∥Y (τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lr(w)

. (A.2)

One can iterate this indefinitely, obtaining vector-valued inequalities with ever more nested 
norms, but we will stop here and specialize to w = 1.

Now we state the weighted martingale inequalities that we will use. The sharp A2 weighted 
martingale maximal inequality [13] says that, for any real-valued martingale f and any weight 
w ∈ A2, we have

‖Mf ‖L2(w) ! [w]A2 ‖f ‖L2(w) . (A.3)

The endpoint weighted versions of the BDG inequalities were proved by Osekowski in [47,
46]. In particular, in [46] it was proved that EMf ·w !ESf ·Mw for any real-valued martingale 
f and any weight w, where M denotes the martingale maximal and S the martingale square 
function. It is well-known that such estimates imply Ap weighted estimates of the form (A.1). 
Indeed, by the result of [46], for any real-valued martingale f and weights w, u, we have

EMf · u · w !ESf · M(uw) ≤ (E(Sf )2w)1/2(E(M(uw))2w−1)1/2.

By (A.3), we have

(E(M(uw))2w−1)1/2 ! [w−1]A2(E(uw)2w−1)1/2 = [w]A2(Eu2w)1/2.

By duality, it follows that

L2
wMf ! [w]A2L

2
wSf.

By extrapolation (A.2), we obtain the following vector-valued BDG inequality. It is also a special 
case of [56, Theorem 1.1].
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Theorem A.2 (Vector-valued BDG). Let p, q, r ∈ (1, ∞) and let X(τ,s) be a measurable family 
of real-valued martingales defined on the same probability space /. Then, we have

∥∥∥∥∥

∥∥∥∥
∥∥∥MX(τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lr(/)

!p,q,r

∥∥∥∥∥

∥∥∥∥
∥∥∥SY (τ,s)

∥∥∥
L

p
s

∥∥∥∥
L

q
τ

∥∥∥∥∥
Lr(/)

.

It is likely possible to allow the exponents to be 1, but this would require a different proof.

A.2. Martingale paraproduct estimate

For a discrete time adapted process (Fs,t ) and a discrete time martingale (gn), the martingale 
paraproduct is defined by

5s,t (F, g) :=
∑

s<j≤t

Fs,j−1dgj =
∑

s≤j<t

Fs,j (gj+1 − gj ). (A.4)

Using Theorem A.2 in place of [27, Lemma 2.4], we easily obtain the following analog of 
[27, Proposition 2.5].

Proposition A.1. Let 0 < r, r1 ≤ ∞, 1 < r0, p, q, p0, q0 < ∞, 1 < p1, q1 ≤ ∞. Let γ0, γ1 ∈ R. 
Assume

1/p = 1/p0 + 1/p1, 1/q = 1/q0 + 1/q1, 1/r = 1/r0 + 1/r1.

Then, for any measurable families of discrete time martingales g(x,y), two-parameter adapted 
process F (x,y), and stopping times τ ′

x,y ≤ τx,y on a filtered probability space /, we have

∥∥∥∥∥L
q
xx−γ0−γ1L

p
y sup

τ ′
x,y<t≤τx,y

∣∣∣5(F (x,y), g(x,y))τ ′
x,y ,t

∣∣∣

∥∥∥∥∥
Lr(/)

!
∥∥∥∥∥L

q1
x x−γ1L

p1
y sup

τ ′
x,y<t≤τx,y

∣∣∣F (x,y)
τ ′
x,y ,t

∣∣∣

∥∥∥∥∥
Lr1 (/)

∥∥∥L
q0
x x−γ0L

p0
y Sg

(x,y)
τ ′
x,y ,τx,y

∥∥∥
Lr0 (/)

.

(A.5)

Proposition A.1 readily extends to continuous time processes upon replacing 5s,t (F, g) by the 
Itô integral ́ t

s Fs,u−dgu, if Fs,· is càdlàg. Indeed, as explained in [27, Section 4], Proposition A.1, 
together with a stopping time construction, provides a construction of the Itô integral that comes 
directly with the claimed estimate.

Recall Definition 2.3:

‖A‖Bγ
pq

:=
[ T̂

0

(
τ−γ sup

0<h≤τ

∥∥A·,·+h

∥∥
Lp[0,T −h]

)q dτ

τ

]1/q
.
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For a martingale g and an adapted two-parameter process F on a time interval [0, T ], denote

As,t :=
tˆ

u=s

Fs,u−dgu.

In order to simplify notation, we extend gt = gT and Fs,t = Fs,T for t > T .
Let γ = γ0 + γ1 and let p, q, r , etc. be as in Proposition A.1. By the continuous time version 

of Proposition A.1, we obtain

∥∥∥‖A‖Bγ
p,q

∥∥∥
Lr(/)

≤
∥∥∥∥
[´ T

0

(
τ−γ

∥∥sup0<h≤τ

∣∣A·,·+h

∣∣∥∥
Lp[0,T ]

)q
dτ
τ

]1/q
∥∥∥∥

Lr(/)

!
∥∥∥∥
[´ T

0

(
τ−γ1

∥∥sup0<h≤τ

∣∣F·,·+h

∣∣∥∥
Lp1 [0,T ]

)q1 dτ
τ

]1/q1
∥∥∥∥

Lr1 (/)

(A.6)

·
∥∥∥∥
[´ T

0

(
τ−γ0

∥∥Sg·,·+τ

∥∥
Lp0 [0,T ]

)q0 dτ
τ

]1/q0
∥∥∥∥

Lr0 (/)

. (A.7)

Setting F = 1, γ1 = 0, and p1 = q1 = r1 = ∞, this recovers the non-endpoint Besov norm BDG 
inequality (5.10); we refer to [50, Thm. 1] for the endpoints. When g is the Brownian motion, 
the norm (A.7) is finite for any γ0 < 1/2 and q0 ∈ (1, ∞).

Now we can show the anisotropic version of Theorem 5.3.

Theorem A.3. Let p, q, r, p0, q0, r0, p1, q1, r1 be as in Proposition A.1. Let γ0, γ1 ∈ [0, ∞) with 
γ1 > 1/p1 and γ = γ0 + γ1. Let f be a càdlàg adapted process, g a càdlàg martingale, and

As,t :=
tˆ

u=s

δfs,u−dgu.

Then, with S defined as in (5.11), we have

∥∥∥‖A‖Bγ
p,q

∥∥∥
Lr(/)

!
∥∥∥‖f ‖

B
γ1
p1,q1

∥∥∥
Lr1 (/)

×
∥∥∥‖Sg‖Bγ0

p0,q0

∥∥∥
Lr0 (/)

. (A.8)

If f is also a martingale, then, by (5.10), f can be replaced by Sf on the right-hand side 
of (A.8). It is instructive to note that, in this case, the product (s, t) (→ δfs,tδgs,t , related to the 
“paraproduct” A by Itô’s product rule, has the same 2-parameter regularity.

Proof of Theorem A.3. Specializing the previous discussion to F = δf , it suffices to estimate 
(A.6). Assuming that γ1 > 1/p1, we will show that




T̂

0

(

τ−γ1

∥∥∥∥∥ sup
0<h≤τ

∣∣δf·,·+h

∣∣
∥∥∥∥∥

Lp1 [0,T ]

)q1
dτ

τ




1/q1

! ‖f ‖
B

γ1
p1,q1

. (A.9)

228



P.K. Friz, B. Seeger and P. Zorin-Kranich Journal of Differential Equations 339 (2022) 152–231

Indeed, the hypothesis ensures that f is (a.e. equal to) a (γ1 − 1/p1)-Hölder function (see 
e.g. Proposition 2.1). Therefore, the supremum can be replaced by the supremum over h ∈
τ · ((0, 1] ∩ Z[1/2]), where Z[1/2] is the set of rational numbers with denominator that is a 
power of 2. By the monotone convergence theorem, it suffices to consider h ∈ τ · DN , where 
DN = {1, . . . , 2N }/2N , as long as we obtain a bound independent of N . Note that

sup
h∈τDN+1

∣∣δfs,s+h

∣∣ = sup
h∈(τ/2)DN∪((τ/2)DN+τ/2)

∣∣δfs,s+h

∣∣

≤ sup
h∈(τ/2)DN

(
∣∣δfs,s+h

∣∣p1 +
∣∣δfs,s+τ/2+h

∣∣p1)1/p1

≤ sup
h∈(τ/2)DN

(
∣∣δfs,s+h

∣∣p1 +
∣∣δfs+τ/2,s+τ/2+h

∣∣p1)1/p1 +
∣∣δfs,s+τ/2

∣∣ .

Taking Lp1 norm in s, we obtain

∥∥∥∥∥ sup
h∈τDN+1

∣∣δf·,·+h

∣∣
∥∥∥∥∥

Lp1

≤ 21/p1

∥∥∥∥∥ sup
h∈(τ/2)DN

∣∣δf·,·+h

∣∣
∥∥∥∥∥

Lp1

+
∥∥δf·,·+τ/2

∥∥
Lp1 .

Iterating this, we obtain a uniform estimate in N provided that γ1 > 1/p1. This shows (A.9), 
which in turn implies (A.8). !
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